Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
wjomlex commited on
Commit
f96d8dd
·
verified ·
1 Parent(s): e329daf

2020 Problems

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. 2020/finals/1094784447639382.jpg +3 -0
  3. 2020/finals/1173260263089522.jpg +3 -0
  4. 2020/finals/127321889008596.jpg +3 -0
  5. 2020/finals/139722534273576.jpg +3 -0
  6. 2020/finals/1583104035206937.jpg +3 -0
  7. 2020/finals/186542789854750.jpg +3 -0
  8. 2020/finals/2008456099296384.jpg +3 -0
  9. 2020/finals/2722961511304050.jpg +3 -0
  10. 2020/finals/2854957798069201.jpg +3 -0
  11. 2020/finals/299743861289784.jpg +3 -0
  12. 2020/finals/3047534892140325.jpg +3 -0
  13. 2020/finals/311416436611683.jpg +3 -0
  14. 2020/finals/3533638723394837.jpg +3 -0
  15. 2020/finals/386528679257402.jpg +3 -0
  16. 2020/finals/408936830244710.jpg +3 -0
  17. 2020/finals/424906348725741.jpg +3 -0
  18. 2020/finals/477696676534167.jpg +3 -0
  19. 2020/finals/493376864970463.jpg +3 -0
  20. 2020/finals/747829032476688.jpg +3 -0
  21. 2020/finals/825086724953069.jpg +3 -0
  22. 2020/finals/862340924576901.jpg +3 -0
  23. 2020/finals/863939674419710.jpg +3 -0
  24. 2020/finals/cake_cutting_committee.cpp +353 -0
  25. 2020/finals/cake_cutting_committee.in +0 -0
  26. 2020/finals/cake_cutting_committee.md +67 -0
  27. 2020/finals/cake_cutting_committee.out +112 -0
  28. 2020/finals/cake_cutting_committee_sol.md +18 -0
  29. 2020/finals/cryptoconference.cpp +158 -0
  30. 2020/finals/cryptoconference.in +3 -0
  31. 2020/finals/cryptoconference.md +41 -0
  32. 2020/finals/cryptoconference.out +110 -0
  33. 2020/finals/cryptoconference_sol.md +9 -0
  34. 2020/finals/pond_precipitation.cpp +178 -0
  35. 2020/finals/pond_precipitation.in +129 -0
  36. 2020/finals/pond_precipitation.md +76 -0
  37. 2020/finals/pond_precipitation.out +64 -0
  38. 2020/finals/pond_precipitation_sol.md +5 -0
  39. 2020/finals/somebody_elses_problem.cpp +152 -0
  40. 2020/finals/somebody_elses_problem.in +3 -0
  41. 2020/finals/somebody_elses_problem.md +44 -0
  42. 2020/finals/somebody_elses_problem.out +109 -0
  43. 2020/finals/somebody_elses_problem_sol.md +18 -0
  44. 2020/finals/spider_spring.cpp +310 -0
  45. 2020/finals/spider_spring.in +1189 -0
  46. 2020/finals/spider_spring.md +104 -0
  47. 2020/finals/spider_spring.out +108 -0
  48. 2020/finals/spider_spring_sol.md +11 -0
  49. 2020/finals/tree_training.cpp +201 -0
  50. 2020/finals/tree_training.in +0 -0
.gitattributes CHANGED
@@ -78,3 +78,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
78
  2019/finals/little_boat_on_the_sea.in filter=lfs diff=lfs merge=lfs -text
79
  2019/finals/temporal_revision.in filter=lfs diff=lfs merge=lfs -text
80
  2019/round3/chain_of_command.in filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
78
  2019/finals/little_boat_on_the_sea.in filter=lfs diff=lfs merge=lfs -text
79
  2019/finals/temporal_revision.in filter=lfs diff=lfs merge=lfs -text
80
  2019/round3/chain_of_command.in filter=lfs diff=lfs merge=lfs -text
81
+ 2020/finals/cryptoconference.in filter=lfs diff=lfs merge=lfs -text
82
+ 2020/finals/somebody_elses_problem.in filter=lfs diff=lfs merge=lfs -text
83
+ 2020/quals/running_on_fumes_ch1.in filter=lfs diff=lfs merge=lfs -text
84
+ 2020/quals/running_on_fumes_ch2.in filter=lfs diff=lfs merge=lfs -text
85
+ 2020/quals/timber.in filter=lfs diff=lfs merge=lfs -text
2020/finals/1094784447639382.jpg ADDED

Git LFS Details

  • SHA256: 8ee725e06760e4a8f4ad91d4ecc5ec07cd57ebf64dd18a183a1daa6476d66420
  • Pointer size: 129 Bytes
  • Size of remote file: 3.61 kB
2020/finals/1173260263089522.jpg ADDED

Git LFS Details

  • SHA256: 072a38ca3a84da9b521963974d6e1675589d7bff93cd7e2b98486f9a9c53bb01
  • Pointer size: 128 Bytes
  • Size of remote file: 994 Bytes
2020/finals/127321889008596.jpg ADDED

Git LFS Details

  • SHA256: 1b49f4f52e1ef24ffa33f720f819ac4852bc560b2aebf9438e732ebb101bf448
  • Pointer size: 129 Bytes
  • Size of remote file: 1.07 kB
2020/finals/139722534273576.jpg ADDED

