repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
pulinagrawal/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/collections.py
69
39876
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts) """ import copy, math, warnings import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as _colors # avoid conflict with kwarg import matplotlib.cm as cm import matplotlib.transforms as transforms import matplotlib.artist as artist import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath import matplotlib.mlab as mlab class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.array([], np.float_) _transOffset = transforms.IdentityTransform() _transforms = [] zorder = 1 def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds = None, offsets = None, transOffset = None, norm = None, # optional for ScalarMappable cmap = None, # ditto pickradius = 5.0, urls = None, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_urls(urls) self._uniform_offsets = None self._offsets = np.array([], np.float_) if offsets is not None: offsets = np.asarray(offsets) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._pickradius = pickradius self.update(kwargs) def _get_value(self, val): try: return (float(val), ) except TypeError: if cbook.iterable(val) and len(val): try: float(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a float or nonzero sequence of floats') def _get_bool(self, val): try: return (bool(val), ) except TypeError: if cbook.iterable(val) and len(val): try: bool(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a bool or nonzero sequence of them') def get_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_datalim(self, transData): transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() offsets = np.asarray(offsets, np.float_) result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) return result def get_window_extent(self, renderer): bbox = self.get_datalim(transforms.IdentityTransform()) #TODO:check to ensure that this does not fail for #cases other than scatter plot legend return bbox def _prepare_points(self): """Point prep for drawing and hit testing""" transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(zip(xs, ys), path.codes)) if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() return transform, transOffset, offsets, paths def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() transform, transOffset, offsets, paths = self._prepare_points() renderer.draw_path_collection( transform.frozen(), self.clipbox, clippath, clippath_trans, paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls) renderer.close_group(self.__class__.__name__) def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible(): return False,{} transform, transOffset, offsets, paths = self._prepare_points() ind = mpath.point_in_path_collection( mouseevent.x, mouseevent.y, self._pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, len(self._facecolors)>0) return len(ind)>0,dict(ind=ind) def set_pickradius(self,pickradius): self.pickradius = 5 def get_pickradius(self): return self.pickradius def set_urls(self, urls): if urls is None: self._urls = [None,] else: self._urls = urls def get_urls(self): return self._urls def set_offsets(self, offsets): """ Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats """ offsets = np.asarray(offsets, np.float_) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. #This decision is based on how they are initialized above if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets def get_offsets(self): """ Return the offsets for the collection. """ #This decision is based on how they are initialized above in __init__() if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw) def set_linewidths(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ] """ try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if ls in dashd: dashes = [dashd[ls]] elif ls in cbook.ls_mapper: dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if x in dashd: dashes.append(dashd[x]) elif x in cbook.ls_mapper: dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif cbook.iterable(x) and len(x) == 2: dashes.append(x) else: raise ValueError() except ValueError: if len(ls)==2: dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError('Do not know how to convert %s to dashes'%ls) self._linestyles = dashes def set_linestyles(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_dashes(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_antialiased(self, aa): """ Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa) def set_antialiaseds(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` """ self.set_facecolor(c) self.set_edgecolor(c) def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c is None: c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_facecolors(self, c): """alias for set_facecolor""" return self.set_facecolor(c) def get_facecolor(self): return self._facecolors get_facecolors = get_facecolor def get_edgecolor(self): if self._edgecolors == 'face': return self.get_facecolors() else: return self._edgecolors get_edgecolors = get_edgecolor def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'face', the edge color will always be the same as the face color. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c == 'face': self._edgecolors = 'face' self._edgecolors_original = 'face' else: if c is None: c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_edgecolors(self, c): """alias for set_edgecolor""" return self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float. ACCEPTS: float """ try: float(alpha) except TypeError: raise TypeError('alpha must be a float') else: artist.Artist.set_alpha(self, alpha) try: self._facecolors = _colors.colorConverter.to_rgba_array( self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if self._edgecolors_original != 'face': self._edgecolors = _colors.colorConverter.to_rgba_array( self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_linewidths(self): return self._linewidths get_linewidth = get_linewidths def get_linestyles(self): return self._linestyles get_dashes = get_linestyle = get_linestyles def update_scalarmappable(self): """ If the scalar mappable array is not none, update colors from scalar data """ if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if len(self._facecolors): self._facecolors = self.to_rgba(self._A, self._alpha) else: self._edgecolors = self.to_rgba(self._A, self._alpha) def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Collection'] = """\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """ class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. """ def __init__(self, meshWidth, meshHeight, coordinates, showedges, antialiased=True): Collection.__init__(self) self._meshWidth = meshWidth self._meshHeight = meshHeight self._coordinates = coordinates self._showedges = showedges self._antialiased = antialiased self._paths = None self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) # By converting to floats now, we can avoid that on every draw. self._coordinates = self._coordinates.reshape((meshHeight + 1, meshWidth + 1, 2)) self._coordinates = np.array(self._coordinates, np.float_) def get_paths(self, dataTrans=None): if self._paths is None: self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) return self._paths #@staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers. """ Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate(( c[0:-1, 0:-1], c[0:-1, 1: ], c[1: , 1: ], c[1: , 0:-1], c[0:-1, 0:-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [Path(x) for x in points] convert_mesh_to_paths = staticmethod(convert_mesh_to_paths) def get_datalim(self, transData): return self._bbox def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if self.check_update('array'): self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() if not transform.is_affine: coordinates = self._coordinates.reshape( (self._coordinates.shape[0] * self._coordinates.shape[1], 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() renderer.draw_quad_mesh( transform.frozen(), self.clipbox, clippath, clippath_trans, self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self._showedges) renderer.close_group(self.__class__.__name__) class PolyCollection(Collection): def __init__(self, verts, sizes = None, closed = True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_verts(verts, closed) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if closed: self._paths = [] for xy in verts: if np.ma.isMaskedArray(xy): if len(xy) and (xy[0] != xy[-1]).any(): xy = np.ma.concatenate([xy, [xy[0]]]) else: xy = np.asarray(xy) if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] def get_paths(self): return self._paths def draw(self, renderer): if self._sizes is not None: self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0)) for x in self._sizes] return Collection.draw(self, renderer) class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [ [(xmin, ymin), (xmin, ymax), (xmin+xwidth, ymax), (xmin+xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection """ xranges = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1]-xslice[0])) collection = BrokenBarHCollection(xranges, [ymin, ymax-ymin], **kwargs) return collection class RegularPolyCollection(Collection): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon def __init__(self, numsides, rotation = 0 , sizes = (1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) """ Collection.__init__(self,**kwargs) self._sizes = sizes self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): self._transforms = [ transforms.Affine2D().rotate(-self._rotation).scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation def get_sizes(self): return self._sizes class StarPolygonCollection(RegularPolyCollection): """ Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """ Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ zorder = 2 def __init__(self, segments, # Can be None. linewidths = None, colors = None, antialiaseds = None, linestyles = 'solid', offsets = None, transOffset = None, norm = None, cmap = None, pickradius = 5, **kwargs ): """ *segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix :attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = _colors.colorConverter.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, **kwargs) self.set_facecolors([]) self.set_segments(segments) def get_paths(self): return self._paths def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not np.ma.isMaskedArray(seg): seg = np.asarray(seg, np.float_) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(seg) for seg in _segments] set_verts = set_segments # for compatibility with PolyCollection def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i%Noffs segs[i] = segs[i] + offsets[io:io+1] return segs def set_color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._edgecolors = _colors.colorConverter.to_rgba_array(c) def color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c) def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class CircleCollection(Collection): """ A collection of circles, drawn using splines. """ def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): # sizes is the area of the circle circumscribing the polygon # in points^2 self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths class EllipseCollection(Collection): """ A collection of ellipses, drawn using splines. """ def __init__(self, widths, heights, angles, units='points', **kwargs): """ *widths*: sequence half-lengths of first axes (e.g., semi-major axis lengths) *heights*: sequence half-lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y'] units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s """ Collection.__init__(self,**kwargs) self._widths = np.asarray(widths).ravel() self._heights = np.asarray(heights).ravel() self._angles = np.asarray(angles).ravel() *(np.pi/180.0) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] self._initialized = False __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def _init(self): def on_dpi_change(fig): self._transforms = [] self.figure.callbacks.connect('dpi_changed', on_dpi_change) self._initialized = True def set_transforms(self): if not self._initialized: self._init() self._transforms = [] ax = self.axes fig = self.figure if self._units in ('x', 'y'): if self._units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height sc = dx1/dx0 else: if self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) _affine = transforms.Affine2D for x, y, a in zip(self._widths, self._heights, self._angles): trans = _affine().scale(x * sc, y * sc).rotate(a) self._transforms.append(trans) def draw(self, renderer): if True: ###not self._transforms: self.set_transforms() return Collection.draw(self, renderer) def get_paths(self): return self._paths class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.fill: return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidths() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__( self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles='solid', antialiaseds = antialiaseds) else: Collection.__init__(self, **kwargs) paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths def get_paths(self): return self._paths artist.kwdocd['Collection'] = patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection'): artist.kwdocd[k] = patchstr artist.kwdocd['LineCollection'] = artist.kwdoc(LineCollection)
agpl-3.0
elmadjian/pcs5735
linear_regression.py
1
3359
import sys, re import matplotlib.pyplot as plt import numpy as np theta_list = [] x_list = [] y_list = [] def main(): if len(sys.argv) != 2: print("modo de usar: <este_programa> <arquivo_csv>") sys.exit() csv_file = sys.argv[1] with open(csv_file, "r") as arquivo: classes = arquivo.readline().split(",") theta_list = [0.0 for i in range(len(classes))] for line in arquivo: values = line.split(",") curr_x = [float(i) for i in values] curr_x[-1] = 1.0 x_list.append(curr_x) y_list.append(float(values[-1])) #print("x_list:", x_list, "\n\ny_list:", y_list, "\n\ntheta_list:", theta_list) #batch_gradient_descent(theta_list, x_list, y_list, 0.0005, 0.0000001) #stochastic_gradient_descent(theta_list, x_list, y_list, 0.0005, 0.00001) theta_list = normal_equations(x_list, y_list) print(theta_list) plot(theta_list, x_list, y_list) #-------------------------------- def J(theta_list, x_list, y_list): sigma = 0 for i in range(len(x_list)): sigma += (h_theta(theta_list, x_list[i]) - y_list[i])**2 return sigma / 2 #-------------------------------- def h_theta(theta_list, x_list_i): return np.dot(theta_list, x_list_i) #-------------------------------- def batch_gradient_descent(theta_list, x_list, y_list, alpha, epsilon): J_prev = 0 J_curr = J(theta_list, x_list, y_list) count = 0 while (abs(J_curr - J_prev) > epsilon): #print(count) count+=1 if count > 10000: print("too much iterations") break for j in range(len(theta_list)): sigma = 0 for i in range(len(x_list)): h = h_theta(theta_list, x_list[i]) sigma += (h - y_list[i]) * x_list[i][j] #print("h>>", h) theta_list[j] = theta_list[j] - alpha * sigma J_prev = J_curr J_curr = J(theta_list, x_list, y_list) #-------------------------------- def stochastic_gradient_descent(theta_list, x_list, y_list, alpha, epsilon): J_prev = 0 J_curr = J(theta_list, x_list, y_list) count = 0 while (abs(J_curr - J_prev) > epsilon): #print(count) count+=1 if count > 10000: print("too much iterations") break for j in range(len(theta_list)): for i in range(len(x_list)): diff = (h_theta(theta_list, x_list[i]) - y_list[i]) theta_list[j] = theta_list[j] - alpha * diff * x_list[i][j] J_prev = J_curr J_curr = J(theta_list, x_list, y_list) #-------------------------------- def normal_equations(x_list, y_list): X = np.array(x_list) y = np.array(y_list) return np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) #-------------------------------- def plot(theta_list, x_list, y_list): new_x_list = [i[0] for i in x_list] plt.plot(new_x_list, y_list, 'ro') #x_list.sort() #for x in x_list: # print("x:", x, "thetaTx:", np.dot(theta_list, x)) plt.plot(new_x_list, [np.dot((theta_list[0], theta_list[1]), (i[0], i[1])) for i in x_list]) plt.title("Regressão sobre os dados em 'height.csv'") plt.xlabel("Idade") plt.ylabel("Altura") plt.show() if __name__=="__main__": main()
mpl-2.0
jimgoo/zipline-fork
zipline/examples/dual_moving_average.py
1
4437
#!/usr/bin/env python # # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ from zipline.api import order_target, record, symbol, history, add_history def initialize(context): # Register 2 histories that track daily prices, # one with a 100 window and one with a 300 day window add_history(100, '1d', 'price') add_history(300, '1d', 'price') context.sym = symbol('AAPL') context.i = 0 def handle_data(context, data): # Skip first 300 days to get full windows context.i += 1 if context.i < 300: return # Compute averages # history() has to be called with the same params # from above and returns a pandas dataframe. short_mavg = history(100, '1d', 'price').mean() long_mavg = history(300, '1d', 'price').mean() # Trading logic if short_mavg[context.sym] > long_mavg[context.sym]: # order_target orders as many shares as needed to # achieve the desired number of shares. order_target(context.sym, 100) elif short_mavg[context.sym] < long_mavg[context.sym]: order_target(context.sym, 0) # Save values for later inspection record(AAPL=data[context.sym].price, short_mavg=short_mavg[context.sym], long_mavg=long_mavg[context.sym]) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze2(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel('Portfolio value (USD)') ax2 = fig.add_subplot(212) ax2.set_ylabel('Price (USD)') # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if ('AAPL' in results and 'short_mavg' in results and 'long_mavg' in results): results['AAPL'].plot(ax=ax2) results[['short_mavg', 'long_mavg']].plot(ax=ax2) trans = results.ix[[t != [] for t in results.transactions]] buys = trans.ix[[t[0]['amount'] > 0 for t in trans.transactions]] sells = trans.ix[ [t[0]['amount'] < 0 for t in trans.transactions]] ax2.plot(buys.index, results.short_mavg.ix[buys.index], '^', markersize=10, color='m') ax2.plot(sells.index, results.short_mavg.ix[sells.index], 'v', markersize=10, color='k') plt.legend(loc=0) else: msg = 'AAPL, short_mavg & long_mavg data not captured using record().' ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() def analyze(context=None, results=None): print(results.head()) # Note: this if-block should be removed if running # this algorithm on quantopian.com if __name__ == '__main__': from datetime import datetime import pytz from zipline.algorithm import TradingAlgorithm from zipline.utils.factory import load_from_yahoo # Set the simulation start and end dates. start = datetime(2009, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2013, 1, 1, 0, 0, 0, 0, pytz.utc) print start print end # Load price data from yahoo. data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) # Create and run the algorithm. algo = TradingAlgorithm(initialize=initialize, handle_data=handle_data, identifiers=['AAPL']) results = algo.run(data) # Plot the portfolio and asset data. analyze(results=results)
apache-2.0
legacysurvey/pipeline
py/obiwan/decals_sim_plots.py
2
32664
#!/usr/bin/env python """Analyze the output of decals_simulations. EXAMPLE ======= 8 500 star chunks for brick 2523p355 are here /project/projectdirs/desi/image_sims/2523p355 you can analyze them like this: export DECALS_SIM_DIR=/project/projectdirs/desi/image_sims python legacyanalysis/decals_sim_plots.py -b 2523p355 -o STAR -out your/relative/output/path out is optional, default is brickname/objtype Missing object and annotated coadd plots ======================================== python legacyanalysis/decals_sim_plots.py ... --extra_plots default is to NOT make them because chunks > 50 """ from __future__ import division, print_function import matplotlib matplotlib.use('Agg') # display backend import matplotlib.pyplot as plt from matplotlib.patches import Circle import matplotlib.image as mpimg import os import sys import pdb import logging import argparse import glob import numpy as np from astropy.io import fits from astropy.table import vstack, Table from astropy import units from astropy.coordinates import SkyCoord # import seaborn as sns from PIL import Image, ImageDraw import photutils from theValidator.catalogues import CatalogueFuncs def flux2mag(nanoflux): '''converts flux in tractor nanomaggie units to AB mag''' return 22.5-2.5*np.log10(nanoflux) def basic_cut(tractor): '''return boolean indices for which to keep and throw out''' flux= tractor['decam_flux'][:,[1,2,4]] grz_anymask= tractor['decam_anymask'][:,[1,2,4]] grz_nobs= tractor['decam_nobs'][:,[1,2,4]] b_good= np.all((flux[:,0] > 0, flux[:,1] > 0, flux[:,2] > 0, \ grz_anymask[:,0] == 0,grz_anymask[:,1] ==0,grz_anymask[:,2] == 0),axis=0) #grz_nobs[:,0] > 1,grz_nobs[:,1] > 1,grz_nobs[:,2] > 1,\ b_bad= b_good == False return b_good,b_bad def bright_dmag_cut(matched_simcat,matched_tractor): '''return: 1) median dmag of bright sources 2) indices of sources that are bright AND |dmag[band]| -|median_dmag[band]| > 0.005 in ANY band 3) indices of sources that are bright AND |dmag[band]| -|median_dmag[band]| <= 0.005 in ALL bands''' bright= dict(g=20.,r=19.,z=18.) b_good,junk= basic_cut(matched_tractor) # Store median dmag of bright sources med,b_bright={},{} for band,iband in zip(['g','r','z'],[1,2,4]): # Cut to bright and good sources inputflux = matched_simcat[band+'flux'] inputmag = 22.5-2.5*np.log10(inputflux) b_bright[band]= inputmag < bright[band] b_bright[band]= np.all((b_bright[band],b_good),axis=0) #i_bright= np.where(b_bright)[0] #print('type(i_bright)= ',type(i_bright),"i_bright=",i_bright) # Compute median for each band inputflux = matched_simcat[band+'flux'][b_bright[band]] tractorflux = matched_tractor['decam_flux'][:, iband][b_bright[band]] mag_diff= -2.5*np.log10(tractorflux/inputflux) med[band]= np.percentile(mag_diff,q=50) # Boolean mask for each band b={} for band,iband in zip(['g','r','z'],[1,2,4]): inputflux = matched_simcat[band+'flux'] tractorflux = matched_tractor['decam_flux'][:, iband] mag_diff= -2.5*np.log10(tractorflux/inputflux) b[band]= np.abs(mag_diff) - abs(med[band]) > 0.001 # total boolean mask b_bright= np.any((b_bright['g'],b_bright['r'],b_bright['z']),axis=0) b_large_dmag= np.all((b_bright,b_good,b['g'],b['r'],b['z']),axis=0) b_small_dmag= np.all((b_bright,b_good,b['g']==False,b['r']==False,b['z']==False),axis=0) return med,np.where(b_large_dmag)[0],np.where(b_small_dmag)[0] def plot_cutouts_by_index(simcat,index, brickname,lobjtype,chunksuffix, \ indir=None, img_name='simscoadd',qafile='test.png'): hw = 30 # half-width [pixels] rad = 14 ncols = 5 nrows = 5 nthumb = ncols*nrows dims = (ncols*hw*2,nrows*hw*2) mosaic = Image.new('RGB',dims) xpos, ypos = np.meshgrid(np.arange(0, dims[0], hw*2, dtype='int'), np.arange(0, dims[1], hw*2, dtype='int')) im = Image.open( os.path.join(indir, 'qa-{}-{}-{}-{:02d}.jpg'.format(brickname, lobjtype, img_name, int(chunksuffix))) ) sz = im.size iobj = 0 for ic in range(ncols): if iobj >= len(index) or iobj >= ncols*nrows: break for ir in range(nrows): if iobj >= len(index) or iobj >= ncols*nrows: break xx = int(simcat['X'][index[iobj]]) yy = int(sz[1]-simcat['Y'][index[iobj]]) crop = (xx-hw, yy-hw, xx+hw, yy+hw) box = (xpos[ir, ic], ypos[ir, ic]) thumb = im.crop(crop) mosaic.paste(thumb, box) iobj+= 1 # Add a border and circle the missing source. draw = ImageDraw.Draw(mosaic) sz = mosaic.size for ic in range(ncols): for ir in range(nrows): draw.rectangle([(xpos[ir, ic], ypos[ir, ic]), (xpos[ir, ic]+hw*2, ypos[ir, ic]+hw*2)]) xx = xpos[ir, ic] + hw yy = ypos[ir, ic] + hw draw.ellipse((xx-rad, sz[1]-yy-rad, xx+rad, sz[1]-yy+rad), outline='yellow') mosaic.save(qafile) def plot_annotated_coadds(simcat, brickname, lobjtype, chunksuffix,\ indir=None,img_name='simscoadd',qafile='test.png'): rad = 7/0.262 #imfile = os.path.join(cdir, 'qa-{}-{}-{}-{}.jpg'.format(brickname, lobjtype, suffix, chunksuffix)) # HARDCODED fix this!!!!! imfile = os.path.join(indir, 'qa-{}-{}-{}-{:02d}.jpg'.format(brickname, lobjtype, img_name, int(chunksuffix))) im = Image.open(imfile) sz = im.size draw = ImageDraw.Draw(im) [draw.ellipse((cat['X']-rad, sz[1]-cat['Y']-rad, cat['X']+rad, sz[1]-cat['Y']+rad), outline='yellow') for cat in simcat] im.save(qafile) def bin_up(data_bin_by,data_for_percentile, bin_minmax=(18.,26.),nbins=20): '''bins "data_for_percentile" into "nbins" using "data_bin_by" to decide how indices are assigned to bins returns bin center,N,q25,50,75 for each bin ''' bin_edges= np.linspace(bin_minmax[0],bin_minmax[1],num= nbins+1) vals={} for key in ['q50','q25','q75','n']: vals[key]=np.zeros(nbins)+np.nan vals['binc']= (bin_edges[1:]+bin_edges[:-1])/2. for i,low,hi in zip(range(nbins), bin_edges[:-1],bin_edges[1:]): keep= np.all((low < data_bin_by,data_bin_by <= hi),axis=0) if np.where(keep)[0].size > 0: vals['n'][i]= np.where(keep)[0].size vals['q25'][i]= np.percentile(data_for_percentile[keep],q=25) vals['q50'][i]= np.percentile(data_for_percentile[keep],q=50) vals['q75'][i]= np.percentile(data_for_percentile[keep],q=75) else: vals['n'][i]=0 return vals def plot_injected_mags(allsimcat, log,qafile='test.png'): gr_sim = -2.5*np.log10(allsimcat['gflux']/allsimcat['rflux']) rz_sim = -2.5*np.log10(allsimcat['rflux']/allsimcat['zflux']) grrange = (-0.2, 2.0) rzrange = (-0.4, 2.5) fig, ax = plt.subplots(2,1,figsize=(6,8)) ax[0].hist(22.5-2.5*np.log10(allsimcat['rflux']),bins=20,align='mid') ax[1].scatter(rz_sim,gr_sim, s=10,edgecolor='b',c='none',lw=1.) for i,x_lab,y_lab in zip(range(2),['r AB','r-z'],['N','g-r']): xlab=ax[i].set_xlabel(x_lab) ylab=ax[i].set_ylabel(y_lab) ax[1].set_xlim(rzrange) ax[1].set_ylim(grrange) fig.subplots_adjust(wspace=0.25) log.info('Writing {}'.format(qafile)) plt.savefig(qafile,bbox_extra_artists=[xlab,ylab], bbox_inches='tight') plt.close() def plot_good_bad_ugly(allsimcat,bigsimcat,bigsimcat_missing, nmagbin,rminmax, b_good,b_bad, log,qafile='test.png'): #rmaghist, magbins = np.histogram(allsimcat['r'], bins=nmagbin, range=rminmax) bigsimcat_R= flux2mag(bigsimcat['rflux']) bigsimcat_miss_R= flux2mag(bigsimcat_missing['rflux']) found=dict(good={},bad={},missed={}) for index,name in zip([b_good,b_bad],['good','bad']): # bin on true r mag of matched objects, count objects in each bin found[name]= bin_up(bigsimcat_R[index],bigsimcat_R[index], bin_minmax=rminmax,nbins=nmagbin) # bin_edges=magbins) name='missed' found[name]= bin_up(bigsimcat_miss_R,bigsimcat_miss_R, bin_minmax=rminmax,nbins=nmagbin) #bin_edges=magbins) fig, ax = plt.subplots(1, figsize=(8,6)) for name,color in zip(['good','bad','missed'],['k','b','r']): ax.step(found[name]['binc'],found[name]['n'], c=color,lw=2,label=name) xlab=ax.set_xlabel('Input r AB') ylab=ax.set_ylabel('Number Recovered') leg=ax.legend(loc=(0.,1.01),ncol=3) #fig.subplots_adjust(bottom=0.15) log.info('Writing {}'.format(qafile)) plt.savefig(qafile, bbox_extra_artists=[leg,xlab,ylab], bbox_inches='tight') plt.close() def plot_tractor_minus_answer(bigsimcat,bigtractor, b_good,rminmax, log,qafile='test.png'): fig, ax = plt.subplots(3, sharex=True, figsize=(6,8)) col = ['b', 'k', 'c', 'm', 'y', 0.8] rmag = bigsimcat['rflux'] for thisax, thiscolor, band, indx in zip(ax, col, ('g','r','z'), (1, 2, 4)): inputflux = bigsimcat[band+'flux'] tractorflux = bigtractor['decam_flux'][:, indx] tractorivar = bigtractor['decam_flux_ivar'][:, indx] #import pickle #fout=open('test.pickle','w') #pickle.dump((tractorflux,inputflux,b_good),fout) #fout.close() #print('exiting early') #sys.exit() inputmag = 22.5-2.5*np.log10(inputflux[b_good]) mag_diff= -2.5*np.log10(tractorflux[b_good]/inputflux[b_good]) thisax.scatter(inputmag, mag_diff, s=10,edgecolor=thiscolor,c='none',lw=1.) thisax.set_ylim(-0.1,0.1) thisax.set_xlim(inputmag.min()-0.1, inputmag.max()+0.1) thisax.axhline(y=0.0,lw=2,ls='solid',color='gray') #arr= np.ma.masked_array(mag_diff, mask= np.isfinite(mag_diff) == False) #med= np.median(arr) #print('arr=',arr) med,junk1,junk2= bright_dmag_cut(bigsimcat,bigtractor) thisax.axhline(y=med[band],lw=2,ls='dashed',color='red',label='Median=%.3f' % med[band]) thisax.legend(loc='upper left',fontsize='x-small') #thisax.text(0.05,0.05, band.lower(), horizontalalignment='left', #verticalalignment='bottom',transform=thisax.transAxes, #fontsize=16) ax[0].set_ylabel('$\Delta$g') ax[1].set_ylabel('$\Delta$r (Tractor - Input)') ylab=ax[2].set_ylabel('$\Delta$z') xlab=ax[2].set_xlabel('Input magnitude (AB mag)') fig.subplots_adjust(left=0.18,hspace=0.1) log.info('Writing {}'.format(qafile)) plt.savefig(qafile,bbox_extra_artists=[xlab,ylab], bbox_inches='tight') plt.close() def plot_chi(bigsimcat,bigtractor, b_good,rminmax, log,qafile='test.png'): col = ['b', 'k', 'c', 'm', 'y', 0.8] fig, ax = plt.subplots(3, sharex=True, figsize=(6,8)) rmag = flux2mag(bigsimcat['rflux']) for thisax, thiscolor, band, indx in zip(ax, col, ('g', 'r', 'z'), (1, 2, 4)): simflux = bigsimcat[band+'flux'] tractorflux = bigtractor['decam_flux'][:, indx] tractorivar = bigtractor['decam_flux_ivar'][:, indx] #thisax.scatter(rmag[bcut], -2.5*np.log10(tractorflux[bcut]/simflux[bcut]), # s=10,edgecolor=newcol,c='none',lw=1.,label=label) thisax.scatter(rmag[b_good], (tractorflux[b_good] - simflux[b_good])*np.sqrt(tractorivar[b_good]), s=10,edgecolor=thiscolor,c='none',lw=1.) #thisax.set_ylim(-0.7,0.7) thisax.set_ylim(-4,4) thisax.set_xlim(rminmax + [-0.1, 0.0]) thisax.axhline(y=0.0,lw=2,ls='solid',color='gray') #thisax.text(0.05,0.05, band.lower(), horizontalalignment='left', #verticalalignment='bottom',transform=thisax.transAxes, #fontsize=16) for i,b in enumerate(['g','r','z']): ylab=ax[i].set_ylabel(r'%s: $(F_{tractor} - F)/\sigma_{tractor}$' % b) #ax[0].set_ylabel('$\Delta$g') #ax[1].set_ylabel('$\Delta$r (Tractor minus Input)') #ax[2].set_ylabel('$\Delta$z') xlab=ax[2].set_xlabel('Input r magnitude (AB mag)') fig.subplots_adjust(left=0.18,hspace=0.1) log.info('Writing {}'.format(qafile)) plt.savefig(qafile,bbox_extra_artists=[xlab,ylab], bbox_inches='tight') plt.close() def plot_color_tractor_minus_answer(bigtractor,bigsimcat, rminmax, brickname,lobjtype, log,qafile='test.png'): gr_tra = -2.5*np.log10(bigtractor['decam_flux'][:, 1]/bigtractor['decam_flux'][:, 2]) rz_tra = -2.5*np.log10(bigtractor['decam_flux'][:, 2]/bigtractor['decam_flux'][:, 4]) gr_sim = -2.5*np.log10(bigsimcat['gflux']/bigsimcat['rflux']) rz_sim = -2.5*np.log10(bigsimcat['rflux']/bigsimcat['zflux']) rmag = flux2mag(bigsimcat['rflux']) col = ['b', 'k', 'c', 'm', 'y', 0.8] fig, ax = plt.subplots(2,sharex=True,figsize=(6,8)) ax[0].scatter(rmag, gr_tra-gr_sim, color=col[0], s=10) ax[1].scatter(rmag, rz_tra-rz_sim, color=col[1], s=10) [thisax.set_ylim(-0.7,0.7) for thisax in ax] [thisax.set_xlim(rminmax + [-0.1, 0.0]) for thisax in ax] [thisax.axhline(y=0.0, lw=2, ls='solid', color='gray') for thisax in ax] ax[0].set_ylabel('$\Delta$(g - r) (Tractor minus Input)') ax[1].set_ylabel('$\Delta$(r - z) (Tractor minus Input)') ax[1].set_xlabel('Input r magnitude (AB mag)') fig.subplots_adjust(left=0.18,hspace=0.1) log.info('Writing {}'.format(qafile)) plt.savefig(qafile) plt.close() def plot_fraction_recovered(allsimcat,bigsimcat, nmagbin,rminmax, brickname, lobjtype, log,qafile='test.png'): allsimcat_R= flux2mag(allsimcat['rflux']) bigsimcat_R= flux2mag(bigsimcat['rflux']) rmaghist, magbins = np.histogram(allsimcat_R, bins=nmagbin, range=rminmax) cmagbins = (magbins[:-1] + magbins[1:]) / 2.0 ymatch, binsmatch = np.histogram(bigsimcat_R, bins=nmagbin, range=rminmax) fig, ax = plt.subplots(1, figsize=(8,6)) ax.step(cmagbins, 1.0*ymatch/rmaghist, c='k',lw=3,label='All objects') #ax.step(cmagbins, 1.0*ymatchgood/rmaghist, lw=3, ls='dashed', label='|$\Delta$m|<0.3') ax.axhline(y=1.0,lw=2,ls='dashed',color='k') ax.set_xlabel('Input r magnitude (AB mag)') ax.set_ylabel('Fraction Recovered'.format(lobjtype)) ax.set_ylim([0.0, 1.1]) ax.legend('lower left') fig.subplots_adjust(bottom=0.15) log.info('Writing {}'.format(qafile)) plt.savefig(qafile) plt.close() def plot_sn_recovered(allsimcat,bigsimcat,bigtractor, brickname, lobjtype, log,qafile='test.png'): allsimcat_R= flux2mag(allsimcat['rflux']) # min,max mag of all bands grrange = (-0.2, 2.0) rzrange = (-0.4, 2.5) rmin,rmax= allsimcat_R.min(), allsimcat_R.max() mag_min= np.min((rmin,rmin+grrange[0],rmin-rzrange[1])) mag_max= np.max((rmax,rmax+grrange[1],rmax-rzrange[0])) s2n=dict(g={},r={},z={}) for band,ith in zip(['g','r','z'],[1,2,4]): mag= 22.5-2.5*np.log10(bigsimcat[band+'flux']) # HARDCODED mag range s2n[band]= bin_up(mag, bigtractor['decam_flux'][:,ith]*np.sqrt(bigtractor['decam_flux_ivar'][:,ith]), \ bin_minmax=(18,26),nbins=20) fig, ax = plt.subplots(1, figsize=(8,6)) xlab=ax.set_xlabel('Input magnitude (AB)') ylab=ax.set_ylabel(r'Median S/N = $F/\sigma$',fontweight='bold',fontsize='large') title= ax.set_title('S/N of Recovered Objects') for band,color in zip(['g','r','z'],['g','r','b']): ax.plot(s2n[band]['binc'], s2n[band]['q50'],c=color,ls='-',lw=2,label=band) #ax.fill_between(s2n[band]['cbin'],s2n[band]['q25'],s2n[band]['q75'],color=color,alpha=0.25) ax.axhline(y=5.,lw=2,ls='dashed',color='k',label='S/N = 5') ax.set_yscale('log') leg=ax.legend(loc=3) fig.subplots_adjust(bottom=0.15) log.info('Writing {}'.format(qafile)) plt.savefig(qafile,bbox_extra_artists=[leg,xlab,ylab,title], bbox_inches='tight',dpi=150) plt.close() def plot_recovered_types(bigsimcat,bigtractor, nmagbin,rminmax, objtype,log,qafile='test.png'): bigsimcat_R= flux2mag(bigsimcat['rflux']) fig = plt.figure(figsize=(8, 6)) ax = fig.gca() rmaghist, magbins = np.histogram(bigsimcat_R, bins=nmagbin, range=rminmax) cmagbins = (magbins[:-1] + magbins[1:]) / 2.0 tractortype = np.char.strip(bigtractor['type'].data) for otype in ['PSF', 'SIMP', 'EXP', 'DEV', 'COMP']: these = np.where(tractortype == otype)[0] if len(these)>0: yobj, binsobj = np.histogram(bigsimcat_R[these], bins=nmagbin, range=rminmax) #plt.step(cmagbins,1.0*yobj,lw=3,alpha=0.5,label=otype) plt.step(cmagbins,1.0*yobj/rmaghist,lw=3,alpha=0.5,label=otype) plt.axhline(y=1.0,lw=2,ls='dashed',color='gray') plt.xlabel('Input r magnitude (AB mag)') #plt.ylabel('Number of Objects') plt.ylabel('Fraction of {}s classified'.format(objtype)) plt.ylim([0.0,1.1]) plt.legend(loc='center left', bbox_to_anchor=(0.08,0.5)) fig.subplots_adjust(bottom=0.15) log.info('Writing {}'.format(qafile)) plt.savefig(qafile) plt.close() def create_confusion_matrix(answer_type,predict_type, types=['PSF','SIMP','EXP','DEV','COMP'],slim=True): '''compares classifications of matched objects, returns 2D array which is conf matrix and xylabels return 5x5 confusion matrix and colum/row names answer_type,predict_type -- arrays of same length with reference and prediction types''' for typ in set(answer_type): assert(typ in types) for typ in set(predict_type): assert(typ in types) # if a type was not in answer (training) list then don't put in cm if slim: ans_types= set(answer_type) # put in cm regardless else: ans_types= set(types) cm=np.zeros((len(ans_types),len(types)))-1 for i_ans,ans_type in enumerate(ans_types): ind= np.where(answer_type == ans_type)[0] for i_pred,pred_type in enumerate(types): n_pred= np.where(predict_type[ind] == pred_type)[0].size if ind.size > 0: cm[i_ans,i_pred]= float(n_pred)/ind.size # ind.size is constant for loop over pred_types else: cm[i_ans,i_pred]= np.nan if slim: return cm,ans_types,types #size ans_types != types else: return cm,types def plot_confusion_matrix(cm,answer_names,all_names, log, qafile='test.png'): plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues, vmin=0,vmax=1) cbar=plt.colorbar() plt.xticks(range(len(all_names)), all_names) plt.yticks(range(len(answer_names)), answer_names) ylab=plt.ylabel('True') xlab=plt.xlabel('Predicted (tractor)') for row in range(len(answer_names)): for col in range(len(all_names)): if np.isnan(cm[row,col]): plt.text(col,row,'n/a',va='center',ha='center') elif cm[row,col] > 0.5: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='yellow') else: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='black') log.info('Writing {}'.format(qafile)) plt.savefig(qafile, bbox_extra_artists=[xlab,ylab], bbox_inches='tight',dpi=150) plt.close() def plot_cm_stack(cm_stack,stack_names,all_names, log, qafile='test.png'): '''cm_stack -- list of single row confusion matrices stack_names -- list of same len as cm_stack, names for each row of cm_stack''' # combine list into single cm cm=np.zeros((len(cm_stack),len(all_names)))+np.nan for i in range(cm.shape[0]): cm[i,:]= cm_stack[i] # make usual cm, but labels repositioned plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) cbar=plt.colorbar() plt.xticks(range(len(all_names)), all_names) plt.yticks(range(len(stack_names)), stack_names) ylab=plt.ylabel('True = PSF') xlab=plt.xlabel('Predicted (tractor)') for row in range(len(stack_names)): for col in range(len(all_names)): if np.isnan(cm[row,col]): plt.text(col,row,'n/a',va='center',ha='center') elif cm[row,col] > 0.5: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='yellow') else: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center',color='black') #if np.isnan(cm[row,col]): # plt.text(col,row,'n/a',va='center',ha='center') #else: plt.text(col,row,'%.2f' % cm[row,col],va='center',ha='center') log.info('Writing {}'.format(qafile)) plt.savefig(qafile, bbox_extra_artists=[xlab,ylab], bbox_inches='tight',dpi=150) plt.close() def make_stacked_cm(bigsimcat,bigtractor, b_good, log,qafile='test.png'): bigsimcat_R= flux2mag(bigsimcat['rflux']) types= ['PSF ', 'SIMP', 'EXP ', 'DEV ', 'COMP'] cm_stack,stack_names=[],[] rbins= np.array([18.,20.,22.,23.,24.]) for rmin,rmax in zip(rbins[:-1],rbins[1:]): # master cut br_cut= np.all((bigsimcat_R > rmin,bigsimcat_R <= rmax, b_good),axis=0) stack_names+= ["%d < r <= %d" % (int(rmin),int(rmax))] cm,ans_names,all_names= create_confusion_matrix(np.array(['PSF ']*bigtractor['ra'].data[br_cut].shape[0]), bigtractor['type'].data[br_cut], \ types=types) cm_stack+= [cm] plot_cm_stack(cm_stack, stack_names,all_names, log, qafile=qafile) def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='DECaLS simulations.') parser.add_argument('-b', '--brick', type=str, default='2428p117', metavar='', help='process this brick (required input)') parser.add_argument('-o', '--objtype', type=str, choices=['star','qso','elg','lrg'], default='star', metavar='', help='object type') parser.add_argument('-out', '--output_dir', type=str, default=None, metavar='', help='relative path to output directory') parser.add_argument('-extra', '--extra_plots', action='store_true', help='make missing, annotated, coadded plots, dont if many chunks') parser.add_argument('-v', '--verbose', action='store_true', help='toggle on verbose output') args = parser.parse_args() if args.brick is None: parser.print_help() sys.exit(1) if args.extra_plots: extra_plots= True else: extra_plots= False print('extra_plots=',extra_plots) # Set the debugging level if args.verbose: lvl = logging.DEBUG else: lvl = logging.INFO logging.basicConfig(format='%(message)s', level=lvl, stream=sys.stdout) log = logging.getLogger('__name__') brickname = args.brick objtype = args.objtype.upper() lobjtype = objtype.lower() log.info('Analyzing objtype {} on brick {}'.format(objtype, brickname)) if 'DECALS_SIM_DIR' in os.environ: decals_sim_dir = os.getenv('DECALS_SIM_DIR') else: decals_sim_dir = '.' input_dir= os.path.join(decals_sim_dir,lobjtype,brickname[:3],brickname,'rowstart0') #if args.output_dir is None: output_dir= os.path.join(decals_sim_dir,lobjtype,brickname[:3],brickname,'qaplots_'+lobjtype) output_dir= os.path.join(os.path.dirname(input_dir),'qaplots_'+lobjtype) #else: output_dir= args.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Plotting preferences #sns.set(style='white',font_scale=1.6,palette='dark')#,font='fantasy') #col = sns.color_palette('dark') col = ['b', 'k', 'c', 'm', 'y', 0.8] # Read metadata catalog. metafile = os.path.join(input_dir, 'metacat-{}-{}-rowstart0.fits'.format(lobjtype,brickname)) log.info('Reading {}'.format(metafile)) meta = fits.getdata(metafile, 1) # We need this for our histograms below magbinsz = 0.2 rminmax = np.array([15.,24.]) #np.squeeze(meta['RMAG_RANGE']) nmagbin = long((rminmax[1]-rminmax[0])/magbinsz) # Work in chunks. allsimcat = [] bigsimcat = [] bigsimcat_missed = [] bigtractor = [] chunk_dirs= glob.glob(os.path.join(os.path.dirname(input_dir),'rowstart*')) nchunk= len(chunk_dirs) if nchunk == 0: raise ValueError # Loop through chunk dirs 000,001,...,999 for ichunk,cdir in enumerate([chunk_dirs[0]]): chunksuffix = os.path.basename(cdir) #'{:02d}'.format(ichunk) log.info('Working on chunk {:02d}/{:02d}'.format(ichunk+1, nchunk)) # Read the simulated object catalog simcatfile = os.path.join(cdir, 'simcat-{}-{}-{}.fits'.format(lobjtype,brickname,chunksuffix)) log.info('Reading {}'.format(simcatfile)) simcat = Table(fits.getdata(simcatfile, 1)) # Read Tractor catalog tractorfile = os.path.join(cdir, 'tractor-{}-{}-{}.fits'.format(lobjtype,brickname,chunksuffix)) log.info('Reading {}'.format(tractorfile)) tractor = Table(fits.getdata(tractorfile, 1)) # Match cat1 = SkyCoord(ra=tractor['ra']*units.degree, dec=tractor['dec']*units.degree) cat2 = SkyCoord(ra=simcat['ra']*units.degree, dec=simcat['dec']*units.degree) m2, d2d, d3d = cat1.match_to_catalog_3d(cat2) b= np.array(d2d) <= 1./3600 m2= np.array(m2)[b] m1= np.arange(len(tractor))[b] print('matched %d/%d' % (len(m2),len(simcat['ra']))) missing = np.delete(np.arange(len(simcat)), m2, axis=0) log.info('Missing {}/{} sources'.format(len(missing), len(simcat))) #good = np.where((np.abs(tractor['decam_flux'][m1,2]/simcat['rflux'][m2]-1)<0.3)*1) # Build matching catalogs for the plots below. if len(bigsimcat) == 0: bigsimcat = simcat[m2] bigtractor = tractor[m1] bigsimcat_missing = simcat[missing] else: bigsimcat = vstack((bigsimcat, simcat[m2])) bigtractor = vstack((bigtractor, tractor[m1])) bigsimcat_missing = vstack((bigsimcat_missing, simcat[missing])) if len(allsimcat) == 0: allsimcat = simcat else: allsimcat = vstack((allsimcat, simcat)) # Get cutouts of the bright matched sources with small/large delta mag if extra_plots: for img_name in ['image','resid','simscoadd']: # Indices of large and small dmag junk,i_large_dmag,i_small_dmag= bright_dmag_cut(simcat[m2],tractor[m1]) # Large dmag cutouts qafile = os.path.join(output_dir, 'qa-{}-{}-{}-bright-large-dmag-{:02d}.png'.format(\ brickname, lobjtype, img_name, int(chunksuffix))) plot_cutouts_by_index(simcat,i_large_dmag, brickname,lobjtype,chunksuffix, \ indir=cdir,img_name=img_name,qafile=qafile) log.info('Wrote {}'.format(qafile)) # Small dmag cutouts qafile = os.path.join(output_dir, 'qa-{}-{}-{}-bright-small-dmag-{:02d}.png'.format(\ brickname, lobjtype, img_name, int(chunksuffix))) plot_cutouts_by_index(simcat,i_small_dmag, brickname,lobjtype,chunksuffix, \ indir=cdir,img_name=img_name,qafile=qafile) log.info('Wrote {}'.format(qafile)) # Get cutouts of the missing sources in each chunk (if any) if len(missing) > 0 and extra_plots: simcat_R= flux2mag(simcat['rflux']) for img_name in ['image']: #,'simscoadd']: qafile = os.path.join(output_dir, 'qa-{}-{}-{}-missing-{:02d}.png'.format(\ brickname, lobjtype, img_name, int(chunksuffix))) miss = missing[np.argsort(simcat_R[missing])] plot_cutouts_by_index(simcat,miss, brickname,lobjtype,chunksuffix, \ indir=cdir,img_name=img_name,qafile=qafile) log.info('Wrote {}'.format(qafile)) # Annotate the coadd image and residual files so the simulated sources # are labeled. if extra_plots: for img_name in ('simscoadd','image', 'resid'): qafile = os.path.join(output_dir, 'qa-{}-{}-{}-{:02d}-annot.png'.format(\ brickname, lobjtype,img_name, int(chunksuffix))) plot_annotated_coadds(simcat, brickname, lobjtype, chunksuffix, \ indir=cdir,img_name=img_name,qafile=qafile) log.info('Wrote {}'.format(qafile)) # now operate on concatenated catalogues from multiple chunks # Grab flags b_good,b_bad= basic_cut(bigtractor) # mags and colors of ALL injected sources plot_injected_mags(allsimcat, log, qafile=\ os.path.join(output_dir, 'qa-{}-{}-injected-mags.png'.format(brickname, lobjtype))) # number of detected sources that are bad, good and number of undetected, binned by r mag plot_good_bad_ugly(allsimcat,bigsimcat,bigsimcat_missing, nmagbin,rminmax, b_good,b_bad, log, qafile=\ os.path.join(output_dir, 'qa-{}-{}-N-good-bad-missed.png'.format(brickname, lobjtype))) # Flux residuals vs input magnitude plot_tractor_minus_answer(bigsimcat,bigtractor, b_good,rminmax, log, qafile=\ os.path.join(output_dir, 'qa-{}-{}-good-flux.png'.format(brickname, lobjtype))) # chi plots: Flux residual / estimated Flux error plot_chi(bigsimcat,bigtractor, b_good,rminmax, log, qafile=\ os.path.join(output_dir, 'qa-{}-{}-chi-good.png'.format(brickname, lobjtype))) # Color residuals plot_color_tractor_minus_answer(bigtractor,bigsimcat, rminmax, brickname,lobjtype, log, qafile =\ os.path.join(output_dir, 'qa-{}-{}-color.png'.format(brickname, lobjtype))) # Fraction of recovered sources plot_fraction_recovered(allsimcat,bigsimcat, nmagbin,rminmax, brickname, lobjtype, log, qafile =\ os.path.join(output_dir, 'qa-{}-{}-frac.png'.format(brickname, lobjtype))) # S/N of recovered sources (S/N band vs. AB mag band) plot_sn_recovered(allsimcat,bigsimcat,bigtractor, brickname, lobjtype, log, qafile =\ os.path.join(output_dir, 'qa-{}-{}-SN.png'.format(brickname, lobjtype))) # Distribution of object types for matching sources. plot_recovered_types(bigsimcat,bigtractor, nmagbin,rminmax, objtype,log, qafile =\ os.path.join(output_dir, 'qa-{}-{}-type.png'.format(brickname, lobjtype))) # Confusion matrix for distribution of object types # Basic cm, use slim=False types= ['PSF ', 'SIMP', 'EXP ', 'DEV ', 'COMP'] cm,all_names= create_confusion_matrix(np.array(['PSF ']*bigtractor['ra'].data[b_good].shape[0]), bigtractor['type'].data[b_good], \ types=types,slim=False) qafile = os.path.join(output_dir, 'qa-{}-{}-{}-confusion.png'.format(brickname, lobjtype,'good')) plot_confusion_matrix(cm,all_names,all_names, log,qafile) # Now a stacked confusion matrix # Compute a row for each r mag range and stack rows make_stacked_cm(bigsimcat,bigtractor, b_good, log,qafile =\ os.path.join(output_dir, 'qa-{}-{}-good-confusion-stack.png'.format(brickname, lobjtype))) ''' # Morphology plots if objtype=='ELG': fig = plt.figure(figsize=(8,4)) plt.subplot(1,3,1) plt.plot(rmag,deltam,'s',markersize=3) plt.axhline(y=0.0,lw=2,ls='solid',color='gray') plt.xlim(rminmax) plt.xlabel('r (AB mag)') plt.subplot(1,3,2) plt.plot(bigsimcat['R50_1'],deltam,'s',markersize=3) plt.axhline(y=0.0,lw=2,ls='solid',color='gray') plt.xlabel('$r_{50}$ (arcsec)') plt.subplot(1,3,3) plt.plot(bigsimcat['BA_1'],deltam,'s',markersize=3) plt.axhline(y=0.0,lw=2,ls='solid',color='gray') plt.xlabel('b/a') plt.xlim([0.2,1.0]) fig.subplots_adjust(bottom=0.18) qafile = os.path.join(output_dir,'qa-'+brickname+'-'+lobjtype+'-morph.png') log.info('Writing {}'.format(qafile)) plt.savefig(qafile) ''' if __name__ == "__main__": main()
gpl-2.0
GuessWhoSamFoo/pandas
pandas/tests/indexes/datetimes/test_misc.py
2
13926
import calendar import locale import unicodedata import numpy as np import pytest import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, compat, date_range, datetime, offsets) import pandas.util.testing as tm class TestTimeSeries(object): def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) tm.assert_numpy_array_equal(idx.values, expected.values) def test_range_edges(self): # GH#13672 idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000001'), end=Timestamp('1970-01-01 00:00:00.000000004'), freq='N') exp = DatetimeIndex(['1970-01-01 00:00:00.000000001', '1970-01-01 00:00:00.000000002', '1970-01-01 00:00:00.000000003', '1970-01-01 00:00:00.000000004']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000004'), end=Timestamp('1970-01-01 00:00:00.000000001'), freq='N') exp = DatetimeIndex([]) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000001'), end=Timestamp('1970-01-01 00:00:00.000000001'), freq='N') exp = DatetimeIndex(['1970-01-01 00:00:00.000000001']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000001'), end=Timestamp('1970-01-01 00:00:00.000004'), freq='U') exp = DatetimeIndex(['1970-01-01 00:00:00.000001', '1970-01-01 00:00:00.000002', '1970-01-01 00:00:00.000003', '1970-01-01 00:00:00.000004']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.001'), end=Timestamp('1970-01-01 00:00:00.004'), freq='L') exp = DatetimeIndex(['1970-01-01 00:00:00.001', '1970-01-01 00:00:00.002', '1970-01-01 00:00:00.003', '1970-01-01 00:00:00.004']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:00:01'), end=Timestamp('1970-01-01 00:00:04'), freq='S') exp = DatetimeIndex(['1970-01-01 00:00:01', '1970-01-01 00:00:02', '1970-01-01 00:00:03', '1970-01-01 00:00:04']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 00:01'), end=Timestamp('1970-01-01 00:04'), freq='T') exp = DatetimeIndex(['1970-01-01 00:01', '1970-01-01 00:02', '1970-01-01 00:03', '1970-01-01 00:04']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01 01:00'), end=Timestamp('1970-01-01 04:00'), freq='H') exp = DatetimeIndex(['1970-01-01 01:00', '1970-01-01 02:00', '1970-01-01 03:00', '1970-01-01 04:00']) tm.assert_index_equal(idx, exp) idx = pd.date_range(start=Timestamp('1970-01-01'), end=Timestamp('1970-01-04'), freq='D') exp = DatetimeIndex(['1970-01-01', '1970-01-02', '1970-01-03', '1970-01-04']) tm.assert_index_equal(idx, exp) class TestDatetime64(object): def test_datetimeindex_accessors(self): dti_naive = pd.date_range(freq='D', start=datetime(1998, 1, 1), periods=365) # GH#13303 dti_tz = pd.date_range(freq='D', start=datetime(1998, 1, 1), periods=365, tz='US/Eastern') for dti in [dti_naive, dti_tz]: assert dti.year[0] == 1998 assert dti.month[0] == 1 assert dti.day[0] == 1 assert dti.hour[0] == 0 assert dti.minute[0] == 0 assert dti.second[0] == 0 assert dti.microsecond[0] == 0 assert dti.dayofweek[0] == 3 assert dti.dayofyear[0] == 1 assert dti.dayofyear[120] == 121 assert dti.weekofyear[0] == 1 assert dti.weekofyear[120] == 18 assert dti.quarter[0] == 1 assert dti.quarter[120] == 2 assert dti.days_in_month[0] == 31 assert dti.days_in_month[90] == 30 assert dti.is_month_start[0] assert not dti.is_month_start[1] assert dti.is_month_start[31] assert dti.is_quarter_start[0] assert dti.is_quarter_start[90] assert dti.is_year_start[0] assert not dti.is_year_start[364] assert not dti.is_month_end[0] assert dti.is_month_end[30] assert not dti.is_month_end[31] assert dti.is_month_end[364] assert not dti.is_quarter_end[0] assert not dti.is_quarter_end[30] assert dti.is_quarter_end[89] assert dti.is_quarter_end[364] assert not dti.is_year_end[0] assert dti.is_year_end[364] assert len(dti.year) == 365 assert len(dti.month) == 365 assert len(dti.day) == 365 assert len(dti.hour) == 365 assert len(dti.minute) == 365 assert len(dti.second) == 365 assert len(dti.microsecond) == 365 assert len(dti.dayofweek) == 365 assert len(dti.dayofyear) == 365 assert len(dti.weekofyear) == 365 assert len(dti.quarter) == 365 assert len(dti.is_month_start) == 365 assert len(dti.is_month_end) == 365 assert len(dti.is_quarter_start) == 365 assert len(dti.is_quarter_end) == 365 assert len(dti.is_year_start) == 365 assert len(dti.is_year_end) == 365 assert len(dti.weekday_name) == 365 dti.name = 'name' # non boolean accessors -> return Index for accessor in DatetimeIndex._field_ops: res = getattr(dti, accessor) assert len(res) == 365 assert isinstance(res, Index) assert res.name == 'name' # boolean accessors -> return array for accessor in DatetimeIndex._bool_ops: res = getattr(dti, accessor) assert len(res) == 365 assert isinstance(res, np.ndarray) # test boolean indexing res = dti[dti.is_quarter_start] exp = dti[[0, 90, 181, 273]] tm.assert_index_equal(res, exp) res = dti[dti.is_leap_year] exp = DatetimeIndex([], freq='D', tz=dti.tz, name='name') tm.assert_index_equal(res, exp) dti = pd.date_range(freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) assert sum(dti.is_quarter_start) == 0 assert sum(dti.is_quarter_end) == 4 assert sum(dti.is_year_start) == 0 assert sum(dti.is_year_end) == 1 # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) msg = "Custom business days is not supported by is_month_start" with pytest.raises(ValueError, match=msg): dti.is_month_start dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) assert dti.is_month_start[0] == 1 tests = [ (Timestamp('2013-06-01', freq='M').is_month_start, 1), (Timestamp('2013-06-01', freq='BM').is_month_start, 0), (Timestamp('2013-06-03', freq='M').is_month_start, 0), (Timestamp('2013-06-03', freq='BM').is_month_start, 1), (Timestamp('2013-02-28', freq='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', freq='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', freq='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', freq='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', freq='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', freq='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', freq='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', freq='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', freq='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', freq='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', freq='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', freq='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', freq='BQ').is_month_end, 0), (Timestamp('2013-06-30', freq='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', freq='BQ').is_year_end, 0), (Timestamp('2013-06-28', freq='BQ').is_month_end, 1), (Timestamp('2013-06-28', freq='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', freq='BQ').is_year_end, 0), (Timestamp('2013-06-30', freq='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', freq='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', freq='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', freq='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', freq='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', freq='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', freq='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', freq='AS-NOV').is_year_end, 1), (Timestamp('2012-02-01').days_in_month, 29), (Timestamp('2013-02-01').days_in_month, 28)] for ts, value in tests: assert ts == value # GH 6538: Check that DatetimeIndex and its TimeStamp elements # return the same weekofyear accessor close to new year w/ tz dates = ["2013/12/29", "2013/12/30", "2013/12/31"] dates = DatetimeIndex(dates, tz="Europe/Brussels") expected = [52, 1, 1] assert dates.weekofyear.tolist() == expected assert [d.weekofyear for d in dates] == expected # GH 12806 @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_datetime_name_accessors(self, time_locale): # Test Monday -> Sunday and January -> December, in that sequence if time_locale is None: # If the time_locale is None, day-name and month_name should # return the english attributes expected_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] expected_months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] else: with tm.set_locale(time_locale, locale.LC_TIME): expected_days = calendar.day_name[:] expected_months = calendar.month_name[1:] # GH#11128 dti = pd.date_range(freq='D', start=datetime(1998, 1, 1), periods=365) english_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for day, name, eng_name in zip(range(4, 11), expected_days, english_days): name = name.capitalize() assert dti.weekday_name[day] == eng_name assert dti.day_name(locale=time_locale)[day] == name ts = Timestamp(datetime(2016, 4, day)) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert ts.weekday_name == eng_name assert ts.day_name(locale=time_locale) == name dti = dti.append(DatetimeIndex([pd.NaT])) assert np.isnan(dti.day_name(locale=time_locale)[-1]) ts = Timestamp(pd.NaT) assert np.isnan(ts.day_name(locale=time_locale)) # GH#12805 dti = pd.date_range(freq='M', start='2012', end='2013') result = dti.month_name(locale=time_locale) expected = Index([month.capitalize() for month in expected_months]) # work around different normalization schemes # https://github.com/pandas-dev/pandas/issues/22342 if not compat.PY2: result = result.str.normalize("NFD") expected = expected.str.normalize("NFD") tm.assert_index_equal(result, expected) for date, expected in zip(dti, expected_months): result = date.month_name(locale=time_locale) expected = expected.capitalize() if not compat.PY2: result = unicodedata.normalize("NFD", result) expected = unicodedata.normalize("NFD", result) assert result == expected dti = dti.append(DatetimeIndex([pd.NaT])) assert np.isnan(dti.month_name(locale=time_locale)[-1]) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) tm.assert_index_equal(dti.nanosecond, pd.Index(np.arange(10, dtype=np.int64)))
bsd-3-clause
Lawrence-Liu/scikit-learn
examples/linear_model/plot_logistic_l1_l2_sparsity.py
384
2601
""" ============================================== L1 Penalty and Sparsity in Logistic Regression ============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C. """ print(__doc__) # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) # Set regularization parameter for i, C in enumerate((100, 1, 0.01)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%.2f" % C) print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR) print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y)) print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR) print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = plt.subplot(3, 2, 2 * i + 1) l2_plot = plt.subplot(3, 2, 2 * (i + 1)) if i == 0: l1_plot.set_title("L1 penalty") l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) plt.text(-8, 3, "C = %.2f" % C) l1_plot.set_xticks(()) l1_plot.set_yticks(()) l2_plot.set_xticks(()) l2_plot.set_yticks(()) plt.show()
bsd-3-clause
dimkal/mne-python
examples/inverse/plot_lcmv_beamformer_volume.py
18
3046
""" =================================================================== Compute LCMV inverse solution on evoked data in volume source space =================================================================== Compute LCMV inverse solution on an auditory evoked dataset in a volume source space. It stores the solution in a nifti file for visualisation e.g. with Freeview. """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.io import Raw from mne.beamformer import lcmv from nilearn.plotting import plot_stat_map from nilearn.image import index_img print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-vol-7-fwd.fif' fname_cov = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif' ############################################################################### # Get epochs event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = Raw(raw_fname) raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) left_temporal_channels = mne.read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads', selection=left_temporal_channels) # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) evoked = epochs.average() forward = mne.read_forward_solution(fname_fwd) # Read regularized noise covariance and compute regularized data covariance noise_cov = mne.read_cov(fname_cov) data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15, method='shrunk') # Run free orientation (vector) beamformer. Source orientation can be # restricted by setting pick_ori to 'max-power' (or 'normal' but only when # using a surface-based source space) stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, pick_ori=None) # Save result in stc files stc.save('lcmv-vol') stc.crop(0.0, 0.2) # Save result in a 4D nifti file img = mne.save_stc_as_volume('lcmv_inverse.nii.gz', stc, forward['src'], mri_resolution=False) t1_fname = data_path + '/subjects/sample/mri/T1.mgz' # Plotting with nilearn ###################################################### plot_stat_map(index_img(img, 61), t1_fname, threshold=0.8, title='LCMV (t=%.1f s.)' % stc.times[61]) # plot source time courses with the maximum peak amplitudes plt.figure() plt.plot(stc.times, stc.data[np.argsort(np.max(stc.data, axis=1))[-40:]].T) plt.xlabel('Time (ms)') plt.ylabel('LCMV value') plt.show()
bsd-3-clause
rajat1994/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
draperjames/bokeh
bokeh/models/tests/test_sources.py
2
9144
from __future__ import absolute_import import unittest from unittest import skipIf import warnings import numpy as np try: import pandas as pd is_pandas = True except ImportError as e: is_pandas = False from bokeh.models.sources import DataSource, ColumnDataSource from bokeh.util.serialization import transform_column_source_data class TestColumnDataSource(unittest.TestCase): def test_basic(self): ds = ColumnDataSource() self.assertTrue(isinstance(ds, DataSource)) def test_init_dict_arg(self): data = dict(a=[1], b=[2]) ds = ColumnDataSource(data) self.assertEquals(ds.data, data) self.assertEquals(set(ds.column_names), set(data.keys())) def test_init_dict_data_kwarg(self): data = dict(a=[1], b=[2]) ds = ColumnDataSource(data=data) self.assertEquals(ds.data, data) self.assertEquals(set(ds.column_names), set(data.keys())) @skipIf(not is_pandas, "pandas not installed") def test_init_pandas_arg(self): data = dict(a=[1, 2], b=[2, 3]) df = pd.DataFrame(data) ds = ColumnDataSource(df) self.assertTrue(set(df.columns).issubset(set(ds.column_names))) for key in data.keys(): self.assertEquals(list(df[key]), data[key]) self.assertEqual(set(ds.column_names) - set(df.columns), set(["index"])) @skipIf(not is_pandas, "pandas not installed") def test_init_pandas_data_kwarg(self): data = dict(a=[1, 2], b=[2, 3]) df = pd.DataFrame(data) ds = ColumnDataSource(data=df) self.assertTrue(set(df.columns).issubset(set(ds.column_names))) for key in data.keys(): self.assertEquals(list(df[key]), data[key]) self.assertEqual(set(ds.column_names) - set(df.columns), set(["index"])) def test_add_with_name(self): ds = ColumnDataSource() name = ds.add([1,2,3], name="foo") self.assertEquals(name, "foo") name = ds.add([4,5,6], name="bar") self.assertEquals(name, "bar") def test_add_without_name(self): ds = ColumnDataSource() name = ds.add([1,2,3]) self.assertEquals(name, "Series 0") name = ds.add([4,5,6]) self.assertEquals(name, "Series 1") def test_add_with_and_without_name(self): ds = ColumnDataSource() name = ds.add([1,2,3], "foo") self.assertEquals(name, "foo") name = ds.add([4,5,6]) self.assertEquals(name, "Series 1") def test_remove_exists(self): ds = ColumnDataSource() name = ds.add([1,2,3], "foo") assert name ds.remove("foo") self.assertEquals(ds.column_names, []) def test_remove_exists2(self): with warnings.catch_warnings(record=True) as w: ds = ColumnDataSource() ds.remove("foo") self.assertEquals(ds.column_names, []) self.assertEquals(len(w), 1) self.assertEquals(w[0].category, UserWarning) self.assertEquals(str(w[0].message), "Unable to find column 'foo' in data source") def test_stream_bad_data(self): ds = ColumnDataSource(data=dict(a=[10], b=[20])) with self.assertRaises(ValueError) as cm: ds.stream(dict()) self.assertEqual(str(cm.exception), "Must stream updates to all existing columns (missing: a, b)") with self.assertRaises(ValueError) as cm: ds.stream(dict(a=[10])) self.assertEqual(str(cm.exception), "Must stream updates to all existing columns (missing: b)") with self.assertRaises(ValueError) as cm: ds.stream(dict(a=[10], b=[10], x=[10])) self.assertEqual(str(cm.exception), "Must stream updates to all existing columns (extra: x)") with self.assertRaises(ValueError) as cm: ds.stream(dict(a=[10], x=[10])) self.assertEqual(str(cm.exception), "Must stream updates to all existing columns (missing: b, extra: x)") with self.assertRaises(ValueError) as cm: ds.stream(dict(a=[10], b=[10, 20])) self.assertEqual(str(cm.exception), "All streaming column updates must be the same length") with self.assertRaises(ValueError) as cm: ds.stream(dict(a=[10], b=np.ones((1,1)))) self.assertTrue( str(cm.exception).startswith("stream(...) only supports 1d sequences, got ndarray with size (") ) def test_stream_good_data(self): ds = ColumnDataSource(data=dict(a=[10], b=[20])) ds._document = "doc" stuff = {} mock_setter = object() def mock(*args, **kw): stuff['args'] = args stuff['kw'] = kw ds.data._stream = mock ds.stream(dict(a=[11, 12], b=[21, 22]), "foo", mock_setter) self.assertEqual(stuff['args'], ("doc", ds, dict(a=[11, 12], b=[21, 22]), "foo", mock_setter)) self.assertEqual(stuff['kw'], {}) def test_patch_bad_data(self): ds = ColumnDataSource(data=dict(a=[10, 11], b=[20, 21])) with self.assertRaises(ValueError) as cm: ds.patch(dict(a=[(3, 100)])) self.assertEqual(str(cm.exception), "Out-of bounds index (3) in patch for column: a") with self.assertRaises(ValueError) as cm: ds.patch(dict(c=[(0, 100)])) self.assertEqual(str(cm.exception), "Can only patch existing columns (extra: c)") with self.assertRaises(ValueError) as cm: ds.patch(dict(a=[(0,100)], c=[(0, 100)], d=[(0, 100)])) self.assertEqual(str(cm.exception), "Can only patch existing columns (extra: c, d)") def test_patch_good_data(self): ds = ColumnDataSource(data=dict(a=[10, 11], b=[20, 21])) ds._document = "doc" stuff = {} mock_setter = object() def mock(*args, **kw): stuff['args'] = args stuff['kw'] = kw ds.data._patch = mock ds.patch(dict(a=[(0,100), (1,101)], b=[(0,200)]), mock_setter) self.assertEqual(stuff['args'], ("doc", ds, dict(a=[(0,100), (1,101)], b=[(0,200)]), mock_setter)) self.assertEqual(stuff['kw'], {}) def test_data_column_lengths(self): # TODO: use this when soft=False # #with self.assertRaises(ValueError): # ColumnDataSource(data=dict(a=[10, 11], b=[20, 21, 22])) # #ds = ColumnDataSource() #with self.assertRaises(ValueError): # ds.data = dict(a=[10, 11], b=[20, 21, 22]) # #ds = ColumnDataSource(data=dict(a=[10, 11])) #with self.assertRaises(ValueError): # ds.data["b"] = [20, 21, 22] # #ds = ColumnDataSource(data=dict(a=[10, 11], b=[20, 21])) #with self.assertRaises(ValueError): # ds.data.update(dict(a=[10, 11, 12])) with warnings.catch_warnings(record=True) as warns: ColumnDataSource(data=dict(a=[10, 11], b=[20, 21, 22])) self.assertEquals(len(warns), 1) self.assertEquals(str(warns[0].message), "ColumnDataSource's columns must be of the same length") ds = ColumnDataSource() with warnings.catch_warnings(record=True) as warns: ds.data = dict(a=[10, 11], b=[20, 21, 22]) self.assertEquals(len(warns), 1) self.assertEquals(str(warns[0].message), "ColumnDataSource's columns must be of the same length") ds = ColumnDataSource(data=dict(a=[10, 11])) with warnings.catch_warnings(record=True) as warns: ds.data["b"] = [20, 21, 22] self.assertEquals(len(warns), 1) self.assertEquals(str(warns[0].message), "ColumnDataSource's columns must be of the same length") ds = ColumnDataSource(data=dict(a=[10, 11], b=[20, 21])) with warnings.catch_warnings(record=True) as warns: ds.data.update(dict(a=[10, 11, 12])) self.assertEquals(len(warns), 1) self.assertEquals(str(warns[0].message), "ColumnDataSource's columns must be of the same length") def test_set_data_from_json_list(self): ds = ColumnDataSource() data = {"foo": [1, 2, 3]} ds.set_from_json('data', data) self.assertEquals(ds.data, data) def test_set_data_from_json_base64(self): ds = ColumnDataSource() data = {"foo": np.arange(3)} json = transform_column_source_data(data) ds.set_from_json('data', json) self.assertTrue(np.array_equal(ds.data["foo"], data["foo"])) def test_set_data_from_json_nested_base64(self): ds = ColumnDataSource() data = {"foo": [[np.arange(3)]]} json = transform_column_source_data(data) ds.set_from_json('data', json) self.assertTrue(np.array_equal(ds.data["foo"], data["foo"])) def test_set_data_from_json_nested_base64_and_list(self): ds = ColumnDataSource() data = {"foo": [np.arange(3), [1, 2, 3]]} json = transform_column_source_data(data) ds.set_from_json('data', json) self.assertTrue(np.array_equal(ds.data["foo"], data["foo"])) if __name__ == "__main__": unittest.main()
bsd-3-clause
ueshin/apache-spark
python/pyspark/sql/pandas/group_ops.py
23
14683
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings from pyspark.rdd import PythonEvalType from pyspark.sql.column import Column from pyspark.sql.dataframe import DataFrame class PandasGroupedOpsMixin(object): """ Min-in for pandas grouped operations. Currently, only :class:`GroupedData` can use this class. """ def apply(self, udf): """ It is an alias of :meth:`pyspark.sql.GroupedData.applyInPandas`; however, it takes a :meth:`pyspark.sql.functions.pandas_udf` whereas :meth:`pyspark.sql.GroupedData.applyInPandas` takes a Python native function. .. versionadded:: 2.3.0 Parameters ---------- udf : :func:`pyspark.sql.functions.pandas_udf` a grouped map user-defined function returned by :func:`pyspark.sql.functions.pandas_udf`. Notes ----- It is preferred to use :meth:`pyspark.sql.GroupedData.applyInPandas` over this API. This API will be deprecated in the future releases. Examples -------- >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) >>> @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) # doctest: +SKIP ... def normalize(pdf): ... v = pdf.v ... return pdf.assign(v=(v - v.mean()) / v.std()) >>> df.groupby("id").apply(normalize).show() # doctest: +SKIP +---+-------------------+ | id| v| +---+-------------------+ | 1|-0.7071067811865475| | 1| 0.7071067811865475| | 2|-0.8320502943378437| | 2|-0.2773500981126146| | 2| 1.1094003924504583| +---+-------------------+ See Also -------- pyspark.sql.functions.pandas_udf """ # Columns are special because hasattr always return True if isinstance(udf, Column) or not hasattr(udf, 'func') \ or udf.evalType != PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF: raise ValueError("Invalid udf: the udf argument must be a pandas_udf of type " "GROUPED_MAP.") warnings.warn( "It is preferred to use 'applyInPandas' over this " "API. This API will be deprecated in the future releases. See SPARK-28264 for " "more details.", UserWarning) return self.applyInPandas(udf.func, schema=udf.returnType) def applyInPandas(self, func, schema): """ Maps each group of the current :class:`DataFrame` using a pandas udf and returns the result as a `DataFrame`. The function should take a `pandas.DataFrame` and return another `pandas.DataFrame`. For each group, all columns are passed together as a `pandas.DataFrame` to the user-function and the returned `pandas.DataFrame` are combined as a :class:`DataFrame`. The `schema` should be a :class:`StructType` describing the schema of the returned `pandas.DataFrame`. The column labels of the returned `pandas.DataFrame` must either match the field names in the defined schema if specified as strings, or match the field data types by position if not strings, e.g. integer indices. The length of the returned `pandas.DataFrame` can be arbitrary. .. versionadded:: 3.0.0 Parameters ---------- func : function a Python native function that takes a `pandas.DataFrame`, and outputs a `pandas.DataFrame`. schema : :class:`pyspark.sql.types.DataType` or str the return type of the `func` in PySpark. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. Examples -------- >>> import pandas as pd # doctest: +SKIP >>> from pyspark.sql.functions import pandas_udf, ceil >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> def normalize(pdf): ... v = pdf.v ... return pdf.assign(v=(v - v.mean()) / v.std()) >>> df.groupby("id").applyInPandas( ... normalize, schema="id long, v double").show() # doctest: +SKIP +---+-------------------+ | id| v| +---+-------------------+ | 1|-0.7071067811865475| | 1| 0.7071067811865475| | 2|-0.8320502943378437| | 2|-0.2773500981126146| | 2| 1.1094003924504583| +---+-------------------+ Alternatively, the user can pass a function that takes two arguments. In this case, the grouping key(s) will be passed as the first argument and the data will be passed as the second argument. The grouping key(s) will be passed as a tuple of numpy data types, e.g., `numpy.int32` and `numpy.float64`. The data will still be passed in as a `pandas.DataFrame` containing all columns from the original Spark DataFrame. This is useful when the user does not want to hardcode grouping key(s) in the function. >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> def mean_func(key, pdf): ... # key is a tuple of one numpy.int64, which is the value ... # of 'id' for the current group ... return pd.DataFrame([key + (pdf.v.mean(),)]) >>> df.groupby('id').applyInPandas( ... mean_func, schema="id long, v double").show() # doctest: +SKIP +---+---+ | id| v| +---+---+ | 1|1.5| | 2|6.0| +---+---+ >>> def sum_func(key, pdf): ... # key is a tuple of two numpy.int64s, which is the values ... # of 'id' and 'ceil(df.v / 2)' for the current group ... return pd.DataFrame([key + (pdf.v.sum(),)]) >>> df.groupby(df.id, ceil(df.v / 2)).applyInPandas( ... sum_func, schema="id long, `ceil(v / 2)` long, v double").show() # doctest: +SKIP +---+-----------+----+ | id|ceil(v / 2)| v| +---+-----------+----+ | 2| 5|10.0| | 1| 1| 3.0| | 2| 3| 5.0| | 2| 2| 3.0| +---+-----------+----+ Notes ----- This function requires a full shuffle. All the data of a group will be loaded into memory, so the user should be aware of the potential OOM risk if data is skewed and certain groups are too large to fit in memory. If returning a new `pandas.DataFrame` constructed with a dictionary, it is recommended to explicitly index the columns by name to ensure the positions are correct, or alternatively use an `OrderedDict`. For example, `pd.DataFrame({'id': ids, 'a': data}, columns=['id', 'a'])` or `pd.DataFrame(OrderedDict([('id', ids), ('a', data)]))`. This API is experimental. See Also -------- pyspark.sql.functions.pandas_udf """ from pyspark.sql import GroupedData from pyspark.sql.functions import pandas_udf, PandasUDFType assert isinstance(self, GroupedData) udf = pandas_udf( func, returnType=schema, functionType=PandasUDFType.GROUPED_MAP) df = self._df udf_column = udf(*[df[col] for col in df.columns]) jdf = self._jgd.flatMapGroupsInPandas(udf_column._jc.expr()) return DataFrame(jdf, self.sql_ctx) def cogroup(self, other): """ Cogroups this group with another group so that we can run cogrouped operations. .. versionadded:: 3.0.0 See :class:`PandasCogroupedOps` for the operations that can be run. """ from pyspark.sql import GroupedData assert isinstance(self, GroupedData) return PandasCogroupedOps(self, other) class PandasCogroupedOps(object): """ A logical grouping of two :class:`GroupedData`, created by :func:`GroupedData.cogroup`. .. versionadded:: 3.0.0 Notes ----- This API is experimental. """ def __init__(self, gd1, gd2): self._gd1 = gd1 self._gd2 = gd2 self.sql_ctx = gd1.sql_ctx def applyInPandas(self, func, schema): """ Applies a function to each cogroup using pandas and returns the result as a `DataFrame`. The function should take two `pandas.DataFrame`\\s and return another `pandas.DataFrame`. For each side of the cogroup, all columns are passed together as a `pandas.DataFrame` to the user-function and the returned `pandas.DataFrame` are combined as a :class:`DataFrame`. The `schema` should be a :class:`StructType` describing the schema of the returned `pandas.DataFrame`. The column labels of the returned `pandas.DataFrame` must either match the field names in the defined schema if specified as strings, or match the field data types by position if not strings, e.g. integer indices. The length of the returned `pandas.DataFrame` can be arbitrary. .. versionadded:: 3.0.0 Parameters ---------- func : function a Python native function that takes two `pandas.DataFrame`\\s, and outputs a `pandas.DataFrame`, or that takes one tuple (grouping keys) and two pandas ``DataFrame``\\s, and outputs a pandas ``DataFrame``. schema : :class:`pyspark.sql.types.DataType` or str the return type of the `func` in PySpark. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. Examples -------- >>> from pyspark.sql.functions import pandas_udf >>> df1 = spark.createDataFrame( ... [(20000101, 1, 1.0), (20000101, 2, 2.0), (20000102, 1, 3.0), (20000102, 2, 4.0)], ... ("time", "id", "v1")) >>> df2 = spark.createDataFrame( ... [(20000101, 1, "x"), (20000101, 2, "y")], ... ("time", "id", "v2")) >>> def asof_join(l, r): ... return pd.merge_asof(l, r, on="time", by="id") >>> df1.groupby("id").cogroup(df2.groupby("id")).applyInPandas( ... asof_join, schema="time int, id int, v1 double, v2 string" ... ).show() # doctest: +SKIP +--------+---+---+---+ | time| id| v1| v2| +--------+---+---+---+ |20000101| 1|1.0| x| |20000102| 1|3.0| x| |20000101| 2|2.0| y| |20000102| 2|4.0| y| +--------+---+---+---+ Alternatively, the user can define a function that takes three arguments. In this case, the grouping key(s) will be passed as the first argument and the data will be passed as the second and third arguments. The grouping key(s) will be passed as a tuple of numpy data types, e.g., `numpy.int32` and `numpy.float64`. The data will still be passed in as two `pandas.DataFrame` containing all columns from the original Spark DataFrames. >>> def asof_join(k, l, r): ... if k == (1,): ... return pd.merge_asof(l, r, on="time", by="id") ... else: ... return pd.DataFrame(columns=['time', 'id', 'v1', 'v2']) >>> df1.groupby("id").cogroup(df2.groupby("id")).applyInPandas( ... asof_join, "time int, id int, v1 double, v2 string").show() # doctest: +SKIP +--------+---+---+---+ | time| id| v1| v2| +--------+---+---+---+ |20000101| 1|1.0| x| |20000102| 1|3.0| x| +--------+---+---+---+ Notes ----- This function requires a full shuffle. All the data of a cogroup will be loaded into memory, so the user should be aware of the potential OOM risk if data is skewed and certain groups are too large to fit in memory. If returning a new `pandas.DataFrame` constructed with a dictionary, it is recommended to explicitly index the columns by name to ensure the positions are correct, or alternatively use an `OrderedDict`. For example, `pd.DataFrame({'id': ids, 'a': data}, columns=['id', 'a'])` or `pd.DataFrame(OrderedDict([('id', ids), ('a', data)]))`. This API is experimental. See Also -------- pyspark.sql.functions.pandas_udf """ from pyspark.sql.pandas.functions import pandas_udf udf = pandas_udf( func, returnType=schema, functionType=PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF) all_cols = self._extract_cols(self._gd1) + self._extract_cols(self._gd2) udf_column = udf(*all_cols) jdf = self._gd1._jgd.flatMapCoGroupsInPandas(self._gd2._jgd, udf_column._jc.expr()) return DataFrame(jdf, self.sql_ctx) @staticmethod def _extract_cols(gd): df = gd._df return [df[col] for col in df.columns] def _test(): import doctest from pyspark.sql import SparkSession import pyspark.sql.pandas.group_ops globs = pyspark.sql.pandas.group_ops.__dict__.copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("sql.pandas.group tests")\ .getOrCreate() globs['spark'] = spark (failure_count, test_count) = doctest.testmod( pyspark.sql.pandas.group_ops, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
iskold/fasta-util
bin/downsampler.py
1
7081
#!/usr/bin/python -u # https://github.com/iskold # Created Tue Jun 28 21:21:01 CEST 2016 import argparse,sys,os,re,math,time #standard libs I frequently use from datetime import datetime as dt parser = argparse.ArgumentParser(prog="downsample.py",usage="python3 downsample.py -f -t <target-read-count> -i <fastq-file> -o <fastq-file.output>",epilog="Written by https://github.com/iskold, on Tue Jun 28 21:21:01 CEST 2016",description="Description: Randomly downsamples a fastq-file to a specific count. NOTE! Does not normalize. If you want to normalize, use BBmap, and the tool called BBNorm.sh. You should downsample if you want to simulate lower sequencing depth. For example if you want to do gene counts matrices based on reads across samples with different depths.") parser.add_argument("-i",metavar="fastq", help="Input file",required="True",nargs="*") parser.add_argument("-o",metavar="fasta", help="Output file. Default: STDOUT. If paired end data, STDOUT will be disabled and output will automatically have 'DS' added to the input file name.") parser.add_argument("-t",metavar="number",help="Target read count",required="True",type=int,nargs=1) parser.add_argument("-a", help="Low-memory mode (uses basically no memory, but results in the target read counts +/- a few reads. Default: Off.",action="store_true") parser.add_argument("-v",help="Verbose. Prints helpful progress message to STDERR. Default is off.",action="store_true") args = parser.parse_args() if args.v: def eprint(*args,**kwargs): for arg in args: print(arg, file=sys.stderr, **kwargs) sys.stdout.flush() else: def eprint(*args,**kwarfs): pass #eprint = lambda *a: None if args.o and len(args.i) == 1: def oprint(*args,**kwargs): if args[0] == "tmp2": pass else: writefastqs(args[0],args[1]) # writefastqs(args,kwargs) elif not args.o and len(args.i) == 1: def oprint(*args,**kwargs): if args[0] == "tmp": pass else: print("{0}".format(args[1].rstrip())) # "{0}args[1],args[3]".rstrip(),end="******") else: def oprint(*args,**kwargs): writefastqs(args[0],args[1],args[2],args[3]) #writefastqs(args,kwargs) #if args.o: # def oprint(*args,**kwargs): # print(args[1]) # for arg in args: # print(arg,**kwargs) #else: # def oprint(*args,**kwargs): # for arg in args: if len(args.i) == 1: #syntax is writefastqs(fid1,entry1,fid2,entry2) fastq1 = args.i[0] if not args.o: fastq1o = "tmp2" # fastq1o = ".".join(args.i[0].split(".")[0:-1])+".DS.fq" else: fastq1o = args.o fastq2 = "tmp1" fastq2o = "tmp2" def writefastqs(*args,**kwargs): sup = args[0].write(args[1]) elif len(args.i) == 2: fastq1 = args.i[0] fastq1o = ".".join(args.i[0].strip(".gz").strip(".gzip").split(".")[0:-1])+".DS.fq" fastq1o = "./"+fastq1o.split("/")[-1] fastq2 = args.i[1] fastq2o = ".".join(args.i[1].strip(".gz").strip(".gzip").split(".")[0:-1])+".DS.fq" fastq2o = "./"+fastq2o.split("/")[-1] def writefastqs(*args,**kwargs): sup = args[0].write(args[1]) sup = args[2].write(args[3]) else: sys.exit("Number of input arguments ({0}) not understood".format(len(args.i))) eprint("#Provided arguments: {0}".format(args)) start = time.time() d_ = dt.today() timestarted = d_.strftime("%Y-%m-%d %H:%M") eprint("#Started at: {0}".format(timestarted)) eprint("\n#Loading modules...",end="") import numpy as np import matplotlib.pyplot as plt import random import gzip eprint("Done!") sys.stdout.flush() n = args.t[0] eprint("#Counting fastq entries...",end="") def fastqItr(myfile): if myfile == "tmp1": while 1: yield "" ext = myfile.split(".")[-1] if ext == "gz" or ext == "gzip": with gzip.open(myfile,"rt") as fid: entry = "" line = fid.readline() while line: entry += line for i in range(3): entry += fid.readline() yield entry entry = "" line = fid.readline() else: with open(myfile) as fid: entry = "" line = fid.readline() while line: entry += line for i in range(3): entry += fid.readline() yield entry entry = "" line = fid.readline() def fastqItr_generator(fid): #Had to split this up because of gzip, and "with"-statement messing up entry = "" line = fid.readline() while line: entry += line for i in range(3): entry += fid.readline() yield entry entry = "" line = fid.readline() c = 0 for entry in fastqItr(fastq1): c+=1 eprint("Done! (Entries: {0})".format(c)) if n > c: sys.exit("#ERROR!!!! Target number ({0}) is higher than the number of fastq-entries ({1})!".format(n,c)) #ratio = int(round(100*n/(c+0.0))) ratio = n/(c+0.0) #clist = [1 for x in range(ratio)]+[0 for x in range(100-ratio)] #random.shuffle(clist) eprint("#Building random list...",end="") clist = [] if not args.a: # make a list of numbers clist = set() while len(clist) != n: clist.add(random.randint(0,c-1)) clist = sorted(clist) eprint("Done!") else: eprint("Skipped!") eprint("#Choosing fastq entries...",end="") #with open("random.list") as fid: def up2date(f,x,cc,c): # print(x,cc,c,file=sys.stderr) while cc <= x and cc != c+1: cc += 1 entry = next(f) # print(x,cc,c,file=sys.stderr) return entry,cc if not clist: with open(fastq1o,"w") as fo1, open(fastq2o,"w") as fo2: i = 0 c2 = 0 k = 0 new = list() f1 = fastqItr(fastq1) f2 = fastqItr(fastq2) for line in f1: if random.random() <= ratio: i += 1 entry,c2 = up2date(f2,k,c2,c) oprint(fo1,line,fo2,entry) k += 1 else: with open(fastq1o,"w") as fo1, open(fastq2o,"w") as fo2: # eprint(clist,len(clist)) i = len(clist) c1 = 0 c2 = 0 k = 0 new = list() f1 = fastqItr(fastq1) f2 = fastqItr(fastq2) for x in clist: entry,c1 = up2date(f1,x,c1,c) entry2,c2 = up2date(f2,x,c2,c) oprint(fo1,entry,fo2,entry2) eprint("Done!\n") if os.path.isfile("tmp1"): os.remove("tmp1") if os.path.isfile("tmp2"): os.remove("tmp2") timeused = (time.time() - start) / 60.0 #eprint("Time used: "+str(round(timeused)) + " min ("+str(round(timeused/60,1))+" hours)\n",args.quiet) timefinish = d_.strftime("%Y-%m-%d %H:%M") eprint("#Finished at: {0}".format(timefinish)) eprint("#Time used: {0} min ({1} hours)".format(round(timeused,2),round(timeused/60.0,1))) sys.exit() #Legacy code below this line. Mostly used to visualize the randomness of the algorithm if 1: i = 0 new = list() for line in fid: #if random.choice(clist) == 1: if random.random() <= ratio: i += 1 new.append(line.rstrip()) y = [int(i) for i in new] x = range(n) x = [i+1 for i in x] yy = list() for i in range(c): if i in y: yy.append(1) else: yy.append(0) zz1 = list() for i in range(c): if i in zz: zz1.append(1) else: zz1.append(0) plt.plot(x[0:1000], yy[0:1000]) plt.plot(x[0:1000], zz1[0:1000]) plt.show() timeused = (time.time() - start) / 60.0 #eprint("Time used: "+str(round(timeused)) + " min ("+str(round(timeused/60,1))+" hours)\n",args.quiet) timefinish = d_.strftime("%Y-%m-%d_%H:%M") eprint("#Finished at: {0}".format(timefinish)) eprint("#Time used: {0} min ({1} hours)".format(timeused,round(timeused/60.0,1)))
gpl-3.0
DuraCopter/ardupilot
libraries/AP_Math/tools/geodesic_grid/plot.py
110
2876
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import matplotlib.patches as mpatches from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection import icosahedron as ico import grid fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim3d(-2, 2) ax.set_ylim3d(-2, 2) ax.set_zlim3d(-2, 2) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') added_polygons = set() added_sections = set() def polygons(polygons): for p in polygons: polygon(p) def polygon(polygon): added_polygons.add(polygon) def section(s): added_sections.add(s) def sections(sections): for s in sections: section(s) def show(subtriangles=False): polygons = [] facecolors = [] triangles_indexes = set() subtriangle_facecolors = ( '#CCCCCC', '#CCE5FF', '#E5FFCC', '#FFCCCC', ) if added_sections: subtriangles = True for p in added_polygons: try: i = ico.triangles.index(p) except ValueError: polygons.append(p) continue if subtriangles: sections(range(i * 4, i * 4 + 4)) else: triangles_indexes.add(i) polygons.append(p) facecolors.append('#DDDDDD') for s in added_sections: triangles_indexes.add(int(s / 4)) subtriangle_index = s % 4 polygons.append(grid.section_triangle(s)) facecolors.append(subtriangle_facecolors[subtriangle_index]) ax.add_collection3d(Poly3DCollection( polygons, facecolors=facecolors, edgecolors="#777777", )) for i in triangles_indexes: t = ico.triangles[i] mx = my = mz = 0 for x, y, z in t: mx += x my += y mz += z ax.text(mx / 2.6, my / 2.6, mz / 2.6, i, color='#444444') if subtriangles: ax.legend( handles=tuple( mpatches.Patch(color=c, label='Sub-triangle #%d' % i) for i, c in enumerate(subtriangle_facecolors) ), ) plt.show()
gpl-3.0
jplourenco/bokeh
bokeh/compat/mpl.py
32
2834
"Supporting objects and functions to convert Matplotlib objects into Bokeh." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from warnings import warn import matplotlib.pyplot as plt from .bokeh_exporter import BokehExporter from .bokeh_renderer import BokehRenderer #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def to_bokeh(fig=None, name=None, server=None, notebook=None, pd_obj=True, xkcd=False): """ Uses bokeh to display a Matplotlib Figure. You can store a bokeh plot in a standalone HTML file, as a document in a Bokeh plot server, or embedded directly into an IPython Notebook output cell. Parameters ---------- fig: matplotlib.figure.Figure The figure to display. If None or not specified, then the current figure will be used. name: str (default=None) If this option is provided, then the Bokeh figure will be saved into this HTML file, and then a web browser will be used to display it. server: str (default=None) Fully specified URL of bokeh plot server. Default bokeh plot server URL is "http://localhost:5006" or simply "deault" notebook: bool (default=False) Return an output value from this function which represents an HTML object that the IPython notebook can display. You can also use it with a bokeh plot server just specifying the URL. pd_obj: bool (default=True) The implementation asumes you are plotting using the pandas. You have the option to turn it off (False) to plot the datetime xaxis with other non-pandas interfaces. xkcd: bool (default=False) If this option is True, then the Bokeh figure will be saved with a xkcd style. """ if name is not None: warn("Use standard output_file(...) from bokeh.io") if server is not None: warn("Use standard output_server(...) from bokeh.io") if notebook is not None: warn("Use standard output_notebook() from bokeh.io") if fig is None: fig = plt.gcf() renderer = BokehRenderer(pd_obj, xkcd) exporter = BokehExporter(renderer) exporter.run(fig) return renderer.fig
bsd-3-clause
yonglehou/scikit-learn
examples/ensemble/plot_partial_dependence.py
249
4456
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show()
bsd-3-clause
jaganadhg/sdcnd_p1_lld
thirdeye/pipeline.py
1
1306
#!/usr/bin/env python """ Author : Jaganadh Gopinadhan e-mail : [email protected] Licence : MIT Third Eye V1.0 Udacity Self Driving Car Nano Degree Project 1 Finding Lane Lines on the Road """ import matplotlib.image as mpimg import numpy as np from moviepy.editor import VideoFileClip from pputil import FrameTransformer from lineutil import LineDrawBase, plot_img class Pipeline(object): """ Basic pipeline for Lane Line detection TODO : Improve with more features """ def __init__(self): self.rho = 1 self.theta = np.pi/180 self.threshold = 15 self.min_line_len = 25 self.max_line_gap = 250 self.preprocessor = FrameTransformer() self.annotator = LineDrawBase() def fit_frame(self,image): """ Preprocess and draw image """ roi = self.preprocessor.transform(image) annotated = self.annotator.draw(image,roi,self.rho,self.theta,\ self.threshold, self.min_line_len,self.max_line_gap) return annotated def fit_vid(self,vidfile): """ Process video file """ vf = VideoFileClip(vidfile) white_clip = vf.fl_image(self.fit_frame) return white_clip if __name__ == "__main__": print
mit
deepesch/scikit-learn
sklearn/tests/test_cross_validation.py
19
44125
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1./3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
Crompulence/cpl-library
test/lammps/single/no_wall/constant_force/falling.py
1
1218
import numpy as np import matplotlib.pyplot as plt from scipy.signal import argrelextrema def analytical_gravity(z0, v0, t0, t, g=9.81): return z0 + v0*(t-t0) - 0.5*g*(t-t0)**2 def read_data(logfile='./log.lammps', datafile='./thermo_output.txt'): #Get data from file with open(logfile) as f: for l in f.readlines(): if l.find("timestep") != -1: dt = float(l.strip('timestep')) break #print("timestep = ", dt) data = np.genfromtxt(datafile) t = data[:,0]*dt z = data[:,1] v = data[:,2] f = data[:,3] return t, z, v, f def unwrap(z): Lz = 2.5e-3 znew = np.zeros(z.shape[0]) znew[0] = z[0] for i in range(1,z.shape[0]): dz = z[i] - z[i-1] if dz > 0.: dz -= Lz znew[i] = znew[i-1] + dz return znew def check_falling_error_vs_gravity(D=3.5e-4, g=9.81): t, z, v, f = read_data() #Error vs gravity za = analytical_gravity(z[0], v[0], t[0], t, g) error = unwrap(z) - za return np.array(error) if __name__ == "__main__": error = check_falling_error_vs_gravity() plt.plot(error) plt.show()
