Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2020 /finals /tree_training.cpp
wjomlex's picture
2020 Problems
f96d8dd verified
raw
history blame
4.77 kB
// Tree Training
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x) {
char c, r = 0, n = 0;
x = 0;
for (;;) {
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define MOD 1000000007
#define LIM 1000005
#define LOG 20
int N, M;
char S[LIM];
int Z[LIM];
int DS[LIM];
int TreeCnt(int h) // # of nodes in binary tree with height h
{
return((1 << (h + 1)) - 1);
}
// E(z, s, h) = max. *s which can fit alongside z 0s (with s *s before the 1st 0) in a tree of height at most h (only relevant for z > 0)
int E(int z, int s, int h)
{
if (h >= LOG)
return(N);
int left = min(s, h + 1 - z); // *s at root and along leftmost branch
int cnt = TreeCnt(h); // full tree
cnt -= TreeCnt(h - left); // subtract subtree of 1st 0
if (cnt >= s)
cnt += TreeCnt(h - left - 1); // add back right subtree of 1st 0
return(cnt);
}
// F(p, z, s) = min. tree height for p *s, z 0s, and s *s before 1st 0 (s ignored if z = 0)
int F(int p, int z, int s)
{
int r1 = z ? (s > 0 ? z : z - 1) : 0;
int r2 = max(r1, min(LOG, p + z - 1));
while (r1 < r2)
{
int m = (r1 + r2) >> 1;
if ((z ? E(z, s, m) : TreeCnt(m)) >= p)
r2 = m;
else
r1 = m + 1;
}
return(r1);
}
int ProcessCase()
{
int i, j, z;
// input
scanf("%s", &S);
N = strlen(S);
// find 0s
M = 0;
Z[M++] = -1;
Fox(i, N)
if (S[i] == '0')
Z[M++] = i;
Z[M++] = N;
// A) z = 0
int ans = 0;
int v = 0, s = 0;
Fill(DS, 0);
Fox1(i, M - 1)
{
int x = Z[i] - Z[i - 1] - 1; // sequence of x *s before ith 0
v += x;
DS[2]--, DS[x + 2]++;
}
Fox1(i, N)
{
s += DS[i];
v += s;
ans = (ans + (LL)v * F(i, 0, 0)) % MOD;
}
// B) 1 <= z <= LOG
Fox1(z, LOG) // z 0s
{
Fox1(i, M - z - 1) // ith 0 as the leftmost 0
{
int j = i + z - 1;
int c1 = Z[i] - Z[i - 1] - 1; // c1 *s to the left
int c2 = Z[j + 1] - Z[j] - 1; // c2 *s to the right
int m = Z[j] - Z[i] + 1 - z; // m *s in between
Fox(s, c1 + 1) // use s *s to the left
{
int p = s + m, mp = s + m + c2;
int h = F(p, z, s);
while (p <= mp)
{
int p2 = min(mp, E(z, s, h));
ans = (ans + (LL)(p2 - p + 1) * h) % MOD;
p = p2 + 1, h++;
}
}
}
}
// C) z > LOG
Fox1(i, M - 2) // count contribution of the ith 0
{
// add # of intervals containing it
ans = (ans + (LL)(Z[i] + 1) * (N - Z[i])) % MOD;
// subtract # of intervals containing it, with <= LOG 0s
FoxI(j, max(1, i - LOG + 1), i) // jth 0 as the leftmost 0
{
int k = min(M - 1, j + LOG); // first disallowed 0
int c = (LL)(Z[j] - Z[j - 1]) * (Z[k] - Z[i]) % MOD;
ans = (ans + MOD - c) % MOD;
}
// subtract # of intervals starting with it, with > LOG 0s
int j = i + LOG;
if (j < M)
ans = (ans + MOD - (N - Z[j])) % MOD;
}
return(ans);
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
printf("Case #%d: %d\n", t, ProcessCase());
return(0);
}