Git LFS Details

  • SHA256: 3b9b80e5f0dbae860c06fedd53353fbfe03509647fa8efc023efc278079d6ad2
  • Pointer size: 130 Bytes
  • Size of remote file: 91.9 kB
2020/finals/1583104035206937.jpg ADDED

Git LFS Details

  • SHA256: f0a65260a1582ecc3c84743fc4b35ee1a45cf0d278d7ebc9163d8f7c9e4c6af2
  • Pointer size: 129 Bytes
  • Size of remote file: 2.49 kB
2020/finals/186542789854750.jpg ADDED

Git LFS Details

  • SHA256: 744ce514f8527c0f06a2a726e6aa7e698695e90d829979353d62761e1e6f1284
  • Pointer size: 130 Bytes
  • Size of remote file: 45.2 kB
2020/finals/2008456099296384.jpg ADDED

Git LFS Details

  • SHA256: 50da7746019c191d071890736764d33765e5842a82c7ac2696438bfba3e9000c
  • Pointer size: 129 Bytes
  • Size of remote file: 2.93 kB
2020/finals/2722961511304050.jpg ADDED

Git LFS Details

  • SHA256: 517b5ca542912ddca0b7a427efcebc3e42346f0dfdb47b4843ca245a93e4243c
  • Pointer size: 130 Bytes
  • Size of remote file: 50.3 kB
2020/finals/2854957798069201.jpg ADDED

Git LFS Details

  • SHA256: af3d1383ce5d57c14e58e127bb052a95f5140b9520a23b6a99043f56cd5661d9
  • Pointer size: 129 Bytes
  • Size of remote file: 1.88 kB
2020/finals/299743861289784.jpg ADDED

Git LFS Details

  • SHA256: a4d5ed5b26e2309d0525f62e62926476ae422a734c3fd26d22aca4f411c6ca5b
  • Pointer size: 129 Bytes
  • Size of remote file: 3.27 kB
2020/finals/3047534892140325.jpg ADDED

Git LFS Details

  • SHA256: 43967805d0b8667462f3b2914044d37ef4fc77f9e3765e214c9fd9b3814783de
  • Pointer size: 130 Bytes
  • Size of remote file: 47.6 kB
2020/finals/311416436611683.jpg ADDED

Git LFS Details

  • SHA256: a514fc66448579c6e69325bba755abf77639caf481e6d694aca9bf5dfea42114
  • Pointer size: 129 Bytes
  • Size of remote file: 1.99 kB
2020/finals/3533638723394837.jpg ADDED

Git LFS Details

  • SHA256: 80126f015b9638c1f530e94f6dc3868ea7722d714be2f16f292cac816be6a24e
  • Pointer size: 129 Bytes
  • Size of remote file: 2.84 kB
2020/finals/386528679257402.jpg ADDED

Git LFS Details

  • SHA256: 51c3615c7888a706a851d95e87baa064e44e98fbbd8940027c345056f127fc22
  • Pointer size: 130 Bytes
  • Size of remote file: 51.2 kB
2020/finals/408936830244710.jpg ADDED

Git LFS Details

  • SHA256: 4c56c4da3eae930cc418858c3111b57401c86f5166d49a326b52322e5bdc631a
  • Pointer size: 130 Bytes
  • Size of remote file: 48.7 kB
2020/finals/424906348725741.jpg ADDED

Git LFS Details

  • SHA256: 79e4f2b7bb06f8742a4ede0074806a60656c8b7e9e0aab0d278c68e93ecb5f03
  • Pointer size: 130 Bytes
  • Size of remote file: 59.6 kB
2020/finals/477696676534167.jpg ADDED

Git LFS Details

  • SHA256: 7521e5a66f22d1e48e24ac11abb2a478332220ec276dc57078ff5ef32a5ef874
  • Pointer size: 129 Bytes
  • Size of remote file: 3.65 kB
2020/finals/493376864970463.jpg ADDED

Git LFS Details

  • SHA256: 00e8475c53643b2f4485450df7e1777f71b7d701982d38a27a64809c35e86a32
  • Pointer size: 130 Bytes
  • Size of remote file: 83.9 kB
2020/finals/747829032476688.jpg ADDED

Git LFS Details

  • SHA256: 7622bbbc9d637d5209c2f179773f6b5cbf5c8bb18cb7fc5a40d0d356bbe12cb1
  • Pointer size: 129 Bytes
  • Size of remote file: 3.43 kB
2020/finals/825086724953069.jpg ADDED

Git LFS Details

  • SHA256: c0a1f811e9b5f032e85ddedfa8ad4bd651a256e96b3c09e0d105b483fdfa981f
  • Pointer size: 129 Bytes
  • Size of remote file: 1.99 kB
2020/finals/862340924576901.jpg ADDED

Git LFS Details

  • SHA256: 90b8b2533216af39199dcc6cd3dfb665b856f0b90146202403449cd7aa0a4ab0
  • Pointer size: 129 Bytes
  • Size of remote file: 2.69 kB
2020/finals/863939674419710.jpg ADDED