gpl-3.0
AndresYague/Snuppat
output/figuresAndTables/plotHsLsObs.py
1
2407
import sys import matplotlib.pyplot as plt import matplotlib.ticker as ticker def main(): if len(sys.argv) < 2: print("Usage: python {} profile1 <profile2 ...>".format(sys.argv[0])) return 1 colors = ["b:", "g--", "y-"] labels = ["$\omega = 0.10$", "$\omega = 0.12$", "$\omega = 0.14$"] ii = 0 for arch in sys.argv[1:]: # Read event fread = open(arch, "r") # Get xx, yy xxArr = []; yyArr = [] for line in fread: if "#" in line: continue xx, yy = map(float, line.split()) xxArr.append(xx) yyArr.append(yy) plt.plot(xxArr, yyArr, colors[ii], label = labels[ii], lw = 2) ii += 1 # Observations values # (AW Cyg, S Sct, SS Vir, SZ Sgr, U Hya, V460 Cyg, Z Psc) # Obs values: Rb, Sr, Y, Zr, Ba, La, Ce, Nd, Sm xxObs = [37, 38, 39, 40, 56, 57, 58, 60, 62] yyErrs = [0.25, 0.20, 0.20, 0.20, 0.3, 0.40, 0.45, 0.40, 0.40] abiStars = [ [0.2, 0.4, 0.3, 0.5, 0, 0.3, "-", 0.5, "-"], [0.5, 0.8, 0.7, 0.5, 0.2, 0.1, "-", 0.2, "-"], ["-", 0.0, 0.5, 0.4, 0.3, 0.4, "-", 0.3, "-"], [0.1, 0.4, 0.9, 0.8, 0.8, 0.9, "-", 0.9, 0.6], [0.5, 0.8, 1.3, 1.1, 1.1, 0.9, 0.6, 1.0, 0.7], [0.4, 0.5, 0.7, 0.8, 0.8, 0.7, "-", 0.8, 0.4], [0.6, 0.9, 1.0, 1.0, 1.0, 1.1, 0.6, 0.9, 0.8] ] # Plot observations with errors gray = (0.75, 0.75, 0.75) star_ii = 0 for star in abiStars: # Calculate things hsFe = sum(star[1:4])/3.; hsErr = sum(yyErrs[1:4])/3. lsFe = sum(star[4:6])/2.; lsErr = sum(yyErrs[4:6])/2. hsLs = hsFe - lsFe; hsLsErr = hsErr + lsErr sFe = sum(star[1:6])/5.; sErr = sum(yyErrs[1:6])/5. # Set style if star_ii == 2 or star_ii == 3: col = "sr" elif star_ii == 0 or star_ii == 5: col = "vb" else: col = "^k" # Now plot it with error bars plt.errorbar(sFe, hsLs, fmt = col, xerr = sErr, yerr = hsLsErr) star_ii += 1 plt.xlabel("[s/Fe]", size = 12) plt.ylabel("[hs/ls]", size = 12) plt.legend(loc = 0, ncol = 2, prop = {"size": 12}) plt.show() if __name__ == "__main__": main()
mit
BavoGoosens/Gaiter
main.py
1
13115
import sys from data_utils.framer import * from data_utils.data_loader import * from sklearn.feature_selection import SelectKBest from sklearn.svm import LinearSVC from sklearn.feature_selection import f_classif from sklearn.ensemble import ExtraTreesClassifier from personal_classifier.support_vector_machine import SupportVectorMachine from feature_extraction.feature_extractor import add_pearson from feature_extraction.time_domain_feature_extractor import * from feature_extraction.frequency_domain_feature_extractor import * from feature_extraction.wavelet_feature_extractor import * from personal_classifier.ada_boost import * from personal_classifier.logistic_regression import * from personal_classifier.random_forrests import * from personal_classifier.support_vector_machine import * from walking_classifier.k_means import * from walking_classifier.k_means_mini_batch import * from walking_classifier.mean_shift import * from walking_classifier.db_scan import * from monitor.timer import Timer from scipy.sparse import csr_matrix import monitor.time_complexity_monitor as moni from validator import * import os.path import random import numpy as np import math def main(argv): # Welcome message global walking_classifier print "" print "Welcome to Gaiter..." print "First, Gaiter will load training data." # Frame all the data frame_size = 128 frame_overlap = 64 # Check for previous data previous_data = False if os.path.isfile('trainingdata.npy'): # Ask user for using previous data previous_data_answer = raw_input("Gaiter has discovered there is some data available from a previous session. " "This data is already framed and all features are already calculated. Do you " "want to use this data? (y/n) ") if previous_data_answer == 'y' or previous_data_answer == 'Y': print "Using the data from a previous session." previous_data = True print "" # Check if user wants load new data if not previous_data: # Ask user for path to directory of training data data_path = raw_input("Please enter the path to the directory of the training data (end your path with '/' and default=data/train/): ") # Load all the data print "Loading data from '"+data_path+"'." print "..." print "" data_loader = DataLoader(data_path) raw_data_list = data_loader.get_raw_data() print str(len(raw_data_list)) + " files found." print "Framing all the data." print "..." print "" framer = Framer(frame_size, frame_overlap) for raw_data in raw_data_list: framer.frame(raw_data) framed_raw_data_list = framer.get_framed_raw_data_list() length = 0 for frd in framed_raw_data_list: length += len(frd.get_frames()) print "Some files were not large enough for framing... "+str(len(framed_raw_data_list))+\ " files are divided into "+str(length)+" frames." print "" split = raw_input("What is k for your k-fold cross-validation? This determines " "the train/test split (default=5): ") split = int(split) split = 1 - (1 / float(split)) nb = int(len(framed_raw_data_list) * split) seed = raw_input("enter seed: ") random.seed(int(seed)) random.shuffle(framed_raw_data_list) train_raw_data_list = framed_raw_data_list[:nb] test_raw_data_list = framed_raw_data_list[nb:] use_derivative = raw_input("Would you like to add the features calculated " "from the first order derivative?(default = True): ") use_derivative = use_derivative.lower() == str(True).lower() # Extract features time_feature_extractor = TimeDomainFeatureExtractor(use_derivative) freq_feature_extractor = FrequencyDomainFeatureExtractor(use_derivative) wav_feature_extractor = WaveletFeatureExtractor(use_derivative) print "Extracting features for training-frames. This may take a while." print "..." print "" bumpy_data_set = list() raw_data_count = 0 for framed_raw_data in train_raw_data_list: print str(round(raw_data_count/float(len(train_raw_data_list))*100, 2))+" %" for frame in framed_raw_data.get_frames(): featured_frame = time_feature_extractor.extract_features(frame) featured_frame = freq_feature_extractor.extract_features(featured_frame) featured_frame = wav_feature_extractor.extract_features(featured_frame) featured_frame = add_pearson(featured_frame, False) bumpy_data_set.append(featured_frame) raw_data_count = raw_data_count + 1 print "100 %" print "" print "Training features are calculated. Writing all data to hard disk for later use." print "..." print "" flat_train_data_set = flatten(bumpy_data_set) train_data_set = np.array(flat_train_data_set) train_labels = np.array(extract_labels(bumpy_data_set)) np.save('trainingdata', train_data_set) np.save('traininglabels', train_labels) print "Extracting features for testing-frames. This may take a while." print "..." print "" bumpy_data_set = list() raw_data_count = 0 for framed_raw_data in test_raw_data_list: print str(round(raw_data_count/float(len(test_raw_data_list))*100, 2))+" %" for frame in framed_raw_data.get_frames(): featured_frame = time_feature_extractor.extract_features(frame) featured_frame = freq_feature_extractor.extract_features(featured_frame) featured_frame = wav_feature_extractor.extract_features(featured_frame) featured_frame = add_pearson(featured_frame, False) bumpy_data_set.append(featured_frame) raw_data_count = raw_data_count + 1 print "100 %" print "" print "Training features are calculated. Writing all data to hard disk for later use." print "..." print "" random.seed(0) random.shuffle(bumpy_data_set) flat_test_data_set = flatten(bumpy_data_set) test_data_set = np.array(flat_test_data_set) test_labels = np.array(extract_labels(bumpy_data_set)) np.save('testdata', test_data_set) np.save('testlabels', test_labels) print "All data is written to hard drive." print "" print ("The training data set's dimension is " + str(train_data_set.shape)) print ("The testing data set's dimension is " + str(test_data_set.shape)) else: print "Loading data from previous session." print "..." train_data_set = np.load("trainingdata.npy") train_labels = np.load("traininglabels.npy") test_data_set = np.load("testdata.npy") test_labels = np.load("testlabels.npy") print "All data from previous session loaded." print "" print ("The training data set's dimension is " + str(train_data_set.shape)) print ("The testing data set's dimension is " + str(test_data_set.shape)) print "" print "Gaiter will now train the walking classifier." print "List of walking classifiers:" print "1) K-means" print "2) K-means mini batch" print "3) Mean-shift" print "" walking_classifier_nb = raw_input("Please enter the number of the classifier you want to use: ") print "Training walking classifier." print "..." print "" if walking_classifier_nb == "1": walking_classifier = KMeans(train_data_set, train_labels) walking_classifier.train(2) if walking_classifier_nb == "2": walking_classifier = KMeansMiniBatch(train_data_set, train_labels) walking_classifier.train(2) if walking_classifier_nb == "3": walking_classifier = MeanShift(train_data_set, train_labels) walking_classifier.train() walking_data_set, walking_labels = walking_classifier.get_walking_frames() print "The walking classifier is trained." print "" print "Gaiter will now train and test the personal classifier." print "List of personal classifiers:" print "1) ADA boost" print "2) Random forrest" print "3) Support vector machine" print "4) Logistic regression" print "" personal_classifier_nb = raw_input("Please enter the number of the classifier you want to use: ") use_derivative = walking_data_set.shape[1] > 125 print "List of feature selectors:" print "1) Select K best" print "2) Tree-based feature selection" print "3) L1-based feature selection" print "4) None" print "" sel = raw_input("Please enter the number of the feature selector you want to use: ") if sel == "1": sel = raw_input("Please enter the number of the features you want to use: ") selector = SelectKBest(f_classif, k=int(sel)).fit(walking_data_set, walking_labels) if sel == "2": clf = ExtraTreesClassifier() selector = clf.fit(walking_data_set, walking_labels) if sel == "3": selector = LinearSVC(C=0.01, penalty="l1", dual=False).fit(walking_data_set, walking_labels) if sel == "4": selector = None if selector is not None: walking_data_set = selector.transform(walking_data_set) print "Training personal classifier." print "..." print "" if personal_classifier_nb == "1": pc = AdaBoost(walking_data_set, walking_labels) pc.train() if personal_classifier_nb == "2": pc = RandomForrest(walking_data_set, walking_labels) pc.train() if personal_classifier_nb == "3": pc = SupportVectorMachine(walking_data_set, walking_labels) pc.train() if personal_classifier_nb == "4": pc = LogisticRegression(walking_data_set, walking_labels) pc.train() wk = WalkingClassifier(test_data_set, test_labels) wk.set_classifier(walking_classifier.get_classifier()) test_data_set, test_labels = wk.classify() if selector is not None: test_data_set = selector.transform(test_data_set) val = Validator() val.calculate_confusion_matrix(pc, test_data_set, test_labels) data_path = raw_input("Please enter the path to the directory of the test data (end your " "path with '/' and default=data/test/): ") print "Loading test data from '"+data_path+"'." print "..." print "" data_loader = DataLoader(data_path) raw_data_list = data_loader.get_raw_data() print str(len(raw_data_list)) + " files found." print "Framing all the test data." print "..." print "" # Frame all the data unlabeled_framer = Framer(frame_size, frame_overlap) for raw_data in raw_data_list: unlabeled_framer.frame(raw_data) framed_raw_data_list = unlabeled_framer.get_framed_raw_data_list() length = 0 for frd in framed_raw_data_list: length += len(frd.get_frames()) print "Some files were not large enough for framing... "+str(len(framed_raw_data_list))+\ " files are divided into "+str(length)+" frames." print "" print "Extracting features for unlabeled frames. This may take a while." print "..." print "" time_feature_extractor = TimeDomainFeatureExtractor(use_derivative) freq_feature_extractor = FrequencyDomainFeatureExtractor(use_derivative) wav_feature_extractor = WaveletFeatureExtractor(use_derivative) bumpy_data_set = defaultdict(list) raw_data_count = 0 for framed_raw_data in framed_raw_data_list: print str(round(raw_data_count/float(len(framed_raw_data_list))*100, 2))+" %" entry = framed_raw_data.get_frames()[0].get_path() for frame in framed_raw_data.get_frames(): featured_frame = time_feature_extractor.extract_features(frame) featured_frame = freq_feature_extractor.extract_features(featured_frame) featured_frame = wav_feature_extractor.extract_features(featured_frame) featured_frame = add_pearson(featured_frame, False) bumpy_data_set[entry].append(featured_frame) raw_data_count = raw_data_count + 1 print "100 %" print "" print "Unlabeled features are calculated." print "..." print "" labels = pc.label_data(bumpy_data_set, selector) print(labels) def flatten(featured_frame_list): flat_list = list() for f_frame in featured_frame_list: features = f_frame.get_flat_features() flat_list.append(features) return flat_list def extract_labels(featured_frame_list): classes = list() for featured_frame in featured_frame_list: l = featured_frame.get_label() classes.append(l) return classes if __name__ == '__main__': main(sys.argv[1:])
mit
niwatoribaka/yeast-counter
yeast.py
1
16889
import cv2 import wx import os import sys # @UnusedImport import commands from matplotlib import pyplot as plt # @UnusedImport from pylab import * # @UnusedWildImport from GUI.settings_wizard import wizard as settings_wizard # @UnresolvedImport from prepare_dp import auto_prepare # Testing mode should be used with data points generated by # generate_test.py TESTING = None # MODE list # 0 -> custom normalized value method # 1 -> harris corner detection MODE = None UNITS = 'cm' # Each height must be evenly spaced excepting the low-flush # HEIGHTS[-1]-HEIGHTS[0] must be a mutliple of HEIGHTS[-1]-HEIGHTS[-2] HEIGHTS = [20, 35, 40, 45] # experiment (low-flush + 3 heights) DIFF = [HEIGHTS[x + 1] - HEIGHTS[x] for x in range(len(HEIGHTS) - 1)] # Fraction of user denoted significant shear (to calculate significant # shear height automatically and to mark on line plot). SIG_SHEAR = .75 DP_FOLDER = None PREPARE_FIRST = None class SettingsWizard(settings_wizard): ''' Overrides the methods from the FormBuilder generated file. ''' def user_exit(self, event): exit() def start_processing(self, event): global TESTING, MODE, DP_FOLDER, PREPARE_FIRST TESTING = self.select_testing.GetValue() mode = self.select_mode.GetStringSelection() if mode.__contains__('HSV'): MODE = 0 elif mode.__contains__('Harris'): MODE = 1 DP_FOLDER = self.dp_picker.GetPath() PREPARE_FIRST = self.select_prepare.GetValue() class DataPoint(): def __init__(self, dp_path): global TESTING, MODE, SIG_SHEAR if TESTING: print 'TESTING MODE IS ON' print 'MODE IS {0}'.format(MODE) self.significant_shear = SIG_SHEAR self.significant_shear = 1 - self.significant_shear self.dp_path = dp_path self.img_names = sort([f for f in os.listdir(dp_path) if os.path.isfile('{0}/{1}'.format(dp_path, f))]) if not TESTING: assert len(HEIGHTS) == len(self.img_names) self.imgs = [cv2.imread('{0}/{1}'.format(dp_path, fname)) for fname in self.img_names] self.user_params = {i: { 'testing_region':['ix', 'iy', 'x', 'y'], } for i in range(len(self.imgs)) } if MODE == 0: self.working_imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2HSV) \ for img in self.imgs] elif MODE == 1: self.working_imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype('float32') \ for img in self.imgs] self.average_value = [0. for img in range(len(self.img_names))] self.yeast_count = [0. for img in range(len(self.img_names))] print 'Setting params' self.set_user_params() print 'Cropping' self.crop_working(0, 200) if MODE == 0: self.pixel_method() elif MODE == 1: self.harris_method() def pixel_method(self): print 'Filtering borders' self.filter() print 'Normalizing' self.normalize_V() print 'Calculating averages' self.average_V() print 'Plotting' self.plot() def harris_method(self): print 'Setting thresholds' self.set_threshold() print 'Counting yeast' self.count_yeast() print 'Plotting' self.plot() def normalize_V(self): '''Normalizes each HSV image against its particular background. The background is whatever was within the crop buffer but outside the testing region. Modifies self.working_imgs''' for i in range(len(self.working_imgs)): region = self.user_params[i]['testing_region'] self.working_imgs[i] = self.working_imgs[i].astype(float) top_background_values = self.working_imgs[i][:, :, 2][0:region[1], :].flatten() bottom_background_values = self.working_imgs[i][:, :, 2][region[3]:-1, :].flatten() left_background_values = self.working_imgs[i][:, :, 2][:, 0:region[0]].flatten() right_background_values = self.working_imgs[i][:, :, 2][:, region[2]:-1].flatten() flat_background = concatenate(( top_background_values, bottom_background_values, left_background_values, right_background_values, )) repr_background = average(flat_background) self.working_imgs[i][:, :, 2] /= repr_background def suggest_lowpass_threshold(self): pass def filter(self): '''Filters out very dark regions of the cropped HSVs. The target of this filter is to remove the effect of the channel border and miscellaneous garbage in between the chip top and bottom when calculating the average value for the testing region.''' # TODO -> set darkness_threshold to value suggested by # self.suggest_lowpass_threshold() # perhaps each image should have a separate darkness_threshold? darkness_threshold = .8 * 255 print 'Low-pass filter set at: {0}'.format(darkness_threshold) for i in range(len(self.working_imgs)): print 'Min Intensity for image {0}: {1}'.format(i, min([min(col) for col in self.working_imgs[i][:, :, 2]])) for x in range(len(self.working_imgs[i][:, :, 2])): for y in range(len(self.working_imgs[i][:, :, 2][x])): if self.working_imgs[i][:, :, 2][x][y] < darkness_threshold: self.working_imgs[i][:, :, 2][x][y] = 1. def average_V(self): '''Stores the average value in the testing region in self.average_value''' for i in range(len(self.img_names)): region = self.user_params[i]['testing_region'] cropped = self.working_imgs[i][region[1]:region[3], region[0]:region[2]] cropped = cropped[:, :, 2] self.average_value[i] = sum([sum(row) for row in cropped]) / float(cropped.size) def set_threshold(self): ''' User interface for interactively setting the threshold for the corner detector. ''' global TESTING self.threshold = [0. for i in range(len(self.imgs))] self.dst = [cv2.cornerHarris(img, 2, 1, .04) for img in self.working_imgs] self.dst = [cv2.dilate(img, None) for img in self.dst] if sys.platform.startswith('win'): import ctypes user32 = ctypes.windll.user32 screen_res = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1) else: status, output = commands.getstatusoutput("xrandr | grep '*'") if not status: screen_res = tuple( [int(dim) for dim in \ [ part for part in output.split('\n')[-1].split(' ') if part][0].split('x') ] ) else: screen_res = 800, 600 scale_width = screen_res[0] / float(img.shape[1]) scale_height = screen_res[1] / float(img.shape[0]) scale = min(scale_width, scale_height) window_width = int(img.shape[1] * scale) window_height = int(img.shape[0] * scale) for i in range(len(self.working_imgs)): if TESTING and i != 0: self.threshold[i] = self.threshold[i - 1] continue cv2.namedWindow(self.img_names[i], cv2.WINDOW_NORMAL) cv2.resizeWindow(self.img_names[i], window_width, window_height) cv2.createTrackbar('threshold', self.img_names[i], 0, 260, lambda new: None) cv2.startWindowThread() while True: drawn_over = self.imgs[i].__copy__() drawn_over[self.dst[i] > cv2.getTrackbarPos('threshold', self.img_names[i]) \ * self.dst[i].max() / 1000.] = [0, 0, 255] cv2.imshow(self.img_names[i], drawn_over) k = cv2.waitKey(40) if k == 27: print 'User Interrupt: exiting' exit() elif k != -1: self.threshold[i] = cv2.getTrackbarPos('threshold', self.img_names[i]) \ * self.dst[i].max() / 1000. break cv2.destroyWindow(self.img_names[i]) cv2.waitKey(1) def count_yeast(self): for i in range(len(self.imgs)): mask = self.dst[i] > self.threshold[i] self.yeast_count[i] = float(sum(mask)) / len(mask) def printdir(self): '''Prints the content of the data point folder''' print '{0}:'.format(self.dp_path) for fname in self.img_names: print '\t{0}'.format(fname) def set_user_params(self): '''Is responsible for displaying each image of the data point folder. Works with self.paramsUI to gather input from the user''' self.stage = 0 global TESTING for i in range(len(self.imgs)): if TESTING and i != 0: self.user_params[i]['testing_region'] = self.user_params[0]['testing_region'] else: self.i = i self.drawing_overlay = self.imgs[i].__copy__() if sys.platform.startswith('win'): import ctypes user32 = ctypes.windll.user32 screen_res = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1) else: status, output = commands.getstatusoutput("xrandr | grep '*'") if not status: screen_res = tuple( [int(dim) for dim in \ [ part for part in output.split('\n')[-1].split(' ') if part][0].split('x') ] ) else: screen_res = 800, 600 scale_width = screen_res[0] / float(self.imgs[i].shape[1]) scale_height = screen_res[1] / float(self.imgs[i].shape[0]) scale = min(scale_width, scale_height) window_width = int(self.imgs[i].shape[1] * scale) window_height = int(self.imgs[i].shape[0] * scale) cv2.namedWindow(self.img_names[i], cv2.WINDOW_NORMAL) cv2.startWindowThread() cv2.resizeWindow(self.img_names[i], window_width, window_height) self.ix, self.iy = -1, -1 if i == 0: cv2.putText(self.drawing_overlay, 'Select testing region', (20, 100), \ cv2.FONT_HERSHEY_COMPLEX, 2, (255, 255, 0), 5) else: cv2.putText(self.drawing_overlay, 'Place testing region', (20, 100), \ cv2.FONT_HERSHEY_COMPLEX, 2, (255, 255, 0), 5) cv2.setMouseCallback(self.img_names[i], self.paramsUI) cv2.imshow(self.img_names[i], self.drawing_overlay) while True: k = cv2.waitKey(5) if k == 27: print 'User Interrupt: exiting' exit() elif k == ord('n'): self.stage = 0 cv2.destroyWindow(self.img_names[i]) cv2.waitKey(1) break def paramsUI(self, event, x, y, flags, param): '''Modifies self.drawing_overlay in response to user input Sets the testing region with respect to the unaltered image''' if not self.stage and not self.i: if event == cv2.EVENT_LBUTTONDOWN: self.ix, self.iy = x, y elif event == cv2.EVENT_LBUTTONUP: self.user_params[self.i]['testing_region'] = [self.ix, self.iy, x, y] cv2.rectangle(self.drawing_overlay, (self.ix, self.iy), (x, y), (0, 255, 0), 3) cv2.putText(self.drawing_overlay, "Press 'n' to continue", (20, 190), \ cv2.FONT_HERSHEY_COMPLEX, 2, (255, 255, 0), 5) self.stage = 1 cv2.imshow(self.img_names[self.i], self.drawing_overlay) elif not self.stage: if event == cv2.EVENT_LBUTTONDOWN: testing_region = self.user_params[0]['testing_region'] w = testing_region[2] - testing_region[0] h = testing_region[3] - testing_region[1] self.user_params[self.i]['testing_region'] = [x, y, x + w, y + h] cv2.rectangle(self.drawing_overlay, (x, y), (x + w, y + h), (0, 255, 0), 3) cv2.putText(self.drawing_overlay, "Press 'n' to continue", (20, 190), \ cv2.FONT_HERSHEY_COMPLEX, 2, (255, 255, 0), 5) self.stage = 1 cv2.imshow(self.img_names[self.i], self.drawing_overlay) def crop_working(self, x_cropbuff, y_cropbuff): '''Crops the working images to the testing region. The x and y crop buffers allow for other functions in self to have a background region to normalize to. Modifies self.working_imgs and self.user_params -> 'testing_region'.''' for i in range(len(self.working_imgs)): region = self.user_params[i]['testing_region'] self.working_imgs[i] = self.working_imgs[i][region[1] - y_cropbuff:region[3] + y_cropbuff, region[0] - x_cropbuff:region[2] + x_cropbuff] self.imgs[i] = self.imgs[i][region[1] - y_cropbuff:region[3] + y_cropbuff, region[0] - x_cropbuff:region[2] + x_cropbuff] self.user_params[i]['testing_region'] = [x_cropbuff, y_cropbuff, x_cropbuff + region[2] - region[0], y_cropbuff + region[3] - region[1]] def prepare_data(self): '''Uses self.average_value to construct self.coverage Also calculates self.significant_shear_height and self.x_significant_shear self.coverage[0] = 1, self.coverage[-1] = 0''' if MODE == 0: self.data = self.average_value elif MODE == 1: self.data = self.yeast_count norm = self.data[-1] self.data = [entry / norm for entry in self.data] self.data = [1 - v for v in self.data] norm = self.data[0] self.data = [entry / norm for entry in self.data] left_bound = 0 for i in range(len(self.data)): if self.data[i] < self.significant_shear: break left_bound = i self.x_significant_shear = (self.significant_shear - self.data[left_bound]) * \ (1. / (self.data[left_bound + 1] - self.data[left_bound])) + left_bound global HEIGHTS left = int(floor(self.x_significant_shear)) right = int(ceil(self.x_significant_shear)) self.significant_shear_height = HEIGHTS[left] + DIFF[left] * (self.x_significant_shear - floor(self.x_significant_shear)) def plot(self): global TESTING, UNITS, HEIGHTS '''Prepares the data using self.prepare_data and then graphs the data on a plot.''' self.prepare_data() plt.plot(HEIGHTS, self.data) plt.hlines(self.significant_shear, 0, HEIGHTS[-1]) plt.vlines(self.significant_shear_height, -1, 2) print 'Significant shear at image {0}'.format(self.x_significant_shear) if not TESTING: print 'Theoretical significant shear at height {0} {1}'.format(self.significant_shear_height, UNITS) plt.ylim([-1, 2]) plt.xlim([HEIGHTS[0], HEIGHTS[-1]]) plt.xlabel('Height ({0})'.format(UNITS)) plt.ylabel('Coverage') plt.title(self.dp_path.split('/')[-1]) try: os.mkdir('{0}/res'.format(self.dp_path)) except: pass plt.savefig('{0}/res/results.png'.format(self.dp_path)) with open('{0}/res/results.txt'.format(self.dp_path), 'w') as f: global MODE f.write('{0}\nMODE {1}\n'.format(str(self.significant_shear_height), MODE)) if __name__=='__main__': app = wx.App(False) wiz = SettingsWizard(None) wiz.RunWizard(wiz.m_pages[0]) wiz.Destroy() app.MainLoop() if PREPARE_FIRST: auto_prepare(DP_FOLDER) dp = DataPoint(DP_FOLDER)
mit
RosesTheN00b/BudgetButlerWeb
butler_offline/core/DBManager.py
1
6017
''' Read panda files ''' from _io import StringIO from butler_offline.core import file_system from butler_offline.core.database import Database import pandas as pd KEYWORD_EINZELBUCHUNGEN = 'Einzelbuchungen' KEYWORD_DAUERAUFRTAEGE = 'Dauerauftraege' KEYWORD_GEMEINSAME_BUCHUNGEN = 'Gemeinsame Buchungen' KEYWORD_SPARBUCHUNGEN = 'Sparbuchungen' KEYWORD_SPARKONTOS = 'Sparkontos' KEYWORD_DEPOTWERTE = 'Depotwerte' KEYWORD_ORDER = 'Order' KEYWORD_ORDERDAUERAUFTRAG = 'Dauerauftr_Ordr' KEYWORD_DEPOTAUSZUEGE = 'Depotauszuege' KEYWORD_LINEBREAK = '\n' def _to_table(content): return pd.read_csv(StringIO(content)) def read(nutzername, ausgeschlossene_kategorien): if not file_system.instance().read(database_path_from(nutzername)): neue_datenbank = Database(nutzername) write(neue_datenbank) file_content = file_system.instance().read(database_path_from(nutzername)) parser = DatabaseParser() parser.from_string(file_content) database = Database(nutzername, ausgeschlossene_kategorien=ausgeschlossene_kategorien) database.einzelbuchungen.parse(_to_table(parser.einzelbuchungen())) print('READER: Einzelbuchungen gelesen') database.dauerauftraege.parse(_to_table(parser.dauerauftraege())) print('READER: Daueraufträge gelesen') database.gemeinsamebuchungen.parse(_to_table(parser.gemeinsame_buchungen())) print('READER: Gemeinsame Buchungen gelesen') if parser.sparkontos(): database.sparkontos.parse(_to_table(parser.sparkontos())) print('READER: Sparkontos gelesen') if parser.sparbuchungen(): database.sparbuchungen.parse(_to_table(parser.sparbuchungen())) print('READER: Sparbuchungen gelesen') if parser.depotwerte(): database.depotwerte.parse(_to_table(parser.depotwerte())) print('READER: Depotwerte gelesen') if parser.order(): database.order.parse(_to_table(parser.order())) print('READER: Depotwerte gelesen') if parser.depotauszuege(): database.depotauszuege.parse(_to_table(parser.depotauszuege())) print('READER: Depotauszuege gelesen') if parser.order_dauerauftrag(): database.orderdauerauftrag.parse(_to_table(parser.order_dauerauftrag())) print('READER: Order Dauerauftrag gelesen') print('READER: Refreshe Database') database.refresh() print('READER: Refresh done') return database def wrap_tableheader(table_header_name): return '{} {} {}'.format(KEYWORD_LINEBREAK, table_header_name, KEYWORD_LINEBREAK) def write(database): content = database.einzelbuchungen.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_DAUERAUFRTAEGE) content += database.dauerauftraege.content.to_csv(index=False) content += wrap_tableheader(KEYWORD_GEMEINSAME_BUCHUNGEN) content += database.gemeinsamebuchungen.content.to_csv(index=False) content += wrap_tableheader(KEYWORD_SPARBUCHUNGEN) content += database.sparbuchungen.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_SPARKONTOS) content += database.sparkontos.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_DEPOTWERTE) content += database.depotwerte.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_ORDER) content += database.order.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_ORDERDAUERAUFTRAG) content += database.orderdauerauftrag.get_static_content().to_csv(index=False) content += wrap_tableheader(KEYWORD_DEPOTAUSZUEGE) content += database.depotauszuege.get_static_content().to_csv(index=False) file_system.instance().write(database_path_from(database.name), content) print("WRITER: All Saved") def database_path_from(username): return '../Database_' + username + '.csv' class DatabaseParser: def __init__(self): self._reader = MultiPartCsvReader( set([ KEYWORD_EINZELBUCHUNGEN, KEYWORD_DAUERAUFRTAEGE, KEYWORD_GEMEINSAME_BUCHUNGEN, KEYWORD_SPARBUCHUNGEN, KEYWORD_SPARKONTOS, KEYWORD_DEPOTWERTE, KEYWORD_ORDER, KEYWORD_DEPOTAUSZUEGE, KEYWORD_ORDERDAUERAUFTRAG ]), start_token=KEYWORD_EINZELBUCHUNGEN) def from_string(self, lines): self._reader.from_string(lines) def einzelbuchungen(self): return self._reader.get_string(KEYWORD_EINZELBUCHUNGEN) def dauerauftraege(self): return self._reader.get_string(KEYWORD_DAUERAUFRTAEGE) def gemeinsame_buchungen(self): return self._reader.get_string(KEYWORD_GEMEINSAME_BUCHUNGEN) def sparbuchungen(self): return self._reader.get_string(KEYWORD_SPARBUCHUNGEN) def sparkontos(self): return self._reader.get_string(KEYWORD_SPARKONTOS) def depotwerte(self): return self._reader.get_string(KEYWORD_DEPOTWERTE) def order(self): return self._reader.get_string(KEYWORD_ORDER) def depotauszuege(self): return self._reader.get_string(KEYWORD_DEPOTAUSZUEGE) def order_dauerauftrag(self): return self._reader.get_string(KEYWORD_ORDERDAUERAUFTRAG) class MultiPartCsvReader: def __init__(self, token, start_token): self._token = token self._start_token = start_token self._tables = {} def from_string(self, lines): self._tables = dict.fromkeys(self._token, '') mode = self._start_token for line in lines: line = line.strip() if line == '': continue if line in self._token: mode = line continue if not ',' in line: break self._tables[mode] = self._tables[mode] + KEYWORD_LINEBREAK + line def get_string(self, token): return self._tables[token].strip()
agpl-3.0
wangjohn/wallace
wallace/fitness_evaluation_methods/fitness_evaluation_method.py
1
1417
import sklearn.metrics class FitnessEvaluationMethod(object): @classmethod def evaluate_fitness(klass, predicted_results, true_results): raise NotImplementedError() @classmethod def evaluation_type(klass): return "minimizer" ########################## ### Regression Metrics ### ########################## class MeanSquaredError(FitnessEvaluationMethod): @classmethod def evaluate_fitness(klass, predicted_results, true_results): return sklearn.metrics.mean_squared_error(true_results, predicted_results) class R2Score(FitnessEvaluationMethod): @classmethod def evaluate_fitness(klass, predicted_results, true_results): return sklearn.metrics.r2_score(true_results, predicted_results) @classmethod def evaluation_type(klass): return "maximizer" class MeanAbsoluteError(FitnessEvaluationMethod): @classmethod def evaluate_fitness(klass, predicted_results, true_results): return sklearn.metrics.mean_absolute_error(true_results, predicted_results) ############################## ### Classification Metrics ### ############################## class F1Score(FitnessEvaluationMethod): @classmethod def evaluate_fitness(klass, predicted_results, true_results): return sklearn.metrics.f1_score(true_results, predicted_results) @classmethod def evaluation_type(klass): return "maximizer"
mit
JT5D/scikit-learn
sklearn/datasets/samples_generator.py
2
51932
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import numpy as np from scipy import linalg from ..preprocessing import LabelBinarizer from ..utils import array2d, check_random_state from ..utils import shuffle as util_shuffle from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = sample_without_replacement(2 ** dimensions, samples, random_state=rng).astype('>u4') out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=2) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, return_indicator=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. Number of labels follows a Poisson distribution that never takes the value 0. length : int, optional (default=50) Sum of the features (number of words if documents). allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. return_indicator : bool, optional (default=False), If ``True``, return ``Y`` in the binary indicator format, else return a tuple of lists of labels. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : tuple of lists or array of shape [n_samples, n_classes] The label sets. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling n = n_classes + 1 while (not allow_unlabeled and n == 0) or n > n_classes: n = generator.poisson(n_labels) # pick n classes y = [] while len(y) != n: # pick a class with probability P(c) c = generator.multinomial(1, p_c).argmax() if not c in y: y.append(c) # pick a non-zero document length by rejection sampling k = 0 while k == 0: k = generator.poisson(length) # generate a document of length k words x = np.zeros(n_features, dtype=int) for i in range(k): if len(y) == 0: # if sample does not belong to any class, generate noise word w = generator.randint(n_features) else: # pick a class and generate an appropriate word c = y[generator.randint(len(y))] w = generator.multinomial(1, p_w_c[:, c]).argmax() x[w] += 1 return x, y X, Y = zip(*[sample_example() for i in range(n_samples)]) if return_indicator: lb = LabelBinarizer() Y = lb.fit([range(n_classes)]).transform(Y) return np.array(X, dtype=np.float64), Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See the `make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples / 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples / 2, dtype=np.intp), np.ones(n_samples / 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples / 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = array2d(centers) n_features = centers.shape[1] X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, n in enumerate(n_samples_per_center): X.append(centers[i] + generator.normal(scale=cluster_std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors from ..utils.fixes import qr_economic u, _ = qr_economic(generator.randn(n_samples, n)) v, _ = qr_economic(generator.randn(n_features, n)) # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Parameters ---------- dim: integer, optional (default=1) The size of the random (matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- prec: array of shape = [dim, dim] Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: d = np.diag(prec) d = 1. / np.sqrt(d) prec *= d prec *= d[:, np.newaxis] return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perpsective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
lewisc/spark-tk
regression-tests/sparktkregtests/testcases/dicom/dicom_filter_keyword_test.py
13
9391
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """tests dicom.filter functionality""" import unittest from sparktkregtests.lib import sparktk_test import os import dicom import numpy import random from lxml import etree class DicomFilterKeywordsTest(sparktk_test.SparkTKTestCase): def setUp(self): """import dicom data for testing""" super(DicomFilterKeywordsTest, self).setUp() self.dataset = self.get_file("dicom_uncompressed") self.dicom = self.context.dicom.import_dcm(self.dataset) self.xml_directory = "../../../datasets/dicom/dicom_uncompressed/xml/" self.image_directory = "../../../datasets/dicom/dicom_uncompressed/imagedata/" self.query = ".//DicomAttribute[@keyword='KEYWORD']/Value/text()" def test_filter_one_column_one_result_basic(self): """test filter with one unique key""" # get the pandas frame for ease of access metadata = self.dicom.metadata.to_pandas() # grab a random row and extract the SOPInstanceUID from that record random_row_index = random.randint(0, self.dicom.metadata.count() - 1) random_row = metadata["metadata"][random_row_index] xml_data = etree.fromstring(random_row.encode("ascii", "ignore")) random_row_sopi_id = xml_data.xpath(self.query.replace("KEYWORD", "SOPInstanceUID"))[0] # get all of the records with our randomly selected sopinstanceuid # since sopinstanceuid is supposed to be unique for each record # we should only get back the record which we randomly selected above self.dicom.filter_by_keywords({"SOPInstanceUID" : random_row_sopi_id }) # check that our result is correct # we should have gotten back from filter the row # which we randomly selected self.assertEqual(self.dicom.metadata.count(), 1) pandas = self.dicom.metadata.to_pandas()["metadata"] record = pandas[0] self.assertEqual(str(random_row), str(record)) def test_filter_one_col_multi_result_basic(self): """test filter by keyword with one keyword mult record result""" # get pandas frame for ease of access metadata = self.dicom.metadata.to_pandas() # grab a random row and extract the patient id first_row = metadata["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # filter the records ourselves to get the expected result expected_result = self._filter({"PatientID" : first_row_patient_id }) # get all of the records with that patient id self.dicom.filter_by_keywords({"PatientID" : first_row_patient_id }) # get the pandas frame for ease of access pandas_result = self.dicom.metadata.to_pandas()["metadata"] # ensure that our expected result matches what dicom returned self.assertEqual(len(expected_result), self.dicom.metadata.count()) for record, filtered_record in zip(expected_result, pandas_result): self.assertEqual(record, filtered_record.encode("ascii", "ignore")) def test_filter_multiple_columns_basic(self): """test filter with multiple key vals""" # first we will generate a filter randomly by # randomly selecting a row and extracting values that we want to use keyword_filter = {} metadata = self.dicom.metadata.to_pandas()["metadata"] first_row = metadata[0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] first_row_body_part = xml_data.xpath(self.query.replace("KEYWORD", "BodyPartExamined"))[0] keyword_filter["PatientID"] = first_row_patient_id keyword_filter["BodyPartExamined"] = first_row_body_part # now we generate our expected result by filtering ourselves matching_records = self._filter(keyword_filter) # get the records which match our filter self.dicom.filter_by_keywords(keyword_filter) pandas_result = self.dicom.metadata.to_pandas()["metadata"] # finally we check to ensure that dicom's result matches our expected result self.assertEqual(len(matching_records), self.dicom.metadata.count()) for expected_record, actual_record in zip(matching_records, pandas_result): ascii_actual_result = actual_record.encode("ascii", "ignore") self.assertEqual(ascii_actual_result, expected_record) def test_filter_invalid_column(self): """test filter invalid key""" self.dicom.filter_by_keywords({ "invalid keyword" : "value" }) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_multiple_invalid_columns(self): """test filter mult invalid keys""" self.dicom.filter_by_keywords({ "invalid" : "bla", "another_invalid_col" : "bla" }) self.assertEqual(0, self.dicom.metadata.count()) def test_valid_keyword_zero_results(self): """test filter with key-value pair, key exists but no matches""" self.dicom.filter_by_keywords({ "SOPInstanceUID" : "2" }) self.assertEqual(0, self.dicom.metadata.count()) def test_invalid_value_type(self): """test filter with key-value pair, key exists but value is not type of str""" with self.assertRaisesRegexp(TypeError, "both keyword and value should be of <type 'str'>"): self.dicom.filter_by_keywords({"SOPInstanceUID" : 2}) def test_filter_invalid_valid_col_mix(self): """test filter with mix of valid and invalid keys""" # first we get a valid patient id by selecting the first row # and extracting its patient id first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # now we ask dicom to filter using a filter which is a mix of a valid key-value # pair and an invalid key-value pair self.dicom.filter_by_keywords({ "PatientID" : patient_id, "Invalid" : "bla" }) # since there are no records which meet BOTH key value criterias # we assert that 0 records were returned self.assertEqual(0, self.dicom.metadata.count()) def test_filter_invalid_type(self): """test filter invalid param type""" with self.assertRaisesRegexp(Exception, "incomplete format"): self.dicom.filter_by_keywords(1) self.dicom.metadata.count() def test_filter_unicode_columns(self): """test filter by keyword with unicode keys""" # the logic is the same as test_filter_one_column above # the only difference is here we are giving the keys as unicode # strings instead of standard python strings metadata = self.dicom.metadata.to_pandas() first_row = metadata["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] expected_result = self._filter({ "PatientID" : first_row_patient_id }) self.dicom.filter_by_keywords({ u'PatientID' : first_row_patient_id }) pandas_result = self.dicom.metadata.to_pandas()["metadata"] self.assertEqual(len(expected_result), self.dicom.metadata.count()) for record, filtered_record in zip(expected_result, pandas_result): self.assertEqual(record, filtered_record.encode("ascii", "ignore")) def _filter(self, keywords): """generate our expected result by filtering the records""" # here we are generating the expected result from the key-value # filter so that we can compare it to what dicom returns # we will iterate through the dicom metadata to get all of the # records which match our key-value criteria matching_records = [] pandas_metadata = self.dicom.metadata.to_pandas()["metadata"] for row in pandas_metadata: ascii_xml = row.encode("ascii", "ignore") xml = etree.fromstring(row.encode("ascii", "ignore")) for keyword in keywords: this_row_keyword_value = xml.xpath(self.query.replace("KEYWORD", keyword))[0] if this_row_keyword_value == keywords[keyword]: if ascii_xml not in matching_records: matching_records.append(ascii_xml) return matching_records if __name__ == "__main__": unittest.main()
apache-2.0
adrpar/incubator-airflow
airflow/www/views.py
1
94327
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from past.builtins import basestring, unicode import ast import os import pkg_resources import socket from functools import wraps from datetime import datetime, timedelta import dateutil.parser import copy import json import bleach from collections import defaultdict import inspect from textwrap import dedent import traceback import sqlalchemy as sqla from sqlalchemy import or_, desc, and_, union_all from flask import ( redirect, url_for, request, Markup, Response, current_app, render_template, make_response) from flask_admin import BaseView, expose, AdminIndexView from flask_admin.contrib.sqla import ModelView from flask_admin.actions import action from flask_admin.babel import lazy_gettext from flask_admin.tools import iterdecode from flask_login import flash from flask._compat import PY2 from jinja2.sandbox import ImmutableSandboxedEnvironment import markdown import nvd3 from wtforms import ( Form, SelectField, TextAreaField, PasswordField, StringField, validators) from pygments import highlight, lexers from pygments.formatters import HtmlFormatter import airflow from airflow import configuration as conf from airflow import models from airflow import settings from airflow.exceptions import AirflowException from airflow.settings import Session from airflow.models import XCom, DagRun from airflow.ti_deps.dep_context import DepContext, QUEUE_DEPS, SCHEDULER_DEPS from airflow.models import BaseOperator from airflow.operators.subdag_operator import SubDagOperator from airflow.utils.logging import LoggingMixin from airflow.utils.json import json_ser from airflow.utils.state import State from airflow.utils.db import provide_session from airflow.utils.helpers import alchemy_to_dict from airflow.utils import logging as log_utils from airflow.utils.dates import infer_time_unit, scale_time_units from airflow.www import utils as wwwutils from airflow.www.forms import DateTimeForm, DateTimeWithNumRunsForm from airflow.configuration import AirflowConfigException QUERY_LIMIT = 100000 CHART_LIMIT = 200000 dagbag = models.DagBag(settings.DAGS_FOLDER) login_required = airflow.login.login_required current_user = airflow.login.current_user logout_user = airflow.login.logout_user FILTER_BY_OWNER = False DEFAULT_SENSITIVE_VARIABLE_FIELDS = ( 'password', 'secret', 'passwd', 'authorization', 'api_key', 'apikey', 'access_token', ) if conf.getboolean('webserver', 'FILTER_BY_OWNER'): # filter_by_owner if authentication is enabled and filter_by_owner is true FILTER_BY_OWNER = not current_app.config['LOGIN_DISABLED'] def dag_link(v, c, m, p): dag_id = bleach.clean(m.dag_id) url = url_for( 'airflow.graph', dag_id=dag_id) return Markup( '<a href="{}">{}</a>'.format(url, dag_id)) def log_url_formatter(v, c, m, p): return Markup( '<a href="{m.log_url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(**locals()) def task_instance_link(v, c, m, p): dag_id = bleach.clean(m.dag_id) task_id = bleach.clean(m.task_id) url = url_for( 'airflow.task', dag_id=dag_id, task_id=task_id, execution_date=m.execution_date.isoformat()) url_root = url_for( 'airflow.graph', dag_id=dag_id, root=task_id, execution_date=m.execution_date.isoformat()) return Markup( """ <span style="white-space: nowrap;"> <a href="{url}">{task_id}</a> <a href="{url_root}" title="Filter on this task and upstream"> <span class="glyphicon glyphicon-filter" style="margin-left: 0px;" aria-hidden="true"></span> </a> </span> """.format(**locals())) def state_token(state): color = State.color(state) return Markup( '<span class="label" style="background-color:{color};">' '{state}</span>'.format(**locals())) def state_f(v, c, m, p): return state_token(m.state) def duration_f(v, c, m, p): if m.end_date and m.duration: return timedelta(seconds=m.duration) def datetime_f(v, c, m, p): attr = getattr(m, p) dttm = attr.isoformat() if attr else '' if datetime.now().isoformat()[:4] == dttm[:4]: dttm = dttm[5:] return Markup("<nobr>{}</nobr>".format(dttm)) def nobr_f(v, c, m, p): return Markup("<nobr>{}</nobr>".format(getattr(m, p))) def label_link(v, c, m, p): try: default_params = ast.literal_eval(m.default_params) except: default_params = {} url = url_for( 'airflow.chart', chart_id=m.id, iteration_no=m.iteration_no, **default_params) return Markup("<a href='{url}'>{m.label}</a>".format(**locals())) def pool_link(v, c, m, p): url = '/admin/taskinstance/?flt1_pool_equals=' + m.pool return Markup("<a href='{url}'>{m.pool}</a>".format(**locals())) def pygment_html_render(s, lexer=lexers.TextLexer): return highlight( s, lexer(), HtmlFormatter(linenos=True), ) def render(obj, lexer): out = "" if isinstance(obj, basestring): out += pygment_html_render(obj, lexer) elif isinstance(obj, (tuple, list)): for i, s in enumerate(obj): out += "<div>List item #{}</div>".format(i) out += "<div>" + pygment_html_render(s, lexer) + "</div>" elif isinstance(obj, dict): for k, v in obj.items(): out += '<div>Dict item "{}"</div>'.format(k) out += "<div>" + pygment_html_render(v, lexer) + "</div>" return out def wrapped_markdown(s): return '<div class="rich_doc">' + markdown.markdown(s) + "</div>" attr_renderer = { 'bash_command': lambda x: render(x, lexers.BashLexer), 'hql': lambda x: render(x, lexers.SqlLexer), 'sql': lambda x: render(x, lexers.SqlLexer), 'doc': lambda x: render(x, lexers.TextLexer), 'doc_json': lambda x: render(x, lexers.JsonLexer), 'doc_rst': lambda x: render(x, lexers.RstLexer), 'doc_yaml': lambda x: render(x, lexers.YamlLexer), 'doc_md': wrapped_markdown, 'python_callable': lambda x: render( inspect.getsource(x), lexers.PythonLexer), } def data_profiling_required(f): ''' Decorator for views requiring data profiling access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( current_app.config['LOGIN_DISABLED'] or (not current_user.is_anonymous() and current_user.data_profiling()) ): return f(*args, **kwargs) else: flash("This page requires data profiling privileges", "error") return redirect(url_for('admin.index')) return decorated_function def fused_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=running') return Markup("<a href='{0}'>{1}</a>".format(url, m.used_slots())) def fqueued_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=queued&sort=10&desc=1') return Markup("<a href='{0}'>{1}</a>".format(url, m.queued_slots())) def recurse_tasks(tasks, task_ids, dag_ids, task_id_to_dag): if isinstance(tasks, list): for task in tasks: recurse_tasks(task, task_ids, dag_ids, task_id_to_dag) return if isinstance(tasks, SubDagOperator): subtasks = tasks.subdag.tasks dag_ids.append(tasks.subdag.dag_id) for subtask in subtasks: if subtask.task_id not in task_ids: task_ids.append(subtask.task_id) task_id_to_dag[subtask.task_id] = tasks.subdag recurse_tasks(subtasks, task_ids, dag_ids, task_id_to_dag) if isinstance(tasks, BaseOperator): task_id_to_dag[tasks.task_id] = tasks.dag def should_hide_value_for_key(key_name): return any(s in key_name for s in DEFAULT_SENSITIVE_VARIABLE_FIELDS) \ and conf.getboolean('admin', 'hide_sensitive_variable_fields') class Airflow(BaseView): def is_visible(self): return False @expose('/') @login_required def index(self): return self.render('airflow/dags.html') @expose('/chart_data') @data_profiling_required @wwwutils.gzipped # @cache.cached(timeout=3600, key_prefix=wwwutils.make_cache_key) def chart_data(self): from airflow import macros import pandas as pd session = settings.Session() chart_id = request.args.get('chart_id') csv = request.args.get('csv') == "true" chart = session.query(models.Chart).filter_by(id=chart_id).first() db = session.query( models.Connection).filter_by(conn_id=chart.conn_id).first() session.expunge_all() session.commit() session.close() payload = {} payload['state'] = 'ERROR' payload['error'] = '' # Processing templated fields try: args = ast.literal_eval(chart.default_params) if type(args) is not type(dict()): raise AirflowException('Not a dict') except: args = {} payload['error'] += ( "Default params is not valid, string has to evaluate as " "a Python dictionary. ") request_dict = {k: request.args.get(k) for k in request.args} args.update(request_dict) args['macros'] = macros sandbox = ImmutableSandboxedEnvironment() sql = sandbox.from_string(chart.sql).render(**args) label = sandbox.from_string(chart.label).render(**args) payload['sql_html'] = Markup(highlight( sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) payload['label'] = label pd.set_option('display.max_colwidth', 100) hook = db.get_hook() try: df = hook.get_pandas_df( wwwutils.limit_sql(sql, CHART_LIMIT, conn_type=db.conn_type)) df = df.fillna(0) except Exception as e: payload['error'] += "SQL execution failed. Details: " + str(e) if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") if not payload['error'] and len(df) == CHART_LIMIT: payload['warning'] = ( "Data has been truncated to {0}" " rows. Expect incomplete results.").format(CHART_LIMIT) if not payload['error'] and len(df) == 0: payload['error'] += "Empty result set. " elif ( not payload['error'] and chart.sql_layout == 'series' and chart.chart_type != "datatable" and len(df.columns) < 3): payload['error'] += "SQL needs to return at least 3 columns. " elif ( not payload['error'] and chart.sql_layout == 'columns'and len(df.columns) < 2): payload['error'] += "SQL needs to return at least 2 columns. " elif not payload['error']: import numpy as np chart_type = chart.chart_type data = None if chart.show_datatable or chart_type == "datatable": data = df.to_dict(orient="split") data['columns'] = [{'title': c} for c in data['columns']] payload['data'] = data # Trying to convert time to something Highcharts likes x_col = 1 if chart.sql_layout == 'series' else 0 if chart.x_is_date: try: # From string to datetime df[df.columns[x_col]] = pd.to_datetime( df[df.columns[x_col]]) df[df.columns[x_col]] = df[df.columns[x_col]].apply( lambda x: int(x.strftime("%s")) * 1000) except Exception as e: payload['error'] = "Time conversion failed" if chart_type == 'datatable': payload['state'] = 'SUCCESS' return wwwutils.json_response(payload) else: if chart.sql_layout == 'series': # User provides columns (series, x, y) xaxis_label = df.columns[1] yaxis_label = df.columns[2] df[df.columns[2]] = df[df.columns[2]].astype(np.float) df = df.pivot_table( index=df.columns[1], columns=df.columns[0], values=df.columns[2], aggfunc=np.sum) else: # User provides columns (x, y, metric1, metric2, ...) xaxis_label = df.columns[0] yaxis_label = 'y' df.index = df[df.columns[0]] df = df.sort(df.columns[0]) del df[df.columns[0]] for col in df.columns: df[col] = df[col].astype(np.float) df = df.fillna(0) NVd3ChartClass = chart_mapping.get(chart.chart_type) NVd3ChartClass = getattr(nvd3, NVd3ChartClass) nvd3_chart = NVd3ChartClass(x_is_date=chart.x_is_date) for col in df.columns: nvd3_chart.add_serie(name=col, y=df[col].tolist(), x=df[col].index.tolist()) try: nvd3_chart.buildcontent() payload['chart_type'] = nvd3_chart.__class__.__name__ payload['htmlcontent'] = nvd3_chart.htmlcontent except Exception as e: payload['error'] = str(e) payload['state'] = 'SUCCESS' payload['request_dict'] = request_dict return wwwutils.json_response(payload) @expose('/chart') @data_profiling_required def chart(self): session = settings.Session() chart_id = request.args.get('chart_id') embed = request.args.get('embed') chart = session.query(models.Chart).filter_by(id=chart_id).first() session.expunge_all() session.commit() session.close() NVd3ChartClass = chart_mapping.get(chart.chart_type) if not NVd3ChartClass: flash( "Not supported anymore as the license was incompatible, " "sorry", "danger") redirect('/admin/chart/') sql = "" if chart.show_sql: sql = Markup(highlight( chart.sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/nvd3.html', chart=chart, title="Airflow - Chart", sql=sql, label=chart.label, embed=embed) @expose('/dag_stats') def dag_stats(self): ds = models.DagStat session = Session() qry = ( session.query(ds.dag_id, ds.state, ds.count) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.dag_states: try: count = data[dag.dag_id][state] except Exception: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/task_stats') def task_stats(self): TI = models.TaskInstance DagRun = models.DagRun Dag = models.DagModel session = Session() LastDagRun = ( session.query(DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('execution_date')) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state != State.RUNNING) .filter(Dag.is_active == True) .group_by(DagRun.dag_id) .subquery('last_dag_run') ) RunningDagRun = ( session.query(DagRun.dag_id, DagRun.execution_date) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state == State.RUNNING) .filter(Dag.is_active == True) .subquery('running_dag_run') ) # Select all task_instances from active dag_runs. # If no dag_run is active, return task instances from most recent dag_run. LastTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(LastDagRun, and_( LastDagRun.c.dag_id == TI.dag_id, LastDagRun.c.execution_date == TI.execution_date)) ) RunningTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(RunningDagRun, and_( RunningDagRun.c.dag_id == TI.dag_id, RunningDagRun.c.execution_date == TI.execution_date)) ) UnionTI = union_all(LastTI, RunningTI).alias('union_ti') qry = ( session.query(UnionTI.c.dag_id, UnionTI.c.state, sqla.func.count()) .group_by(UnionTI.c.dag_id, UnionTI.c.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count session.commit() session.close() payload = {} for dag in dagbag.dags.values(): payload[dag.safe_dag_id] = [] for state in State.task_states: try: count = data[dag.dag_id][state] except: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.safe_dag_id].append(d) return wwwutils.json_response(payload) @expose('/code') @login_required def code(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = dag_id try: with open(dag.fileloc, 'r') as f: code = f.read() html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) except IOError as e: html_code = str(e) return self.render( 'airflow/dag_code.html', html_code=html_code, dag=dag, title=title, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode')) @expose('/dag_details') @login_required def dag_details(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = "DAG details" session = settings.Session() TI = models.TaskInstance states = ( session.query(TI.state, sqla.func.count(TI.dag_id)) .filter(TI.dag_id == dag_id) .group_by(TI.state) .all() ) return self.render( 'airflow/dag_details.html', dag=dag, title=title, states=states, State=State) @current_app.errorhandler(404) def circles(self): return render_template( 'airflow/circles.html', hostname=socket.getfqdn()), 404 @current_app.errorhandler(500) def show_traceback(self): from airflow.utils import asciiart as ascii_ return render_template( 'airflow/traceback.html', hostname=socket.getfqdn(), nukular=ascii_.nukular, info=traceback.format_exc()), 500 @expose('/noaccess') def noaccess(self): return self.render('airflow/noaccess.html') @expose('/headers') def headers(self): d = { 'headers': {k: v for k, v in request.headers}, } if hasattr(current_user, 'is_superuser'): d['is_superuser'] = current_user.is_superuser() d['data_profiling'] = current_user.data_profiling() d['is_anonymous'] = current_user.is_anonymous() d['is_authenticated'] = current_user.is_authenticated() if hasattr(current_user, 'username'): d['username'] = current_user.username return wwwutils.json_response(d) @expose('/pickle_info') @login_required def pickle_info(self): d = {} dag_id = request.args.get('dag_id') dags = [dagbag.dags.get(dag_id)] if dag_id else dagbag.dags.values() for dag in dags: if not dag.is_subdag: d[dag.dag_id] = dag.pickle_info() return wwwutils.json_response(d) @expose('/login', methods=['GET', 'POST']) def login(self): return airflow.login.login(self, request) @expose('/logout') def logout(self): logout_user() flash('You have been logged out.') return redirect(url_for('admin.index')) @expose('/rendered') @login_required @wwwutils.action_logging def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.render_templates() except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.__class__.template_fields: content = getattr(task, template_field) if template_field in attr_renderer: html_dict[template_field] = attr_renderer[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, title=title,) @expose('/log') @login_required @wwwutils.action_logging def log(self): BASE_LOG_FOLDER = os.path.expanduser( conf.get('core', 'BASE_LOG_FOLDER')) dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dag = dagbag.get_dag(dag_id) log_relative = "{dag_id}/{task_id}/{execution_date}".format( **locals()) loc = os.path.join(BASE_LOG_FOLDER, log_relative) loc = loc.format(**locals()) log = "" TI = models.TaskInstance dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) session = Session() ti = session.query(TI).filter( TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == dttm).first() if ti is None: log = "*** Task instance did not exist in the DB\n" else: # load remote logs remote_log_base = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') remote_log_loaded = False if remote_log_base: remote_log_path = os.path.join(remote_log_base, log_relative) remote_log = "" # Only display errors reading the log if the task completed or ran at least # once before (otherwise there won't be any remote log stored). ti_execution_completed = ti.state in {State.SUCCESS, State.FAILED} ti_ran_more_than_once = ti.try_number > 1 surface_log_retrieval_errors = ( ti_execution_completed or ti_ran_more_than_once) # S3 if remote_log_path.startswith('s3:/'): remote_log += log_utils.S3Log().read( remote_log_path, return_error=surface_log_retrieval_errors) remote_log_loaded = True # GCS elif remote_log_path.startswith('gs:/'): remote_log += log_utils.GCSLog().read( remote_log_path, return_error=surface_log_retrieval_errors) remote_log_loaded = True # unsupported else: remote_log += '*** Unsupported remote log location.' if remote_log: log += ('*** Reading remote log from {}.\n{}\n'.format( remote_log_path, remote_log)) # We only want to display the # local logs while the task is running if a remote log configuration is set up # since the logs will be transfered there after the run completes. # TODO(aoen): One problem here is that if a task is running on a worker it # already ran on, then duplicate logs will be printed for all of the previous # runs of the task that already completed since they will have been printed as # part of the remote log section above. This can be fixed either by streaming # logs to the log servers as tasks are running, or by creating a proper # abstraction for multiple task instance runs). if not remote_log_loaded or ti.state == State.RUNNING: if os.path.exists(loc): try: f = open(loc) log += "*** Reading local log.\n" + "".join(f.readlines()) f.close() except: log = "*** Failed to load local log file: {0}.\n".format(loc) else: WORKER_LOG_SERVER_PORT = \ conf.get('celery', 'WORKER_LOG_SERVER_PORT') url = os.path.join( "http://{ti.hostname}:{WORKER_LOG_SERVER_PORT}/log", log_relative ).format(**locals()) log += "*** Log file isn't local.\n" log += "*** Fetching here: {url}\n".format(**locals()) try: import requests timeout = None # No timeout try: timeout = conf.getint('webserver', 'log_fetch_timeout_sec') except (AirflowConfigException, ValueError): pass response = requests.get(url, timeout=timeout) response.raise_for_status() log += '\n' + response.text except: log += "*** Failed to fetch log file from worker.\n".format( **locals()) if PY2 and not isinstance(log, unicode): log = log.decode('utf-8') return self.render( 'airflow/ti_code.html', code=log, dag=dag, title="Log", task_id=task_id, execution_date=execution_date, form=form) @expose('/task') @login_required @wwwutils.action_logging def task(self): TI = models.TaskInstance dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') task = copy.copy(dag.get_task(task_id)) task.resolve_template_files() ti = TI(task=task, execution_date=dttm) ti.refresh_from_db() ti_attrs = [] for attr_name in dir(ti): if not attr_name.startswith('_'): attr = getattr(ti, attr_name) if type(attr) != type(self.task): ti_attrs.append((attr_name, str(attr))) task_attrs = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in attr_renderer: task_attrs.append((attr_name, str(attr))) # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in attr_renderer: if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = attr_renderer[attr_name](source) no_failed_deps_result = [( "Unknown", dedent("""\ All dependencies are met but the task instance is not running. In most cases this just means that the task will probably be scheduled soon unless:<br/> - The scheduler is down or under heavy load<br/> {} <br/> If this task instance does not start soon please contact your Airflow administrator for assistance.""" .format( "- This task instance already ran and had it's state changed manually (e.g. cleared in the UI)<br/>" if ti.state == State.NONE else "")))] # Use the scheduler's context to figure out which dependencies are not met dep_context = DepContext(SCHEDULER_DEPS) failed_dep_reasons = [(dep.dep_name, dep.reason) for dep in ti.get_failed_dep_statuses( dep_context=dep_context)] title = "Task Instance Details" return self.render( 'airflow/task.html', task_attrs=task_attrs, ti_attrs=ti_attrs, failed_dep_reasons=failed_dep_reasons or no_failed_deps_result, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, dag=dag, title=title) @expose('/xcom') @login_required @wwwutils.action_logging def xcom(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') session = Session() xcomlist = session.query(XCom).filter( XCom.dag_id == dag_id, XCom.task_id == task_id, XCom.execution_date == dttm).all() attributes = [] for xcom in xcomlist: if not xcom.key.startswith('_'): attributes.append((xcom.key, xcom.value)) title = "XCom" return self.render( 'airflow/xcom.html', attributes=attributes, task_id=task_id, execution_date=execution_date, form=form, dag=dag, title=title) @expose('/run') @login_required @wwwutils.action_logging @wwwutils.notify_owner def run(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) ignore_all_deps = request.args.get('ignore_all_deps') == "true" ignore_task_deps = request.args.get('ignore_task_deps') == "true" ignore_ti_state = request.args.get('ignore_ti_state') == "true" try: from airflow.executors import DEFAULT_EXECUTOR as executor from airflow.executors import CeleryExecutor if not isinstance(executor, CeleryExecutor): flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) except ImportError: # in case CeleryExecutor cannot be imported it is not active either flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) ti = models.TaskInstance(task=task, execution_date=execution_date) ti.refresh_from_db() # Make sure the task instance can be queued dep_context = DepContext( deps=QUEUE_DEPS, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) failed_deps = list(ti.get_failed_dep_statuses(dep_context=dep_context)) if failed_deps: failed_deps_str = ", ".join( ["{}: {}".format(dep.dep_name, dep.reason) for dep in failed_deps]) flash("Could not queue task instance for execution, dependencies not met: " "{}".format(failed_deps_str), "error") return redirect(origin) executor.start() executor.queue_task_instance( ti, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) @expose('/trigger') @login_required @wwwutils.action_logging @wwwutils.notify_owner def trigger(self): dag_id = request.args.get('dag_id') origin = request.args.get('origin') or "/admin/" dag = dagbag.get_dag(dag_id) if not dag: flash("Cannot find dag {}".format(dag_id)) return redirect(origin) execution_date = datetime.now() run_id = "manual__{0}".format(execution_date.isoformat()) dr = DagRun.find(dag_id=dag_id, run_id=run_id) if dr: flash("This run_id {} already exists".format(run_id)) return redirect(origin) run_conf = {} dag.create_dagrun( run_id=run_id, execution_date=execution_date, state=State.RUNNING, conf=run_conf, external_trigger=True ) flash( "Triggered {}, " "it should start any moment now.".format(dag_id)) return redirect(origin) @expose('/clear') @login_required @wwwutils.action_logging @wwwutils.notify_owner def clear(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" recursive = request.args.get('recursive') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None if confirmed: count = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive) flash("{0} task instances have been cleared".format(count)) return redirect(origin) else: tis = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, dry_run=True) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to clear:"), details=details,) return response @expose('/blocked') @login_required def blocked(self): session = settings.Session() DR = models.DagRun dags = ( session.query(DR.dag_id, sqla.func.count(DR.id)) .filter(DR.state == State.RUNNING) .group_by(DR.dag_id) .all() ) payload = [] for dag_id, active_dag_runs in dags: max_active_runs = 0 if dag_id in dagbag.dags: max_active_runs = dagbag.dags[dag_id].max_active_runs payload.append({ 'dag_id': dag_id, 'active_dag_run': active_dag_runs, 'max_active_runs': max_active_runs, }) return wwwutils.json_response(payload) @expose('/success') @login_required @wwwutils.action_logging @wwwutils.notify_owner def success(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) task.dag = dag execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" future = request.args.get('future') == "true" past = request.args.get('past') == "true" if not dag: flash("Cannot find DAG: {}".format(dag_id)) return redirect(origin) if not task: flash("Cannot find task {} in DAG {}".format(task_id, dag.dag_id)) return redirect(origin) from airflow.api.common.experimental.mark_tasks import set_state if confirmed: altered = set_state(task=task, execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=State.SUCCESS, commit=True) flash("Marked success on {} task instances".format(len(altered))) return redirect(origin) to_be_altered = set_state(task=task, execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=State.SUCCESS, commit=False) details = "\n".join([str(t) for t in to_be_altered]) response = self.render("airflow/confirm.html", message=("Here's the list of task instances you are " "about to mark as successful:"), details=details) return response @expose('/tree') @login_required @wwwutils.gzipped @wwwutils.action_logging def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) session = settings.Session() base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) DR = models.DagRun dag_runs = ( session.query(DR) .filter( DR.dag_id==dag.dag_id, DR.execution_date<=base_date, DR.execution_date>=min_date) .all() ) dag_runs = { dr.execution_date: alchemy_to_dict(dr) for dr in dag_runs} dates = sorted(list(dag_runs.keys())) max_date = max(dates) if dates else None tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) task_instances = {} for ti in tis: tid = alchemy_to_dict(ti) dr = dag_runs.get(ti.execution_date) tid['external_trigger'] = dr['external_trigger'] if dr else False task_instances[(ti.task_id, ti.execution_date)] = tid expanded = [] # The default recursion traces every path so that tree view has full # expand/collapse functionality. After 5,000 nodes we stop and fall # back on a quick DFS search for performance. See PR #320. node_count = [0] node_limit = 5000 / max(1, len(dag.roots)) def recurse_nodes(task, visited): visited.add(task) node_count[0] += 1 children = [ recurse_nodes(t, visited) for t in task.upstream_list if node_count[0] < node_limit or t not in visited] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. children_key = 'children' if task.task_id not in expanded: expanded.append(task.task_id) elif children: children_key = "_children" def set_duration(tid): if (isinstance(tid, dict) and tid.get("state") == State.RUNNING and tid["start_date"] is not None): d = datetime.now() - dateutil.parser.parse(tid["start_date"]) tid["duration"] = d.total_seconds() return tid return { 'name': task.task_id, 'instances': [ set_duration(task_instances.get((task.task_id, d))) or { 'execution_date': d.isoformat(), 'task_id': task.task_id } for d in dates], children_key: children, 'num_dep': len(task.upstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'start_date': task.start_date, 'end_date': task.end_date, 'depends_on_past': task.depends_on_past, 'ui_color': task.ui_color, } data = { 'name': '[DAG]', 'children': [recurse_nodes(t, set()) for t in dag.roots], 'instances': [ dag_runs.get(d) or {'execution_date': d.isoformat()} for d in dates], } data = json.dumps(data, indent=4, default=json_ser) session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) return self.render( 'airflow/tree.html', operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), root=root, form=form, dag=dag, data=data, blur=blur) @expose('/graph') @login_required @wwwutils.gzipped @wwwutils.action_logging def graph(self): session = settings.Session() dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) if dag_id not in dagbag.dags: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect('/admin/') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) arrange = request.args.get('arrange', dag.orientation) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), } }) def get_upstream(task): for t in task.upstream_list: edge = { 'u': t.task_id, 'v': task.task_id, } if edge not in edges: edges.append(edge) get_upstream(t) for t in dag.roots: get_upstream(t) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() DR = models.DagRun drs = ( session.query(DR) .filter_by(dag_id=dag_id) .order_by(desc(DR.execution_date)).all() ) dr_choices = [] dr_state = None for dr in drs: dr_choices.append((dr.execution_date.isoformat(), dr.run_id)) if dttm == dr.execution_date: dr_state = dr.state class GraphForm(Form): execution_date = SelectField("DAG run", choices=dr_choices) arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) form = GraphForm( data={'execution_date': dttm.isoformat(), 'arrange': arrange}) task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, } for t in dag.tasks} if not tasks: flash("No tasks found", "error") session.commit() session.close() doc_md = markdown.markdown(dag.doc_md) if hasattr(dag, 'doc_md') and dag.doc_md else '' return self.render( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), state_token=state_token(dr_state), doc_md=doc_md, arrange=arrange, operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), blur=blur, root=root or '', task_instances=json.dumps(task_instances, indent=2), tasks=json.dumps(tasks, indent=2), nodes=json.dumps(nodes, indent=2), edges=json.dumps(edges, indent=2),) @expose('/duration') @login_required @wwwutils.action_logging def duration(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=600, width="1200") cum_chart = nvd3.lineChart( name="cumLineChart", x_is_date=True, height=600, width="1200") y = defaultdict(list) x = defaultdict(list) cum_y = defaultdict(list) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) TF = models.TaskFail ti_fails = ( session .query(TF) .filter( TF.dag_id == dag.dag_id, TF.execution_date >= min_date, TF.execution_date <= base_date, TF.task_id.in_([t.task_id for t in dag.tasks])) .all() ) fails_totals = defaultdict(int) for tf in ti_fails: dict_key = (tf.dag_id, tf.task_id, tf.execution_date) fails_totals[dict_key] += tf.duration for ti in tis: if ti.duration: dttm = wwwutils.epoch(ti.execution_date) x[ti.task_id].append(dttm) y[ti.task_id].append(float(ti.duration)) fails_dict_key = (ti.dag_id, ti.task_id, ti.execution_date) fails_total = fails_totals[fails_dict_key] cum_y[ti.task_id].append(float(ti.duration + fails_total)) # determine the most relevant time unit for the set of task instance # durations for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) cum_y_unit = infer_time_unit([d for t in cum_y.values() for d in t]) # update the y Axis on both charts to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(y_unit)) cum_chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(cum_y_unit)) for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) cum_chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(cum_y[task.task_id], cum_y_unit)) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() cum_chart.buildcontent() s_index = cum_chart.htmlcontent.rfind('});') cum_chart.htmlcontent = (cum_chart.htmlcontent[:s_index] + "$( document ).trigger('chartload')" + cum_chart.htmlcontent[s_index:]) return self.render( 'airflow/duration_chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent, cum_chart=cum_chart.htmlcontent ) @expose('/tries') @login_required @wwwutils.action_logging def tries(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, y_axis_format='d', height=600, width="1200") for task in dag.tasks: y = [] x = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): dttm = wwwutils.epoch(ti.execution_date) x.append(dttm) y.append(ti.try_number) if x: chart.add_serie(name=task.task_id, x=x, y=y) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) tries = sorted(list({ti.try_number for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if tries else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render( 'airflow/chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent ) @expose('/landing_times') @login_required @wwwutils.action_logging def landing_times(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 if base_date: base_date = dateutil.parser.parse(base_date) else: base_date = dag.latest_execution_date or datetime.now() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else datetime(2000, 1, 1) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=600, width="1200") y = {} x = {} for task in dag.tasks: y[task.task_id] = [] x[task.task_id] = [] for ti in task.get_task_instances(session, start_date=min_date, end_date=base_date): ts = ti.execution_date if dag.schedule_interval and dag.following_schedule(ts): ts = dag.following_schedule(ts) if ti.end_date: dttm = wwwutils.epoch(ti.execution_date) secs = (ti.end_date - ts).total_seconds() x[ti.task_id].append(dttm) y[ti.task_id].append(secs) # determine the most relevant time unit for the set of landing times # for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) # update the y Axis to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Landing Time ({})'.format(y_unit)) for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) tis = dag.get_task_instances( session, start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() session.close() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render( 'airflow/chart.html', dag=dag, chart=chart.htmlcontent, height="700px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, ) @expose('/paused', methods=['POST']) @login_required @wwwutils.action_logging def paused(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if request.args.get('is_paused') == 'false': orm_dag.is_paused = True else: orm_dag.is_paused = False session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) return "OK" @expose('/refresh') @login_required @wwwutils.action_logging def refresh(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = datetime.now() session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect(request.referrer) @expose('/refresh_all') @login_required @wwwutils.action_logging def refresh_all(self): dagbag.collect_dags(only_if_updated=False) flash("All DAGs are now up to date") return redirect('/') @expose('/gantt') @login_required @wwwutils.action_logging def gantt(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = DateTimeForm(data={'execution_date': dttm}) tis = [ ti for ti in dag.get_task_instances(session, dttm, dttm) if ti.start_date] tis = sorted(tis, key=lambda ti: ti.start_date) tasks = [] for ti in tis: end_date = ti.end_date if ti.end_date else datetime.now() tasks.append({ 'startDate': wwwutils.epoch(ti.start_date), 'endDate': wwwutils.epoch(end_date), 'isoStart': ti.start_date.isoformat()[:-4], 'isoEnd': end_date.isoformat()[:-4], 'taskName': ti.task_id, 'duration': "{}".format(end_date - ti.start_date)[:-4], 'status': ti.state, 'executionDate': ti.execution_date.isoformat(), }) states = {ti.state: ti.state for ti in tis} data = { 'taskNames': [ti.task_id for ti in tis], 'tasks': tasks, 'taskStatus': states, 'height': len(tis) * 25, } session.commit() session.close() return self.render( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, data=json.dumps(data, indent=2), base_date='', demo_mode=demo_mode, root=root, ) @expose('/object/task_instances') @login_required @wwwutils.action_logging def task_instances(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: return ("Error: Invalid execution_date") task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm)} return json.dumps(task_instances) @expose('/variables/<form>', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def variables(self, form): try: if request.method == 'POST': data = request.json if data: session = settings.Session() var = models.Variable(key=form, val=json.dumps(data)) session.add(var) session.commit() return "" else: return self.render( 'airflow/variables/{}.html'.format(form) ) except: return ("Error: form airflow/variables/{}.html " "not found.").format(form), 404 @expose('/varimport', methods=["GET", "POST"]) @login_required @wwwutils.action_logging def varimport(self): try: out = str(request.files['file'].read()) d = json.loads(out) except Exception: flash("Missing file or syntax error.") else: for k, v in d.items(): models.Variable.set(k, v, serialize_json=isinstance(v, dict)) flash("{} variable(s) successfully updated.".format(len(d))) return redirect('/admin/variable') class HomeView(AdminIndexView): @expose("/") @login_required def index(self): session = Session() DM = models.DagModel qry = None # restrict the dags shown if filter_by_owner and current user is not superuser do_filter = FILTER_BY_OWNER and (not current_user.is_superuser()) owner_mode = conf.get('webserver', 'OWNER_MODE').strip().lower() hide_paused_dags_by_default = conf.getboolean('webserver', 'hide_paused_dags_by_default') show_paused_arg = request.args.get('showPaused', 'None') if show_paused_arg.strip().lower() == 'false': hide_paused = True elif show_paused_arg.strip().lower() == 'true': hide_paused = False else: hide_paused = hide_paused_dags_by_default # read orm_dags from the db qry = session.query(DM) qry_fltr = [] if do_filter and owner_mode == 'ldapgroup': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners.in_(current_user.ldap_groups) ).all() elif do_filter and owner_mode == 'user': qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active, DM.owners == current_user.user.username ).all() else: qry_fltr = qry.filter( ~DM.is_subdag, DM.is_active ).all() # optionally filter out "paused" dags if hide_paused: orm_dags = {dag.dag_id: dag for dag in qry_fltr if not dag.is_paused} else: orm_dags = {dag.dag_id: dag for dag in qry_fltr} import_errors = session.query(models.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "error") session.expunge_all() session.commit() session.close() # get a list of all non-subdag dags visible to everyone # optionally filter out "paused" dags if hide_paused: unfiltered_webserver_dags = [dag for dag in dagbag.dags.values() if not dag.parent_dag and not dag.is_paused] else: unfiltered_webserver_dags = [dag for dag in dagbag.dags.values() if not dag.parent_dag] # optionally filter to get only dags that the user should see if do_filter and owner_mode == 'ldapgroup': # only show dags owned by someone in @current_user.ldap_groups webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner in current_user.ldap_groups } elif do_filter and owner_mode == 'user': # only show dags owned by @current_user.user.username webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags if dag.owner == current_user.user.username } else: webserver_dags = { dag.dag_id: dag for dag in unfiltered_webserver_dags } all_dag_ids = sorted(set(orm_dags.keys()) | set(webserver_dags.keys())) return self.render( 'airflow/dags.html', webserver_dags=webserver_dags, orm_dags=orm_dags, hide_paused=hide_paused, all_dag_ids=all_dag_ids) class QueryView(wwwutils.DataProfilingMixin, BaseView): @expose('/', methods=['POST', 'GET']) @wwwutils.gzipped def query(self): session = settings.Session() dbs = session.query(models.Connection).order_by( models.Connection.conn_id).all() session.expunge_all() db_choices = list( ((db.conn_id, db.conn_id) for db in dbs if db.get_hook())) conn_id_str = request.form.get('conn_id') csv = request.form.get('csv') == "true" sql = request.form.get('sql') class QueryForm(Form): conn_id = SelectField("Layout", choices=db_choices) sql = TextAreaField("SQL", widget=wwwutils.AceEditorWidget()) data = { 'conn_id': conn_id_str, 'sql': sql, } results = None has_data = False error = False if conn_id_str: db = [db for db in dbs if db.conn_id == conn_id_str][0] hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, QUERY_LIMIT, conn_type=db.conn_type)) # df = hook.get_pandas_df(sql) has_data = len(df) > 0 df = df.fillna('') results = df.to_html( classes=[ 'table', 'table-bordered', 'table-striped', 'no-wrap'], index=False, na_rep='', ) if has_data else '' except Exception as e: flash(str(e), 'error') error = True if has_data and len(df) == QUERY_LIMIT: flash( "Query output truncated at " + str(QUERY_LIMIT) + " rows", 'info') if not has_data and error: flash('No data', 'error') if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") form = QueryForm(request.form, data=data) session.commit() session.close() return self.render( 'airflow/query.html', form=form, title="Ad Hoc Query", results=results or '', has_data=has_data) class AirflowModelView(ModelView): list_template = 'airflow/model_list.html' edit_template = 'airflow/model_edit.html' create_template = 'airflow/model_create.html' column_display_actions = True page_size = 500 class ModelViewOnly(wwwutils.LoginMixin, AirflowModelView): """ Modifying the base ModelView class for non edit, browse only operations """ named_filter_urls = True can_create = False can_edit = False can_delete = False column_display_pk = True class PoolModelView(wwwutils.SuperUserMixin, AirflowModelView): column_list = ('pool', 'slots', 'used_slots', 'queued_slots') column_formatters = dict( pool=pool_link, used_slots=fused_slots, queued_slots=fqueued_slots) named_filter_urls = True class SlaMissModelView(wwwutils.SuperUserMixin, ModelViewOnly): verbose_name_plural = "SLA misses" verbose_name = "SLA miss" column_list = ( 'dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp') column_formatters = dict( task_id=task_instance_link, execution_date=datetime_f, timestamp=datetime_f, dag_id=dag_link) named_filter_urls = True column_searchable_list = ('dag_id', 'task_id',) column_filters = ( 'dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date') form_widget_args = { 'email_sent': {'disabled': True}, 'timestamp': {'disabled': True}, } class ChartModelView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "chart" verbose_name_plural = "charts" form_columns = ( 'label', 'owner', 'conn_id', 'chart_type', 'show_datatable', 'x_is_date', 'y_log_scale', 'show_sql', 'height', 'sql_layout', 'sql', 'default_params',) column_list = ( 'label', 'conn_id', 'chart_type', 'owner', 'last_modified',) column_formatters = dict(label=label_link, last_modified=datetime_f) column_default_sort = ('last_modified', True) create_template = 'airflow/chart/create.html' edit_template = 'airflow/chart/edit.html' column_filters = ('label', 'owner.username', 'conn_id') column_searchable_list = ('owner.username', 'label', 'sql') column_descriptions = { 'label': "Can include {{ templated_fields }} and {{ macros }}", 'chart_type': "The type of chart to be displayed", 'sql': "Can include {{ templated_fields }} and {{ macros }}.", 'height': "Height of the chart, in pixels.", 'conn_id': "Source database to run the query against", 'x_is_date': ( "Whether the X axis should be casted as a date field. Expect most " "intelligible date formats to get casted properly." ), 'owner': ( "The chart's owner, mostly used for reference and filtering in " "the list view." ), 'show_datatable': "Whether to display an interactive data table under the chart.", 'default_params': ( 'A dictionary of {"key": "values",} that define what the ' 'templated fields (parameters) values should be by default. ' 'To be valid, it needs to "eval" as a Python dict. ' 'The key values will show up in the url\'s querystring ' 'and can be altered there.' ), 'show_sql': "Whether to display the SQL statement as a collapsible " "section in the chart page.", 'y_log_scale': "Whether to use a log scale for the Y axis.", 'sql_layout': ( "Defines the layout of the SQL that the application should " "expect. Depending on the tables you are sourcing from, it may " "make more sense to pivot / unpivot the metrics." ), } column_labels = { 'sql': "SQL", 'height': "Chart Height", 'sql_layout': "SQL Layout", 'show_sql': "Display the SQL Statement", 'default_params': "Default Parameters", } form_choices = { 'chart_type': [ ('line', 'Line Chart'), ('spline', 'Spline Chart'), ('bar', 'Bar Chart'), ('column', 'Column Chart'), ('area', 'Overlapping Area Chart'), ('stacked_area', 'Stacked Area Chart'), ('percent_area', 'Percent Area Chart'), ('datatable', 'No chart, data table only'), ], 'sql_layout': [ ('series', 'SELECT series, x, y FROM ...'), ('columns', 'SELECT x, y (series 1), y (series 2), ... FROM ...'), ], 'conn_id': [ (c.conn_id, c.conn_id) for c in ( Session().query(models.Connection.conn_id) .group_by(models.Connection.conn_id) ) ] } def on_model_change(self, form, model, is_created=True): if model.iteration_no is None: model.iteration_no = 0 else: model.iteration_no += 1 if not model.user_id and current_user and hasattr(current_user, 'id'): model.user_id = current_user.id model.last_modified = datetime.now() chart_mapping = ( ('line', 'lineChart'), ('spline', 'lineChart'), ('bar', 'multiBarChart'), ('column', 'multiBarChart'), ('area', 'stackedAreaChart'), ('stacked_area', 'stackedAreaChart'), ('percent_area', 'stackedAreaChart'), ('datatable', 'datatable'), ) chart_mapping = dict(chart_mapping) class KnowEventView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "known event" verbose_name_plural = "known events" form_columns = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', 'description') column_list = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by') column_default_sort = ("start_date", True) class KnowEventTypeView(wwwutils.DataProfilingMixin, AirflowModelView): pass # NOTE: For debugging / troubleshooting # mv = KnowEventTypeView( # models.KnownEventType, # Session, name="Known Event Types", category="Manage") # admin.add_view(mv) # class DagPickleView(SuperUserMixin, ModelView): # pass # mv = DagPickleView( # models.DagPickle, # Session, name="Pickles", category="Manage") # admin.add_view(mv) class VariableView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "Variable" verbose_name_plural = "Variables" list_template = 'airflow/variable_list.html' def hidden_field_formatter(view, context, model, name): if should_hide_value_for_key(model.key): return Markup('*' * 8) return getattr(model, name) form_columns = ( 'key', 'val', ) column_list = ('key', 'val', 'is_encrypted',) column_filters = ('key', 'val') column_searchable_list = ('key', 'val') form_widget_args = { 'is_encrypted': {'disabled': True}, 'val': { 'rows': 20, } } column_sortable_list = ( 'key', 'val', 'is_encrypted', ) column_formatters = { 'val': hidden_field_formatter } # Default flask-admin export functionality doesn't handle serialized json @action('varexport', 'Export', None) def action_varexport(self, ids): V = models.Variable session = settings.Session() qry = session.query(V).filter(V.id.in_(ids)).all() session.close() var_dict = {} d = json.JSONDecoder() for var in qry: val = None try: val = d.decode(var.val) except: val = var.val var_dict[var.key] = val response = make_response(json.dumps(var_dict, sort_keys=True, indent=4)) response.headers["Content-Disposition"] = "attachment; filename=variables.json" return response def on_form_prefill(self, form, id): if should_hide_value_for_key(form.key.data): form.val.data = '*' * 8 class XComView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "XCom" verbose_name_plural = "XComs" page_size = 20 form_columns = ( 'key', 'value', 'execution_date', 'task_id', 'dag_id', ) form_extra_fields = { 'value': StringField('Value'), } column_filters = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') column_searchable_list = ('key', 'timestamp', 'execution_date', 'task_id', 'dag_id') class JobModelView(ModelViewOnly): verbose_name_plural = "jobs" verbose_name = "job" column_default_sort = ('start_date', True) column_filters = ( 'job_type', 'dag_id', 'state', 'unixname', 'hostname', 'start_date', 'end_date', 'latest_heartbeat') column_formatters = dict( start_date=datetime_f, end_date=datetime_f, hostname=nobr_f, state=state_f, latest_heartbeat=datetime_f) class DagRunModelView(ModelViewOnly): verbose_name_plural = "DAG Runs" can_edit = True can_create = True column_editable_list = ('state',) verbose_name = "dag run" column_default_sort = ('execution_date', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } form_args = dict( dag_id=dict(validators=[validators.DataRequired()]) ) column_list = ( 'state', 'dag_id', 'execution_date', 'run_id', 'external_trigger') column_filters = column_list column_searchable_list = ('dag_id', 'state', 'run_id') column_formatters = dict( execution_date=datetime_f, state=state_f, start_date=datetime_f, dag_id=dag_link) @action('new_delete', "Delete", "Are you sure you want to delete selected records?") def action_new_delete(self, ids): session = settings.Session() deleted = set(session.query(models.DagRun) .filter(models.DagRun.id.in_(ids)) .all()) session.query(models.DagRun)\ .filter(models.DagRun.id.in_(ids))\ .delete(synchronize_session='fetch') session.commit() dirty_ids = [] for row in deleted: models.DagStat.set_dirty(row.dag_id, session=session) dirty_ids.append(row.dag_id) models.DagStat.clean_dirty(dirty_ids, session=session) session.close() @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_dagrun_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_dagrun_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_dagrun_state(ids, State.SUCCESS) @provide_session def set_dagrun_state(self, ids, target_state, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] for dr in session.query(DR).filter(DR.id.in_(ids)).all(): dirty_ids.append(dr.dag_id) count += 1 dr.state = target_state if target_state == State.RUNNING: dr.start_date = datetime.now() else: dr.end_date = datetime.now() session.commit() models.DagStat.clean_dirty(dirty_ids, session=session) flash( "{count} dag runs were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') class LogModelView(ModelViewOnly): verbose_name_plural = "logs" verbose_name = "log" column_default_sort = ('dttm', True) column_filters = ('dag_id', 'task_id', 'execution_date') column_formatters = dict( dttm=datetime_f, execution_date=datetime_f, dag_id=dag_link) class TaskInstanceModelView(ModelViewOnly): verbose_name_plural = "task instances" verbose_name = "task instance" column_filters = ( 'state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool', 'operator', 'start_date', 'end_date') named_filter_urls = True column_formatters = dict( log_url=log_url_formatter, task_id=task_instance_link, hostname=nobr_f, state=state_f, execution_date=datetime_f, start_date=datetime_f, end_date=datetime_f, queued_dttm=datetime_f, dag_id=dag_link, duration=duration_f) column_searchable_list = ('dag_id', 'task_id', 'state') column_default_sort = ('job_id', True) form_choices = { 'state': [ ('success', 'success'), ('running', 'running'), ('failed', 'failed'), ], } column_list = ( 'state', 'dag_id', 'task_id', 'execution_date', 'operator', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'queue', 'queued_dttm', 'try_number', 'pool', 'log_url') can_delete = True page_size = 500 @action('set_running', "Set state to 'running'", None) def action_set_running(self, ids): self.set_task_instance_state(ids, State.RUNNING) @action('set_failed', "Set state to 'failed'", None) def action_set_failed(self, ids): self.set_task_instance_state(ids, State.FAILED) @action('set_success', "Set state to 'success'", None) def action_set_success(self, ids): self.set_task_instance_state(ids, State.SUCCESS) @action('set_retry', "Set state to 'up_for_retry'", None) def action_set_retry(self, ids): self.set_task_instance_state(ids, State.UP_FOR_RETRY) @action('delete', lazy_gettext('Delete'), lazy_gettext('Are you sure you want to delete selected records?')) def action_delete(self, ids): """ As a workaround for AIRFLOW-277, this method overrides Flask-Admin's ModelView.action_delete(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ if 'sqlite' in conf.get('core', 'sql_alchemy_conn'): self.delete_task_instances(ids) else: super(TaskInstanceModelView, self).action_delete(ids) @provide_session def set_task_instance_state(self, ids, target_state, session=None): try: TI = models.TaskInstance count = len(ids) for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') ti = session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).one() ti.state = target_state session.commit() flash( "{count} task instances were set to '{target_state}'".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to set state', 'error') @provide_session def delete_task_instances(self, ids, session=None): try: TI = models.TaskInstance count = 0 for id in ids: task_id, dag_id, execution_date = id.split(',') execution_date = datetime.strptime(execution_date, '%Y-%m-%d %H:%M:%S') count += session.query(TI).filter(TI.task_id == task_id, TI.dag_id == dag_id, TI.execution_date == execution_date).delete() session.commit() flash("{count} task instances were deleted".format(**locals())) except Exception as ex: if not self.handle_view_exception(ex): raise Exception("Ooops") flash('Failed to delete', 'error') def get_one(self, id): """ As a workaround for AIRFLOW-252, this method overrides Flask-Admin's ModelView.get_one(). TODO: this method should be removed once the below bug is fixed on Flask-Admin side. https://github.com/flask-admin/flask-admin/issues/1226 """ task_id, dag_id, execution_date = iterdecode(id) execution_date = dateutil.parser.parse(execution_date) return self.session.query(self.model).get((task_id, dag_id, execution_date)) class ConnectionModelView(wwwutils.SuperUserMixin, AirflowModelView): create_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' list_template = 'airflow/conn_list.html' form_columns = ( 'conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra', 'extra__jdbc__drv_path', 'extra__jdbc__drv_clsname', 'extra__google_cloud_platform__project', 'extra__google_cloud_platform__key_path', 'extra__google_cloud_platform__scope', ) verbose_name = "Connection" verbose_name_plural = "Connections" column_default_sort = ('conn_id', False) column_list = ('conn_id', 'conn_type', 'host', 'port', 'is_encrypted', 'is_extra_encrypted',) form_overrides = dict(_password=PasswordField) form_widget_args = { 'is_extra_encrypted': {'disabled': True}, 'is_encrypted': {'disabled': True}, } # Used to customized the form, the forms elements get rendered # and results are stored in the extra field as json. All of these # need to be prefixed with extra__ and then the conn_type ___ as in # extra__{conn_type}__name. You can also hide form elements and rename # others from the connection_form.js file form_extra_fields = { 'extra__jdbc__drv_path': StringField('Driver Path'), 'extra__jdbc__drv_clsname': StringField('Driver Class'), 'extra__google_cloud_platform__project': StringField('Project Id'), 'extra__google_cloud_platform__key_path': StringField('Keyfile Path'), 'extra__google_cloud_platform__scope': StringField('Scopes (comma seperated)'), } form_choices = { 'conn_type': models.Connection._types } def on_model_change(self, form, model, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc', 'google_cloud_platform']: extra = { key: formdata[key] for key in self.form_extra_fields.keys() if key in formdata} model.extra = json.dumps(extra) @classmethod def alert_fernet_key(cls): fk = None try: fk = conf.get('core', 'fernet_key') except: pass return fk is None @classmethod def is_secure(cls): """ Used to display a message in the Connection list view making it clear that the passwords and `extra` field can't be encrypted. """ is_secure = False try: import cryptography conf.get('core', 'fernet_key') is_secure = True except: pass return is_secure def on_form_prefill(self, form, id): try: d = json.loads(form.data.get('extra', '{}')) except Exception: d = {} for field in list(self.form_extra_fields.keys()): value = d.get(field, '') if value: field = getattr(form, field) field.data = value class UserModelView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "User" verbose_name_plural = "Users" column_default_sort = 'username' class VersionView(wwwutils.SuperUserMixin, LoggingMixin, BaseView): @expose('/') def version(self): # Look at the version from setup.py try: airflow_version = pkg_resources.require("apache-airflow")[0].version except Exception as e: airflow_version = None self.logger.error(e) # Get the Git repo and git hash git_version = None try: with open(os.path.join(*[settings.AIRFLOW_HOME, 'airflow', 'git_version'])) as f: git_version = f.readline() except Exception as e: self.logger.error(e) # Render information title = "Version Info" return self.render('airflow/version.html', title=title, airflow_version=airflow_version, git_version=git_version) class ConfigurationView(wwwutils.SuperUserMixin, BaseView): @expose('/') def conf(self): raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = conf.AIRFLOW_CONFIG if conf.getboolean("webserver", "expose_config"): with open(conf.AIRFLOW_CONFIG, 'r') as f: config = f.read() table = [(section, key, value, source) for section, parameters in conf.as_dict(True, True).items() for key, (value, source) in parameters.items()] else: config = ( "# You Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") table = None if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/config.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle, table=table) class DagModelView(wwwutils.SuperUserMixin, ModelView): column_list = ('dag_id', 'owners') column_editable_list = ('is_paused',) form_excluded_columns = ('is_subdag', 'is_active') column_searchable_list = ('dag_id',) column_filters = ( 'dag_id', 'owners', 'is_paused', 'is_active', 'is_subdag', 'last_scheduler_run', 'last_expired') form_widget_args = { 'last_scheduler_run': {'disabled': True}, 'fileloc': {'disabled': True}, 'is_paused': {'disabled': True}, 'last_pickled': {'disabled': True}, 'pickle_id': {'disabled': True}, 'last_loaded': {'disabled': True}, 'last_expired': {'disabled': True}, 'pickle_size': {'disabled': True}, 'scheduler_lock': {'disabled': True}, 'owners': {'disabled': True}, } column_formatters = dict( dag_id=dag_link, ) can_delete = False can_create = False page_size = 50 list_template = 'airflow/list_dags.html' named_filter_urls = True def get_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) )
