|
|
|
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <bitset>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
#define LL long long
|
|
#define LD long double
|
|
#define PR pair<int,int>
|
|
|
|
#define Fox(i,n) for (i=0; i<n; i++)
|
|
#define Fox1(i,n) for (i=1; i<=n; i++)
|
|
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
|
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
|
#define FoxR1(i,n) for (i=n; i>0; i--)
|
|
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
|
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
|
#define Min(a,b) a=min(a,b)
|
|
#define Max(a,b) a=max(a,b)
|
|
#define Sz(s) int((s).size())
|
|
#define All(s) (s).begin(),(s).end()
|
|
#define Fill(s,v) memset(s,v,sizeof(s))
|
|
#define pb push_back
|
|
#define mp make_pair
|
|
#define x first
|
|
#define y second
|
|
|
|
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
|
|
template<typename T> T Sqr(T x) { return(x * x); }
|
|
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
|
|
|
|
const int INF = (int)1e9;
|
|
const LD EPS = 1e-12;
|
|
const LD PI = acos(-1.0);
|
|
|
|
#define GETCHAR getchar_unlocked
|
|
|
|
bool Read(int& x) {
|
|
char c, r = 0, n = 0;
|
|
x = 0;
|
|
for (;;) {
|
|
c = GETCHAR();
|
|
if ((c < 0) && (!r))
|
|
return(0);
|
|
if ((c == '-') && (!r))
|
|
n = 1;
|
|
else if ((c >= '0') && (c <= '9'))
|
|
x = x * 10 + c - '0', r = 1;
|
|
else if (r)
|
|
break;
|
|
}
|
|
if (n)
|
|
x = -x;
|
|
return(1);
|
|
}
|
|
|
|
#define MOD 1000000007
|
|
#define LIM 1000005
|
|
#define LOG 20
|
|
|
|
int N, M;
|
|
char S[LIM];
|
|
int Z[LIM];
|
|
int DS[LIM];
|
|
|
|
int TreeCnt(int h)
|
|
{
|
|
return((1 << (h + 1)) - 1);
|
|
}
|
|
|
|
|
|
int E(int z, int s, int h)
|
|
{
|
|
if (h >= LOG)
|
|
return(N);
|
|
int left = min(s, h + 1 - z);
|
|
int cnt = TreeCnt(h);
|
|
cnt -= TreeCnt(h - left);
|
|
if (cnt >= s)
|
|
cnt += TreeCnt(h - left - 1);
|
|
return(cnt);
|
|
}
|
|
|
|
|
|
int F(int p, int z, int s)
|
|
{
|
|
int r1 = z ? (s > 0 ? z : z - 1) : 0;
|
|
int r2 = max(r1, min(LOG, p + z - 1));
|
|
while (r1 < r2)
|
|
{
|
|
int m = (r1 + r2) >> 1;
|
|
if ((z ? E(z, s, m) : TreeCnt(m)) >= p)
|
|
r2 = m;
|
|
else
|
|
r1 = m + 1;
|
|
}
|
|
return(r1);
|
|
}
|
|
|
|
int ProcessCase()
|
|
{
|
|
int i, j, z;
|
|
|
|
scanf("%s", &S);
|
|
N = strlen(S);
|
|
|
|
M = 0;
|
|
Z[M++] = -1;
|
|
Fox(i, N)
|
|
if (S[i] == '0')
|
|
Z[M++] = i;
|
|
Z[M++] = N;
|
|
|
|
int ans = 0;
|
|
int v = 0, s = 0;
|
|
Fill(DS, 0);
|
|
Fox1(i, M - 1)
|
|
{
|
|
int x = Z[i] - Z[i - 1] - 1;
|
|
v += x;
|
|
DS[2]--, DS[x + 2]++;
|
|
}
|
|
Fox1(i, N)
|
|
{
|
|
s += DS[i];
|
|
v += s;
|
|
ans = (ans + (LL)v * F(i, 0, 0)) % MOD;
|
|
}
|
|
|
|
Fox1(z, LOG)
|
|
{
|
|
Fox1(i, M - z - 1)
|
|
{
|
|
int j = i + z - 1;
|
|
int c1 = Z[i] - Z[i - 1] - 1;
|
|
int c2 = Z[j + 1] - Z[j] - 1;
|
|
int m = Z[j] - Z[i] + 1 - z;
|
|
Fox(s, c1 + 1)
|
|
{
|
|
int p = s + m, mp = s + m + c2;
|
|
int h = F(p, z, s);
|
|
while (p <= mp)
|
|
{
|
|
int p2 = min(mp, E(z, s, h));
|
|
ans = (ans + (LL)(p2 - p + 1) * h) % MOD;
|
|
p = p2 + 1, h++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Fox1(i, M - 2)
|
|
{
|
|
|
|
ans = (ans + (LL)(Z[i] + 1) * (N - Z[i])) % MOD;
|
|
|
|
FoxI(j, max(1, i - LOG + 1), i)
|
|
{
|
|
int k = min(M - 1, j + LOG);
|
|
int c = (LL)(Z[j] - Z[j - 1]) * (Z[k] - Z[i]) % MOD;
|
|
ans = (ans + MOD - c) % MOD;
|
|
}
|
|
|
|
int j = i + LOG;
|
|
if (j < M)
|
|
ans = (ans + MOD - (N - Z[j])) % MOD;
|
|
}
|
|
return(ans);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int T, t;
|
|
Read(T);
|
|
Fox1(t, T)
|
|
printf("Case #%d: %d\n", t, ProcessCase());
|
|
return(0);
|
|
} |