Git LFS Details

  • SHA256: 63eb6d7c9dcdf3637c0e70749ad226f541b8de2241b3750b98646a0578ff5c62
  • Pointer size: 130 Bytes
  • Size of remote file: 46.8 kB
2020/finals/cake_cutting_committee.cpp ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Cake-Cutting Committee
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <set>
21
+ #include <unordered_map>
22
+ #include <unordered_set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (auto i:s)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x * x); }
53
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
54
+
55
+ const int INF = (int)1e9;
56
+ const LD EPS = 1e-12;
57
+ const LD PI = acos(-1.0);
58
+
59
+ #define GETCHAR getchar_unlocked
60
+
61
+ bool Read(int& x) {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;) {
65
+ c = GETCHAR();
66
+ if ((c < 0) && (!r))
67
+ return(0);
68
+ if ((c == '-') && (!r))
69
+ n = 1;
70
+ else if ((c >= '0') && (c <= '9'))
71
+ x = x * 10 + c - '0', r = 1;
72
+ else if (r)
73
+ break;
74
+ }
75
+ if (n)
76
+ x = -x;
77
+ return(1);
78
+ }
79
+
80
+ #define LIM 800
81
+
82
+ #define TVAL int
83
+ #define TLAZY int
84
+ #define TLIM 4100
85
+
86
+ TVAL ZERO_VAL = 0;
87
+ TLAZY ZERO_LAZY = 0;
88
+
89
+ struct SegTree
90
+ {
91
+ void UpdateValForUpdateOrLazy(TVAL& a, TLAZY v)
92
+ {
93
+ a += v;
94
+ }
95
+
96
+ void UpdateLazyForUpdateOrLazy(TLAZY& a, TLAZY v)
97
+ {
98
+ a += v;
99
+ }
100
+
101
+ TVAL CombVals(TVAL v1, TVAL v2)
102
+ {
103
+ return(max(v1, v2));
104
+ }
105
+
106
+ int N, sz;
107
+ TVAL tree[TLIM];
108
+ TLAZY lazy[TLIM];
109
+
110
+ SegTree() {}
111
+
112
+ SegTree(int _N)
113
+ {
114
+ Init(_N);
115
+ }
116
+
117
+ void Init(int _N)
118
+ {
119
+ N = _N;
120
+ for (sz = 1; sz < N; sz <<= 1);
121
+ Clear();
122
+ }
123
+
124
+ void Clear()
125
+ {
126
+ int i;
127
+ Fox(i, sz << 1)
128
+ tree[i] = ZERO_VAL;
129
+ Fox(i, sz << 1)
130
+ lazy[i] = ZERO_LAZY;
131
+ }
132
+
133
+ void Prop(int i)
134
+ {
135
+ TLAZY v = lazy[i];
136
+ lazy[i] = ZERO_LAZY;
137
+ UpdateValForUpdateOrLazy(tree[i], v);
138
+ if (i < sz)
139
+ {
140
+ int c1 = i << 1, c2 = c1 + 1;
141
+ UpdateLazyForUpdateOrLazy(lazy[c1], v);
142
+ UpdateLazyForUpdateOrLazy(lazy[c2], v);
143
+ }
144
+ }
145
+
146
+ void Comp(int i)
147
+ {
148
+ int c1 = i << 1, c2 = c1 + 1;
149
+ tree[i] = CombVals(tree[c1], tree[c2]);
150
+ }
151
+
152
+ TVAL Query(
153
+ int a, int b,
154
+ int i = 1, int r1 = 0, int r2 = -1
155
+ ) {
156
+ if (r2 < 0)
157
+ {
158
+ Max(a, 0);
159
+ Min(b, sz - 1);
160
+ if (a > b)
161
+ return ZERO_VAL;
162
+ r2 = sz - 1;
163
+ }
164
+ Prop(i);
165
+ if (a <= r1 && r2 <= b)
166
+ return(tree[i]);
167
+ int m = (r1 + r2) >> 1, c = i << 1;
168
+ TVAL ret = ZERO_VAL;
169
+ if (a <= m)
170
+ ret = CombVals(ret, Query(a, b, c, r1, m));
171
+ if (b > m)
172
+ ret = CombVals(ret, Query(a, b, c + 1, m + 1, r2));
173
+ return(ret);
174
+ }
175
+
176
+ void Update(
177
+ int a, int b,
178
+ TLAZY v,
179
+ int i = 1, int r1 = 0, int r2 = -1
180
+ ) {
181
+ if (r2 < 0)
182
+ {
183
+ Max(a, 0);
184
+ Min(b, sz - 1);
185
+ if (a > b)
186
+ return;
187
+ r2 = sz - 1;
188
+ }
189
+ Prop(i);
190
+ if (a <= r1 && r2 <= b)
191
+ {
192
+ UpdateLazyForUpdateOrLazy(lazy[i], v);
193
+ Prop(i);
194
+ return;
195
+ }
196
+ int m = (r1 + r2) >> 1, c = i << 1;
197
+ if (a <= m)
198
+ Update(a, b, v, c, r1, m);
199
+ if (b > m)
200
+ Update(a, b, v, c + 1, m + 1, r2);
201
+ Prop(c), Prop(c + 1), Comp(i);
202
+ }
203
+ };
204
+
205
+ struct Event
206
+ {
207
+ int x, y1, y2, c;
208
+ bool s;
209
+ };
210
+
211
+ const bool operator<(const Event& a, const Event& b)
212
+ {
213
+ return(mp(a.x, !a.s) < mp(b.x, !b.s));