apache-2.0
abimannans/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
rsignell-usgs/notebook
system-test/Theme_2_Extreme_Events/Scenario_2A/ModelDataCompare_Winds/Model_Obs_Compare_Winds.py
3
16991
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # ># IOOS System Test: [Extreme Events Theme:](https://github.com/ioos/system-test/wiki/Development-of-Test-Themes#theme-2-extreme-events) Coastal Inundation # <markdowncell> # ### Can we compare observed and modeled wind speeds at stations located within a bounding box? # This notebook is based on [IOOS System Test: Inundation](http://nbviewer.ipython.org/github/ioos/system-test/blob/master/Theme_2_Extreme_Events/Scenario_2A_Coastal_Inundation/Scenario_2A_Water_Level_Signell.ipynb) # # Methodology: # * Define temporal and spatial bounds of interest, as well as parameters of interest # * Search for available service endpoints in the NGDC CSW catalog meeting search criteria # * Extract OPeNDAP data endpoints from model datasets and SOS endpoints from observational datasets # * Obtain observation data sets from stations within the spatial boundaries # * Using DAP (model) endpoints find all available models data sets that fall in the area of interest, for the specified time range, and extract a model grid cell closest to all the given station locations # * Plot observation stations on a map (red marker for model grid points) and draw a line between each station and the model grid point used for comparison # * Plot modeled and observed time series wind speed on same axes for comparison # # <headingcell level=4> # import required libraries # <codecell> import datetime as dt from warnings import warn import folium from IPython.display import HTML import iris from iris.exceptions import CoordinateNotFoundError, ConstraintMismatchError import matplotlib.pyplot as plt from owslib.csw import CatalogueServiceWeb from owslib import fes import pandas as pd from pyoos.collectors.coops.coops_sos import CoopsSos import requests from utilities import (fes_date_filter, coops2df, find_timevar, find_ij, nearxy, service_urls, mod_df, get_coordinates, inline_map, get_Coops_longName, css_styles) css_styles() # <headingcell level=4> # Speficy Temporal and Spatial conditions # <codecell> bounding_box_type = "box" # Bounding Box [lon_min, lat_min, lon_max, lat_max] area = {'Hawaii': [-160.0, 18.0, -154., 23.0], 'Gulf of Maine': [-72.0, 41.0, -69.0, 43.0], 'New York harbor region': [-75., 39., -71., 41.5], 'Puerto Rico': [-75, 12, -55, 26], 'East Coast': [-77, 36, -73, 38], 'North West': [-130, 38, -121, 50], 'Gulf of Mexico': [-92, 28, -84, 31], 'Arctic': [-179, 63, -140, 80]} bounding_box = area['Gulf of Mexico'] #temporal range jd_now = dt.datetime.utcnow() jd_start, jd_stop = jd_now - dt.timedelta(days=11), jd_now + dt.timedelta(days=3) start_date = jd_start.strftime('%Y-%m-%d %H:00') stop_date = jd_stop.strftime('%Y-%m-%d %H:00') jd_start = dt.datetime.strptime(start_date, '%Y-%m-%d %H:%M') jd_stop = dt.datetime.strptime(stop_date, '%Y-%m-%d %H:%M') print start_date,'to',stop_date # <headingcell level=4> # Specify data names of interest # <codecell> #put the names in a dict for ease of access data_dict = {} sos_name = 'Winds' data_dict['winds'] = { "u_names":['eastward_wind', 'u-component_of_wind', 'u_component_of_wind', 'u_component_of_wind_height_above_ground', 'u-component_of_wind_height_above_ground', 'ugrd10m', 'wind'], "v_names":['northward_wind', 'v-component_of_wind', 'v-component_of_wind_height_above_ground', 'vgrd10m', 'wind'], "sos_name":['winds']} # <headingcell level=3> # Check CSW for bounding box filter capabilities # <codecell> endpoints = ['http://www.nodc.noaa.gov/geoportal/csw', 'http://www.ngdc.noaa.gov/geoportal/csw', 'http://catalog.data.gov/csw-all', 'http://geoport.whoi.edu/geoportal/csw', 'https://edg.epa.gov/metadata/csw', 'http://cmgds.marine.usgs.gov/geonetwork/srv/en/csw', 'http://cida.usgs.gov/gdp/geonetwork/srv/en/csw', 'http://geodiscover.cgdi.ca/wes/serviceManagerCSW/csw', 'http://geoport.whoi.edu/gi-cat/services/cswiso'] bbox_endpoints = [] for url in endpoints: # queryables = [] try: csw = CatalogueServiceWeb(url, timeout=20) except BaseException: print "Failure - %s - Timed out" % url if "BBOX" in csw.filters.spatial_operators: print "Success - %s - BBOX Query supported" % url bbox_endpoints.append(url) else: print "Failure - %s - BBOX Query NOT supported" % url # <markdowncell> # ### Check the CSW endpoints for wind data in the date range specified # <markdowncell> # <div class="warning"><strong>Data discovery is limited</strong> - Most of the CSW endpoints don't have recent wind data available.</div> # <codecell> for endpoint in bbox_endpoints: print endpoint csw = CatalogueServiceWeb(endpoint,timeout=60) # convert User Input into FES filters start,stop = fes_date_filter(start_date,stop_date) bbox = fes.BBox(bounding_box) #use the search name to create search filter or_filt = fes.Or([fes.PropertyIsLike(propertyname='apiso:AnyText',literal='*%s*' % val, escapeChar='\\',wildCard='*',singleChar='?') for val in data_dict['winds']['u_names']]) filter_list = [fes.And([ bbox, start, stop, or_filt]) ] # filter_list = [fes.And([ bbox, or_filt]) ] # connect to CSW, explore it's properties # try request using multiple filters "and" syntax: [[filter1,filter2]] try: csw.getrecords2(constraints=filter_list, maxrecords=1000, esn='full') except Exception as e: print 'ERROR - ' + str(e) else: print str(len(csw.records)) + " csw records found" # Print titles for rec, item in csw.records.items(): print(item.title) print '\n' # <markdowncell> # ### Use NGDC CSW # <codecell> endpoint = 'http://www.ngdc.noaa.gov/geoportal/csw' # NGDC Geoportal csw = CatalogueServiceWeb(endpoint,timeout=60) # convert User Input into FES filters start,stop = fes_date_filter(start_date,stop_date) bbox = fes.BBox(bounding_box) #use the search name to create search filter or_filt = fes.Or([fes.PropertyIsLike(propertyname='apiso:AnyText',literal=('*%s*' % val), escapeChar='\\',wildCard='*',singleChar='?') for val in data_dict['winds']['u_names']]) filter_list = [fes.And([ bbox, start, stop, or_filt]) ] # connect to CSW, explore it's properties # try request using multiple filters "and" syntax: [[filter1,filter2]] try: csw.getrecords2(constraints=filter_list, maxrecords=1000, esn='full') except Exception as e: print 'ERROR - ' + str(e) # <markdowncell> # DAP URLS # <codecell> # Now print the DAP endpoints dap_urls = service_urls(csw.records) #remove duplicates and organize dap_urls = sorted(set(dap_urls)) print "\n".join(dap_urls) # <markdowncell> # SOS URLs # <markdowncell> # <div class="error"><strong>CDIP buoys shouldn't be appearing</strong> - The CDIP buoys are located in the Pacific but are coming up in the Gulf of Mexico bounding box searches. See [issue](https://github.com/ioos/system-test/issues/133).</div> # <codecell> sos_urls = service_urls(csw.records,service='sos:url') #Add known NDBC SOS # sos_urls.append("http://sdf.ndbc.noaa.gov/sos/server.php") #?request=GetCapabilities&service=SOS sos_urls = sorted(set(sos_urls)) print "Total SOS:",len(sos_urls) print "\n".join(sos_urls) # <markdowncell> # ### SOS Requirements # <codecell> start_time = dt.datetime.strptime(start_date,'%Y-%m-%d %H:%M') end_time = dt.datetime.strptime(stop_date,'%Y-%m-%d %H:%M') iso_start = start_time.strftime('%Y-%m-%dT%H:%M:%SZ') iso_end = end_time.strftime('%Y-%m-%dT%H:%M:%SZ') # <codecell> collector = CoopsSos() collector.start_time = start_time collector.end_time = end_time collector.variables = data_dict["winds"]["sos_name"] collector.server.identification.title print collector.start_time,":", collector.end_time ofrs = collector.server.offerings # <markdowncell> # ###Find all SOS stations within the bounding box and time extent # <codecell> print "Date: ",iso_start," to ", iso_end box_str=','.join(str(e) for e in bounding_box) print "Lat/Lon Box: ",box_str url = (('http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?' 'service=SOS&request=GetObservation&version=1.0.0&' 'observedProperty=%s&' 'offering=urn:ioos:network:NOAA.NOS.CO-OPS:MetActive&' 'featureOfInterest=BBOX:%s&responseFormat=text/csv') % (sos_name, box_str)) # url = (('http://sdf.ndbc.noaa.gov/sos/server.php?request=GetObservation&service=SOS&version=1.0.0&offering=urn:ioos:network:noaa.nws.ndbc:all' # '&featureofinterest=BBOX:%s&observedproperty=%s&responseformat=text/csv') % (box_str, sos_name)) print url obs_loc_df = pd.read_csv(url) # <codecell> obs_loc_df.head() # <codecell> # Index the data frame to filter repeats by bin # stations = [sta.split(':')[-1] for sta in obs_loc_df['station_id']] obs_lon = [sta for sta in obs_loc_df['longitude (degree)']] obs_lat = [sta for sta in obs_loc_df['latitude (degree)']] # <headingcell level=3> # Request CSV response from collector and convert to Pandas DataFrames # <codecell> ts_rng = pd.date_range(start=jd_start, end=jd_stop, freq='6Min') ts = pd.DataFrame(index=ts_rng) obs_df = [] wind_speed_df = [] sta_names = [] sta_failed = [] for sta in stations: try: df = coops2df(collector, sta, sos_name) except Exception as e: print "Error" + str(e) continue name = df.name sta_names.append(name) if df.empty: sta_failed.append(name) df = pd.DataFrame(np.arange(len(ts)) * np.NaN, index=ts.index, columns=['Observed Data']) df.name = name # Limit interpolation to 10 points (10 @ 6min = 1 hour). # col = 'Observed Data' # concatenated = pd.concat([df, ts], axis=1).interpolate(limit=10)[col] # obs_df.append(pd.DataFrame(concatenated)) obs_df.append(df) obs_df[-1].name = name # <markdowncell> # ### Plot wind speeds and gusts as a time series # <codecell> for df in obs_df: fig, axes = plt.subplots(1, 1, figsize=(20,6)) axes = df['wind_speed (m/s)'].plot(title=df.name, legend=True, color='b') axes.set_ylabel('Wind Speed (m/s)') for tl in axes.get_yticklabels(): tl.set_color('b') axes.yaxis.label.set_color('blue') axes = df['wind_speed_of_gust (m/s)'].plot(title=df.name, legend=True, color='g') plt.setp(axes.lines[0], linewidth=1.0, zorder=1) # <markdowncell> # ### Plot wind direction # <codecell> for df in obs_df: figure() # Only plot the first bin ax = df['wind_from_direction (degree)'].plot(figsize=(14, 6), title=df.name, legend=False) plt.setp(ax.lines[0], linewidth=1.0, zorder=1) ax.legend() ax.set_ylabel('Wind Direction (degree)') # <markdowncell> # ###Get model output from OPeNDAP URLS # Try to open all the OPeNDAP URLS using Iris from the British Met Office. If we can open in Iris, we know it's a model result. # <codecell> name_in_list = lambda cube: cube.standard_name in data_dict['winds']['u_names'] u_constraint = iris.Constraint(cube_func=name_in_list) name_in_list = lambda cube: cube.standard_name in data_dict['winds']['v_names'] v_constraint = iris.Constraint(cube_func=name_in_list) # <codecell> # # Create time index for model DataFrame ts_rng = pd.date_range(start=jd_start, end=jd_stop, freq='H') ts = pd.DataFrame(index=ts_rng) # Create list of model DataFrames for each station model_df = [] for df in obs_df: model_df.append(pd.DataFrame(index=ts.index)) model_df[-1].name = df.name model_lat = [] model_lon = [] # Use only data within 0.4 degrees. max_dist = 0.4 # Use only data where the standard deviation of the time series exceeds 0.01 m (1 cm). # This eliminates flat line model time series that come from land points that should have had missing values. min_var = 0.01 # print dap_urls for url in dap_urls: # model_df, model_lat, model_lon = get_model_data(url, model_df, max_dist, min_var) try: print 'Attemping to load {0}'.format(url) u = iris.load_cube(url, u_constraint) v = iris.load_cube(url, v_constraint) # take first 20 chars for model name mod_name = u.attributes['title'][0:30] r = u.shape timevar = find_timevar(u) lat = u.coord(axis='Y').points lon = u.coord(axis='X').points # Convert longitude to [-180 180] if max(lon) > 180: lon[lon>180] = lon[lon>180]-360 jd = timevar.units.num2date(timevar.points) start = timevar.units.date2num(jd_start) istart = timevar.nearest_neighbour_index(start) stop = timevar.units.date2num(jd_stop) istop = timevar.nearest_neighbour_index(stop) # Only proceed if we have data in the range requested. if istart != istop: nsta = len(stations) if len(r) == 3: print('[Structured grid model]:', url) d = u[0, :, :].data if len(lon.shape) == 1: new_lon, new_lat = np.meshgrid(lon, lat) else: new_lon, new_lat = lon, lat # Find the closest non-land point from a structured grid model. j, i, dd = find_ij(new_lon, new_lat, d, obs_lon, obs_lat) # Keep the lat lon of the grid point model_lat = lat[j].tolist() model_lon = lon[i].tolist() for n in range(nsta): # Only use if model cell is within max_dist of station if dd[n] <= max_dist: u_arr = u[istart:istop, j[n], i[n]].data v_arr = v[istart:istop, j[n], i[n]].data # Model data is in m/s so convert to cm/s arr = np.sqrt((u_arr)**2 + (v_arr)**2) if u_arr.std() >= min_var: c = mod_df(arr, timevar, istart, istop, mod_name, ts) name = obs_df[n].name model_df[n] = pd.concat([model_df[n], c], axis=1) model_df[n].name = name else: print 'min_var error' else: print 'Max dist error' else: print 'Grid has {0} dimensions'.format(str(len(r))) else: print 'No data in range' except Exception as e: warn("\n%s\n" % e) pass # <markdowncell> # ### Plot the Observation Stations and Model Points on same Map # <codecell> # Find center of bounding box lat_center = abs(bounding_box[3] - bounding_box[1])/2 + bounding_box[1] lon_center = abs(bounding_box[0]-bounding_box[2])/2 + bounding_box[0] m = folium.Map(location=[lat_center, lon_center], zoom_start=6) # Now loop through stations and plot markers for n in range(len(stations)): # Get the station name name = stations[n] longname = obs_df[n].name # Get obs station lat/lon olat = obs_lat[n] olon = obs_lon[n] # Create obs station marker popup_string = ('<b>Station:</b><br>'+ longname) m.simple_marker([olat, olon], popup=popup_string) # Only plot if there is model data if model_lat: # Get model grid points lat/lon mlat = model_lat[n] mlon = model_lon[n] # Plot a line from obs station to corresponding model grid point data_1=[olat,olon] data_2=[model_lat[n],model_lon[n]] m.line([data_1,data_2],line_color='#00FF00', line_weight=5) # Create model grid point marker popup_string = ('<b>Model Grid Point</b>') # m.simple_marker([model_lat[n], model_lon[n]], popup=popup_string, marker_color='red', marker_icon='download',clustered_marker=False) m.circle_marker([mlat, mlon], popup=popup_string, fill_color='#ff0000', radius=5000, line_color='#ff0000') m.line(get_coordinates(bounding_box, bounding_box_type), line_color='#FF0000', line_weight=5) inline_map(m) # <markdowncell> # #### Plot Modeled vs Obs Winds # <codecell> for n in range(len(obs_df)): # First plot the model data if not model_df[n].empty and not obs_df[n].empty: ax = model_df[n].plot(figsize=(14, 6), title=model_df[n].name, legend=False) plt.setp(ax.lines[0], linewidth=3, color='0.7', zorder=1) ax.legend() # Overlay the obs data (resample to hourly instead of 6 mins!) ax = obs_df[n]['wind_speed (m/s)'].resample('H', how='mean').plot(title=obs_df[n].name, legend=False, color='b') plt.setp(ax.lines[1], linewidth=1.0, zorder=1) ax.legend() ax.set_ylabel('Wind Speed (m/s)') plt.show() # <codecell>
mit
aabadie/scikit-learn
examples/svm/plot_iris.py
24
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
asurve/arvind-sysml2
projects/breast_cancer/breastcancer/visualization.py
18
2001
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- """ Visualization -- Predicting Breast Cancer Proliferation Scores with Apache SystemML This module contains functions for visualizing data for the breast cancer project. """ import matplotlib.pyplot as plt def visualize_tile(tile): """ Plot a tissue tile. Args: tile: A 3D NumPy array of shape (tile_size, tile_size, channels). Returns: None """ plt.imshow(tile) plt.show() def visualize_sample(sample, size=256): """ Plot a tissue sample. Args: sample: A square sample flattened to a vector of size (channels*size_x*size_y). size: The width and height of the square samples. Returns: None """ # Change type, reshape, transpose to (size_x, size_y, channels). length = sample.shape[0] channels = int(length / (size * size)) if channels > 1: sample = sample.astype('uint8').reshape((channels, size, size)).transpose(1,2,0) plt.imshow(sample) else: vmax = 255 if sample.max() > 1 else 1 sample = sample.reshape((size, size)) plt.imshow(sample, cmap="gray", vmin=0, vmax=vmax) plt.show()
apache-2.0
toirl/cointrader
cointrader/chart.py
1
3141
#!/usr/bin/env python # -*- coding: utf-8 -*- import io import pandas import datetime from stockstats import StockDataFrame def chart2csv(chart): out = [] header = "date,amount,close,high,low,open,volume" out.append(header) for cs in chart: out.append("{},{},{},{},{},{},{}".format(cs["date"], "", cs["close"], cs["high"], cs["low"], cs["open"], cs["volume"])) return u"\n".join(out) def search_chartdata_by_date(data, dt, le=True): ts = (dt - datetime.datetime(1970, 1, 1)).total_seconds() chart_item = data[0] for d in data: if d["date"] <= ts: chart_item = d else: break return chart_item class Chart(object): """The chart provides a unified interface to the chart data. It also gives access so some common indicators like macd, sma and ema. The `data` is provided as list of dictionaries where each dictionary represents a single set of data per point in the chart:: { u'date': 1500112800, u'open': 0.07132169, u'close': 0.07162004, u'high': 0.07172972, u'low': 0.07114623, u'volume': 7.49372245, u'quoteVolume': 104.69114835, u'weightedAverage': 0.07157933, } The `start` and `end` datetimes define the relevant timeframe of the chart for later profit calculations. This date range is needed as the chart itself cointains more more datapoints than within the given date range. This is because we need more data to ensure that indicators like ema and sma provide sensefull values right on from the begin of the timeframe. So there must be more data available before the start. """ def __init__(self, data, start, end): """Will build a chart instance from the given raw data input. :data: List of datapoints as dictionary. :start: Datetime object. :end: Datetime object. """ self._data = data self._start = start self._end = end self._stock = StockDataFrame.retype(pandas.read_csv(io.StringIO(chart2csv(data)))) @property def data(self): return self._data @property def date(self): return self._data[-1]["date"] @property def close(self): return self._data[-1]["close"] def get_first_point(self): return search_chartdata_by_date(self.data, self._start) def get_last_point(self): return search_chartdata_by_date(self.data, self._end) def values(self, which="close"): return [(v["date"], v[which]) for v in self._data] ################ # Indicators # ################ def macdh(self): macdh = self._stock.get("macdh") return macdh.tolist() def sma(self, window=10): sma = self._stock.get("close_{}_sma".format(window)) return sma.tolist() def ema(self, window=10): ema = self._stock.get("close_{}_ema".format(window)) return ema.tolist()
mit
gotomypc/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
blink1073/scikit-image
skimage/viewer/viewers/core.py
33
13265
""" ImageViewer class for viewing and interacting with images. """ import numpy as np from ... import io, img_as_float from ...util.dtype import dtype_range from ...exposure import rescale_intensity from ..qt import QtWidgets, Qt, Signal from ..widgets import Slider from ..utils import (dialogs, init_qtapp, figimage, start_qtapp, update_axes_image) from ..utils.canvas import BlitManager, EventManager from ..plugins.base import Plugin __all__ = ['ImageViewer', 'CollectionViewer'] def mpl_image_to_rgba(mpl_image): """Return RGB image from the given matplotlib image object. Each image in a matplotlib figure has its own colormap and normalization function. Return RGBA (RGB + alpha channel) image with float dtype. Parameters ---------- mpl_image : matplotlib.image.AxesImage object The image being converted. Returns ------- img : array of float, shape (M, N, 4) An image of float values in [0, 1]. """ image = mpl_image.get_array() if image.ndim == 2: input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax) image = rescale_intensity(image, in_range=input_range) # cmap complains on bool arrays image = mpl_image.cmap(img_as_float(image)) elif image.ndim == 3 and image.shape[2] == 3: # add alpha channel if it's missing image = np.dstack((image, np.ones_like(image))) return img_as_float(image) class ImageViewer(QtWidgets.QMainWindow): """Viewer for displaying images. This viewer is a simple container object that holds a Matplotlib axes for showing images. `ImageViewer` doesn't subclass the Matplotlib axes (or figure) because of the high probability of name collisions. Subclasses and plugins will likely extend the `update_image` method to add custom overlays or filter the displayed image. Parameters ---------- image : array Image being viewed. Attributes ---------- canvas, fig, ax : Matplotlib canvas, figure, and axes Matplotlib canvas, figure, and axes used to display image. image : array Image being viewed. Setting this value will update the displayed frame. original_image : array Plugins typically operate on (but don't change) the *original* image. plugins : list List of attached plugins. Examples -------- >>> from skimage import data >>> image = data.coins() >>> viewer = ImageViewer(image) # doctest: +SKIP >>> viewer.show() # doctest: +SKIP """ dock_areas = {'top': Qt.TopDockWidgetArea, 'bottom': Qt.BottomDockWidgetArea, 'left': Qt.LeftDockWidgetArea, 'right': Qt.RightDockWidgetArea} # Signal that the original image has been changed original_image_changed = Signal(np.ndarray) def __init__(self, image, useblit=True): # Start main loop init_qtapp() super(ImageViewer, self).__init__() #TODO: Add ImageViewer to skimage.io window manager self.setAttribute(Qt.WA_DeleteOnClose) self.setWindowTitle("Image Viewer") self.file_menu = QtWidgets.QMenu('&File', self) self.file_menu.addAction('Open file', self.open_file, Qt.CTRL + Qt.Key_O) self.file_menu.addAction('Save to file', self.save_to_file, Qt.CTRL + Qt.Key_S) self.file_menu.addAction('Quit', self.close, Qt.CTRL + Qt.Key_Q) self.menuBar().addMenu(self.file_menu) self.main_widget = QtWidgets.QWidget() self.setCentralWidget(self.main_widget) if isinstance(image, Plugin): plugin = image image = plugin.filtered_image plugin.image_changed.connect(self._update_original_image) # When plugin is started, start plugin._started.connect(self._show) self.fig, self.ax = figimage(image) self.canvas = self.fig.canvas self.canvas.setParent(self) self.ax.autoscale(enable=False) self._tools = [] self.useblit = useblit if useblit: self._blit_manager = BlitManager(self.ax) self._event_manager = EventManager(self.ax) self._image_plot = self.ax.images[0] self._update_original_image(image) self.plugins = [] self.layout = QtWidgets.QVBoxLayout(self.main_widget) self.layout.addWidget(self.canvas) status_bar = self.statusBar() self.status_message = status_bar.showMessage sb_size = status_bar.sizeHint() cs_size = self.canvas.sizeHint() self.resize(cs_size.width(), cs_size.height() + sb_size.height()) self.connect_event('motion_notify_event', self._update_status_bar) def __add__(self, plugin): """Add plugin to ImageViewer""" plugin.attach(self) self.original_image_changed.connect(plugin._update_original_image) if plugin.dock: location = self.dock_areas[plugin.dock] dock_location = Qt.DockWidgetArea(location) dock = QtWidgets.QDockWidget() dock.setWidget(plugin) dock.setWindowTitle(plugin.name) self.addDockWidget(dock_location, dock) horiz = (self.dock_areas['left'], self.dock_areas['right']) dimension = 'width' if location in horiz else 'height' self._add_widget_size(plugin, dimension=dimension) return self def _add_widget_size(self, widget, dimension='width'): widget_size = widget.sizeHint() viewer_size = self.frameGeometry() dx = dy = 0 if dimension == 'width': dx = widget_size.width() elif dimension == 'height': dy = widget_size.height() w = viewer_size.width() h = viewer_size.height() self.resize(w + dx, h + dy) def open_file(self, filename=None): """Open image file and display in viewer.""" if filename is None: filename = dialogs.open_file_dialog() if filename is None: return image = io.imread(filename) self._update_original_image(image) def update_image(self, image): """Update displayed image. This method can be overridden or extended in subclasses and plugins to react to image changes. """ self._update_original_image(image) def _update_original_image(self, image): self.original_image = image # update saved image self.image = image.copy() # update displayed image self.original_image_changed.emit(image) def save_to_file(self, filename=None): """Save current image to file. The current behavior is not ideal: It saves the image displayed on screen, so all images will be converted to RGB, and the image size is not preserved (resizing the viewer window will alter the size of the saved image). """ if filename is None: filename = dialogs.save_file_dialog() if filename is None: return if len(self.ax.images) == 1: io.imsave(filename, self.image) else: underlay = mpl_image_to_rgba(self.ax.images[0]) overlay = mpl_image_to_rgba(self.ax.images[1]) alpha = overlay[:, :, 3] # alpha can be set by channel of array or by a scalar value. # Prefer the alpha channel, but fall back to scalar value. if np.all(alpha == 1): alpha = np.ones_like(alpha) * self.ax.images[1].get_alpha() alpha = alpha[:, :, np.newaxis] composite = (overlay[:, :, :3] * alpha + underlay[:, :, :3] * (1 - alpha)) io.imsave(filename, composite) def closeEvent(self, event): self.close() def _show(self, x=0): self.move(x, 0) for p in self.plugins: p.show() super(ImageViewer, self).show() self.activateWindow() self.raise_() def show(self, main_window=True): """Show ImageViewer and attached plugins. This behaves much like `matplotlib.pyplot.show` and `QWidget.show`. """ self._show() if main_window: start_qtapp() return [p.output() for p in self.plugins] def redraw(self): if self.useblit: self._blit_manager.redraw() else: self.canvas.draw_idle() @property def image(self): return self._img @image.setter def image(self, image): self._img = image update_axes_image(self._image_plot, image) # update display (otherwise image doesn't fill the canvas) h, w = image.shape[:2] self.ax.set_xlim(0, w) self.ax.set_ylim(h, 0) # update color range clim = dtype_range[image.dtype.type] if clim[0] < 0 and image.min() >= 0: clim = (0, clim[1]) self._image_plot.set_clim(clim) if self.useblit: self._blit_manager.background = None self.redraw() def reset_image(self): self.image = self.original_image.copy() def connect_event(self, event, callback): """Connect callback function to matplotlib event and return id.""" cid = self.canvas.mpl_connect(event, callback) return cid def disconnect_event(self, callback_id): """Disconnect callback by its id (returned by `connect_event`).""" self.canvas.mpl_disconnect(callback_id) def _update_status_bar(self, event): if event.inaxes and event.inaxes.get_navigate(): self.status_message(self._format_coord(event.xdata, event.ydata)) else: self.status_message('') def add_tool(self, tool): if self.useblit: self._blit_manager.add_artists(tool.artists) self._tools.append(tool) self._event_manager.attach(tool) def remove_tool(self, tool): if tool not in self._tools: return if self.useblit: self._blit_manager.remove_artists(tool.artists) self._tools.remove(tool) self._event_manager.detach(tool) def _format_coord(self, x, y): # callback function to format coordinate display in status bar x = int(x + 0.5) y = int(y + 0.5) try: return "%4s @ [%4s, %4s]" % (self.image[y, x], x, y) except IndexError: return "" class CollectionViewer(ImageViewer): """Viewer for displaying image collections. Select the displayed frame of the image collection using the slider or with the following keyboard shortcuts: left/right arrows Previous/next image in collection. number keys, 0--9 0% to 90% of collection. For example, "5" goes to the image in the middle (i.e. 50%) of the collection. home/end keys First/last image in collection. Parameters ---------- image_collection : list of images List of images to be displayed. update_on : {'move' | 'release'} Control whether image is updated on slide or release of the image slider. Using 'on_release' will give smoother behavior when displaying large images or when writing a plugin/subclass that requires heavy computation. """ def __init__(self, image_collection, update_on='move', **kwargs): self.image_collection = image_collection self.index = 0 self.num_images = len(self.image_collection) first_image = image_collection[0] super(CollectionViewer, self).__init__(first_image) slider_kws = dict(value=0, low=0, high=self.num_images - 1) slider_kws['update_on'] = update_on slider_kws['callback'] = self.update_index slider_kws['value_type'] = 'int' self.slider = Slider('frame', **slider_kws) self.layout.addWidget(self.slider) #TODO: Adjust height to accomodate slider; the following doesn't work # s_size = self.slider.sizeHint() # cs_size = self.canvas.sizeHint() # self.resize(cs_size.width(), cs_size.height() + s_size.height()) def update_index(self, name, index): """Select image on display using index into image collection.""" index = int(round(index)) if index == self.index: return # clip index value to collection limits index = max(index, 0) index = min(index, self.num_images - 1) self.index = index self.slider.val = index self.update_image(self.image_collection[index]) def keyPressEvent(self, event): if type(event) == QtWidgets.QKeyEvent: key = event.key() # Number keys (code: 0 = key 48, 9 = key 57) move to deciles if 48 <= key < 58: index = 0.1 * int(key - 48) * self.num_images self.update_index('', index) event.accept() else: event.ignore() else: event.ignore()
bsd-3-clause
blink1073/scikit-image
skimage/io/manage_plugins.py
17
10353
"""Handle image reading, writing and plotting plugins. To improve performance, plugins are only loaded as needed. As a result, there can be multiple states for a given plugin: available: Defined in an *ini file located in `skimage.io._plugins`. See also `skimage.io.available_plugins`. partial definition: Specified in an *ini file, but not defined in the corresponding plugin module. This will raise an error when loaded. available but not on this system: Defined in `skimage.io._plugins`, but a dependent library (e.g. Qt, PIL) is not available on your system. This will raise an error when loaded. loaded: The real availability is determined when it's explicitly loaded, either because it's one of the default plugins, or because it's loaded explicitly by the user. """ import sys if sys.version.startswith('3'): from configparser import ConfigParser # Python 3 else: from ConfigParser import ConfigParser # Python 2 import os.path from glob import glob from .collection import imread_collection_wrapper __all__ = ['use_plugin', 'call_plugin', 'plugin_info', 'plugin_order', 'reset_plugins', 'find_available_plugins', 'available_plugins'] # The plugin store will save a list of *loaded* io functions for each io type # (e.g. 'imread', 'imsave', etc.). Plugins are loaded as requested. plugin_store = None # Dictionary mapping plugin names to a list of functions they provide. plugin_provides = {} # The module names for the plugins in `skimage.io._plugins`. plugin_module_name = {} # Meta-data about plugins provided by *.ini files. plugin_meta_data = {} # For each plugin type, default to the first available plugin as defined by # the following preferences. preferred_plugins = { # Default plugins for all types (overridden by specific types below). 'all': ['pil', 'matplotlib', 'qt', 'freeimage'], 'imshow': ['matplotlib'] } def _clear_plugins(): """Clear the plugin state to the default, i.e., where no plugins are loaded """ global plugin_store plugin_store = {'imread': [], 'imsave': [], 'imshow': [], 'imread_collection': [], '_app_show': []} _clear_plugins() def _load_preferred_plugins(): # Load preferred plugin for each io function. io_types = ['imsave', 'imshow', 'imread_collection', 'imread'] for p_type in io_types: _set_plugin(p_type, preferred_plugins['all']) plugin_types = (p for p in preferred_plugins.keys() if p != 'all') for p_type in plugin_types: _set_plugin(p_type, preferred_plugins[p_type]) def _set_plugin(plugin_type, plugin_list): for plugin in plugin_list: if plugin not in available_plugins: continue try: use_plugin(plugin, kind=plugin_type) break except (ImportError, RuntimeError, OSError): pass def reset_plugins(): _clear_plugins() _load_preferred_plugins() def _parse_config_file(filename): """Return plugin name and meta-data dict from plugin config file.""" parser = ConfigParser() parser.read(filename) name = parser.sections()[0] meta_data = {} for opt in parser.options(name): meta_data[opt] = parser.get(name, opt) return name, meta_data def _scan_plugins(): """Scan the plugins directory for .ini files and parse them to gather plugin meta-data. """ pd = os.path.dirname(__file__) config_files = glob(os.path.join(pd, '_plugins', '*.ini')) for filename in config_files: name, meta_data = _parse_config_file(filename) plugin_meta_data[name] = meta_data provides = [s.strip() for s in meta_data['provides'].split(',')] valid_provides = [p for p in provides if p in plugin_store] for p in provides: if not p in plugin_store: print("Plugin `%s` wants to provide non-existent `%s`." " Ignoring." % (name, p)) # Add plugins that provide 'imread' as provider of 'imread_collection'. need_to_add_collection = ('imread_collection' not in valid_provides and 'imread' in valid_provides) if need_to_add_collection: valid_provides.append('imread_collection') plugin_provides[name] = valid_provides plugin_module_name[name] = os.path.basename(filename)[:-4] _scan_plugins() def find_available_plugins(loaded=False): """List available plugins. Parameters ---------- loaded : bool If True, show only those plugins currently loaded. By default, all plugins are shown. Returns ------- p : dict Dictionary with plugin names as keys and exposed functions as values. """ active_plugins = set() for plugin_func in plugin_store.values(): for plugin, func in plugin_func: active_plugins.add(plugin) d = {} for plugin in plugin_provides: if not loaded or plugin in active_plugins: d[plugin] = [f for f in plugin_provides[plugin] if not f.startswith('_')] return d available_plugins = find_available_plugins() def call_plugin(kind, *args, **kwargs): """Find the appropriate plugin of 'kind' and execute it. Parameters ---------- kind : {'imshow', 'imsave', 'imread', 'imread_collection'} Function to look up. plugin : str, optional Plugin to load. Defaults to None, in which case the first matching plugin is used. *args, **kwargs : arguments and keyword arguments Passed to the plugin function. """ if not kind in plugin_store: raise ValueError('Invalid function (%s) requested.' % kind) plugin_funcs = plugin_store[kind] if len(plugin_funcs) == 0: msg = ("No suitable plugin registered for %s.\n\n" "You may load I/O plugins with the `skimage.io.use_plugin` " "command. A list of all available plugins can be found using " "`skimage.io.plugins()`.") raise RuntimeError(msg % kind) plugin = kwargs.pop('plugin', None) if plugin is None: _, func = plugin_funcs[0] else: _load(plugin) try: func = [f for (p, f) in plugin_funcs if p == plugin][0] except IndexError: raise RuntimeError('Could not find the plugin "%s" for %s.' % (plugin, kind)) return func(*args, **kwargs) def use_plugin(name, kind=None): """Set the default plugin for a specified operation. The plugin will be loaded if it hasn't been already. Parameters ---------- name : str Name of plugin. kind : {'imsave', 'imread', 'imshow', 'imread_collection'}, optional Set the plugin for this function. By default, the plugin is set for all functions. See Also -------- available_plugins : List of available plugins Examples -------- To use Matplotlib as the default image reader, you would write: >>> from skimage import io >>> io.use_plugin('matplotlib', 'imread') To see a list of available plugins run ``io.available_plugins``. Note that this lists plugins that are defined, but the full list may not be usable if your system does not have the required libraries installed. """ if kind is None: kind = plugin_store.keys() else: if not kind in plugin_provides[name]: raise RuntimeError("Plugin %s does not support `%s`." % (name, kind)) if kind == 'imshow': kind = [kind, '_app_show'] else: kind = [kind] _load(name) for k in kind: if not k in plugin_store: raise RuntimeError("'%s' is not a known plugin function." % k) funcs = plugin_store[k] # Shuffle the plugins so that the requested plugin stands first # in line funcs = [(n, f) for (n, f) in funcs if n == name] + \ [(n, f) for (n, f) in funcs if n != name] plugin_store[k] = funcs def _inject_imread_collection_if_needed(module): """Add `imread_collection` to module if not already present.""" if not hasattr(module, 'imread_collection') and hasattr(module, 'imread'): imread = getattr(module, 'imread') func = imread_collection_wrapper(imread) setattr(module, 'imread_collection', func) def _load(plugin): """Load the given plugin. Parameters ---------- plugin : str Name of plugin to load. See Also -------- plugins : List of available plugins """ if plugin in find_available_plugins(loaded=True): return if not plugin in plugin_module_name: raise ValueError("Plugin %s not found." % plugin) else: modname = plugin_module_name[plugin] plugin_module = __import__('skimage.io._plugins.' + modname, fromlist=[modname]) provides = plugin_provides[plugin] for p in provides: if p == 'imread_collection': _inject_imread_collection_if_needed(plugin_module) elif not hasattr(plugin_module, p): print("Plugin %s does not provide %s as advertised. Ignoring." % (plugin, p)) continue store = plugin_store[p] func = getattr(plugin_module, p) if not (plugin, func) in store: store.append((plugin, func)) def plugin_info(plugin): """Return plugin meta-data. Parameters ---------- plugin : str Name of plugin. Returns ------- m : dict Meta data as specified in plugin ``.ini``. """ try: return plugin_meta_data[plugin] except KeyError: raise ValueError('No information on plugin "%s"' % plugin) def plugin_order(): """Return the currently preferred plugin order. Returns ------- p : dict Dictionary of preferred plugin order, with function name as key and plugins (in order of preference) as value. """ p = {} for func in plugin_store: p[func] = [plugin_name for (plugin_name, f) in plugin_store[func]] return p
bsd-3-clause
EliotBryant/ShadDetector
shadDetector_testing/Gradient Based Methods/logimage.py
1
1246
# -*- coding: utf-8 -*- """ Created on Fri Aug 4 21:51:29 2017 @author: Eliot logimage.py """ import cv2 import numpy as np import os from matplotlib import pyplot as plt thisfilepath = os.path.dirname(__file__) loaddirpath = os.path.abspath(os.path.join(thisfilepath, "test_files/orig")) savedirpath = os.path.abspath(os.path.join(thisfilepath, "test_files/altered")) image = cv2.imread(loaddirpath + "/001CROP11-17-59.jpg") print(image.shape) image = np.float32(image) # actual code logimage = cv2.log(image) ''' All below is just to visualise what log space looks like ''' logviewable = 35*logimage logviewable = logviewable - 100 #comment out logviewable = 2.5*logviewable #comment out logu8 = np.uint8(logviewable) ycrcb = cv2.cvtColor(logu8, cv2.COLOR_BGR2YCrCb) y = ycrcb[...,0] y = cv2.equalizeHist(y) histr = cv2.calcHist([y],[0],None,[256],[0,256]) plt.figure(0) plt.plot(histr) plt.xlim([0,256]) logimageagain = cv2.cvtColor(ycrcb, cv2.COLOR_YCrCb2BGR) color = ('b','g','r') plt.figure(1) for i,col in enumerate(color): histr = cv2.calcHist([logimageagain],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) plt.show() cv2.imshow("i", logimageagain) cv2.waitKey(0) cv2.destroyAllWindows()
gpl-3.0
robin-lai/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
jpedroan/megua
megua/mathcommon.py
1
23471
# coding=utf-8 r""" Generic Mathematical routines for MEGUA. AUTHORS: - Pedro Cruz (2010-06): initial version - Pedro Cruz (2013-11): added logb (and this module is now imported in ex.py) - Pedro Cruz (2016-01): changed for new formal functions sagemath standard. """ #***************************************************************************** # Copyright (C) 2011 Pedro Cruz <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** r""" Must import everything from sage.all:: from sage.all import * Avoiding this is impossible. For example:: from sage.rings.real_double import RDF does not work. .. test with: sage -t mathcommon.py """ #PYTHON modules from string import join import jinja2 import os #SAGEMATH modules #from sage.all import var,RealField,SR,function,e from sage.all import * #MEGUA modules from megua.ur import ur from megua.tounicode import to_unicode """ the following code is about templating. TODO: incorporate other templating code into one module. """ #Templating (with Jinja2) natlang = 'pt_pt' if os.environ.has_key('MEGUA_TEMPLATE_PATH'): TEMPLATE_PATH = os.environ['MEGUA_TEMPLATE_PATH'] else: from pkg_resources import resource_filename TEMPLATE_PATH = os.path.join(resource_filename(__name__,''),'template',natlang) #print "Templates in mathcommon.py: '%s' language at %s" % (natlang,TEMPLATE_PATH) env = jinja2.Environment(loader=jinja2.FileSystemLoader(TEMPLATE_PATH)) #Sometimes needed. x,y=var('x,y') #For 4 digit numbers. R15=RealField(15) #For more digit numbers R20 = RealField(20) ############## #TikZmod -- Routines to convert sage plots into latex TikZ markup. ############## def getpoints_str(pointlist): return join( [ str( ( R20(p[0]), R20(p[1]) ) ) for p in pointlist ], ' ' ) def tikz_axis(vmin,vmax,axis='x', points=None, ticksize=2, originlabels=True): r""" Draw the vertical or horizontal 2d axis. INPUT: - ``vmin``: first point of the axis. - ``vmax``: last point of the axis (where the arrow ends). - ``axis``: 'x' or 'y'. - ``points``: if None, points are guessed. Otherwise they are used to place marks. - ``originlabels'': (dafault True) If false (0,0) won't have labels. Specials thanks to Paula Oliveira for the first version. Other resource: http://matplotlib.org/users/pgf.html#pgf-tutorial """ if points is None: #integer tick marks only (for now) first_int = floor(vmin) last_int = ceil(vmax) #last_int - first_int + 1 gives all integers, #but the last point is the arrow vertice: no label and no tick mark so "+1" is not added. points = [ i+first_int for i in range(last_int - first_int) ] if not originlabels and 0 in points: pos = points.index(0) del points[pos] else: first_int = min(points) last_int = max(points) + 1 #added +1 for the reason above. if axis=='x': #integer tick marks tmarks = r'\foreach \x in %s' % Set(points) tmarks += r'\draw[color=black] (\x,-%d pt) node[below] {\scriptsize $\x$} -- (\x,%d pt) ;' % (ticksize,ticksize) #main line and arrow at end tmain = r'\draw[->,color=black] (%f,0) -- (%f,0);' % (first_int,last_int) else: #integer tick marks tmarks = r'\foreach \y in %s' % Set(points) tmarks += r'\draw[color=black] (-%d pt,\y) node[left] {\scriptsize $\y$} -- (%d pt,\y);' % (ticksize,ticksize) #main line and arrow at end tmain = r'\draw[->,color=black] (0,%f) -- (0,%f);' % (first_int,last_int) return tmain + tmarks # ===================== # Google charts # ===================== def svg_pie_chart(valueslist, chartid="chart1", title="Chart", width=400, height=300): """ Plot an SVG chart pie. Note: uses google charts. INPUT: - ``valueslist`` -- list of pairs - ``chartname`` -- like a username 'Pizza Pie' - ``title`` -- like ''How Much Pizza I Ate Last Night' - ``width`` -- default 400 - ``height`` -- default 300 OUTPUT: A HTML string with code (google chart html code) to plot a chart. """ filename="svg_pie_chart.html" try: tmpl = env.get_template(filename) except jinja2.exceptions.TemplateNotFound: return "MegUA -- missing template %s"%filename r = tmpl.render(valueslist=valueslist, chartid=chartid, title=title, width=width, height=height) print "TYPE=",type(r) return r def svg_pie_chart(valueslist, chartid="chart1", title="Chart", width=400, height=300): """ Plot an SVG chart pie. Note: uses google charts. INPUT: - ``valueslist`` -- list of pairs - ``chartname`` -- like a username 'Pizza Pie' - ``title`` -- like ''How Much Pizza I Ate Last Night' - ``width`` -- default 400 - ``height`` -- default 300 OUTPUT: A HTML string with code (google chart html code) to plot a chart. """ filename="svg_pie_chart.html" try: tmpl = env.get_template(filename) except jinja2.exceptions.TemplateNotFound: return "MegUA -- missing template %s"%filename r = tmpl.render(valueslist=valueslist, chartid=chartid, title=title, width=width, height=height) return r #======================= # cis for "high school" #======================= def CIS_latex(fun,x): return r'\text{cis}\left(%s\right)' % latex(x) x,b=SR.var('x,b') FORMALCIS = function('cis',nargs=1, print_latex_func=CIS_latex) def cis(x): return FORMALCIS(x) #======================= # log for "high school" #======================= def FORMALLOG_latex(fun,x,base=None): if base==e or base is None: return r'\ln\left(%s\right)' % latex(x) elif base==10: return r'\log\left(%s\right)' % latex(x) else: return r'\log_{%s}\left(%s\right)' % (latex(base),latex(x)) x,b=SR.var('x,b') FORMALLOG = function('logb',nargs=2, print_latex_func=FORMALLOG_latex) #Two arguments: x and base. def logb(x,base=e,factorize=False): r""" This is a procedure that decides to compute or to print a logarithm in any base. (logb is an alternative to ``log`` from Sage.) After calling `logb()` several objects could be returned including the `FORMALLOG` formal log function. This version keeps the base because ``log(105,base=10)`` is transformed by Sage (and many others CAS) into ``log(105)/log(10)`` and sometimes this is not what we want to see as a result. LaTeX representations are: * ``\log_{base} (x)`` if base is not ``e``. * ``\log (x)`` if the base is exponential. INPUT: - ``x`` - the argument of log. - ``base`` - the base of logarithm. - ``factorize`` - decompose in a simple expression if argument if decomposable in prime factors. OUTPUT: - an expression based on ``logb``, Sage ``log`` or any other expression. Basic cases:: sage: logb(e) #assume base=e 1 sage: logb(10,base=10) 1 sage: logb(1) #assume base=e 0 sage: logb(1,base=10) #assume base=e 0 sage: logb(e,base=10) logb(e, 10) sage: logb(10,base=e) logb(10, e) sage: logb(sqrt(105)) logb(sqrt(105), e) sage: logb(5,base=e) logb(5, e) sage: logb(e^2,base=e) 2 sage: logb(0,base=10) -Infinity With and without factorization:: sage: logb(3^5,base=10) #no factorization logb(243, 10) sage: logb(3^5,base=10,factorize=True) 5*logb(3, 10) sage: logb(3^5*2^3,base=10) #no factorization logb(1944, 10) sage: logb(3^5*2^3,base=10,factorize=True) 5*logb(3, 10) + 3*logb(2, 10) Latex printing of logb:: sage: latex( logb(e) ) 1 sage: latex( logb(1,base=10) ) 0 sage: latex( logb(e,base=10) ) \log\left(e\right) sage: latex( logb(sqrt(105)) ) \ln\left(\sqrt{105}\right) sage: latex( logb(3^5,base=10) ) \log\left(243\right) sage: latex( logb(3^5,base=10,factorize=True) ) 5 \, \log\left(3\right) sage: latex( logb(3^5*2^3,base=10,factorize=True) ) 5 \, \log\left(3\right) + 3 \, \log\left(2\right) sage: latex( logb(3^5*2^3,base=3,factorize=True) ) 5 \, \log_{3}\left(3\right) + 3 \, \log_{3}\left(2\right) """ #e is exp(1) in sage r = log(x,base=base) if r in ZZ or r in QQ or r==-Infinity: #Note: r in RR results in true if r=log(2/3,e) #OLD: SR(r).denominator()==1: return r else: if factorize: F = factor(x) if factorize and type(F) == sage.structure.factorization_integer.IntegerFactorization: l = [ factor_exponent * FORMALLOG(factor_base,base) for (factor_base,factor_exponent) in F ] return add(l) else: return FORMALLOG(x,base) #======================= # pow for "high school" #======================= def _POW_latex(fun,basev,expv): if basev==0 and expv!=0: return r'0' elif basev==1: return r'1' else: return r'%s^{%s}' % (latex(basev),latex(expv)) bv,ev=SR.var('bv,ev') #FORMALPOW = function('powb', bv, ev, print_latex_func=_POW_latex) FORMALPOW = function('powb', nargs=2, print_latex_func=_POW_latex) def powb(basev,expv): r"""powb is an alternative to ``^`` from Sage that preserves ^ in latex. See similar idea for logb. INPUT: - ``basev`` - the basis argument. - ``expv`` - the exponent value. OUTPUT: - an expression based on ``powb`` that is converted by latex() to a^b without calculating. Basic cases:: sage: powb(0,1) 0 sage: powb(1,2) 1 sage: powb(2,3) powb(2, 3) sage: latex( powb(2,3) ) 2^{3} """ if basev==0 and expv!=0: return 0 elif basev==1: return 1 else: return FORMALPOW(basev,expv) #======================= # factorial for "high school" #======================= def _FACT_latex(fun,x): #fun is the new function name return r'%s!' % latex(x) # x=SR.var('x') see above. #inerte: does not calulate factorial, only put "!". #FACT_ = function('factb', x, print_latex_func=_FACT_latex) FORMALFACT = function('factb', nargs=1, print_latex_func=_FACT_latex) def factb(xv): r"""factb is an alternative to ``factorial`` from Sage in the sense of representation: factb(x) is never calculated. This version correct latex(120/factorial(5), hold=true) bug. INPUT: - ``xv`` - the argument of log. OUTPUT: - x! without calculating Basic cases:: sage: factb(0) factb(0) sage: factb(1) factb(1) sage: factb(2) factb(2) sage: factb(5) factb(5) sage: latex( factb(5) ) 5! sage: latex( 120/ factb(5) ) \frac{120}{5!} """ return FORMALFACT(xv) #=================================== # Old functions # (that are in use in old problems) #=================================== def showmul(x): """Deprecated: Old way of writing parentesis on negative numbers. """ if x<0: return '(' + latex(x) + ')' else: return x # ================== # MSC 15 -- Algebra # ================== def before_minor(M,pivot_row,pivot_col): """ A minor is the determinant of a submatrix of M. This routine gives the matrix to which the determinant is calculated. INPUT: - ``M``: a square matrix n by n. - ``pivot_row, pivot_col``: row and column nunbers (0 to n-1). OUTPUT: The submatrix of ``M`` extracting row ``pivot_row`` and column ``pivot_col``. EXAMPLES:: sage: from megua.mathcommon import before_minor sage: M = matrix(ZZ, [ [ 1, -25, -1, 0], [ 0, -2, -5, -2], [ 2, 1, -1, 0], [ 3, 1, -2, -13] ]); M [ 1 -25 -1 0] [ 0 -2 -5 -2] [ 2 1 -1 0] [ 3 1 -2 -13] sage: before_minor(M,0,0) [ -2 -5 -2] [ 1 -1 0] [ 1 -2 -13] sage: before_minor(M,0,3) [ 0 -2 -5] [ 2 1 -1] [ 3 1 -2] sage: before_minor(M,3,3) [ 1 -25 -1] [ 0 -2 -5] [ 2 1 -1] sage: before_minor(M,3,0) [-25 -1 0] [ -2 -5 -2] [ 1 -1 0] sage: before_minor(M,0,2) [ 0 -2 -2] [ 2 1 0] [ 3 1 -13] sage: before_minor(M,3,2) [ 1 -25 0] [ 0 -2 -2] [ 2 1 0] sage: before_minor(M,2,0) [-25 -1 0] [ -2 -5 -2] [ 1 -2 -13] sage: before_minor(M,2,3) [ 1 -25 -1] [ 0 -2 -5] [ 3 1 -2] sage: before_minor(M,1,1) [ 1 -1 0] [ 2 -1 0] [ 3 -2 -13] AUTHORS: - Pedro Cruz (2012/April) - Paula Oliveira (2012/April) """ nrows,ncols = M.parent().dims() #put values in 0-n-1 range. nrows -= 1 ncols -= 1 if pivot_row==0 and pivot_col==0: #pivot is at left top corner return M[1:,1:] elif pivot_row==0 and pivot_col==ncols: #pivot is at right top corner return M[1:,:-1] elif pivot_row==nrows and pivot_col==ncols: #pivot is at right bottom corner return M[:-1,:-1] elif pivot_row==nrows and pivot_col==0: #pivot is at left bottom corner return M[:-1,1:] elif pivot_row==0: #pivot is at first row any other col M.subdivide( 1, [pivot_col,pivot_col+1]) return block_matrix( [ [M.subdivision(1,0),M.subdivision(1,2)]], subdivide=False) elif pivot_row==nrows: #pivot is at last row any other col M.subdivide( nrows, [pivot_col,pivot_col+1]) return block_matrix( [ [M.subdivision(0,0),M.subdivision(0,2)]], subdivide=False) elif pivot_col==0: #pivot is at column 0 and any other row M.subdivide( [pivot_row,pivot_row+1], 1) return block_matrix( [ [M.subdivision(0,1)],[M.subdivision(2,1)]], subdivide=False) elif pivot_col==ncols: #pivot is at last column and any other row M.subdivide( [pivot_row,pivot_row+1], ncols) return block_matrix( [ [M.subdivision(0,0)],[M.subdivision(2,0)]], subdivide=False) else: M.subdivide( [pivot_row,pivot_row+1], [pivot_col,pivot_col+1]) return block_matrix( [ [M.subdivision(0,0),M.subdivision(0,2)], [M.subdivision(2,0),M.subdivision(2,2)] ], subdivide=False) # ================== # MSC 26 -- # ================== # ================== # MSC 60 -- probability # ================== def random_alpha(): """ Returns a random alpha value (significance level). (Used in statistics). EXAMPLES:: sage: from megua.mathcommon import random_alpha sage: random_alpha() (5.00000000000000, 0.0500000000000000) """ #Significance Level d = ur.iunif(0,3) if d==0: return (RealNumber('0.1'),RealNumber('0.001')) elif d==2: return (RealNumber('1'),RealNumber('0.01')) elif d==3: return (RealNumber('5'),RealNumber('0.05')) else: return (RealNumber('10'),RealNumber('0.1')) def Percent(value): """ Given an alpha or 1-alpha value return the textual version without %. EXAMPLES:: sage: from megua.mathcommon import Percent sage: Percent(0.1) + "%" '10%' sage: Percent(0.12) + "%" '12%' """ value = float(value) if value == 0.01: return r"1" elif value == 0.05: return r"5" elif value == 0.10: return r"10" elif value == 0.90: return r"90" elif value == 0.95: return r"95" elif value == 0.975: return r"97.5" elif value == 0.99: return r"99" elif value == 0.995: return r"99.5" else: return r"{0:g}".format(value*100) #def random_pmf(n=6): # #restart random number generator # # See class Exercise for seed.activate() # #Support (random) # x0 = ur.iunif(-2,3) #start x_0 # h = ur.runif(0,2,1) #h space between # #n = iunif(4,6) # fixed for start # values = [x0 + h * i for i in range(n)] # #Probabilities (random) # lst = [runif(0,1,1) for i in range(n)] # sumlst = sum(lst)#weighted sum # probabilities = [fround(i/sumlst,2) for i in lst] # #Correction # newsum = sum(probabilities) # probabilities[0] = probabilities[0] + (1-newsum) # return {'values': values,'probabilities': probabilities} # ================== # MSC 62 -- statistics # ================== #Random numbers from R using RPy2 # 1. Always do casts to python rpy2 commands. # 2. To do: study how does rpy2 works. import rpy2 import rpy2.robjects as robjects def qt(p,df,prec=None): """ Quantil from a t-student distribution. NOTES: * Based on RPy2 module (seed is from RPy2). INPUT: - ``p`` -- probability. - ``df`` -- degree of freedom (distribution parameter). - ``prec`` -- number of decimal digits (default all). OUTPUT: Quantil from t-student distribution. EXAMPLES:: sage: from megua.mathcommon import qt sage: qt(0.95,12) 1.7822875556493196 sage: qt(0.95,12,2) 1.78 """ #qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE) qt = robjects.r['qt'] res = qt(float(p),int(df))[0] if prec: res = round(res,prec) return res def pnorm(x,mean,stdev,prec=None): """ Probability of a normal distribution(mean, stdev). NOTES: * Based on RPy2 module (seed is from RPy2). INPUT: - ``x`` -- some quantil. - ``mean`` -- mean of the normal distribution. - ``stdev`` -- standar deviation. - ``prec`` -- number of decimal digits (default all). OUTPUT: :math:``P(X<=x) where X~Norm(mean,stdev). EXAMPLES:: sage: from megua.mathcommon import pnorm sage: pnorm(0,0,1) 0.5 sage: pnorm(1.644854,0.0,1.0) 0.9500000384745869 """ #qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE) pnorm = robjects.r['pnorm'] res = pnorm(float(x),float(mean),float(stdev))[0] if prec: res = round(res,prec) return res #from sage.rings.integer import Integer def r_stem(p_list,html=True): """ Return a string with a stem-and-leaf diagram based on R. INPUT: - `p_list': a python list OUTPUT: Return string with the diagram. EXAMPLES: TODOsage: from megua.mathcommon import r_stem TODOsage: r_stem( [random() for _ in range(20)] ) #random u'\n O ponto decimal est\xe1 1 d\xedgitos para a esquerda de |\n\n 0 | 283\n 2 | 334\n 4 | 468117\n 6 | 3348169\n 8 | 5\n\n' TODOsage: r_stem( [int(100*random()) for _ in range(20)] ) u'\n O ponto decimal est\xe1 1 d\xedgito para a direita de |\n\n 0 | 60\n 2 | 1660\n 4 | 169\n 6 | 03457\n 8 | 091779\n\n' #TODO : put this examples to work ! from random import random l = [int(100*random()) for _ in range(20)] print l b = r_stem2( l ) #b = r_stem( [random() for _ in range(30)] ) print b This module defines functions that use R software for statistics. AUTHORS: - Pedro Cruz (2014-03-07): initial version LINKS: - http://www.sagemath.org/doc/reference/interfaces/sage/interfaces/r.html CODE STARTS HERE: ============================= TODO: rebuild this function. ============================= stemf = robjects.r['stem'] buf = [] def f(x): # function that append its argument to the list 'buf' buf.append(x) # output from the R console will now be appended to the list 'buf' rpy2.rinterface.setWriteConsole(f) if type(p_list[0])==int: # or type(p_list[0])==sage.rings.integer.Integer: stemf( robjects.IntVector(p_list) ) else: stemf( robjects.FloatVector(p_list) ) #Parsing: The decimal point is 1 digit(s) to the right of the | #The answer is a list of string in the "buf" variable. #Keep record buf1 = buf[1] buf2 = buf[2] #if buf[1] == ' The decimal point is ': buf[1] = u" O ponto decimal está " #get space position after the number. sp = buf[2].index(' ') if 'left' in buf[2]: sideword = 'esquerda' sideflag = True elif 'right' in buf[2]: sideword = 'direita' sideflag = True else: sideword = 'em |\n' sideflag = False if sideflag: if buf[2][:sp]=='1': buf[2] = buf[2][:sp] + u" dígito para a %s de |\n\n" % sideword else: buf[2] = buf[2][:sp] + u" dígitos para a %s de |\n\n" % sideword else: buf[2] = sideword #For debug only buf.insert(3,buf1) buf.insert(4,buf2) jbuf = u''.join(buf) #print jbuf #print type(jbuf) if html: jbuf = u'''<div style="font-family: 'Courier New', monospace;"><pre>''' + jbuf + u"</pre></div>" return jbuf """ return 'stem: todo things. call the programmer.' # ================== # MSC 65 -- numerical analysis # ================== """ About polynomials https://groups.google.com/group/sage-support/msg/4abc7d2c5ea97c2b?hl=pt http://ask.sagemath.org/question/202/identification-polynomial http://www.sagemath.org/doc/reference/sage/rings/polynomial/polynomial_ring_constructor.html http://www.sagemath.org/doc/reference/sage/rings/polynomial/multi_polynomial_ring_generic.html P.<x,y,z> = PolynomialRing(QQ) P.random_element(2, 5) -6/5*x^2 + 2/3*z^2 - 1 P.random_element(2, 5, choose_degree=True) -1/4*x*y - 1/5*x*z - 1/14*y*z - z^2 """ def support_set(fun,a,b,n,rdecimals): """ INPUT: - ``fun``: some expression or function. - ``a``: lower interval limit. - ``b``: upper interval limit. - ``n``: number of intervals. OUTPUT: - """ h = (b-a)/n xset = [a + i * h for i in range(n+1)] #n+1points xyset = [ (xv,fun.subs(x=xv)) for xv in xset] return xyset def random_basicLU3(): """ Generate random matrix A (3x3) and decomposition LU where A=LU without permutation. TODO: create a random dominant diagonal matrix module. MatrixSpace(QQ,3,3). Used on exercise: E65F05_LU_001. Any change could afect it. """ A = random_matrix(ZZ,3,x=-3,y=3) #d = A.diagonal() A[0,0] = max( abs(A[0,0]) , abs(A[0,1])+abs(A[0,2])+ZZ.random_element(1,3) ) A[1,1] = max( abs(A[1,1]) , abs(A[1,0])+abs(A[1,2])+ZZ.random_element(1,3) ) A[2,2] = max( abs(A[2,2]) , abs(A[2,0])+abs(A[2,1])+ZZ.random_element(1,3) ) import numpy as np import scipy.linalg as sl npA = np.matrix(A) npP,npL,npU = sl.lu(npA) #print "MATRIZ A=",A #print sl.lu(npA) L = matrix(R15,npL) U = matrix(R15,npU) return A,L,U #END mathcommon.py
gpl-3.0
alphaBenj/zipline
zipline/testing/predicates.py
2
15561
from contextlib import contextmanager import datetime from functools import partial import inspect import re from nose.tools import ( # noqa assert_almost_equal, assert_almost_equals, assert_dict_contains_subset, assert_false, assert_greater, assert_greater_equal, assert_in, assert_is, assert_is_instance, assert_is_none, assert_is_not, assert_is_not_none, assert_less, assert_less_equal, assert_multi_line_equal, assert_not_almost_equal, assert_not_almost_equals, assert_not_equal, assert_not_equals, assert_not_in, assert_not_is_instance, assert_raises, assert_raises_regexp, assert_regexp_matches, assert_true, assert_tuple_equal, ) import numpy as np import pandas as pd from pandas.util.testing import ( assert_frame_equal, assert_panel_equal, assert_series_equal, assert_index_equal, ) from six import iteritems, viewkeys, PY2 from toolz import dissoc, keyfilter import toolz.curried.operator as op from zipline.testing.core import ensure_doctest from zipline.dispatch import dispatch from zipline.lib.adjustment import Adjustment from zipline.lib.labelarray import LabelArray from zipline.utils.functional import dzip_exact, instance from zipline.utils.math_utils import tolerant_equals @instance @ensure_doctest class wildcard(object): """An object that compares equal to any other object. This is useful when using :func:`~zipline.testing.predicates.assert_equal` with a large recursive structure and some fields to be ignored. Examples -------- >>> wildcard == 5 True >>> wildcard == 'ayy' True # reflected >>> 5 == wildcard True >>> 'ayy' == wildcard True """ @staticmethod def __eq__(other): return True @staticmethod def __ne__(other): return False def __repr__(self): return '<%s>' % type(self).__name__ __str__ = __repr__ def keywords(func): """Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] Notes ----- Taken from odo.utils """ if isinstance(func, type): return keywords(func.__init__) elif isinstance(func, partial): return keywords(func.func) return inspect.getargspec(func).args def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 Notes ----- Taken from odo.utils """ return keyfilter(op.contains(keywords(f)), kwargs) def _s(word, seq, suffix='s'): """Adds a suffix to ``word`` if some sequence has anything other than exactly one element. word : str The string to add the suffix to. seq : sequence The sequence to check the length of. suffix : str, optional. The suffix to add to ``word`` Returns ------- maybe_plural : str ``word`` with ``suffix`` added if ``len(seq) != 1``. """ return word + (suffix if len(seq) != 1 else '') def _fmt_path(path): """Format the path for final display. Parameters ---------- path : iterable of str The path to the values that are not equal. Returns ------- fmtd : str The formatted path to put into the error message. """ if not path: return '' return 'path: _' + ''.join(path) def _fmt_msg(msg): """Format the message for final display. Parameters ---------- msg : str The message to show to the user to provide additional context. returns ------- fmtd : str The formatted message to put into the error message. """ if not msg: return '' return msg + '\n' def _safe_cls_name(cls): try: return cls.__name__ except AttributeError: return repr(cls) def assert_is_subclass(subcls, cls, msg=''): """Assert that ``subcls`` is a subclass of ``cls``. Parameters ---------- subcls : type The type to check. cls : type The type to check ``subcls`` against. msg : str, optional An extra assertion message to print if this fails. """ assert issubclass(subcls, cls), ( '%s is not a subclass of %s\n%s' % ( _safe_cls_name(subcls), _safe_cls_name(cls), msg, ) ) def assert_regex(result, expected, msg=''): """Assert that ``expected`` matches the result. Parameters ---------- result : str The string to search. expected : str or compiled regex The pattern to search for in ``result``. msg : str, optional An extra assertion message to print if this fails. """ assert re.search(expected, result), ( '%s%r not found in %r' % (_fmt_msg(msg), expected, result) ) @contextmanager def assert_raises_regex(exc, pattern, msg=''): """Assert that some exception is raised in a context and that the message matches some pattern. Parameters ---------- exc : type or tuple[type] The exception type or types to expect. pattern : str or compiled regex The pattern to search for in the str of the raised exception. msg : str, optional An extra assertion message to print if this fails. """ try: yield except exc as e: assert re.search(pattern, str(e)), ( '%s%r not found in %r' % (_fmt_msg(msg), pattern, str(e)) ) else: raise AssertionError('%s%s was not raised' % (_fmt_msg(msg), exc)) @dispatch(object, object) def assert_equal(result, expected, path=(), msg='', **kwargs): """Assert that two objects are equal using the ``==`` operator. Parameters ---------- result : object The result that came from the function under test. expected : object The expected result. Raises ------ AssertionError Raised when ``result`` is not equal to ``expected``. """ assert result == expected, '%s%s != %s\n%s' % ( _fmt_msg(msg), result, expected, _fmt_path(path), ) @assert_equal.register(float, float) def assert_float_equal(result, expected, path=(), msg='', float_rtol=10e-7, float_atol=10e-7, float_equal_nan=True, **kwargs): assert tolerant_equals( result, expected, rtol=float_rtol, atol=float_atol, equal_nan=float_equal_nan, ), '%s%s != %s with rtol=%s and atol=%s%s\n%s' % ( _fmt_msg(msg), result, expected, float_rtol, float_atol, (' (with nan != nan)' if not float_equal_nan else ''), _fmt_path(path), ) def _check_sets(result, expected, msg, path, type_): """Compare two sets. This is used to check dictionary keys and sets. Parameters ---------- result : set expected : set msg : str path : tuple type : str The type of an element. For dict we use ``'key'`` and for set we use ``'element'``. """ if result != expected: if result > expected: diff = result - expected msg = 'extra %s in result: %r' % (_s(type_, diff), diff) elif result < expected: diff = expected - result msg = 'result is missing %s: %r' % (_s(type_, diff), diff) else: in_result = result - expected in_expected = expected - result msg = '%s only in result: %s\n%s only in expected: %s' % ( _s(type_, in_result), in_result, _s(type_, in_expected), in_expected, ) raise AssertionError( '%s%ss do not match\n%s' % ( _fmt_msg(msg), type_, _fmt_path(path), ), ) @assert_equal.register(dict, dict) def assert_dict_equal(result, expected, path=(), msg='', **kwargs): _check_sets( viewkeys(result), viewkeys(expected), msg, path + ('.%s()' % ('viewkeys' if PY2 else 'keys'),), 'key', ) failures = [] for k, (resultv, expectedv) in iteritems(dzip_exact(result, expected)): try: assert_equal( resultv, expectedv, path=path + ('[%r]' % (k,),), msg=msg, **kwargs ) except AssertionError as e: failures.append(str(e)) if failures: raise AssertionError('\n'.join(failures)) @assert_equal.register(list, list) @assert_equal.register(tuple, tuple) def assert_sequence_equal(result, expected, path=(), msg='', **kwargs): result_len = len(result) expected_len = len(expected) assert result_len == expected_len, ( '%s%s lengths do not match: %d != %d\n%s' % ( _fmt_msg(msg), type(result).__name__, result_len, expected_len, _fmt_path(path), ) ) for n, (resultv, expectedv) in enumerate(zip(result, expected)): assert_equal( resultv, expectedv, path=path + ('[%d]' % n,), msg=msg, **kwargs ) @assert_equal.register(set, set) def assert_set_equal(result, expected, path=(), msg='', **kwargs): _check_sets( result, expected, msg, path, 'element', ) @assert_equal.register(np.ndarray, np.ndarray) def assert_array_equal(result, expected, path=(), msg='', array_verbose=True, array_decimal=None, **kwargs): f = ( np.testing.assert_array_equal if array_decimal is None else partial(np.testing.assert_array_almost_equal, decimal=array_decimal) ) try: f( result, expected, verbose=array_verbose, err_msg=msg, ) except AssertionError as e: raise AssertionError('\n'.join((str(e), _fmt_path(path)))) @assert_equal.register(LabelArray, LabelArray) def assert_labelarray_equal(result, expected, path=(), **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), **kwargs ) assert_equal( result.as_int_array(), expected.as_int_array(), path=path + ('.as_int_array()',), **kwargs ) def _register_assert_equal_wrapper(type_, assert_eq): """Register a new check for an ndframe object. Parameters ---------- type_ : type The class to register an ``assert_equal`` dispatch for. assert_eq : callable[type_, type_] The function which checks that if the two ndframes are equal. Returns ------- assert_ndframe_equal : callable[type_, type_] The wrapped function registered with ``assert_equal``. """ @assert_equal.register(type_, type_) def assert_ndframe_equal(result, expected, path=(), msg='', **kwargs): try: assert_eq( result, expected, **filter_kwargs(assert_eq, kwargs) ) except AssertionError as e: raise AssertionError( _fmt_msg(msg) + '\n'.join((str(e), _fmt_path(path))), ) return assert_ndframe_equal assert_frame_equal = _register_assert_equal_wrapper( pd.DataFrame, assert_frame_equal, ) assert_panel_equal = _register_assert_equal_wrapper( pd.Panel, assert_panel_equal, ) assert_series_equal = _register_assert_equal_wrapper( pd.Series, assert_series_equal, ) assert_index_equal = _register_assert_equal_wrapper( pd.Index, assert_index_equal, ) @assert_equal.register(pd.Categorical, pd.Categorical) def assert_categorical_equal(result, expected, path=(), msg='', **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), msg=msg, **kwargs ) assert_equal( result.codes, expected.codes, path=path + ('.codes',), msg=msg, **kwargs ) @assert_equal.register(Adjustment, Adjustment) def assert_adjustment_equal(result, expected, path=(), **kwargs): for attr in ('first_row', 'last_row', 'first_col', 'last_col', 'value'): assert_equal( getattr(result, attr), getattr(expected, attr), path=path + ('.' + attr,), **kwargs ) @assert_equal.register( (datetime.datetime, np.datetime64), (datetime.datetime, np.datetime64), ) def assert_timestamp_and_datetime_equal(result, expected, path=(), msg='', allow_datetime_coercions=False, compare_nat_equal=True, **kwargs): """ Branch for comparing python datetime (which includes pandas Timestamp) and np.datetime64 as equal. Returns raises unless ``allow_datetime_coercions`` is passed as True. """ assert allow_datetime_coercions or type(result) == type(expected), ( "%sdatetime types (%s, %s) don't match and " "allow_datetime_coercions was not set.\n%s" % ( _fmt_msg(msg), type(result), type(expected), _fmt_path(path), ) ) result = pd.Timestamp(result) expected = pd.Timestamp(expected) if compare_nat_equal and pd.isnull(result) and pd.isnull(expected): return assert_equal.dispatch(object, object)( result, expected, path=path, **kwargs ) @assert_equal.register(slice, slice) def assert_slice_equal(result, expected, path=(), msg=''): diff_start = ( ('starts are not equal: %s != %s' % (result.start, result.stop)) if result.start != expected.start else '' ) diff_stop = ( ('stops are not equal: %s != %s' % (result.stop, result.stop)) if result.stop != expected.stop else '' ) diff_step = ( ('steps are not equal: %s != %s' % (result.step, result.stop)) if result.step != expected.step else '' ) diffs = diff_start, diff_stop, diff_step assert not any(diffs), '%s%s\n%s' % ( _fmt_msg(msg), '\n'.join(filter(None, diffs)), _fmt_path(path), ) def assert_isidentical(result, expected, msg=''): assert result.isidentical(expected), ( '%s%s is not identical to %s' % (_fmt_msg(msg), result, expected) ) try: # pull the dshape cases in from datashape.util.testing import assert_dshape_equal except ImportError: pass else: assert_equal.funcs.update( dissoc(assert_dshape_equal.funcs, (object, object)), )
apache-2.0
srowen/spark
examples/src/main/python/sql/arrow.py
23
9242
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A simple example demonstrating Arrow in Spark. Run with: ./bin/spark-submit examples/src/main/python/sql/arrow.py """ # NOTE that this file is imported in user guide in PySpark documentation. # The codes are referred via line numbers. See also `literalinclude` directive in Sphinx. from pyspark.sql import SparkSession from pyspark.sql.pandas.utils import require_minimum_pandas_version, require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() def dataframe_with_arrow_example(spark): import numpy as np # type: ignore[import] import pandas as pd # type: ignore[import] # Enable Arrow-based columnar data transfers spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true") # Generate a Pandas DataFrame pdf = pd.DataFrame(np.random.rand(100, 3)) # Create a Spark DataFrame from a Pandas DataFrame using Arrow df = spark.createDataFrame(pdf) # Convert the Spark DataFrame back to a Pandas DataFrame using Arrow result_pdf = df.select("*").toPandas() print("Pandas DataFrame result statistics:\n%s\n" % str(result_pdf.describe())) def ser_to_frame_pandas_udf_example(spark): import pandas as pd from pyspark.sql.functions import pandas_udf @pandas_udf("col1 string, col2 long") def func(s1: pd.Series, s2: pd.Series, s3: pd.DataFrame) -> pd.DataFrame: s3['col2'] = s1 + s2.str.len() return s3 # Create a Spark DataFrame that has three columns including a struct column. df = spark.createDataFrame( [[1, "a string", ("a nested string",)]], "long_col long, string_col string, struct_col struct<col1:string>") df.printSchema() # root # |-- long_column: long (nullable = true) # |-- string_column: string (nullable = true) # |-- struct_column: struct (nullable = true) # | |-- col1: string (nullable = true) df.select(func("long_col", "string_col", "struct_col")).printSchema() # |-- func(long_col, string_col, struct_col): struct (nullable = true) # | |-- col1: string (nullable = true) # | |-- col2: long (nullable = true) def ser_to_ser_pandas_udf_example(spark): import pandas as pd from pyspark.sql.functions import col, pandas_udf from pyspark.sql.types import LongType # Declare the function and create the UDF def multiply_func(a: pd.Series, b: pd.Series) -> pd.Series: return a * b multiply = pandas_udf(multiply_func, returnType=LongType()) # The function for a pandas_udf should be able to execute with local Pandas data x = pd.Series([1, 2, 3]) print(multiply_func(x, x)) # 0 1 # 1 4 # 2 9 # dtype: int64 # Create a Spark DataFrame, 'spark' is an existing SparkSession df = spark.createDataFrame(pd.DataFrame(x, columns=["x"])) # Execute function as a Spark vectorized UDF df.select(multiply(col("x"), col("x"))).show() # +-------------------+ # |multiply_func(x, x)| # +-------------------+ # | 1| # | 4| # | 9| # +-------------------+ def iter_ser_to_iter_ser_pandas_udf_example(spark): from typing import Iterator import pandas as pd from pyspark.sql.functions import pandas_udf pdf = pd.DataFrame([1, 2, 3], columns=["x"]) df = spark.createDataFrame(pdf) # Declare the function and create the UDF @pandas_udf("long") def plus_one(iterator: Iterator[pd.Series]) -> Iterator[pd.Series]: for x in iterator: yield x + 1 df.select(plus_one("x")).show() # +-----------+ # |plus_one(x)| # +-----------+ # | 2| # | 3| # | 4| # +-----------+ def iter_sers_to_iter_ser_pandas_udf_example(spark): from typing import Iterator, Tuple import pandas as pd from pyspark.sql.functions import pandas_udf pdf = pd.DataFrame([1, 2, 3], columns=["x"]) df = spark.createDataFrame(pdf) # Declare the function and create the UDF @pandas_udf("long") def multiply_two_cols( iterator: Iterator[Tuple[pd.Series, pd.Series]]) -> Iterator[pd.Series]: for a, b in iterator: yield a * b df.select(multiply_two_cols("x", "x")).show() # +-----------------------+ # |multiply_two_cols(x, x)| # +-----------------------+ # | 1| # | 4| # | 9| # +-----------------------+ def ser_to_scalar_pandas_udf_example(spark): import pandas as pd from pyspark.sql.functions import pandas_udf from pyspark.sql import Window df = spark.createDataFrame( [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ("id", "v")) # Declare the function and create the UDF @pandas_udf("double") def mean_udf(v: pd.Series) -> float: return v.mean() df.select(mean_udf(df['v'])).show() # +-----------+ # |mean_udf(v)| # +-----------+ # | 4.2| # +-----------+ df.groupby("id").agg(mean_udf(df['v'])).show() # +---+-----------+ # | id|mean_udf(v)| # +---+-----------+ # | 1| 1.5| # | 2| 6.0| # +---+-----------+ w = Window \ .partitionBy('id') \ .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) df.withColumn('mean_v', mean_udf(df['v']).over(w)).show() # +---+----+------+ # | id| v|mean_v| # +---+----+------+ # | 1| 1.0| 1.5| # | 1| 2.0| 1.5| # | 2| 3.0| 6.0| # | 2| 5.0| 6.0| # | 2|10.0| 6.0| # +---+----+------+ def grouped_apply_in_pandas_example(spark): df = spark.createDataFrame( [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ("id", "v")) def subtract_mean(pdf): # pdf is a pandas.DataFrame v = pdf.v return pdf.assign(v=v - v.mean()) df.groupby("id").applyInPandas(subtract_mean, schema="id long, v double").show() # +---+----+ # | id| v| # +---+----+ # | 1|-0.5| # | 1| 0.5| # | 2|-3.0| # | 2|-1.0| # | 2| 4.0| # +---+----+ def map_in_pandas_example(spark): df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age")) def filter_func(iterator): for pdf in iterator: yield pdf[pdf.id == 1] df.mapInPandas(filter_func, schema=df.schema).show() # +---+---+ # | id|age| # +---+---+ # | 1| 21| # +---+---+ def cogrouped_apply_in_pandas_example(spark): import pandas as pd df1 = spark.createDataFrame( [(20000101, 1, 1.0), (20000101, 2, 2.0), (20000102, 1, 3.0), (20000102, 2, 4.0)], ("time", "id", "v1")) df2 = spark.createDataFrame( [(20000101, 1, "x"), (20000101, 2, "y")], ("time", "id", "v2")) def asof_join(l, r): return pd.merge_asof(l, r, on="time", by="id") df1.groupby("id").cogroup(df2.groupby("id")).applyInPandas( asof_join, schema="time int, id int, v1 double, v2 string").show() # +--------+---+---+---+ # | time| id| v1| v2| # +--------+---+---+---+ # |20000101| 1|1.0| x| # |20000102| 1|3.0| x| # |20000101| 2|2.0| y| # |20000102| 2|4.0| y| # +--------+---+---+---+ if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("Python Arrow-in-Spark example") \ .getOrCreate() print("Running Pandas to/from conversion example") dataframe_with_arrow_example(spark) print("Running pandas_udf example: Series to Frame") ser_to_frame_pandas_udf_example(spark) print("Running pandas_udf example: Series to Series") ser_to_ser_pandas_udf_example(spark) print("Running pandas_udf example: Iterator of Series to Iterator of Series") iter_ser_to_iter_ser_pandas_udf_example(spark) print("Running pandas_udf example: Iterator of Multiple Series to Iterator of Series") iter_sers_to_iter_ser_pandas_udf_example(spark) print("Running pandas_udf example: Series to Scalar") ser_to_scalar_pandas_udf_example(spark) print("Running pandas function example: Grouped Map") grouped_apply_in_pandas_example(spark) print("Running pandas function example: Map") map_in_pandas_example(spark) print("Running pandas function example: Co-grouped Map") cogrouped_apply_in_pandas_example(spark) spark.stop()
apache-2.0
hoechenberger/psychopy
psychopy/demos/coder/timing/timeByFrames.py
1
2409
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The most accurate way to time your stimulus presentation is to present for a certain number of frames. For that to work you need your window flips to synchronize to the monitor and not to drop any frames. This script examines the precision of your frame flips. Shut down as many applications as possible, especially those that might try to update """ from __future__ import division from __future__ import print_function from builtins import range from psychopy import visual, logging, core, event visual.useFBO = True # if available (try without for comparison) import matplotlib matplotlib.use('Qt4Agg') # change this to control the plotting 'back end' import pylab nIntervals = 500 win = visual.Window([1280, 1024], fullscr=True, allowGUI=False, waitBlanking=True) progBar = visual.GratingStim(win, tex=None, mask=None, size=[0, 0.05], color='red', pos=[0, -0.9], autoLog=False) myStim = visual.GratingStim(win, tex='sin', mask='gauss', size=300, sf=0.05, units='pix', autoLog=False) # logging.console.setLevel(logging.INFO)# uncomment to log every frame win.recordFrameIntervals = True for frameN in range(nIntervals + 1): progBar.setSize([2.0 * frameN/nIntervals, 0.05]) progBar.draw() myStim.setPhase(0.1, '+') myStim.draw() if event.getKeys(): print('stopped early') break win.logOnFlip(msg='frame=%i' %frameN, level=logging.EXP) win.flip() win.fullscr = False win.close() # calculate some values intervalsMS = pylab.array(win.frameIntervals) * 1000 m = pylab.mean(intervalsMS) sd = pylab.std(intervalsMS) # se=sd/pylab.sqrt(len(intervalsMS)) # for CI of the mean msg = "Mean=%.1fms, s.d.=%.2f, 99%%CI(frame)=%.2f-%.2f" distString = msg % (m, sd, m - 2.58 * sd, m + 2.58 * sd) nTotal = len(intervalsMS) nDropped = sum(intervalsMS > (1.5 * m)) msg = "Dropped/Frames = %i/%i = %.3f%%" droppedString = msg % (nDropped, nTotal, 100 * nDropped / float(nTotal)) # plot the frameintervals pylab.figure(figsize=[12, 8]) pylab.subplot(1, 2, 1) pylab.plot(intervalsMS, '-') pylab.ylabel('t (ms)') pylab.xlabel('frame N') pylab.title(droppedString) pylab.subplot(1, 2, 2) pylab.hist(intervalsMS, 50, normed=0, histtype='stepfilled') pylab.xlabel('t (ms)') pylab.ylabel('n frames') pylab.title(distString) pylab.show() win.close() core.quit() # The contents of this file are in the public domain.