214
+ }
215
+
216
+ int S, N;
217
+ int C[LIM], P[LIM][4];
218
+
219
+ bool IsBetween(int a, int b, int p, bool ex)
220
+ {
221
+ if (b < a)
222
+ b += INF;
223
+ if (p < a)
224
+ p += INF;
225
+ return ex ? a < p && p < b : a <= p && p <= b;
226
+ }
227
+
228
+ int GetPosAfter(int a, int p)
229
+ {
230
+ if (p < a)
231
+ p += INF;
232
+ return(p - a);
233
+ }
234
+
235
+ int SolveForLine(vector<int> h)
236
+ {
237
+ int i, j, s;
238
+ // compare all pieces against dividing line, and assemble line sweep events
239
+ int base = 0;
240
+ vector<int> CY;
241
+ vector<Event> E;
242
+ Fox(i, N)
243
+ {
244
+ // full intersection?
245
+ if (
246
+ (IsBetween(P[i][0], P[i][2], h[0], 0) || IsBetween(P[i][3], P[i][1], h[0], 0)) &&
247
+ (IsBetween(P[i][0], P[i][2], h[1], 0) || IsBetween(P[i][3], P[i][1], h[1], 0))
248
+ )
249
+ {
250
+ base += C[i];
251
+ continue;
252
+ }
253
+ // look for orientation of line segments such that at least one spans crosses from the 1st to the 2nd half
254
+ Fox(s, 2)
255
+ {
256
+ int p[4];
257
+ memcpy(p, P[i], sizeof(p));
258
+ if (s)
259
+ reverse(p, p + 4);
260
+ // check which points are on their required halves
261
+ bool bx[2], by[2];
262
+ Fox(j, 2)
263
+ {
264
+ bx[j] = IsBetween(h[0], h[1], p[j * 2], 0);
265
+ by[j] = IsBetween(h[1], h[0], p[j * 2 + 1], 0);
266
+ }
267
+ // neither line segment is entirely valid?
268
+ if ((!bx[0] || !by[0]) && (!bx[1] || !by[1]))
269
+ continue;
270
+ assert(bx[0] + by[0] + bx[1] + by[1] >= 3); // other one must be at least half-valid
271
+ // map points to positions on their halves
272
+ int x[2], y[2];
273
+ Fox(j, 2)
274
+ {
275
+ x[j] = bx[j] ? GetPosAfter(h[0], p[j * 2]) : 2 * INF * (j ? 1 : -1);
276
+ y[j] = by[j] ? -GetPosAfter(h[1], p[j * 2 + 1]) : 2 * INF * (j ? 1 : -1);
277
+ }
278
+ assert(x[0] < x[1] && y[0] < y[1]);
279
+ E.pb({ x[0], y[0], y[1], C[i], 1 });
280
+ E.pb({ x[1], y[0], y[1], C[i], 0 });
281
+ CY.pb(y[0]), CY.pb(y[1]);
282
+ break;
283
+ }
284
+ }
285
+ // compress Y-coordinates
286
+ sort(All(CY));
287
+ int K = unique(All(CY)) - CY.begin();
288
+ CY.resize(K);
289
+ // line sweep
290
+ SegTree ST(K);
291
+ sort(All(E));
292
+ Foxen(e, E)
293
+ {
294
+ e.y1 = lower_bound(All(CY), e.y1) - CY.begin();
295
+ e.y2 = lower_bound(All(CY), e.y2) - CY.begin();
296
+ // left edge of a rectangle?
297
+ if (e.s)
298
+ {
299
+ ST.Update(e.y1, K - 1, e.c);
300
+ continue;
301
+ }
302
+ // right edge of a rectangle
303
+ ST.Update(e.y2, e.y2, ST.Query(e.y2, K - 1) - ST.Query(e.y2, e.y2));
304
+ ST.Update(e.y2 + 1, K - 1, -e.c);
305
+ }
306
+ return(base + ST.Query(0, K - 1));
307
+ }
308
+
309
+ int ProcessCase()
310
+ {
311
+ int i, j;
312
+ // input
313
+ Read(S), Read(N);
314
+ Fox(i, N)
315
+ {
316
+ Read(C[i]);
317
+ Fox(j, 4)
318
+ {
319
+ int x, y;
320
+ Read(x), Read(y);
321
+ if (!x)
322
+ P[i][j] = y;
323
+ else if (y == S)
324
+ P[i][j] = S + x;
325
+ else if (x == S)
326
+ P[i][j] = 3 * S - y;
327
+ else
328
+ P[i][j] = 4 * S - x;
329
+ }
330
+ // normalize lines
331
+ if (IsBetween(P[i][1], P[i][0], P[i][2], 1))
332
+ swap(P[i][0], P[i][1]);
333
+ if (IsBetween(P[i][2], P[i][3], P[i][0], 1))
334
+ swap(P[i][2], P[i][3]);
335
+ }
336
+ // consider all possible dividing lines
337
+ int ans = 0;
338
+ Fox(i, N)
339
+ {
340
+ Fox(j, 2)
341
+ Max(ans, SolveForLine({ P[i][j * 2], P[i][j * 2 + 1] }));
342
+ }
343
+ return(ans);
344
+ }
345
+
346
+ int main()
347
+ {
348
+ int T, t;
349
+ Read(T);
350
+ Fox1(t, T)
351
+ printf("Case #%d: %d\n", t, ProcessCase());
352
+ return(0);
353
+ }
2020/finals/cake_cutting_committee.in ADDED
The diff for this file is too large to render. See raw diff
 