gpl-3.0
adamrvfisher/TechnicalAnalysisLibrary
SpeedDaterPriceRelativeMovAvg.py
1
8135
# -*- coding: utf-8 -*- """ Created on Wed Aug 30 19:07:37 2017 @author: AmatVictoriaCuramIII """ import numpy as np import random as rand import pandas as pd import time as t #from DatabaseGrabber import DatabaseGrabber from YahooGrabber import YahooGrabber from ListPairs import ListPairs Empty = [] Start = t.time() Counter = 0 Counter2 = 0 iterations = range(0, 10000) Dataset2 = pd.DataFrame() #Input tickers = ('TLT', 'SPY', 'TMF', 'AAPL', 'PBF', 'UVXY', '^VIX', 'GLD', 'SLV', 'JO','CORN', 'DBC', 'SOYB') #Make all pairs in final list MajorList = ListPairs(tickers) #Here we go #Brute Force Optimization for m in MajorList: Dataset = pd.DataFrame() Ticker1 = m[0] Ticker2 = m[1] TAG = m[0] + '/' + m[1] Dataset = pd.DataFrame() Portfolio = pd.DataFrame() #pull online data, change to local for testing Asset1 = YahooGrabber(Ticker1) Asset2 = YahooGrabber(Ticker2) #get log returns Asset1['LogRet'] = np.log(Asset1['Adj Close']/Asset1['Adj Close'].shift(1)) Asset1['LogRet'] = Asset1['LogRet'].fillna(0) Asset2['LogRet'] = np.log(Asset2['Adj Close']/Asset2['Adj Close'].shift(1)) Asset2['LogRet'] = Asset2['LogRet'].fillna(0) #Match lengths trim = abs(len(Asset1) - len(Asset2)) if len(Asset1) == len(Asset2): pass else: if len(Asset1) > len(Asset2): Asset1 = Asset1[trim:] else: Asset2 = Asset2[trim:] # for i in iterations: Counter = Counter + 1 aa = rand.random() * 2 #uniformly distributed random number 0 to 2 a = aa - 1 #a > 1 indicating long position in a bb = rand.random() if bb >= .5: bb = 1 else: bb = -1 b = bb * (1 - abs(a)) #you can change c and d to 0 by default if you want to just go flat cc = rand.random() * 2 #uniformly distributed random number 0 to 2 c = cc - 1 #cc > 1 indicating long position in c dd = rand.random() * 2 if dd >= 1: edd = 1 else: edd = -1 d = (dd - 1) if abs(c) + abs(d) > 1: continue e = rand.randint(3,20) window = int(e) # Asset1['PriceRelative'] = Asset1['Adj Close']/Asset2['Adj Close'] Asset1['PRMA'] = Asset1['PriceRelative'].rolling(window=window, center=False).mean() Asset1['Position'] = a Asset1['Position'] = np.where(Asset1['PriceRelative'].shift(1) > Asset1['PRMA'].shift(1), c,a) Asset1['Pass'] = (Asset1['LogRet'] * Asset1['Position']) Asset2['Position'] = b Asset2['Position'] = np.where(Asset1['PriceRelative'].shift(1) > Asset1['PRMA'].shift(1), d,b) Asset2['Pass'] = (Asset2['LogRet'] * Asset2['Position']) Portfolio['Asset1Pass'] = (Asset1['Pass']) #* (-1) #Pass a short position? Portfolio['Asset2Pass'] = (Asset2['Pass']) #* (-1) #Pass a short position? Portfolio['LongShort'] = Portfolio['Asset1Pass'] + Portfolio['Asset2Pass'] if Portfolio['LongShort'].std() == 0: continue Portfolio['Multiplier'] = Portfolio['LongShort'].cumsum().apply(np.exp) drawdown = 1 - Portfolio['Multiplier'].div(Portfolio['Multiplier'].cummax()) MaxDD = max(drawdown) if MaxDD > float(.51): continue dailyreturn = Portfolio['LongShort'].mean() if dailyreturn < .0003: continue dailyvol = Portfolio['LongShort'].std() sharpe =(dailyreturn/dailyvol) Portfolio['Multiplier'] = Portfolio['LongShort'].cumsum().apply(np.exp) drawdown = 1 - Portfolio['Multiplier'].div(Portfolio['Multiplier'].cummax()) MaxDD = max(drawdown) print(Counter) Empty.append(a) Empty.append(b) Empty.append(c) Empty.append(d) Empty.append(e) Empty.append(sharpe) Empty.append(sharpe/MaxDD) Empty.append(dailyreturn/MaxDD) Empty.append(MaxDD) Emptyseries = pd.Series(Empty) Dataset[0] = Emptyseries.values Dataset[i] = Emptyseries.values Empty[:] = [] #find optimal parameters from pair z1 = Dataset.iloc[6] w1 = np.percentile(z1, 80) v1 = [] #this variable stores the Nth percentile of top performers DS1W = pd.DataFrame() #this variable stores your financial advisors for specific dataset for h in z1: if h > w1: v1.append(h) for j in v1: r = Dataset.columns[(Dataset == j).iloc[6]] DS1W = pd.concat([DS1W,Dataset[r]], axis = 1) y = max(z1) k = Dataset.columns[(Dataset == y).iloc[6]] #this is the column number kfloat = float(k[0]) End = t.time() print(End-Start, 'seconds later') Dataset[TAG] = Dataset[kfloat] Dataset2[TAG] = Dataset[TAG] Dataset2 = Dataset2.rename(columns = {Counter2:TAG}) Counter2 = Counter2 + 1 # print(Dataset[TAG]) Portfolio2 = pd.DataFrame() #find some winning parameters z1 = Dataset2.iloc[6] w1 = np.percentile(z1, 99) v1 = [] #this variable stores the Nth percentile of top performers winners = pd.DataFrame() #this variable stores your financial advisors for specific dataset for h in z1: if h > w1: v1.append(h) for j in v1: r = Dataset2.columns[(Dataset2 == j).iloc[6]] winners = pd.concat([winners,Dataset2[r]], axis = 1) y = max(z1) k = Dataset2.columns[(Dataset2 == y).iloc[6]] #this is the name of the pair kfloat = str(k[0]) #most likely, you will want to export to csv for further future investigation #print(Dataset[TAG]) num = kfloat.find('/') num2 = num + 1 #you will need to re-call the Asset1 and Asset2 time series and log returns start here!!! Asset3 = YahooGrabber(kfloat[:num]) Asset4 = YahooGrabber(kfloat[num2:]) trim = abs(len(Asset3) - len(Asset4)) if len(Asset3) == len(Asset4): pass else: if len(Asset3) > len(Asset4): Asset3 = Asset3[trim:] else: Asset4 = Asset4[trim:] #get log returns Asset3['LogRet'] = np.log(Asset3['Adj Close']/Asset3['Adj Close'].shift(1)) Asset3['LogRet'] = Asset3['LogRet'].fillna(0) Asset4['LogRet'] = np.log(Asset4['Adj Close']/Asset4['Adj Close'].shift(1)) Asset4['LogRet'] = Asset4['LogRet'].fillna(0) window = int((Dataset2[kfloat][4])) Asset3['PriceRelative'] = Asset3['Adj Close']/Asset4['Adj Close'] Asset3['PRMA'] = Asset3['PriceRelative'].rolling(window=window, center=False).mean() Asset3['Position'] = (Dataset2[k[0]][0]) Asset3['Position'] = np.where(Asset3['PriceRelative'].shift(1) > Asset3['PRMA'].shift(1), Dataset2[k[0]][2],Dataset2[k[0]][0]) Asset3['Pass'] = (Asset3['LogRet'] * Asset3['Position']) Asset4['Position'] = (Dataset2[kfloat][1]) Asset4['Position'] = np.where(Asset3['PriceRelative'].shift(1) > Asset3['PRMA'].shift(1), Dataset2[k[0]][3],Dataset2[k[0]][1]) Asset4['Pass'] = (Asset4['LogRet'] * Asset4['Position']) # Portfolio2['Asset3Pass'] = Asset3['Pass'] #* (-1) Portfolio2['Asset4Pass'] = Asset4['Pass'] #* (-1) Portfolio2['LongShort'] = Portfolio2['Asset3Pass'] + Portfolio2['Asset4Pass'] Portfolio2['LongShort'][:].cumsum().apply(np.exp).plot(grid=True, figsize=(8,5)) dailyreturn = Portfolio2['LongShort'].mean() dailyvol = Portfolio2['LongShort'].std() sharpe =(dailyreturn/dailyvol) Portfolio2['Multiplier'] = Portfolio2['LongShort'].cumsum().apply(np.exp) drawdown2 = 1 - Portfolio2['Multiplier'].div(Portfolio2['Multiplier'].cummax()) #conversionfactor = Portfolio['PriceRelative'][-1] print(kfloat) print('--------') print(Dataset2[kfloat]) print('Max Drawdown is ',max(drawdown2),'See Dataset2') ##pd.to_pickle(Portfolio, 'VXX:UVXY')
apache-2.0
meizhoubao/pyimagesearch
compare-histograms/comphis.py
1
3329
from scipy.spatial import distance as dist import matplotlib.pyplot as plt import numpy as np import argparse import glob import cv2 ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="Path to the directory of images") args = vars(ap.parse_args()) index = {} images = {} for imagePath im glob.glob(args["dataset"] + "/*.png"): filename = imagePath[imagePath.rfind("/") + 1:] image = cv2.imread(imagePath) images[filename] = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) hist = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) hist = cv2.normalize(hist).flatten() index[filename] = hist # METHOD 1 OPENCV_METHODS = (("Correlation", cv2.cv.CV_COMP_CORREL), ("Chi-Squared", cv2.cv.CV_COMP_CHISQR), ("Intersection", cv2.cv.CV_COMP_INTERSECT), ("Hellinger", cv2.cv.CV_COMP_BHATTACHARYYA)) for (methodName, method) in OPENCV_METHODS: results = {} reverse = False if methodName in ("Correlation", "Intersection"): reverse = True for (k, hist) in index.items(): d = cv2.compareHist(index["doge.png"], hist, method) results[k] = d results = sorted([(v, k) for (k, v) in results.items()], reverse=reverse) fig = plt.figure("Query") ax = fig.add_subplot(1, 1, 1) ax.imshow(images["doge.png"]) plt.axis("off") fig = (i, (v, k)) in enumerate(results): ax = fig.add_subplot(1, len(images), i + 1) ax.set_title("%s: %.2f" % (k, v)) plt.imshow(images[k]) plt.axis("off") plt.show() # METHOD 2 SCIPY_METHODS = (("Euclidean", dist.euclidean), ("Manhanttan", dist.cityblock), ("Chebysev", dist.chebyshev)) for (methodName, method) in SCIPY_METHODS: results = {} for (k, hist) in index.items(): d = method(index["doge.png"], hist) results[k] = d results = sorted([(v, k) for (k, v) in results.items()]) fig = plt.figure("Query") ax = fig.add_subplot(1, 1, 1) ax.imshow(images["doge.png"]) plt.axis("off") fig = plt.figure("Results: %s" (methodName)) fig.subtitle(methodName, fontsize=20) for (i, (v, k)) in enumerate(results): ax = fig.add_subplot(1, len(images), i+1) ax.set_title("%s: %.2f" % (k, v)) plt.imshow(image[k]) plt.axis("off") plt.show() # METHOD 3 def chi2_distance(histA, histB, eps=1e-10): d = 0.5 * np.sum([((a - b) ** 2) / (a + b + eps) for (a, b) in zip(histA, histB)]) return d # initialize the results dictionary results = {} # loop over the index for (k, hist) in index.items(): d = chi2_distance(index["doge.png"], hist) results[k] = d # sort the results results = sorted([(v, k) for (k, v) in results.items()]) # show the query image fig = plt.figure("Query") ax = fig.add_subplot(1, 1, 1) ax.imshow(images["doge.png"]) plt.axis("off") # initialize the results figure fig = plt.figure("Results: Custom Chi-Squared") fig.suptitle("Custom Chi-Squared", fontsize=20) # loop over the results for (i, (v, k)) in enumerate(results): ax = fig.add_subplot(1, len(images), i + 1) ax.set_title("%s: %.2f" % (k, v)) plt.imshow(images[k]) plt.axis("off") # show the custom method plt.show()
gpl-3.0
bhargav/scikit-learn
sklearn/feature_extraction/text.py
15
50250
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if isinstance(vocabulary, set): vocabulary = sorted(vocabulary) if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df or min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
trachelr/mne-python
examples/inverse/plot_covariance_whitening_dspm.py
7
6368
# doc:slow-example """ =================================================== Demonstrate impact of whitening on source estimates =================================================== This example demonstrates the relationship between the noise covariance estimate and the MNE / dSPM source amplitudes. It computes source estimates for the SPM faces data and compares proper regularization with insufficient regularization based on the methods described in [1]. The example demonstrates that improper regularization can lead to overestimation of source amplitudes. This example makes use of the previous, non-optimized code path that was used before implementing the suggestions presented in [1]. Please do not copy the patterns presented here for your own analysis, this is example is purely illustrative. Note that this example does quite a bit of processing, so even on a fast machine it can take a couple of minutes to complete. References ---------- [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ # Author: Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import os import os.path as op import numpy as np from scipy.misc import imread import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import spm_face from mne.minimum_norm import apply_inverse, make_inverse_operator from mne.cov import compute_covariance print(__doc__) ############################################################################## # Get data data_path = spm_face.data_path() subjects_dir = data_path + '/subjects' raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D_raw.fif' raw = io.Raw(raw_fname % 1, preload=True) # Take first run picks = mne.pick_types(raw.info, meg=True, exclude='bads') raw.filter(1, 30, method='iir', n_jobs=1) events = mne.find_events(raw, stim_channel='UPPT001') event_ids = {"faces": 1, "scrambled": 2} tmin, tmax = -0.2, 0.5 baseline = None # no baseline as high-pass is applied reject = dict(mag=3e-12) # Make source space trans = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces1_3D_raw-trans.fif' src = mne.setup_source_space('spm', spacing='oct6', subjects_dir=subjects_dir, overwrite=True, add_dist=False) bem = data_path + '/subjects/spm/bem/spm-5120-5120-5120-bem-sol.fif' forward = mne.make_forward_solution(raw.info, trans, src, bem) forward = mne.convert_forward_solution(forward, surf_ori=True) # inverse parameters conditions = 'faces', 'scrambled' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = 'dSPM' clim = dict(kind='value', lims=[0, 2.5, 5]) ############################################################################### # Estimate covariance and show resulting source estimates method = 'empirical', 'shrunk' best_colors = 'steelblue', 'red' samples_epochs = 5, 15, fig, (axes1, axes2) = plt.subplots(2, 3, figsize=(9.5, 6)) def brain_to_mpl(brain): """convert image to be usable with matplotlib""" tmp_path = op.abspath(op.join(op.curdir, 'my_tmp')) brain.save_imageset(tmp_path, views=['ven']) im = imread(tmp_path + '_ven.png') os.remove(tmp_path + '_ven.png') return im for n_train, (ax_stc_worst, ax_dynamics, ax_stc_best) in zip(samples_epochs, (axes1, axes2)): # estimate covs based on a subset of samples # make sure we have the same number of conditions. events_ = np.concatenate([events[events[:, 2] == id_][:n_train] for id_ in [event_ids[k] for k in conditions]]) epochs_train = mne.Epochs(raw, events_, event_ids, tmin, tmax, picks=picks, baseline=baseline, preload=True, reject=reject) epochs_train.equalize_event_counts(event_ids, copy=False) noise_covs = compute_covariance(epochs_train, method=method, tmin=None, tmax=0, # baseline only return_estimators=True) # returns list # prepare contrast evokeds = [epochs_train[k].average() for k in conditions] # compute stc based on worst and best for est, ax, kind, color in zip(noise_covs, (ax_stc_worst, ax_stc_best), ['best', 'worst'], best_colors): # We skip empirical rank estimation that we introduced in response to # the findings in reference [1] to use the naive code path that # triggered the behavior described in [1]. The expected true rank is # 274 for this dataset. Please do not do this with your data but # rely on the default rank estimator that helps regularizing the # covariance. inverse_operator = make_inverse_operator(epochs_train.info, forward, est, loose=0.2, depth=0.8, rank=274) stc_a, stc_b = (apply_inverse(e, inverse_operator, lambda2, "dSPM", pick_ori=None) for e in evokeds) stc = stc_a - stc_b brain = stc.plot(subjects_dir=subjects_dir, hemi='both', clim=clim) brain.set_time(175) im = brain_to_mpl(brain) brain.close() ax.axis('off') ax.get_xaxis().set_visible(False), ax.get_yaxis().set_visible(False) ax.imshow(im) ax.set_title('{0} ({1} epochs)'.format(kind, n_train * 2)) # plot spatial mean stc_mean = stc.data.mean(0) ax_dynamics.plot(stc.times * 1e3, stc_mean, label='{0} ({1})'.format(est['method'], kind), color=color) # plot spatial std stc_var = stc.data.std(0) ax_dynamics.fill_between(stc.times * 1e3, stc_mean - stc_var, stc_mean + stc_var, alpha=0.2, color=color) # signal dynamics worst and best ax_dynamics.set_title('{0} epochs'.format(n_train * 2)) ax_dynamics.set_xlabel('Time (ms)') ax_dynamics.set_ylabel('Source Activation (dSPM)') ax_dynamics.set_xlim(tmin * 1e3, tmax * 1e3) ax_dynamics.set_ylim(-3, 3) ax_dynamics.legend(loc='upper left', fontsize=10) fig.subplots_adjust(hspace=0.4, left=0.03, right=0.98, wspace=0.07) fig.canvas.draw() fig.show()
bsd-3-clause
tcmoore3/mdtraj
mdtraj/utils/__init__.py
7
3668
from __future__ import print_function, division import time import warnings from mdtraj.utils.delay_import import import_ from mdtraj.utils.validation import ensure_type, cast_indices, check_random_state from mdtraj.utils.unit import in_units_of from mdtraj.utils.rotation import rotation_matrix_from_quaternion, uniform_quaternion from mdtraj.utils.unitcell import (lengths_and_angles_to_box_vectors, box_vectors_to_lengths_and_angles) from mdtraj.utils.contextmanagers import timing, enter_temp_directory from mdtraj.utils.zipped import open_maybe_zipped __all__ = ["ensure_type", "import_", "in_units_of", "lengths_and_angles_to_box_vectors", "box_vectors_to_lengths_and_angles", "ilen", "timing", "cast_indices", "check_random_state", "rotation_matrix_from_quaternion", "uniform_quaternion", "enter_temp_directory", "timing", "deprecated"] def ilen(iterable): """Length of an iterator. Note, this consumes the iterator Parameters ---------- iterable : iterable An iterable, such as a generator, list, etc. Returns ------- length : int The number of elements in the iterable """ return sum(1 for _ in iterable) class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Copied from scikit-learn: sklearn/utils/__init__.py # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc
lgpl-2.1
liulion/mayavi
docs/source/mayavi/auto/mlab_3D_to_2D.py
4
11050
""" A script to calculate the projection of 3D world coordinates to 2D display coordinates (pixel coordinates) for a given scene. The 2D pixel locations of objects in the image plane are related to their 3D world coordinates by a series of linear transformations. The specific transformations fall under the group known as projective transformations. This set includes pure projectivities, affine transformations, perspective transformations, and euclidean transformations. In the case of mlab (and most other computer visualization software), we deal with only the perspective and euclidean cases. An overview of Projective space can be found here: http://en.wikipedia.org/wiki/Projective_space and a thorough treatment of projective geometry can be had in the book "Multiple View Geometry in Computer Vision" by Richard Hartley. The essential thing to know for this example is that points in 3-space are related to points in 2-space through a series of multiplications of 4x4 matrices which are the perspective and euclidean transformations. The 4x4 matrices predicate the use of length 4 vectors to represent points. This representation is known as homogeneous coordinates, and while they appear foriegn at first, they truly simplify all the mathematics involved. In short, homogeneous coordinates are your friend, and you should read about them here: http://en.wikipedia.org/wiki/Homogeneous_coordinates In the normal pinhole camera model (the ideal real world model), 3D world points are related to 2D image points by the matrix termed the 'essential' matrix which is a combination of a perspective transformation and a euclidean transformation. The perspective transformation is defined by the camera intrinsics (focal length, imaging sensor offset, etc...) and the euclidean transformation is defined by the cameras position and orientation. In computer graphics, things are not so simple. This is because computer graphics have the benefit of being able to do things which are not possible in the real world: adding clipping planes, offset projection centers, arbitrary distortions, etc... Thus, a slightly different model is used. What follows is the camera/view model for OpenGL and thus, VTK. I can not guarantee that other packages follow this model. There are 4 different transformations that are applied 3D world coordinates to map them to 2D pixel coordinates. They are: the model transform, the view transform, the perspective transform, and the viewport or display transform. In OpenGL the first two transformations are concatenated to yield the modelview transform (called simply the view transform in VTK). The modelview transformation applies arbitrary scaling and distortions to the model (if they are specified) and transforms them so that the orientation is the equivalent of looking down the negative Z axis. Imagine its as if you relocate your camera to look down the negative Z axis, and then move everything in the world so that you see it now as you did before you moved the camera. The resulting coordinates are termed "eye" coordinates in OpenGL (I don't know that they have a name in VTK). The perspective transformation applies the camera perspective to the eye coordinates. This transform is what makes objects in the foreground look bigger than equivalent objects in the background. In the pinhole camera model, this transform is determined uniquely by the focal length of the camera and its position in 3-space. In Vtk/OpenGL it is determined by the frustum. A frustum is simply a pyramid with the top lopped off. The top of the pyramid (a point) is the camera location, the base of the pyramid is a plane (the far clipping plane) defined as normal to principle camera ray at distance termed the far clipping distance, the top of the frustum (where it's lopped off) is the near clipping plane, with a definition similar to that of the far clipping plane. The sides of the frustum are determined by the aspect ratio of the camera (width/height) and its field-of-view. Any points not lying within the frustum are not mapped to the screen (as they would lie outside the viewable area). The perpspective transformation has the effect of scaling everything within the frustum to fit within a cube defined in the range (-1,1)(-1,1)(-1,1) as represented by homogeneous coordinates. The last phrase there is important, the first 3 coordinates will not, in general, be within the unity range until we divide through by the last coordinate (See the wikipedia on homogeneous coordinates if this is confusing). The resulting coordinates are termed (appropriately enough) normalized view coordinates. The last transformation (the viewport transformation) takes us from normalized view coordinates to display coordinates. At this point, you may be asking yourself 'why not just go directly to display coordinates, why need normalized view coordinates at all?', the answer is that we may want to embed more than one view in a particular window, there will therefore be different transformations to take each view to an appropriate position an size in the window. The normalized view coordinates provide a nice common ground so-to-speak. At any rate, the viewport transformation simply scales and translates the X and Y coordinates of the normalized view coordinates to the appropriate pixel coordinates. We don't use the Z value in our example because we don't care about it. It is used for other various things however. That's all there is to it, pretty simple right? Right. Here is an overview: Given a set of 3D world coordinates: - Apply the modelview transformation (view transform in VTK) to get eye coordinates - Apply the perspective transformation to get normalized view coordinates - Apply the viewport transformation to get display coordinates VTK provides a nice method to retrieve a 4x4 matrix that combines the first two operations. As far as I can tell, VTK does not export a method to retrieve the 4x4 matrix representing the viewport transformation, so we are on our there to create one (no worries though, its not hard, as you will see). Now that the prelimenaries are out of the way, lets get started. """ # Author: S. Chris Colbert <[email protected]> # Copyright (c) 2009, S. Chris Colbert # License: BSD Style # this import is here because we need to ensure that matplotlib uses the # wx backend and having regular code outside the main block is PyTaboo. # It needs to be imported first, so that matplotlib can impose the # version of Wx it requires. import matplotlib matplotlib.use('WXAgg') import pylab as pl import numpy as np from mayavi import mlab from mayavi.core.ui.mayavi_scene import MayaviScene def get_world_to_view_matrix(mlab_scene): """returns the 4x4 matrix that is a concatenation of the modelview transform and perspective transform. Takes as input an mlab scene object.""" if not isinstance(mlab_scene, MayaviScene): raise TypeError('argument must be an instance of MayaviScene') # The VTK method needs the aspect ratio and near and far clipping planes # in order to return the proper transform. So we query the current scene # object to get the parameters we need. scene_size = tuple(mlab_scene.get_size()) clip_range = mlab_scene.camera.clipping_range aspect_ratio = float(scene_size[0])/float(scene_size[1]) # this actually just gets a vtk matrix object, we can't really do anything with it yet vtk_comb_trans_mat = mlab_scene.camera.get_composite_perspective_transform_matrix( aspect_ratio, clip_range[0], clip_range[1]) # get the vtk mat as a numpy array np_comb_trans_mat = vtk_comb_trans_mat.to_array() return np_comb_trans_mat def get_view_to_display_matrix(mlab_scene): """ this function returns a 4x4 matrix that will convert normalized view coordinates to display coordinates. It's assumed that the view should take up the entire window and that the origin of the window is in the upper left corner""" if not (isinstance(mlab_scene, MayaviScene)): raise TypeError('argument must be an instance of MayaviScene') # this gets the client size of the window x, y = tuple(mlab_scene.get_size()) # normalized view coordinates have the origin in the middle of the space # so we need to scale by width and height of the display window and shift # by half width and half height. The matrix accomplishes that. view_to_disp_mat = np.array([[x/2.0, 0., 0., x/2.0], [ 0., -y/2.0, 0., y/2.0], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]]) return view_to_disp_mat def apply_transform_to_points(points, trans_mat): """a function that applies a 4x4 transformation matrix to an of homogeneous points. The array of points should have shape Nx4""" if not trans_mat.shape == (4, 4): raise ValueError('transform matrix must be 4x4') if not points.shape[1] == 4: raise ValueError('point array must have shape Nx4') return np.dot(trans_mat, points.T).T if __name__ == '__main__': f = mlab.figure() N = 4 # create a few points in 3-space X = np.random.random_integers(-3, 3, N) Y = np.random.random_integers(-3, 3, N) Z = np.random.random_integers(-3, 3, N) # plot the points with mlab pts = mlab.points3d(X, Y, Z) # now were going to create a single N x 4 array of our points # adding a fourth column of ones expresses the world points in # homogenous coordinates W = np.ones(X.shape) hmgns_world_coords = np.column_stack((X, Y, Z, W)) # applying the first transform will give us 'unnormalized' view # coordinates we also have to get the transform matrix for the # current scene view comb_trans_mat = get_world_to_view_matrix(f.scene) view_coords = \ apply_transform_to_points(hmgns_world_coords, comb_trans_mat) # to get normalized view coordinates, we divide through by the fourth # element norm_view_coords = view_coords / (view_coords[:, 3].reshape(-1, 1)) # the last step is to transform from normalized view coordinates to # display coordinates. view_to_disp_mat = get_view_to_display_matrix(f.scene) disp_coords = apply_transform_to_points(norm_view_coords, view_to_disp_mat) # at this point disp_coords is an Nx4 array of homogenous coordinates # where X and Y are the pixel coordinates of the X and Y 3D world # coordinates, so lets take a screenshot of mlab view and open it # with matplotlib so we can check the accuracy img = mlab.screenshot() pl.imshow(img) for i in range(N): print 'Point %d: (x, y) ' % i, disp_coords[:, 0:2][i] pl.plot([disp_coords[:, 0][i]], [disp_coords[:, 1][i]], 'ro') pl.show() # you should check that the printed coordinates correspond to the # proper points on the screen mlab.show() #EOF
bsd-3-clause
markus-antero/Stock
data/geographic/shapefileGeo.py
1
10384
''' Created on 8.5.2017 TODO - packages not loaded but applicable - geojson - shapely - seaborn as sns - shapely.wkt, wkt = http://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html @author: Markus.Walden ''' #Array from datetime import datetime import shapefile import geopandas as gp from geopandas import datasets import pandas as pd from shapely.geometry import Point #SQL import sqlalchemy as sqla from sqlalchemy.ext.declarative import declarative_base from geoalchemy2 import Geometry from sqlalchemy.orm import sessionmaker #computer import sys from geographic import engineString #map import matplotlib.pyplot as plt plt.style.use('bmh') Base = declarative_base() class GeographicNE(Base): ''' classdocs ''' __tablename__ = 'GeographicNE' index = sqla.Column(sqla.Integer) continent = sqla.Column(sqla.NVARCHAR(50)) gdp_md_est = sqla.Column(sqla.Float) iso_a3 = sqla.Column(sqla.NVARCHAR(50), primary_key=True) name = sqla.Column(sqla.NVARCHAR(50)) pop_est = sqla.Column(sqla.Float) geometry = sqla.Column(Geometry("POLYGON")) def __init__(self, params): ''' Constructor ''' def __repr__(self): #"(id='%s', Date='%s', Type='%s', Value='%s')" % (self.id, self.Date, self.Type, self.Value) return "" class Cities(Base): __tablename__ = 'cities' name = sqla.Column(sqla.NVARCHAR(50), primary_key=True) geometry = sqla.Column(Geometry("POINT")) class Lake(Base): __tablename__ = 'lakes' # id = sqla.Column(sqla.Integer) name = sqla.Column(sqla.NVARCHAR(50), primary_key=True) depth = sqla.Column(sqla.Integer, default = 0) created = sqla.Column(sqla.DateTime, default=datetime.now()) geom = sqla.Column(Geometry("POLYGON")) def main(): ''' shapefileTest() --------------- - test to print shapefile content - divided to two files dbf and shp - uses dictionaries as resultsets to contain data related to location and the location as polycon Using datasets geopandas for country and city statistics OR Using the gadm28 dataset - http://stackoverflow.com/questions/31997859/bulk-insert-a-pandas-dataframe-using-sqlalchemy crs (coordinate system ) http://stackoverflow.com/questions/3845006/database-of-countries-and-their-cities ''' naturalEarthToCSV = False esriShapefileToGeopandas = False loadShapefileData = False combineDataForCities = True if naturalEarthToCSV: gp_world, gp_cities = generateWorldToDB(loadCSV = True) print ('Countries: ', gp_world) print ('Cities: ', gp_cities) if esriShapefileToGeopandas: ''' 'OBJECTID', 'geometry', 'UID', 'ID_0', 'ISO', 'NAME_0', 'REGION', 'VARREGION', 'Shape_Leng', 'Shape_Area' 'ID_1', 'NAME_1', 'ID_2', 'NAME_2', 'ID_3', 'NAME_3', 'ID_4', 'NAME_4', 'ID_5', 'NAME_5', ''' shp = gp.GeoDataFrame.from_file('./gadm28/gadm28.shp') shp_1 = shp[['OBJECTID', 'geometry']] shp = shp[['OBJECTID', 'UID', 'ID_0', 'ISO', 'NAME_0', 'REGION', 'VARREGION', 'Shape_Leng', 'Shape_Area', 'ID_1', 'NAME_1','ID_2', 'NAME_2', 'ID_3', 'NAME_3', 'ID_4', 'NAME_4', 'ID_5', 'NAME_5']] #save X,Y into csv file shp.to_csv("./data/allData.csv",header=True,index=False,sep="\t") shp_1.to_csv("./data/allData_geom.csv",header=True,index=False,sep="\t") print (shp) if loadShapefileData: shapefileTest(i = 0, i_max = 50) if combineDataForCities: ''' cities: Country,City,AccentCity,Region,Population,Latitude,Longitude - Country, City, Population,Latitude,Longitude - link to add iso3 countrycodes: euname,modified,linked_country,iso3,iso2,grc,isonum,country,imperitive - country, iso3, iso2 - define datasets - merge with country - add geometry - store to csv ''' df_cities = pd.read_csv("./data/worldcitiespop.csv", sep = ',', encoding = "ISO-8859-1", header = 0, names=['Country','City','AccentCity','Region','Population','Latitude','Longitude']) df_cities = df_cities[['Country','City','Region','Population','Latitude','Longitude']] df_cities.columns = ['iso2', 'City','Region','Population','Latitude','Longitude'] df_cities['iso2'] = df_cities['iso2'].str.upper() df_cities = df_cities[df_cities['Population'] > 50000] df_countryCodes = pd.read_csv("./data/countryISO2, 3.csv", sep = ',', header = 0, names=['euname','modified','linked_country','iso3','iso2','grc','isonum','country','imperitive']) df_countryCodes = df_countryCodes[['country', 'iso3', 'iso2']] df_main = pd.merge(df_cities, df_countryCodes, on='iso2', how='inner') geometry = [Point(xy) for xy in zip(df_main.Longitude, df_main.Latitude)] crs = {'init': 'epsg:4326'} df_geo = gp.GeoDataFrame(df_main, crs=crs, geometry=geometry) print (df_geo) df_geo.to_csv("./data/allDataCities.csv",header=True,index=False,sep=",") def generateWorldToDB(loadCSV = False, getAsPandasDataFrame = False): ''' - Main test method, contains two cases and main body - The main issue is with handling geographic data. Since the available python libraries have no support for MSSQL. Storing the data as csv maybe the best bet. - With conventional data the transformation works - The geometry type in SQL is image data with convert methods to coordinates or geometric shapes like polycon returns: datasets for countries, cities ''' world = gp.read_file(datasets.get_path('naturalearth_lowres')) cities = gp.read_file(datasets.get_path('naturalearth_cities')) if loadCSV: world.to_csv('./data/countries.csv', sep='\t') cities.to_csv('./data/cities.csv', sep='\t') return world, cities if getAsPandasDataFrame: df_countries = pd.read_csv('./data/countries.csv',sep='\t', index_col='iso_a3', names=['iso_a3', 'name','continent', 'gdp_md_est', 'geometry', 'pop_est']) df_cities = pd.read_csv('./data/cities.csv', index_col='name', names=['name', 'geometry']) return df_countries, df_cities else: dbData = world.to_dict(orient = 'records') dbData_1 = cities.to_dict(orient = 'records') print ("original dataframe - countries: ", world) print ("original dataframe - cities: ", cities) tableNameA = 'GeographicNE' print (GeographicNE.__table__) # process for SQL sql = sqla.create_engine(engineString) conn = sql.connect() metadata = sqla.schema.MetaData(bind=sql,reflect=True) table = sqla.Table(tableNameA, metadata, autoload=True) print (table) # Open the session Session= sessionmaker(bind=sql) session = Session() try: conn.execute(table.insert(), dbData) world.to_sql(tableNameA, sql, if_exists='append') except: print ('Exception type:', sys.exc_info()[0]) print ('Exception value:', sys.exc_info()[1]) session.commit() session.close() return dbData, dbData_1 def shapefileTest(i = 0, i_max = 50): ''' Loads gadm28 shapefile, containing geographical - files: gadm28.shp, gadm28.dbf - fields: ['OBJECTID', 'UID', 'ID_0', 'ISO', 'NAME_0', 'ID_1', 'NAME_1', 'VARNAME_1', 'NL_NAME_1', 'HASC_1', 'CCN_1', 'CCA_1', 'TYPE_1', 'ENGTYPE_1', 'VALIDFR_1', 'VALIDTO_1', 'REMARKS_1', 'ID_2', 'NAME_2', 'VARNAME_2', 'NL_NAME_2', 'HASC_2', 'CCN_2', 'CCA_2', 'TYPE_2', 'ENGTYPE_2', 'VALIDFR_2', 'VALIDTO_2', 'REMARKS_2', 'ID_3', 'NAME_3', 'VARNAME_3', 'NL_NAME_3', 'HASC_3', 'CCN_3', 'CCA_3', 'TYPE_3', 'ENGTYPE_3', 'VALIDFR_3', 'VALIDTO_3', 'REMARKS_3', 'ID_4', 'NAME_4', 'VARNAME_4', 'CCN_4', 'CCA_4', 'TYPE_4', 'ENGTYPE_4', 'VALIDFR_4', 'VALIDTO_4', 'REMARKS_4', 'ID_5', 'NAME_5', 'CCN_5', 'CCA_5', 'TYPE_5', 'ENGTYPE_5', 'REGION', 'VARREGION', 'Shape_Leng', 'Shape_Area'] location - geometric - polygon + coordinates marking ''' myshp = open("./gadm28/gadm28.shp", "rb") mydbf = open("./gadm28/gadm28.dbf", "rb") r = shapefile.Reader(shp=myshp, dbf=mydbf) fields = [field[0] for field in r.fields[1:]] print ('fields: ', fields) for feature in r.shapeRecords(): try: geom = feature.shape.__geo_interface__ atr = dict(zip(fields, feature.record)) print ("geo_interface: ", geom) print ('feature record: ', atr) except: print ('Exception type:', sys.exc_info()[0]) print ('Exception value:', sys.exc_info()[1]) i = i + 1 if i == 50: break return r def testSQLAlchemyORM(): ''' - Use dumy example, lake class to test commit to database using native geometry type. - DOES not work with MSSQL, current implementation covers postgreSQL with postGIS ''' print (Lake.__table__) # lake = Lake(name='Majeur') lake = Lake(name='Majeur', geom='POLYGON((0 0,1 0,1 1,0 1,0 0))') # print (lake.geom) sql = sqla.create_engine(engineString) conn = sql.connect() Session= sessionmaker(bind=sql) session = Session() try: session.add(lake) session.commit() except: print ('Exception type:', sys.exc_info()[0]) print ('Exception value:', sys.exc_info()[1]) session.close() if __name__ == "__main__": main()
apache-2.0
jobovy/segueSelect
segueSelect/segueSelect.py
1
75479
import os, os.path import sys import copy import math import numpy from scipy import special, interpolate, optimize, misc, stats import pyfits import matplotlib try: from galpy.util import bovy_plot except ImportError: import bovy_plot try: from galpy.util import bovy_coords _COORDSLOADED= True except ImportError: _COORDSLOADED= False ########################SELECTION FUNCTION DETERMINATION####################### _INTERPDEGREEBRIGHT= 3 _INTERPDEGREEFAINT= 3 _BINEDGES_G_FAINT= [0.,50.,70.,85.,200000000.] _BINEDGES_G_BRIGHT= [0.,75.,150.,300.,200000000.] ###############################FILENAMES####################################### _SEGUESELECTDIR=os.getenv('SEGUESELECTDIR') _GDWARFALLFILE= os.path.join(_SEGUESELECTDIR,'gdwarfall_raw_nodups_ysl_nospec.fit') _GDWARFFILE= os.path.join(_SEGUESELECTDIR,'gdwarf_raw_nodups_ysl_nospec.fit') _KDWARFALLFILE= os.path.join(_SEGUESELECTDIR,'kdwarfall_raw_nodups_ysl_nospec.fit') _KDWARFFILE= os.path.join(_SEGUESELECTDIR,'kdwarf_raw_nodups_ysl_nospec.fit') #DR9 _GDWARFALLFILE_DR9= os.path.join(_SEGUESELECTDIR,'gdwarfall_dr9_nospec_wsoplate.fit') #_GDWARFALLFILE_DR9= os.path.join(_SEGUESELECTDIR,'gdwarfall_nodups_mydr9.fit') _ERASESTR= " " _RESOLVEFAINTBRIGHT= True class segueSelect: """Class that contains selection function for SEGUE targets""" def __init__(self,sample='G',plates=None, select='all',dr9=False, type_bright='tanhrcut',dr_bright=None, interp_type_bright='tanh', interp_degree_bright=_INTERPDEGREEBRIGHT, robust_bright=True, binedges_bright=_BINEDGES_G_BRIGHT, type_faint='tanhrcut',dr_faint=None, interp_type_faint='tanh', interp_degree_faint=_INTERPDEGREEFAINT, robust_faint=True, binedges_faint=_BINEDGES_G_FAINT, ug=False,ri=False,sn=True, ebv=True, _rmax=None,_rmin=None,indiv_brightlims=False, _program_brightlims=False, _platephot=None,_platespec=None,_spec=None): """ NAME: __init__ PURPOSE: load the selection function for this sample INPUT: sample= sample to load ('G', or 'K') select= 'all' selects all SEGUE stars in the color-range; 'program' only selects program stars plates= if set, only consider this plate, or list of plates, or 'faint'/'bright'plates only, or plates '>1000' or '<2000' dr9= if True, use DR9 photometry (default: false=DR7) SELECTION FUNCTION DETERMINATION: default: tanhrcut for both bright and faint type_bright= type of selection function to determine 'constant' for constant per plate; 'r' universal function of r 'plateSN_r' function of r for plates in ranges in plateSN_r 'sharprcut' sharp cut in r for each plate, at the r-band mag of the faintest object on this plate 'tanhrcut' cut in r for each plate, at the r-band mag of the faintest object on this plate, with 0.1 mag tanh softening dr_bright= when determining the selection function as a function of r, binsize to use interp_degree_bright= when spline-interpolating, degree to use interp_type_bright= type of interpolation to use ('tanh' or 'spline') robust_bright= perform any fit robustly type_faint=, faint_dr, interp_degree_bright, interp_type_faint, robust_faint = same as the corresponding keywords for bright indiv_brightlims= if True, determine the bright/faint boundary as the brightest faint-plate spectrum, or the faintest bright-plate if there is no faint plate in the pair SPECTROSCOPIC SAMPLE SELECTION: ug= if True, cut on u-g, if list/array cut to ug[0] < u-g< ug[1] ri= if True, cut on r-i, if list/array cut to ri[0] < r-i< ri[1] sn= if False, don't cut on SN, if number cut on SN > the number (15) ebv= if True, cut on E(B-V), if number cut on EBV < the number (0.3) OUTPUT: object HISTORY: 2011-07-08 - Written - Bovy@MPIA (NYU) """ #Set options if dr_bright is None: if type_bright.lower() == 'r': dr_bright= 0.05 elif type_bright.lower() == 'platesn_r': if sample.lower() == 'k': dr_bright= 0.4 elif sample.lower() == 'g': dr_bright= 0.2 if dr_faint is None: if type_faint.lower() == 'r': dr_faint= 0.2 elif type_faint.lower() == 'platesn_r': if sample.lower() == 'g': dr_faint= 0.2 elif sample.lower() == 'k': dr_faint= 0.5 self.sample=sample.lower() #Load plates self.platestr= _load_fits(os.path.join(_SEGUESELECTDIR, 'segueplates.fits')) #Add platesn_r to platestr platesn_r= (self.platestr.sn1_1+self.platestr.sn2_1)/2. self.platestr= _append_field_recarray(self.platestr, 'platesn_r',platesn_r) if plates is None: self.plates= list(self.platestr.plate) else: if isinstance(plates,str): self.plates= self.platestr.plate if plates[0] == '>': self.plates= self.plates[(self.plates > int(plates[1:len(plates)]))] elif plates[0] == '<': self.plates= self.plates[(self.plates < int(plates[1:len(plates)]))] elif plates.lower() == 'faint': indx= ['faint' in name for name in self.platestr.programname] indx= numpy.array(indx,dtype='bool') self.plates= self.plates[indx] elif plates.lower() == 'bright': indx= [not 'faint' in name for name in self.platestr.programname] indx= numpy.array(indx,dtype='bool') self.plates= self.plates[indx] else: print "'plates=' format not understood, check documentation" return self.plates= list(self.plates) elif not isinstance(plates,(list,numpy.ndarray)): self.plates= [plates] elif isinstance(plates,numpy.ndarray): self.plates= list(plates) else: self.plates= plates #Remove 2820 for now BOVY DEAL WITH PLATE 2820, 2560, 2799, 2550 if 2820 in self.plates: self.plates.remove(2820) if 2560 in self.plates: self.plates.remove(2560) if 2799 in self.plates: self.plates.remove(2799) if 2550 in self.plates: self.plates.remove(2550) #Remove duplicate plates self.plates= numpy.array(sorted(list(set(self.plates)))) #Match platestr to plates again allIndx= numpy.arange(len(self.platestr),dtype='int') reIndx= numpy.zeros(len(self.plates),dtype='int')-1 for ii in range(len(self.plates)): indx= (self.platestr.field('plate') == self.plates[ii]) reIndx[ii]= (allIndx[indx][0]) self.platestr= self.platestr[reIndx] #Build bright/faint dict self.platebright= {} for ii in range(len(self.plates)): p= self.plates[ii] if 'faint' in self.platestr[ii].programname: self.platebright[str(p)]= False else: self.platebright[str(p)]= True #Also build bright/faint index brightplateindx= numpy.empty(len(self.plates),dtype='bool') #BOVY: move this out of here faintplateindx= numpy.empty(len(self.plates),dtype='bool') for ii in range(len(self.plates)): if 'faint' in self.platestr[ii].programname: #faint plate faintplateindx[ii]= True brightplateindx[ii]= False else: faintplateindx[ii]= False brightplateindx[ii]= True self.faintplateindx= faintplateindx self.brightplateindx= brightplateindx self.nbrightplates= numpy.sum(self.brightplateindx) self.nfaintplates= numpy.sum(self.faintplateindx) #Build plate-pair array platemate= numpy.zeros(len(self.plates),dtype='int') indices= numpy.arange(len(self.plates),dtype='int') for ii in range(len(self.plates)): plate= self.plates[ii] #Find plate's friend indx= (self.platestr.ra == self.platestr[ii].ra) if numpy.sum(indx) < 2: platemate[ii]= -1 #No friend continue thisplates= self.plates[indx] jj= indices[indx][0] kk= indices[indx][1] if ii == kk: platemate[ii]= jj elif ii == jj: platemate[ii]= kk self.platemate= platemate #Set r limits if self.sample == 'g': self.rmin= 14.5 self.rmax= 20.2 elif self.sample == 'k': self.rmin= 14.5 self.rmax= 19. if not _rmin is None: self.rmin= _rmin if not _rmax is None: self.rmax= _rmax #load the spectroscopic data self.select= select if _platespec is None: sys.stdout.write('\r'+"Reading and parsing spectroscopic data ...\r") sys.stdout.flush() if sample.lower() == 'g': if select.lower() == 'all' and not dr9: self.spec= read_gdwarfs(ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) elif select.lower() == 'all' and dr9: self.spec= read_gdwarfs(file=_GDWARFALLFILE_DR9, ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) self.spec['plate']= self.spec['soplate'] elif select.lower() == 'program': self.spec= read_gdwarfs(file=_GDWARFFILE, ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) elif sample.lower() == 'k': if select.lower() == 'all': self.spec= read_kdwarfs(ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) elif select.lower() == 'program': self.spec= read_kdwarfs(file=_KDWARFFILE, ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) if _RESOLVEFAINTBRIGHT and sample.lower() == 'g': #Re-assign faint stars on bright plates and vice versa for ii in range(len(self.spec)): try: if (self.spec['dered_r'][ii] > 17.8 and self.platebright['%i' % self.spec['plate'][ii]]) \ or (self.spec['dered_r'][ii] < 17.8 and not self.platebright['%i' % self.spec['plate'][ii]]): pindx= self.plates == self.spec['plate'][ii] self.spec['plate'][ii]= self.plates[self.platemate[pindx]] except KeyError: pass self.platespec= {} for plate in self.plates: #Find spectra for each plate indx= (self.spec.field('plate') == plate) self.platespec[str(plate)]= self.spec[indx] sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() else: self.platespec= _platespec self.spec= _spec #Set bright/faint divider if indiv_brightlims: if _program_brightlims and not select.lower() == 'program': #Grab the bright/faint interface from the program stars if sample.lower() == 'g': bfspec= read_gdwarfs(file=_GDWARFFILE, ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) elif sample.lower() == 'k': bfspec= read_kdwarfs(file=_KDWARFFILE, ug=ug,ri=ri,sn=sn, ebv=ebv,nocoords=True) bfplatespec= {} for plate in self.plates: #Find spectra for each plate indx= (bfspec.field('plate') == plate) bfplatespec[str(plate)]= bfspec[indx] else: bfplatespec= self.platespec #Use brightest faint-plate object as the bright/faint interface faintbright= numpy.zeros(len(self.plates)) for ii in range(len(self.plates)): #Pair? if not self.platemate[ii] == -1: #Which one's faint? if faintplateindx[ii]: #First one if len(bfplatespec[str(self.plates[ii])].r) > 0: faintbright[ii]= numpy.amin(bfplatespec[str(self.plates[ii])].r) elif len(bfplatespec[str(self.plates[self.platemate[ii]])].r) > 0: faintbright[ii]= numpy.amax(bfplatespec[str(self.plates[self.platemate[ii]])].r) else: faintbright[ii]= 17.8 elif faintplateindx[self.platemate[ii]]: #Second one if len(bfplatespec[str(self.plates[self.platemate[ii]])].r) > 0: faintbright[ii]= numpy.amin(bfplatespec[str(self.plates[self.platemate[ii]])].r) elif len(bfplatespec[str(self.plates[ii])].r) > 0: faintbright[ii]= numpy.amax(bfplatespec[str(self.plates[ii])].r) else: faintbright[ii]= 17.8 else: print "Error: no faint plate found for plate-pair %i,%i ..."%(self.plates[ii],self.plates[self.platemate[ii]]) print "Returning ..." return None else: if self.faintplateindx[ii]: #faint plate faintbright[ii]= numpy.amin(bfplatespec[str(self.plates[ii])].r) else: faintbright[ii]= 17.8 self.faintbright= faintbright else: self.faintbright= numpy.zeros(len(self.plates))+17.8 #Also create faintbright dict self.faintbrightDict= {} for ii in range(len(self.plates)): self.faintbrightDict[str(self.plates[ii])]= self.faintbright[ii] #load the photometry for the SEGUE plates if _platephot is None: self.platephot= {} for ii in range(len(self.plates)): plate= self.plates[ii] sys.stdout.write('\r'+"Loading photometry for plate %i" % plate) sys.stdout.flush() if dr9: platefile= os.path.join(_SEGUESELECTDIR,'segueplates_dr9', '%i.fit' % plate) else: platefile= os.path.join(_SEGUESELECTDIR,'segueplates', '%i.fit' % plate) self.platephot[str(plate)]= _load_fits(platefile) #Split into bright and faint if 'faint' in self.platestr[ii].programname: indx= (self.platephot[str(plate)].field('r') >= self.faintbright[ii]) self.platephot[str(plate)]= self.platephot[str(plate)][indx] else: indx= (self.platephot[str(plate)].field('r') < self.faintbright[ii]) self.platephot[str(plate)]= self.platephot[str(plate)][indx] sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() else: self.platephot= _platephot #Flesh out samples for plate in self.plates: if self.sample == 'g': indx= ((self.platephot[str(plate)].field('g')\ -self.platephot[str(plate)].field('r')) < 0.55)\ *((self.platephot[str(plate)].field('g')\ -self.platephot[str(plate)].field('r')) > 0.48)\ *(self.platephot[str(plate)].field('r') < 20.2)\ *(self.platephot[str(plate)].field('r') > 14.5) elif self.sample == 'k': indx= ((self.platephot[str(plate)].field('g')\ -self.platephot[str(plate)].field('r')) > 0.55)\ *((self.platephot[str(plate)].field('g')\ -self.platephot[str(plate)].field('r')) < 0.75)\ *(self.platephot[str(plate)].field('r') < 19.)\ *(self.platephot[str(plate)].field('r') > 14.5) self.platephot[str(plate)]= self.platephot[str(plate)][indx] #Determine selection function sys.stdout.write('\r'+"Determining selection function ...\r") sys.stdout.flush() if not numpy.sum(self.brightplateindx) == 0: self._determine_select(bright=True,type=type_bright,dr=dr_bright, interp_degree=interp_degree_bright, interp_type= interp_type_bright, robust=robust_bright, binedges=binedges_bright) if not numpy.sum(self.faintplateindx) == 0: self._determine_select(bright=False,type=type_faint,dr=dr_faint, interp_degree=interp_degree_faint, interp_type=interp_type_faint, robust=robust_faint, binedges=binedges_faint) sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() return None def __call__(self,plate,r=None,gr=None): """ NAME: __call__ PURPOSE: evaluate the selection function INPUT: plate - plate number r - dereddened r-band magnitude gr - dereddened g-r color OUTPUT: selection function HISTORY: 2011-07-11 - Written - Bovy@MPIA (NYU) """ #Handle input if isinstance(plate,(numpy.int16,int)) \ and (isinstance(r,(int,float)) or r is None): #Scalar input plate= [plate] r= [r] scalarOut= True elif isinstance(plate,(numpy.int16,int)) \ and isinstance(r,(list,numpy.ndarray)): #Special case this for optimization if sharprcut bright= self.platebright[str(plate)] #Short-cut if (bright and self.type_bright.lower() == 'sharprcut') \ or (not bright and self.type_faint.lower() == 'sharprcut'): nout= len(r) if isinstance(r,list): thisr= numpy.array(r) else: thisr= r out= numpy.zeros(nout) if bright: indx= (thisr >= 14.5)*(thisr <= numpy.amin([self.rcuts[str(plate)],self.faintbrightDict[str(plate)]])) else: indx= (thisr >= self.faintbrightDict[str(plate)])*(thisr <= numpy.amin([self.rcuts[str(plate)],self.rmax])) if numpy.sum(indx) == 0: return out out[indx]= self.weight[str(plate)]\ *self.rcuts_correct[str(plate)] if isinstance(r,list): return list(out) else: return out elif (bright and self.type_bright.lower() == 'tanhrcut') \ or (not bright and self.type_faint.lower() == 'tanhrcut'): nout= len(r) if isinstance(r,list): thisr= numpy.array(r) else: thisr= r out= numpy.zeros(nout) if bright: indx= (thisr >= 14.5)*(thisr <= self.faintbrightDict[str(plate)]) else: indx= (thisr >= self.faintbrightDict[str(plate)])*(thisr <= self.rmax) if numpy.sum(indx) == 0: return out out[indx]= self.weight[str(plate)]\ *self.rcuts_correct[str(plate)]\ *_sf_tanh(thisr[indx],[self.rcuts[str(plate)]-0.1, -3.,0.]) if isinstance(r,list): return list(out) else: return out else: if isinstance(r,numpy.ndarray): plate= numpy.array([plate for ii in range(len(r))]) else: plate= [plate for ii in range(len(r))] scalarOut= False else: scalarOut= False out= [] for ii in range(len(plate)): p= plate[ii] out.append(self._call_single(p,r[ii])) if isinstance(plate,numpy.ndarray): out= numpy.array(out) if scalarOut: return out[0] else: return out def _call_single(self,plate,r): """Call the selection function for a single object""" #First check whether this plate exists if not plate in self.plates: return 0. #First determine whether this is a bright or a faint plate bright= self.platebright[str(plate)] #Short-cut if bright: if not self.type_bright.lower() == 'tanhrcut+brightsharprcut' and (r >= self.faintbrightDict[str(plate)] or r < self.rmin): return 0. elif self.type_bright.lower() == 'constant': return self.weight[str(plate)] elif self.type_bright.lower() == 'r': if self.interp_type_bright.lower() == 'spline': if r < self.s_one_r_bright_minxo: return numpy.exp(_linear_func(r, self.s_one_r_bright_minderiv, self.s_one_r_bright_minxo, self.s_one_r_bright_minyo))\ *self.weight[str(plate)] else: soner= numpy.exp(\ interpolate.splev(r,self.s_one_r_bright_interpolate)) if soner < 0.: return 0. else: return self.weight[str(plate)]*soner elif self.interp_type_bright.lower() == 'tanh': return _sf_tanh(r,self.s_one_r_tanh_params_bright)\ *self.weight[str(plate)] elif self.type_bright.lower() == 'platesn_r': return self.platesn_sfs_bright[self.platesn_platebin_dict_bright[str(plate)]](plate,r=r) elif self.type_bright.lower() == 'sharprcut': if r <= self.rcuts[str(plate)]: return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)] else: return 0. elif self.type_bright.lower() == 'tanhrcut': return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)]\ *_sf_tanh(r,[self.rcuts[str(plate)]-0.1, -3.,0.]) elif self.type_bright.lower() == 'tanhrcut+brightsharprcut': if r <= self.rcuts_bright[str(plate)]: return 0. return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)]\ *_sf_tanh(r,[self.rcuts_faint[str(plate)]-0.1, -3.,0.]) else: if not self.type_faint.lower() == 'tanhrcut+brightsharprcut' and (r < self.faintbrightDict[str(plate)] or r > self.rmax): return 0. elif self.type_faint.lower() == 'constant': return self.weight[str(plate)] elif self.type_faint.lower() == 'r': if self.interp_type_faint.lower() == 'spline': if r < self.s_one_r_faint_minxo: return numpy.exp(_linear_func(r, self.s_one_r_faint_minderiv, self.s_one_r_faint_minxo, self.s_one_r_faint_minyo))\ *self.weight[str(plate)] else: soner= numpy.exp(\ interpolate.splev(r,self.s_one_r_faint_interpolate)) if soner < 0.: return 0. else: return self.weight[str(plate)]*soner elif self.interp_type_faint.lower() == 'tanh': return _sf_tanh(r,self.s_one_r_tanh_params_faint)\ *self.weight[str(plate)] elif self.type_faint.lower() == 'platesn_r': return self.platesn_sfs_faint[self.platesn_platebin_dict_faint[str(plate)]](plate,r=r) elif self.type_faint.lower() == 'sharprcut': if r <= self.rcuts[str(plate)]: return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)] else: return 0. elif self.type_faint.lower() == 'tanhrcut': return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)]\ *_sf_tanh(r,[self.rcuts[str(plate)]-0.1, -3.,0.]) elif self.type_faint.lower() == 'tanhrcut+brightsharprcut': if r <= self.rcuts_bright[str(plate)]: return 0. return self.weight[str(plate)]\ *self.rcuts_correct[str(plate)]\ *_sf_tanh(r,[self.rcuts_faint[str(plate)]-0.1, -3.,0.]) def check_consistency(self,plate): """ NAME: check_consistency PURPOSE: calculate the KS probability that this plate is consistent with being drawn from the underlying photometrix sample using our model for the selection function INPUT: pate - plate number(s), 'all', 'bright', or 'faint' OUTPUT: KS probability or list/array of such numbers HISTORY: 2011-07-21 - Written - Bovy@MPIA (NYU) """ #Handle input scalarOut= False if isinstance(plate,str) and plate.lower() == 'all': plate= self.plates elif isinstance(plate,str) and plate.lower() == 'bright': plate= self.plates[self.brightplateindx] elif isinstance(plate,str) and plate.lower() == 'faint': plate= self.plates[self.faintplateindx] if isinstance(plate,(numpy.int16,int)): #Scalar input plate= [plate] scalarOut= True out= [] for p in plate: out.append(self._check_consistency_single(p)) if scalarOut: return out[0] elif isinstance(plate,numpy.ndarray): return numpy.array(out) else: return out def _check_consistency_single(self,plate): """check_consistency for a single plate""" photr,specr,fn1,fn2= self._plate_rcdfs(plate) if photr is None: return -1 j1, j2, i= 0, 0, 0 id1= range(len(photr)+len(specr)) id2= range(len(photr)+len(specr)) while j1 < len(photr) and j2 < len(specr): d1= photr[j1] d2= specr[j2] if d1 <= d2: j1+= 1 if d2 <= d1: j2+= 1 id1[i]= j1 id2[i]= j2 i+= 1 id1= id1[0:i-1] id2= id2[0:i-1] D= numpy.amax(numpy.fabs(fn1[id1]-fn2[id2])) neff= len(photr)*len(specr)/float(len(photr)+len(specr)) return stats.ksone.sf(D,neff) def _plate_rcdfs(self,plate): #Load photometry and spectroscopy for this plate thisplatephot= self.platephot[str(plate)] thisplatespec= self.platespec[str(plate)] #Cut to bright or faint part if self.platebright[str(plate)]: thisplatespec= thisplatespec[(thisplatespec.dered_r < self.faintbrightDict[str(plate)])\ *(thisplatespec.dered_r > self.rmin)] else: thisplatespec= thisplatespec[(thisplatespec.dered_r < self.rmax)\ *(thisplatespec.dered_r >= self.faintbrightDict[str(plate)])] if len(thisplatespec.dered_r) == 0: return (None,None,None,None) #Calculate selection function weights for the photometry w= numpy.zeros(len(thisplatephot.r)) for ii in range(len(w)): w[ii]= self(plate,r=thisplatephot[ii].r) #Calculate KS test statistic sortindx_phot= numpy.argsort(thisplatephot.r) sortindx_spec= numpy.argsort(thisplatespec.dered_r) sortphot= thisplatephot[sortindx_phot] sortspec= thisplatespec[sortindx_spec] w= w[sortindx_phot] fn1= numpy.cumsum(w)/numpy.sum(w) fn2= numpy.ones(len(sortindx_spec)) fn2= numpy.cumsum(fn2) fn2/= fn2[-1] return (sortphot.r,sortspec.dered_r,fn1,fn2) def plot_plate_rcdf(self,plate,overplot=False,xrange=None,yrange=None, photcolor='k',speccolor='r'): """ NAME: plot_plate_rcdf PURPOSE: plot the r-band magnitude CDF for the photometric sample * selection function model and for the spectroscopic sample for a single plate INPUT: plate - plate to plot overplot= of True, overplot xrange=, yrange= photcolor=, speccolor= color to use OUTPUT: plot HISTORY: 2011-07-21 - Written - Bovy@MPIA (NYU) """ photr,specr,fn1,fn2= self._plate_rcdfs(plate) if photr is None: print "Plate %i has no spectroscopic data ..." % plate print "Returning ..." return None if xrange is None: xrange= [numpy.amin([numpy.amin(photr),numpy.amin(specr)])-0.1, numpy.amax([numpy.amax(photr),numpy.amax(specr)])+0.1] if yrange is None: yrange= [0.,1.1] bovy_plot.bovy_plot(photr,fn1,photcolor+'-',overplot=overplot) bovy_plot.bovy_plot(specr,fn2,speccolor+'-',overplot=True) return None def plot(self,x='r',y='sf',plate='a bright plate',overplot=False): """ NAME: plot PURPOSE: plot the derived selection function INPUT: x= what to plot on the x-axis (e.g., 'r') y= what to plot on the y-axis (default function value) plate= plate to plot (number or 'a bright plate' (default), 'a faint plate') overplot= if True, overplot OUTPUT: plot to output HISTORY: 2011-07-18 - Written - Bovy@MPIA (NYU) """ _NXS= 1001 if isinstance(plate,str) and plate.lower() == 'a bright plate': plate= 2964 elif isinstance(plate,str) and plate.lower() == 'a faint plate': plate= 2965 if x.lower() == 'r': xs= numpy.linspace(self.rmin,self.rmax,_NXS) xrange= [self.rmin,self.rmax] xlabel= r'$r_0\ [\mathrm{mag}]$' #Evaluate selection function zs= self(plate,r=xs) if y.lower() == 'sf': ys= zs ylabel= r'$\mathrm{selection\ function}$' yrange= [0.,1.2*numpy.amax(ys)] bovy_plot.bovy_plot(xs,ys,'k-',xrange=xrange,yrange=yrange, xlabel=xlabel,ylabel=ylabel, overplot=overplot) return None def plot_s_one_r(self,plate='a bright plate',overplot=False,color='k', xrange=None,yrange=None): """ NAME: plot_s_one_r PURPOSE: plot the derived selection function s_1(r) INPUT: plate= plate to plot (number or 'a bright plate' (default), 'a faint plate') overplot= if True, overplot xrange=, yrange= OUTPUT: plot to output HISTORY: 2011-07-20 - Written - Bovy@MPIA (NYU) """ _NXS= 1001 if isinstance(plate,str) and plate.lower() == 'a bright plate': plate= 2964 elif isinstance(plate,str) and plate.lower() == 'a faint plate': plate= 2965 xs= numpy.linspace(self.rmin+0.001,self.rmax-0.001,_NXS) if xrange is None: xrange= [self.rmin,self.rmax] xlabel= r'$r\ [\mathrm{mag}]$' #Evaluate selection function ys= numpy.array(self(plate,r=xs))/self.weight[str(plate)] ylabel= r'$r\ \mathrm{dependence\ of\ selection\ function}$' if yrange is None: yrange= [0.,1.2*numpy.amax(ys)] bovy_plot.bovy_plot(xs,ys,color+'-',xrange=xrange,yrange=yrange, xlabel=xlabel,ylabel=ylabel, overplot=overplot) pindx= (self.plates == plate) if (self.brightplateindx[pindx][0] \ and self.type_bright.lower() != 'r')\ or (self.faintplateindx[pindx][0] \ and self.type_faint.lower() != 'r'): return #Also plot data from matplotlib.pyplot import errorbar if self.platebright[str(plate)]: bovy_plot.bovy_plot(self.s_r_plate_rs_bright, self.s_one_r_bright, color=color, marker='o',ls='none',overplot=True) errorbar(self.s_r_plate_rs_bright, self.s_one_r_bright, self.s_one_r_err_bright, xerr= numpy.zeros(len(self.interp_rs_bright))+(self.interp_rs_bright[1]-self.interp_rs_bright[0])/2., fmt=None,ecolor=color) else: bovy_plot.bovy_plot(self.s_r_plate_rs_faint, self.s_one_r_faint, color=color, marker='o',ls='none',overplot=True) errorbar(self.s_r_plate_rs_faint, self.s_one_r_faint, self.s_one_r_err_faint, xerr= numpy.zeros(len(self.interp_rs_faint))+(self.interp_rs_faint[1]-self.interp_rs_faint[0])/2., fmt=None,ecolor=color) return None def plotColorMag(self,x='gr',y='r',plate='all',spec=False,scatterplot=True, bins=None,specbins=None): """ NAME: plotColorMag PURPOSE: plot the distribution of photometric/spectroscopic objects in color magnitude (or color-color) space INPUT: x= what to plot on the x-axis (combinations of ugriz as 'g', or 'gr') y= what to plot on the y-axis (combinations of ugriz as 'g', or 'gr') plate= plate(s) to plot, int or list/array, 'all', 'bright', 'faint' spec= if True, overlay spectroscopic objects as red contours and histograms scatterplot= if False, regular scatterplot, if True, hogg_scatterplot bins= number of bins to use in the histogram(s) specbins= number of bins to use in histograms of spectropscopic objects OUTPUT: HISTORY: 2011-07-13 - Written - Bovy@MPIA (NYU) """ if isinstance(plate,str) and plate.lower() == 'all': plate= self.plates elif isinstance(plate,str) and plate.lower() == 'bright': plate= [] for ii in range(len(self.plates)): if not 'faint' in self.platestr[ii].programname: plate.append(self.plates[ii]) elif isinstance(plate,str) and plate.lower() == 'faint': plate= [] for ii in range(len(self.plates)): if 'faint' in self.platestr[ii].programname: plate.append(self.plates[ii]) elif isinstance(plate,(list,numpy.ndarray)): plate=plate else: plate= [plate] xs, ys= [], [] specxs, specys= [], [] for ii in range(len(plate)): p=plate[ii] thisplatephot= self.platephot[str(p)] thisplatespec= self.platespec[str(p)] if len(x) > 1: #Color xs.extend(thisplatephot.field(x[0])\ -thisplatephot.field(x[1])) #dereddened specxs.extend(thisplatespec.field('dered_'+x[0])\ -thisplatespec.field('dered_'+x[1])) else: xs.extend(thisplatephot.field(x[0])) specxs.extend(thisplatespec.field('dered_'+x[0])) if len(y) > 1: #Color ys.extend(thisplatephot.field(y[0])\ -thisplatephot.field(y[1])) #dereddened specys.extend(thisplatespec.field('dered_'+y[0])\ -thisplatespec.field('dered_'+y[1])) else: ys.extend(thisplatephot.field(y[0])) specys.extend(thisplatespec.field('dered_'+y[0])) xs= numpy.array(xs) xs= numpy.reshape(xs,numpy.prod(xs.shape)) ys= numpy.array(ys) ys= numpy.reshape(ys,numpy.prod(ys.shape)) specxs= numpy.array(specxs) specxs= numpy.reshape(specxs,numpy.prod(specxs.shape)) specys= numpy.array(specys) specys= numpy.reshape(specys,numpy.prod(specys.shape)) if len(x) > 1: xlabel= '('+x[0]+'-'+x[1]+')_0' else: xlabel= x[0]+'_0' xlabel= r'$'+xlabel+r'$' if len(y) > 1: ylabel= '('+y[0]+'-'+y[1]+')_0' else: ylabel= y[0]+'_0' ylabel= r'$'+ylabel+r'$' if len(x) > 1: #color xrange= [numpy.amin(xs)-0.02,numpy.amax(xs)+0.02] else: xrange= [numpy.amin(xs)-0.7,numpy.amax(xs)+0.7] if len(y) > 1: #color yrange= [numpy.amin(ys)-0.02,numpy.amax(ys)+0.02] else: yrange= [numpy.amin(ys)-0.7,numpy.amax(ys)+0.7] if bins is None: bins= int(numpy.ceil(0.3*numpy.sqrt(len(xs)))) if specbins is None: specbins= bins if scatterplot: if len(xs) > 100000: symb= 'w,' else: symb= 'k,' if spec: #First plot spectroscopic sample cdict = {'red': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0)), 'blue': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0))} allwhite = matplotlib.colors.LinearSegmentedColormap('allwhite',cdict,256) speclevels= list(special.erf(0.5*numpy.arange(1,4))) speclevels.append(1.01)#HACK TO REMOVE OUTLIERS bovy_plot.scatterplot(specxs,specys,symb,onedhists=True, levels=speclevels, onedhistec='k', cntrcolors='w', onedhistls='dashed', onedhistlw=1.5, cmap=allwhite, xlabel=xlabel,ylabel=ylabel, xrange=xrange,yrange=yrange, bins=specbins) bovy_plot.scatterplot(xs,ys,symb,onedhists=True, xlabel=xlabel,ylabel=ylabel, xrange=xrange,yrange=yrange,bins=bins, overplot=spec) else: bovy_plot.bovy_plot(xs,ys,'k,',onedhists=True, xlabel=xlabel,ylabel=ylabel, xrange=xrange,yrange=yrange) return None def _determine_select(self,bright=True,type=None,dr=None, interp_degree=_INTERPDEGREEBRIGHT, interp_type='tanh', robust=False, binedges=None): """Function that actually determines the selection function""" if bright: self.type_bright= type plateindx= self.brightplateindx else: self.type_faint= type plateindx= self.faintplateindx if type.lower() == 'platesn_r': #plateSN_r dependent r selection #Divide up plates in bins nbins= len(binedges)-1 plate_in_bins= [[] for ii in range(nbins)] platebin_dict= {} theseplates= self.plates[plateindx] thisplatestr= self.platestr[plateindx] for ii in range(len(theseplates)): kk= 0 while kk < nbins \ and thisplatestr[ii].platesn_r > binedges[kk+1]: kk+=1 plate_in_bins[kk].append(theseplates[ii]) #Also create dictionary with bin for each plate platebin_dict[str(theseplates[ii])]= kk #For each set of plates, instantiate new selection object platesn_sfs= [] for kk in range(nbins): if bright: type_faint= 'constant' type_bright= 'r' else: type_faint= 'r' type_bright= 'constant' platesn_sfs.append(segueSelect(sample=self.sample, plates=plate_in_bins[kk], select=self.select, type_bright=type_bright, dr_bright=dr, interp_type_bright='tanh', interp_degree_bright=interp_degree, robust_bright=robust, type_faint=type_faint, dr_faint=dr, interp_type_faint='tanh', interp_degree_faint=interp_degree, robust_faint=robust, _platephot=copy.copy(self.platephot), _platespec=copy.copy(self.platespec) ,_spec=copy.copy(self.spec))) if bright: self.platesn_plate_in_bins_bright= plate_in_bins self.platesn_platebin_dict_bright= platebin_dict self.platesn_sfs_bright= platesn_sfs else: self.platesn_plate_in_bins_faint= plate_in_bins self.platesn_sfs_faint= platesn_sfs self.platesn_platebin_dict_faint= platebin_dict return None #Done here! #First determine the total weight for each plate if not hasattr(self,'weight'): self.weight= {} for ii in range(len(self.plates)): if bright and 'faint' in self.platestr[ii].programname: continue elif not bright \ and not 'faint' in self.platestr[ii].programname: continue plate= self.plates[ii] self.weight[str(plate)]= len(self.platespec[str(plate)])\ /float(len(self.platephot[str(plate)])) if type.lower() == 'constant': return #We're done! if type.lower() == 'sharprcut' or type.lower() == 'tanhrcut': #For each plate cut at the location of the faintest object if not hasattr(self,'rcuts'): self.rcuts= {} if not hasattr(self,'rcuts_correct'): self.rcuts_correct= {} for ii in range(len(self.plates)): if bright and 'faint' in self.platestr[ii].programname: continue elif not bright \ and not 'faint' in self.platestr[ii].programname: continue p= self.plates[ii] if self.weight[str(p)] == 0.: self.rcuts[str(p)]= 0. self.rcuts_correct[str(p)]= 0. continue self.rcuts[str(p)]= numpy.amax(self.platespec[str(p)].dered_r) denom= float(numpy.sum((self.platephot[str(p)].r <= self.rcuts[str(p)]))) if denom == 0.: self.rcuts_correct[str(p)]= 0. else: self.rcuts_correct[str(p)]= \ float(len(self.platephot[str(p)]))/denom elif type.lower() == 'tanhrcut+brightsharprcut': #For each plate cut at the location of the brightest and faintest object if not hasattr(self,'rcuts_faint'): self.rcuts_faint= {} if not hasattr(self,'rcuts_bright'): self.rcuts_bright= {} if not hasattr(self,'rcuts_correct'): self.rcuts_correct= {} for ii in range(len(self.plates)): if bright and 'faint' in self.platestr[ii].programname: continue elif not bright \ and not 'faint' in self.platestr[ii].programname: continue p= self.plates[ii] if self.weight[str(p)] == 0.: self.rcuts_bright[str(p)]= 0. self.rcuts_faint[str(p)]= 0. self.rcuts_correct[str(p)]= 0. continue self.rcuts_bright[str(p)]= numpy.amin(self.platespec[str(p)].dered_r) self.rcuts_faint[str(p)]= numpy.amax(self.platespec[str(p)].dered_r) denom= float(numpy.sum((self.platephot[str(p)].r <= self.rcuts_faint[str(p)])*(self.platephot[str(p)].r > self.rcuts_bright[str(p)]))) if denom == 0.: self.rcuts_correct[str(p)]= 0. else: self.rcuts_correct[str(p)]= \ float(len(self.platephot[str(p)]))/denom elif type.lower() == 'r': #Determine the selection function in bins in r, for bright/faint nrbins= int(math.floor((17.8-self.rmin)/dr))+1 s_one_r= numpy.zeros((nrbins,len(self.plates))) s_r= numpy.zeros((nrbins,len(self.plates))) #Determine s_1(r) for each plate separately first weights= numpy.zeros(len(self.plates)) if not bright: thisrmin, thisrmax= 17.8, self.rmax+dr/2. #slightly further to avoid out-of-range errors else: thisrmin, thisrmax= self.rmin-dr/2., 17.8 #slightly further to avoid out-of-range errors for ii in range(len(self.plates)): plate= self.plates[ii] if bright and 'faint' in self.platestr[ii].programname: continue elif not bright \ and not 'faint' in self.platestr[ii].programname: continue nspecr, edges = numpy.histogram(self.platespec[str(plate)].dered_r,bins=nrbins,range=[thisrmin,thisrmax]) nphotr, edges = numpy.histogram(self.platephot[str(plate)].r, bins=nrbins, range=[thisrmin,thisrmax]) nspecr= numpy.array(nspecr,dtype='float64') nphotr= numpy.array(nphotr,dtype='float64') nonzero= (nspecr > 0.)*(nphotr > 0.) s_r[nonzero,ii]= nspecr[nonzero].astype('float64')/nphotr[nonzero] weights[ii]= float(numpy.sum(nspecr))/float(numpy.sum(nphotr)) nspecr/= float(numpy.sum(nspecr)) nphotr/= float(numpy.sum(nphotr)) s_one_r[nonzero,ii]= nspecr[nonzero]/nphotr[nonzero] if bright: self.s_r_plate_rs_bright= \ numpy.linspace(self.rmin+dr/2.,17.8-dr/2.,nrbins) self.s_r_plate_bright= s_r self.s_one_r_plate_bright= s_one_r else: self.s_r_plate_rs_faint= \ numpy.linspace(17.8+dr/2.,self.rmax-dr/2.,nrbins) self.s_r_plate_faint= s_r self.s_one_r_plate_faint= s_one_r s_one_r_plate= s_one_r s_r_plate= s_r fromIndividual= False if fromIndividual: #Mean or median? median= False if median: s_one_r= numpy.median(s_one_r_plate[:,plateindx],axis=1) else: if bright: s_one_r= numpy.sum(s_one_r_plate,axis=1)/self.nbrightplates else: s_one_r= numpy.sum(s_one_r_plate,axis=1)/self.nfaintplates else: s_one_r= \ numpy.sum(s_r_plate[:,plateindx],axis=1)\ /numpy.sum(weights) if bright: self.s_one_r_bright= s_one_r self.s_r_bright= s_r else: self.s_one_r_faint= s_one_r self.s_r_faint= s_r #Bootstrap an uncertainty on the selection function if bright: nplates= self.nbrightplates else: nplates= self.nfaintplates jack_samples= numpy.zeros((nplates,len(s_one_r))) jack_s_r_plate= s_r_plate[:,plateindx] jack_s_r_weights= weights[plateindx] for jj in range(nplates): boot_indx= numpy.array([True for ii in range(nplates)],\ dtype='bool') boot_indx[jj]= False if fromIndividual: #Mean or median? if median: jack_samples[jj,:]= numpy.median(s_one_r_plate[:,plateindx[boot_indx]], axis=1) else: jack_samples[jj,:]= numpy.sum(s_one_r_plate[:,plateindx[boot_indx]], axis=1)/nplates else: jack_samples[jj,:]= \ numpy.sum(jack_s_r_plate[:,boot_indx],axis=1)\ /numpy.sum(jack_s_r_weights[boot_indx]) #Compute jackknife uncertainties s_one_r_err= numpy.sqrt((nplates-1)*numpy.var(jack_samples, axis=0)) s_one_r_err[(s_one_r_err == 0.)]= 0.01 if bright: self.s_one_r_jack_samples_bright= jack_samples self.s_one_r_err_bright= s_one_r_err else: self.s_one_r_jack_samples_faint= jack_samples self.s_one_r_err_faint= s_one_r_err if bright: self.interp_type_bright= interp_type else: self.interp_type_faint= interp_type if bright: w= numpy.zeros(len(self.s_one_r_bright))+10000. yfunc= numpy.zeros(len(w))-20. nonzero= (self.s_one_r_bright > 0.) w[nonzero]= \ self.s_one_r_bright[nonzero]/self.s_one_r_err_bright[nonzero] yfunc[nonzero]= numpy.log(self.s_one_r_bright[nonzero]) self.interp_rs_bright= \ numpy.linspace(self.rmin+1.*dr/2.,17.8-1.*dr/2.,nrbins) if interp_type.lower() == 'spline': self.s_one_r_bright_interpolate= interpolate.splrep(\ self.interp_rs_bright,yfunc, k=interp_degree,w=w) #Continue along the derivative for out of bounds minderiv= interpolate.splev(self.interp_rs_bright[0], self.s_one_r_bright_interpolate, der=1) self.s_one_r_bright_minderiv= minderiv self.s_one_r_bright_minxo= self.interp_rs_bright[0] self.s_one_r_bright_minyo= yfunc[0] elif interp_type.lower() == 'tanh': #Fit a tanh to s_1(r) params= numpy.array([17.7,numpy.log(0.1), numpy.log(3.)]) params= optimize.fmin_powell(_sf_tanh_minusloglike, params, args=(self.interp_rs_bright, self.s_one_r_bright, self.s_one_r_err_bright, numpy.zeros(len(self.interp_rs_bright))+(self.interp_rs_bright[1]-self.interp_rs_bright[0])/2., robust)) self.s_one_r_tanh_params_bright= params else: w= numpy.zeros(len(self.s_one_r_faint))+10000. yfunc= numpy.zeros(len(w))-20. nonzero= (self.s_one_r_faint > 0.) w[nonzero]= \ self.s_one_r_faint[nonzero]/self.s_one_r_err_faint[nonzero] yfunc[nonzero]= numpy.log(self.s_one_r_faint[nonzero]) self.interp_rs_faint= \ numpy.linspace(17.8+1.*dr/2.,self.rmax-dr/2.,nrbins) if interp_type.lower() == 'spline': self.s_one_r_faint_interpolate= interpolate.splrep(\ self.interp_rs_faint,yfunc, k=interp_degree,w=w) #Continue along the derivative for out of bounds minderiv= interpolate.splev(self.interp_rs_faint[0], self.s_one_r_faint_interpolate, der=1) self.s_one_r_faint_minderiv= minderiv self.s_one_r_faint_minxo= self.interp_rs_faint[0] self.s_one_r_faint_minyo= yfunc[0] elif interp_type.lower() == 'tanh': #Fit a tanh to s_1(r) params= numpy.array([18.7,numpy.log(0.1), numpy.log(3.)]) params= optimize.fmin_powell(_sf_tanh_minusloglike, params, args=(self.interp_rs_faint, self.s_one_r_faint, self.s_one_r_err_faint, numpy.zeros(len(self.interp_rs_faint))+(self.interp_rs_faint[1]-self.interp_rs_faint[0])/2.,robust)) self.s_one_r_tanh_params_faint= params return None def _sf_tanh(r,params): """Tanh description of the selection, params=[rcentral,logsigmar,logconstant]""" return math.exp(params[2])/2.*(1.-numpy.tanh((r-params[0])/math.exp(params[1]))) def _sf_tanh_minusloglike(params,rs,sfs,sferrs,rerrs=None,robust=False): #return 0.5*numpy.sum((sfs-_sf_tanh(rs,params))**2./2./sferrs**2.) #Robust if rerrs is None: if robust: return numpy.sum(numpy.fabs((sfs-_sf_tanh(rs,params))/sferrs)) else: return numpy.sum((sfs-_sf_tanh(rs,params))**2./2./sferrs**2.) else: ngrid= 21 nsigma= 3. grid= numpy.linspace(-nsigma,nsigma,ngrid) if robust: presum= numpy.fabs(grid) else: presum= grid**2./2. out= 0. for ii in range(len(rs)): thisgrid= grid*rerrs[ii]+rs[ii] if robust: out+= misc.logsumexp(presum+numpy.fabs(sfs[ii]-_sf_tanh(thisgrid, params))/\ sferrs[ii]) else: out+= misc.logsumexp(presum+(sfs[ii]-_sf_tanh(thisgrid, params))**2./2./\ sferrs[ii]**2.) return out def _linear_func(x,deriv,xo,yo): """Evaluate a linear function""" return deriv*(x-xo)+yo def ivezic_dist_gr(g,r,feh,dg=0.,dr=0.,dfeh=0.,return_error=False, dmr=0.1): """ NAME: ivezic_dist_gr PURPOSE: Ivezic et al. (2008) distances in terms of g-r for <M0 stars INPUT: g, r, feh - dereddened g and r and metallicity return_error= if True, return errors dg, dr, dfeh= uncertainties dmr= intrinsic cmd scatter OUTPUT: (dist,disterr) arrays in kpc HISTORY: 2011-07-11 - Written - Bovy@MPIA (NYU) """ #First distances, then uncertainties gi= _gi_gr(g-r) mr= _mr_gi(gi,feh) ds= 10.**(0.2*(r-mr)-2.) if not return_error: return (ds,0.*ds) #Now propagate the uncertainties dgi= numpy.sqrt(_gi_gr(g-r,dg=True)**2.*dg**2. +_gi_gr(g-r,dr=True)**2.*dr**2.) dmr= numpy.sqrt(_mr_gi(gi,feh,dgi=True)**2.*dgi**2. +_mr_gi(gi,feh,dfeh=True)**2.*dfeh**2.+dmr**2.) derrs= 0.2*numpy.log(10.)*numpy.sqrt(dmr**2.+dr**2.)*ds return (ds,derrs) def juric_dist_gr(g,r,dg=0.,dr=0.,return_error=False, dmr=0.3,faint=False): """ NAME: juric_dist_gr PURPOSE: Juric et al. (2008) distances in terms of g-r for <M0 stars INPUT: g, r- dereddened g and r return_error= if True, return errors dg, dr= uncertainties dmr= intrinsic cmd scatter faint= if True, use faint relation, else use bright OUTPUT: (dist,disterr) arrays in kpc HISTORY: 2011-08-08 - Written - Bovy (NYU) """ #First distances, then uncertainties ri= _ri_gr(g-r) if faint: mr= _mr_ri_faint(ri) else: mr= _mr_ri_bright(ri) ds= 10.**(0.2*(r-mr)-2.) if not return_error: return (ds,0.*ds) #Now propagate the uncertainties dri= numpy.sqrt(_ri_gr(g-r,dg=True)**2.*dg**2. +_ri_gr(g-r,dr=True)**2.*dr**2.) if faint: dmr= numpy.sqrt(_mr_ri_faint(ri,dri=True)**2.*dri**2. +dmr**2.) else: dmr= numpy.sqrt(_mr_ri_bright(ri,dri=True)**2.*dri**2. +dmr**2.) derrs= 0.2*numpy.log(10.)*numpy.sqrt(dmr**2.+dr**2.)*ds return (ds,derrs) def read_gdwarfs(file=_GDWARFALLFILE,logg=False,ug=False,ri=False,sn=True, ebv=True,nocoords=False): """ NAME: read_gdwarfs PURPOSE: read the spectroscopic G dwarf sample INPUT: logg= if True, cut on logg, if number, cut on logg > the number (>4.2) ug= if True, cut on u-g, if list/array cut to ug[0] < u-g< ug[1] ri= if True, cut on r-i, if list/array cut to ri[0] < r-i< ri[1] sn= if False, don't cut on SN, if number cut on SN > the number (15) ebv= if True, cut on E(B-V), if number cut on EBV < the number (0.3) nocoords= if True, don't calculate distances or transform coordinates OUTPUT: cut data, returns numpy.recarray HISTORY: 2011-07-08 - Written - Bovy@MPIA (NYU) """ raw= _load_fits(file) #First cut on r indx= (raw.field('dered_r') < 20.2)*(raw.field('dered_r') > 14.5) raw= raw[indx] #Then cut on g-r indx= ((raw.field('dered_g')-raw.field('dered_r')) < 0.55)\ *((raw.field('dered_g')-raw.field('dered_r')) > .48) raw= raw[indx] #Cut on velocity errs indx= (raw.field('pmra_err') > 0.)*(raw.field('pmdec_err') > 0.)\ *(raw.field('vr_err') > 0.) raw= raw[indx] #Cut on logg? if (isinstance(logg,bool) and logg): indx= (raw.field('logga') > 4.2) raw= raw[indx] elif not isinstance(logg,bool): indx= (raw.field('logga') > logg) raw= raw[indx] if isinstance(ug,bool) and ug: indx= ((raw.field('dered_u')-raw.field('dered_g')) < 2.)\ *((raw.field('dered_u')-raw.field('dered_g')) > .6) raw= raw[indx] if not isinstance(ug,bool): indx= ((raw.field('dered_u')-raw.field('dered_g')) < ug[1])\ *((raw.field('dered_u')-raw.field('dered_g')) > ug[0]) raw= raw[indx] if isinstance(ri,bool) and ri: indx= ((raw.field('dered_r')-raw.field('dered_i')) < .4)\ *((raw.field('dered_r')-raw.field('dered_i')) > -.1) raw= raw[indx] elif not isinstance(ri,bool): indx= ((raw.field('dered_r')-raw.field('dered_i')) < ri[1])\ *((raw.field('dered_r')-raw.field('dered_i')) > ri[0]) raw= raw[indx] if (isinstance(sn,bool) and sn): indx= (raw.field('sna') > 15.) raw= raw[indx] elif not isinstance(sn,bool): indx= (raw.field('sna') > sn) raw= raw[indx] if isinstance(ebv,bool) and ebv: indx= (raw.field('ebv') < .3) raw= raw[indx] elif not isinstance(ebv,bool): indx= (raw.field('ebv') < ebv) raw= raw[indx] if nocoords: return raw raw= _add_distances(raw) raw= _add_velocities(raw) return raw def read_kdwarfs(file=_KDWARFALLFILE,logg=False,ug=False,ri=False,sn=True, ebv=True,nocoords=False): """ NAME: read_kdwarfs PURPOSE: read the spectroscopic K dwarf sample INPUT: logg= if True, cut on logg (default: >4.2) ug= if True, cut on u-g ri= if True, cut on r-i sn= if False, don't cut on SN ebv= if True, cut on E(B-V) nocoords= if True, don't calculate distances or transform coordinates OUTPUT: cut data, returns numpy.recarray HISTORY: 2011-07-11 - Written - Bovy@MPIA (NYU) """ raw= _load_fits(file) #First cut on r indx= (raw.field('dered_r') < 19.)*(raw.field('dered_r') > 14.5) raw= raw[indx] #Then cut on g-r indx= ((raw.field('dered_g')-raw.field('dered_r')) < 0.75)\ *((raw.field('dered_g')-raw.field('dered_r')) > .55) raw= raw[indx] #Cut on velocity errs indx= (raw.field('pmra_err') > 0.)*(raw.field('pmdec_err') > 0.)\ *(raw.field('vr_err') > 0.) raw= raw[indx] #Cut on logg? if isinstance(logg,bool) and logg: indx= (raw.field('logga') > 4.2) raw= raw[indx] elif not isinstance(logg,bool): indx= (raw.field('logga') > logg) raw= raw[indx] if isinstance(ug,bool) and ug: indx= ((raw.field('dered_u')-raw.field('dered_g')) < 2.5)\ *((raw.field('dered_u')-raw.field('dered_g')) > 1.5) raw= raw[indx] elif not isinstance(ug,bool): indx= ((raw.field('dered_u')-raw.field('dered_g')) < ug[1])\ *((raw.field('dered_u')-raw.field('dered_g')) > ug[0]) raw= raw[indx] if isinstance(ri,bool) and ri: indx= ((raw.field('dered_r')-raw.field('dered_i')) < .7)\ *((raw.field('dered_r')-raw.field('dered_i')) > .1) raw= raw[indx] elif not isinstance(ri,bool): indx= ((raw.field('dered_r')-raw.field('dered_i')) < ri[1])\ *((raw.field('dered_r')-raw.field('dered_i')) > ri[0]) raw= raw[indx] if isinstance(sn,bool) and sn: indx= (raw.field('sna') > 15.) raw= raw[indx] elif not isinstance(sn,bool): indx= (raw.field('sna') > sn) raw= raw[indx] if isinstance(ebv,bool) and ebv: indx= (raw.field('ebv') < .3) raw= raw[indx] elif not isinstance(ebv,bool): indx= (raw.field('ebv') < ebv) raw= raw[indx] if nocoords: return raw raw= _add_distances(raw) raw= _add_velocities(raw) return raw def _add_distances(raw): """Add distances""" ds,derrs= ivezic_dist_gr(raw.dered_g,raw.dered_r,raw.feh, return_error=True,dg=raw.g_err, dr=raw.r_err,dfeh=raw.feh_err) raw= _append_field_recarray(raw,'dist',ds) raw= _append_field_recarray(raw,'dist_err',derrs) return raw def _add_velocities(raw): if not _COORDSLOADED: print "galpy.util.bovy_coords failed to load ..." print "Install galpy for coordinate transformations ..." print "*not* adding velocities ..." return raw #We start from RA and Dec lb= bovy_coords.radec_to_lb(raw.ra,raw.dec,degree=True) XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],raw.dist,degree=True) pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(raw.pmra,raw.pmdec, raw.ra,raw.dec,degree=True) #print numpy.mean(pmllpmbb[:,0]-raw.pml), numpy.std(pmllpmbb[:,0]-raw.pml) #print numpy.mean(pmllpmbb[:,1]-raw.pmb), numpy.std(pmllpmbb[:,1]-raw.pmb) vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(raw.vr,pmllpmbb[:,0], pmllpmbb[:,1],lb[:,0],lb[:,1], raw.dist,degree=True) #Solar motion from Schoenrich & Binney vxvyvz[:,0]+= -11.1 vxvyvz[:,1]+= 12.24 vxvyvz[:,2]+= 7.25 #print numpy.mean(vxvyvz[:,2]), numpy.std(vxvyvz[:,2]) #Propagate uncertainties ndata= len(raw.ra) cov_pmradec= numpy.zeros((ndata,2,2)) cov_pmradec[:,0,0]= raw.pmra_err**2. cov_pmradec[:,1,1]= raw.pmdec_err**2. cov_pmllbb= bovy_coords.cov_pmrapmdec_to_pmllpmbb(cov_pmradec,raw.ra, raw.dec,degree=True) cov_vxvyvz= bovy_coords.cov_dvrpmllbb_to_vxyz(raw.dist, raw.dist_err, raw.vr_err, pmllpmbb[:,0],pmllpmbb[:,1], cov_pmllbb,lb[:,0],lb[:,1], degree=True) #Cast XYZ= XYZ.astype(numpy.float64) vxvyvz= vxvyvz.astype(numpy.float64) cov_vxvyvz= cov_vxvyvz.astype(numpy.float64) #Append results to structure raw= _append_field_recarray(raw,'xc',XYZ[:,0]) raw= _append_field_recarray(raw,'yc',XYZ[:,1]) raw= _append_field_recarray(raw,'zc',XYZ[:,2]) raw= _append_field_recarray(raw,'vxc',vxvyvz[:,0]) raw= _append_field_recarray(raw,'vyc',vxvyvz[:,1]) raw= _append_field_recarray(raw,'vzc',vxvyvz[:,2]) raw= _append_field_recarray(raw,'vxc_err',numpy.sqrt(cov_vxvyvz[:,0,0])) raw= _append_field_recarray(raw,'vyc_err',numpy.sqrt(cov_vxvyvz[:,1,1])) raw= _append_field_recarray(raw,'vzc_err',numpy.sqrt(cov_vxvyvz[:,2,2])) raw= _append_field_recarray(raw,'vxvyc_rho',cov_vxvyvz[:,0,1]\ /numpy.sqrt(cov_vxvyvz[:,0,0])\ /numpy.sqrt(cov_vxvyvz[:,1,1])) raw= _append_field_recarray(raw,'vxvzc_rho',cov_vxvyvz[:,0,2]\ /numpy.sqrt(cov_vxvyvz[:,0,0])\ /numpy.sqrt(cov_vxvyvz[:,2,2])) raw= _append_field_recarray(raw,'vyvzc_rho',cov_vxvyvz[:,1,2]\ /numpy.sqrt(cov_vxvyvz[:,1,1])\ /numpy.sqrt(cov_vxvyvz[:,2,2])) return raw def _load_fits(file,ext=1): """Loads fits file's data and returns it as a numpy.recarray with lowercase field names""" hdulist= pyfits.open(file) out= hdulist[ext].data hdulist.close() return _as_recarray(out) def _append_field_recarray(recarray, name, new): new = numpy.asarray(new) newdtype = numpy.dtype(recarray.dtype.descr + [(name, new.dtype)]) newrecarray = numpy.recarray(recarray.shape, dtype=newdtype) for field in recarray.dtype.fields: newrecarray[field] = recarray.field(field) newrecarray[name] = new return newrecarray def _as_recarray(recarray): """go from FITS_rec to recarray""" newdtype = numpy.dtype(recarray.dtype.descr) newdtype.names= tuple([n.lower() for n in newdtype.names]) newrecarray = numpy.recarray(recarray.shape, dtype=newdtype) for field in recarray.dtype.fields: newrecarray[field.lower()] = recarray.field(field) return newrecarray #Ivezic and Juric distance functions def _mr_gi(gi,feh,dgi=False,dfeh=False): """Ivezic+08 photometric distance""" if dgi: return 14.32-2.*12.97*gi+3.*6.127*gi**2.-4.*1.267*gi**3.\ +5.*0.0967*gi**4. elif dfeh: return -1.11-0.36*feh else: mro= -5.06+14.32*gi-12.97*gi**2.+6.127*gi**3.-1.267*gi**4.\ +0.0967*gi**5. dmr= 4.5-1.11*feh-0.18*feh**2. mr= mro+dmr return mr def _mr_ri_bright(ri,dri=False): """Juric+08 bright photometric distance""" if dri: return 13.3-2.*11.5*ri+3.*5.4*ri**2.-4.*0.7*ri**3. else: return 3.2+13.3*ri-11.5*ri**2.+5.4*ri**3.-0.7*ri**4. def _mr_ri_faint(ri,dri=False): """Juric+08 faint photometric distance""" if dri: return 11.86-2.*10.74*ri+3.*5.99*ri**2.-4.*1.2*ri**3. else: return 4.+11.86*ri-10.74*ri**2.+5.99*ri**3.-1.2*ri**4. def _gi_gr(gr,dr=False,dg=False): """(g-i) = (g-r)+(r-i), with Juric et al. (2008) stellar locus for g-r, BOVY: JUST USES LINEAR APPROXIMATION VALID FOR < M0""" if dg: return 1.+1./2.34 elif dr: return -1.-1./2.34 else: ri= (gr-0.12)/2.34 return gr+ri def _ri_gr(gr,dr=False,dg=False): """(r-i) = f(g-r), with Juric et al. (2008) stellar locus for g-r, BOVY: JUST USES LINEAR APPROXIMATION VALID FOR < M0""" if dg: return 1./2.34 elif dr: return 1./2.34 else: ri= (gr-0.07)/2.34 return ri ############################CLEAN UP PHOTOMETRY################################ def _cleanup_photometry(): #Load plates platestr= _load_fits(os.path.join(_SEGUESELECTDIR, 'segueplates.fits')) plates= list(platestr.plate) for ii in range(len(plates)): plate= plates[ii] platefile= os.path.join(_SEGUESELECTDIR,'segueplates', '%i.fit' % plate) try: platephot= _load_fits(platefile) except AttributeError: continue #Split into bright and faint if 'faint' in platestr[ii].programname: indx= (platephot.field('r') >= 17.8) platephot= platephot[indx] else: indx= (platephot.field('r') < 17.8) platephot= platephot[indx] #Save pyfits.writeto(platefile,platephot,clobber=True) #########################ADD KS VALUES TO PLATES############################### def _add_ks(outfile,sample='g',select='all'): """Add the KS probability to the segueplates file""" #Load plates platestr= _load_fits(os.path.join(_SEGUESELECTDIR, 'segueplates.fits')) plates= list(platestr.plate) #Load selection functions sfconst= segueSelect(sn=True,sample=sample, type_bright='constant', type_faint='constant',select=select) sfr= segueSelect(sn=True,sample=sample, type_bright='r', type_faint='r',select=select, dr_bright=0.05,dr_faint=0.2, robust_bright=True) if sample.lower() == 'k' and select.lower() == 'program': dr_bright= 0.4 dr_faint= 0.5 else: dr_bright= 0.2 dr_faint= 0.2 sfplatesn_r= segueSelect(sn=True,sample=sample, type_bright='platesn_r', type_faint='platesn_r',select=select, dr_bright=dr_bright, dr_faint=dr_faint, robust_bright=True) sfsharp= segueSelect(sn=True,sample=sample, type_bright='sharprcut', type_faint='sharprcut',select=select) sftanh= segueSelect(sn=True,sample=sample, type_bright='tanhrcut', type_faint='tanhrcut',select=select) #Calculate KS for each plate nplates= len(plates) ksconst= numpy.zeros(nplates) ksr= numpy.zeros(nplates) ksplatesn_r= numpy.zeros(nplates) kssharp= numpy.zeros(nplates) kstanh= numpy.zeros(nplates) for ii in range(nplates): plate= plates[ii] sys.stdout.write('\r'+"Working on plate %i" % plate) sys.stdout.flush() try: ksconst[ii]= sfconst.check_consistency(plate) except KeyError: continue ksr[ii]= sfr.check_consistency(plate) ksplatesn_r[ii]= sfplatesn_r.check_consistency(plate) kssharp[ii]= sfsharp.check_consistency(plate) kstanh[ii]= sftanh.check_consistency(plate) sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() #Add to platestr platestr= _append_field_recarray(platestr,'ksconst_'+sample+'_'+select, ksconst) platestr= _append_field_recarray(platestr,'ksr_'+sample+'_'+select, ksr) platestr= _append_field_recarray(platestr,'ksplatesn_r_'+sample+'_'+select, ksplatesn_r) platestr= _append_field_recarray(platestr,'kssharp_'+sample+'_'+select, kssharp) platestr= _append_field_recarray(platestr,'kstanh_'+sample+'_'+select, kstanh) #Save pyfits.writeto(outfile,platestr,clobber=True) return
bsd-3-clause
perryjohnson/biplaneblade
sandia_blade_lib/prep_stn06_mesh.py
1
7155
"""Write initial TrueGrid files for one Sandia blade station. Usage ----- start an IPython (qt)console with the pylab flag: $ ipython qtconsole --pylab or $ ipython --pylab Then, from the prompt, run this script: |> %run sandia_blade_lib/prep_stnXX_mesh.py or |> import sandia_blade_lib/prep_stnXX_mesh Author: Perry Roth-Johnson Last updated: April 10, 2014 """ import matplotlib.pyplot as plt import lib.blade as bl import lib.poly_utils as pu from shapely.geometry import Polygon # SET THESE PARAMETERS ----------------- station_num = 6 # -------------------------------------- plt.close('all') # load the Sandia blade m = bl.MonoplaneBlade('Sandia blade SNL100-00', 'sandia_blade') # pre-process the station dimensions station = m.list_of_stations[station_num-1] station.airfoil.create_polygon() station.structure.create_all_layers() station.structure.save_all_layer_edges() station.structure.write_all_part_polygons() # plot the parts station.plot_parts() # access the structure for this station st = station.structure # upper spar cap ----------------------------------------------------------- label = 'upper spar cap' # create the bounding polygon points_usc = [ (-0.75, 2.5), ( 0.75, 2.5), ( 0.75, 3.0), (-0.75, 3.0) ] bounding_polygon = Polygon(points_usc) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # lower spar cap ----------------------------------------------------------- label = 'lower spar cap' # create the bounding polygon points_lsc = [ (-0.75,-3.0), ( 0.75,-3.0), ( 0.75,-2.5), (-0.75,-2.5) ] bounding_polygon = Polygon(points_lsc) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # TE reinforcement --------------------------------------------------------- label = 'TE reinforcement' # create the bounding polygon points_te = [ (1.84700000, 1.99925983), (1.95, 2.1), (3.0, 2.0), (3.0,-2.0), (1.95,-2.1), (1.84700000, -1.99925983) ] bounding_polygon = Polygon(points_te) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # LE panel ----------------------------------------------------------------- label = 'LE panel' # create the bounding polygon is1 = st.internal_surface_1.layer['resin'] points_le = [ (-3.00,-3.0), (-0.75,-3.0), (-0.75000000, -2.58336990), # (-0.75994863, -2.56986995), is1.polygon.interiors[0].coords[-1], is1.polygon.interiors[0].coords[-31], # (-0.75994863, 2.56986995), (-0.75000000, 2.58336990), (-0.75, 3.0), (-3.00, 3.0) ] bounding_polygon = Polygon(points_le) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # upper aft panel 1 ------------------------------------------------------- label = 'upper aft panel 1' # create the bounding polygon points_ur = [ (0.75, 2.8), (2.0, 2.8), (1.95, 2.1), points_te[0], (1.84700000, 1.99792189), (1.83700000, 1.99343115), (0.8, 2.0), (0.75949119, 2.56768163), (0.75000000, 2.58336990) ] bounding_polygon = Polygon(points_ur) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # lower aft panel 1 ------------------------------------------------------- label = 'lower aft panel 1' # create the bounding polygon points_lr = [ (0.75, -2.8), (2.0, -2.8), (1.95, -2.1), points_te[-1], (1.84700000, -points_ur[-5][1]), (1.83700000, -points_ur[-4][1]), (0.8, -2.0), (0.75949119, -2.56768163), (0.75000000, -points_ur[-1][1]) ] bounding_polygon = Polygon(points_lr) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.root_buildup, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.internal_surface_1, 'triax', label, bounding_polygon) # show the plot plt.show() # write the TrueGrid input file for mesh generation --------------------- st.write_truegrid_inputfile( interrupt_flag=True, additional_layers=[ st.spar_cap.layer['upper'], st.spar_cap.layer['lower'], st.TE_reinforcement.layer['uniax'], st.aft_panel_1.layer['upper'], st.aft_panel_1.layer['lower'], st.LE_panel.layer['foam'] ])
gpl-3.0
gotomypc/scikit-learn
sklearn/neighbors/approximate.py
128
22351
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
rlong011/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
dingocuster/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
kambysese/mne-python
examples/time_frequency/plot_temporal_whitening.py
20
1828
""" ================================ Temporal whitening with AR model ================================ Here we fit an AR model to the data and use it to temporally whiten the signals. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np from scipy import signal import matplotlib.pyplot as plt import mne from mne.time_frequency import fit_iir_model_raw from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' proj_fname = data_path + '/MEG/sample/sample_audvis_ecg-proj.fif' raw = mne.io.read_raw_fif(raw_fname) proj = mne.read_proj(proj_fname) raw.info['projs'] += proj raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels # Set up pick list: Gradiometers - bad channels picks = mne.pick_types(raw.info, meg='grad', exclude='bads') order = 5 # define model order picks = picks[:1] # Estimate AR models on raw data b, a = fit_iir_model_raw(raw, order=order, picks=picks, tmin=60, tmax=180) d, times = raw[0, 10000:20000] # look at one channel from now on d = d.ravel() # make flat vector innovation = signal.convolve(d, a, 'valid') d_ = signal.lfilter(b, a, innovation) # regenerate the signal d_ = np.r_[d_[0] * np.ones(order), d_] # dummy samples to keep signal length ############################################################################### # Plot the different time series and PSDs plt.close('all') plt.figure() plt.plot(d[:100], label='signal') plt.plot(d_[:100], label='regenerated signal') plt.legend() plt.figure() plt.psd(d, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(innovation, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(d_, Fs=raw.info['sfreq'], NFFT=2048, linestyle='--') plt.legend(('Signal', 'Innovation', 'Regenerated signal')) plt.show()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/sklearn/examples/applications/svm_gui.py
124
11251
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet try: import tkinter as Tk except ImportError: # Backward compat for Python 2 import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
mit
mlperf/training_results_v0.5
v0.5.0/google/cloud_v2.8/gnmt-tpuv2-8/code/gnmt/model/t2t/tensor2tensor/utils/decoding.py
3
30692
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decoding utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import operator import os import re import time import numpy as np import six from six.moves import input # pylint: disable=redefined-builtin from tensor2tensor.data_generators import problem as problem_lib from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import text_problems from tensor2tensor.utils import mlperf_log from tensor2tensor.utils import registry import tensorflow as tf FLAGS = tf.flags.FLAGS # Number of samples to draw for an image input (in such cases as captioning) IMAGE_DECODE_LENGTH = 100 def decode_hparams(overrides=""): """Hyperparameters for decoding.""" hp = tf.contrib.training.HParams( save_images=False, log_results=True, extra_length=100, batch_size=0, beam_size=4, alpha=0.6, eos_penalty=0.0, block_size=0, guess_and_check_top_k=0, guess_and_check_epsilon=-1, return_beams=False, write_beam_scores=False, max_input_size=-1, identity_output=False, num_samples=-1, delimiter="\n", decode_to_file=None, decode_in_memory=False, summaries_log_dir="decode", # Directory to write hook summaries. shards=1, # How many shards of data to decode (treating 1 as None). shard_id=0, # Which shard are we decoding if more than 1 above. shards_start_offset=0, # Number of the first shard to decode. num_decodes=1, force_decode_length=False, display_decoded_images=False, # Multi-problem decoding task id. multiproblem_task_id=-1, # Used for video decoding. frames_per_second=10, skip_eos_postprocess=False, # Creates a blue/red border covering border_percent of the frame. border_percent=2, # Maximum number of videos displayed. # Total number of videos are max_display_outputs * num_decodes max_display_outputs=10, # Used for MLPerf compliance logging. mlperf_decode_step=0.0, mlperf_threshold=25.0, mlperf_success=False) hp.parse(overrides) return hp def log_decode_results(inputs, outputs, problem_name, prediction_idx, inputs_vocab, targets_vocab, targets=None, save_images=False, output_dir=None, identity_output=False, log_results=True): """Log inference results.""" # TODO(lukaszkaiser) refactor this into feature_encoder is_video = "video" in problem_name or "gym" in problem_name if is_video: def fix_and_save_video(vid, prefix): save_path_template = os.path.join( output_dir, "%s_%s_%05d_{:05d}.png" % (problem_name, prefix, prediction_idx)) # this is only required for predictions if vid.shape[-1] == 1: vid = np.squeeze(vid, axis=-1) save_video(vid, save_path_template) tf.logging.info("Saving video: {}".format(prediction_idx)) fix_and_save_video(inputs, "inputs") fix_and_save_video(outputs, "outputs") fix_and_save_video(targets, "targets") is_image = "image" in problem_name is_text2class = isinstance(registry.problem(problem_name), text_problems.Text2ClassProblem) skip_eos_postprocess = is_image or is_text2class decoded_inputs = None if is_image and save_images: save_path = os.path.join( output_dir, "%s_prediction_%d.jpg" % (problem_name, prediction_idx)) show_and_save_image(inputs / 255., save_path) elif inputs is not None and inputs_vocab: if identity_output: decoded_inputs = " ".join(map(str, inputs.flatten())) else: decoded_inputs = inputs_vocab.decode(_save_until_eos( inputs, skip_eos_postprocess)) if log_results and not is_video: tf.logging.info("Inference results INPUT: %s" % decoded_inputs) decoded_targets = None decoded_outputs = None if identity_output: decoded_outputs = " ".join(map(str, outputs.flatten())) if targets is not None: decoded_targets = " ".join(map(str, targets.flatten())) else: decoded_outputs = targets_vocab.decode(_save_until_eos( outputs, skip_eos_postprocess)) if targets is not None and log_results: decoded_targets = targets_vocab.decode(_save_until_eos( targets, skip_eos_postprocess)) if not is_video: tf.logging.info("Inference results OUTPUT: %s" % decoded_outputs) if targets is not None and log_results and not is_video: tf.logging.info("Inference results TARGET: %s" % decoded_targets) return decoded_inputs, decoded_outputs, decoded_targets def decode_from_dataset(estimator, problem_name, hparams, decode_hp, decode_to_file=None, dataset_split=None, checkpoint_path=None): """Perform decoding from dataset.""" tf.logging.info("Performing local inference from dataset for %s.", str(problem_name)) # We assume that worker_id corresponds to shard number. shard = decode_hp.shard_id if decode_hp.shards > 1 else None # Setup decode output directory for any artifacts that may be written out output_dir = os.path.join(estimator.model_dir, "decode") tf.gfile.MakeDirs(output_dir) # If decode_hp.batch_size is specified, use a fixed batch size if decode_hp.batch_size: hparams.batch_size = decode_hp.batch_size hparams.use_fixed_batch_size = True dataset_kwargs = { "shard": shard, "dataset_split": dataset_split, "max_records": decode_hp.num_samples } # Build the inference input function problem = hparams.problem infer_input_fn = problem.make_estimator_input_fn( tf.estimator.ModeKeys.PREDICT, hparams, dataset_kwargs=dataset_kwargs) predictions, output_dirs = [], [] for decode_id in range(decode_hp.num_decodes): tf.logging.info("Decoding {}".format(decode_id)) # Create decode directory if not in-memory decoding. if not decode_hp.decode_in_memory: output_dir = os.path.join(estimator.model_dir, "decode_%05d" % decode_id) tf.gfile.MakeDirs(output_dir) output_dirs.append(output_dir) result = decode_once(estimator, problem_name, hparams, infer_input_fn, decode_hp, decode_to_file, output_dir, log_results=not decode_hp.decode_in_memory, checkpoint_path=checkpoint_path) if decode_hp.decode_in_memory: output_dirs = [output_dir] predictions.append(result) if decode_hp.decode_to_file: decode_hp.decode_to_file = _decode_filename( decode_hp.decode_to_file, problem_name, decode_hp) run_postdecode_hooks(DecodeHookArgs( estimator=estimator, problem=problem, output_dirs=output_dirs, hparams=hparams, decode_hparams=decode_hp, predictions=predictions ), dataset_split) return predictions def decode_once(estimator, problem_name, hparams, infer_input_fn, decode_hp, decode_to_file, output_dir, log_results=True, checkpoint_path=None): """Decodes once.""" # Get the predictions as an iterable predictions = estimator.predict(infer_input_fn, checkpoint_path=checkpoint_path) if not log_results: return list(predictions) # Prepare output file writers if decode_to_file passed decode_to_file = decode_to_file or decode_hp.decode_to_file if decode_to_file: output_filepath = _decode_filename(decode_to_file, problem_name, decode_hp) parts = output_filepath.split(".") parts[-1] = "targets" target_filepath = ".".join(parts) parts[-1] = "inputs" input_filepath = ".".join(parts) output_file = tf.gfile.Open(output_filepath, "w") target_file = tf.gfile.Open(target_filepath, "w") input_file = tf.gfile.Open(input_filepath, "w") problem_hparams = hparams.problem_hparams # Inputs vocabulary is set to targets if there are no inputs in the problem, # e.g., for language models where the inputs are just a prefix of targets. has_input = "inputs" in problem_hparams.vocabulary inputs_vocab_key = "inputs" if has_input else "targets" inputs_vocab = problem_hparams.vocabulary[inputs_vocab_key] targets_vocab = problem_hparams.vocabulary["targets"] num_eval_samples = 0 for num_predictions, prediction in enumerate(predictions): num_eval_samples += 1 num_predictions += 1 inputs = prediction.get("inputs") targets = prediction.get("targets") outputs = prediction.get("outputs") # Log predictions decoded_outputs = [] decoded_scores = [] if decode_hp.return_beams: output_beams = np.split(outputs, decode_hp.beam_size, axis=0) scores = None if "scores" in prediction: scores = np.split(prediction["scores"], decode_hp.beam_size, axis=0) for i, beam in enumerate(output_beams): tf.logging.info("BEAM %d:" % i) score = scores and scores[i] decoded = log_decode_results( inputs, beam, problem_name, num_predictions, inputs_vocab, targets_vocab, save_images=decode_hp.save_images, output_dir=output_dir, identity_output=decode_hp.identity_output, targets=targets, log_results=decode_hp.log_results) decoded_outputs.append(decoded) if decode_hp.write_beam_scores: decoded_scores.append(score) else: decoded = log_decode_results( inputs, outputs, problem_name, num_predictions, inputs_vocab, targets_vocab, save_images=decode_hp.save_images, output_dir=output_dir, identity_output=decode_hp.identity_output, targets=targets, log_results=decode_hp.log_results) decoded_outputs.append(decoded) # Write out predictions if decode_to_file passed if decode_to_file: for i, (d_input, d_output, d_target) in enumerate(decoded_outputs): # Skip if all padding if d_input and re.match("^({})+$".format(text_encoder.PAD), d_input): continue beam_score_str = "" if decode_hp.write_beam_scores: beam_score_str = "\t%.2f" % decoded_scores[i] output_file.write(str(d_output) + beam_score_str + decode_hp.delimiter) target_file.write(str(d_target) + decode_hp.delimiter) input_file.write(str(d_input) + decode_hp.delimiter) if (decode_hp.num_samples >= 0 and num_predictions >= decode_hp.num_samples): break mlperf_log.transformer_print(key=mlperf_log.EVAL_SIZE, value=num_eval_samples, hparams=hparams) if decode_to_file: output_file.close() target_file.close() input_file.close() def decode_from_file(estimator, filename, hparams, decode_hp, decode_to_file=None, checkpoint_path=None): """Compute predictions on entries in filename and write them out.""" if not decode_hp.batch_size: decode_hp.batch_size = 32 tf.logging.info( "decode_hp.batch_size not specified; default=%d" % decode_hp.batch_size) # Inputs vocabulary is set to targets if there are no inputs in the problem, # e.g., for language models where the inputs are just a prefix of targets. p_hp = hparams.problem_hparams has_input = "inputs" in p_hp.vocabulary inputs_vocab_key = "inputs" if has_input else "targets" inputs_vocab = p_hp.vocabulary[inputs_vocab_key] targets_vocab = p_hp.vocabulary["targets"] problem_name = FLAGS.problem filename = _add_shard_to_filename(filename, decode_hp) tf.logging.info("Performing decoding from file (%s)." % filename) sorted_inputs, sorted_keys = _get_sorted_inputs(filename, decode_hp.delimiter) num_decode_batches = (len(sorted_inputs) - 1) // decode_hp.batch_size + 1 def input_fn(): input_gen = _decode_batch_input_fn( num_decode_batches, sorted_inputs, inputs_vocab, decode_hp.batch_size, decode_hp.max_input_size, task_id=decode_hp.multiproblem_task_id) gen_fn = make_input_fn_from_generator(input_gen) example = gen_fn() return _decode_input_tensor_to_features_dict(example, hparams) decodes = [] result_iter = estimator.predict(input_fn, checkpoint_path=checkpoint_path) start_time = time.time() total_time_per_step = 0 total_cnt = 0 def timer(gen): while True: try: start_time = time.time() item = next(gen) elapsed_time = time.time() - start_time yield elapsed_time, item except StopIteration: break for elapsed_time, result in timer(result_iter): if decode_hp.return_beams: beam_decodes = [] beam_scores = [] output_beams = np.split(result["outputs"], decode_hp.beam_size, axis=0) scores = None if "scores" in result: if np.isscalar(result["scores"]): result["scores"] = result["scores"].reshape(1) scores = np.split(result["scores"], decode_hp.beam_size, axis=0) for k, beam in enumerate(output_beams): tf.logging.info("BEAM %d:" % k) score = scores and scores[k] _, decoded_outputs, _ = log_decode_results( result["inputs"], beam, problem_name, None, inputs_vocab, targets_vocab, log_results=decode_hp.log_results) beam_decodes.append(decoded_outputs) if decode_hp.write_beam_scores: beam_scores.append(score) if decode_hp.write_beam_scores: decodes.append("\t".join([ "\t".join([d, "%.2f" % s]) for d, s in zip(beam_decodes, beam_scores) ])) else: decodes.append("\t".join(beam_decodes)) else: _, decoded_outputs, _ = log_decode_results( result["inputs"], result["outputs"], problem_name, None, inputs_vocab, targets_vocab, log_results=decode_hp.log_results) decodes.append(decoded_outputs) total_time_per_step += elapsed_time total_cnt += result["outputs"].shape[-1] tf.logging.info("Elapsed Time: %5.5f" % (time.time() - start_time)) tf.logging.info("Averaged Single Token Generation Time: %5.7f " "(time %5.7f count %d)" % (total_time_per_step / total_cnt, total_time_per_step, total_cnt)) # Reversing the decoded inputs and outputs because they were reversed in # _decode_batch_input_fn sorted_inputs.reverse() decodes.reverse() # If decode_to_file was provided use it as the output filename without change # (except for adding shard_id if using more shards for decoding). # Otherwise, use the input filename plus model, hp, problem, beam, alpha. decode_filename = decode_to_file if decode_to_file else filename if not decode_to_file: decode_filename = _decode_filename(decode_filename, problem_name, decode_hp) else: decode_filename = _add_shard_to_filename(decode_filename, decode_hp) tf.logging.info("Writing decodes into %s" % decode_filename) outfile = tf.gfile.Open(decode_filename, "w") for index in range(len(sorted_inputs)): outfile.write("%s%s" % (decodes[sorted_keys[index]], decode_hp.delimiter)) outfile.flush() outfile.close() output_dir = os.path.join(estimator.model_dir, "decode") tf.gfile.MakeDirs(output_dir) run_postdecode_hooks(DecodeHookArgs( estimator=estimator, problem=hparams.problem, output_dirs=[output_dir], hparams=hparams, decode_hparams=decode_hp, predictions=list(result_iter) ), None) def _add_shard_to_filename(filename, decode_hp): if decode_hp.shards > 1: shard_id = decode_hp.shard_id + decode_hp.shards_start_offset filename = filename + ("%.3d" % shard_id) return filename def _decode_filename(base_filename, problem_name, decode_hp): """Generates decode filename. Args: base_filename: A string, base of the decode filename. problem_name: A string, name of the problem. decode_hp: HParams for decoding. Returns: A string, produced decode filename. """ if decode_hp.shards > 1: base_filename = _add_shard_to_filename(base_filename, decode_hp) if ("beam{beam}.alpha{alpha}.decodes".format( beam=str(decode_hp.beam_size), alpha=str(decode_hp.alpha)) in base_filename): return base_filename else: return ( "{base}.{model}.{hp}.{problem}.beam{beam}.alpha{alpha}.decodes".format( base=base_filename, model=FLAGS.model, hp=FLAGS.hparams_set, problem=problem_name, beam=str(decode_hp.beam_size), alpha=str(decode_hp.alpha))) def make_input_fn_from_generator(gen): """Use py_func to yield elements from the given generator.""" first_ex = six.next(gen) flattened = tf.contrib.framework.nest.flatten(first_ex) types = [t.dtype for t in flattened] shapes = [[None] * len(t.shape) for t in flattened] first_ex_list = [first_ex] def py_func(): if first_ex_list: example = first_ex_list.pop() else: example = six.next(gen) return tf.contrib.framework.nest.flatten(example) def input_fn(): flat_example = tf.py_func(py_func, [], types) _ = [t.set_shape(shape) for t, shape in zip(flat_example, shapes)] example = tf.contrib.framework.nest.pack_sequence_as(first_ex, flat_example) return example return input_fn def decode_interactively(estimator, hparams, decode_hp, checkpoint_path=None): """Interactive decoding.""" is_image = "image" in hparams.problem.name is_text2class = isinstance(hparams.problem, text_problems.Text2ClassProblem) skip_eos_postprocess = ( is_image or is_text2class or decode_hp.skip_eos_postprocess) def input_fn(): gen_fn = make_input_fn_from_generator( _interactive_input_fn(hparams, decode_hp)) example = gen_fn() example = _interactive_input_tensor_to_features_dict(example, hparams) return example result_iter = estimator.predict(input_fn, checkpoint_path=checkpoint_path) for result in result_iter: targets_vocab = hparams.problem_hparams.vocabulary["targets"] if decode_hp.return_beams: beams = np.split(result["outputs"], decode_hp.beam_size, axis=0) scores = None if "scores" in result: if np.isscalar(result["scores"]): result["scores"] = result["scores"].reshape(1) scores = np.split(result["scores"], decode_hp.beam_size, axis=0) for k, beam in enumerate(beams): tf.logging.info("BEAM %d:" % k) beam_string = targets_vocab.decode(_save_until_eos( beam, skip_eos_postprocess)) if scores is not None: tf.logging.info("\"%s\"\tScore:%f" % (beam_string, scores[k])) else: tf.logging.info("\"%s\"" % beam_string) else: if decode_hp.identity_output: tf.logging.info(" ".join(map(str, result["outputs"].flatten()))) else: tf.logging.info( targets_vocab.decode(_save_until_eos( result["outputs"], skip_eos_postprocess))) def _decode_batch_input_fn(num_decode_batches, sorted_inputs, vocabulary, batch_size, max_input_size, task_id=-1): """Generator to produce batches of inputs.""" tf.logging.info(" batch %d" % num_decode_batches) # First reverse all the input sentences so that if you're going to get OOMs, # you'll see it in the first batch sorted_inputs.reverse() for b in range(num_decode_batches): tf.logging.info("Decoding batch %d" % b) batch_length = 0 batch_inputs = [] for inputs in sorted_inputs[b * batch_size:(b + 1) * batch_size]: input_ids = vocabulary.encode(inputs) if max_input_size > 0: # Subtract 1 for the EOS_ID. input_ids = input_ids[:max_input_size - 1] final_id = text_encoder.EOS_ID if task_id < 0 else task_id input_ids.append(final_id) batch_inputs.append(input_ids) if len(input_ids) > batch_length: batch_length = len(input_ids) final_batch_inputs = [] for input_ids in batch_inputs: assert len(input_ids) <= batch_length x = input_ids + [0] * (batch_length - len(input_ids)) final_batch_inputs.append(x) yield { "inputs": np.array(final_batch_inputs).astype(np.int32), } def _interactive_input_fn(hparams, decode_hp): """Generator that reads from the terminal and yields "interactive inputs". Due to temporary limitations in tf.learn, if we don't want to reload the whole graph, then we are stuck encoding all of the input as one fixed-size numpy array. We yield int32 arrays with shape [const_array_size]. The format is: [num_samples, decode_length, len(input ids), <input ids>, <padding>] Args: hparams: model hparams decode_hp: decode hparams Yields: numpy arrays Raises: Exception: when `input_type` is invalid. """ num_samples = decode_hp.num_samples if decode_hp.num_samples > 0 else 1 decode_length = decode_hp.extra_length input_type = "text" p_hparams = hparams.problem_hparams has_input = "inputs" in p_hparams.modality vocabulary = p_hparams.vocabulary["inputs" if has_input else "targets"] # This should be longer than the longest input. const_array_size = 10000 # Import readline if available for command line editing and recall. try: import readline # pylint: disable=g-import-not-at-top,unused-variable except ImportError: pass while True: prompt = ("INTERACTIVE MODE num_samples=%d decode_length=%d \n" " it=<input_type> ('text' or 'image' or 'label', default: " "text)\n" " ns=<num_samples> (changes number of samples, default: 1)\n" " dl=<decode_length> (changes decode length, default: 100)\n" " <%s> (decode)\n" " q (quit)\n" ">" % (num_samples, decode_length, "source_string" if has_input else "target_prefix")) input_string = input(prompt) if input_string == "q": return elif input_string[:3] == "ns=": num_samples = int(input_string[3:]) elif input_string[:3] == "dl=": decode_length = int(input_string[3:]) elif input_string[:3] == "it=": input_type = input_string[3:] else: if input_type == "text": input_ids = vocabulary.encode(input_string) if has_input: input_ids.append(text_encoder.EOS_ID) x = [num_samples, decode_length, len(input_ids)] + input_ids assert len(x) < const_array_size x += [0] * (const_array_size - len(x)) features = { "inputs": np.array(x).astype(np.int32), } elif input_type == "image": input_path = input_string img = vocabulary.encode(input_path) features = { "inputs": img.astype(np.int32), } elif input_type == "label": input_ids = [int(input_string)] x = [num_samples, decode_length, len(input_ids)] + input_ids features = { "inputs": np.array(x).astype(np.int32), } else: raise Exception("Unsupported input type.") for k, v in six.iteritems( problem_lib.problem_hparams_to_features(p_hparams)): features[k] = np.array(v).astype(np.int32) yield features def save_video(video, save_path_template): """Save frames of the videos into files.""" try: from PIL import Image # pylint: disable=g-import-not-at-top except ImportError as e: tf.logging.warning( "Showing and saving an image requires PIL library to be " "installed: %s", e) raise NotImplementedError("Image display and save not implemented.") for i, frame in enumerate(video): save_path = save_path_template.format(i) with tf.gfile.Open(save_path, "wb") as sp: Image.fromarray(np.uint8(frame)).save(sp) def show_and_save_image(img, save_path): """Shows an image using matplotlib and saves it.""" try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top except ImportError as e: tf.logging.warning( "Showing and saving an image requires matplotlib to be " "installed: %s", e) raise NotImplementedError("Image display and save not implemented.") plt.imshow(img) with tf.gfile.Open(save_path, "wb") as sp: plt.savefig(sp) def _get_sorted_inputs(filename, delimiter="\n"): """Returning inputs sorted according to length. Args: filename: path to file with inputs, 1 per line. delimiter: str, delimits records in the file. Returns: a sorted list of inputs """ tf.logging.info("Getting sorted inputs") with tf.gfile.Open(filename) as f: text = f.read() records = text.split(delimiter) inputs = [record.strip() for record in records] # Strip the last empty line. if not inputs[-1]: inputs.pop() input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)] sorted_input_lens = sorted(input_lens, key=operator.itemgetter(1)) # We'll need the keys to rearrange the inputs back into their original order sorted_keys = {} sorted_inputs = [] for i, (index, _) in enumerate(sorted_input_lens): sorted_inputs.append(inputs[index]) sorted_keys[index] = i return sorted_inputs, sorted_keys def _save_until_eos(ids, skip=False): """Strips everything after the first <EOS> token, which is normally 1.""" ids = ids.flatten() if skip: return ids try: index = list(ids).index(text_encoder.EOS_ID) return ids[0:index] except ValueError: # No EOS_ID: return the array as-is. return ids def _interactive_input_tensor_to_features_dict(feature_map, hparams): """Convert the interactive input format (see above) to a dictionary. Args: feature_map: dict with inputs. hparams: model hyperparameters Returns: a features dictionary, as expected by the decoder. """ inputs = tf.convert_to_tensor(feature_map["inputs"]) input_is_image = False if len(inputs.get_shape()) < 3 else True x = inputs if input_is_image: x = tf.image.resize_images(x, [299, 299]) x = tf.reshape(x, [1, 299, 299, -1]) x = tf.to_int32(x) else: # Remove the batch dimension. num_samples = x[0] length = x[2] x = tf.slice(x, [3], tf.to_int32([length])) x = tf.reshape(x, [1, -1, 1, 1]) # Transform into a batch of size num_samples to get that many random # decodes. x = tf.tile(x, tf.to_int32([num_samples, 1, 1, 1])) p_hparams = hparams.problem_hparams input_space_id = tf.constant(p_hparams.input_space_id) target_space_id = tf.constant(p_hparams.target_space_id) features = {} features["input_space_id"] = input_space_id features["target_space_id"] = target_space_id features["decode_length"] = ( IMAGE_DECODE_LENGTH if input_is_image else inputs[1]) features["inputs"] = x return features def _decode_input_tensor_to_features_dict(feature_map, hparams): """Convert the interactive input format (see above) to a dictionary. Args: feature_map: dict with inputs. hparams: model hyperparameters Returns: a features dictionary, as expected by the decoder. """ inputs = tf.convert_to_tensor(feature_map["inputs"]) input_is_image = False x = inputs p_hparams = hparams.problem_hparams # Add a third empty dimension x = tf.expand_dims(x, axis=[2]) x = tf.to_int32(x) input_space_id = tf.constant(p_hparams.input_space_id) target_space_id = tf.constant(p_hparams.target_space_id) features = {} features["input_space_id"] = input_space_id features["target_space_id"] = target_space_id features["decode_length"] = ( IMAGE_DECODE_LENGTH if input_is_image else tf.shape(x)[1] + 50) features["inputs"] = x return features def latest_checkpoint_step(ckpt_dir): ckpt = tf.train.get_checkpoint_state(ckpt_dir) if not ckpt: return None path = ckpt.model_checkpoint_path step = int(path.split("-")[-1]) return step class DecodeHookArgs(collections.namedtuple( "DecodeHookArgs", ["estimator", "problem", "output_dirs", "hparams", "decode_hparams", "predictions"])): pass def run_postdecode_hooks(decode_hook_args, dataset_split): """Run hooks after decodes have run.""" hooks = decode_hook_args.problem.decode_hooks if not hooks: return global_step = latest_checkpoint_step(decode_hook_args.estimator.model_dir) if global_step is None: tf.logging.info( "Skipping decode hooks because no checkpoint yet available.") return tf.logging.info("Running decode hooks.") parent_dir = os.path.join(decode_hook_args.output_dirs[0], os.pardir) child_dir = decode_hook_args.decode_hparams.summaries_log_dir if dataset_split is not None: child_dir += "_{}".format(dataset_split) final_dir = os.path.join(parent_dir, child_dir) summary_writer = tf.summary.FileWriter(final_dir) for hook in hooks: # Isolate each hook in case it creates TF ops with tf.Graph().as_default(): summaries = hook(decode_hook_args) if summaries: summary = tf.Summary(value=list(summaries)) summary_writer.add_summary(summary, global_step) summary_writer.close() tf.logging.info("Decode hooks done.")
apache-2.0
jblackburne/scikit-learn
doc/conf.py
12
9568
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve import sphinx_gallery # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', 'sphinx_gallery.gen_gallery', ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2016, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True sphinx_gallery_conf = { 'doc_module': 'sklearn', 'reference_url': { 'sklearn': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'nibabel': 'http://nipy.org/nibabel'} } # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'sphx_glr_plot_classifier_comparison_001.png': 600, 'sphx_glr_plot_outlier_detection_003.png': 372, 'sphx_glr_plot_gpr_co2_001.png': 350, 'sphx_glr_plot_adaboost_twoclass_001.png': 372, 'sphx_glr_plot_compare_methods_001.png': 349} def make_carousel_thumbs(app, exception): """produces the final resized carousel images""" if exception is not None: return print('Preparing carousel images') image_dir = os.path.join(app.builder.outdir, '_images') for glr_plot, max_width in carousel_thumbs.items(): image = os.path.join(image_dir, glr_plot) if os.path.exists(image): c_thumb = os.path.join(image_dir, glr_plot[:-4] + '_carousel.png') sphinx_gallery.gen_rst.scale_image(image, c_thumb, max_width, 190) def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('build-finished', make_carousel_thumbs) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
AlexRobson/scikit-learn
sklearn/ensemble/weight_boosting.py
97
40773
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _check_sample_weight(self): if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
ominux/scikit-learn
sklearn/neighbors/classification.py
1
12134
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # # License: BSD, (C) INRIA, University of Amsterdam import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import atleast2d_or_csr, deprecated class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`scipy.spatial.cKDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print neigh.predict([[1.5]]) [0] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. References ---------- http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X: array A 2-D array representing the test points. Returns ------- labels: array List of class labels (one for each data sample). """ X = atleast2d_or_csr(X) neigh_dist, neigh_ind = self.kneighbors(X) pred_labels = self._y[neigh_ind] weights = _get_weights(neigh_dist, self.weights) if weights is None: mode, _ = stats.mode(pred_labels, axis=1) else: mode, _ = weighted_mode(pred_labels, weights, axis=1) return mode.flatten().astype(np.int) class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`scipy.spatial.cKDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print neigh.predict([[1.5]]) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. References ---------- http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X: array A 2-D array representing the test points. Returns ------- labels: array List of class labels (one for each data sample). """ X = atleast2d_or_csr(X) neigh_dist, neigh_ind = self.radius_neighbors(X) pred_labels = [self._y[ind] for ind in neigh_ind] weights = _get_weights(neigh_dist, self.weights) if weights is None: mode = np.asarray([stats.mode(pl)[0] for pl in pred_labels], dtype=np.int) else: mode = np.asarray([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels, weights)], dtype=np.int) return mode.flatten().astype(np.int) class NeighborsClassifier(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the nearest neighbors vote. (Deprecated) DEPRECATED IN VERSION 0.9; WILL BE REMOVED IN VERSION 0.11 Please use :class:`KNeighborsClassifier` or :class:`RadiusNeighborsClassifier` instead. Samples participating in the vote are either the k-nearest neighbors (for some k) or all neighbors within some fixed radius around the sample to classify. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`scipy.spatial.cKDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. classification_type : {'knn_vote', 'radius_vote'}, optional Type of fit to use: 'knn_vote' specifies a k-NN classification. 'radius_vote' specifies a r-NN classification. Default is 'knn_vote'. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import NeighborsClassifier >>> neigh = NeighborsClassifier(n_neighbors=2) >>> neigh.fit(X, y) NeighborsClassifier(algorithm='auto', classification_type='knn_vote', leaf_size=30, n_neighbors=2, radius=1.0) >>> print neigh.predict([[1.5]]) [0] See also -------- NearestNeighbors NeighborsRegressor Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. References ---------- http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, classification_type='knn_vote'): if classification_type not in ('radius_vote', 'knn_vote'): raise ValueError("classification_type not recognized") self.classification_type = classification_type self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X: array A 2-D array representing the test points. Returns ------- labels: array List of class labels (one for each data sample). """ X = atleast2d_or_csr(X) if self.classification_type == 'knn_vote': neigh_ind = self.kneighbors(X, return_distance=False) pred_labels = self._y[neigh_ind] mode, _ = stats.mode(pred_labels, axis=1) return mode.flatten().astype(np.int) else: neigh_ind = self.radius_neighbors(X, return_distance=False) pred_labels = [self._y[ind] for ind in neigh_ind] return np.asarray([stats.mode(pi) for pi in pred_labels], dtype=np.int) NeighborsClassifier = deprecated( "deprecated in v0.9; will be removed in v0.11; " "use KNeighborsClassifier or RadiusNeighborsClassifier instead")( NeighborsClassifier)
bsd-3-clause
clingsz/GAE
misc/gap.py
1
4899
import numpy as np from numpy import zeros import random import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering as ag import scipy.spatial.distance dst = scipy.spatial.distance.euclidean import scipy.cluster.vq import misc.utils as utils def agclust(data,k): a = ag(n_clusters=k) a.fit(data) lbs = a.labels_ cids = [] kmc = np.zeros([k,data.shape[1]]) for i in range(k): lst = np.where(lbs==i)[0] kmc[i,:] = np.mean(data[lst,:],axis=0) cids.append(lst) return kmc,lbs def cluster_points(X, mu): clusters = {} for x in X: bestmukey = min([(i[0], np.linalg.norm(x-mu[i[0]])) \ for i in enumerate(mu)], key=lambda t:t[1])[0] try: clusters[bestmukey].append(x) except KeyError: clusters[bestmukey] = [x] return clusters def reevaluate_centers(mu, clusters): newmu = [] keys = sorted(clusters.keys()) for k in keys: newmu.append(np.mean(clusters[k], axis = 0)) return newmu def has_converged(mu, oldmu): return (set([tuple(a) for a in mu]) == set([tuple(a) for a in oldmu])) def find_centers(X, K): # Initialize to K random centers oldmu = random.sample(X, K) mu = random.sample(X, K) while not has_converged(mu, oldmu): oldmu = mu # Assign all points in X to clusters clusters = cluster_points(X, mu) # Reevaluate centers mu = reevaluate_centers(oldmu, clusters) return(mu, clusters) def Wk(mu, clusters): K = len(mu) return sum([np.linalg.norm(mu[i]-c)**2/(2*len(c)) \ for i in range(K) for c in clusters[i]]) def dist(data,K): kmc,kml = agclust(data,K) # kmc,kml = scipy.cluster.vq.kmeans2(data, K) disp = sum([dst(data[m,:],kmc[kml[m],:]) for m in range(data.shape[0])]) return disp def bounding_box(X): # xmin, xmax = min(X,key=lambda a:a[0])[0], max(X,key=lambda a:a[0])[0] # ymin, ymax = min(X,key=lambda a:a[1])[1], max(X,key=lambda a:a[1])[1] xmin = X.min(axis=0) xmax = X.max(axis=0) return (xmin,xmax) def gap_statistic(X,B=10,kMin=1,kMax=50): (xmin,xmax) = bounding_box(X) # Dispersion for real distribution # ks = range(1,10) Wks = [] Wkbs = [] gaps = [] sks = [] flag = False indk = 0 k = kMin ks = [] while not flag and k<=kMax: print 'boostraping for k=',str(k), Wk = np.log(dist(X,k)) BWkbs = zeros(B) for i in range(B): print '+', Xb = np.random.uniform(low=xmin,high=xmax,size=X.shape) BWkbs[i] = np.log(dist(Xb,k)) print 'done' Wkb = sum(BWkbs)/B sk = np.sqrt(sum((BWkbs-Wkb)**2)/B) sk = sk*np.sqrt(1+1/B) gap = Wkb - Wk Wkbs.append(Wkb) Wks.append(Wk) sks.append(sk) gaps.append(gap) ks.append(k) if indk>0: gapinc = gaps[indk-1] - (gaps[indk]-sks[indk]) if (gapinc>=0): print 'GapInc=%.4f, k=%d is a good cluster' % (gapinc,k-1) flag = True else: print 'GapInc=%.4f, try k=%d' % (gapinc,k) indk = indk + 1 k = k + 1 if not flag: print 'kMax=%d still too small for a good cluster. Try larger one' % (kMax) return(ks, Wks, Wkbs, sks) def init_board_gauss(N, k): n = float(N)/k X = [] for i in range(k): c = (random.uniform(-1, 1), random.uniform(-1, 1)) s = random.uniform(0.05,0.05) x = [] while len(x) < n: a, b = np.array([np.random.normal(c[0], s), np.random.normal(c[1], s)]) # Continue drawing points from the distribution in the range [-1,1] if abs(a) < 1 and abs(b) < 1: x.append([a,b]) X.extend(x) X = np.array(X)[:N] return X def analyze_gap_result(B,PLOT=False): ks,logWks,logWkbs,sk = utils.loadobj('temp/gapstats_B'+str(B)+'.pkl') gaps = np.asarray(logWkbs) - np.asarray(logWks) gapinc = gaps[:-1]-gaps[1:]+sk[1:] lst = np.where(gapinc>=0)[0] best_cluster_number = ks[lst[0]] print 'best cluster number is:', ks[lst[0]] if PLOT: plt.plot(ks[:-1],gapinc,'-o') plt.plot([min(ks),max(ks)],[0,0],'k--') plt.xlabel('Cluster number') plt.ylabel('Decision bound (>=0)') plt.title('BS='+str(B)+', Best Cluster Number = ' + str(ks[lst[0]])) plt.grid() return best_cluster_number def fit_gap_stats(z,bootstraps=1000,kMin=1,kMax=50): print 'Clustering for matrix observation x feature: ', z.shape B = bootstraps gap_result = gap_statistic(z,B,kMin,kMax) utils.saveobj('temp/gapstats_B'+str(B)+'.pkl',gap_result) best_cluster_number = analyze_gap_result(B) return best_cluster_number
gpl-3.0
wzbozon/statsmodels
statsmodels/graphics/tests/test_gofplots.py
27
6814
import numpy as np from numpy.testing import dec import statsmodels.api as sm from statsmodels.graphics.gofplots import qqplot, qqline, ProbPlot from scipy import stats try: import matplotlib.pyplot as plt import matplotlib have_matplotlib = True except ImportError: have_matplotlib = False class BaseProbplotMixin(object): def base_setup(self): if have_matplotlib: self.fig, self.ax = plt.subplots() self.other_array = np.random.normal(size=self.prbplt.data.shape) self.other_prbplot = sm.ProbPlot(self.other_array) def teardown(self): if have_matplotlib: plt.close('all') @dec.skipif(not have_matplotlib) def test_qqplot(self): self.fig = self.prbplt.qqplot(ax=self.ax, line=self.line) @dec.skipif(not have_matplotlib) def test_ppplot(self): self.fig = self.prbplt.ppplot(ax=self.ax, line=self.line) @dec.skipif(not have_matplotlib) def test_probplot(self): self.fig = self.prbplt.probplot(ax=self.ax, line=self.line) @dec.skipif(not have_matplotlib) def test_qqplot_other_array(self): self.fig = self.prbplt.qqplot(ax=self.ax, line=self.line, other=self.other_array) @dec.skipif(not have_matplotlib) def test_ppplot_other_array(self): self.fig = self.prbplt.ppplot(ax=self.ax, line=self.line, other=self.other_array) @dec.skipif(not have_matplotlib) def t_est_probplot_other_array(self): self.fig = self.prbplt.probplot(ax=self.ax, line=self.line, other=self.other_array) @dec.skipif(not have_matplotlib) def test_qqplot_other_prbplt(self): self.fig = self.prbplt.qqplot(ax=self.ax, line=self.line, other=self.other_prbplot) @dec.skipif(not have_matplotlib) def test_ppplot_other_prbplt(self): self.fig = self.prbplt.ppplot(ax=self.ax, line=self.line, other=self.other_prbplot) @dec.skipif(not have_matplotlib) def t_est_probplot_other_prbplt(self): self.fig = self.prbplt.probplot(ax=self.ax, line=self.line, other=self.other_prbplot) @dec.skipif(not have_matplotlib) def test_qqplot_custom_labels(self): self.fig = self.prbplt.qqplot(ax=self.ax, line=self.line, xlabel='Custom X-Label', ylabel='Custom Y-Label') @dec.skipif(not have_matplotlib) def test_ppplot_custom_labels(self): self.fig = self.prbplt.ppplot(ax=self.ax, line=self.line, xlabel='Custom X-Label', ylabel='Custom Y-Label') @dec.skipif(not have_matplotlib) def test_probplot_custom_labels(self): self.fig = self.prbplt.probplot(ax=self.ax, line=self.line, xlabel='Custom X-Label', ylabel='Custom Y-Label') @dec.skipif(not have_matplotlib) def test_qqplot_pltkwargs(self): self.fig = self.prbplt.qqplot(ax=self.ax, line=self.line, marker='d', markerfacecolor='cornflowerblue', markeredgecolor='white', alpha=0.5) @dec.skipif(not have_matplotlib) def test_ppplot_pltkwargs(self): self.fig = self.prbplt.ppplot(ax=self.ax, line=self.line, marker='d', markerfacecolor='cornflowerblue', markeredgecolor='white', alpha=0.5) @dec.skipif(not have_matplotlib) def test_probplot_pltkwargs(self): self.fig = self.prbplt.probplot(ax=self.ax, line=self.line, marker='d', markerfacecolor='cornflowerblue', markeredgecolor='white', alpha=0.5) class TestProbPlotLongely(BaseProbplotMixin): def setup(self): np.random.seed(5) self.data = sm.datasets.longley.load() self.data.exog = sm.add_constant(self.data.exog, prepend=False) self.mod_fit = sm.OLS(self.data.endog, self.data.exog).fit() self.prbplt = sm.ProbPlot(self.mod_fit.resid, stats.t, distargs=(4,)) self.line = 'r' self.base_setup() class TestProbPlotRandomNormalMinimal(BaseProbplotMixin): def setup(self): np.random.seed(5) self.data = np.random.normal(loc=8.25, scale=3.25, size=37) self.prbplt = sm.ProbPlot(self.data) self.line = None self.base_setup() class TestProbPlotRandomNormalWithFit(BaseProbplotMixin): def setup(self): np.random.seed(5) self.data = np.random.normal(loc=8.25, scale=3.25, size=37) self.prbplt = sm.ProbPlot(self.data, fit=True) self.line = 'q' self.base_setup() class TestProbPlotRandomNormalLocScale(BaseProbplotMixin): def setup(self): np.random.seed(5) self.data = np.random.normal(loc=8.25, scale=3.25, size=37) self.prbplt = sm.ProbPlot(self.data, loc=8.25, scale=3.25) self.line = '45' self.base_setup() class TestTopLevel(object): def setup(self): self.data = sm.datasets.longley.load() self.data.exog = sm.add_constant(self.data.exog, prepend=False) self.mod_fit = sm.OLS(self.data.endog, self.data.exog).fit() self.res = self.mod_fit.resid self.prbplt = sm.ProbPlot(self.mod_fit.resid, stats.t, distargs=(4,)) self.other_array = np.random.normal(size=self.prbplt.data.shape) self.other_prbplot = sm.ProbPlot(self.other_array) def teardown(self): if have_matplotlib: plt.close('all') @dec.skipif(not have_matplotlib) def test_qqplot(self): fig = sm.qqplot(self.res, line='r') @dec.skipif(not have_matplotlib) def test_qqplot_2samples_ProbPlotObjects(self): # also tests all values for line for line in ['r', 'q', '45', 's']: # test with `ProbPlot` instances fig = sm.qqplot_2samples(self.prbplt, self.other_prbplot, line=line) @dec.skipif(not have_matplotlib) def test_qqplot_2samples_arrays(self): # also tests all values for line for line in ['r', 'q', '45', 's']: # test with arrays fig = sm.qqplot_2samples(self.res, self.other_array, line=line)
bsd-3-clause
brianr747/SFC_models
sfc_models/examples/scripts/ex20171127_equations_state_space_models.py
1
3086
""" ex20171127_equations_state_space_models.py And now for something completely different... This code just uses the equation parser and solver to generate the solutions for state space models. One of the stranger applications of framework code... """ from sfc_models.equation_solver import EquationSolver from sfc_models.examples.Quick2DPlot import Quick2DPlot import matplotlib.pyplot as plt def generate_model(eqns, use_control=False): if use_control: eqns += """ u = (-.7 * x + .75 * r)/.05 u(0) = 1.0 exogenous r = [1.] * 10 + [2.]*21 """ else: eqns += """ exogenous u = [1.] * 10 + [2.]*21 """ print(eqns) out = EquationSolver(eqns) out.Parser.MaxTime = 30 out.SolveEquation() return out def generate_base_model(a, use_control): eqns = """ x = (1-a)*lag_x + a * lag_u y = x lag_x = x(k-1) lag_u = u(k-1) x(0) = 1. a = {0} """.format(a) # print(eqns) out = generate_model(eqns, use_control) return out def generate_actual_model(use_control): eqns = """ x = (1-a)*lag_x + a * lag_h y = x g = lag_u h = lag_g lag_x = x(k-1) lag_u = u(k-1) lag_g = g(k-1) lag_h = h(k-1) x(0) = 1. g(0) = 1. h(0) = 1. a = .05 """ return generate_model(eqns, use_control) def main(): mod_0 = generate_base_model(.05, use_control=False) k = mod_0.TimeSeries['k'] x_0 = mod_0.TimeSeries['x'] mod_1 = generate_base_model(.005, use_control=False) x_1 = mod_1.TimeSeries['x'] mod_2 = generate_base_model(.09, use_control=False) x_2 = mod_2.TimeSeries['x'] mod_act = generate_actual_model(use_control=False) x_act = mod_act.TimeSeries['x'] plt.plot(k, x_0, 'bo', k, x_1, 'b+', k, x_2, 'b--') plt.title('Assumed Model Output, Plus Perturbed Systems') plt.grid() plt.savefig('robust_1.png', dpi=90) plt.show() plt.plot(k, x_act, '-ro', k, x_0, 'bo', k, x_1, 'b+', k, x_2, 'b--') plt.title('True Model, Plus Assumed Outputs') plt.grid() plt.savefig('robust_2.png', dpi=90) plt.show() mod_0 = generate_base_model(.05, use_control=True) k = mod_0.TimeSeries['k'] x_0 = mod_0.TimeSeries['x'] mod_1 = generate_base_model(.005, use_control=True) x_1 = mod_1.TimeSeries['x'] mod_2 = generate_base_model(.09, use_control=True) x_2 = mod_2.TimeSeries['x'] mod_act = generate_actual_model(use_control=True) x_act = mod_act.TimeSeries['x'] plt.plot(k, x_0, 'bo', k, x_1, 'b+', k, x_2, 'b--') plt.title('Assumed Feedback Control Response') plt.grid() plt.savefig('robust_3.png', dpi=90) plt.show() plt.plot(k, x_act, '-ro', k, x_0, 'bo', k, x_1, 'b+', k, x_2, 'b--') plt.title('Actual Feedback Response') plt.grid() plt.savefig('robust4.png', dpi=90) plt.show() # plt.plot(k, x_act, 'ro', k, x_1, 'b+', k, x_2, 'b--') # plt.grid() # plt.show() #Quick2DPlot(k, x_0, 'Base Output') if __name__ == '__main__': main()
apache-2.0
jalanb/jab
ipython/profile_default/ipython_config.py
6
18065
# Configuration file for ipython. # pylint: disable=E0602 c = get_config() # ----------------------------------------------------------------------------- # InteractiveShellApp configuration # ----------------------------------------------------------------------------- # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = [] # Enable GUI event loop integration ('qt', 'wx', 'gtk', 'glut', 'pyglet', # 'osx'). # c.InteractiveShellApp.gui = None # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.InteractiveShellApp.pylab = None # Configure matplotlib for interactive use with the default matplotlib backend. # c.InteractiveShellApp.matplotlib = None # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an 'import *' is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.InteractiveShellApp.pylab_import_all = True # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = [] # Run the module as a script. # c.InteractiveShellApp.module_to_run = None # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = [] # A file to be run # c.InteractiveShellApp.file_to_run = '' #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # TerminalIPythonApp will inherit config from: BaseIPythonApplication, # Application, InteractiveShellApp # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.TerminalIPythonApp.pylab = None # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.TerminalIPythonApp.verbose_crash = False # Run the module as a script. # c.TerminalIPythonApp.module_to_run = '' # The date format used by logging formatters for %(asctime)s # c.TerminalIPythonApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # Whether to overwrite existing config files when copying # c.TerminalIPythonApp.overwrite = False # Execute the given command string. # c.TerminalIPythonApp.code_to_run = '' # Set the log level by value or name. # c.TerminalIPythonApp.log_level = 30 # lines of code to run at IPython startup. # c.TerminalIPythonApp.exec_lines = [] # Suppress warning messages about legacy config files # c.TerminalIPythonApp.ignore_old_config = False # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.TerminalIPythonApp.extra_config_file = u'' # dotted module name of an IPython extension to load. # c.TerminalIPythonApp.extra_extension = '' # A file to be run # c.TerminalIPythonApp.file_to_run = '' # The IPython profile to use. # c.TerminalIPythonApp.profile = u'default' # Configure matplotlib for interactive use with the default matplotlib backend. # c.TerminalIPythonApp.matplotlib = None # If a command or file is given via the command-line, e.g. 'ipython foo.py # c.TerminalIPythonApp.force_interact = False # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an 'import *' is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.TerminalIPythonApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # ~/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # Whether to display a banner upon starting IPython. c.TerminalIPythonApp.display_banner = False # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.TerminalIPythonApp.copy_config_files = False # List of files to run at IPython startup. # c.TerminalIPythonApp.exec_files = [] # Enable GUI event loop integration ('qt', 'wx', 'gtk', 'glut', 'pyglet', # 'osx'). # c.TerminalIPythonApp.gui = None # A list of dotted module names of IPython extensions to load. # c.TerminalIPythonApp.extensions = [] # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False # The Logging format template # c.TerminalIPythonApp.log_format = '[%(name)s]%(highlevel)s %(message)s' #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # TerminalInteractiveShell will inherit config from: InteractiveShell # auto editing of files with syntax errors. # c.TerminalInteractiveShell.autoedit_syntax = True # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.TerminalInteractiveShell.color_info = True # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.TerminalInteractiveShell.ast_transformers = [] # # c.TerminalInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.TerminalInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.TerminalInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). c.TerminalInteractiveShell.colors = 'Linux' # Autoindent IPython code entered interactively. # c.TerminalInteractiveShell.autoindent = True # # c.TerminalInteractiveShell.separate_in = '\n' # # c.TerminalInteractiveShell.separate_out = '' # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). c.TerminalInteractiveShell.autocall = 1 # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.TerminalInteractiveShell.screen_length = 0 # Set the editor used by IPython (default to $EDITOR/vi/notepad). c.TerminalInteractiveShell.editor = '/usr/local/bin/vim' # Shortcut style to use at the prompt c.TerminalInteractiveShell.editing_mode = 'vi' # The part of the banner to be printed before the profile # c.TerminalInteractiveShell.banner1 = 'Python 2.7.1 (r271:86832, Aug 2 2012, 13:51:44) \nType "copyright", "credits" or "license" for more information.\n\nIPython 1.0.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # # c.TerminalInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # The part of the banner to be printed after the profile # c.TerminalInteractiveShell.banner2 = '' # # c.TerminalInteractiveShell.separate_out2 = '' # # c.TerminalInteractiveShell.wildcards_case_sensitive = True # # c.TerminalInteractiveShell.debug = False # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. c.TerminalInteractiveShell.confirm_exit = False # # c.TerminalInteractiveShell.ipython_dir = '' # # c.TerminalInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file. # c.TerminalInteractiveShell.logstart = False # The name of the logfile to use. # c.TerminalInteractiveShell.logfile = '' # The shell program to be used for paging. # c.TerminalInteractiveShell.pager = 'less' # Enable magic commands to be called without the leading %. # c.TerminalInteractiveShell.automagic = True # Save multi-line entries as one entry in readline history # c.TerminalInteractiveShell.multiline_history = True # # c.TerminalInteractiveShell.readline_use = True # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.TerminalInteractiveShell.deep_reload = False # Start logging to the given file in append mode. # c.TerminalInteractiveShell.logappend = '' # # c.TerminalInteractiveShell.xmode = 'Context' # # c.TerminalInteractiveShell.quiet = False # Enable auto setting the terminal title. # c.TerminalInteractiveShell.term_title = False # # c.TerminalInteractiveShell.object_info_string_level = 0 # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.TerminalInteractiveShell.cache_size = 1000 # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.TerminalInteractiveShell.ast_node_interactivity = 'last_expr' # Automatically call the pdb debugger after every exception. # c.TerminalInteractiveShell.pdb = False #------------------------------------------------------------------------------ # PromptManager configuration #------------------------------------------------------------------------------ # This is the primary interface for producing IPython's prompts. # Output prompt. '\#' will be transformed to the prompt number # c.PromptManager.out_template = 'Out[\\#]: ' # If True (default), each prompt will be right-aligned with the preceding one. # c.PromptManager.justify = True # Input prompt. '\#' will be transformed to the prompt number # c.PromptManager.in_template = '{my_prompt}' # Continuation prompt. # c.PromptManager.in2_template = '... ' # # c.PromptManager.color_scheme = 'Linux' #------------------------------------------------------------------------------ # HistoryManager configuration #------------------------------------------------------------------------------ # A class to organize all history-related functionality in one place. # HistoryManager will inherit config from: HistoryAccessor # # c.HistoryManager.db_log_output = False # # c.HistoryManager.db_cache_size = 0 # Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # c.HistoryManager.hist_file = u'' # Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. # c.HistoryManager.connection_options = {} # enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. # c.HistoryManager.enabled = True #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # PlainTextFormatter will inherit config from: BaseFormatter # # c.PlainTextFormatter.type_printers = {} # # c.PlainTextFormatter.newline = '\n' # # c.PlainTextFormatter.float_precision = '' # # c.PlainTextFormatter.verbose = False # # c.PlainTextFormatter.deferred_printers = {} # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.max_width = 79 # # c.PlainTextFormatter.singleton_printers = {} #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # IPCompleter will inherit config from: Completer # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored # c.IPCompleter.limit_to__all__ = False # Activate greedy completion # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.IPCompleter.greedy = False #------------------------------------------------------------------------------ # ScriptMagics configuration #------------------------------------------------------------------------------ # Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. # Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_path # c.ScriptMagics.script_magics = [] # Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. # c.ScriptMagics.script_path = {}
mit
arjoly/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
zhuangfangwang/gmmreg
Python/_plotting.py
14
2435
#!/usr/bin/env python #coding=utf-8 ##==================================================== ## $Author$ ## $Date$ ## $Revision$ ##==================================================== from pylab import * from configobj import ConfigObj import matplotlib.pyplot as plt def display2Dpointset(A): fig = plt.figure() ax = fig.add_subplot(111) #ax.grid(True) ax.plot(A[:,0],A[:,1],'yo',markersize=8,mew=1) labels = plt.getp(plt.gca(), 'xticklabels') plt.setp(labels, color='k', fontweight='bold') labels = plt.getp(plt.gca(), 'yticklabels') plt.setp(labels, color='k', fontweight='bold') for i,x in enumerate(A): ax.annotate('%d'%(i+1), xy = x, xytext = x + 0) ax.set_axis_off() #fig.show() def display2Dpointsets(A, B, ax = None): """ display a pair of 2D point sets """ if not ax: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(A[:,0],A[:,1],'yo',markersize=8,mew=1) ax.plot(B[:,0],B[:,1],'b+',markersize=8,mew=1) #pylab.setp(pylab.gca(), 'xlim', [-0.15,0.6]) labels = plt.getp(plt.gca(), 'xticklabels') plt.setp(labels, color='k', fontweight='bold') labels = plt.getp(plt.gca(), 'yticklabels') plt.setp(labels, color='k', fontweight='bold') def display3Dpointsets(A,B,ax): #ax.plot3d(A[:,0],A[:,1],A[:,2],'yo',markersize=10,mew=1) #ax.plot3d(B[:,0],B[:,1],B[:,2],'b+',markersize=10,mew=1) ax.scatter(A[:,0],A[:,1],A[:,2], c = 'y', marker = 'o') ax.scatter(B[:,0],B[:,1],B[:,2], c = 'b', marker = '+') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') from mpl_toolkits.mplot3d import Axes3D def displayABC(A,B,C): fig = plt.figure() dim = A.shape[1] if dim==2: ax = plt.subplot(121) display2Dpointsets(A, B, ax) ax = plt.subplot(122) display2Dpointsets(C, B, ax) if dim==3: plot1 = plt.subplot(1,2,1) ax = Axes3D(fig, rect = plot1.get_position()) display3Dpointsets(A,B,ax) plot2 = plt.subplot(1,2,2) ax = Axes3D(fig, rect = plot2.get_position()) display3Dpointsets(C,B,ax) plt.show() def display_pts(f_config): config = ConfigObj(f_config) file_section = config['FILES'] mf = file_section['model'] sf = file_section['scene'] tf = file_section['transformed_model'] m = np.loadtxt(mf) s = np.loadtxt(sf) t = np.loadtxt(tf) displayABC(m,s,t)
gpl-3.0
Sentient07/scikit-learn
benchmarks/bench_plot_nmf.py
28
15630
""" Benchmarks of Non-Negative Matrix Factorization """ # Authors: Tom Dupre la Tour (benchmark) # Chih-Jen Linn (original projected gradient NMF implementation) # Anthony Di Franco (projected gradient, Python and NumPy port) # License: BSD 3 clause from __future__ import print_function from time import time import sys import warnings import numbers import numpy as np import matplotlib.pyplot as plt import pandas from sklearn.utils.testing import ignore_warnings from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition.nmf import NMF from sklearn.decomposition.nmf import _initialize_nmf from sklearn.decomposition.nmf import _beta_divergence from sklearn.decomposition.nmf import INTEGER_TYPES, _check_init from sklearn.externals.joblib import Memory from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import fast_dot, safe_sparse_dot, squared_norm from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted, check_non_negative mem = Memory(cachedir='.', verbose=0) ################### # Start of _PGNMF # ################### # This class implements a projected gradient solver for the NMF. # The projected gradient solver was removed from scikit-learn in version 0.19, # and a simplified copy is used here for comparison purpose only. # It is not tested, and it may change or disappear without notice. def _norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return np.sqrt(squared_norm(x)) def _nls_subproblem(X, W, H, tol, max_iter, alpha=0., l1_ratio=0., sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Constant matrix. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. grad : array-like, shape (n_components, n_features) The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtX = safe_sparse_dot(W.T, X) WtW = fast_dot(W.T, W) # values justified in the paper (alpha is renamed gamma) gamma = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtX if alpha > 0 and l1_ratio == 1.: grad += alpha elif alpha > 0: grad += alpha * (l1_ratio + (1 - l1_ratio) * H) # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if _norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(20): # Gradient step. Hn = H - gamma * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_gamma = not suff_decr if decr_gamma: if suff_decr: H = Hn break else: gamma *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: gamma /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.", ConvergenceWarning) return H, grad, n_iter def _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio): gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = squared_norm(gradW) + squared_norm(gradH.T) # max(0.001, tol) to force alternating minimizations of W and H tolW = max(0.001, tol) * np.sqrt(init_grad) tolH = tolW for n_iter in range(1, max_iter + 1): # stopping condition as discussed in paper proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0)) proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0)) if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2: break # update W Wt, gradWt, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W, gradW = Wt.T, gradWt.T if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) if iterH == 1: tolH = 0.1 * tolH H[H == 0] = 0 # fix up negative zeros if n_iter == max_iter: Wt, _, _ = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W = Wt.T return W, H, n_iter class _PGNMF(NMF): """Non-Negative Matrix Factorization (NMF) with projected gradient solver. This class is private and for comparison purpose only. It may change or disappear without notice. """ def __init__(self, n_components=None, solver='pg', init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., nls_max_iter=10): self.nls_max_iter = nls_max_iter self.n_components = n_components self.init = init self.solver = solver self.tol = tol self.max_iter = max_iter self.random_state = random_state self.alpha = alpha self.l1_ratio = l1_ratio def fit(self, X, y=None, **params): self.fit_transform(X, **params) return self def transform(self, X): check_is_fitted(self, 'components_') H = self.components_ W, _, self.n_iter_ = self._fit_transform(X, H=H, update_H=False) return W def inverse_transform(self, W): check_is_fitted(self, 'components_') return np.dot(W, self.components_) def fit_transform(self, X, y=None, W=None, H=None): W, H, self.n_iter = self._fit_transform(X, W=W, H=H, update_H=True) self.components_ = H return W def _fit_transform(self, X, y=None, W=None, H=None, update_H=True): X = check_array(X, accept_sparse=('csr', 'csc')) check_non_negative(X, "NMF (input X)") n_samples, n_features = X.shape n_components = self.n_components if n_components is None: n_components = n_features if (not isinstance(n_components, INTEGER_TYPES) or n_components <= 0): raise ValueError("Number of components must be a positive integer;" " got (n_components=%r)" % n_components) if not isinstance(self.max_iter, INTEGER_TYPES) or self.max_iter < 0: raise ValueError("Maximum number of iterations must be a positive " "integer; got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) # check W and H, or initialize them if self.init == 'custom' and update_H: _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") elif not update_H: _check_init(H, (n_components, n_features), "NMF (input H)") W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=self.init, random_state=self.random_state) if update_H: # fit_transform W, H, n_iter = _fit_projected_gradient( X, W, H, self.tol, self.max_iter, self.nls_max_iter, self.alpha, self.l1_ratio) else: # transform Wt, _, n_iter = _nls_subproblem(X.T, H.T, W.T, self.tol, self.nls_max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio) W = Wt.T if n_iter == self.max_iter and self.tol > 0: warnings.warn("Maximum number of iteration %d reached. Increase it" " to improve convergence." % self.max_iter, ConvergenceWarning) return W, H, n_iter ################# # End of _PGNMF # ################# def plot_results(results_df, plot_name): if results_df is None: return None plt.figure(figsize=(16, 6)) colors = 'bgr' markers = 'ovs' ax = plt.subplot(1, 3, 1) for i, init in enumerate(np.unique(results_df['init'])): plt.subplot(1, 3, i + 1, sharex=ax, sharey=ax) for j, method in enumerate(np.unique(results_df['method'])): mask = np.logical_and(results_df['init'] == init, results_df['method'] == method) selected_items = results_df[mask] plt.plot(selected_items['time'], selected_items['loss'], color=colors[j % len(colors)], ls='-', marker=markers[j % len(markers)], label=method) plt.legend(loc=0, fontsize='x-small') plt.xlabel("Time (s)") plt.ylabel("loss") plt.title("%s" % init) plt.suptitle(plot_name, fontsize=16) @ignore_warnings(category=ConvergenceWarning) # use joblib to cache the results. # X_shape is specified in arguments for avoiding hashing X @mem.cache(ignore=['X', 'W0', 'H0']) def bench_one(name, X, W0, H0, X_shape, clf_type, clf_params, init, n_components, random_state): W = W0.copy() H = H0.copy() clf = clf_type(**clf_params) st = time() W = clf.fit_transform(X, W=W, H=H) end = time() H = clf.components_ this_loss = _beta_divergence(X, W, H, 2.0, True) duration = end - st return this_loss, duration def run_bench(X, clfs, plot_name, n_components, tol, alpha, l1_ratio): start = time() results = [] for name, clf_type, iter_range, clf_params in clfs: print("Training %s:" % name) for rs, init in enumerate(('nndsvd', 'nndsvdar', 'random')): print(" %s %s: " % (init, " " * (8 - len(init))), end="") W, H = _initialize_nmf(X, n_components, init, 1e-6, rs) for max_iter in iter_range: clf_params['alpha'] = alpha clf_params['l1_ratio'] = l1_ratio clf_params['max_iter'] = max_iter clf_params['tol'] = tol clf_params['random_state'] = rs clf_params['init'] = 'custom' clf_params['n_components'] = n_components this_loss, duration = bench_one(name, X, W, H, X.shape, clf_type, clf_params, init, n_components, rs) init_name = "init='%s'" % init results.append((name, this_loss, duration, init_name)) # print("loss: %.6f, time: %.3f sec" % (this_loss, duration)) print(".", end="") sys.stdout.flush() print(" ") # Use a panda dataframe to organize the results results_df = pandas.DataFrame(results, columns="method loss time init".split()) print("Total time = %0.3f sec\n" % (time() - start)) # plot the results plot_results(results_df, plot_name) return results_df def load_20news(): print("Loading 20 newsgroups dataset") print("-----------------------------") from sklearn.datasets import fetch_20newsgroups dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data) return tfidf def load_faces(): print("Loading Olivetti face dataset") print("-----------------------------") from sklearn.datasets import fetch_olivetti_faces faces = fetch_olivetti_faces(shuffle=True) return faces.data def build_clfs(cd_iters, pg_iters, mu_iters): clfs = [("Coordinate Descent", NMF, cd_iters, {'solver': 'cd'}), ("Projected Gradient", _PGNMF, pg_iters, {'solver': 'pg'}), ("Multiplicative Update", NMF, mu_iters, {'solver': 'mu'}), ] return clfs if __name__ == '__main__': alpha = 0. l1_ratio = 0.5 n_components = 10 tol = 1e-15 # first benchmark on 20 newsgroup dataset: sparse, shape(11314, 39116) plot_name = "20 Newsgroups sparse dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 6) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_20news = load_20news() run_bench(X_20news, clfs, plot_name, n_components, tol, alpha, l1_ratio) # second benchmark on Olivetti faces dataset: dense, shape(400, 4096) plot_name = "Olivetti Faces dense dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 12) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_faces = load_faces() run_bench(X_faces, clfs, plot_name, n_components, tol, alpha, l1_ratio,) plt.show()
bsd-3-clause
petosegan/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
ELind77/gensim
gensim/sklearn_integration/sklearn_wrapper_gensim_atmodel.py
1
5466
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Scikit learn interface for gensim for easy use of gensim with scikit-learn Follows scikit-learn API conventions """ import numpy as np from sklearn.base import TransformerMixin, BaseEstimator from sklearn.exceptions import NotFittedError from gensim import models from gensim.sklearn_integration import BaseSklearnWrapper class SklATModel(BaseSklearnWrapper, TransformerMixin, BaseEstimator): """ Base AuthorTopic module """ def __init__(self, num_topics=100, id2word=None, author2doc=None, doc2author=None, chunksize=2000, passes=1, iterations=50, decay=0.5, offset=1.0, alpha='symmetric', eta='symmetric', update_every=1, eval_every=10, gamma_threshold=0.001, serialized=False, serialization_path=None, minimum_probability=0.01, random_state=None): """ Sklearn wrapper for AuthorTopic model. Class derived from gensim.models.AuthorTopicModel """ self.gensim_model = None self.num_topics = num_topics self.id2word = id2word self.author2doc = author2doc self.doc2author = doc2author self.chunksize = chunksize self.passes = passes self.iterations = iterations self.decay = decay self.offset = offset self.alpha = alpha self.eta = eta self.update_every = update_every self.eval_every = eval_every self.gamma_threshold = gamma_threshold self.serialized = serialized self.serialization_path = serialization_path self.minimum_probability = minimum_probability self.random_state = random_state def get_params(self, deep=True): """ Returns all parameters as dictionary. """ return {"num_topics": self.num_topics, "id2word": self.id2word, "author2doc": self.author2doc, "doc2author": self.doc2author, "chunksize": self.chunksize, "passes": self.passes, "iterations": self.iterations, "decay": self.decay, "offset": self.offset, "alpha": self.alpha, "eta": self.eta, "update_every": self.update_every, "eval_every": self.eval_every, "gamma_threshold": self.gamma_threshold, "serialized": self.serialized, "serialization_path": self.serialization_path, "minimum_probability": self.minimum_probability, "random_state": self.random_state} def set_params(self, **parameters): """ Set all parameters. """ super(SklATModel, self).set_params(**parameters) return self def fit(self, X, y=None): """ Fit the model according to the given training data. Calls gensim.models.AuthorTopicModel """ self.gensim_model = models.AuthorTopicModel(corpus=X, num_topics=self.num_topics, id2word=self.id2word, author2doc=self.author2doc, doc2author=self.doc2author, chunksize=self.chunksize, passes=self.passes, iterations=self.iterations, decay=self.decay, offset=self.offset, alpha=self.alpha, eta=self.eta, update_every=self.update_every, eval_every=self.eval_every, gamma_threshold=self.gamma_threshold, serialized=self.serialized, serialization_path=self.serialization_path, minimum_probability=self.minimum_probability, random_state=self.random_state) return self def transform(self, author_names): """ Return topic distribution for input authors as a list of (topic_id, topic_probabiity) 2-tuples. """ # The input as array of array if self.gensim_model is None: raise NotFittedError("This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method.") check = lambda x: [x] if not isinstance(x, list) else x author_names = check(author_names) X = [[] for _ in range(0, len(author_names))] for k, v in enumerate(author_names): transformed_author = self.gensim_model[v] probs_author = list(map(lambda x: x[1], transformed_author)) # Everything should be equal in length if len(probs_author) != self.num_topics: probs_author.extend([1e-12] * (self.num_topics - len(probs_author))) X[k] = probs_author return np.reshape(np.array(X), (len(author_names), self.num_topics)) def partial_fit(self, X, author2doc=None, doc2author=None): """ Train model over X. """ if self.gensim_model is None: self.gensim_model = models.AuthorTopicModel(corpus=X, num_topics=self.num_topics, id2word=self.id2word, author2doc=self.author2doc, doc2author=self.doc2author, chunksize=self.chunksize, passes=self.passes, iterations=self.iterations, decay=self.decay, offset=self.offset, alpha=self.alpha, eta=self.eta, update_every=self.update_every, eval_every=self.eval_every, gamma_threshold=self.gamma_threshold, serialized=self.serialized, serialization_path=self.serialization_path, minimum_probability=self.minimum_probability, random_state=self.random_state) self.gensim_model.update(corpus=X, author2doc=author2doc, doc2author=doc2author) return self
lgpl-2.1
chrisburr/scikit-learn
sklearn/feature_extraction/text.py
7
50272
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if isinstance(vocabulary, set): vocabulary = sorted(vocabulary) if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
Chandra-MARX/marx-test
tests/positions.py
1
21371
''' In every |marx| simulation, one or more sources are placed at some sky position. |marx| simulates photons coming from that position, traces them through the mirror and gratings and finally places them on the chip. With a known aspect solution, chip coordinates can then be transformed back to sky coordinates. In general, this will not recover the exact sky position where a photon started out. A big part of that is scatter in the mirrors, which blurs the image (see :ref:`sect-tests.PSF` for tests of the PSF). However, with a large number of photons, we can fit the average position which should be close to the real sky position. In real observations, other factors contribute, such as the finite resolution of the detectors (|marx| usually takes that into account, but it can be switched of through the ``--pixadj="EXACT"`` switch in :marxtool:`marx2fits`) and the uncertainty of the aspect solution. Within a single observation, positions will be less certain for fainter sources (due to Poisson statistics) and for sources at a larger off-axis angles (due to the larger PSF). ''' import shutil import subprocess import os from collections import OrderedDict from marxtest import base from marxtest.process_utils import marxpars_from_asol title = 'Coordinates on the sky and the chip' tests = ['ONC', 'RegularGrid', 'RegularGridHRCI'] class ONC(base.MarxTest): '''The `Orion Nebula Cluster (ONC) <http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=onc>`_ is a dense star forming region with about 1600 X-ray sources observed in the COUP survey by `Getman et al (2005) <http://adsabs.harvard.edu/abs/2005ApJS..160..319G>`_ . We simulate this field with |marx| and then run a source detection to check how well we recover the input coordinates. This will depend on the number of counts detected and the position in the field. To simplify the simulation input, we assume that all sources have flat lightcurves and are monoenergetic at the observed mean energy (the energy matters because the effective area is energy dependent and so is the PSF). We write a short C code that reads an input coordiante list and generates the photons in this manner. We compile the code, and call it as a :ref:`sect-usersource`. ''' title = 'Chandra Orion Ultradeep project' obsid = 3744 figures = OrderedDict([('ds9', {'alternative': '', 'caption': '`ds9`_ image of the observed data (left) and simulation (right). The sources detected in the simulation are overlayed. There are few cases where the read-out streak is identified as source or where two close sources are detected as one larger resolved source. The COUP catalog used as input is based on much longer merged observations and has been checked against optical and IR observations to remove such spurious detections.'}), ('dist', {'alternative': 'Scatter plot with distance from aimpoint vs coordinate error in the fit.', 'caption': 'Apart from a few outliers close to the aimpoint (mostly confused sources, see above), the distribution of coordinate errors follows spreads out with increasing distance, i.e. size of the PSF.'}) ]) summary='For this field, we know the true input coordinates so we can check how well |marx| reproduces those. In the center of the field (about one armin) the coordiante error is less than the size of an ACIS pixel for all sources and the average error never grows much beyond 1 ACIS pixel even for far off-axis source. The upper envelope of the distribution of errors is approximate linear and reaches 1 arcsec at a distance of 200 arcsec. No strong correlation of coordiante error and count rate of the source is apparent, indicating that the dominant error is not just due to Poisson counting statistics.' @base.Python def step_2(self): '''Make input coordinate table Coordinates are relative to pointing direction in arcmin''' import os from astropy.table import Table from astropy.io import fits asolfile = self.get_data_file('asol') asol = fits.getheader(asolfile, 1) coup = Table.read(os.path.join(self.pkg_data, 'COUP.tsv'), format='ascii.fast_tab') tab = Table() tab['RA'] = (coup['RAJ2000'] - asol['RA_NOM']) * 60 tab['DEC'] = (coup['DEJ2000'] - asol['DEC_NOM']) * 60 tab['weight'] = 10**(coup['Lt'] - 27) tab['energy'] = coup['<E>'] tab.write('coup.marxin', format='ascii.no_header', overwrite=True) @base.CCode def step_5(self): '''C code for a grid of sources. (``user.h`` and ``jdmath.h`` are shipped with |marx|.)''' ccode=r''' #include <stdio.h> #include <stdlib.h> #include <jdmath.h> #include "user.h" /* This user source implements many point sources via a file that * specifies the source positions and energies. The current implementation * assumes the format: * RA Dec weight energy * Here RA, Dec specifiy the source position, weight specifies the strength * of the source in relation to the others. */ typedef struct { double cosx, cosy, cosz; double weight; double energy; } Point_Source_Type; static unsigned int Num_Points; static Point_Source_Type *Point_Sources; static unsigned int Max_Num_Points; static char *do_realloc (char *p, unsigned int len) { if (p == NULL) p = malloc (len); else p = realloc (p, len); if (p == NULL) fprintf (stderr, "Not enough memory\n"); return p; } static void free_sources (void) { if (Point_Sources == NULL) return; free ((char *) Point_Sources); Point_Sources = NULL; } static int add_source (double ra, double dec, double weight, double energy) { Point_Source_Type *p; double cosx, cosy, cosz; /* Convert to God's units from arc-min */ ra = ra * (PI/(180.0 * 60.0)); dec = dec * (PI/(180.0 * 60.0)); if (Max_Num_Points == Num_Points) { Max_Num_Points += 32; p = (Point_Source_Type *)do_realloc ((char *)Point_Sources, Max_Num_Points * sizeof (Point_Source_Type)); if (p == NULL) { free_sources (); return -1; } Point_Sources = p; } p = Point_Sources + Num_Points; /* Note the the minus sign is to generate a vector pointing from the * source to the origin */ p->cosx = -cos (dec) * cos (ra); p->cosy = -cos (dec) * sin(ra); p->cosz = -sin (dec); p->weight = weight; p->energy = energy; Num_Points += 1; return 0; } static void normalize_sources (void) { double total; unsigned int i; total = 0; for (i = 0; i < Num_Points; i++) { Point_Sources[i].weight += total; total = Point_Sources[i].weight; } for (i = 0; i < Num_Points; i++) Point_Sources[i].weight /= total; /* Make sure no round-off error affects the weight of the last point */ Point_Sources[Num_Points - 1].weight = 1.0; } int user_open_source (char **argv, int argc, double area, double cosx, double cosy, double cosz) { FILE *fp; char line[1024]; char *file; unsigned int linenum; file = argv[0]; if (file == NULL) { fprintf (stderr, "UserSource Model requires FILE as argument\n"); return -1; } fp = fopen (file, "r"); if (fp == NULL) { fprintf (stderr, "Unable to open %s\n", file); return -1; } linenum = 0; while (NULL != fgets (line, sizeof (line), fp)) { double ra, dec, weight, energy; linenum++; if (4 != sscanf (line, "%lf %lf %lf %lf", &ra, &dec, &weight, &energy)) continue; if (weight <= 0.0) { fprintf (stderr, "weight on line %d of %s must be positive\n", linenum, file); free_sources (); return -1; } if (-1 == add_source (ra, dec, weight, energy)) { fclose (fp); return -1; } } fclose (fp); if (Num_Points == 0) { fprintf (stderr, "%s contains no sources\n", file); return -1; } normalize_sources (); return 0; } void user_close_source (void) { free_sources (); } int user_create_ray (double *delta_t, double *energy, double *cosx, double *cosy, double *cosz) { double r; Point_Source_Type *p; p = Point_Sources; r = JDMrandom (); while (r > p->weight) p++; *delta_t = -1.0; *energy = p->energy; *cosx = p->cosx; *cosy = p->cosy; *cosz = p->cosz; return 0; } int main (int a, char **b) { (void) a; (void) b; return 1; } ''' return 'pnts.c', ccode @base.Python def step_6(self): '''compile USER code |marx| ships with a few examples of user sources. We pick one of them, copy them to the right directory and compile it with gcc. ''' marxpath = self.conf.get('marx', 'path') src = os.path.join(marxpath, 'share', 'doc', 'marx', 'examples', 'user-source') shutil.copy(os.path.join(src, 'user.h'), os.path.join(self.basepath, 'user.h')) jdmath_h = os.path.join(marxpath, 'include') jdmath_a = os.path.join(marxpath, 'lib', 'libjdmath.a') subprocess.call(['gcc', '-shared', 'pnts.c', '-o', 'pnts.so', '-fPIC', '-I' + jdmath_h, jdmath_a]) @base.Shell def step_7(self): '''Unzip fits file. MARX cannot read zipped fits files, so we need to unzip the .fits.gz asol files that we downloaded from the archive. On the other hand, `CIAO`_ tools work on both zipped or unzipped files, so there is no need to unzip all of them, just the files that MARX reads as input. ''' asol = self.get_data_file('asol') return [f'gunzip -f {asol}'] @base.Marx def step_8(self): '''run marx USER source matching observation''' asol = self.get_data_file('asol') evt = self.get_data_file('evt2') pars = marxpars_from_asol(self.conf, asol, evt) pars['OutputDir'] = 'COUP' pars['SourceType'] = 'USER' pars['UserSourceFile'] = os.path.join(self.basepath, 'pnts.so') pars['UserSourceArgs'] = os.path.join(self.basepath, 'coup.marxin') return pars @base.Marx2fits def step_9(self): 'turn into fits file' return '--pixadj=EDSER', 'COUP', 'COUP.fits' @base.Ciao def step_10(self): '''ds9 image of the PSF In the observation, the brightest sources are piled-up. We don't bother simulating this here, so we just set the scaling limits to bring out the fainter details and ignore the bright peaks. ''' return ['''ds9 -log -cmap heat {0} COUP.fits -scale limits 0 2000 -frame 1 -regions command 'text 5:35:15 -5:22:09 # text=Observation font="helvetica 24"' -frame 2 -regions command 'text 5:35:15 -5:22:09 # text=MARX font="helvetica 24"' -region load src.fits -saveimage {1} -exit'''.format(self.get_data_file("evt2"), self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "COUP.fits[EVENTS][bin x=2500:5500:2,y=2500:5500:2]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out @base.Python def step_15(self): '''Check position of detected sources''' import numpy as np import matplotlib.pyplot as plt from astropy.table import Table from astropy.coordinates import SkyCoord from astropy.io import fits src = Table.read('src.fits') srcin = Table.read(os.path.join(self.pkg_data, 'COUP.tsv'), format='ascii.fast_tab') src_co = SkyCoord(src['RA'], src['DEC'], unit='deg') srcin_co = SkyCoord(srcin['RAJ2000'], srcin['DEJ2000'], unit='deg') idx, d2d, d3d = src_co.match_to_catalog_sky(srcin_co) asolfile = self.get_data_file('asol') asol = fits.getheader(asolfile, 1) cen = SkyCoord(asol['RA_NOM'], asol['DEC_NOM'], unit='deg') d = cen.separation(src_co).arcsec fig = plt.figure() ax1 = plt.subplot(111) scat1 = ax1.scatter(d, d2d.arcsec, c=np.log10(src['NET_COUNTS']), lw=1) ax1.set_xlabel('distance from aimpoint [arcsec]') ax1.set_ylabel('coordinate error [arcsec]') ax1.set_xlim([0, 350]) ax1.set_ylim([0, 2]) cbar1 = fig.colorbar(scat1, ax=ax1) cbar1.set_label('log(net counts per source)') fig.savefig(self.figpath(list(self.figures.keys())[1])) class RegularGrid(base.MarxTest): '''In this example we place a radial grid of sources on the sky. Each source emits an equal number of photons (exactly, no Poisson statistics) so that we can compare the accuracy of the position we recover. Note that the *detected* number of photons will be smaller for off-axis photons because of vignetting! We write a short C code that generates the photons in this manner, compile it, and call is as a :ref:`sect-usersource`. ''' DetectorType = 'ACIS-I' title = 'Regular Grid (ACIS)' figures = OrderedDict([('ds9', {'alternative': 'Sources positioned like knots in a spider web.', 'caption': '`ds9`_ image of the simulation. The size of the PSF increases further away from the aimpoint.'}), ('hist', {'alternative': 'Plot is described in the caption.', 'caption': '*left*: The error in the position (measured radially to the optical axis) increases with the distance to the optical axis. One part of this is just that the effective area and thus the number of counts decreases. There is also a systematic trend where sources at larger off-acis angle are systematically fitted too close to the center. Further investigation is necessary to check if this is a problem of |marx| related or :ciao:`celldetect`. In any case, the typical offset is below 0.2 arcsec, which is less then half a pixel in ACIS. *right*: Difference in position angle between input and fit. (Outliers beyond the plot range are not shown.)'}) ]) summary = 'The input position is typically recovered to much better than one pixel for sources with a few hundred counts. There is a small systematic trend that needs to be studied further.' @base.CCode def step_5(self): '''C code for a grid of sources. (``user.h`` is shipped with |marx|.)''' ccode=''' #include <stdio.h> #include <math.h> #include "user.h" static double Source_CosX; static double Source_CosY; static double Source_CosZ; int user_open_source (char **argv, int argc, double area, double cosx, double cosy, double cosz) { return 0; } void user_close_source (void) { } static double To_Radians = (M_PI / 180.0 / 3600.0); #define ARC_SECONDS_PER_CELL 50 #define ANGULAR_STEPS 16 int user_create_ray (double *delta_t, double *energy, double *cosx, double *cosy, double *cosz) { static int last_i = 0; static int last_j = 0; double theta, phi; double cos_theta, sin_theta; if (last_j == ANGULAR_STEPS){ last_j = 0; last_i++; } if (last_i == 20) last_i = 0; theta = To_Radians * last_i * ARC_SECONDS_PER_CELL; phi = (10. /180 * M_PI) + last_j * 2 * M_PI / ANGULAR_STEPS; sin_theta = sin(theta); *cosx = -cos (theta); *cosy = sin_theta * cos (phi); *cosz = sin_theta * sin (phi); *delta_t = -1.0; *energy = -1.0; if (last_i ==0){ last_i++; } else { last_j++; } return 0; } int main (int a, char **b) { (void) a; (void) b; return 1; }''' return 'radialgrid.c', ccode @base.Python def step_6(self): '''compile USER code''' marxpath = self.conf.get('marx', 'path') src = os.path.join(marxpath, 'share', 'doc', 'marx', 'examples', 'user-source', 'user.h') shutil.copy(os.path.join(src), os.path.join(self.basepath, 'user.h')) subprocess.call(['gcc', '-lm', '-fPIC', '-shared', 'radialgrid.c', '-o', 'radialgrid.so']) @base.Marx def step_7(self): '''run USER source''' return {'SourceType': 'USER', 'OutputDir': 'points', 'GratingType': 'NONE', 'SourceRA': 90., 'SourceDEC': 0., 'RA_Nom': 90., 'Dec_Nom': 0, 'Roll_Nom': 0, 'DetectorType': self.DetectorType, 'UserSourceFile': os.path.join(self.basepath, 'radialgrid.so'), 'NumRays': -100000, 'ExposureTime': 0} @base.Marx2fits def step_8(self): 'turn into fits file' return '--pixadj=EDSER', 'points', 'points.fits' @base.Ciao def step_10(self): '''ds9 image of the PSF''' return ['''ds9 -width 500 -height 500 -log -cmap heat points.fits -pan to 4097 4097 physical -zoom 0.5 -bin factor 2 -grid -saveimage {0} -exit'''.format(self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "points.fits[EVENTS][bin x=3000:5100:2,y=3000:5100:2]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5 clobber=yes', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out @base.Python def step_15(self): '''Check position of detected sources''' import numpy as np import matplotlib.pyplot as plt from astropy.table import Table from astropy.coordinates import SkyCoord src = Table.read('src.fits') # Find distance from input position. src['RA_INPUT'] = src['RA'] - (src['RA'] // (360./16.)) * (360./16.) - 10. # Problem: Might expect source at 1.0, # but measure at 0.99. In this case distance to next lower source # is 0.99. Thus shift input by 0.005 (about 50 arcsec / 2) # before integer devision src['DEC_INPUT'] = src['DEC'] - ((0.005 + src['DEC']) // (50./3600.)) * (50./3600.) cen = SkyCoord(90., 0, unit='deg') det = SkyCoord(src['RA'], src['DEC'], unit='deg') d = cen.separation(det).arcsec d_err = np.mod(d + 10, 50.) - 10 ang = cen.position_angle(det).degree # Subtract offset that we placed in the C code to avoid 0./360. ambiguity # Step width is 360./16 = 22.5 deg # Offset is 10 deg. Complement we find here is 12.5 deg. ang = ang - 12.5 ang_err = np.mod(ang + 2, 360. / 16.) - 2 ind = d > 10 fig = plt.figure(figsize=(8, 4)) ax1 = plt.subplot(121) scat1 = ax1.scatter(d, d_err, c=src['NET_COUNTS'], lw=1) ax1.set_xlabel('distance [arcsec]') ax1.set_ylabel('distance error [arcsec]') ax1.set_xlim([-10, 620]) ax1.set_ylim([-1, 0.5]) ax2 = plt.subplot(122) scat2 = ax2.scatter(ang, ang_err, c=src['NET_COUNTS'], lw=1) ax2.set_xlabel('pos ang [deg]') ax2.set_ylabel('pos ang error [deg]') ax2.set_xlim([-5, 350]) ax2.set_ylim([-0.3, 0.3]) cbar2 = fig.colorbar(scat2, ax=ax2) cbar2.set_label('net counts per source') fig.savefig(self.figpath(list(self.figures.keys())[1])) class RegularGridHRCI(RegularGrid): '''Same as above, but with HRC-I as a detector. The field-of-view for the HRC-I is larger for than for ACIS-I, but the PSF becomes very large at large off-axis angles and thus the positional uncertainty will be so large that a comparison to |marx| is no longer helpful to test the accuracy of the |marx| simulations. ''' figures = OrderedDict([('ds9', {'alternative': 'Sources positioned like knots in a spider web. The image is very similar to the previous ACIS example.', 'caption': '`ds9`_ image of the simulation. The size of the PSF increases further away from the aimpoint.'}), ('hist', {'alternative': 'Plot is described in the caption.', 'caption': 'See previous example. The same trends are visible with a slightly larger scatter.'}) ]) summary = 'In the central few arcmin the input position is typically recovered to better than 0.2 pixels for sources with a few hundred counts.' DetectorType = 'HRC-I' title = 'Regular grid (HRC)' @base.Ciao def step_10(self): '''ds9 image of the PSF''' return ['''ds9 -width 500 -height 500 -log -cmap heat points.fits -pan to 16392 16392 physical -bin factor 16 -grid -saveimage {0} -exit'''.format(self.figpath(list(self.figures.keys())[0]))] @base.Ciao def step_11(self): '''Source detection''' out = ['dmcopy "points.fits[EVENTS][bin x=8500:24500:8,y=8500:24500:8]" im.fits option=image clobber=yes', 'mkpsfmap im.fits psf.map 1.4 ecf=0.5 clobber=yes', 'celldetect im.fits src.fits psffile=psf.map clobber=yes' ] return out
gpl-2.0
velizarefremov/vascularnetworks
scores_srx.py
1
1651
from sklearn.metrics import f1_score,precision_score,recall_score,precision_recall_curve from itkutilities import get_itk_array import numpy as np import sys def call_f1scores(grdtruth,prediction,masks): prec,rec,thres = precision_recall_curve(grdtruth.flatten(),prediction.flatten()) f1 = (2*prec*rec)/(prec+rec) armax = np.argmax(f1) max_thres = thres[armax] img1 = np.asarray(prediction > max_thres,dtype=int) print('threshold :',max_thres) print('dice:',f1[armax]) # print 'accuracy:',1-(np.sum(np.asarray(img1!=grdtruth,dtype=int))) if __name__ == '__main__': scores = []#np.zeros(20) labels = []#np.zeros(20) preds = []#np.zeros(20) masks = []#np.zeros(20) for num in range(int(sys.argv[1]), int(sys.argv[2])): d = "%01d" % num labels.append(get_itk_array('labels_srxray/'+d+'.nii.gz')) preds.append(get_itk_array('confmaps_matthias/'+d+'.mhd')) # pred = np.asarray(pred/128,dtype='int32') # pred = np.flipud(np.fliplr(pred)) # print np.unique(label),np.unique(pred) # print np.mean(label==pred) #print f1_score(label.flatten(),pred.flatten()) #print precision_score(label.flatten(),pred.flatten()) #print recall_score(label.flatten(),pred.flatten()) #f1 = f1_score(label.flatten(),pred.flatten(),sample_weight=mask.flatten()) #precision = precision_score(label.flatten(),pred.flatten(),sample_weight=mask.flatten()) #recall = recall_score(label.flatten(),pred.flatten(),sample_weight=mask.flatten()) #print num, " : ", f1 #scores[num-1] = f1 labels = np.array(labels) preds = np.array(preds) call_f1scores(labels,preds,masks) #print scores
gpl-3.0
dkushner/zipline
zipline/finance/risk/period.py
17
11952
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logbook import math import numpy as np import numpy.linalg as la from six import iteritems from zipline.finance import trading import pandas as pd from . import risk from . risk import ( alpha, check_entry, downside_risk, information_ratio, sharpe_ratio, sortino_ratio, ) from zipline.utils.serialization_utils import ( VERSION_LABEL ) log = logbook.Logger('Risk Period') choose_treasury = functools.partial(risk.choose_treasury, risk.select_treasury_duration) class RiskMetricsPeriod(object): def __init__(self, start_date, end_date, returns, benchmark_returns=None, algorithm_leverages=None): treasury_curves = trading.environment.treasury_curves if treasury_curves.index[-1] >= start_date: mask = ((treasury_curves.index >= start_date) & (treasury_curves.index <= end_date)) self.treasury_curves = treasury_curves[mask] else: # our test is beyond the treasury curve history # so we'll use the last available treasury curve self.treasury_curves = treasury_curves[-1:] self.start_date = start_date self.end_date = end_date if benchmark_returns is None: br = trading.environment.benchmark_returns benchmark_returns = br[(br.index >= returns.index[0]) & (br.index <= returns.index[-1])] self.algorithm_returns = self.mask_returns_to_period(returns) self.benchmark_returns = self.mask_returns_to_period(benchmark_returns) self.algorithm_leverages = algorithm_leverages self.calculate_metrics() def calculate_metrics(self): self.benchmark_period_returns = \ self.calculate_period_returns(self.benchmark_returns) self.algorithm_period_returns = \ self.calculate_period_returns(self.algorithm_returns) if not self.algorithm_returns.index.equals( self.benchmark_returns.index ): message = "Mismatch between benchmark_returns ({bm_count}) and \ algorithm_returns ({algo_count}) in range {start} : {end}" message = message.format( bm_count=len(self.benchmark_returns), algo_count=len(self.algorithm_returns), start=self.start_date, end=self.end_date ) raise Exception(message) self.num_trading_days = len(self.benchmark_returns) self.trading_day_counts = pd.stats.moments.rolling_count( self.algorithm_returns, self.num_trading_days) self.mean_algorithm_returns = pd.Series( index=self.algorithm_returns.index) for dt, ret in self.algorithm_returns.iteritems(): self.mean_algorithm_returns[dt] = ( self.algorithm_returns[:dt].sum() / self.trading_day_counts[dt]) self.benchmark_volatility = self.calculate_volatility( self.benchmark_returns) self.algorithm_volatility = self.calculate_volatility( self.algorithm_returns) self.treasury_period_return = choose_treasury( self.treasury_curves, self.start_date, self.end_date ) self.sharpe = self.calculate_sharpe() # The consumer currently expects a 0.0 value for sharpe in period, # this differs from cumulative which was np.nan. # When factoring out the sharpe_ratio, the different return types # were collapsed into `np.nan`. # TODO: Either fix consumer to accept `np.nan` or make the # `sharpe_ratio` return type configurable. # In the meantime, convert nan values to 0.0 if pd.isnull(self.sharpe): self.sharpe = 0.0 self.sortino = self.calculate_sortino() self.information = self.calculate_information() self.beta, self.algorithm_covariance, self.benchmark_variance, \ self.condition_number, self.eigen_values = self.calculate_beta() self.alpha = self.calculate_alpha() self.excess_return = self.algorithm_period_returns - \ self.treasury_period_return self.max_drawdown = self.calculate_max_drawdown() self.max_leverage = self.calculate_max_leverage() def to_dict(self): """ Creates a dictionary representing the state of the risk report. Returns a dict object of the form: """ period_label = self.end_date.strftime("%Y-%m") rval = { 'trading_days': self.num_trading_days, 'benchmark_volatility': self.benchmark_volatility, 'algo_volatility': self.algorithm_volatility, 'treasury_period_return': self.treasury_period_return, 'algorithm_period_return': self.algorithm_period_returns, 'benchmark_period_return': self.benchmark_period_returns, 'sharpe': self.sharpe, 'sortino': self.sortino, 'information': self.information, 'beta': self.beta, 'alpha': self.alpha, 'excess_return': self.excess_return, 'max_drawdown': self.max_drawdown, 'max_leverage': self.max_leverage, 'period_label': period_label } return {k: None if check_entry(k, v) else v for k, v in iteritems(rval)} def __repr__(self): statements = [] metrics = [ "algorithm_period_returns", "benchmark_period_returns", "excess_return", "num_trading_days", "benchmark_volatility", "algorithm_volatility", "sharpe", "sortino", "information", "algorithm_covariance", "benchmark_variance", "beta", "alpha", "max_drawdown", "max_leverage", "algorithm_returns", "benchmark_returns", "condition_number", "eigen_values" ] for metric in metrics: value = getattr(self, metric) statements.append("{m}:{v}".format(m=metric, v=value)) return '\n'.join(statements) def mask_returns_to_period(self, daily_returns): if isinstance(daily_returns, list): returns = pd.Series([x.returns for x in daily_returns], index=[x.date for x in daily_returns]) else: # otherwise we're receiving an index already returns = daily_returns trade_days = trading.environment.trading_days trade_day_mask = returns.index.normalize().isin(trade_days) mask = ((returns.index >= self.start_date) & (returns.index <= self.end_date) & trade_day_mask) returns = returns[mask] return returns def calculate_period_returns(self, returns): period_returns = (1. + returns).prod() - 1 return period_returns def calculate_volatility(self, daily_returns): return np.std(daily_returns, ddof=1) * math.sqrt(self.num_trading_days) def calculate_sharpe(self): """ http://en.wikipedia.org/wiki/Sharpe_ratio """ return sharpe_ratio(self.algorithm_volatility, self.algorithm_period_returns, self.treasury_period_return) def calculate_sortino(self): """ http://en.wikipedia.org/wiki/Sortino_ratio """ mar = downside_risk(self.algorithm_returns, self.mean_algorithm_returns, self.num_trading_days) # Hold on to downside risk for debugging purposes. self.downside_risk = mar return sortino_ratio(self.algorithm_period_returns, self.treasury_period_return, mar) def calculate_information(self): """ http://en.wikipedia.org/wiki/Information_ratio """ return information_ratio(self.algorithm_returns, self.benchmark_returns) def calculate_beta(self): """ .. math:: \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)} http://en.wikipedia.org/wiki/Beta_(finance) """ # it doesn't make much sense to calculate beta for less than two days, # so return none. if len(self.algorithm_returns) < 2: return 0.0, 0.0, 0.0, 0.0, [] returns_matrix = np.vstack([self.algorithm_returns, self.benchmark_returns]) C = np.cov(returns_matrix, ddof=1) eigen_values = la.eigvals(C) condition_number = max(eigen_values) / min(eigen_values) algorithm_covariance = C[0][1] benchmark_variance = C[1][1] beta = algorithm_covariance / benchmark_variance return ( beta, algorithm_covariance, benchmark_variance, condition_number, eigen_values ) def calculate_alpha(self): """ http://en.wikipedia.org/wiki/Alpha_(investment) """ return alpha(self.algorithm_period_returns, self.treasury_period_return, self.benchmark_period_returns, self.beta) def calculate_max_drawdown(self): compounded_returns = [] cur_return = 0.0 for r in self.algorithm_returns: try: cur_return += math.log(1.0 + r) # this is a guard for a single day returning -100%, if returns are # greater than -1.0 it will throw an error because you cannot take # the log of a negative number except ValueError: log.debug("{cur} return, zeroing the returns".format( cur=cur_return)) cur_return = 0.0 compounded_returns.append(cur_return) cur_max = None max_drawdown = None for cur in compounded_returns: if cur_max is None or cur > cur_max: cur_max = cur drawdown = (cur - cur_max) if max_drawdown is None or drawdown < max_drawdown: max_drawdown = drawdown if max_drawdown is None: return 0.0 return 1.0 - math.exp(max_drawdown) def calculate_max_leverage(self): if self.algorithm_leverages is None: return 0.0 else: return max(self.algorithm_leverages) def __getstate__(self): state_dict = \ {k: v for k, v in iteritems(self.__dict__) if (not k.startswith('_') and not k == 'treasury_curves')} STATE_VERSION = 2 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 2 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("RiskMetricsPeriod saved state \ is too old.") self.__dict__.update(state) self.treasury_curves = trading.environment.treasury_curves
apache-2.0
TomAugspurger/pandas
pandas/tests/base/test_unique.py
1
3708
import numpy as np import pytest from pandas._libs import iNaT from pandas.core.dtypes.common import is_datetime64tz_dtype, needs_i8_conversion import pandas as pd import pandas._testing as tm from pandas.tests.base.common import allow_na_ops def test_unique(index_or_series_obj): obj = index_or_series_obj obj = np.repeat(obj, range(1, len(obj) + 1)) result = obj.unique() # dict.fromkeys preserves the order unique_values = list(dict.fromkeys(obj.values)) if isinstance(obj, pd.MultiIndex): expected = pd.MultiIndex.from_tuples(unique_values) expected.names = obj.names tm.assert_index_equal(result, expected) elif isinstance(obj, pd.Index): expected = pd.Index(unique_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): expected = expected.normalize() tm.assert_index_equal(result, expected) else: expected = np.array(unique_values) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_unique_null(null_obj, index_or_series_obj): obj = index_or_series_obj if not allow_na_ops(obj): pytest.skip("type doesn't allow for NA operations") elif len(obj) < 1: pytest.skip("Test doesn't make sense on empty data") elif isinstance(obj, pd.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, len(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) result = obj.unique() unique_values_raw = dict.fromkeys(obj.values) # because np.nan == np.nan is False, but None == None is True # np.nan would be duplicated, whereas None wouldn't unique_values_not_null = [val for val in unique_values_raw if not pd.isnull(val)] unique_values = [null_obj] + unique_values_not_null if isinstance(obj, pd.Index): expected = pd.Index(unique_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): result = result.normalize() expected = expected.normalize() elif isinstance(obj, pd.CategoricalIndex): expected = expected.set_categories(unique_values_not_null) tm.assert_index_equal(result, expected) else: expected = np.array(unique_values, dtype=obj.dtype) tm.assert_numpy_array_equal(result, expected) def test_nunique(index_or_series_obj): obj = index_or_series_obj obj = np.repeat(obj, range(1, len(obj) + 1)) expected = len(obj.unique()) assert obj.nunique(dropna=False) == expected @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_nunique_null(null_obj, index_or_series_obj): obj = index_or_series_obj if not allow_na_ops(obj): pytest.skip("type doesn't allow for NA operations") elif isinstance(obj, pd.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, len(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) if isinstance(obj, pd.CategoricalIndex): assert obj.nunique() == len(obj.categories) assert obj.nunique(dropna=False) == len(obj.categories) + 1 else: num_unique_values = len(obj.unique()) assert obj.nunique() == max(0, num_unique_values - 1) assert obj.nunique(dropna=False) == max(0, num_unique_values)
bsd-3-clause
dkriegner/xrayutilities
examples/simpack_xrd_AlGaAs.py
1
3024
# This file is part of xrayutilities. # # xrayutilities is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/>. # # Copyright (C) 2016 Dominik Kriegner <[email protected]> import xrayutilities as xu from matplotlib.pylab import * mpl.rcParams['font.size'] = 16.0 en = 'CuKa1' resol = 0.0001 # resolution in qz H, K, L = (0, 0, 4) qz = linspace(4.40, 4.50, 2000) sub = xu.simpack.Layer(xu.materials.GaAs, inf) lay = xu.simpack.Layer(xu.materials.AlGaAs(0.75), 995.64, relaxation=0.0) # pseudomorphic stack -> adjusts lattice parameters! pls = xu.simpack.PseudomorphicStack001('AlGaAs on GaAs', sub, lay) # calculate incidence angle for dynamical diffraction models qx = sqrt(sub.material.Q(H, K, L)[0]**2 + sub.material.Q(H, K, L)[1]**2) ai = xu.simpack.coplanar_alphai(qx, qz, en) resolai = abs(xu.simpack.coplanar_alphai(qx, mean(qz) + resol, en) - xu.simpack.coplanar_alphai(qx, mean(qz), en)) # comparison of different diffraction models # simplest kinematical diffraction model mk = xu.simpack.KinematicalModel(pls, energy=en, resolution_width=resol) Ikin = mk.simulate(qz, hkl=(H, K, L), refraction=True) # kinematic multibeam diffraction model mk = xu.simpack.KinematicalMultiBeamModel(pls, energy=en, surface_hkl=(0, 0, 1), resolution_width=resol) Imult = mk.simulate(qz, hkl=(H, K, L), refraction=True) # simplified dynamical diffraction model mds = xu.simpack.SimpleDynamicalCoplanarModel(pls, energy=en, resolution_width=resolai) Idynsub = mds.simulate(ai, hkl=(H, K, L), idxref=0) Idynlay = mds.simulate(ai, hkl=(H, K, L), idxref=1) # general 2-beam theory based dynamical diffraction model md = xu.simpack.DynamicalModel(pls, energy=en, resolution_width=resolai) Idyn = md.simulate(ai, hkl=(H, K, L)) # plot of calculated intensities figure('XU-simpack AlGaAs') clf() semilogy(qz, Ikin, label='kinematical') semilogy(qz, Imult, label='multibeam') semilogy(xu.simpack.get_qz(qx, ai, en), Idynsub, label='simpl. dynamical(S)') semilogy(xu.simpack.get_qz(qx, ai, en), Idynlay, label='simpl. dynamical(L)') semilogy(xu.simpack.get_qz(qx, ai, en), Idyn, label='full dynamical') vlines([4*2*pi/l.material.a3[-1] for l in pls], 1e-6, 1, linestyles='dashed') legend(fontsize='small') xlim(qz.min(), qz.max()) xlabel(r'Qz ($1/\mathrm{\AA}$)') ylabel('Intensity (arb. u.)') tight_layout() show()
gpl-2.0
maxalbert/bokeh
bokeh/charts/attributes.py
2
13733
from __future__ import absolute_import from copy import copy from itertools import cycle import pandas as pd from bokeh.charts import DEFAULT_PALETTE from bokeh.charts.properties import ColumnLabel from bokeh.charts.utils import marker_types from bokeh.charts.data_source import ChartDataSource from bokeh.charts.stats import Bins from bokeh.enums import DashPattern from bokeh.models.sources import ColumnDataSource from bokeh.properties import (HasProps, String, List, Instance, Either, Any, Dict, Color, Bool, Override) class AttrSpec(HasProps): """A container for assigning attributes to values and retrieving them as needed. A special function this provides is automatically handling cases where the provided iterator is too short compared to the distinct values provided. Once created as attr_spec, you can do attr_spec[data_label], where data_label must be a one dimensional tuple of values, representing the unique group in the data. See the :meth:`AttrSpec.setup` method for the primary way to provide an existing AttrSpec with data and column values and update all derived property values. """ id = Any() data = Instance(ColumnDataSource) name = String(help='Name of the attribute the spec provides.') columns = Either(ColumnLabel, List(ColumnLabel), help=""" The label or list of column labels that correspond to the columns that will be used to find all distinct values (single column) or combination of values ( multiple columns) to then assign a unique attribute to. If not enough unique attribute values are found, then the attribute values will be cycled. """) default = Any(default=None, help=""" The default value for the attribute, which is used if no column is assigned to the attribute for plotting. If the default value is not provided, the first value in the `iterable` property is used. """) attr_map = Dict(Any, Any, help=""" Created by the attribute specification when `iterable` and `data` are available. The `attr_map` will include a mapping between the distinct value(s) found in `columns` and the attribute value that has been assigned. """) items = List(Any, default=None, help=""" The attribute specification calculates this list of distinct values that are found in `columns` of `data`. """) sort = Bool(default=True, help=""" A boolean flag to tell the attribute specification to sort `items`, when it is calculated. This affects which value of `iterable` is assigned to each distinct value in `items`. """) ascending = Bool(default=True, help=""" A boolean flag to tell the attribute specification how to sort `items` if the `sort` property is set to `True`. The default setting for `ascending` is `True`. """) bins = Instance(Bins, help=""" If an attribute spec is binning data, so that we can map one value in the `iterable` to one value in `items`, then this attribute will contain an instance of the Bins stat. This is used to create unique labels for each bin, which is then used for `items` instead of the actual unique values in `columns`. """) def __init__(self, columns=None, df=None, iterable=None, default=None, items=None, **properties): """Create a lazy evaluated attribute specification. Args: columns: a list of column labels df(:class:`~pandas.DataFrame`): the data source for the attribute spec. iterable: an iterable of distinct attribute values default: a value to use as the default attribute when no columns are passed items: the distinct values in columns. If items is provided as input, then the values provided are used instead of being calculated. This can be used to force a specific order for assignment. **properties: other properties to pass to parent :class:`HasProps` """ properties['columns'] = self._ensure_list(columns) if df is not None: properties['data'] = ColumnDataSource(df) if default is None and iterable is not None: default_iter = copy(iterable) properties['default'] = next(iter(default_iter)) elif default is not None: properties['default'] = default if iterable is not None: properties['iterable'] = iterable if items is not None: properties['items'] = items super(AttrSpec, self).__init__(**properties) @staticmethod def _ensure_list(attr): """Always returns a list with the provided value. Returns the value if a list.""" if isinstance(attr, str): return [attr] elif isinstance(attr, tuple): return list(attr) else: return attr @staticmethod def _ensure_tuple(attr): """Return tuple with the provided value. Returns the value if a tuple.""" if not isinstance(attr, tuple): return (attr,) else: return attr def _setup_default(self): """Stores the first value of iterable into `default` property.""" self.default = next(self._setup_iterable()) def _setup_iterable(self): """Default behavior is to copy and cycle the provided iterable.""" return cycle(copy(self.iterable)) def _generate_items(self, df, columns): """Produce list of unique tuples that identify each item.""" if self.sort: # TODO (fpliger): this handles pandas API change so users do not experience # the related annoying deprecation warning. This is probably worth # removing when pandas deprecated version (0.16) is "old" enough try: df = df.sort_values(by=columns, ascending=self.ascending) except AttributeError: df = df.sort(columns=columns, ascending=self.ascending) items = df[columns].drop_duplicates() self.items = [tuple(x) for x in items.to_records(index=False)] def _create_attr_map(self, df, columns): """Creates map between unique values and available attributes.""" self._generate_items(df, columns) iterable = self._setup_iterable() iter_map = {} for item in self.items: item = self._ensure_tuple(item) iter_map[item] = next(iterable) return iter_map def set_columns(self, columns): """Set columns property and update derived properties as needed.""" columns = self._ensure_list(columns) if all([col in self.data.column_names for col in columns]): self.columns = columns else: # we have input values other than columns # assume this is now the iterable at this point self.iterable = columns self._setup_default() def setup(self, data=None, columns=None): """Set the data and update derived properties as needed.""" if data is not None: self.data = data if columns is not None: self.set_columns(columns) if self.columns is not None and self.data is not None: self.attr_map = self._create_attr_map(self.data.to_df(), self.columns) def __getitem__(self, item): """Lookup the attribute to use for the given unique group label.""" if not self.columns or not self.data or item is None: return self.default elif self._ensure_tuple(item) not in self.attr_map.keys(): # make sure we have attr map self.setup() return self.attr_map[self._ensure_tuple(item)] class ColorAttr(AttrSpec): """An attribute specification for mapping unique data values to colors. .. note:: Should be expanded to support more complex coloring options. """ name = Override(default='color') iterable = List(Color, default=DEFAULT_PALETTE) bin = Bool(default=False) def __init__(self, **kwargs): iterable = kwargs.pop('palette', None) if iterable is not None: kwargs['iterable'] = iterable super(ColorAttr, self).__init__(**kwargs) def _generate_items(self, df, columns): """Produce list of unique tuples that identify each item.""" if not self.bin: super(ColorAttr, self)._generate_items(df, columns) else: if len(columns) == 1 and ChartDataSource.is_number(df[columns[0]]): self.bins = Bins(source=ColumnDataSource(df), column=columns[0], bin_count=len(self.iterable), aggregate=False) if self.sort: self.bins.sort(ascending=self.ascending) self.items = [bin.label[0] for bin in self.bins] else: raise ValueError('Binned colors can only be created for one column of \ numerical data.') def add_bin_labels(self, data): col = self.columns[0] # save original values into new column data._data[col + '_values'] = data._data[col] for bin in self.bins: # set all rows associated to each bin to the bin label being mapped to colors data._data.ix[data._data[col + '_values'].isin(bin.values), col] = bin.label[0] data._data[col] = pd.Categorical(data._data[col], categories=list(self.items), ordered=self.sort) class MarkerAttr(AttrSpec): """An attribute specification for mapping unique data values to markers.""" name = Override(default='marker') iterable = List(String, default=list(marker_types.keys())) def __init__(self, **kwargs): iterable = kwargs.pop('markers', None) if iterable is not None: kwargs['iterable'] = iterable super(MarkerAttr, self).__init__(**kwargs) dashes = DashPattern._values class DashAttr(AttrSpec): """An attribute specification for mapping unique data values to line dashes.""" name = Override(default='dash') iterable = List(String, default=dashes) def __init__(self, **kwargs): iterable = kwargs.pop('dash', None) if iterable is not None: kwargs['iterable'] = iterable super(DashAttr, self).__init__(**kwargs) class IdAttr(AttrSpec): """An attribute specification for mapping unique data values to line dashes.""" name = 'id' def _setup_iterable(self): return iter(range(0, len(self.items))) class CatAttr(AttrSpec): """An attribute specification for mapping unique data values to labels. .. note:: this is a special attribute specification, which is used for defining which labels are used for one aspect of a chart (grouping) vs another (stacking or legend) """ name = Override(default='nest') def __init__(self, **kwargs): super(CatAttr, self).__init__(**kwargs) def _setup_iterable(self): return iter(self.items) def get_levels(self, columns): """Provides a list of levels the attribute represents.""" if self.columns is not None: levels = [columns.index(col) for col in self.columns] return levels else: return [] """ Attribute Spec Functions Convenient functions for producing attribute specifications. These would be the interface used by end users when providing attribute specs as inputs to the Chart. """ def color(columns=None, palette=None, bin=False, **kwargs): """Produces a ColorAttr specification for coloring groups of data based on columns. Args: columns (str or list(str), optional): a column or list of columns for coloring palette (list(str), optional): a list of colors to use for assigning to unique values in `columns`. **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `ColorAttr` object """ if palette is not None: kwargs['palette'] = palette kwargs['columns'] = columns kwargs['bin'] = bin return ColorAttr(**kwargs) def marker(columns=None, markers=None, **kwargs): """ Specifies detailed configuration for a marker attribute. Args: columns (list or str): markers (list(str) or str): a custom list of markers. Must exist within :data:`marker_types`. **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `MarkerAttr` object """ if markers is not None: kwargs['markers'] = markers kwargs['columns'] = columns return MarkerAttr(**kwargs) def cat(columns=None, cats=None, sort=True, ascending=True, **kwargs): """ Specifies detailed configuration for a chart attribute that uses categoricals. Args: columns (list or str): the columns used to generate the categorical variable cats (list, optional): overrides the values derived from columns sort (bool, optional): whether to sort the categorical values (default=True) ascending (bool, optional): whether to sort the categorical values (default=True) **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `CatAttr` object """ if cats is not None: kwargs['cats'] = cats kwargs['columns'] = columns kwargs['sort'] = sort kwargs['ascending'] = ascending return CatAttr(**kwargs)
bsd-3-clause
xia2/xia2
src/xia2/cli/delta_cc_half.py
1
5298
import logging import matplotlib import os import sys from cctbx import crystal from iotbx.reflection_file_reader import any_reflection_file import libtbx.phil from dials.util import tabulate from dials.util.filter_reflections import filtered_arrays_from_experiments_reflections from dials.util.multi_dataset_handling import ( assign_unique_identifiers, parse_multiple_datasets, ) from dials.util.options import OptionParser from dials.util.options import flatten_experiments, flatten_reflections from dials.util.version import dials_version import xia2.Handlers.Streams from xia2.Handlers.Citations import Citations from xia2.Modules.Analysis import separate_unmerged from xia2.Modules.DeltaCcHalf import DeltaCcHalf matplotlib.use("Agg") logger = logging.getLogger("xia2.delta_cc_half") phil_scope = libtbx.phil.parse( """ include scope xia2.Modules.DeltaCcHalf.phil_scope group_size = None .type = int(value_min=1) batch .multiple = True { id = None .type = str range = None .type = ints(size=2, value_min=0) } include scope xia2.Modules.MultiCrystalAnalysis.batch_phil_scope output { log = xia2.delta_cc_half.log .type = path } """, process_includes=True, ) def run(args=sys.argv[1:]): # Create the parser parser = OptionParser( # usage=usage, phil=phil_scope, read_reflections=True, read_experiments=True, check_format=False, # epilog=help_message, ) # Parse the command line params, options, args = parser.parse_args( args=args, show_diff_phil=False, return_unhandled=True ) # Configure the logging xia2.Handlers.Streams.setup_logging( logfile=params.output.log, verbose=options.verbose ) logger.info(dials_version()) # Log the diff phil diff_phil = parser.diff_phil.as_str() if diff_phil != "": logger.info("The following parameters have been modified:\n") logger.info(diff_phil) if params.unit_cell is not None: unit_cell = params.unit_cell crystal_symmetry = crystal.symmetry(unit_cell=unit_cell) else: crystal_symmetry = None if len(params.input.experiments): experiments = flatten_experiments(params.input.experiments) reflections = flatten_reflections(params.input.reflections) reflections = parse_multiple_datasets(reflections) if len(experiments) != len(reflections): raise sys.exit( "Mismatched number of experiments and reflection tables found: %s & %s." % (len(experiments), len(reflections)) ) experiments, reflections = assign_unique_identifiers(experiments, reflections) # transform models into miller arrays intensities, batches = filtered_arrays_from_experiments_reflections( experiments, reflections, outlier_rejection_after_filter=False, partiality_threshold=0.99, return_batches=True, ) if args and os.path.isfile(args[0]): result = any_reflection_file(args[0]) unmerged_intensities = None batches_all = None for ma in result.as_miller_arrays( merge_equivalents=False, crystal_symmetry=crystal_symmetry ): if ma.info().labels == ["I(+)", "SIGI(+)", "I(-)", "SIGI(-)"]: assert ma.anomalous_flag() unmerged_intensities = ma elif ma.info().labels == ["I", "SIGI"]: assert not ma.anomalous_flag() unmerged_intensities = ma elif ma.info().labels == ["BATCH"]: batches_all = ma assert batches_all is not None assert unmerged_intensities is not None sel = unmerged_intensities.sigmas() > 0 unmerged_intensities = unmerged_intensities.select(sel).set_info( unmerged_intensities.info() ) batches_all = batches_all.select(sel) id_to_batches = None if len(params.batch) > 0: id_to_batches = {} for b in params.batch: assert b.id is not None assert b.range is not None assert b.id not in id_to_batches, "Duplicate batch id: %s" % b.id id_to_batches[b.id] = b.range separate = separate_unmerged( unmerged_intensities, batches_all, id_to_batches=id_to_batches ) batches = list(separate.batches.values()) intensities = list(separate.intensities.values()) result = DeltaCcHalf( intensities, batches, n_bins=params.n_bins, d_min=params.d_min, cc_one_half_method=params.cc_one_half_method, group_size=params.group_size, ) logger.info(tabulate(result.get_table(), headers="firstrow")) hist_filename = "delta_cc_hist.png" logger.info("Saving histogram to %s" % hist_filename) result.plot_histogram(hist_filename) normalised_scores_filename = "normalised_scores.png" logger.info("Saving normalised scores to %s" % normalised_scores_filename) result.plot_normalised_scores(normalised_scores_filename) Citations.cite("delta_cc_half") for citation in Citations.get_citations_acta(): logger.info(citation)