2020/finals/cake_cutting_committee.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Melody is preparing a cake for a very special occasion. She's starting off with a square cake, though she'd like it cut down into a more unique shape. When viewed from above, it can be represented as a square on a 2D plane, with opposite corners at coordinates \((0, 0)\) and \((S, S)\).
2
+
3
+ Out of countless contenders, Melody has interviewed \(N\) certified cake-cutting consultants, asking how the cake should be cut down. The \(i\)th consultant, who has a competence value of \(C_i\), has proposed that two cuts should be performed: the first being a line segment between coordinates \((X_{i,1}, Y_{i,1})\) and \((X_{i,2}, Y_{i,2})\), and the second between \((X_{i,3}, Y_{i,3})\) and \((X_{i,4}, Y_{i,4})\). Each of these four points is exactly on a side of the cake (but not on a corner), the two points describing each line segment are not on the same side of the cake, and the two line segments do not share any points in common (in other words, they don't intersect nor have any equal endpoints). Therefore, the two cuts would split the cake into three non-empty polygonal sections. Of those, the middle section (the one between the two cuts) would become their **proposed cake shape**, with the other two sections discarded.
4
+
5
+ For example, the following diagram illustrates a cake with \(S = 10\) and a consultant's pair of proposed cuts (from \((4, 10)\) to \((2, 0)\) and from \((0, 9)\) to \((2, 10)\)), with their resulting proposed cake shape highlighted in blue:
6
+
7
+ {{PHOTO_ID:186542789854750}}
8
+
9
+ Melody wants to hire one or more of the consultants to form a committee, whose members will then deliberate on the final shape of the cake. That is, she calls for a completely competent consulting committee capable of coming to a consensus on a commendable cake-cutting configuration. Clearly.
10
+
11
+ She wants the sum of the hired consultants' competence values to be as large as possible, no matter how many of them she has to hire. However, she won't allow a pair of consultants to both be part of the committee if their cake-cutting proposals *fundamentally differ*, which is the case if their proposed cake shapes do not share any points in common (in other words, if those two polygons are entirely disjoint, including at their edges and vertices).
12
+
13
+ For example, the following diagram additionally includes another consultant's pair of proposed cuts (from (7, 10) to (10, 7) and from (10, 5) to (5, 10)), with their proposed cake shape highlighted in red. Since these two proposed cake shapes do not overlap at all, the two proposals fundamentally differ, meaning that if one of these consultants is hired, the other cannot also be hired:
14
+
15
+ {{PHOTO_ID:3047534892140325}}
16
+
17
+ On the other hand, each of the following cakes features a pair of proposals which do not fundamentally differ, due to the proposed cake shapes sharing at least one point in common (meaning that, for each cake, the two consultants could be hired together):
18
+
19
+ {{PHOTO_ID:139722534273576}}
20
+
21
+ Help Melody determine the maximum combined competence of consultants who can form the committee, such that no two of them have fundamentally differing cake-cutting proposals.
22
+
23
+ # Constraints
24
+
25
+ \(1 \le T \le 80\)
26
+ \(1 \le N \le 800\)
27
+ \(2 \le S \le 100,000,000\)
28
+ \(1 \le C_i \le 500,000\)
29
+ \(0 \le X_{i,j}, Y_{i,j} \le S\)
30
+
31
+ The sum of \(N\) across all special occasions is at most 20,000.
32
+
33
+ # Input
34
+
35
+ Input begins with an integer \(T\), the number of special occasions. For each occasion, there are \(N + 1\) lines. The first line contains 2 space-separated integers, \(S\) and \(N\). \(N\) lines follow, the \(i\)th of which contains the 9 space-separated integers \(C_i\), \(X_{i,1}\), \(Y_{i,1}\), \(X_{i,2}\), \(Y_{i,2}\), \(X_{i,3}\), \(Y_{i,3}\), and \(X_{i,4}\), \(Y_{i,4}\).
36
+
37
+
38
+ # Output
39
+
40
+ For the \(i\)th special occasion, print a line containing *"Case #i: "*, followed by a single integer, the maximum combined competence of cake-cutting consultants who can form the committee.
41
+
42
+
43
+ # Explanation of Sample
44
+
45
+ The first cake (along with the consultants' proposed cake shapes) looks as follows:
46
+
47
+ {{PHOTO_ID:2722961511304050}}
48
+
49
+ The 1st and 2nd consultants can't both be hired together, but either can be hired alongside the 3rd consultant. So, the best Melody can do is to hire the 2nd and 3rd consultants for a combined competence of \(30 + 40 = 70\).
50
+
51
+ The second cake looks as follows:
52
+
53
+ {{PHOTO_ID:408936830244710}}
54
+
55
+ Melody can hire all three consultants.
56
+
57
+ The third cake looks as follows:
58
+
59