bsd-3-clause
amolkahat/pandas
pandas/tests/scalar/interval/test_interval.py
3
7257
from __future__ import division import numpy as np from pandas import Interval, Timestamp, Timedelta import pandas.core.common as com import pytest import pandas.util.testing as tm @pytest.fixture def interval(): return Interval(0, 1) class TestInterval(object): def test_properties(self, interval): assert interval.closed == 'right' assert interval.left == 0 assert interval.right == 1 assert interval.mid == 0.5 def test_repr(self, interval): assert repr(interval) == "Interval(0, 1, closed='right')" assert str(interval) == "(0, 1]" interval_left = Interval(0, 1, closed='left') assert repr(interval_left) == "Interval(0, 1, closed='left')" assert str(interval_left) == "[0, 1)" def test_contains(self, interval): assert 0.5 in interval assert 1 in interval assert 0 not in interval msg = "__contains__ not defined for two intervals" with tm.assert_raises_regex(TypeError, msg): interval in interval interval_both = Interval(0, 1, closed='both') assert 0 in interval_both assert 1 in interval_both interval_neither = Interval(0, 1, closed='neither') assert 0 not in interval_neither assert 0.5 in interval_neither assert 1 not in interval_neither def test_equal(self): assert Interval(0, 1) == Interval(0, 1, closed='right') assert Interval(0, 1) != Interval(0, 1, closed='left') assert Interval(0, 1) != 0 def test_comparison(self): with tm.assert_raises_regex(TypeError, 'unorderable types'): Interval(0, 1) < 2 assert Interval(0, 1) < Interval(1, 2) assert Interval(0, 1) < Interval(0, 2) assert Interval(0, 1) < Interval(0.5, 1.5) assert Interval(0, 1) <= Interval(0, 1) assert Interval(0, 1) > Interval(-1, 2) assert Interval(0, 1) >= Interval(0, 1) def test_hash(self, interval): # should not raise hash(interval) @pytest.mark.parametrize('left, right, expected', [ (0, 5, 5), (-2, 5.5, 7.5), (10, 10, 0), (10, np.inf, np.inf), (-np.inf, -5, np.inf), (-np.inf, np.inf, np.inf), (Timedelta('0 days'), Timedelta('5 days'), Timedelta('5 days')), (Timedelta('10 days'), Timedelta('10 days'), Timedelta('0 days')), (Timedelta('1H10M'), Timedelta('5H5M'), Timedelta('3H55M')), (Timedelta('5S'), Timedelta('1H'), Timedelta('59M55S'))]) def test_length(self, left, right, expected): # GH 18789 iv = Interval(left, right) result = iv.length assert result == expected @pytest.mark.parametrize('left, right, expected', [ ('2017-01-01', '2017-01-06', '5 days'), ('2017-01-01', '2017-01-01 12:00:00', '12 hours'), ('2017-01-01 12:00', '2017-01-01 12:00:00', '0 days'), ('2017-01-01 12:01', '2017-01-05 17:31:00', '4 days 5 hours 30 min')]) @pytest.mark.parametrize('tz', (None, 'UTC', 'CET', 'US/Eastern')) def test_length_timestamp(self, tz, left, right, expected): # GH 18789 iv = Interval(Timestamp(left, tz=tz), Timestamp(right, tz=tz)) result = iv.length expected = Timedelta(expected) assert result == expected @pytest.mark.parametrize('left, right', [ ('a', 'z'), (('a', 'b'), ('c', 'd')), (list('AB'), list('ab')), (Interval(0, 1), Interval(1, 2))]) def test_length_errors(self, left, right): # GH 18789 iv = Interval(left, right) msg = 'cannot compute length between .* and .*' with tm.assert_raises_regex(TypeError, msg): iv.length def test_math_add(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(1, 2, closed=closed) result = interval + 1 assert result == expected result = 1 + interval assert result == expected result = interval result += 1 assert result == expected msg = r"unsupported operand type\(s\) for \+" with tm.assert_raises_regex(TypeError, msg): interval + interval with tm.assert_raises_regex(TypeError, msg): interval + 'foo' def test_math_sub(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(-1, 0, closed=closed) result = interval - 1 assert result == expected result = interval result -= 1 assert result == expected msg = r"unsupported operand type\(s\) for -" with tm.assert_raises_regex(TypeError, msg): interval - interval with tm.assert_raises_regex(TypeError, msg): interval - 'foo' def test_math_mult(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(0, 2, closed=closed) result = interval * 2 assert result == expected result = 2 * interval assert result == expected result = interval result *= 2 assert result == expected msg = r"unsupported operand type\(s\) for \*" with tm.assert_raises_regex(TypeError, msg): interval * interval msg = r"can\'t multiply sequence by non-int" with tm.assert_raises_regex(TypeError, msg): interval * 'foo' def test_math_div(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(0, 0.5, closed=closed) result = interval / 2.0 assert result == expected result = interval result /= 2.0 assert result == expected msg = r"unsupported operand type\(s\) for /" with tm.assert_raises_regex(TypeError, msg): interval / interval with tm.assert_raises_regex(TypeError, msg): interval / 'foo' def test_math_floordiv(self, closed): interval = Interval(1, 2, closed=closed) expected = Interval(0, 1, closed=closed) result = interval // 2 assert result == expected result = interval result //= 2 assert result == expected msg = r"unsupported operand type\(s\) for //" with tm.assert_raises_regex(TypeError, msg): interval // interval with tm.assert_raises_regex(TypeError, msg): interval // 'foo' def test_constructor_errors(self): msg = "invalid option for 'closed': foo" with tm.assert_raises_regex(ValueError, msg): Interval(0, 1, closed='foo') msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): Interval(1, 0) @pytest.mark.parametrize('tz_left, tz_right', [ (None, 'UTC'), ('UTC', None), ('UTC', 'US/Eastern')]) def test_constructor_errors_tz(self, tz_left, tz_right): # GH 18538 left = Timestamp('2017-01-01', tz=tz_left) right = Timestamp('2017-01-02', tz=tz_right) error = TypeError if com._any_none(tz_left, tz_right) else ValueError with pytest.raises(error): Interval(left, right)
bsd-3-clause
rosenbrockc/dft
pydft/geometry.py
1
9366
"""Methods and classes for storing and manipulating the global geometry of the physical problem. """ import numpy as np from pydft.base import testmode cell = None """Cell: default geometry to use globally throughout the code when no other geometry is explicitly specified. """ def get_cell(cell_=None): """Returns the cell to use for calculations. """ if cell_ is not None: return cell_ else: return cell def set_cell(cell_): """Sets the global cell to an already initialized instance. Args: cell_ (Cell): new global cell. """ from pydft.bases.fourier import reset_cache reset_cache() global cell cell = cell_ def set_geometry(R, S, X=None, Z=1, grid="MP", f=2): """Sets the global geometry that is used by default in all calculations. Args: R (numpy.ndarray): column lattice vectors of the unit cell for the problem. S (numpy.ndarray): of `int`; defines how many times to divide each of the lattice vectors when defining the descritizing grid. X (numpy.ndarray): of shape (N, 3), where `N` is the number of nucleii in the unit cell. Z (numpy.ndarray or int): specifying the size of charge on each nucleus in `X`. grid (str): one of ['MP', 'BCC']; defines the type of grid to use for sampling *real* space unit cell. f (int): number of electrons per orbital. """ from pydft.bases.fourier import reset_cache reset_cache() global cell cell = Cell(R, S, X, Z, grid, f=f) return cell class Cell(object): """Represents the unit cell in real space *and* the corresponding cell in reciprocal space. Args: R (numpy.ndarray): column lattice vectors of the unit cell for the problem. S (numpy.ndarray): of `int`; defines how many times to divide each of the lattice vectors when defining the descritizing grid. X (numpy.ndarray): of shape (N, 3), where `N` is the number of nucleii in the unit cell. Z (numpy.ndarray or int): specifying the size of charge on each nucleus in `X`. grid (str): one of ['MP', 'BCC']; defines the type of grid to use for sampling *real* space unit cell. f (int): number of electrons per orbital. Attributes: R (numpy.ndarray): column lattice vectors of the unit cell for the problem. S (numpy.ndarray): of `int`; defines how many times to divide each of the lattice vectors when defining the descritizing grid. X (numpy.ndarray): of shape (N, 3), where `N` is the number of nucleii in the unit cell. Z (numpy.ndarray or int): specifying the size of charge on each nucleus in `X`. vol (float): volume of the cell in real space. f (int): number of electrons per orbital. """ def __init__(self, R, S, X=None, Z=1, grid="MP", f=2): self.R = np.array(R) self.S = np.array(S) self.vol = np.linalg.det(self.R) if X is None: self.X = np.array([[0,0,0]]) else: self.X = np.array(X) self.Z = np.array([Z for i in range(len(self.X))]) self.f = f self._M = None """numpy.ndarray: matrix of fractions used to define the points on which the functions are sampled in the unit cell. """ self._N = None """numpy.ndarray: matrix of integers used in computing the Fourier transform of the unit cell sample points. """ self._r = None """numpy.ndarray: points to sample the functions at in the unit cell. """ self._G = None """numpy.ndarray: sample points in reciprocal space. """ self._G2 = None """numpy.ndarray: magnitudes of the sample point vectors in reciprocal space. """ self._K = None """numpy.ndarray: with shape (3, 3); holds the reciprocal lattice vectors for the problem. """ self._Sf = None """numpy.ndarray: with length `self.X.shape[0]`; structure factors for the nucleii in the cell. """ self._dr = None """numpy.ndarray: distance from the center of the cell to each of the sample points. """ if grid != "MP": raise NotImplementedError("Haven't got BCC sampling in place yet.") @property def dr(self): """Returns a matrix of the distance from the center of the cell to each of the sample points. """ if self._dr is None: center = np.sum(self.R, axis=1)/2. self._dr = self.r - center return self._dr @property def K(self): """Reciprocal lattice vectors for the problem. Has shape (3, 3). """ if self._K is None: b1 = 2*np.pi*np.cross(self.R[:,1], self.R[:,2])/self.vol b2 = 2*np.pi*np.cross(self.R[:,2], self.R[:,0])/self.vol b3 = 2*np.pi*np.cross(self.R[:,0], self.R[:,1])/self.vol self._K = np.vstack((b1, b2, b3)).T return self._K @property def Sf(self): """Structure factor for the nuclei in the cell. """ if self._Sf is None: self._Sf = np.sum(np.exp(-1j*np.dot(self.G, self.X.T)), axis=1) return self._Sf @property def r(self): """Points to sample the functions at in the unit cell. """ if self._r is None: Sinv = np.diag(1./self.S) self._r = np.dot(self.M, np.dot(Sinv, self.R.T)) return self._r @property def G(self): """Sample points in reciprocal space. """ if self._G is None: self._G = 2*np.pi*np.dot(self.N, np.linalg.inv(self.R)) return self._G @property def G2(self): """Magnitudes of the sample point vectors in reciprocal space. Returns: numpy.ndarray: of length `np.prod(S)` with magnitude of each `G` vector. """ if self._G2 is None: self._G2 = np.linalg.norm(self.G, axis=1)**2 return self._G2 @property def M(self): """Returns the :math:`M` matrix of integers that determine points at which the functions are sampled in the unit cell. Examples: For `S = [2, 2, 1]`, the returned matrix is: .. code-block:: python np.ndarray([[0,0,0], [1,0,0], [0,1,0], [1,1,0]], dtype=int) """ if self._M is None: ms = np.arange(np.prod(self.S, dtype=int)) m1 = np.fmod(ms, self.S[0]) m2 = np.fmod(np.floor(ms/self.S[0]), self.S[1]) m3 = np.fmod(np.floor(ms/(self.S[0]*self.S[1])), self.S[2]) #Make sure we explicitly use an integer array; it's faster. self._M = np.asarray(np.vstack((m1, m2, m3)).T, dtype=int) return self._M @property def N(self): """"Returns the :math:`N` matrix of integers used in computing the Fourier transform of the unit cell sample points. """ if self._N is None: result = [] for i in range(3): odd = 1 if i % 2 == 1 else 0 m = np.ma.array(self.M[:,i], mask=(self.M[:,i] <= self.S[i]/2)) result.append(m-self.S[i]) self._N = np.array(result).T return self._N def _latvec_plot(self, R=True, withpts=False, legend=False): """Plots the lattice vectors (for real or reciprocal space). """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') vecs = self.R if R else self.K for i in range(3): steps = np.linspace(0, 1, np.floor(10*np.linalg.norm(vecs[:,i]))) Ri = vecs[:,i] Ri.shape = (1, 3) steps.shape = (len(steps), 1) line = np.dot(steps, Ri) ax.plot(line[:,0], line[:,1], line[:,2], label="R{0:d}".format(i+1)) if withpts: pts = self.r if R else self.G ax.scatter(pts[:,0], pts[:,1], pts[:,2], color='k') if legend: ax.legend() return (fig, ax) def plot(self, withpts=False): """Plots the unit cell. Args: withpts (bool): when True, the sampling points :attr:`r` are also plotted. """ import matplotlib.pyplot as plt fig, ax = self._latvec_plot(withpts=withpts) plt.title("Real Lattice with Sampling Points") if not testmode: plt.show() def gplot(self, withpts=False): """Plots the reciprocal lattice vectors. Args: withpts (bool): when True, the sampling points in reciprocal space will also be plotted. """ import matplotlib.pyplot as plt fig, ax = self._latvec_plot(R=False, withpts=withpts) plt.title("Reciprocal Lattice with Sampling Points") if not testmode: plt.show()
mit
mugizico/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
meren/anvio
anvio/mcgclassifier.py
2
35383
# -*- coding: utf-8 # pylint: disable=line-too-long """ Classes to classify genes based on coverages across metagenomes. anvi-mcg-classifier is the default client using this module """ import os import anvio import numpy as np import pandas as pd import matplotlib # TODO: according to the warning, this call to set the back-hand is meaningless # I need to experiment to see what happens if I delete it. matplotlib.use('pdf') import anvio.utils as utils import matplotlib.pyplot as plt import anvio.terminal as terminal import anvio.filesnpaths as filesnpaths from scipy import odr as odr from anvio.mcgops import MCGPlots from anvio.errors import ConfigError, FilesNPathsError from matplotlib.backends.backend_pdf import PdfPages __author__ = "Developers of anvi'o (see AUTHORS.txt)" __copyright__ = "Copyleft 2015-2018, the Meren Lab (http://merenlab.org/)" __credits__ = [] __license__ = "GPL 3.0" __version__ = anvio.__version__ __maintainer__ = "Alon Shaiber" __email__ = "[email protected]" run = terminal.Run() progress = terminal.Progress() pp = terminal.pretty_print columns_for_samples_coverage_stats_dict = ['non_outlier_mean_coverage', 'non_outlier_coverage_std'] class MetagenomeCentricGeneClassifier: def __init__(self, args, run=run, progress=progress): self.run = run self.progress = progress A = lambda x: args.__dict__[x] if x in args.__dict__ else None self.output_file_prefix = A('output_file_prefix') self.alpha = A('alpha') self.collection_name = A('collection_name') self.bin_id = A('bin_id') self.bin_ids_file_path = A('bin_ids_file') self.exclude_samples = A('exclude_samples') self.include_samples = A('include_samples') self.outliers_threshold = A('outliers_threshold') self.zeros_are_outliers = A('zeros_are_outliers') self.gen_figures = A('gen_figures') self.overwrite_output_destinations = A('overwrite_output_destinations') self.split_coverage_values_per_nt_dict = None self.gene_level_coverage_stats_dict = None self.gene_level_coverage_stats_dict_of_dataframes = None self.profile_db = {} self.coverage_values_per_nt = None self.gene_coverages = {} self.gene_detections = None self.samples = None self.positive_samples = [] self.number_of_positive_samples = None self.negative_samples = {} self.number_of_negative_samples = None self.gene_class_df = {} self.samples_detection_information = {} self.gene_presence_absence_in_samples_initiated = False self.gene_presence_absence_in_samples = None self.additional_description = '' self.total_length = None self.samples_coverage_stats_dicts_was_initiated = False self.samples_coverage_stats_dicts = {} self.non_outlier_indices = {} self.gene_coverage_consistency_dict = {} self.gene_coverage_consistency_dict_initiated = False self.samples_to_exclude = set([]) self.samples_to_include = set([]) self.write_output_to_files = None if self.exclude_samples: # check that there is a file like this filesnpaths.is_file_exists(self.exclude_samples) self.samples_to_exclude = set([l.split('\t')[0].strip() for l in open(self.exclude_samples, 'rU').readlines()]) if not self.samples_to_exclude: raise ConfigError("You asked to exclude samples, but provided an empty list.") run.info('Excluding Samples', 'The following samples will be excluded: %s' % self.samples_to_exclude,) if self.include_samples: # check that there is a file like this filesnpaths.is_file_exists(self.include_samples) self.samples_to_include = set([l.split('\t')[0].strip() for l in open(self.include_samples, 'rU').readlines()]) if not self.samples_to_include: raise ConfigError("You provided an empty list of samples to include.") run.info('Including Samples', 'The following samples will be included: %s' % self.samples_to_include,) # run sanity check on all input arguments self.sanity_check() def init(self, gene_level_coverage_stats_dict=None, split_coverage_values_per_nt_dict=None, additional_description=None): """ setting the dictionaries for gene coverage stats and for split coverage per nucleotide""" if gene_level_coverage_stats_dict is None and split_coverage_values_per_nt_dict is None: raise ConfigError("MCGC needs at least one of the following in order to work: " "gene_level_coverage_stats_dict or/and split_coverage_values_per_nt_dict") # We want to make sure these are empty in case we use "init" multiple times for different bins self.coverage_values_per_nt = None self.gene_class_df = {} self.samples_detection_information = {} self.gene_presence_absence_in_samples_initiated = False self.gene_presence_absence_in_samples = None self.samples_coverage_stats_dicts_was_initiated = False self.samples_coverage_stats_dicts = {} self.non_outlier_indices = {} self.gene_coverage_consistency_dict = {} self.gene_coverage_consistency_dict_initiated = False self.gene_level_coverage_stats_dict = gene_level_coverage_stats_dict self.split_coverage_values_per_nt_dict = split_coverage_values_per_nt_dict if additional_description: self.additional_description = '-' + additional_description try: samples = next(iter(self.gene_level_coverage_stats_dict.values())).keys() except: samples = next(iter(self.split_coverage_values_per_nt_dict.values())).keys() self.init_samples(samples) def sanity_check(self): """Basic sanity check for class inputs""" if self.output_file_prefix: filesnpaths.is_output_file_writable(self.output_file_prefix + '-additional-layers.txt', ok_if_exists=self.overwrite_output_destinations) try: if self.gen_figures: plot_dir = self.output_file_prefix + '-nucleotide-coverage-distribution-plots' os.makedirs(plot_dir, exist_ok=self.overwrite_output_destinations) except FileExistsError as e: raise FilesNPathsError("%s already exists, if you would like to overwrite it, then use -W (see help menu)." % plot_dir) # checking alpha if not isinstance(self.alpha, float): raise ConfigError("alpha value must be a type float.") # alpha must be a min of 0 and smaller than 0.5 if self.alpha < 0 or self.alpha >= 0.5: raise ConfigError("alpha must be a minimum of 0 and smaller than 0.5") if self.exclude_samples and self.include_samples: raise ConfigError("You cannot use both --include-samples and --exclude-samples! Please choose one.") def init_samples(self, samples_list): """ Create the set of samples according to user input and store it in self.samples""" # remove the samples that should be excluded samples = set(samples_list) - self.samples_to_exclude if self.include_samples: samples_to_include_that_are_not_there = self.samples_to_include - samples if samples_to_include_that_are_not_there: raise ConfigError("You requested to include some samples that are not in the profile database. Here are the samples in the profile database: %s. " "And here are the samples you requested, and that are not there: %s" % (samples, samples_to_include_that_are_not_there)) samples = self.samples_to_include self.samples = samples def init_gene_level_coverage_stats_dict_of_dataframes(self): """ converts the dictionaries of gene_level_coverage_stats_dict to dataframes""" self.gene_level_coverage_stats_dict_of_dataframes = {} for key in ['mean_coverage', 'detection', 'non_outlier_mean_coverage', 'non_outlier_coverage_std']: # Only include samples that the user want gene_stat = utils.get_values_of_gene_level_coverage_stats_as_dict(self.gene_level_coverage_stats_dict, key, as_pandas=True, samples_of_interest=self.samples) self.gene_level_coverage_stats_dict_of_dataframes[key] = gene_stat for key in ['gene_coverage_values_per_nt', 'non_outlier_positions']: gene_stat = utils.get_values_of_gene_level_coverage_stats_as_dict(self.gene_level_coverage_stats_dict, key, as_pandas=False, samples_of_interest=self.samples) self.gene_level_coverage_stats_dict_of_dataframes[key] = gene_stat def init_samples_coverage_stats_dict(self): """ populate the samples_coverage_stats_dict, and determine positive, negative, and ambiguous samples with the genome detection information (--alpha, --genome-detection-uncertainty) The samples_coverage_stats_dict dataframe is used to calculate the gene consistency information. It is also used for plotting purposes (both for the nucleotide-coverage-distribution plots and the gene-consistency plots). The coverage_values_per_nt is used to calculate the detection value (portion of nucleotides covered) for a sample. Then, a cutoff for detection values is used to determine the presence or absence of the genome in each sample. """ if self.coverage_values_per_nt is None: self.coverage_values_per_nt = get_coverage_values_per_nucleotide(self.split_coverage_values_per_nt_dict, samples=self.samples) total_length = len(next(iter(self.coverage_values_per_nt.values()))) MCG_samples_information_table_structure = ['samples', 'presence', 'detection', 'number_of_taxon_specific_core_detected'] # create an empty dataframe samples_information = pd.DataFrame(index=self.samples, columns=MCG_samples_information_table_structure[1:]) positive_samples = [] negative_samples = [] self.progress.new("Finding nucleotide positions in samples with outlier coverage values") progress.update('...') num_samples, counter = len(self.samples), 1 detection = {} total_length = len(next(iter(self.coverage_values_per_nt.values()))) self.samples_coverage_stats_dicts = pd.DataFrame(index=self.samples, columns=columns_for_samples_coverage_stats_dict) for sample in self.samples: if num_samples > 100 and counter % 100 == 0: self.progress.update('%d of %d samples...' % (counter, num_samples)) # get the non-outlier information non_outlier_indices, self.samples_coverage_stats_dicts.loc[sample,] = get_non_outliers_information(self.coverage_values_per_nt[sample], MAD_threshold=self.outliers_threshold, zeros_are_outliers=self.zeros_are_outliers) self.non_outlier_indices[sample] = non_outlier_indices number_of_non_outliers = len(self.non_outlier_indices[sample]) if anvio.DEBUG: self.run.info_single('The mean and std of non-outliers in sample %s are: %s, %s respectively' % (sample, self.samples_coverage_stats_dicts['non_outlier_mean_coverage'][sample], self.samples_coverage_stats_dicts['non_outlier_coverage_std'][sample])) self.run.info_single('The number of non-outliers is %s of %s (%.2f%%)' % (number_of_non_outliers, total_length, 100.0 * number_of_non_outliers / total_length)) detection[sample] = np.count_nonzero(self.coverage_values_per_nt[sample]) / total_length samples_information['presence'][sample] = get_presence_absence_information(number_of_non_outliers/total_length, self.alpha) if detection[sample] <= 0.5: samples_information['presence'][sample] = False if samples_information['presence'][sample]: positive_samples.append(sample) elif samples_information['presence'][sample] == False: negative_samples.append(sample) samples_information['detection'][sample] = detection[sample] counter += 1 self.positive_samples = positive_samples self.number_of_positive_samples = len(self.positive_samples) self.negative_samples = negative_samples self.samples_detection_information = samples_information self.run.warning('The number of positive samples is %s' % self.number_of_positive_samples) self.run.warning('The number of negative samples is %s' % len(self.negative_samples)) self.samples_coverage_stats_dicts_was_initiated = True self.progress.end() def plot_nucleotide_coverage_distribution(self): """ Creates a pdf file with the following plots for each sample the sorted nucleotide coverages \ (with the outliers in red and non-outliers in blue), and a histogram of coverages for the non-outliers""" # Creating a dircetory for the plots. If running on bins, each bin would be in a separate sub-directory if not self.samples_coverage_stats_dicts_was_initiated: self.init_samples_coverage_stats_dict() plot_dir = self.output_file_prefix + '-nucleotide-coverage-distribution-plots' + '/' self.progress.new('Saving figures of taxon specific distributions to pdf') progress.update('...') number_of_fininshed = 0 for sample in self.positive_samples: coverages_pdf_output = plot_dir + sample + self.additional_description + '-coverages.pdf' pdf_output_file = PdfPages(coverages_pdf_output) v = self.coverage_values_per_nt[sample] # Using argsort so we can use the non_oulier indices sorting_indices = np.argsort(v) # we would need the reverse of the sorting of the indices to create the x axis for the non-outliers reverse_sorted_indices = np.zeros(len(sorting_indices)) reverse_sorted_indices[sorting_indices] = range(len(reverse_sorted_indices)) # plotting the ordered coverage values (per nucleotide) # the non-outliers are plotted in blue # the outlier values are plotted in red fig = plt.figure() ax = fig.add_subplot(111, rasterized=True) ax.set_xlabel = 'Nucleotide Number (ordered)' ax.set_ylabel = r'$Nucleotide Coverage^2$' x1 = range(len(v)) # FIXME: this shouldn't be in the loop (only here because I need to fix the mock data) x2 = reverse_sorted_indices[self.non_outlier_indices[sample]] #y2 = v[self.non_outlier_indices[sample]] # plot all in red ax.semilogy(x1,v[sorting_indices],'r.', rasterized=True) # plot on top the non-outliers in blue ax.semilogy(x2,v[self.non_outlier_indices[sample]],'b.', rasterized=True) fig.suptitle("%s - sorted coverage values with outliers" % sample) plt.savefig(pdf_output_file, format='pdf') plt.close() # plotting a histogram of the non-outliers # This would allow to see if they resemble a normal distribution hist_range = (min(v[self.non_outlier_indices[sample]]),max(v[self.non_outlier_indices[sample]])) # computing the number of bins so that the width of a bin is ~1/4 of the standard deviation # FIXME: need to make it so the bins are only of integers (so the smallest bin is of width 1 # and that bins are integers) number_of_hist_bins = np.ceil((hist_range[1] - hist_range[0]) / (self.samples_coverage_stats_dicts['non_outlier_coverage_std'][sample]/4)).astype(int) # setting the histogram bins to be of the width of a quarter of std fig = plt.figure() ax = fig.add_subplot(111, rasterized=True) ax.set_xlabel = 'Coverage' ax.hist(v[self.non_outlier_indices[sample]], number_of_hist_bins,hist_range, rasterized=True) fig.suptitle("%s - histogram of non-outliers" % sample) # adding the mean and std of the non-outliers as text to the plot text_for_hist = u'$\mu = %d$\n $\sigma = %d$' %\ (self.samples_coverage_stats_dicts['non_outlier_mean_coverage'][sample],\ self.samples_coverage_stats_dicts['non_outlier_coverage_std'][sample]) ax.text(0.8, 0.9, text_for_hist, ha='center', va='center', transform=ax.transAxes) plt.savefig(pdf_output_file, format='pdf') plt.close() # close the pdf file pdf_output_file.close() number_of_fininshed += 1 self.progress.update("Finished %d of %d" % (number_of_fininshed, self.number_of_positive_samples)) self.progress.end() def init_gene_presence_absence_in_samples(self): """ Determining presence and absence of genes in samples according to gene detection values.""" if not self.gene_level_coverage_stats_dict: raise ConfigError("gene presence/absence in samples cannot be determined without a gene_level_coverage_stats_dict,\ but it seems that you don't have one. maybe you should run init()?") if self.gene_level_coverage_stats_dict_of_dataframes is None: self.init_gene_level_coverage_stats_dict_of_dataframes() gene_callers_id = self.gene_level_coverage_stats_dict_of_dataframes['detection'].index self.gene_presence_absence_in_samples = pd.DataFrame(index=gene_callers_id, columns=self.samples) T = lambda x: get_presence_absence_information(sum(x)/len(x), self.alpha) self.progress.new('Computing gene presence/absence in samples') progress.update('...') genes_above_outlier_threshold = pd.DataFrame.from_dict(self.gene_level_coverage_stats_dict_of_dataframes['non_outlier_positions'], orient='index').applymap(T) genes_with_detection_above_half = self.gene_level_coverage_stats_dict_of_dataframes['detection'].applymap(lambda x: x > 0.5) self.gene_presence_absence_in_samples = genes_above_outlier_threshold & genes_with_detection_above_half self.gene_presence_absence_in_samples_initiated = True self.progress.end() def init_gene_coverage_consistency_information(self): """ Perform orthogonal distance regression for each gene to determine coverage consistency. The question that we are trying to ask is: Do the non-outlier nt coverage of the gene in samlpes correlates to the non-outlier nt coverage of the genome in samples? The regression is performed only for positive samples. For each gene, the regression is performed only according to samples in which the gene is present (according to the detection critrea). """ if not self.samples_coverage_stats_dicts_was_initiated: self.init_samples_coverage_stats_dict() if not self.gene_presence_absence_in_samples_initiated: self.init_gene_presence_absence_in_samples() self.progress.new("Computing coverage consistency for all genes.") progress.update('...') gene_ids = self.gene_level_coverage_stats_dict_of_dataframes['mean_coverage'].index num_genes, counter = len(gene_ids), 1 for gene_id in gene_ids: if num_genes > 100 and counter % 100 == 0: self.progress.update('%d of %d genes...' % (counter, num_genes)) # samples in which the gene is present _samples = self.gene_presence_absence_in_samples.loc[gene_id,self.gene_presence_absence_in_samples.loc[gene_id,]==True].index # mean and std of non-outlier nt in each sample x = list(self.samples_coverage_stats_dicts.loc[_samples,'non_outlier_mean_coverage'].values) if "non_outlier_coverage_std" in self.samples_coverage_stats_dicts: # we only expect to have the sample coverage std in "full" mode std_x = list(self.samples_coverage_stats_dicts.loc[_samples,'non_outlier_coverage_std'].values) else: std_x = None if len(_samples) > 1: # mean and std of non-outlier nt in the gene (in each sample) y = self.gene_level_coverage_stats_dict_of_dataframes['non_outlier_mean_coverage'].loc[gene_id, _samples].values std_y = self.gene_level_coverage_stats_dict_of_dataframes['non_outlier_coverage_std'].loc[gene_id, _samples].values # performing the regression using ODR _data = odr.RealData(x, y, std_x, std_y) _model = lambda B, c: B[0] * c _odr = odr.ODR(_data, odr.Model(_model), beta0=[3]) odr_output = _odr.run() # store results self.gene_coverage_consistency_dict[gene_id] = {} self.gene_coverage_consistency_dict[gene_id]['slope'] = odr_output.beta[0] self.gene_coverage_consistency_dict[gene_id]['slope_std'] = odr_output.sd_beta[0] self.gene_coverage_consistency_dict[gene_id]['slope_precision'] = odr_output.sd_beta[0] / odr_output.beta[0] # compute R squered f = lambda b: lambda _x: b*_x R_squered = 1 - sum((np.apply_along_axis(f(odr_output.beta[0]),0,x)-y)**2) / sum((y-np.mean(y))**2) # Check if converged self.gene_coverage_consistency_dict[gene_id]['R_squered'] = R_squered if odr_output.stopreason[0] == 'Sum of squares convergence': self.gene_coverage_consistency_dict[gene_id]['converged'] = True else: self.gene_coverage_consistency_dict[gene_id]['converged'] = False self.gene_coverage_consistency_dict_initiated = True self.progress.end() def get_gene_specificity(self, gene_id): """ return True for gene if it occurs in positive samples and doesn't occur in negative samples. Ambiguous occurences are not counted as anything. This means that if a gene is ambiguously occuring in a negative sample it could still be counted as "specific". It also means that if a gene is only ambiguously occuring in positive samples then it would be considered as "non-specific". """ if self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] > 1 and self.gene_class_df.loc[gene_id, 'occurence_in_negative_samples'] == 0: return True else: return False # TODO: if there are no occurences of the gene at all, then we should maybe return None instead of False def get_gene_coverage_consistency(self, gene_id): """ return true if the gene's coverage is consistent accross positive samples, False otherwise.""" # TODO: make sure coverage_consistency_dict has been initiated if self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] == 0: # if the gene doesn't occur in positive samlpes then there is no classification return None elif self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] == 1: # if the gene occurs only in one positive sample then return True. # XXX: we might prefer to return None, we should consider this in the future. return True elif self.gene_coverage_consistency_dict[gene_id]['converged']: # FIXME: this is where we use an arbitrary threshold again :-( # if the slope precision is smaller than the threshold then the regression # fit is considered accurate enough and the gene coverage is considered consistent. return self.gene_coverage_consistency_dict[gene_id]['slope_precision'] < 0.5 else: # The regression didn't converege so the coverage is probably not consistent. return False def determine_if_gene_is_core(self, gene_id, gene_specificity): """ return True for core gene, False for accessory gene If the gene is specific to positive samples, then core would be considered if it occurs in all positive samples. Otherwise it would be considered core if it occurs in all positive AND all negative samples. Ambiguous occurences of a gene are not considered (i.e. they are the same as absence). """ if gene_specificity: # return True if the the gene occurs in all positive samples. return self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] == len(self.positive_samples) else: # return True if the gene occurs in all positive AND all negative samples return self.gene_class_df.loc[gene_id, 'occurence_in_positive_and_negative_samples'] == len(self.positive_samples) + len(self.negative_samples) def init_gene_class_df(self): """ generate dictionary with the class information per gene. This dictionary could be later use to produce an additional-layer text file for vizualization. """ # TODO: make sure gene presence absence was calculated if not self.gene_coverage_consistency_dict_initiated: self.init_gene_coverage_consistency_information() # XXX: only negative and positive samples are used here # ambiguous samples are ignored as if they were never # there. This is not ideal, but is easy to do. gene_ids = self.gene_level_coverage_stats_dict_of_dataframes['mean_coverage'].index self.gene_class_df = pd.DataFrame(index=gene_ids) for gene_id in gene_ids: # determine the number of occurences in positive samples self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] = len([s for s in self.positive_samples if self.gene_presence_absence_in_samples.loc[gene_id,s] == True]) # determine the number of occurences in negative samples self.gene_class_df.loc[gene_id, 'occurence_in_negative_samples'] = len([s for s in self.negative_samples if self.gene_presence_absence_in_samples.loc[gene_id,s] == True]) # set the occurence_in_positive_and_negative_samples self.gene_class_df.loc[gene_id, 'occurence_in_positive_and_negative_samples'] = self.gene_class_df.loc[gene_id, 'occurence_in_positive_samples'] + self.gene_class_df.loc[gene_id, 'occurence_in_negative_samples'] gene_specificity = self.get_gene_specificity(gene_id) gene_coverage_consistency = self.get_gene_coverage_consistency(gene_id) # determine core accessory gene_is_core = self.determine_if_gene_is_core(gene_id, gene_specificity) self.gene_class_df.loc[gene_id, 'specificity'] = gene_specificity self.gene_class_df.loc[gene_id, 'coverage_consistency'] =gene_coverage_consistency self.gene_class_df.loc[gene_id, 'core'] = gene_is_core self.gene_class_df.loc[gene_id, 'MCG_class'] = get_class_string(gene_specificity, gene_coverage_consistency, gene_is_core) def update_samples_information_from_gene_class_df(self): # after running classification we sum up some information regarding # the results of the classifier per sample for sample in self.samples_detection_information: TSC = [g for g in self.gene_class_df.index if (self.gene_class_df.loc[g,'coverage_consistency'] and \ self.gene_class_df.loc[g,'core'])] self.samples_detection_information['number_of_taxon_specific_core_detected'] = len(TSC) def gen_gene_consistency_plots(self): """ generate and save the gene consistency plots for each gene.""" if not self.gene_coverage_consistency_dict_initiated: self.init_gene_coverage_consistency_information() gene_ids = self.gene_level_coverage_stats_dict_of_dataframes['mean_coverage'].index num_genes, counter = len(gene_ids), 1 progress.new('Plotting gene consistency information') progress.update('...') for gene_id in gene_ids: if num_genes > 100 and counter % 100 == 0: self.progress.update('%d of %d genes...' % (counter, num_genes)) p = MCGPlots(self, gene_id, run=run, progress=progress) p.plot() progress.end() def save_gene_class_information_in_additional_layers(self): output_file_path = self.output_file_prefix + self.additional_description + '-additional-layers.txt' self.gene_class_df.to_csv(output_file_path, sep='\t', index_label='gene_callers_id') def save_samples_information(self): samples_information_file_name = self.output_file_prefix + self.additional_description + '-samples-information.txt' samples_information = pd.concat([self.samples_detection_information, self.samples_coverage_stats_dicts], axis=1, sort=True) samples_information.to_csv(samples_information_file_name, sep='\t', index_label='samples') def classify(self): self.init_gene_class_df() self.update_samples_information_from_gene_class_df() if self.write_output_to_files: self.save_gene_class_information_in_additional_layers() self.save_samples_information() if self.gen_figures: # Create the plots for nucleotide-level coverage data per sample. self.plot_nucleotide_coverage_distribution() # generate plots for coverage consistency information for each gene. self.gen_gene_consistency_plots() def get_coverage_values_per_nucleotide(split_coverage_values_per_nt_dict, samples=None): """ Helper function that accepts a split_coverage_values_per_nt_dict and returns a dictionary with samples as keys and the concatenated coverage values for all splits as one array """ if not split_coverage_values_per_nt_dict: raise ConfigError("You did not provide a split_coverage_values_per_nt_dict, and we need it...") progress.new('Merging coverage values accross splits') progress.update('...') d = {} if samples is None: samples = next(iter(split_coverage_values_per_nt_dict.values())).keys() number_of_samples = len(samples) number_of_finished = 0 # find the combined legnth of all contigs first total_length = 0 for split in split_coverage_values_per_nt_dict: total_length += len(split_coverage_values_per_nt_dict[split][next(iter(samples))]) for sample in samples: # create an array of zero with the total length # this is much faster than appending the vectors of splits d[sample] = np.zeros(total_length) pos = 0 for split in split_coverage_values_per_nt_dict: split_values = split_coverage_values_per_nt_dict[split][sample] split_len = len(split_values) d[sample][pos:pos+split_len] = split_values pos += split_len #d[sample] = np.array(d[sample]) number_of_finished += 1 progress.update("Finished sample %d of %d" % (number_of_finished,number_of_samples)) progress.end() return d def get_non_outliers_information(v, MAD_threshold=2.5, zeros_are_outliers=False): """ returns the non-outliers for the input pandas series using MAD""" d = pd.Series(index=columns_for_samples_coverage_stats_dict) outliers = utils.get_list_of_outliers(v, threshold=MAD_threshold, zeros_are_outliers=zeros_are_outliers) non_outliers = np.logical_not(outliers) non_outlier_indices = np.where(non_outliers)[0] if not(len(non_outlier_indices)): non_outlier_indices = np.array([]) d['non_outlier_mean_coverage'] = 0.0 d['non_outlier_coverage_std'] = 0.0 else: d['non_outlier_mean_coverage'] = np.mean(v[non_outlier_indices]) d['non_outlier_coverage_std'] = np.std(v[non_outlier_indices]) return non_outlier_indices, d # The order of the strings is very important since it is used in get_class_string class_short_names = ['NNA', 'SNA', 'NCA',\ 'SCA', 'NNC', 'SNC',\ 'NCC', 'SCC'] class_long_names = ['Non-specific_Non-consistent_Accessory', 'Specific_Non-consistent_Accessory', 'Non-specific_Consistent_Accessory',\ 'Specific_Consistent_Accessory', 'Non-specific_Non-consistent_Core', 'Specific_Non-consistent_Core',\ 'Non-specific_Consistent_Core', 'Specific_Consistent_Core'] class_short_name_long_name_dict = dict(zip(class_short_names,class_long_names)) def get_class_long_name_from_short_name(short_name): return class_short_name_long_name_dict[short_name] def get_class_string(gene_specificity, gene_coverage_consistency, gene_is_core): """ Takes the values of the three categories and returns a string to represent the class.""" value_list = [gene_specificity, gene_coverage_consistency, gene_is_core] if None in value_list: return 'NA' # converting the list of booleans to a number # this solution was takes from here: https://stackoverflow.com/a/4066807/7115450 index = sum(1<<i for i, b in enumerate(value_list) if b) return class_short_names[index] def get_presence_absence_information(number_of_non_outliers, alpha): """ Helper function to determine presence/absence according to a threshold.""" ##### WHAT WE SHOULD DO IN THE FUTURE ##### # Arbitrary cut-offs are terrible. # If we assume there are no accessory genes (we will get back to this later), # then if the gnomes is present, then we expect ALL of it to be present. Thus, # if we had an unlimited number of reads, then we expect detection to be 1. # as the number of reads gets smaller, the expected detection value is smaller. # for a given genome size, a given read length, and the number of reads mapped to # the genome, we can compute the following value: "what is the probability that # the detection value will be greater than the actual detection value", if that # probability is high, then that is a good sign that the genome is not present # in the sample, and that any reads that we got are due to non-specific coverage. # the same thing could be calculated for a given gene. # we can create a measure for agreement between the mean coverage of a gene # and the detection of the gene. It would simply be the probability that the # coverage of the gene would exist with a detection that is higher than the # actual detection of the gene. All we need for that is the read length, # gene/genome length, and the expected genomic portion shared by two genomes that # belong to the population in question. if number_of_non_outliers >= 0.5 + alpha: return True elif np.sum(number_of_non_outliers) <= 0.5 - alpha: return False else: return None
gpl-3.0
britodasilva/pyhfo
pyhfo/ui/plot_spike.py
1
3272
# -*- coding: utf-8 -*- """ Created on Sat May 2 17:11:16 2015 @author: anderson """ # importing modules from __future__ import division import numpy as np import matplotlib.pyplot as plt from . import adjust_spines def plot_single_spk(spk,subplot = None, spines = ['left', 'bottom'], figure_size = (5,5),dpi=600,**kwargs): """ Function to plot single Spike Parameters ---------- spk: SpikeObj Spike object to plot subplot: matplotlib axes None (default) - create a new figure ax - axes of figure where figure should plot spines: str ['left', 'bottom'] (default) - plot figure with left and bottom spines only figure_size: tuple (5,5) (default) - Size of figure, tuple of integers with width, height in inches dpi: int 600 - DPI resolution **kwargs: matplotlib arguments """ if subplot == None: # Creating the figure f = plt.figure(figsize=figure_size,dpi=dpi) # creating the axes ax = f.add_subplot(111) else: ax = subplot #ax.plot(range(-20,44),spk.waveform,**kwargs) time_vec = np.linspace(spk.time_edge[0],spk.time_edge[1],spk.waveform.shape[0],endpoint=True)*1000 ax.plot(time_vec,spk.waveform,**kwargs) plt.xlabel('Time (ms)') adjust_spines(ax, spines) def plot_spk_cluster(evlist,cluster,channel,color='b',ax = None, spines = [], plot_mean = True,figure_size=(5,5),dpi=600): """ Function to plot cluster of spikes Parameters ---------- evlist: EventList EventList object to plot cluster: int Number of the cluster color: str Color of plot spines: str ['left', 'bottom'] (default) - plot figure with left and bottom spines only plot_mean: boolean True (default) - plot mean line figure_size: tuple (5,5) (default) - Size of figure, tuple of integers with width, height in inches dpi: int 600 - DPI resolution """ if ax == None: # Creating the figure f = plt.figure(figsize=figure_size,dpi=dpi) # creating the axes ax = f.add_subplot(111) spikes = np.array([]) # creating a empty array objs = [x for x in evlist.event if x.cluster == cluster and x.channel == channel] npspk, = objs[0].waveform.shape time_vec = np.linspace(objs[0].time_edge[0],objs[0].time_edge[1],npspk,endpoint=True) for sp in objs: ax.plot(time_vec,sp.waveform,color=color,lw=0.5) #ax.plot(sp.waveform,color=color,lw=0.5) spikes = np.append(spikes, sp.waveform) if plot_mean and len(evlist.event)>1: spikes = spikes.reshape(len(objs),npspk) ax.plot(time_vec,np.mean(spikes,axis=0),'k',lw=2) ax.plot(time_vec,np.mean(spikes,axis=0)-np.std(spikes,axis=0),'k',lw=1) ax.plot(time_vec,np.mean(spikes,axis=0)+np.std(spikes,axis=0),'k',lw=1) plt.xlabel('Time (ms)') #ax.plot(np.mean(spikes,axis=0),'k',lw=2) #ax.plot(np.mean(spikes,axis=0)-np.std(spikes,axis=0),'k',lw=1) #ax.plot(np.mean(spikes,axis=0)+np.std(spikes,axis=0),'k',lw=1) adjust_spines(ax, spines)
mit
LohithBlaze/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
Eric89GXL/mne-python
mne/parallel.py
14
6545
"""Parallel util function.""" # Author: Alexandre Gramfort <[email protected]> # # License: Simplified BSD import logging import os from . import get_config from .utils import logger, verbose, warn, ProgressBar from .utils.check import int_like from .fixes import _get_args if 'MNE_FORCE_SERIAL' in os.environ: _force_serial = True else: _force_serial = None @verbose def parallel_func(func, n_jobs, max_nbytes='auto', pre_dispatch='n_jobs', total=None, prefer=None, verbose=None): """Return parallel instance with delayed function. Util function to use joblib only if available Parameters ---------- func : callable A function. n_jobs : int Number of jobs to run in parallel. max_nbytes : int, str, or None Threshold on the minimum size of arrays passed to the workers that triggers automated memory mapping. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Use 'auto' to use the value set using mne.set_memmap_min_size. pre_dispatch : int, or str, optional See :class:`joblib.Parallel`. total : int | None If int, use a progress bar to display the progress of dispatched jobs. This should only be used when directly iterating, not when using ``split_list`` or :func:`np.array_split`. If None (default), do not add a progress bar. prefer : str | None If str, can be "processes" or "threads". See :class:`joblib.Parallel`. Ignored if the joblib version is too old to support this. .. versionadded:: 0.18 %(verbose)s INFO or DEBUG will print parallel status, others will not. Returns ------- parallel: instance of joblib.Parallel or list The parallel object. my_func: callable ``func`` if not parallel or delayed(func). n_jobs: int Number of jobs >= 0. """ should_print = (logger.level <= logging.INFO) # for a single job, we don't need joblib if n_jobs != 1: try: from joblib import Parallel, delayed except ImportError: try: from sklearn.externals.joblib import Parallel, delayed except ImportError: warn('joblib not installed. Cannot run in parallel.') n_jobs = 1 if n_jobs == 1: n_jobs = 1 my_func = func parallel = list else: # check if joblib is recent enough to support memmaping p_args = _get_args(Parallel.__init__) joblib_mmap = ('temp_folder' in p_args and 'max_nbytes' in p_args) cache_dir = get_config('MNE_CACHE_DIR', None) if isinstance(max_nbytes, str) and max_nbytes == 'auto': max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None) if max_nbytes is not None: if not joblib_mmap and cache_dir is not None: warn('"MNE_CACHE_DIR" is set but a newer version of joblib is ' 'needed to use the memmapping pool.') if joblib_mmap and cache_dir is None: logger.info( 'joblib supports memapping pool but "MNE_CACHE_DIR" ' 'is not set in MNE-Python config. To enable it, use, ' 'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will ' 'store temporary files under /dev/shm and can result ' 'in large memory savings.') # create keyword arguments for Parallel kwargs = {'verbose': 5 if should_print and total is None else 0} kwargs['pre_dispatch'] = pre_dispatch if 'prefer' in p_args: kwargs['prefer'] = prefer if joblib_mmap: if cache_dir is None: max_nbytes = None # disable memmaping kwargs['temp_folder'] = cache_dir kwargs['max_nbytes'] = max_nbytes n_jobs = check_n_jobs(n_jobs) parallel = _check_wrapper(Parallel(n_jobs, **kwargs)) my_func = delayed(func) if total is not None: def parallel_progress(op_iter): return parallel(ProgressBar(iterable=op_iter, max_value=total)) parallel_out = parallel_progress else: parallel_out = parallel return parallel_out, my_func, n_jobs def _check_wrapper(fun): def run(*args, **kwargs): try: return fun(*args, **kwargs) except RuntimeError as err: msg = str(err.args[0]) if err.args else '' if msg.startswith('The task could not be sent to the workers'): raise RuntimeError( msg + ' Consider using joblib memmap caching to get ' 'around this problem. See mne.set_mmap_min_size, ' 'mne.set_cache_dir, and buffer_size parallel function ' 'arguments (if applicable).') raise return run def check_n_jobs(n_jobs, allow_cuda=False): """Check n_jobs in particular for negative values. Parameters ---------- n_jobs : int The number of jobs. allow_cuda : bool Allow n_jobs to be 'cuda'. Default: False. Returns ------- n_jobs : int The checked number of jobs. Always positive (or 'cuda' if applicable). """ if not isinstance(n_jobs, int_like): if not allow_cuda: raise ValueError('n_jobs must be an integer') elif not isinstance(n_jobs, str) or n_jobs != 'cuda': raise ValueError('n_jobs must be an integer, or "cuda"') # else, we have n_jobs='cuda' and this is okay, so do nothing elif _force_serial: n_jobs = 1 logger.info('... MNE_FORCE_SERIAL set. Processing in forced ' 'serial mode.') elif n_jobs <= 0: try: import multiprocessing n_cores = multiprocessing.cpu_count() n_jobs = min(n_cores + n_jobs + 1, n_cores) if n_jobs <= 0: raise ValueError('If n_jobs has a negative value it must not ' 'be less than the number of CPUs present. ' 'You\'ve got %s CPUs' % n_cores) except ImportError: # only warn if they tried to use something other than 1 job if n_jobs != 1: warn('multiprocessing not installed. Cannot run in parallel.') n_jobs = 1 return n_jobs
bsd-3-clause
tapomayukh/projects_in_python
classification/Classification_with_HMM/Single_Contact_Classification/simulation_results/Combined/hmm_crossvalidation_force_motion_10_states.py
1
17337
import pylab as pyl import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy as scp import scipy.ndimage as ni import scipy.io import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle import ghmm import random import sys sys.path.insert(0, '/home/tapo/git/hrl_haptic_manipulation_in_clutter/sandbox_tapo_darpa_m3/src/skin_related/Classification/Classification_with_HMM/Single_Contact_Classification/multivariate_gaussian_emissions') from test_crossvalidation_force_motion_10_states import cov_rf from test_crossvalidation_force_motion_10_states import cov_rm from test_crossvalidation_force_motion_10_states import cov_sf from test_crossvalidation_force_motion_10_states import cov_sm #print cov_rf def scaling(Fvec_a,Fvec_c): # With Scaling max_a = np.max(abs(Fvec_a)) min_a = np.min(abs(Fvec_a)) mean_a = np.mean(Fvec_a) std_a = np.std(Fvec_a) #Fvec_a = (Fvec_a)/max_a #Fvec_a = (Fvec_a-mean_a) #Fvec_a = (Fvec_a-mean_a)/max_a Fvec_a = (Fvec_a-mean_a)/std_a max_c = np.max(abs(Fvec_c)) min_c = np.min(abs(Fvec_c)) mean_c = np.mean(Fvec_c) std_c = np.std(Fvec_c) #Fvec_c = (Fvec_c)/max_c #Fvec_c = (Fvec_c-mean_c) #Fvec_c = (Fvec_c-mean_c)/max_c Fvec_c = (Fvec_c-mean_c)/std_c #Fvec_c = Fvec_c*np.max((max_a,max_c))/max_c data = np.concatenate((Fvec_a,Fvec_c),axis=0) #print np.shape(data) return data # Returns mu,sigma for 10 hidden-states from feature-vectors(123,35) for RF,SF,RM,SM models def feature_to_mu_cov(fvec1,fvec2): index = 0 m,n = np.shape(fvec1) #print m,n mu_1 = np.zeros((10,1)) mu_2 = np.zeros((10,1)) cov = np.zeros((10,2,2)) DIVS = m/10 while (index < 10): m_init = index*DIVS temp_fvec1 = fvec1[(m_init):(m_init+DIVS),0:] #print temp_fvec1 temp_fvec2 = fvec2[(m_init):(m_init+DIVS),0:] temp_fvec1 = np.reshape(temp_fvec1,DIVS*n) #print temp_fvec1 temp_fvec2 = np.reshape(temp_fvec2,DIVS*n) mu_1[index] = np.mean(temp_fvec1) mu_2[index] = np.mean(temp_fvec2) cov[index,:,:] = np.cov(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) if index == 0: print 'mean = ', mu_2[index] #print 'mean = ', scp.mean(fvec2[(m_init):(m_init+DIVS),0:]) #print np.shape(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) #print cov[index,:,:] #print scp.std(fvec2[(m_init):(m_init+DIVS),0:]) #print scp.std(temp_fvec2) index = index+1 return mu_1,mu_2,cov if __name__ == '__main__': ### Simulation Data tSamples = 121 data_rf = scipy.io.loadmat('rigid_fixed.mat') data_sf = scipy.io.loadmat('soft_fixed.mat') data_rm = scipy.io.loadmat('rigid_movable.mat') data_sm = scipy.io.loadmat('soft_movable.mat') simulforce = np.zeros((tSamples,8000)) datatime = np.arange(0,1.21,0.01) dataforce_rf = np.transpose(data_rf['sensed_force_rf']) dataforce_sf = np.transpose(data_sf['sensed_force_sf']) dataforce_rm = np.transpose(data_rm['sensed_force_rm']) dataforce_sm = np.transpose(data_sm['sensed_force_sm']) datamotion_rf = np.transpose(data_rf['robot_pos_rf']) datamotion_sf = np.transpose(data_sf['robot_pos_sf']) datamotion_rm = np.transpose(data_rm['robot_pos_rm']) datamotion_sm = np.transpose(data_sm['robot_pos_sm']) data_RF = scaling(dataforce_rf,datamotion_rf) data_SF = scaling(dataforce_sf,datamotion_sf) data_RM = scaling(dataforce_rm,datamotion_rm) data_SM = scaling(dataforce_sm,datamotion_sm) #print np.shape(data_RF) simuldata = np.concatenate((data_RF, data_RM, data_SF, data_SM), axis = 1) Fmat = np.matrix(simuldata) #print np.shape(Fmat[0]) # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) #print " " #print 'Total_Matrix_Shape:',m_tot,n_tot mu_rf_force,mu_rf_motion,cov_rf_sim = feature_to_mu_cov(Fmat[0:121,0:2000],Fmat[121:242,0:2000]) mu_rm_force,mu_rm_motion,cov_rm_sim = feature_to_mu_cov(Fmat[0:121,2000:4000],Fmat[121:242,2000:4000]) mu_sf_force,mu_sf_motion,cov_sf_sim = feature_to_mu_cov(Fmat[0:121,4000:6000],Fmat[121:242,4000:6000]) mu_sm_force,mu_sm_motion,cov_sm_sim = feature_to_mu_cov(Fmat[0:121,6000:8000],Fmat[121:242,6000:8000]) #print [mu_rf, sigma_rf] # HMM - Implementation: # 10 Hidden States # Max. Force(For now), Contact Area(Not now), and Contact Motion(Not Now) as Continuous Gaussian Observations from each hidden state # Four HMM-Models for Rigid-Fixed, Soft-Fixed, Rigid-Movable, Soft-Movable # Transition probabilities obtained as upper diagonal matrix (to be trained using Baum_Welch) # For new objects, it is classified according to which model it represenst the closest.. F = ghmm.Float() # emission domain of this model # A - Transition Matrix A = [[0.1, 0.25, 0.15, 0.15, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05], [0.0, 0.1, 0.25, 0.25, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.1, 0.25, 0.25, 0.2, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.0, 0.1, 0.3, 0.20, 0.20, 0.1, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.1, 0.30, 0.30, 0.20, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.1, 0.35, 0.30, 0.20, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.2, 0.30, 0.30, 0.20], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.2, 0.50, 0.30], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.4, 0.60], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]] # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf = [0.0]*10 B_rm = [0.0]*10 B_sf = [0.0]*10 B_sm = [0.0]*10 #for num_states in range(10): #B_rf[num_states] = [[mu_rf_force[num_states][0],mu_rf_motion[num_states][0]],[cov_rf_sim[num_states][0][0],cov_rf_sim[num_states][0][1],cov_rf_sim[num_states][1][0],cov_rf_sim[num_states][1][1]]] #B_rm[num_states] = [[mu_rm_force[num_states][0],mu_rm_motion[num_states][0]],[cov_rm_sim[num_states][0][0],cov_rm_sim[num_states][0][1],cov_rm_sim[num_states][1][0],cov_rm_sim[num_states][1][1]]] #B_sf[num_states] = [[mu_sf_force[num_states][0],mu_sf_motion[num_states][0]],[cov_sf_sim[num_states][0][0],cov_sf_sim[num_states][0][1],cov_sf_sim[num_states][1][0],cov_sf_sim[num_states][1][1]]] #B_sm[num_states] = [[mu_sm_force[num_states][0],mu_sm_motion[num_states][0]],[cov_sm_sim[num_states][0][0],cov_sm_sim[num_states][0][1],cov_sm_sim[num_states][1][0],cov_sm_sim[num_states][1][1]]] #print cov_rf_sim[num_states][0][0],cov_rf_sim[num_states][0][1],cov_rf_sim[num_states][1][0],cov_rf_sim[num_states][1][1] #print "----" for num_states in range(10): B_rf[num_states] = [[mu_rf_force[num_states][0],mu_rf_motion[num_states][0]],[cov_rf[num_states][0][0],cov_rf[num_states][0][1],cov_rf[num_states][1][0],cov_rf[num_states][1][1]]] B_rm[num_states] = [[mu_rm_force[num_states][0],mu_rm_motion[num_states][0]],[cov_rm[num_states][0][0],cov_rm[num_states][0][1],cov_rm[num_states][1][0],cov_rm[num_states][1][1]]] B_sf[num_states] = [[mu_sf_force[num_states][0],mu_sf_motion[num_states][0]],[cov_sf[num_states][0][0],cov_sf[num_states][0][1],cov_sf[num_states][1][0],cov_sf[num_states][1][1]]] B_sm[num_states] = [[mu_sm_force[num_states][0],mu_sm_motion[num_states][0]],[cov_sm[num_states][0][0],cov_sm[num_states][0][1],cov_sm[num_states][1][0],cov_sm[num_states][1][1]]] #print cov_rf[num_states][0][0],cov_rf[num_states][0][1],cov_rf[num_states][1][0],cov_rf[num_states][1][1] #print "----" #for num_states in range(10): #B_rf[num_states] = [[mu_rf_force[num_states][0],mu_rf_motion[num_states][0]],[1.3,0.3,0.9,1.7]] #B_rm[num_states] = [[mu_rm_force[num_states][0],mu_rm_motion[num_states][0]],[1.4,0.4,0.6,1.8]] #B_sf[num_states] = [[mu_sf_force[num_states][0],mu_sf_motion[num_states][0]],[1.3,0.5,0.9,1.7]] #B_sm[num_states] = [[mu_sm_force[num_states][0],mu_sm_motion[num_states][0]],[1.5,0.3,0.7,0.5]] #print cov_rf[num_states][0][0],cov_rf[num_states][0][1],cov_rf[num_states][1][0],cov_rf[num_states][1][1] #print "----" #print B_sm #print mu_sm_motion # pi - initial probabilities per state pi = [0.1] * 10 # generate RF, RM, SF, SM models from parameters model_rf = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf, pi) # Will be Trained model_rm = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm, pi) # Will be Trained model_sf = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf, pi) # Will be Trained model_sm = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm, pi) # Will be Trained # For Training Nfolds = 1 rf_final = np.matrix(np.zeros((1600,1))) rm_final = np.matrix(np.zeros((1600,1))) sf_final = np.matrix(np.zeros((1600,1))) sm_final = np.matrix(np.zeros((1600,1))) total_seq = np.zeros((242,8000)) temp_seq1 = Fmat[0:121,:] temp_seq2 = Fmat[121:242,:] i = 0 j = 0 while i < (np.size(Fmat,0)): total_seq[i] = temp_seq1[j] total_seq[i+1] = temp_seq2[j] j=j+1 i=i+2 m_total, n_total = np.shape(total_seq) #print 'Total_Sequence_Shape:', m_total, n_total while (Nfolds < 6): # For Training if (Nfolds == 1): total_seq_rf = total_seq[:,400:2000] total_seq_rm = total_seq[:,2400:4000] total_seq_sf = total_seq[:,4400:6000] total_seq_sm = total_seq[:,6400:8000] if (Nfolds == 2): total_seq_rf = np.column_stack((total_seq[:,0:400],total_seq[:,800:2000])) total_seq_rm = np.column_stack((total_seq[:,2000:2400],total_seq[:,2800:4000])) total_seq_sf = np.column_stack((total_seq[:,4000:4400],total_seq[:,4800:6000])) total_seq_sm = np.column_stack((total_seq[:,6000:6400],total_seq[:,6800:8000])) if (Nfolds == 3): total_seq_rf = np.column_stack((total_seq[:,0:800],total_seq[:,1200:2000])) total_seq_rm = np.column_stack((total_seq[:,2000:2800],total_seq[:,3200:4000])) total_seq_sf = np.column_stack((total_seq[:,4000:4800],total_seq[:,5200:6000])) total_seq_sm = np.column_stack((total_seq[:,6000:6800],total_seq[:,7200:8000])) if (Nfolds == 4): total_seq_rf = np.column_stack((total_seq[:,0:1200],total_seq[:,1600:2000])) total_seq_rm = np.column_stack((total_seq[:,2000:3200],total_seq[:,3600:4000])) total_seq_sf = np.column_stack((total_seq[:,4000:5200],total_seq[:,5600:6000])) total_seq_sm = np.column_stack((total_seq[:,6000:7200],total_seq[:,7600:8000])) if (Nfolds == 5): total_seq_rf = total_seq[:,0:1600] total_seq_rm = total_seq[:,2000:3600] total_seq_sf = total_seq[:,4000:5600] total_seq_sm = total_seq[:,6000:7600] train_seq_rf = (np.array(total_seq_rf).T).tolist() train_seq_rm = (np.array(total_seq_rm).T).tolist() train_seq_sf = (np.array(total_seq_sf).T).tolist() train_seq_sm = (np.array(total_seq_sm).T).tolist() #print train_seq_rf final_ts_rf = ghmm.SequenceSet(F,train_seq_rf) final_ts_rm = ghmm.SequenceSet(F,train_seq_rm) final_ts_sf = ghmm.SequenceSet(F,train_seq_sf) final_ts_sm = ghmm.SequenceSet(F,train_seq_sm) model_rf.baumWelch(final_ts_rf) model_rm.baumWelch(final_ts_rm) model_sf.baumWelch(final_ts_sf) model_sm.baumWelch(final_ts_sm) # For Testing if (Nfolds == 1): total_seq_rf = total_seq[:,0:400] total_seq_rm = total_seq[:,2000:2400] total_seq_sf = total_seq[:,4000:4400] total_seq_sm = total_seq[:,6000:6400] if (Nfolds == 2): total_seq_rf = total_seq[:,400:800] total_seq_rm = total_seq[:,2400:2800] total_seq_sf = total_seq[:,4400:4800] total_seq_sm = total_seq[:,6400:6800] if (Nfolds == 3): total_seq_rf = total_seq[:,800:1200] total_seq_rm = total_seq[:,2800:3200] total_seq_sf = total_seq[:,4800:5200] total_seq_sm = total_seq[:,6800:7200] if (Nfolds == 4): total_seq_rf = total_seq[:,1200:1600] total_seq_rm = total_seq[:,3200:3600] total_seq_sf = total_seq[:,5200:5600] total_seq_sm = total_seq[:,7200:7600] if (Nfolds == 5): total_seq_rf = total_seq[:,1600:2000] total_seq_rm = total_seq[:,3600:4000] total_seq_sf = total_seq[:,5600:6000] total_seq_sm = total_seq[:,7600:8000] total_seq_obj = np.matrix(np.column_stack((total_seq_rf,total_seq_rm,total_seq_sf,total_seq_sm))) rf = np.matrix(np.zeros(np.size(total_seq_obj,1))) rm = np.matrix(np.zeros(np.size(total_seq_obj,1))) sf = np.matrix(np.zeros(np.size(total_seq_obj,1))) sm = np.matrix(np.zeros(np.size(total_seq_obj,1))) #print np.shape(rf) #print np.size(total_seq_obj,1) k = 0 while (k < np.size(total_seq_obj,1)): test_seq_obj = (np.array(total_seq_obj[:,k]).T).tolist() new_test_seq_obj = np.array(sum(test_seq_obj,[])) ts_obj = new_test_seq_obj final_ts_obj = ghmm.EmissionSequence(F,ts_obj.tolist()) # Find Viterbi Path path_rf_obj = model_rf.viterbi(final_ts_obj) print "Rigid_Fixed_Model_Path" print path_rf_obj #print np.shape(path_rf_obj[0]) path_rm_obj = model_rm.viterbi(final_ts_obj) print "Rigid_Movable_Model_Path" print path_rm_obj #print np.shape(path_rm_obj[0]) path_sf_obj = model_sf.viterbi(final_ts_obj) print "Soft_Fixed_Model_Path" print path_sf_obj #print np.shape(path_sf_obj[0]) path_sm_obj = model_sm.viterbi(final_ts_obj) print "Soft_Movable_Model_Path" print path_sm_obj #print np.shape(path_sm_obj[0]) obj = max(path_rf_obj[1],path_rm_obj[1],path_sf_obj[1],path_sm_obj[1]) #print obj if obj == path_rf_obj[1]: rf[0,k] = 1 elif obj == path_rm_obj[1]: rm[0,k] = 1 elif obj == path_sf_obj[1]: sf[0,k] = 1 else: sm[0,k] = 1 k = k+1 #print rf.T rf_final = rf_final + rf.T rm_final = rm_final + rm.T sf_final = sf_final + sf.T sm_final = sm_final + sm.T Nfolds = Nfolds + 1 #print rf_final #print rm_final #print sf_final #print sm_final # Confusion Matrix cmat = np.zeros((4,4)) arrsum_rf = np.zeros((4,1)) arrsum_rm = np.zeros((4,1)) arrsum_sf = np.zeros((4,1)) arrsum_sm = np.zeros((4,1)) k = 400 i = 0 while (k < 1601): arrsum_rf[i] = np.sum(rf_final[k-400:k,0]) arrsum_rm[i] = np.sum(rm_final[k-400:k,0]) arrsum_sf[i] = np.sum(sf_final[k-400:k,0]) arrsum_sm[i] = np.sum(sm_final[k-400:k,0]) i = i+1 k = k+400 i=0 while (i < 4): j=0 while (j < 4): if (i == 0): cmat[i][j] = arrsum_rf[j] elif (i == 1): cmat[i][j] = arrsum_rm[j] elif (i == 2): cmat[i][j] = arrsum_sf[j] else: cmat[i][j] = arrsum_sm[j] j = j+1 i = i+1 #print cmat # Plot Confusion Matrix Nlabels = 4 fig = pp.figure() ax = fig.add_subplot(111) figplot = ax.matshow(cmat, interpolation = 'nearest', origin = 'upper', extent=[0, Nlabels, 0, Nlabels], cmap='gray_r') ax.set_title('Performance of HMM Models') pp.xlabel("Targets") pp.ylabel("Predictions") ax.set_xticks([0.5,1.5,2.5,3.5]) ax.set_xticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) ax.set_yticks([3.5,2.5,1.5,0.5]) ax.set_yticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) figbar = fig.colorbar(figplot) i = 0 while (i < 4): j = 0 while (j < 4): pp.text(j+0.5,3.5-i,cmat[i][j], color='k') if cmat[i][j] > 1800: pp.text(j+0.5,3.5-i,cmat[i][j], color='w') j = j+1 i = i+1 pp.show()
mit
rcarmo/crab
getdata.py
1
1238
from utils import * url_legco_hk_vote_matrix = 'https://course.ie.cuhk.edu.hk/~engg4030/tutorial/tutorial7/votes-matrix.csv' import pandas as pd df = pd.io.parsers.read_csv(url_legco_hk_vote_matrix, index_col='member') print 'number of users:', len(df.index) print 'number of items:', len(df.columns) df[:5] # Convert votes to numeric values def vote_to_numeric(v): if v == 'Yes': return 1 elif v == 'No': return -1 return 0 df = df.applymap(vote_to_numeric) df[:5] all_data_points = [] for item in df.columns: for user in df[item].keys(): rating = df[item][user] all_data_points.append((user, item, rating)) print 'len of all_data_points:', len(all_data_points) nonzero_data_points = filter(lambda x: x[2] != 0, all_data_points) print 'len of nonzero_data_points:', len(nonzero_data_points) print all_data_points[:5] train_data_points, test_data_points = split_data_points(nonzero_data_points, int(0.9 * len(nonzero_data_points))) print 'len of train_data_points:', len(train_data_points) print 'len of test_data_points:', len(test_data_points) import shelve s = shelve.open('data.shelve') s['train_data_points'] = train_data_points s['test_data_points'] = test_data_points s.close()
bsd-3-clause
tobegit3hub/ml_implementation
data_analysis/pandas_project/analysis_csv.py
1
2681
#!/usr/bin/env python import numpy as np import scipy as sp import pandas as pd import pprint def main(): # Load CSV file csv_file_path = "../data/train.csv" #csv_file_path = "../data/train_fe1.csv" dataset = pd.read_csv(csv_file_path) view_sample_dataset(dataset) print_dataset_info(dataset) print_features_info(dataset) def view_sample_dataset(dataset): print("\n[Debug] Print the sample of the dataset: ") dataset_sample = dataset.head(1) print(dataset_sample) def print_dataset_info(dataset): print("\n[Debug] Print the total number of the examples: ") example_number = len(dataset) print(example_number) print("\n[Debug] Print the info of the dataset: ") dataset_info = dataset.info() print(dataset_info) def print_features_info(dataset): features_and_types = dataset.dtypes print("\n[Debug] Print the feature number: ") numberic_feature_number = 0 not_numberic_feature_number = 0 for feature_type in features_and_types: if feature_type == np.int16 or feature_type == np.int32 or feature_type == np.int64 or feature_type == np.float16 or feature_type == np.float32 or feature_type == np.float64 or feature_type == np.float128 or feature_type == np.double: numberic_feature_number += 1 else: not_numberic_feature_number += 1 print("Total feature number: {}".format(len(features_and_types))) print("Numberic feature number: {}".format(numberic_feature_number)) print("Not numberic feature number: {}".format(not_numberic_feature_number)) print("\n[Debug] Print the feature list of the dataset: ") print(features_and_types) print("\n[Debug] Print the feature presence: ") example_number = len(dataset) features_array = list(dataset.columns.values) for feature_name in features_array: feature_presence_number = len(dataset[feature_name][dataset[feature_name].notnull()]) feature_presence_percentage = 100.0 * feature_presence_number / example_number # Example: "Age: 80.1346801347% (714 / 891)" print("{}: {}% ({} / {})".format(feature_name, feature_presence_percentage, feature_presence_number, example_number)) print("\n[Debug] For numberic features, print the feature statistics: ") feature_statistics = dataset.describe() print(feature_statistics) top_k_number = 5 print("\n[Debug] For all features, print the top {} values: ".format(top_k_number)) for i in range(len(features_array)): feature_name = features_array[i] top_k_feature_info = dataset[feature_name].value_counts()[:top_k_number] print("\nFeature {} and the top {} values:".format(feature_name, top_k_number)) print(top_k_feature_info) if __name__ == "__main__": main()
mit
stonebig/bokeh
bokeh/core/property/datetime.py
2
5422
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide date and time related properties ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import datetime import dateutil.parser # External imports from six import string_types # Bokeh imports from ...util.dependencies import import_optional from .bases import Property from .primitive import bokeh_integer_types #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'Date', 'Datetime', 'TimeDelta', ) pd = import_optional('pandas') #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- class Date(Property): ''' Accept Date (but not DateTime) values. ''' def __init__(self, default=None, help=None): super(Date, self).__init__(default=default, help=help) def transform(self, value): value = super(Date, self).transform(value) if isinstance(value, (float,) + bokeh_integer_types): try: value = datetime.date.fromtimestamp(value) except (ValueError, OSError): value = datetime.date.fromtimestamp(value/1000) elif isinstance(value, string_types): value = dateutil.parser.parse(value).date() return value def validate(self, value, detail=True): super(Date, self).validate(value, detail) if not (value is None or isinstance(value, (datetime.date,) + string_types + (float,) + bokeh_integer_types)): msg = "" if not detail else "expected a date, string or timestamp, got %r" % value raise ValueError(msg) class Datetime(Property): ''' Accept Datetime values. ''' def __init__(self, default=datetime.date.today(), help=None): super(Datetime, self).__init__(default=default, help=help) def transform(self, value): value = super(Datetime, self).transform(value) return value # Handled by serialization in protocol.py for now def validate(self, value, detail=True): super(Datetime, self).validate(value, detail) datetime_types = (datetime.datetime, datetime.date) try: import numpy as np datetime_types += (np.datetime64,) except (ImportError, AttributeError) as e: if e.args == ("'module' object has no attribute 'datetime64'",): import sys if 'PyPy' in sys.version: pass else: raise e else: pass if (isinstance(value, datetime_types)): return if pd and isinstance(value, (pd.Timestamp)): return msg = "" if not detail else "Expected a datetime instance, got %r" % value raise ValueError(msg) class TimeDelta(Property): ''' Accept TimeDelta values. ''' def __init__(self, default=datetime.timedelta(), help=None): super(TimeDelta, self).__init__(default=default, help=help) def transform(self, value): value = super(TimeDelta, self).transform(value) return value # Handled by serialization in protocol.py for now def validate(self, value, detail=True): super(TimeDelta, self).validate(value, detail) timedelta_types = (datetime.timedelta,) try: import numpy as np timedelta_types += (np.timedelta64,) except (ImportError, AttributeError) as e: if e.args == ("'module' object has no attribute 'timedelta64'",): import sys if 'PyPy' in sys.version: pass else: raise e else: pass if (isinstance(value, timedelta_types)): return if pd and isinstance(value, (pd.Timedelta)): return msg = "" if not detail else "Expected a timedelta instance, got %r" % value raise ValueError(msg) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bsd-3-clause
ajaybhat/scikit-image
doc/examples/transform/plot_ransac.py
13
1595
""" ========================================= Robust line model estimation using RANSAC ========================================= In this example we see how to robustly fit a line model to faulty data using the RANSAC algorithm. """ import numpy as np from matplotlib import pyplot as plt from skimage.measure import LineModelND, ransac np.random.seed(seed=1) # generate coordinates of line x = np.arange(-200, 200) y = 0.2 * x + 20 data = np.column_stack([x, y]) # add faulty data faulty = np.array(30 * [(180., -100)]) faulty += 5 * np.random.normal(size=faulty.shape) data[:faulty.shape[0]] = faulty # add gaussian noise to coordinates noise = np.random.normal(size=data.shape) data += 0.5 * noise data[::2] += 5 * noise[::2] data[::4] += 20 * noise[::4] # fit line using all data model = LineModelND() model.estimate(data) # robustly fit line only using inlier data with RANSAC algorithm model_robust, inliers = ransac(data, LineModelND, min_samples=2, residual_threshold=1, max_trials=1000) outliers = inliers == False # generate coordinates of estimated models line_x = np.arange(-250, 250) line_y = model.predict_y(line_x) line_y_robust = model_robust.predict_y(line_x) fig, ax = plt.subplots() ax.plot(data[inliers, 0], data[inliers, 1], '.b', alpha=0.6, label='Inlier data') ax.plot(data[outliers, 0], data[outliers, 1], '.r', alpha=0.6, label='Outlier data') ax.plot(line_x, line_y, '-k', label='Line model from all data') ax.plot(line_x, line_y_robust, '-b', label='Robust line model') ax.legend(loc='lower left') plt.show()
bsd-3-clause
glouppe/scikit-learn
examples/linear_model/plot_sgd_penalties.py
124
1877
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) l1_color = "navy" l2_color = "c" elastic_net_color = "darkorange" lw = 2 plt.plot(xs, l1(xs), color=l1_color, label="L1", lw=lw) plt.plot(xs, -1.0 * l1(xs), color=l1_color, lw=lw) plt.plot(-1 * xs, l1(xs), color=l1_color, lw=lw) plt.plot(-1 * xs, -1.0 * l1(xs), color=l1_color, lw=lw) plt.plot(xs, l2(xs), color=l2_color, label="L2", lw=lw) plt.plot(xs, -1.0 * l2(xs), color=l2_color, lw=lw) plt.plot(-1 * xs, l2(xs), color=l2_color, lw=lw) plt.plot(-1 * xs, -1.0 * l2(xs), color=l2_color, lw=lw) plt.plot(xs, el(xs, alpha), color=elastic_net_color, label="Elastic Net", lw=lw) plt.plot(xs, -1.0 * el(xs, alpha), color=elastic_net_color, lw=lw) plt.plot(-1 * xs, el(xs, alpha), color=elastic_net_color, lw=lw) plt.plot(-1 * xs, -1.0 * el(xs, alpha), color=elastic_net_color, lw=lw) plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
cloud-fan/spark
python/pyspark/pandas/data_type_ops/num_ops.py
1
16890
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from typing import TYPE_CHECKING, Union import numpy as np from pandas.api.types import CategoricalDtype from pyspark.pandas.base import column_op, IndexOpsMixin, numpy_column_op from pyspark.pandas.data_type_ops.base import ( is_valid_operand_for_numeric_arithmetic, DataTypeOps, transform_boolean_operand_to_numeric, _as_bool_type, _as_categorical_type, _as_other_type, _as_string_type, ) from pyspark.pandas.internal import InternalField from pyspark.pandas.spark import functions as SF from pyspark.pandas.typedef import Dtype, extension_dtypes, pandas_on_spark_type from pyspark.sql import functions as F from pyspark.sql.column import Column from pyspark.sql.types import ( BooleanType, DoubleType, FloatType, StringType, TimestampType, ) if TYPE_CHECKING: from pyspark.pandas.indexes import Index # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) class NumericOps(DataTypeOps): """The class for binary operations of numeric pandas-on-Spark objects.""" @property def pretty_name(self) -> str: return "numerics" def add(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("string addition can only be applied to string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("addition can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return column_op(Column.__add__)(left, right) def sub(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("subtraction can not be applied to string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("subtraction can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return column_op(Column.__sub__)(left, right) def mod(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("modulo can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("modulo can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def mod(left, right): return ((left % right) + right) % right return column_op(mod)(left, right) def pow(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("exponentiation can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("exponentiation can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def pow_func(left, right): return F.when(left == 1, left).otherwise(Column.__pow__(left, right)) return column_op(pow_func)(left, right) def radd(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("string addition can only be applied to string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("addition can not be applied to given types.") right = transform_boolean_operand_to_numeric(right) return column_op(Column.__radd__)(left, right) def rsub(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("subtraction can not be applied to string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("subtraction can not be applied to given types.") right = transform_boolean_operand_to_numeric(right) return column_op(Column.__rsub__)(left, right) def rmul(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("multiplication can not be applied to a string literal.") if not isinstance(right, numbers.Number): raise TypeError("multiplication can not be applied to given types.") right = transform_boolean_operand_to_numeric(right) return column_op(Column.__rmul__)(left, right) def rpow(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("exponentiation can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("exponentiation can not be applied to given types.") def rpow_func(left, right): return F.when(F.lit(right == 1), right).otherwise(Column.__rpow__(left, right)) right = transform_boolean_operand_to_numeric(right) return column_op(rpow_func)(left, right) def rmod(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("modulo can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("modulo can not be applied to given types.") def rmod(left, right): return ((right % left) + left) % left right = transform_boolean_operand_to_numeric(right) return column_op(rmod)(left, right) class IntegralOps(NumericOps): """ The class for binary operations of pandas-on-Spark objects with spark types: LongType, IntegerType, ByteType and ShortType. """ @property def pretty_name(self) -> str: return "integrals" def mul(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("multiplication can not be applied to a string literal.") if isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, TimestampType): raise TypeError("multiplication can not be applied to date times.") if isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType): return column_op(SF.repeat)(right, left) if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("multiplication can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return column_op(Column.__mul__)(left, right) def truediv(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("division can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def truediv(left, right): return F.when(F.lit(right != 0) | F.lit(right).isNull(), left.__div__(right)).otherwise( F.lit(np.inf).__div__(left) ) return numpy_column_op(truediv)(left, right) def floordiv(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("division can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def floordiv(left, right): return F.when(F.lit(right is np.nan), np.nan).otherwise( F.when( F.lit(right != 0) | F.lit(right).isNull(), F.floor(left.__div__(right)) ).otherwise(F.lit(np.inf).__div__(left)) ) return numpy_column_op(floordiv)(left, right) def rtruediv(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("division can not be applied to given types.") def rtruediv(left, right): return F.when(left == 0, F.lit(np.inf).__div__(right)).otherwise( F.lit(right).__truediv__(left) ) right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return numpy_column_op(rtruediv)(left, right) def rfloordiv(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("division can not be applied to given types.") def rfloordiv(left, right): return F.when(F.lit(left == 0), F.lit(np.inf).__div__(right)).otherwise( F.floor(F.lit(right).__div__(left)) ) right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return numpy_column_op(rfloordiv)(left, right) def astype( self, index_ops: Union["Index", "Series"], dtype: Union[str, type, Dtype] ) -> Union["Index", "Series"]: dtype, spark_type = pandas_on_spark_type(dtype) if isinstance(dtype, CategoricalDtype): return _as_categorical_type(index_ops, dtype, spark_type) elif isinstance(spark_type, BooleanType): return _as_bool_type(index_ops, dtype) elif isinstance(spark_type, StringType): return _as_string_type(index_ops, dtype, null_str=str(np.nan)) else: return _as_other_type(index_ops, dtype, spark_type) class FractionalOps(NumericOps): """ The class for binary operations of pandas-on-Spark objects with spark types: FloatType, DoubleType and DecimalType. """ @property def pretty_name(self) -> str: return "fractions" def mul(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("multiplication can not be applied to a string literal.") if isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, TimestampType): raise TypeError("multiplication can not be applied to date times.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("multiplication can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return column_op(Column.__mul__)(left, right) def truediv(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("division can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def truediv(left, right): return F.when(F.lit(right != 0) | F.lit(right).isNull(), left.__div__(right)).otherwise( F.when(F.lit(left == np.inf) | F.lit(left == -np.inf), left).otherwise( F.lit(np.inf).__div__(left) ) ) return numpy_column_op(truediv)(left, right) def floordiv(self, left, right) -> Union["Series", "Index"]: if ( isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, StringType) ) or isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError("division can not be applied to given types.") right = transform_boolean_operand_to_numeric(right, left.spark.data_type) def floordiv(left, right): return F.when(F.lit(right is np.nan), np.nan).otherwise( F.when( F.lit(right != 0) | F.lit(right).isNull(), F.floor(left.__div__(right)) ).otherwise( F.when(F.lit(left == np.inf) | F.lit(left == -np.inf), left).otherwise( F.lit(np.inf).__div__(left) ) ) ) return numpy_column_op(floordiv)(left, right) def rtruediv(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("division can not be applied to given types.") def rtruediv(left, right): return F.when(left == 0, F.lit(np.inf).__div__(right)).otherwise( F.lit(right).__truediv__(left) ) right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return numpy_column_op(rtruediv)(left, right) def rfloordiv(self, left, right) -> Union["Series", "Index"]: if isinstance(right, str): raise TypeError("division can not be applied on string series or literals.") if not isinstance(right, numbers.Number): raise TypeError("division can not be applied to given types.") def rfloordiv(left, right): return F.when(F.lit(left == 0), F.lit(np.inf).__div__(right)).otherwise( F.when(F.lit(left) == np.nan, np.nan).otherwise(F.floor(F.lit(right).__div__(left))) ) right = transform_boolean_operand_to_numeric(right, left.spark.data_type) return numpy_column_op(rfloordiv)(left, right) def astype( self, index_ops: Union["Index", "Series"], dtype: Union[str, type, Dtype] ) -> Union["Index", "Series"]: dtype, spark_type = pandas_on_spark_type(dtype) if isinstance(dtype, CategoricalDtype): return _as_categorical_type(index_ops, dtype, spark_type) elif isinstance(spark_type, BooleanType): if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(spark_type) else: if isinstance(index_ops.spark.data_type, (FloatType, DoubleType)): scol = F.when( index_ops.spark.column.isNull() | F.isnan(index_ops.spark.column), F.lit(True), ).otherwise(index_ops.spark.column.cast(spark_type)) else: # DecimalType scol = F.when(index_ops.spark.column.isNull(), F.lit(False)).otherwise( index_ops.spark.column.cast(spark_type) ) return index_ops._with_new_scol( scol.alias(index_ops._internal.data_spark_column_names[0]), field=InternalField(dtype=dtype), ) elif isinstance(spark_type, StringType): return _as_string_type(index_ops, dtype, null_str=str(np.nan)) else: return _as_other_type(index_ops, dtype, spark_type)
apache-2.0
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Feature_Comparison/single_feature/best_kNN_PCA/test11_cross_validate_categories_1200ms_scaled_method_v_motion.py
1
5050
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/Scaled') from data_method_V import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 41: j=0 while j < 140: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Rigid-Fixed']*35 + ['Rigid-Movable']*35 + ['Soft-Fixed']*35 + ['Soft-Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original[82:123,:] # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((140,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
pylayers/pylayers
pylayers/gui/__init__.py
3
1786
""" pylayers ========= This file is adapted from scikit-learn package """ import sys __version__ = '0.12-git' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __PYLAYERS_SETUP__ except NameError: __PYLAYERS_SETUP__ = False if __PYLAYERS_SETUP__: sys.stderr.write('Partial import of pylayers during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: try: from numpy.testing import nosetester class _NoseTester(nosetester.NoseTester): """ Subclass numpy's NoseTester to add doctests by default """ def test(self, label='fast', verbose=1, extra_argv=['--exe'], doctests=True, coverage=False): """Run the full test suite Examples -------- This will run the test suite and stop at the first failing example >>> from pylayers import test >>> test(extra_argv=['--exe', '-sx']) #doctest: +SKIP """ return super(_NoseTester, self).test(label=label, verbose=verbose, extra_argv=extra_argv, doctests=doctests, coverage=coverage) try: test = _NoseTester(raise_warnings="release").test except TypeError: # Older versions of numpy do not have a raise_warnings argument test = _NoseTester().test del nosetester except: pass __all__ = ['gis', 'signal', 'antprop', 'simul','util']
mit
henridwyer/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
ostrokach/elaspic
tests/test_database_pipeline.py
1
6683
import os.path as op import logging import random import pytest import pandas as pd from elaspic import conf logger = logging.getLogger(__name__) # Constants QUICK = False CONFIG_FILE = op.join(op.dirname(__file__), 'config_file_database.ini') if hasattr(pytest, "config"): QUICK = pytest.config.getoption('--quick') CONFIG_FILE = pytest.config.getoption('--config-file') or CONFIG_FILE conf.read_configuration_file(CONFIG_FILE, unique_temp_dir=None) assert conf.CONFIGS['db_type'] logger.debug('Running quick: {}'.format(QUICK)) logger.debug('Config file: {}'.format(CONFIG_FILE)) # Imports that require a parsed config file import helper_fns # noqa from elaspic import elaspic_database # noqa db = elaspic_database.MyDatabase() conf.CONFIGS['engine'] = db.get_engine() conf.CONFIGS['engine'].execute("SET sql_mode = ''") test_cases = [] def append_test_cases(df, num=3, num_mutations=3): """. Parameters ---------- df : DataFrame Contains the following columns: - `uniprot_id` - `uniprot_sequence` - `interacting_aa` OR `model_domain_def` OR `domain_def` """ if QUICK: num = 1 for i in range(num): row_idx = random.randint(0, len(df) - 1) if df.empty: raise Exception('empty dataframe supplied: {}'.format(df)) row = df.iloc[row_idx] uniprot_id = row['uniprot_id'] uniprot_sequence = row['uniprot_sequence'] logger.debug('Protein ID: {}'.format(uniprot_id)) for i in range(num_mutations): if 'interacting_aa_1' in row and pd.notnull(row['interacting_aa_1']): mutation_pos = random.choice([int(x) for x in row['interacting_aa_1'].split(',')]) logger.debug('Selected interface AA: {}'.format(mutation_pos)) elif 'model_domain_def' in row and pd.notnull(row['model_domain_def']): domain_start, domain_end = (int(x) for x in row['model_domain_def'].split(':')) mutation_pos = random.randint(domain_start, domain_end) logger.debug( 'Selected AA: {} falling inside model domain: {}' .format(mutation_pos, row['model_domain_def']) ) elif 'domain_def' in row and pd.notnull(row['domain_def']): domain_start, domain_end = (int(x) for x in row['domain_def'].split(':')) mutation_pos = random.randint(domain_start, domain_end) logger.debug( 'Selected AA: {} falling inside domain: {}' .format(mutation_pos, row['domain_def']) ) else: mutation_pos = random.randint(1, len(uniprot_sequence)) mutation_from = uniprot_sequence[mutation_pos - 1] mutation_to = random.choice('GVALICMFWPDESTYQNKRH') mutation = '{}{}{}'.format(mutation_from, mutation_pos, mutation_to) test_cases.append((uniprot_id, mutation,)) # %% Everything is missing sql_query = """ select ud.uniprot_id, us.uniprot_sequence, udt.domain_def from {db_schema}.uniprot_domain ud join {db_schema}.uniprot_domain_template udt using (uniprot_domain_id) join {db_schema}.uniprot_domain_pair udp on (udp.uniprot_domain_id_1 = ud.uniprot_domain_id) join {db_schema}.uniprot_domain_pair_template udpt using (uniprot_domain_pair_id) join {db_schema_uniprot}.uniprot_sequence us using (uniprot_id) where uniprot_id not in (select uniprot_id from {db_schema}.provean) and uniprot_domain_id not in (select uniprot_domain_id from {db_schema}.uniprot_domain_model) and uniprot_domain_pair_id not in (select uniprot_domain_pair_id from {db_schema}.uniprot_domain_pair_model) and CHAR_LENGTH(us.uniprot_sequence) < 1000 and db = 'sp' limit 1000; """.format( db_schema=conf.CONFIGS['db_schema'], db_schema_uniprot=conf.CONFIGS['db_schema_uniprot']) df = pd.read_sql_query(sql_query, conf.CONFIGS['engine']) logger.debug("Everything is missing: {}".format(len(df))) if df.empty: logger.error("Skipping...") else: append_test_cases(df) # %% Have provean and domain model but not interface model sql_query = """ select ud.uniprot_id, us.uniprot_sequence, udm.model_domain_def from {db_schema}.uniprot_domain ud join {db_schema}.provean using (uniprot_id) join {db_schema}.uniprot_domain_template using (uniprot_domain_id) join {db_schema}.uniprot_domain_model udm using (uniprot_domain_id) join {db_schema}.uniprot_domain_pair udp on (udp.uniprot_domain_id_1 = ud.uniprot_domain_id) join {db_schema}.uniprot_domain_pair_template using (uniprot_domain_pair_id) join {db_schema_uniprot}.uniprot_sequence us using (uniprot_id) where uniprot_domain_pair_id not in (select uniprot_domain_pair_id from {db_schema}.uniprot_domain_pair_model) and CHAR_LENGTH(us.uniprot_sequence) < 1000 and db = 'sp' limit 1000; """.format( db_schema=conf.CONFIGS['db_schema'], db_schema_uniprot=conf.CONFIGS['db_schema_uniprot']) df = pd.read_sql_query(sql_query, conf.CONFIGS['engine']) logger.debug("Have provean and domain model but not interface model: {}".format(len(df))) if df.empty: logger.error("Skipping...") elif not QUICK: append_test_cases(df) # %% Have provean and all models sql_query = """ select ud.uniprot_id, us.uniprot_sequence, udpm.interacting_aa_1 from {db_schema}.uniprot_domain ud join {db_schema}.provean using (uniprot_id) join {db_schema}.uniprot_domain_template using (uniprot_domain_id) join {db_schema}.uniprot_domain_model using (uniprot_domain_id) join {db_schema}.uniprot_domain_pair udp on (udp.uniprot_domain_id_1 = ud.uniprot_domain_id) join {db_schema}.uniprot_domain_pair_template using (uniprot_domain_pair_id) join {db_schema}.uniprot_domain_pair_model udpm using (uniprot_domain_pair_id) join {db_schema_uniprot}.uniprot_sequence us using (uniprot_id) where CHAR_LENGTH(us.uniprot_sequence) < 1000 and db = 'sp' and udpm.model_filename is not null and udpm.model_errors is null limit 1000; """.format( db_schema=conf.CONFIGS['db_schema'], db_schema_uniprot=conf.CONFIGS['db_schema_uniprot']) df = pd.read_sql_query(sql_query, conf.CONFIGS['engine']) logger.debug("Have provean and all models: {}".format(len(df))) if df.empty: logger.error("Skipping...") else: append_test_cases(df, 10) # %% Fixtures @pytest.fixture(scope='session', params=test_cases) def uniprot_id_mutation(request): return request.param # %% Tests def test_database_pipeline(uniprot_id_mutation): return helper_fns.run_database_pipeline(uniprot_id_mutation) # %% if __name__ == '__main__': import pytest pytest.main([__file__, '-svx', '--quick'])