+ {{PHOTO_ID:386528679257402}}
60
+
61
+ The fourth cake looks as follows:
62
+
63
+ {{PHOTO_ID:863939674419710}}
64
+
65
+ The fifth cake looks as follows:
66
+
67
+ {{PHOTO_ID:424906348725741}}
2020/finals/cake_cutting_committee.out ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 70
2
+ Case #2: 60
3
+ Case #3: 60
4
+ Case #4: 14
5
+ Case #5: 11
6
+ Case #6: 15
7
+ Case #7: 26
8
+ Case #8: 62
9
+ Case #9: 59
10
+ Case #10: 33
11
+ Case #11: 10
12
+ Case #12: 4
13
+ Case #13: 8160
14
+ Case #14: 7207
15
+ Case #15: 7
16
+ Case #16: 59
17
+ Case #17: 41008
18
+ Case #18: 52938
19
+ Case #19: 17272
20
+ Case #20: 250000000
21
+ Case #21: 81000
22
+ Case #22: 81000
23
+ Case #23: 195153474
24
+ Case #24: 157757408
25
+ Case #25: 148427301
26
+ Case #26: 33268941
27
+ Case #27: 31942779
28
+ Case #28: 29651063
29
+ Case #29: 31340125
30
+ Case #30: 29857414
31
+ Case #31: 29451361
32
+ Case #32: 29524220
33
+ Case #33: 27477273
34
+ Case #34: 30685666
35
+ Case #35: 30626812
36
+ Case #36: 27372492
37
+ Case #37: 29689094
38
+ Case #38: 5215
39
+ Case #39: 55269
40
+ Case #40: 3394
41
+ Case #41: 1870
42
+ Case #42: 3902
43
+ Case #43: 1656
44
+ Case #44: 22432
45
+ Case #45: 61590
46
+ Case #46: 2693
47
+ Case #47: 11236
48
+ Case #48: 4765
49
+ Case #49: 11836
50
+ Case #50: 25810
51
+ Case #51: 17702
52
+ Case #52: 69830
53
+ Case #53: 13183
54
+ Case #54: 39633
55
+ Case #55: 16641
56
+ Case #56: 20295
57
+ Case #57: 8134
58
+ Case #58: 371
59
+ Case #59: 4361
60
+ Case #60: 15012
61
+ Case #61: 667
62
+ Case #62: 7749
63
+ Case #63: 7587
64
+ Case #64: 66822
65
+ Case #65: 13309
66
+ Case #66: 8544
67
+ Case #67: 62661
68
+ Case #68: 22366
69
+ Case #69: 1235
70
+ Case #70: 12477
71
+ Case #71: 12164
72
+ Case #72: 7031
73
+ Case #73: 21198
74
+ Case #74: 15176
75
+ Case #75: 6046
76
+ Case #76: 1149
77
+ Case #77: 35941
78
+ Case #78: 810
79
+ Case #79: 23259
80
+ Case #80: 1335
81
+ Case #81: 2950
82
+ Case #82: 7170
83
+ Case #83: 41925
84
+ Case #84: 8782
85
+ Case #85: 1107
86
+ Case #86: 15565
87
+ Case #87: 17094
88
+ Case #88: 1250
89
+ Case #89: 27818
90
+ Case #90: 10246
91
+ Case #91: 5690
92
+ Case #92: 17200
93
+ Case #93: 6868
94
+ Case #94: 7621
95
+ Case #95: 24280
96
+ Case #96: 15790
97
+ Case #97: 806
98
+ Case #98: 24283
99
+ Case #99: 21818
100
+ Case #100: 636
101
+ Case #101: 39706
102
+ Case #102: 9505
103
+ Case #103: 16829
104
+ Case #104: 59786
105
+ Case #105: 5017
106
+ Case #106: 23559
107
+ Case #107: 48806
108
+ Case #108: 7429
109
+ Case #109: 35980
110
+ Case #110: 62511
111
+ Case #111: 2200
112
+ Case #112: 45468
2020/finals/cake_cutting_committee_sol.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ We can number the possible positions of line segment endpoints from \(1\) to \(4(N-1)\) in clockwise order around the edge of the square, and then simply map all of the given line segment endpoints to these indices, noting that only their relative order is relevant for determining which proposed cake shapes overlap with one another.
2
+
3
+ It's possible to show that, for any valid set of proposed cake shapes, there must exist at least one *key line segment* amongst them such that every polygon in the set overlaps with that line segment. We'll therefore consider all \(2N\) possible key line segments.
4
+
5
+ For a given key line segment, each polygon either doesn't overlap with it at all (and so should be ignored), overlaps with all of it (and so may always be used), or overlaps with only part of it. For polygons falling into this final category, we're interested in the maximum combined value of any set of them such that each pair of them overlaps.
6
+
7
+ The key line segment splits the full set of possible endpoint indices into two sections, which we'll call the X and Y sections. We can map each polygon's endpoints to new indices along these two sections, both numbered starting from the same ("first") endpoint of the key line segment (meaning that one section's sequence of indices is equivalent to increasing original indices, while the other section's is equivalent to decreasing original indices). If a polygon has 3 endpoints in one section and 1 endpoint in the other (as opposed to 2 in each), then we'll shift one of them over to one of the key line segment's endpoints without changing which other polygons it overlaps with.
8
+
9
+ The result is that, for each line segment of each polygon, one endpoint will have been mapped to a new index in the X section, with the other mapped to a new index in the Y section. This allows us to represent each polygon by a pair of intervals \([x_1, x_2]\) and \([y_1, y_2]\) (consisting of its two X section indices and its two Y section indices, respectively). With this representation, we can then observe that a pair of polygons don't overlap if and only one of the polygons' X and Y intervals are both strictly to the right (or strictly to the left) of the other polygon's respective X and Y intervals.
10
+
11
+ If we now visualize each such polygon as a rectangle on a 2D plane, with coordinates based on its X and Y intervals (in particular, with lower-left corner \((x_1, y_1)\) and upper-right corner \((x_1, y_1)\)), we're interested in the maximum combined value of any set of them such that no rectangle is strictly both above and to the right of any other rectangle. This may be accomplished in \(O(N log(N))\) time with a line sweep over the x-coordinates. We'll let \(M_y\) be the maximum combined value of a valid set of rectangles encountered so far, such that the lowest of their top-right corners encountered so far has y-coordinate `y`, and maintain this with the help of a segment tree:
12
+
13
+ - When we encounter the left edge of a rectangle with bottom edge `y_1`, we should increase each of \(M_{y_1..\infty}\) by that rectangle's value (as this rectangle may be added to any such set).
14
+ - When we encounter the right edge of a rectangle with top edge `y_2`, we should first set \(M_{y_2}\) to \(\max(M_{(y_2+1)..\infty})\) (as including this rectangle in any such set would decrease its lowest top-right corner to \(y_2\)). We should then decrease each of \(M_{(y_2+1)..\infty}\) by that rectangle's value (as this rectangle may no longer be added to any such set).
15
+
16
+ Repeating the above process for all \(2N\) possible key line segments yields a solution with a time complexity of \(O(N^2 log(N))\) (though a less efficient, \(O(N^3)\) implementation would also suffice).
17
+
18
+ For further reading, if we consider mapping the line segment endpoint indices to positions around the circumference of a circle instead (essentially treating the original square as a circle), each proposed cake shape is known as a *circle trapezoid*. The intersection graph of these polygons (a graph in which there's an edge between two pieces if and only if they overlap) is then known as a [*circle trapezoid graph*](https://en.wikipedia.org/wiki/Trapezoid_graph#Circle_trapezoid_graphs). The problem of computing the maximum clique weight in such a graph (equivalent to what's asked for in Cake-Cutting Committee), and other related problems, are explored further in [this paper](https://www.sciencedirect.com/science/article/pii/S0166218X96000133?via%3Dihub).
2020/finals/cryptoconference.cpp ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Cryptoconference
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <set>
21
+ #include <unordered_map>
22
+ #include <unordered_set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x * x); }
53
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
54
+
55
+ const int INF = (int)1e9;
56
+ const LD EPS = 1e-12;
57
+ const LD PI = acos(-1.0);
58
+
59
+ #define GETCHAR getchar_unlocked
60
+
61
+ bool Read(int& x) {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;) {
65
+ c = GETCHAR();
66
+ if ((c < 0) && (!r))
67
+ return(0);
68
+ if ((c == '-') && (!r))
69
+ n = 1;
70
+ else if ((c >= '0') && (c <= '9'))
71
+ x = x * 10 + c - '0', r = 1;
72
+ else if (r)
73
+ break;
74
+ }
75
+ if (n)
76
+ x = -x;
77
+ return(1);
78
+ }
79
+
80
+ #define MOD 1000000007
81
+
82
+ int N, K;
83
+ LL cur, ans;
84
+ set<PR> S;
85
+
86
+ // returns the # of valid intervals with start positions in:
87
+ // (this interval's start, next interval's start]
88
+ LL Count(set<PR>::iterator I)
89
+ {
90
+ // get key points from this interval and the next one
91
+ int a = I->x + 1;
92
+ I++;
93
+ int b = I->x;
94
+ int c = I->y - 1;
95
+ // count intervals which start in [a, b] and end no later than c
96
+ int v1 = c - b;
97
+ int v2 = c - a;
98
+ return (LL)(v1 + v2) * (v2 - v1 + 1) / 2;
99
+ }
100
+
101
+ // inserts interval [a, b] into the set, while updating the total # of valid intervals
102
+ void Insert(int a, int b)
103
+ {
104
+ set<PR>::iterator I, J;
105
+ I = S.lower_bound(mp(a, -1));
106
+ // is the new interval obsolete (covers existing interval)?
107
+ if (a <= I->x && I->y <= b)
108
+ return;
109
+ // erase any existing obsolete intervals (covering the new one)
110
+ if (I->x > a)
111
+ I--;
112
+ for (;;)
113
+ {
114
+ if (I->y < b)
115
+ break;
116
+ J = I, I--;
117
+ cur -= Count(J) + Count(I);
118
+ S.erase(J);
119
+ cur += Count(I);
120
+ }
121
+ // insert the new interval
122
+ cur -= Count(I);
123
+ S.insert(mp(a, b));
124
+ cur += Count(I);
125
+ I++;
126
+ cur += Count(I);
127
+ }
128
+
129
+ LL ProcessCase()
130
+ {
131
+ int i;
132
+ // input
133
+ Read(N), Read(K);
134
+ // init
135
+ S.clear();
136
+ S.insert(mp(-1, -1));
137
+ S.insert(mp(K, K + 1));
138
+ ans = 1;
139
+ cur = Count(S.begin());