mit
nomadcube/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
tgsmith61591/pyramid
examples/arima/example_add_new_samples.py
1
2463
""" ===================================== Adding new observations to your model ===================================== This example demonstrates how to add new ground truth observations to your model so that forecasting continues with respect to true, observed values. This also slightly updates the model parameters, taking several new steps from the existing model parameters. .. raw:: html <br/> """ print(__doc__) # Author: Taylor Smith <[email protected]> import pmdarima as pm from pmdarima import model_selection import matplotlib.pyplot as plt import numpy as np # ############################################################################# # Load the data and split it into separate pieces data = pm.datasets.load_lynx() train, test = model_selection.train_test_split(data, train_size=100) # ############################################################################# # Fit with some validation (cv) samples arima = pm.auto_arima(train, start_p=1, start_q=1, d=0, max_p=5, max_q=5, out_of_sample_size=10, suppress_warnings=True, stepwise=True, error_action='ignore') # Now plot the results and the forecast for the test set preds, conf_int = arima.predict(n_periods=test.shape[0], return_conf_int=True) fig, axes = plt.subplots(2, 1, figsize=(12, 8)) x_axis = np.arange(train.shape[0] + preds.shape[0]) axes[0].plot(x_axis[:train.shape[0]], train, alpha=0.75) axes[0].scatter(x_axis[train.shape[0]:], preds, alpha=0.4, marker='o') axes[0].scatter(x_axis[train.shape[0]:], test, alpha=0.4, marker='x') axes[0].fill_between(x_axis[-preds.shape[0]:], conf_int[:, 0], conf_int[:, 1], alpha=0.1, color='b') # fill the section where we "held out" samples in our model fit axes[0].set_title("Train samples & forecasted test samples") # Now add the actual samples to the model and create NEW forecasts arima.update(test) new_preds, new_conf_int = arima.predict(n_periods=10, return_conf_int=True) new_x_axis = np.arange(data.shape[0] + 10) axes[1].plot(new_x_axis[:data.shape[0]], data, alpha=0.75) axes[1].scatter(new_x_axis[data.shape[0]:], new_preds, alpha=0.4, marker='o') axes[1].fill_between(new_x_axis[-new_preds.shape[0]:], new_conf_int[:, 0], new_conf_int[:, 1], alpha=0.1, color='g') axes[1].set_title("Added new observed values with new forecasts") plt.show()
mit
clairetang6/bokeh
bokeh/charts/tests/test_comp_glyphs.py
3
4100
import numpy as np import pandas as pd from bokeh.charts.models import CompositeGlyph from bokeh.charts.glyphs import (AreaGlyph, LineGlyph, PointGlyph, StepGlyph, BarGlyph, BoxGlyph, BarGlyph) from bokeh.charts.operations import stack from bokeh.charts.stats import stats from bokeh.models import ColumnDataSource def test_area_base_values(test_data): """Test creating chart data source from array-like list data.""" x = pd.Series(test_data.array_data[0]) y = pd.Series(test_data.array_data[1]) ag = AreaGlyph(x=x, y=y) assert ag.source.data['y_values'][0][0] == 0 assert ag.source.data['y_values'][0][-1] == 0 def test_xyglyph_xy_range(): def check_bounds(xyg, xmin=0, xmax=4, ymin=1, ymax=5): assert xyg.x_min == xmin assert xyg.x_max == xmax assert xyg.y_min == ymin assert xyg.y_max == ymax for Glyph in [LineGlyph, PointGlyph]: x = pd.Series([0, 1, 2, 3, 4]) y = pd.Series([5, 4, 3, 2, 1]) xyg = Glyph(x=x, y=y) check_bounds(xyg) x[1] = x[2] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg) x[0] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg, xmin=3) x[4] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg, xmin=3, xmax=3) y[1] = y[2] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg, xmin=3, xmax=3) y[0] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg, xmin=3, xmax=3, ymax=2) y[4] = np.nan xyg = Glyph(x=x, y=y) check_bounds(xyg, xmin=3, xmax=3, ymax=2, ymin=2) def test_comp_glyph_no_inputs(): cg = CompositeGlyph() assert isinstance(cg.data, dict) assert isinstance(cg.df, pd.DataFrame) assert isinstance(cg.source, ColumnDataSource) def test_comp_glyph_array_input(test_data): cg = CompositeGlyph(values=test_data.array_data[0]) assert cg.data['values'] is not None def test_step_glyph(): xx = [-2, 0, 1, 3, 4, 5, 6, 9] dates = np.array(['2016-05-%02i' % i for i in range(1, 9)], dtype=np.datetime64) values = [1, 2, 3, 2, 1, 5, 4, 5] # Test with integer x g = StepGlyph(x=xx, y=values) data = g.renderers[0].data_source.data for i in range(0, len(xx)-1): assert data['x_values'][i*2+0] == xx[i+0] assert data['x_values'][i*2+1] == xx[i+1] # Test with dates (#3616) g = StepGlyph(x=dates, y=values) data = g.renderers[0].data_source.data for i in range(0, len(xx)-1): assert data['x_values'][i*2+0] == dates[i+0] assert data['x_values'][i*2+1] == dates[i+1] # operations def test_bar_stacking(): bar1, bar2, bar3 = BarGlyph('a', 5), BarGlyph('a', 2), BarGlyph('b', 2) stack(bar1, bar2, bar3) # are stacked assert bar1.y_max == bar2.y_min # not stacked assert bar3.y_min == 0.0 def test_area_stacking(): area1 = AreaGlyph(x=[1, 2, 3, 4, 5], y=[2, 9, 2, 5, 10]) area2 = AreaGlyph(x=[1, 2, 3, 4, 5], y=[1, 1, 1, 1, 1]) stack(area1, area2) area2_stacked_values = [0, 3, 10, 3, 6, 11, 0, 0, 10, 5, 2, 9, 2, 0] comparison = pd.Series(area2_stacked_values) - pd.Series(area2.df[ 'y_values'].values[0]) assert comparison.sum() == 0 def test_boxplot(): # test source: https://en.wikipedia.org/wiki/Interquartile_range data=[102, 104, 105, 107, 108, 109, 110, 112, 115, 116, 118] box = BoxGlyph(label={'cat': 'a'}, values=data, color='red') assert box.q1 == 106 assert box.q2 == 109 assert box.q3 == 113.5 assert box.iqr == 7.5 # test Interquartile range do not exceed data limits assert box.w0 == 102 assert box.w1 == 118 def test_bar_single_value(): data=[500] for stat in stats.keys(): bar = BarGlyph(label={'cat': 'a'}, values=data, color='red', agg='sum') assert bar.get_start() == 0 if stats != 'count': assert bar.get_end() == 500 else: assert bar.get_end() == 1
bsd-3-clause
Sh1n/AML-ALL-classifier
step5.py
1
4101
import Orange import logging import random from sklearn.externals import joblib from utils import * from sklearn import svm from sklearn import cross_validation from sklearn.metrics import f1_score, precision_recall_fscore_support from sklearn.feature_extraction import DictVectorizer import numpy as np from sklearn import preprocessing # Vars testsetPercentage = .2 validationsetPercentage = .3 progress = False baseline = .9496 C = 0.5 kernel = 'poly' previousStep = 4 # Utilities logging.basicConfig(filename='main.log',level=logging.DEBUG,format='%(levelname)s\t%(message)s') def logmessage(message, color): print color(message) logging.info(message) def copyDataset(dataset): return Orange.data.Table(dataset) # Compute S Threshold # ============================================================================ # boxmessage("Starting Phase 5: Model Learning", warning) trainingSet = Orange.data.Table("step%s_trainingset.tab" % previousStep) validationSet = Orange.data.Table("step%s_validationset.tab" % previousStep) trainingSet.randomGenerator = Orange.orange.RandomGenerator(random.randint(0, 10)) logmessage("Feature Selected Working Dataset Loaded", success) logmessage("Training dataset is %s" % len(trainingSet), info) logmessage("Training dataset features are %s" % len(trainingSet.domain), info) logmessage("Validation dataset is %s" % len(validationSet), info) logmessage("Validation dataset features are %s" % len(validationSet.domain), info) # ============================================================================ # le = preprocessing.LabelEncoder() #le.fit() # All the possible labels for all classes # =========================== # # Encode all labels labels = [d[f].value for f in trainingSet.domain for d in trainingSet] + [d[f].value for f in validationSet.domain for d in validationSet] + ['?'] le.fit(labels) with open("labelencoder", "wb") as out_file: pickle.dump(le, out_file) # =========================== # # Convert Train Dataset # Apply transformation, from labels to you know what I mean converted_train_data = ([le.transform([ d[f].value for f in trainingSet.domain if f != trainingSet.domain.class_var]) for d in trainingSet]) # Weights ALL = trainingSet.select(gene='ALL') AML = trainingSet.select(gene='AML') #converted_train_data = [dict(enumerate(d)) for d in converted_train_data] #converted_train_data = vector.fit_transform(converted_train_data) logmessage("Validation dataset is %s" % len(validationSet), info) logmessage("Validation dataset features are %s" % len(validationSet.domain), info) print len(converted_train_data) print len(converted_train_data[0]) converted_train_targets = le.transform([d[trainingSet.domain.class_var].value for d in trainingSet ]) print converted_train_targets clf = svm.SVC(kernel=kernel,C=C) clf.fit(converted_train_data, converted_train_targets) logmessage("Model learnt", success) # Performances # Convert Test Dataset converted_test_data = ([le.transform([ d[f].value for f in validationSet.domain if f != validationSet.domain.class_var]) for d in validationSet]) #converted_test_data = [dict(enumerate(d)) for d in converted_test_data] #converted_test_data = vector.fit_transform(converted_test_data) print len(converted_test_data) print len(converted_test_data[0]) converted_test_targets = le.transform([d[validationSet.domain.class_var].value for d in validationSet ]) logmessage("Starting Prediction Task", info) prediction = clf.predict(converted_test_data) print "Predicted \t", prediction print "Truth \t",converted_test_targets p, r, f1, support = precision_recall_fscore_support(converted_test_targets, prediction) # Save scores #scores = open('scores', 'a') #scores.write("%s\n" % (np.average(f1))) #scores.close() f1_avg = np.average(f1) logmessage("Average F1(Over 2 classes): %s" % f1_avg, info) if f1_avg > baseline: logmessage("Performance Increased", success) else: logmessage("Performance Decreased", error) logmessage("Saving Model", info) joblib.dump(clf, 'classifier.model') # =============================================================================
gpl-2.0
dh4gan/oberon
plot/plot_positions.py
1
1034
''' Created on 7/3/14 @author: dh4gan Show the positions of the bodies in the system ''' from sys import argv from matplotlib import pyplot as plt import io_oberon.io_nbody # Data file can be read from the command line or from argument if len(argv)==1: input_file = raw_input("Enter the datafile: ") else: input_file = argv[1] tmax = 0.0 time, bodyarray, number_bodies = io_oberon.io_nbody.read_nbody_datafile(input_file, tmax) for i in xrange(number_bodies): fig = plt.figure(i) plt.suptitle(str(bodyarray[i].bodytype)) plt.subplot(211) plt.xlabel("X Position [ AU ]") plt.ylabel("Y Position [ AU ]") plt.plot(bodyarray[i].x, bodyarray[i].y, '.', color='red') plt.subplot(212) plt.plot(time,bodyarray[i].vx, '.',color='blue', label='$v_x$') plt.plot(time, bodyarray[i].vy, '.',color='green', label='$v_y$') plt.xlabel("Time [ years ]") plt.ylabel("Velocity [ AU / year ]") plt.legend(loc='lower right') plt.show()
gpl-3.0
materialsproject/MPContribs
mpcontribs-api/mpcontribs/api/redox_thermo_csp/views.py
1
88690
import re import json import os import flask_mongorest from flask import request, Blueprint import pandas as pd from pandas.io.json._normalize import nested_to_record from itertools import groupby from scipy.optimize import brentq from scipy.constants import pi, R from scipy.integrate import quad import pymatgen.core.periodic_table as ptable from pymatgen.core.composition import Composition from mpcontribs.api.core import SwaggerView from mpcontribs.api.contributions.document import Contributions from mpcontribs.api.contributions.views import ContributionsResource from mpcontribs.api.tables.document import Tables templates = os.path.join(os.path.dirname(flask_mongorest.__file__), "templates") redox_thermo_csp = Blueprint("redox_thermo_csp", __name__, template_folder=templates) def split_comp(compstr): """ Splits a string containing the composition of a perovskite solid solution into its components Chemical composition: (am_1, am_2)(tm_1, tm_2)Ox :param compstr: composition as a string :return: am_1, am_2, tm_1, tm_2; each of these output variables contains the species and the stoichiometries i.e. ("Fe", 0.6) """ am_1, am_2, tm_1, tm_2 = None, None, None, None compstr_spl = ["".join(g) for _, g in groupby(str(compstr), str.isalpha)] for l in range(len(compstr_spl)): try: if ( ptable.Element(compstr_spl[l]).is_alkaline or ptable.Element(compstr_spl[l]).is_alkali or ptable.Element(compstr_spl[l]).is_rare_earth_metal ): if am_1 is None: am_1 = [compstr_spl[l], float(compstr_spl[l + 1])] elif am_2 is None: am_2 = [compstr_spl[l], float(compstr_spl[l + 1])] if ptable.Element(compstr_spl[l]).is_transition_metal and not ( ptable.Element(compstr_spl[l]).is_rare_earth_metal ): if tm_1 is None: tm_1 = [compstr_spl[l], float(compstr_spl[l + 1])] elif tm_2 is None: tm_2 = [compstr_spl[l], float(compstr_spl[l + 1])] # stoichiometries raise ValueErrors in pymatgen .is_alkaline etc., ignore these errors and skip that entry except ValueError: pass return am_1, am_2, tm_1, tm_2 def remove_comp_one(compstr): compspl = split_comp(compstr=compstr) compstr_rem = "" for i in range(len(compspl)): if compspl[i]: if float(compspl[i][1]) != 1: compstr_rem = compstr_rem + str(compspl[i][0]) + str(compspl[i][1]) else: compstr_rem = compstr_rem + str(compspl[i][0]) compstr_rem = compstr_rem + "Ox" return compstr_rem def add_comp_one(compstr): """ Adds stoichiometries of 1 to compstr that don't have them :param compstr: composition as a string :return: compositon with stoichiometries of 1 added """ sample = re.sub(r"([A-Z])", r" \1", compstr).split() sample = ["".join(g) for _, g in groupby(str(sample), str.isalpha)] samp_new = "" for k in range(len(sample)): spl_samp = re.sub(r"([A-Z])", r" \1", sample[k]).split() for l in range(len(spl_samp)): if spl_samp[l][-1].isalpha() and spl_samp[l][-1] != "x": spl_samp[l] = spl_samp[l] + "1" samp_new += spl_samp[l] return samp_new def s_th_o(temp): # constants: Chase, NIST-JANAF Thermochemistry tables, Fourth Edition, 1998 if temp < 700: shomdat = [ 31.32234, -20.23531, 57.86644, -36.50624, -0.007374, -8.903471, 246.7945, ] elif temp < 2000: shomdat = [ 30.03235, 8.772972, -3.988133, 0.788313, -0.741599, -11.32468, 236.1663, ] else: shomdat = [ 20.91111, 10.72071, -2.020498, 0.146449, 9.245722, 5.337651, 237.6185, ] temp_frac = temp / 1000.0 szero = shomdat[0] * pd.np.log(temp_frac) szero += shomdat[1] * temp_frac szero += 0.5 * shomdat[2] * temp_frac ** 2 szero += shomdat[3] / 3.0 * temp_frac ** 3 szero -= shomdat[4] / (2 * temp_frac ** 2) szero += shomdat[6] return 0.5 * szero def rootfind(a, b, args, funciso_here): solutioniso = 0 try: solutioniso = brentq( funciso_here, 0.01, 0.49, args=args ) # works for most cases except ValueError: # starting values a,b for cases where 0.01/0.49 are not sign changing try: solutioniso = brentq(funciso_here, a, b, args=args) except ValueError: solutioniso = None # if no solution can be found return solutioniso def enth_arctan(x, dh_max, dh_min, t, s): """ arctan function to fit enthalpy values of solid solutions :param x: Delta_delta, change in non-stoichiometric redox extent vs. a reference :param t: transition point; x value at which the reaction enthalpy of the solid solution is exactly the average of dh_max and dh_min :param s: slope, measure for the preference of B species reduction over A species reduction """ return (((dh_max - dh_min) / pi) * (pd.np.arctan((x - t) * s) + (pi / 2))) + dh_min def entr_fe(x, fit_param_fe): """ Calculates the entropy values for SrFeOx based on the fit parameters in fit_param_fe :param x: absolute delta :return: dS of SrFeOx at delta = x with delta_0 accounted for """ return ( fit_param_fe[0] / 2 + fit_param_fe[1] + (2 * fit_param_fe[2] * R * (pd.np.log(0.5 - x) - pd.np.log(x))) ) def entr_mixed(x, s, shift, delta_0, act_s1, fit_param_fe): """ Returns a fit function for entropies based on the arctan function and the dilute species model fit of SrFeOx (see docstring in Atanfit.entropy) :param x: absolute delta :param s: slope, measure for the preference of B species reduction over A species reduction :param shift: constant entropy shift :param delta_0: shift from absolute delta :return: dS of solid solution at delta = x with delta_0 """ efe = entr_fe(x + delta_0, fit_param_fe) return ( ((act_s1 * efe) / pi) * (pd.np.arctan((x - delta_0) * s) + pi / 2) + (1 - act_s1) * efe + shift ) def entr_dilute_spec(x, s_v, a, delta_0, s_th_o): """ :param x: Delta_delta, change in non-stoichiometric redox extent vs. a reference :param s_v: change in the lattice vibrational entropy caused by introducing vacancies :param a: indicates the degrees of freedom of the defects, a < 1: additional defect ordering :param delta_0: initial non-stoichiometry at Delta_m = 0 (reference point of the mass change data, typically T = 400 deg C, p_O2 = 0.18 bar Delta = delta_0 + Delta_delta :return: fit function based on the model in Bulfin et. al., doi: 10.1039/C7TA00822H """ return ( s_th_o + s_v + (2 * a * R * (pd.np.log(0.5 - (x + delta_0)) - pd.np.log(x + delta_0))) ) def dh_ds(delta, s_th, p): d_delta = delta - p["delta_0"] dh_pars = [p[f"fit_param_enth.{c}"] for c in "abcd"] dh = enth_arctan(d_delta, *(dh_pars)) * 1000.0 ds_pars = [p[f"fit_par_ent.{c}"] for c in "abc"] # distinguish two differnt entropy fits fit_type = p["fit_type_entr"] if fit_type == "Solid_Solution": ds_pars.append(p["act_mat"]) ds_pars.append([p[f"fit_param_fe.{c}"] for c in "abcd"]) ds = entr_mixed(delta - p[f"fit_par_ent.c"], *ds_pars) else: ds_pars.append(s_th) ds = entr_dilute_spec(delta - p["fit_par_ent.c"], *ds_pars) return dh, ds def funciso(delta, iso, x, p, s_th): dh, ds = dh_ds(delta, s_th, p) return dh - x * ds + R * iso * x / 2 def funciso_theo(delta, iso, x, p, t_d_perov, t_d_brownm, dh_min, dh_max, act): dh = d_h_num_dev_calc(delta=delta, dh_1=dh_min, dh_2=dh_max, temp=x, act=act) ds = d_s_fundamental( delta=delta, dh_1=dh_min, dh_2=dh_max, temp=x, act=act, t_d_perov=t_d_perov, t_d_brownm=t_d_brownm, ) return dh - x * ds + R * iso * x / 2 def d_h_num_dev_calc(delta, dh_1, dh_2, temp, act): """ Calculates dH using the numerical derivative with f(x0) + f(x0+h) / h this function is split up in f(x0) and f(x0+h) for simplification and understanding :param delta: non-stoichiometry delta :param dh_1: reaction enthalpy of perovskite 1 :param dh_2: reaction enthalpy of perovskite 2 :param temp: temperature in K :return: enthalpy change dH """ return -( (0.5 * d_h_num_dev_0(delta, dh_1, dh_2, temp, act)) - (0.5 * d_h_num_dev_1(delta, dh_1, dh_2, temp, act)) ) / ((1 / (R * temp)) - (1 / (R * (temp + 0.01)))) def d_s_fundamental(delta, dh_1, dh_2, temp, act, t_d_perov, t_d_brownm): """ dG = dH - T*dS, at dG = 0 => dh/T = dS entropy of solid solution: dS = s_con + s_th with s_th = 0.5*s_zero(O2) + s_vib """ # partial molar entropy of oxygen release as a function of the temperature p_mol_ent_o = s_th_o(temp) # configurational entropy p_o_2_l = pd.np.log( p_o2_calc(delta=delta, dh_1=dh_1, dh_2=dh_2, temp=temp, act=act) ) entr_con = entr_con_mixed(temp=temp, p_o2_l=p_o_2_l, dh_1=dh_1, dh_2=dh_2, act=act) # vibrational entropy entr_vib = vib_ent(temp=temp, t_d_perov=t_d_perov, t_d_brownm=t_d_brownm) # sum d_s = p_mol_ent_o + entr_con + entr_vib return d_s def d_h_num_dev_0(delta, dh_1, dh_2, temp, act): """ Part of the numerical derivative calculation used to find dH as a function of delta and temperature This function is f(x0) in f(x0) + f(x0+h) / h :param delta: non-stoichiometry delta :param dh_1: reaction enthalpy of perovskite 1 :param dh_2: reaction enthalpy of perovskite 2 :param temp: temperature in K :return: natural logarithm of result at x = x0 """ result_0 = p_o2_calc(delta, dh_1, dh_2, temp, act) return pd.np.log(result_0) def d_h_num_dev_1(delta, dh_1, dh_2, temp, act): """ Part of the numerical derivative calculation used to find dH as a function of delta and temperature This function is f(x0+h) in f(x0) + f(x0+h) / h :param delta: non-stoichiometry delta :param dh_1: reaction enthalpy of perovskite 1 :param dh_2: reaction enthalpy of perovskite 2 :param temp: temperature in K :return: natural logarithm of result at x = x0 + h """ result_1 = p_o2_calc(delta, dh_1, dh_2, temp + 0.01, act) return pd.np.log(result_1) def entr_con_mixed(temp, p_o2_l, dh_1, dh_2, act): """ Reference: Brendan Bulfin et. al. DOI: 10.1039/C6CP03158G Configurational entropy of a solid solution :param temp: temperature in K :param p_o2_l: natural logarithm of the oxygen partial pressure :param dh_1: redox enthalpy of the first endmember of the solid solution :param dh_2: redox enthalpy of the second endmember of the solid solution :return: configurational entropy """ a = 2 stho = s_th_o(temp) # fix reversed orders if dh_1 > dh_2: dh_2_old = dh_2 dh_2 = dh_1 dh_1 = dh_2_old # avoiding errors due to division by zero if act == 0: delta_max_1 = 1e-10 else: delta_max_1 = act * 0.5 if act == 1: delta_max_2 = 0.5 - 1e-10 else: delta_max_2 = 0.5 - (act * 0.5) delta_1 = delta_fun(stho, temp, p_o2_l, dh_1, (act / 2)) delta_2 = delta_fun(stho, temp, p_o2_l, dh_2, ((1 - act) / 2)) if delta_1 > 0.0: entr_con_1 = ( (1 / delta_max_1) * (a / 2) * R * (pd.np.log(delta_max_1 - delta_1) - pd.np.log(delta_1)) * (delta_1 / (delta_1 + delta_2)) ) else: entr_con_1 = 0.0 if delta_2 > 0.0: entr_con_2 = ( (1 / delta_max_2) * (a / 2) * R * (pd.np.log(delta_max_2 - delta_2) - pd.np.log(delta_2)) * (delta_2 / (delta_1 + delta_2)) ) else: entr_con_2 = 0.0 return entr_con_1 + entr_con_2 def vib_ent(temp, t_d_perov, t_d_brownm): """ Vibrational entropy based on the Debye model :param temp: temperature :param delta: non-stoichiometry delta :return: vibrational entropy """ # integral for vibrational entropy using the Debye model def s_int(temp, t_d): def d_y(temp, t_d): y = t_d / temp def integrand(x): return x ** 3 / (pd.np.exp(x) - 1) if temp != 0: integral_y = quad(integrand, 0, y)[0] d = integral_y * (3 / (y ** 3)) else: d = 0 return d y = t_d / temp s = R * (-3 * pd.np.log(1 - pd.np.exp(-y)) + 4 * d_y(temp, t_d)) return s s_perov = s_int(temp, t_d_perov) s_brownm = s_int(temp, t_d_brownm) return 2 * s_perov - (2 * s_brownm) def p_o2_calc(delta, dh_1, dh_2, temp, act): """ Calculates the oxygen partial pressure p_O2 of a perovskite solid solution with two redox-active species :param delta: non-stoichiometry delta :param dh_1: reaction enthalpy of perovskite 1 :param dh_2: reaction enthalpy of perovskite 2 :param temp: temperature in K :return: p_O2 as absolute value """ def fun_p_o2(p_o2): return delta_mix(temp, p_o2, dh_1, dh_2, act) - delta try: sol_p_o2_l = brentq(fun_p_o2, a=-100, b=100) except ValueError: sol_p_o2_l = brentq(fun_p_o2, a=-300, b=300) return pd.np.exp(sol_p_o2_l) def delta_mix(temp, p_o2_l, dh_1, dh_2, act): """ Calculates the total non-stoichiometry delta of a perovskite solid solution with two redox-active species :param temp: temperature in K :param p_o2_l: oxygen partial pressure as natural logarithm :param dh_1: reaction enthalpy of perovskite 1 :param dh_2: reaction enthalpy of perovskite 2 :return: total non-stoichiometry delta """ stho = s_th_o(temp) return delta_fun(stho, temp, p_o2_l, dh_1, (act / 2)) + +delta_fun( stho, temp, p_o2_l, dh_2, ((1 - act) / 2) ) def delta_fun(stho, temp, p_o2_l, dh, d_max): common = pd.np.exp(stho * d_max / R) common *= pd.np.exp(p_o2_l) ** (-d_max / 2.0) common *= pd.np.exp(-dh * d_max / (R * temp)) return d_max * common / (1.0 + common) def funciso_redox(po2, delta, x, p, s_th): dh, ds = dh_ds(delta, s_th, p) return dh - x * ds + R * po2 * x / 2 def funciso_redox_theo(po2, delta, x, p, t_d_perov, t_d_brownm, dh_min, dh_max, act): dh = d_h_num_dev_calc(delta=delta, dh_1=dh_min, dh_2=dh_max, temp=x, act=act) ds = d_s_fundamental( delta=delta, dh_1=dh_min, dh_2=dh_max, temp=x, act=act, t_d_perov=t_d_perov, t_d_brownm=t_d_brownm, ) return dh - x * ds + R * po2 * x / 2 def isobar_line_elling(iso, x): return -R * iso * x / 2 def init_isographs(cid, plot_type, payload): mask = ["identifier", "data"] contrib = Contributions.objects.only(*mask).get(id=cid) data = {} for k, v in nested_to_record(contrib.data, sep=".").items(): if not k.endswith(".display") and not k.endswith(".unit"): if k.endswith(".value"): kk = k.rsplit(".", 1)[0] data[kk] = float(v.to_decimal()) else: data[k] = v data["compstr_disp"] = remove_comp_one(data["formula"]) # for user display if data["compstr_disp"] == data["formula"]: data["formula"] = add_comp_one( data["formula"] ) # compstr must contain '1' such as in "Sr1Fe1Ox" data["compstr_disp"] = [ "".join(g) for _, g in groupby(str(data["compstr_disp"]), str.isalpha) ] data["experimental_data_available"] = data.get("fit_type_entr") if data["experimental_data_available"]: data["compstr_exp"] = data["oxidized_phase.composition"] data["compstr_exp"] = [ "".join(g) for _, g in groupby(str(data["compstr_exp"]), str.isalpha) ] else: data["compstr_exp"] = "n.a." data["td_perov"] = data["debye_temp.perovskite"] data["td_brownm"] = data["debye_temp.brownmillerite"] data["tens_avail"] = data["tensors_available"] a, b = 1e-10, 0.5 - 1e-10 # limiting values for non-stoichiometry delta in brentq if plot_type == "isotherm": # pressure on the x-axis x_val = pd.np.log(pd.np.logspace(payload["rng"][0], payload["rng"][1], num=100)) elif not payload.get("rng"): # dH or dS # delta on the x-axis x_val = pd.np.linspace(0.01, 0.49, num=100) else: # temperature on the x-axis x_val = pd.np.linspace(payload["rng"][0], payload["rng"][1], num=100) return data, a, b, x_val class IsographView(SwaggerView): resource = ContributionsResource def get(self, cid, plot_type): """Retrieve RedoxThermoCSP Isograph data for a single contribution. --- operationId: get_redox_thermo_csp_iso parameters: - name: cid in: path type: string pattern: '^[a-f0-9]{24}$' required: true description: contribution ID (ObjectId) - name: plot_type in: path type: string required: true enum: [isotherm, isobar, isoredox, enthalpy_dH, entropy_dS, ellingham] description: type of isograph - name: iso in: query type: number required: true description: iso value - name: rng in: query type: array items: type: number minItems: 2 maxItems: 2 description: comma-separated graph range - name: del in: query type: number description: delta value responses: 200: description: Isograph data as defined by contributor schema: type: array items: type: object """ rng = request.args.get("rng") if rng: rng = list(map(float, rng.split(","))) iso = float(request.args["iso"]) payload = {"iso": iso, "rng": rng} pars, a, b, x_val = init_isographs(cid, plot_type, payload) if plot_type == "ellingham": payload["iso"] = pd.np.log(10 ** payload["iso"]) delt = request.args.get("del") if delt: payload["del"] = float(delt) resiso, resiso_theo, ellingiso = [], [], [] if pars[ "experimental_data_available" ]: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: if plot_type in ["isobar", "isoredox", "ellingham"]: s_th = s_th_o(xv) args = (payload["iso"], xv, pars, s_th) elif plot_type == "isotherm": s_th = s_th_o(payload["iso"]) args = (xv, payload["iso"], pars, s_th) elif plot_type == "enthalpy_dH" or plot_type == "entropy_dS": s_th = s_th_o(payload["iso"]) args = (payload["iso"], xv, pars, s_th) if plot_type == "isoredox": solutioniso = brentq(funciso_redox, -300, 300, args=args) resiso.append(pd.np.exp(solutioniso)) elif plot_type == "isotherm" or plot_type == "isobar": solutioniso = rootfind(a, b, args, funciso) resiso.append(solutioniso) elif plot_type == "enthalpy_dH": solutioniso = dh_ds(xv, args[-1], args[-2])[0] / 1000 resiso.append(solutioniso) elif plot_type == "entropy_dS": solutioniso = dh_ds(xv, args[-1], args[-2])[1] resiso.append(solutioniso) elif plot_type == "ellingham": dh_ds_vals = dh_ds(payload["del"], args[-1], args[-2]) solutioniso = (dh_ds_vals[0] - dh_ds_vals[1] * xv) / 1000.0 resiso.append(solutioniso) ellingiso.append(isobar_line_elling(args[0], xv) / 1000.0) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.append(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if ( pars["delta_min"] < delta_val < pars["delta_max"] ): # result within experimentally covered δ range res_fit.append(res_i) res_interp.append(None) else: # result outside this range res_fit.append(None) res_interp.append(res_i) else: res_fit, res_interp = ( None, None, ) # don't plot any experimental data if it is not available try: # calculate theoretical data for xv in x_val[ ::4 ]: # use less data points for theoretical graphs to improve speed if plot_type in [ "isobar", "isoredox", "enthalpy_dH", "entropy_dS", "ellingham", ]: args_theo = (payload["iso"], xv) elif plot_type == "isotherm": args_theo = (xv, payload["iso"]) args_theo = args_theo + ( pars, pars["td_perov"], pars["td_brownm"], pars["dh_min"], pars["dh_max"], pars["act_mat"], ) if plot_type == "isoredox": try: solutioniso_theo = brentq( funciso_redox_theo, -300, 300, args=args_theo ) except ValueError: solutioniso_theo = brentq( funciso_redox_theo, -100, 100, args=args_theo ) resiso_theo.append(pd.np.exp(solutioniso_theo)) elif plot_type == "isotherm" or plot_type == "isobar": solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.append(solutioniso_theo) elif plot_type == "enthalpy_dH": solutioniso_theo = ( d_h_num_dev_calc( delta=xv, dh_1=pars["dh_min"], dh_2=pars["dh_max"], temp=payload["iso"], act=pars["act_mat"], ) / 1000.0 ) resiso_theo.append(solutioniso_theo) elif plot_type == "entropy_dS": solutioniso_theo = d_s_fundamental( delta=xv, dh_1=pars["dh_min"], dh_2=pars["dh_max"], temp=payload["iso"], act=pars["act_mat"], t_d_perov=pars["td_perov"], t_d_brownm=pars["td_brownm"], ) resiso_theo.append(solutioniso_theo) elif plot_type == "ellingham": dh = d_h_num_dev_calc( delta=payload["del"], dh_1=pars["dh_min"], dh_2=pars["dh_max"], temp=xv, act=pars["act_mat"], ) ds = d_s_fundamental( delta=payload["del"], dh_1=pars["dh_min"], dh_2=pars["dh_max"], temp=xv, act=pars["act_mat"], t_d_perov=pars["td_perov"], t_d_brownm=pars["td_brownm"], ) solutioniso_theo = (dh - ds * xv) / 1000.0 resiso_theo.append(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.append(None) x = list(pd.np.exp(x_val)) if plot_type == "isotherm" else list(x_val) x_theo = x[::4] x_exp = None if pars["experimental_data_available"]: x_exp = x elif plot_type == "ellingham": x_exp = None for xv in x_theo: ellingiso.append(isobar_line_elling(payload["iso"], xv) / 1000.0) y_min, y_max = 0, 0 if plot_type == "enthalpy_dH": if max(pd.np.append(resiso, resiso_theo)) > ( pars["dh_max"] * 0.0015 ): # limiting values for the plot y_max = pars["dh_max"] * 0.0015 else: y_max = max(pd.np.append(resiso, resiso_theo)) * 1.2 if min(pd.np.append(resiso, resiso_theo)) < -10: y_min = -10 else: y_min = min(pd.np.append(resiso, resiso_theo)) * 0.8 elif plot_type == "entropy_dS": y_min = -10 # limiting values for the plot if max(pd.np.append(resiso, resiso_theo)) > 250: y_max = 250 else: y_max = max(pd.np.append(resiso, resiso_theo)) * 1.2 response = [ { "x": x_exp, "y": res_fit, "name": "exp_fit", "line": {"color": "rgb(5,103,166)", "width": 2.5}, }, { "x": x_exp, "y": res_interp, "name": "exp_interp", "line": {"color": "rgb(5,103,166)", "width": 2.5, "dash": "dot"}, }, { "x": x_theo, "y": resiso_theo, "name": "theo", "line": {"color": "rgb(217,64,41)", "width": 2.5}, }, [y_min, y_max], [ pars["compstr_disp"], pars["compstr_exp"], pars["tens_avail"], pars["last_updated"], ], ] if plot_type == "ellingham": response[-2] = { "x": x_theo if x_exp is None else x_exp, "y": ellingiso, "name": "isobar line", "line": {"color": "rgb(100,100,100)", "width": 2.5}, } return {"data": response} class WaterSplitting: @staticmethod def dg_zero_water_splitting(temp): """ Uses linear fits of data in Barin, Thermochemical Data of Pure Substances Only valid for steam! :return: dg_zero """ dg_zero = ((-0.052489 * temp) + 245.039) * 1000 return dg_zero @staticmethod def k_water_splitting(temp): """ Get the equilibrium constant of water :param temp: temperature in K :return: equilibrium constant """ dg_zero = WaterSplitting().dg_zero_water_splitting(temp) k_eq = pd.np.exp(dg_zero / (-R * temp)) return k_eq @staticmethod def get_h2_h2o_ratio(temp, po2): """ Converts an oxygen partial pressure into a ratio of H2 to H2O for water splitting :param temp: temperature in K :param po2: oxygen partial pressure :return: ratio of H2 to H2O """ h2_h2o = WaterSplitting().k_water_splitting(temp) / pd.np.sqrt(po2) return h2_h2o @staticmethod def get_po2(temp, h2_h2o): """ Converts a ratio of H2 to H2O for water splitting into an oxygen partial pressure :param temp: temperature in K :param h2_h2o: ratio of H2 to H2O :return: oxygen partial pressure """ po2 = (WaterSplitting().k_water_splitting(temp) / h2_h2o) ** 2 return po2 class CO2Splitting: @staticmethod def dg_zero_co2_splitting(temp): """ Uses linear fits of data in Barin, Thermochemical Data of Pure Substances :return: dg_zero """ dg_zero_co2 = (temp ** 2) * 9.44e-7 - (0.0032113 * temp) - 393.523 dg_zero_co = -0.0876385 * temp - 111.908 dg_zero = (-dg_zero_co2 + dg_zero_co) * 1000 return dg_zero @staticmethod def k_co2_splitting(temp): """ Get the equilibrium constant of water :param temp: temperature in K :return: equilibrium constant """ dg_zero = CO2Splitting().dg_zero_co2_splitting(temp) k_eq = pd.np.exp(dg_zero / (-R * temp)) return k_eq @staticmethod def get_co_co2_ratio(temp, po2): """ Converts an oxygen partial pressure into a ratio of CO to CO2 for water spltting :param temp: temperature in K :param po2: oxygen partial pressure :return: ratio of H2 to H2O """ h2_h2o = CO2Splitting().k_co2_splitting(temp) / pd.np.sqrt(po2) return h2_h2o @staticmethod def get_po2(temp, co_co2): """ Converts a ratio of CO to CO2 for water splitting into an oxygen partial pressure :param temp: temperature in K :param h2_h2o: ratio of H2 to H2O :return: oxygen partial pressure """ po2 = (CO2Splitting().k_co2_splitting(temp) / co_co2) ** 2 return po2 class EnergyAnalysis: """ Analyze the energy input for different redox cycles """ def __init__(self, process="Air Separation"): self.process = process @staticmethod def c_p_water_liquid(temp): """ Calculates the heat capacity of liquid water. :return: cp_water """ # constants: Chase, NIST-JANAF Thermochemistry tables, Fourth Edition, 1998 shomdat = [-203.6060, 1523.290, -3196.413, 2474.455, 3.855326] temp_frac = temp / 1000 c_p_water = ( shomdat[0] + (shomdat[1] * temp_frac) + (shomdat[2] * (temp_frac ** 2)) + (shomdat[3] * (temp_frac ** 3)) + (shomdat[4] / (temp_frac ** 2)) ) return c_p_water @staticmethod def c_p_steam(temp): """ Calculates the heat capacity of steam :return: cp_steam """ if temp < 1700: shomdat = [30.09200, 6.832514, 6.793435, -2.534480, 0.082139] else: shomdat = [41.96126, 8.622053, -1.499780, 0.098119, -11.15764] temp_frac = temp / 1000 c_p_steam = ( shomdat[0] + (shomdat[1] * temp_frac) + (shomdat[2] * (temp_frac ** 2)) ) c_p_steam += (shomdat[3] * (temp_frac ** 3)) + (shomdat[4] / (temp_frac ** 2)) return c_p_steam @staticmethod def get_heat_capacity(temp, td): # credits to Dr. Joseph Montoya, LBNL t_ratio = temp / td def integrand(x): return (x ** 4 * pd.np.exp(x)) / (pd.np.exp(x) - 1) ** 2 if isinstance(t_ratio, int) or isinstance(t_ratio, float): cv_p = 9 * R * (t_ratio ** 3) * quad(integrand, 0, t_ratio ** -1)[0] else: cv_p = [] for i in range(len(t_ratio)): cv_i = ( 9 * R * (t_ratio[i] ** 3) * quad(integrand, 0, t_ratio[i] ** -1)[0] ) cv_p = pd.np.append(cv_p, cv_i) return cv_p * 5 @staticmethod def get_heat_capacity_mixed(temp, delta, td_p=None, td_b=None): enal = EnergyAnalysis() cv_p = enal.get_heat_capacity(temp, td_p) * 5 cv_b = enal.get_heat_capacity(temp, td_b) * 4.5 ratio_p = (0.5 - delta) / 0.5 ratio_b = delta / 0.5 cv_m = pd.np.multiply(ratio_p, cv_p) + pd.np.multiply(ratio_b, cv_b) return temp, cv_m @staticmethod def heat_input_linear( temp_1, temp_2, delta_1, delta_2, t_d_perov, t_d_brownm, num=40 ): """ Uses an approximation to calculate the integral c(T, delta)*T dT by splitting the interval into a number of slices with constant c Uses a linear approximation for delta between delta_1 and delta_2 This method is a lot faster than the actual integration and the errors of the approximation are negligible (at default settings: < 1E-5, typically approx. 1E-6) :param temp_1: initial temperature(s) :param temp_2: final temperature(s) :param delta_1: initial non-stoichiometry value(s) :param delta_2: final non-stoichiometry values(s) :param num: number of steps for the approximation of the integral :return: heat input to heat perovskite from temp_1 to temp_2 considering the change in delta (in J) positive for heating, negative for cooling """ try: # treatment of arrays for output of multiple data points dqs = [] if not (isinstance(temp_1, float) or (isinstance(temp_1, int))): for i in range(len(temp_1)): tempval = pd.np.linspace(temp_1[i], temp_2[i], num=num) deltaval = pd.np.linspace(delta_1[i], delta_2[i], num=num) # calculate average values within intervals delta_x0_x1 = pd.np.empty(len(deltaval) - 1) for i in range(len(deltaval) - 1): delta_x0_x1[i] = (deltaval[i] + deltaval[i + 1]) / 2 temp_x0_x1 = pd.np.empty(len(tempval) - 1) for i in range(len(tempval) - 1): temp_x0_x1[i] = (tempval[i] + tempval[i + 1]) / 2 # length of a temperature step del_temp = (temp_2 - temp_1) / len(temp_x0_x1) # calculate the area under the step for each step dq = 0 for i in range(len(delta_x0_x1)): cv_step = EnergyAnalysis().get_heat_capacity_mixed( temp_x0_x1[i], delta_x0_x1[i], td_p=t_d_perov, td_b=t_d_brownm, )[1] q_step = cv_step * del_temp dq += q_step dqs = pd.np.append(dqs, dq) dq = dqs else: tempval = pd.np.linspace(temp_1, temp_2, num=num) deltaval = pd.np.linspace(delta_1, delta_2, num=num) # calculate average values within intervals delta_x0_x1 = pd.np.empty(len(deltaval) - 1) for i in range(len(deltaval) - 1): delta_x0_x1[i] = (deltaval[i] + deltaval[i + 1]) / 2 temp_x0_x1 = pd.np.empty(len(tempval) - 1) for i in range(len(tempval) - 1): temp_x0_x1[i] = (tempval[i] + tempval[i + 1]) / 2 # length of a temperature step del_temp = (temp_2 - temp_1) / len(temp_x0_x1) # calculate the area under the step for each step dq = 0 for i in range(len(delta_x0_x1)): cv_step = EnergyAnalysis().get_heat_capacity_mixed( temp_x0_x1[i], delta_x0_x1[i], td_p=t_d_perov, td_b=t_d_brownm )[1] q_step = cv_step * del_temp dq += q_step except TypeError: dq = None raise ValueError( "Elastic tensors or crystal structures not available for this set of materials." ) return dq @staticmethod def energy_steam_generation(temp_1, temp_2, h_2_h2o, celsius=True, h_rec=0.0): """ Calculates the energy required to heat water, evaporate it and to generate steam at temperature "temp" Assuming water at ambient pressure, boiling point 100 °C :param temp_1: initial temperature of water/steam :param temp_2: steam temperature :param h_2_h2o: partial pressure ratio h2/h2o :param celsius: if True, temperature values are assumed to be in degrees celsius :param h_rec: heat recovery efficiency, can be between 0 and 1 :return: energy required to generate steam per mol of H2 in the product stream in kJ/mol """ if celsius: temp_1 = temp_1 + 273.15 temp_2 = temp_2 + 273.15 enal = EnergyAnalysis() # liquid water (at ambient pressure) # this code only considers water at ambient pressure! if temp_1 < 373.15: if temp_2 > 373.15: energy_1 = quad(enal.c_p_water_liquid, temp_1, 373.15)[0] else: energy_1 = quad(enal.c_p_water_liquid, temp_1, temp_2)[0] else: energy_1 = 0 if temp_2 > 373.15: if temp_1 < 373.15: energy_2 = quad(enal.c_p_steam, 373.15, temp_2)[0] else: energy_2 = quad(enal.c_p_steam, temp_1, temp_2)[0] else: energy_2 = 0 # from the literature heat_vaporization = 40790 if temp_1 < 373.15 < temp_2: total_energy = energy_1 + energy_2 + heat_vaporization else: total_energy = energy_1 + energy_2 # per mol of H2 total_energy = total_energy / h_2_h2o # considering heat recovery total_energy = total_energy * (1 - h_rec) return total_energy / 1000 @staticmethod def energy_integral_theo( enth_steps, celsius, temp_1, temp_2, compstr, dh_min, dh_max, t_d_perov, t_d_brownm, p_o_2_1, p_o_2_2, ): """ Determines the chemical energy change using theoretical data. All variables explained in EnergyAnalysis.calc """ # To get a good approximation of the integral over the enthalpy values, the area under the curve is calculated # stepwise. The actual integral calculation would take too long, as each enthalpy value is calculated # numerically # We are only considering the case of linear change of both pressure and temperature between reduction and # oxidation here if celsius: tempval = pd.np.linspace(temp_1 + 273.15, temp_2 + 273.15, num=enth_steps) else: tempval = pd.np.linspace(temp_1, temp_2, num=enth_steps) p_val = pd.np.logspace( pd.np.log10(p_o_2_1), pd.np.log10(p_o_2_2), num=enth_steps ) sample_spl = split_comp(compstr) act = find_active(mat_comp=sample_spl)[1] delta_vals = [] for i in range(len(tempval)): args_theo = ( pd.np.log(p_val[i]), tempval[i], None, t_d_perov, t_d_brownm, dh_min, dh_max, act, ) delta_val_i = rootfind(1e-10, 0.5 - 1e-10, args_theo, funciso_theo) delta_vals = pd.np.append(delta_vals, delta_val_i) dh_vals = [] for i in range(len(tempval)): dh_i = d_h_num_dev_calc( delta=delta_vals[i], dh_1=dh_min, dh_2=dh_max, temp=tempval[i], act=act ) dh_vals = pd.np.append(dh_vals, dh_i) # calculate energy stepwise energy_red = [] for i in range(len(delta_vals) - 1): # deltastep * average dh h_x0_x1_i = (dh_vals[i] + dh_vals[i + 1]) / 2 energy_i = (delta_vals[i + 1] - delta_vals[i]) * h_x0_x1_i energy_red = pd.np.append(energy_red, energy_i) energy_integral_dh = sum(energy_red) / 1000 return energy_integral_dh @staticmethod def mechanical_envelope(p_red): """ Uses the "mechanical envelope" function from Stefan Brendelberger et al. dx.doi.org/10.1016/j.solener.2016.11.023 Estimates the energy required to pump one mol of oxygen at this pressure using mechanical pumps. :param p_red: oxygen partial pressure at reduction conditions :return: pump_ener_envelope: mechanical energy required to pump one mol of O """ if (p_red < 1e-6) or (p_red > 0.7): q_pump = float("inf") # mechanical envelope not applicable in this range else: eff_sol = 0.4 temp = 473 # this is the operating temperature of the pump a0 = 0.30557 a1 = -0.17808 a2 = -0.15514 a3 = -0.03173 a4 = -0.00203 p0 = 1e5 p = p_red * p0 eff = ( a0 + a1 * pd.np.log10(p / p0) + a2 * (pd.np.log10(p / p0)) ** 2 + a3 * (pd.np.log10(p / p0)) ** 3 + a4 * (pd.np.log10(p / p0)) ** 4 ) q_iso = R * temp * pd.np.log(p0 / p) q_pump = (q_iso / eff) / eff_sol q_pump = q_pump / 2000 return q_pump @staticmethod def dhf_h2o(t_ox): """ Gets the heat of formation of water for at certain temperature Based on the Shomate equation and the NIST-JANAF thermochemical tables H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H H° = A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1#Thermo-Gas """ if t_ox <= 1700: a = 30.09200 b = 6.832514 c = 6.793435 d = -2.534480 e = 0.082139 f = -250.8810 else: a = 41.96426 b = 8.622053 c = -1.499780 d = 0.098119 e = -11.15764 f = -272.1797 t_1000 = t_ox / 1000 hform = a * t_1000 hform += 0.5 * b * (t_1000 ** 2) hform += (1 / 3.0) * c * (t_1000 ** 3) hform += (1 / 4.0) * c * (t_1000 ** 4) hform += -e / t_1000 hform += f return hform @staticmethod def dh_co_co2(t_ox): """ Gets the heat of formation of CO2 and of CO and returns the difference to get the heat of reaction Based on the Shomate equation and the NIST-JANAF thermochemical tables H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H H° = A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F CO2: https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1#Thermo-Gas CO: https://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Units=SI&Mask=1#Thermo-Gas """ t_1000 = t_ox / 1000 # CO2 if t_ox <= 1200: a = 24.99735 b = 55.18696 c = -33.69137 d = 7.948387 e = -0.136638 f = -403.6075 else: a = 58.16639 b = 2.720074 c = -0.492289 d = 0.038844 e = -6.447293 f = -425.9186 hco2 = a * t_1000 hco2 += 0.5 * b * (t_1000 ** 2) hco2 += (1 / 3) * c * (t_1000 ** 3) hco2 += (1 / 4) * c * (t_1000 ** 4) hco2 += -e / t_1000 hco2 += f # CO if t_ox <= 1300: a = 25.56759 b = 6.096130 c = 4.054656 d = -2.671301 e = 0.131021 f = -118.0089 else: a = 35.15070 b = 1.300095 c = -0.205921 d = 0.013550 e = -3.282780 f = -127.8375 hco = a * t_1000 hco += 0.5 * b * (t_1000 ** 2) hco += (1 / 3) * c * (t_1000 ** 3) hco += (1 / 4) * c * (t_1000 ** 4) hco += -e / t_1000 hco += f return hco2 - hco def calc( self, p_ox, p_red, t_ox, t_red, data_origin="Exp", data_use="combined", enth_steps=30, sample_ident=-1, celsius=True, from_file=True, heat_cap=True, heat_cap_approx=True, ): """ Performs an energy analysis using experimental data. :param p_ox: Oxidation partial pressure of oxygen (in bar) or ratio p(H2)/p(H2O) / p(CO)/p(CO2) :param p_red: Oxygen partial pressure for reduction (in bar) :param t_ox: Oxidation temperature :param t_red: Reduction temperature :param data_origin: "Exp": experimental data "Theo": theoretical data ***only relevant if 'data_origin' = "Theo" :param data_use: "endmembers": uses redox members of solid solution endmembers to estimate redox enthalpies of solid solutions "combined": corrects above-mentioned data by the actual redox enthalpies for the solid solutions calcualted via DFT :param enth_steps: number of enthalpy values which are calculated for each material in order to reach a good approximation of the integral over dH vs. delta :param sample_ident: Sample number(s) (experimental data) or composition (theoretical data), default value '-1'-> analyze all samples :param pump_ener: allows to consider the pumping energy required to pump from p_o_2_1 to p_o_2_2 input in kJ per kg of redox material in the oxidized state + the losses This depends on many factors, such as the type of pumps used, the volume of the reaction chamber, the reactor type etc., so the user needs to calculate this value beforehand depending on the individual process conditions In case some of the pumping energy can be recovered, this share needs to be subtracted beforehand, as it is not considered herein. :param celsius: if True, assumes all input temperatures are in °C instead of K :param from_file: if True, takes the enthalpies, Debye temperatures, and materials lists from the file "theo_redenth_debye.json". Much faster than using the MPRester Only works if sample_ident = -1 :param heat_cap: if True, sensible energy to heat the samples is considered :param heat_cap_approx: if True, uses values for SrFeOx in case of missing heat capacity data :return: dict_result: dictonary with results for different materials """ si_first = sample_ident # correct temperature values for Kelvin/Celsius if celsius: temp_1_corr = t_ox + 273.15 temp_2_corr = t_red + 273.15 else: temp_1_corr = t_ox temp_2_corr = t_red if data_origin == "Exp": # currently not in use for updates of existing data # load experimental sample data from file path = os.path.abspath("") filepath = os.path.join(path, "exp_data.json") with open(filepath) as handle: expdata = json.loads(handle.read()) # use equivalent partial pressures for Water Splitting and CO2 splitting if self.process == "Water Splitting": p_ox = WaterSplitting().get_po2(temp=temp_1_corr, h2_h2o=p_ox) elif self.process == "CO2 Splitting": p_ox = CO2Splitting().get_po2(temp=temp_1_corr, co_co2=p_ox) # iterate over samples if isinstance(sample_ident, collections.Sized) and not isinstance( sample_ident, str ): no_range = range(len(sample_ident)) sample = None else: no_range = range(1) if data_origin == "Exp": sample = int(sample_ident) else: sample = str(sample_ident) # iterate over all available samples if sample_ident == -1: sample = None if data_origin == "Exp": no_range = range(0, 150) sample_ident = no_range else: if not from_file: filename = os.path.join( os.path.abspath(".."), "datafiles", "perovskite_theo_list.csv", ) if not os.path.exists(filename): raise ImportError( "File 'perovskite_theo_list.csv' not found." ) fo = open(filename, "rb") sample_ident = pd.np.genfromtxt( fo, dtype="str", delimiter=",", skip_header=1 ) fo.close() else: sampledata = views.get_theo_data() sample_ident = sampledata["compstr"] no_range = range(len(sample_ident)) sample_l, chemical_energy_l, sensible_energy_l, mol_mass_ox_l, prodstr_alt_l = ( [], [], [], [], [], ) mol_prod_mol_red_l, t_ox_l, t_red_l, p_ox_l, p_red_l, compstr_l = ( [], [], [], [], [], [], ) ( delta_1_l, delta_2_l, mass_redox_l, prodstr_l, l_prod_kg_red_l, g_prod_kg_red_l, ) = ([], [], [], [], [], []) for i in no_range: if not sample: sample = sample_ident[i] # this only works if the sample number/data exists try: if data_origin == "Exp": exp_index = -1 for k in range(len(expdata)): if int(expdata["Sample number"][k]) == sample: exp_index = k if exp_index == -1: raise ValueError("Experimental data for this sample not found.") compstr = expdata["theo_compstr"][exp_index] compstr_x = compstr.split("Ox")[0] # this formats the parameters the same way we have them in views.py fit_param_enth = { "a": float(expdata["dH_max"][exp_index]), "b": float(expdata["dH_min"][exp_index]), "c": float(expdata["t"][exp_index]), "d": float(expdata["s"][exp_index]), } fit_type_entr = str(expdata["fit type entropy"][exp_index]) if fit_type_entr == "Dilute_Species": fit_par_ent = { "a": float(expdata["entr_dil_s_v"][exp_index]), "b": float(expdata["entr_dil_a"][exp_index]), "c": float(expdata["delta_0"][exp_index]), } else: fit_par_ent = { "a": float(expdata["entr_solid_sol_s"][exp_index]), "b": float(expdata["entr_solid_sol_shift"][exp_index]), "c": float(expdata["delta_0"][exp_index]), } theo_compstr = compstr splitcomp = split_comp(compstr) delta_0 = float(expdata["delta_0"][exp_index]) actf = find_active(mat_comp=splitcomp)[1] act_mat = {"Material": float(actf)} fit_param_fe = { "a": 231.062, "b": -24.3338, "c": 0.839785, "d": 0.219157, } pars = { "fit_par_ent": fit_par_ent, "fit_param_enth": fit_param_enth, "fit_type_entr": fit_type_entr, "delta_0": delta_0, "fit_param_fe": fit_param_fe, "act_mat": act_mat, } args_1 = (pd.np.log(p_ox), temp_1_corr, pars, s_th_o(temp_1_corr)) args_2 = (pd.np.log(p_red), temp_2_corr, pars, s_th_o(temp_2_corr)) delta_1 = rootfind(1e-10, 0.5 - 1e-10, args_1, funciso) delta_2 = rootfind(1e-10, 0.5 - 1e-10, args_2, funciso) # use theoretical elastic tensors sampledata = views.get_theo_data() for z in range(len(sampledata["compstr"])): if (sampledata["compstr"][z]).split("O3")[0] == compstr.split( "Ox" )[0]: index_debye = z t_d_perov = float(sampledata["Debye temp perovskite"][index_debye]) t_d_brownm = float( sampledata["Debye temp brownmillerite"][index_debye] ) else: # if composition does not contain ones as stoichiometries, add them sample = add_comp_one(compstr=sample) if not from_file or si_first != -1: try: red_active = redenth_act(sample) except TypeError: raise ValueError( "Enthalpy data not available for this material." ) h_min = red_active[1] h_max = red_active[2] act = red_active[3] else: h_min = float(sampledata["dH_min"][i]) h_max = float(sampledata["dH_max"][i]) act = float(sampledata["act"][i]) compstr = sample compstr_x = compstr.split("O")[0] if not from_file or si_first != -1: try: # get Debye temperatures for vibrational entropy mp_ids = get_mpids_comps_perov_brownm(compstr=compstr) t_d_perov = get_debye_temp(mp_ids[0]) t_d_brownm = get_debye_temp(mp_ids[1]) except Exception as e: # if no elastic tensors or no data for this material is available mp_ids = ( "mp-510624", "mp-561589", ) # using data for SrFeOx if no data is available (close approximation) t_d_perov = get_debye_temp(mp_ids[0]) t_d_brownm = get_debye_temp(mp_ids[1]) else: t_d_perov = float(sampledata["Debye temp perovskite"][i]) t_d_brownm = float(sampledata["Debye temp brownmillerite"][i]) args_theo_1 = ( pd.np.log(p_ox), temp_1_corr, None, t_d_perov, t_d_brownm, h_min, h_max, act, ) delta_1 = rootfind(1e-10, 0.5 - 1e-10, args_theo_1, funciso_theo) args_theo_2 = ( pd.np.log(p_red), temp_2_corr, None, t_d_perov, t_d_brownm, h_min, h_max, act, ) delta_2 = rootfind(1e-10, 0.5 - 1e-10, args_theo_2, funciso_theo) # calculate the mass change in % comp_ox = compstr_x + "O" + str(float(3 - delta_1)) comp_red = compstr_x + "O" + str(float(3 - delta_2)) mol_mass_ox = float(Composition(comp_ox).weight) mol_mass_red = float(Composition(comp_red).weight) mass_redox_i = ((mol_mass_ox - mol_mass_red) / mol_mass_ox) * 100 # define reaction products if self.process == "Air Separation": prodstr = "O2" prodstr_alt = "O" elif self.process == "Water Splitting": prodstr = "H2" prodstr_alt = prodstr elif self.process == "CO2 Splitting": prodstr = "CO" prodstr_alt = prodstr else: raise ValueError( "Process must be either Air Separation, Water Splitting, or CO2 Splitting!" ) # only continue if the user-designated reduction step actually leads to reduction # if not, set result to infinite if delta_2 < delta_1: ener_i = pd.np.ones(5) * float("inf") per_kg_redox = pd.np.ones(5) * float("inf") per_kg_wh_redox = pd.np.ones(5) * float("inf") kj_mol_prod = pd.np.ones(5) * float("inf") energy_l = pd.np.ones(5) * float("inf") energy_l_wh = pd.np.ones(5) * float("inf") efficiency = float("inf") mol_prod_mol_red = float("inf") l_prod_kg_red = float("inf") g_prod_kg_red = float("inf") else: # mol product per mol of redox material mol_prod_mol_red = delta_2 - delta_1 # L product per kg of redox material (SATP) l_prod_kg_red = mol_prod_mol_red * (24.465 / (0.001 * mol_mass_ox)) # convert mol O to mol O2 if self.process == "Air Separation": l_prod_kg_red = l_prod_kg_red * 0.5 # g product per kg redox material g_prod_kg_red = float(Composition(prodstr).weight) * ( l_prod_kg_red / 24.465 ) if data_origin == "Exp": d_delta = delta_0 else: d_delta = 0.0 # correct for d_delta d_delta_1 = delta_1 - d_delta d_delta_2 = delta_2 - d_delta # chemical energy if data_origin == "Exp": s_th_mean = (s_th_o(temp_1_corr) + s_th_o(temp_1_corr)) / 2 def dh_func_exp(d_delta_func): return dh_ds(d_delta_func, s_th_mean, pars)[0] energy_integral_dh = quad(dh_func_exp, d_delta_1, d_delta_2)[0] if energy_integral_dh < 0: raise ValueError( "negative chemical energy due to insuffiencent experimental data...skipping this sample" ) else: energy_integral_dh = EnergyAnalysis( process=self.process ).energy_integral_theo( celsius=celsius, compstr=compstr, dh_max=h_max, dh_min=h_min, enth_steps=enth_steps, p_o_2_1=p_ox, p_o_2_2=p_red, temp_1=t_ox, temp_2=t_red, t_d_perov=t_d_perov, t_d_brownm=t_d_brownm, ) # sensible energy energy_sensible = 0 if heat_cap: energy_sensible = ( EnergyAnalysis().heat_input_linear( temp_1=temp_1_corr, temp_2=temp_2_corr, delta_1=delta_1, delta_2=delta_2, t_d_perov=t_d_perov, t_d_brownm=t_d_brownm, num=40, ) / 1000 ) chemical_energy_l.append(energy_integral_dh) sensible_energy_l.append(energy_sensible) mol_mass_ox_l.append(mol_mass_ox) mol_prod_mol_red_l.append(mol_prod_mol_red) t_ox_l.append(temp_1_corr) t_red_l.append(temp_2_corr) p_ox_l.append(p_ox) p_red_l.append(p_red) compstr_l.append(compstr) delta_1_l.append(delta_1) delta_2_l.append(delta_2) mass_redox_l.append(mass_redox_i) prodstr_l.append(prodstr) prodstr_alt_l.append(prodstr_alt) l_prod_kg_red_l.append(l_prod_kg_red) g_prod_kg_red_l.append(g_prod_kg_red) # skip this sample if the sample number does not exist except Exception as e: pass # print("No data for sample " + str(sample) + " found!" + str(e)) sample = None resdict = { "Chemical Energy": chemical_energy_l, "Sensible Energy": sensible_energy_l, "mol_mass_ox": mol_mass_ox_l, "mol_prod_mol_red": mol_prod_mol_red_l, "T_ox": t_ox_l, "T_red": t_red_l, "p_ox": p_ox_l, "p_red": p_red_l, "compstr": compstr_l, "delta_1": delta_1_l, "delta_2": delta_2_l, "mass_redox": mass_redox_l, "prodstr": prodstr_l, "prodstr_alt": prodstr_alt_l, "l_prod_kg_red": l_prod_kg_red_l, "g_prod_kg_red": g_prod_kg_red_l, } return resdict def on_the_fly( self, resdict, pump_ener, w_feed, h_rec, h_rec_steam, celsius=True, h_val="high", p_ox_wscs=0, rem_unstable=True, ): """ Allows to calculate the energy input for different conditions rather quickly, without having to re-calculate the time-intensive chemical and sensible energy every time again :param resdict: dictionary with results (mainly for chemical and sesible energy, as calculated by EnergyAnalysis().calc() :param pump_ener: allows to consider the pumping energy required to pump from p_o_2_1 to p_o_2_2 input in kJ per kg of redox material in the oxidized state + the losses This depends on many factors, such as the type of pumps used, the volume of the reaction chamber, the reactor type etc., so the user needs to calculate this value beforehand depending on the individual process conditions In case some of the pumping energy can be recovered, this share needs to be subtracted beforehand, as it is not considered herein. :param h_rec: heat recovery efficiency factor (0...1) for chemical and sensible energy ***these values are only relevant for water splitting*** :param h_rec_steam: heat recovery efficiency factor (0...1) for recovery of heat stored in the steam :param w_feed: water inlet temperature (in °C or K as defined by 'celsius') :param h_val: heating value of hydrogen: 'low' -> lower heating value, 'high' -> higher heating value :param p_ox_wscs: ratio H2/H2O / ratio CO/CO2 :param rem_unstable: if True, phases which are potentially unstable for chemical reasons are removed this is based on the phases in "unstable_phases.json" currently, phases are excluded for the following reasons: - tolerance factor below 0.9 (e.g. EuCuO3, which cannot be synthesized as opposed to EuFeO3) - phases with expected high covalency (V5+ cations, for instance, NaVO3 is stable but not a perovskite) - phases with expected low melting point (Mo5+ cations, see this article for NaMoO3 http://www.journal.csj.jp/doi/pdf/10.1246/bcsj.64.161) By default, this is always True and there is no way in the user front-end to change this. However, this could be changed manually by the developers, if neccessary. """ if self.process == "Air Separation": p_ox_wscs = 1 # initialize result variables result_val_ener_i = pd.np.empty(6) result_val_per_kg_redox = pd.np.empty(6) result_val_per_kg_wh_redox = pd.np.empty(6) result_val_per_kj_mol_prod = pd.np.empty(6) result_val_per_energy_l = pd.np.empty(6) result_val_per_energy_l_wh = pd.np.empty(6) result_val_efficiency = pd.np.empty(2) result_val_mol_prod_mol_red = pd.np.empty(2) result_val_l_prod_kg_red = pd.np.empty(2) result_val_g_prod_kg_red = pd.np.empty(2) result_val_delta_redox = pd.np.empty(2) result_val_mass_change = pd.np.empty(2) for rd in resdict: chemical_energy = rd["Chemical Energy"] energy_sensible = rd["Sensible Energy"] t_ox = rd["T_ox"] t_red = rd["T_red"] t_mean = (t_ox + t_red) / 2 delta_1 = rd["delta_1"] delta_2 = rd["delta_2"] g_prod_kg_red = rd["g_prod_kg_red"] l_prod_kg_red = rd["l_prod_kg_red"] mass_redox_i = rd["mass_redox"] mol_mass_ox = rd["mol_mass_ox"] mol_prod_mol_red = rd["mol_prod_mol_red"] p_ox = rd["p_ox"] p_red = rd["p_red"] compstr = rd["compstr"] prodstr = rd["prodstr"] prodstr_alt = rd["prodstr_alt"] unstable = rd["unstable"] # chemical energy stored in products if self.process == "Water Splitting": dh_wscs = EnergyAnalysis().dhf_h2o(t_mean) * mol_prod_mol_red elif self.process == "CO2 Splitting": dh_wscs = EnergyAnalysis().dh_co_co2(t_mean) * mol_prod_mol_red else: dh_wscs = 0 energy_integral_dh = chemical_energy - ((chemical_energy + dh_wscs) * h_rec) if len(resdict) < 50: # for experimental data: convert J/mol to kJ/mol energy_integral_dh = energy_integral_dh / 1000 # wscs does not matter, as no water splitting / co2 splitting is considered for exp data # pumping energy if pump_ener != -1: energy_pumping = (float(pump_ener) * mol_mass_ox) / 1000 else: # using mechanical envelope # per mol O energy_pumping = EnergyAnalysis().mechanical_envelope(p_red=p_red) # per mol material energy_pumping = energy_pumping * mol_prod_mol_red # steam generation if self.process == "Water Splitting" and h_rec_steam != 1: energy_steam = mol_prod_mol_red * EnergyAnalysis().energy_steam_generation( temp_1=w_feed, temp_2=((t_ox + t_red) * 0.5) - 273.15, h_2_h2o=p_ox_wscs, celsius=celsius, h_rec=h_rec_steam, ) else: energy_steam = 0 # total energy energy_total = ( energy_integral_dh + energy_sensible * (1 - h_rec) + energy_pumping + energy_steam ) ener_i = pd.np.array( [ energy_total, energy_integral_dh, energy_sensible * (1 - h_rec), energy_pumping, energy_steam, ] ) # kJ/kg of redox material per_kg_redox = (ener_i / mol_mass_ox) * 1000 # Wh/kg of redox material per_kg_wh_redox = per_kg_redox / 3.6 # kJ/mol of product (O, H2, or CO) kj_mol_prod = ener_i / (delta_2 - delta_1) # kJ/L of product (ideal gas at SATP) energy_l = kj_mol_prod / 24.465 # convert from O to O2 if self.process == "Air Separation": energy_l = 2 * energy_l # Wh/L of product (ideal gas at SATP) energy_l_wh = energy_l / 3.6 # calculate efficiency for water splitting if self.process == "Water Splitting": # source for heating values # https://h2tools.org/node/3131 if h_val == "low": h_v = 119.96 elif h_val == "high": h_v = 141.88 else: raise ValueError("heating_value must be either 'high' or 'low'") # convert kJ/mol H2 to MJ/kg H2 -> divide by 2.016 efficiency = (h_v / (kj_mol_prod[0] / 2.016)) * 100 else: efficiency = float("-inf") delta_redox_i = float(delta_2 - delta_1) mass_change_i = float(mass_redox_i) compdisp = remove_comp_one(compstr=compstr) invalid_val = False # remove data of unstable compounds if rem_unstable and unstable: invalid_val = True # append new values to result and add compositions if ( ener_i[0] < 0 ) or invalid_val: # sort out negative values, heat input is always positive ener_i[0] = float("inf") res_i = pd.np.append(ener_i, compdisp) result_val_ener_i = pd.np.vstack((result_val_ener_i, res_i)) if per_kg_redox[0] < 0 or invalid_val: per_kg_redox[0] = float("inf") res_i = pd.np.append(per_kg_redox, compdisp) result_val_per_kg_redox = pd.np.vstack((result_val_per_kg_redox, res_i)) if per_kg_wh_redox[0] < 0 or invalid_val: per_kg_wh_redox[0] = float("inf") res_i = pd.np.append(per_kg_wh_redox, compdisp) result_val_per_kg_wh_redox = pd.np.vstack( (result_val_per_kg_wh_redox, res_i) ) if kj_mol_prod[0] < 0 or invalid_val: kj_mol_prod[0] = float("inf") res_i = pd.np.append(kj_mol_prod, compdisp) result_val_per_kj_mol_prod = pd.np.vstack( (result_val_per_kj_mol_prod, res_i) ) if energy_l[0] < 0 or invalid_val: energy_l[0] = float("inf") res_i = pd.np.append(energy_l, compdisp) result_val_per_energy_l = pd.np.vstack((result_val_per_energy_l, res_i)) if energy_l_wh[0] < 0 or invalid_val: energy_l_wh[0] = float("inf") res_i = pd.np.append(energy_l_wh, compdisp) result_val_per_energy_l_wh = pd.np.vstack( (result_val_per_energy_l_wh, res_i) ) if efficiency < 0 or invalid_val: efficiency = float("-inf") res_i = pd.np.append(efficiency, compdisp) result_val_efficiency = pd.np.vstack((result_val_efficiency, res_i)) if mol_prod_mol_red < 0 or invalid_val: mol_prod_mol_red = float("-inf") res_i = pd.np.append(mol_prod_mol_red, compdisp) result_val_mol_prod_mol_red = pd.np.vstack( (result_val_mol_prod_mol_red, res_i) ) if l_prod_kg_red < 0 or invalid_val: l_prod_kg_red = float("-inf") res_i = pd.np.append(l_prod_kg_red, compdisp) result_val_l_prod_kg_red = pd.np.vstack((result_val_l_prod_kg_red, res_i)) if g_prod_kg_red < 0 or invalid_val: g_prod_kg_red = float("-inf") res_i = pd.np.append(g_prod_kg_red, compdisp) result_val_g_prod_kg_red = pd.np.vstack((result_val_g_prod_kg_red, res_i)) if delta_redox_i < 0 or invalid_val: delta_redox_i = float("-inf") res_i = pd.np.append(delta_redox_i, compdisp) result_val_delta_redox = pd.np.vstack((result_val_delta_redox, res_i)) if mass_change_i < 0 or invalid_val: mass_change_i = float("-inf") res_i = pd.np.append(mass_change_i, compdisp) result_val_mass_change = pd.np.vstack((result_val_mass_change, res_i)) # sort results result_val_ener_i = sorted(result_val_ener_i[1:], key=lambda x: float(x[0])) result_val_per_kg_redox = sorted( result_val_per_kg_redox[1:], key=lambda x: float(x[0]) ) result_val_per_kg_wh_redox = sorted( result_val_per_kg_wh_redox[1:], key=lambda x: float(x[0]) ) result_val_per_kj_mol_prod = sorted( result_val_per_kj_mol_prod[1:], key=lambda x: float(x[0]) ) result_val_per_energy_l = sorted( result_val_per_energy_l[1:], key=lambda x: float(x[0]) ) result_val_per_energy_l_wh = sorted( result_val_per_energy_l_wh[1:], key=lambda x: float(x[0]) ) if self.process == "Water Splitting": result_val_efficiency = sorted( result_val_efficiency[1:], key=lambda x: float(x[0]), reverse=True ) else: result_val_efficiency = result_val_efficiency[1:] result_val_mol_prod_mol_red = sorted( result_val_mol_prod_mol_red[1:], key=lambda x: float(x[0]), reverse=True ) result_val_l_prod_kg_red = sorted( result_val_l_prod_kg_red[1:], key=lambda x: float(x[0]), reverse=True ) result_val_g_prod_kg_red = sorted( result_val_g_prod_kg_red[1:], key=lambda x: float(x[0]), reverse=True ) result_val_delta_redox = sorted( result_val_delta_redox[1:], key=lambda x: float(x[0]), reverse=True ) result_val_mass_change = sorted( result_val_mass_change[1:], key=lambda x: float(x[0]), reverse=True ) # create dictionary with results dict_result = { "kJ/mol redox material": result_val_ener_i, "kJ/kg redox material": result_val_per_kg_redox, "Wh/kg redox material": result_val_per_kg_wh_redox, str("kJ/mol of " + prodstr_alt): result_val_per_kj_mol_prod, str("kJ/L of " + prodstr): result_val_per_energy_l, str("Wh/L of " + prodstr): result_val_per_energy_l_wh, "Heat to fuel efficiency in % (only valid for Water Splitting)": result_val_efficiency, str( "mol " + prodstr_alt + " per mol redox material" ): result_val_mol_prod_mol_red, str("L " + prodstr + " per mol redox material"): result_val_l_prod_kg_red, str("g " + prodstr + " per mol redox material"): result_val_g_prod_kg_red, "Change in non-stoichiometry between T_ox and T_red": result_val_delta_redox, "Mass change between T_ox and T_red": result_val_mass_change, } return dict_result class EnergyAnalysisView(SwaggerView): resource = ContributionsResource def get(self): """Retrieve RedoxThermoCSP Energy Analysis data. --- operationId: get_redox_thermo_csp_energy parameters: - name: data_source in: query type: string default: Theoretical description: data source - name: process_type in: query type: string default: Air Separation description: process type - name: t_ox in: query type: number default: 350 description: oxidation temperature (°C) - name: t_red in: query type: number default: 600 description: reduction temperature (°C) - name: p_ox in: query type: string default: 1e-20 description: oxidation pressure (bar) - name: p_red in: query type: string default: 1e-08 description: reduction pressure (bar) - name: h_rec in: query type: number default: 0.6 description: heat recovery efficiency - name: mech_env in: query type: boolean default: True description: use mechanical envelope - name: cutoff in: query type: number default: 25 description: max number of materials - name: pump_ener in: query type: number default: 0 description: pumping energy (kJ/kg) - name: w_feed in: query type: number default: 200 description: water feed temperature (°C) - name: steam_h_rec in: query type: number default: 0.8 description: steam heat recovery - name: param_disp in: query type: string default: kJ/L of product description: parameter display responses: 200: description: Energy Analysis data as defined by contributor schema: type: array items: type: object """ # generate database ID data_source = "Theo" if request.args["data_source"] == "Theoretical" else "Exp" process = request.args["process_type"] if process == "Air Separation": db_id = "AS_" elif process == "Water Splitting": db_id = "WS_" else: db_id = "CS_" suffix = db_id + request.args["t_ox"] db_id += ( "{:.1f}_{:.1f}_{}_{}".format( *[ float(request.args.get(k)) for k in ["t_ox", "t_red", "p_ox", "p_red"] ] ) + f"_{data_source}_20.0" ) resdict = [] proj = {"data.$": 1, "columns": 1, "contribution": 1} for a in ["stable", "unstable"]: for b in ["O2-O", "H2-H2", "CO-CO"]: name = f"energy-analysis_{a}_{b}_{suffix}" objects = Tables.objects.filter( name=name, data__match={"0": db_id} ).fields(**proj) for obj in objects: keys = obj["columns"][1:] values = map(float, obj["data"][0][1:]) dct = dict(zip(keys, values)) dct["prodstr"], dct["prodstr_alt"] = b.split("-") dct["unstable"] = bool(a == "unstable") dct["tid"] = obj["id"] dct["cid"] = str(obj.contribution.id) dct["compstr"] = obj.contribution.data["formula"] resdict.append(dct) response = [ {"x": None, "y": None, "name": None, "type": "bar"} for i in range(4) ] try: # calculate specific results on the fly # pump_ener = float(payload['pump_ener'].split("/")[0]) pump_energy = float(request.args["pump_ener"]) mech_env = request.args["mech_env"] if ( mech_env == "true" or mech_env == "True" or (isinstance(mech_env, bool) and mech_env) ): pump_ener = -1 results = EnergyAnalysis(process=process).on_the_fly( resdict=resdict, pump_ener=pump_ener, w_feed=float(request.args["w_feed"]), h_rec=float(request.args["h_rec"]), h_rec_steam=float(request.args["steam_h_rec"]), p_ox_wscs=float(request.args["p_ox"]), ) prodstr = resdict[0]["prodstr"] prodstr_alt = resdict[0]["prodstr_alt"] param_disp = request.args["param_disp"] if param_disp == "kJ/mol of product": param_disp = str("kJ/mol of " + prodstr_alt) elif param_disp == "kJ/L of product": param_disp = str("kJ/L of " + prodstr) elif param_disp == "Wh/L of product": param_disp = str("Wh/L of " + prodstr) elif param_disp == "mol product per mol redox material": param_disp = str("mol " + prodstr_alt + " per mol redox material") elif param_disp == "L product per mol redox material": param_disp = str("L " + prodstr + " per mol redox material") elif param_disp == "g product per mol redox material": param_disp = str("g " + prodstr + " per mol redox material") result = results[param_disp] commonname = ( param_disp + ", \nT(ox)= " + request.args["t_ox"] + " °C, T(red) = " + request.args["t_red"] ) if request.args["process_type"] == "Air Separation": titlestr = ( commonname + " °C, p(ox)= " + request.args["p_ox"] + " bar, p(red) = " + request.args["p_red"] + " bar" ) elif request.args["process_type"] == "CO2 Splitting": titlestr = ( commonname + " °C, pCO/pCO2(ox)= " + request.args["p_ox"] + ", p(red) = " + request.args["p_red"] + " bar" ) else: # Water Splitting titlestr = ( commonname + " °C, pH2/pH2O(ox)= " + request.args["p_ox"] + ", p(red) = " + request.args["p_red"] + " bar" ) # remove duplicates (if any) rem_pos = -1 for elem in range(len(result)): if elem > 0 and (result[elem][-1] == result[elem - 1][-1]): to_remove = result[elem] rem_pos = elem if rem_pos > -1: result = [i for i in result if str(i) != str(to_remove)] result.insert(rem_pos - 1, to_remove) result = [ i for i in result if "inf" not in str(i[0]) ] # this removes all inf values cutoff = int( request.args["cutoff"] ) # this sets the number of materials to display in the graph result_part = result[:cutoff] if cutoff < len(result) else result if ( len(result_part[0]) == 2 ): # output if only one y-value per material is displayed response[0]["x"] = [i[-1] for i in result_part] response[0]["y"] = ( pd.np.array([i[0] for i in result_part]).astype(float).tolist() ) response[0]["name"] = param_disp if "non-stoichiometry" in param_disp: response[0]["name"] = ( name_0.split("between")[0] + " (Δδ)" ) # otherwise would be too long for y-axis label if "Mass change" in param_disp: response[0]["name"] = "mass change (%)" if "Heat to fuel efficiency" in param_disp: response[0]["name"] = "Heat to fuel efficiency (%)" else: # display multiple values (such as chemical energy, sensible energy, ...) response[0]["x"] = [i[-1] for i in result_part] response[0]["y"] = ( pd.np.array([i[1] for i in result_part]).astype(float).tolist() ) response[0]["name"] = "Chemical Energy" response[1]["x"] = [i[-1] for i in result_part] response[1]["y"] = ( pd.np.array([i[2] for i in result_part]).astype(float).tolist() ) response[1]["name"] = "Sensible Energy" response[2]["x"] = [i[-1] for i in result_part] response[2]["y"] = ( pd.np.array([i[3] for i in result_part]).astype(float).tolist() ) response[2]["name"] = "Pumping Energy" if request.args["process_type"] == "Water Splitting": response[3]["x"] = [i[-1] for i in result_part] response[3]["y"] = ( pd.np.array([i[4] for i in result_part]).astype(float).tolist() ) response[3]["name"] = "Steam Generation" response[0].update({"title": titlestr, "yaxis_title": param_disp}) except IndexError: # if the complete dict only shows inf, create empty graph pass return {"data": response} # TODO these views do not check group permissions! isograph_view = IsographView.as_view(IsographView.__name__) energy_analysis_view = EnergyAnalysisView.as_view(EnergyAnalysisView.__name__) redox_thermo_csp.add_url_rule( "/energy/", view_func=energy_analysis_view, methods=["GET"] ) redox_thermo_csp.add_url_rule( "/<string:cid>/<string:plot_type>", view_func=isograph_view, methods=["GET"] )
mit
jennifersalas/3D_CA
animation.py
1
2814
""" Copyright (C) 2018 Jennifer Salas This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import numpy import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation import standardFuncs import defaultValues def showPaths(planes): maxlength = len(max(planes, key=len)) minlength = len(min(planes, key=len)) sgrid = defaultValues.GRID_SIZE loc = defaultValues.OUR_LOCATION agrid = standardFuncs.generateGrid(sgrid[0] + 300 , sgrid[1] + 300, loc) lLat = agrid[0][0] uLat = agrid[0][1] lLon = agrid[1][0] uLon = agrid[1][1] fig = plt.figure() ax = p3.Axes3D(fig) planePlots = [plt.plot([], [], "bo")[0] for _ in range(len(planes))] aLat = int((uLat - lLat) * standardFuncs.LATITUDE_TO_METERS) // 2 aLon = int((uLon - lLon) * standardFuncs.LONGITUDE_TO_METERS) // 2 # plt.xticks([lLat, uLat], ["West\n%im" % -aLat, "East\n%im" % aLat]) ax.set_xlim3d([lLat, uLat]) ax.set_xlabel('Latitude') # plt.yticks([lLon, uLon], ["South\n%im\n" % -aLon, "North\n%im\n" % aLon], # rotation=90) ax.set_ylim3d([lLon, uLon]) ax.set_ylabel('Longitude') ax.set_zlim3d([0, 20]) ax.set_zlabel('Altitude') ax.set_title("Three Dimensional Collision Avoidance") # fig.subplots_adjust(bottom=.15) def init(): for planeP in planePlots: planeP.set_data([],[]) return lines for plane in planes: while len(plane) < maxlength: plane.append(plane[-1]) def animate(i): for j,planePlot in enumerate(planePlots): planePlot.set_data(i[j]["Latitude"],i[j]["Longitude"]) planePlot.set_marker((3,0,i[j]["bearing"])) planePlot.set_markerfacecolor('r' if i[j]["dead"] else 'y' if i[j]["wpflag"] else 'b') planePlot.set_3d_properties(((i[j]["Altitude"]-375) / 50) * 20) return planePlots planeMat = numpy.array(planes).T print(planeMat.shape) ani = animation.FuncAnimation(fig, animate, planeMat, interval = 25, blit = True) plt.show() if '__main__' == __name__: showPaths(defaultValues.samplepath)
agpl-3.0
sketchytechky/zipline
zipline/data/ffc/loaders/us_equity_pricing.py
5
22123
# Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ( ABCMeta, abstractmethod, ) from contextlib import contextmanager from errno import ENOENT from os import remove from os.path import exists from bcolz import ( carray, ctable, ) from click import progressbar from numpy import ( array, float64, floating, full, iinfo, integer, issubdtype, uint32, ) from pandas import ( DatetimeIndex, read_csv, Timestamp, ) from six import ( iteritems, string_types, with_metaclass, ) import sqlite3 from zipline.data.ffc.base import FFCLoader from zipline.data.ffc.loaders._equities import ( _compute_row_slices, _read_bcolz_data, ) from zipline.data.ffc.loaders._adjustments import load_adjustments_from_sqlite from zipline.lib.adjusted_array import ( adjusted_array, ) from zipline.errors import NoFurtherDataError OHLC = frozenset(['open', 'high', 'low', 'close']) US_EQUITY_PRICING_BCOLZ_COLUMNS = [ 'open', 'high', 'low', 'close', 'volume', 'day', 'id' ] DAILY_US_EQUITY_PRICING_DEFAULT_FILENAME = 'daily_us_equity_pricing.bcolz' SQLITE_ADJUSTMENT_COLUMNS = frozenset(['effective_date', 'ratio', 'sid']) SQLITE_ADJUSTMENT_COLUMN_DTYPES = { 'effective_date': integer, 'ratio': floating, 'sid': integer, } SQLITE_ADJUSTMENT_TABLENAMES = frozenset(['splits', 'dividends', 'mergers']) UINT32_MAX = iinfo(uint32).max @contextmanager def passthrough(obj): yield obj class BcolzDailyBarWriter(with_metaclass(ABCMeta)): """ Class capable of writing daily OHLCV data to disk in a format that can be read efficiently by BcolzDailyOHLCVReader. See Also -------- BcolzDailyBarReader : Consumer of the data written by this class. """ @abstractmethod def gen_tables(self, assets): """ Return an iterator of pairs of (asset_id, bcolz.ctable). """ raise NotImplementedError() @abstractmethod def to_uint32(self, array, colname): """ Convert raw column values produced by gen_tables into uint32 values. Parameters ---------- array : np.array An array of raw values. colname : str, {'open', 'high', 'low', 'close', 'volume', 'day'} The name of the column being loaded. For output being read by the default BcolzOHLCVReader, data should be stored in the following manner: - Pricing columns (Open, High, Low, Close) should be stored as 1000 * as-traded dollar value. - Volume should be the as-traded volume. - Dates should be stored as seconds since midnight UTC, Jan 1, 1970. """ raise NotImplementedError() def write(self, filename, calendar, assets, show_progress=False): """ Parameters ---------- filename : str The location at which we should write our output. calendar : pandas.DatetimeIndex Calendar to use to compute asset calendar offsets. assets : pandas.Int64Index The assets for which to write data. show_progress : bool Whether or not to show a progress bar while writing. Returns ------- table : bcolz.ctable The newly-written table. """ _iterator = self.gen_tables(assets) if show_progress: pbar = progressbar( _iterator, length=len(assets), item_show_func=lambda i: i if i is None else str(i[0]), label="Merging asset files:", ) with pbar as pbar_iterator: return self._write_internal(filename, calendar, pbar_iterator) return self._write_internal(filename, calendar, _iterator) def _write_internal(self, filename, calendar, iterator): """ Internal implementation of write. `iterator` should be an iterator yielding pairs of (asset, ctable). """ total_rows = 0 first_row = {} last_row = {} calendar_offset = {} # Maps column name -> output carray. columns = { k: carray(array([], dtype=uint32)) for k in US_EQUITY_PRICING_BCOLZ_COLUMNS } for asset_id, table in iterator: nrows = len(table) for column_name in columns: if column_name == 'id': # We know what the content of this column is, so don't # bother reading it. columns['id'].append(full((nrows,), asset_id)) continue columns[column_name].append( self.to_uint32(table[column_name][:], column_name) ) # Bcolz doesn't support ints as keys in `attrs`, so convert # assets to strings for use as attr keys. asset_key = str(asset_id) # Calculate the index into the array of the first and last row # for this asset. This allows us to efficiently load single # assets when querying the data back out of the table. first_row[asset_key] = total_rows last_row[asset_key] = total_rows + nrows - 1 total_rows += nrows # Calculate the number of trading days between the first date # in the stored data and the first date of **this** asset. This # offset used for output alignment by the reader. # HACK: Index with a list so that we get back an array we can pass # to self.to_uint32. We could try to extract this in the loop # above, but that makes the logic a lot messier. asset_first_day = self.to_uint32(table['day'][[0]], 'day')[0] calendar_offset[asset_key] = calendar.get_loc( Timestamp(asset_first_day, unit='s', tz='UTC'), ) # This writes the table to disk. full_table = ctable( columns=[ columns[colname] for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS ], names=US_EQUITY_PRICING_BCOLZ_COLUMNS, rootdir=filename, mode='w', ) full_table.attrs['first_row'] = first_row full_table.attrs['last_row'] = last_row full_table.attrs['calendar_offset'] = calendar_offset full_table.attrs['calendar'] = calendar.asi8.tolist() return full_table class DailyBarWriterFromCSVs(BcolzDailyBarWriter): """ BcolzDailyBarWriter constructed from a map from csvs to assets. Parameters ---------- asset_map : dict A map from asset_id -> path to csv with data for that asset. CSVs should have the following columns: day : datetime64 open : float64 high : float64 low : float64 close : float64 volume : int64 """ _csv_dtypes = { 'open': float64, 'high': float64, 'low': float64, 'close': float64, 'volume': float64, } def __init__(self, asset_map): self._asset_map = asset_map def gen_tables(self, assets): """ Read CSVs as DataFrames from our asset map. """ dtypes = self._csv_dtypes for asset in assets: path = self._asset_map.get(asset) if path is None: raise KeyError("No path supplied for asset %s" % asset) data = read_csv(path, parse_dates=['day'], dtype=dtypes) yield asset, ctable.fromdataframe(data) def to_uint32(self, array, colname): arrmax = array.max() if colname in OHLC: self.check_uint_safe(arrmax * 1000, colname) return (array * 1000).astype(uint32) elif colname == 'volume': self.check_uint_safe(arrmax, colname) return array.astype(uint32) elif colname == 'day': nanos_per_second = (1000 * 1000 * 1000) self.check_uint_safe(arrmax.view(int) / nanos_per_second, colname) return (array.view(int) / nanos_per_second).astype(uint32) @staticmethod def check_uint_safe(value, colname): if value >= UINT32_MAX: raise ValueError( "Value %s from column '%s' is too large" % (value, colname) ) class BcolzDailyBarReader(object): """ Reader for raw pricing data written by BcolzDailyOHLCVWriter. A Bcolz CTable is comprised of Columns and Attributes. Columns ------- The table with which this loader interacts contains the following columns: ['open', 'high', 'low', 'close', 'volume', 'day', 'id']. The data in these columns is interpreted as follows: - Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * as-traded dollar value. - Volume is interpreted as as-traded volume. - Day is interpreted as seconds since midnight UTC, Jan 1, 1970. - Id is the asset id of the row. The data in each column is grouped by asset and then sorted by day within each asset block. The table is built to represent a long time range of data, e.g. ten years of equity data, so the lengths of each asset block is not equal to each other. The blocks are clipped to the known start and end date of each asset to cut down on the number of empty values that would need to be included to make a regular/cubic dataset. When read across the open, high, low, close, and volume with the same index should represent the same asset and day. Attributes ---------- The table with which this loader interacts contains the following attributes: first_row : dict Map from asset_id -> index of first row in the dataset with that id. last_row : dict Map from asset_id -> index of last row in the dataset with that id. calendar_offset : dict Map from asset_id -> calendar index of first row. calendar : list[int64] Calendar used to compute offsets, in asi8 format (ns since EPOCH). We use first_row and last_row together to quickly find ranges of rows to load when reading an asset's data into memory. We use calendar_offset and calendar to orient loaded blocks within a range of queried dates. """ def __init__(self, table): if isinstance(table, string_types): table = ctable(rootdir=table, mode='r') self._table = table self._calendar = DatetimeIndex(table.attrs['calendar'], tz='UTC') self._first_rows = { int(asset_id): start_index for asset_id, start_index in iteritems(table.attrs['first_row']) } self._last_rows = { int(asset_id): end_index for asset_id, end_index in iteritems(table.attrs['last_row']) } self._calendar_offsets = { int(id_): offset for id_, offset in iteritems(table.attrs['calendar_offset']) } def _compute_slices(self, start_idx, end_idx, assets): """ Compute the raw row indices to load for each asset on a query for the given dates after applying a shift. Parameters ---------- start_idx : int Index of first date for which we want data. end_idx : int Index of last date for which we want data. assets : pandas.Int64Index Assets for which we want to compute row indices Returns ------- A 3-tuple of (first_rows, last_rows, offsets): first_rows : np.array[intp] Array with length == len(assets) containing the index of the first row to load for each asset in `assets`. last_rows : np.array[intp] Array with length == len(assets) containing the index of the last row to load for each asset in `assets`. offset : np.array[intp] Array with length == (len(asset) containing the index in a buffer of length `dates` corresponding to the first row of each asset. The value of offset[i] will be 0 if asset[i] existed at the start of a query. Otherwise, offset[i] will be equal to the number of entries in `dates` for which the asset did not yet exist. """ # The core implementation of the logic here is implemented in Cython # for efficiency. return _compute_row_slices( self._first_rows, self._last_rows, self._calendar_offsets, start_idx, end_idx, assets, ) def load_raw_arrays(self, columns, start_date, end_date, assets): # Assumes that the given dates are actually in calendar. start_idx = self._calendar.get_loc(start_date) end_idx = self._calendar.get_loc(end_date) first_rows, last_rows, offsets = self._compute_slices( start_idx, end_idx, assets, ) return _read_bcolz_data( self._table, (end_idx - start_idx + 1, len(assets)), [column.name for column in columns], first_rows, last_rows, offsets, ) class SQLiteAdjustmentWriter(object): """ Writer for data to be read by SQLiteAdjustmentWriter Parameters ---------- conn_or_path : str or sqlite3.Connection A handle to the target sqlite database. overwrite : bool, optional, default=False If True and conn_or_path is a string, remove any existing files at the given path before connecting. See Also -------- SQLiteAdjustmentReader """ def __init__(self, conn_or_path, overwrite=False): if isinstance(conn_or_path, sqlite3.Connection): self.conn = conn_or_path elif isinstance(conn_or_path, str): if overwrite and exists(conn_or_path): try: remove(conn_or_path) except OSError as e: if e.errno != ENOENT: raise self.conn = sqlite3.connect(conn_or_path) else: raise TypeError("Unknown connection type %s" % type(conn_or_path)) def write_frame(self, tablename, frame): if frozenset(frame.columns) != SQLITE_ADJUSTMENT_COLUMNS: raise ValueError( "Unexpected frame columns:\n" "Expected Columns: %s\n" "Received Columns: %s" % ( SQLITE_ADJUSTMENT_COLUMNS, frame.columns.tolist(), ) ) elif tablename not in SQLITE_ADJUSTMENT_TABLENAMES: raise ValueError( "Adjustment table %s not in %s" % ( tablename, SQLITE_ADJUSTMENT_TABLENAMES ) ) expected_dtypes = SQLITE_ADJUSTMENT_COLUMN_DTYPES actual_dtypes = frame.dtypes for colname, expected in iteritems(expected_dtypes): actual = actual_dtypes[colname] if not issubdtype(actual, expected): raise TypeError( "Expected data of type {expected} for column '{colname}', " "but got {actual}.".format( expected=expected, colname=colname, actual=actual, ) ) return frame.to_sql(tablename, self.conn) def write(self, splits, mergers, dividends): """ Writes data to a SQLite file to be read by SQLiteAdjustmentReader. Parameters ---------- splits : pandas.DataFrame Dataframe containing split data. mergers : pandas.DataFrame DataFrame containing merger data. dividends : pandas.DataFrame DataFrame containing dividend data. Notes ----- DataFrame input (`splits`, `mergers`, and `dividends`) should all have the following columns: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. sid : int The asset id associated with this adjustment. The ratio column is interpreted as follows: - For all adjustment types, multiply price fields ('open', 'high', 'low', and 'close') by the ratio. - For **splits only**, **divide** volume by the adjustment ratio. Dividend ratios should be calculated as 1.0 - (dividend_value / "close on day prior to dividend ex_date"). Returns ------- None See Also -------- SQLiteAdjustmentReader : Consumer for the data written by this class """ self.write_frame('splits', splits) self.write_frame('mergers', mergers) self.write_frame('dividends', dividends) self.conn.execute( "CREATE INDEX splits_sids " "ON splits(sid)" ) self.conn.execute( "CREATE INDEX splits_effective_date " "ON splits(effective_date)" ) self.conn.execute( "CREATE INDEX mergers_sids " "ON mergers(sid)" ) self.conn.execute( "CREATE INDEX mergers_effective_date " "ON mergers(effective_date)" ) self.conn.execute( "CREATE INDEX dividends_sid " "ON dividends(sid)" ) self.conn.execute( "CREATE INDEX dividends_effective_date " "ON dividends(effective_date)" ) def close(self): self.conn.close() class SQLiteAdjustmentReader(object): """ Loads adjustments based on corporate actions from a SQLite database. Expects data written in the format output by `SQLiteAdjustmentWriter`. Parameters ---------- conn : str or sqlite3.Connection Connection from which to load data. """ def __init__(self, conn): if isinstance(conn, str): conn = sqlite3.connect(conn) self.conn = conn def load_adjustments(self, columns, dates, assets): return load_adjustments_from_sqlite( self.conn, [column.name for column in columns], dates, assets, ) class USEquityPricingLoader(FFCLoader): """ FFCLoader for US Equity Pricing Delegates loading of baselines and adjustments. """ def __init__(self, raw_price_loader, adjustments_loader): self.raw_price_loader = raw_price_loader # HACK: Pull the calendar off our raw_price_loader so that we can # backshift dates. self._calendar = self.raw_price_loader._calendar self.adjustments_loader = adjustments_loader def load_adjusted_array(self, columns, dates, assets, mask): # load_adjusted_array is called with dates on which the user's algo # will be shown data, which means we need to return the data that would # be known at the start of each date. We assume that the latest data # known on day N is the data from day (N - 1), so we shift all query # dates back by a day. start_date, end_date = _shift_dates( self._calendar, dates[0], dates[-1], shift=1, ) raw_arrays = self.raw_price_loader.load_raw_arrays( columns, start_date, end_date, assets, ) adjustments = self.adjustments_loader.load_adjustments( columns, dates, assets, ) return [ adjusted_array(raw_array, mask, col_adjustments) for raw_array, col_adjustments in zip(raw_arrays, adjustments) ] def _shift_dates(dates, start_date, end_date, shift): try: start = dates.get_loc(start_date) except KeyError: if start_date < dates[0]: raise NoFurtherDataError( msg=( "Modeling Query requested data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(dates[0]), ) ) else: raise ValueError("Query start %s not in calendar" % start_date) # Make sure that shifting doesn't push us out of the calendar. if start < shift: raise NoFurtherDataError( msg=( "Modeling Query requested data from {shift}" " days before {query_start}, but first known date is only " "{start} days earlier." ).format(shift=shift, query_start=start_date, start=start), ) try: end = dates.get_loc(end_date) except KeyError: if end_date > dates[-1]: raise NoFurtherDataError( msg=( "Modeling Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=dates[-1], ) ) else: raise ValueError("Query end %s not in calendar" % end_date) return dates[start - shift], dates[end - shift]
apache-2.0