140
+ // process intervals
141
+ Fox(i, N)
142
+ {
143
+ int s, d;
144
+ Read(s), Read(d);
145
+ Insert(s, s + d);
146
+ ans = ans * (cur % MOD) % MOD;
147
+ }
148
+ return(ans);
149
+ }
150
+
151
+ int main()
152
+ {
153
+ int T, t;
154
+ Read(T);
155
+ Fox1(t, T)
156
+ printf("Case #%d: %lld\n", t, ProcessCase());
157
+ return(0);
158
+ }
2020/finals/cryptoconference.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50294e575c083ccf35a9f1298d80e950fb199d926cc2203e9d7f80970603d6e
3
+ size 14176322
2020/finals/cryptoconference.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Crys just invented a new cryptocurrency and is planning to present it at \(T\) blockchain conferences around the world. The conference schedules are already on their way to being finalized, but Crys is considering how she might get her own talks in at the last minute.
2
+
3
+ A certain conference is \(K\) hours long, with talks to start and end on the hour. Each talk will span a non-empty inclusive time interval of hours \([x, y]\), such that \(x\) and \(y\) are integers and \(0 \le x \lt y \le K\). \(N\) talks are gradually being added to the schedule, one after another, with the \(i\)th added talk scheduled to span the time interval \([S_i, S_i + D_i]\). The \(N\) talks are not necessarily added in order of starting or ending time. Their time intervals may arbitrarily overlap with one another, and are not necessarily distinct.
4
+
5
+ Each time a talk is added to the schedule, Crys will then consider submitting a request for her own talk to also be included. This involves proposing a time interval for her talk, which must similarly be an integral interval \([x, y]\) such that \(0 \le x \lt y \le K\). Crys suspects that her request would be rejected if the inclusion of her talk might prevent an attendee from hearing another talk due to her proposed time interval entirely subsuming an already-scheduled one. As such, after the first \(i\) talks have been added to the schedule, she will *not* propose a time interval \([x, y]\) if there exists any existing talk \(j\) \((1 \le j \le i)\) such that \(x \le S_j\) and \(S_j + D_j \le y\).
6
+
7
+ Letting \(C_i\) be the number of different time intervals which Crys could validly propose for her talk after the first \(i\) talks have been added to the schedule, please determine the value of \((C_1 * C_2 * ... * C_N)\) modulo 1,000,000,007.
8
+
9
+ # Constraints
10
+
11
+ \(1 \le T \le 95\)
12
+ \(1 \le N \le 300,000\)
13
+ \(1 \le K \le 1,000,000,000\)
14
+ \(0 \le S_i < K\)
15
+ \(1 \le D_i \le K\)
16
+ \(1 \le S_i + D_i \le K\)
17
+
18
+ The sum of \(N\) across all conferences is at most 1,500,000.
19
+
20
+ # Input
21
+
22
+ Input begins with an integer \(T\), the number of conferences. For each conference there are \(N + 1\) lines. The first line contains the space-separated integers \(N\) and \(K\). \(N\) lines follow, the \(i\)th of which contains the space-separated integers \(S_i\) and \(D_i\).
23
+
24
+
25
+ # Output
26
+
27
+ For the \(i\)th conference, print a line containing *"Case #i: "*, followed by a single integer, the product of \(C_{1..N}\) modulo 1,000,000,007.
28
+
29
+
30
+
31
+
32
+
33
+ # Explanation of Sample
34
+
35
+ In the first conference, once a talk spanning time interval \([1, 2]\) exists, Crys can only propose time intervals \([0, 1]\) and \([2, 3]\) for her talk without subsuming \([1, 2]\). Therefore, \(C = [2]\).
36
+
37
+ In the second conference, after the first talk (spanning time interval \([1, 3]\)) has been added to the schedule, Crys can propose any of the time intervals \([0, 1]\), \([0, 2]\), \([1, 2]\), or \([2, 3]\). After the introduction of the second talk (spanning time interval \([0, 2]\)), she can only propose \([0, 1]\), \([1, 2]\), or \([2, 3]\). Therefore, \(C = [4, 3]\), and the final answer is (4 * 3) modulo 1,000,000,007 = 12.
38
+
39
+ In the third conference, \(C = [8, 4]\).
40
+
41
+ In the fourth conference, \(C = [4126, 3631, 3239, 2687, 2687]\).
2020/finals/cryptoconference.out ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 12
3
+ Case #3: 32
4
+ Case #4: 352996146
5
+ Case #5: 751550872
6
+ Case #6: 20
7
+ Case #7: 83444858
8
+ Case #8: 572887886
9
+ Case #9: 598916604
10
+ Case #10: 470820377
11
+ Case #11: 174927279
12
+ Case #12: 896919730
13
+ Case #13: 541761571
14
+ Case #14: 515822691
15
+ Case #15: 228409848
16
+ Case #16: 659858375
17
+ Case #17: 190419874
18
+ Case #18: 948002069
19
+ Case #19: 495164089
20
+ Case #20: 989289949
21
+ Case #21: 313062055
22
+ Case #22: 317384968
23
+ Case #23: 381355941
24
+ Case #24: 861250172
25
+ Case #25: 21268787
26
+ Case #26: 426473611
27
+ Case #27: 174566443
28
+ Case #28: 270050563
29
+ Case #29: 247721801
30
+ Case #30: 128678835
31
+ Case #31: 141554145
32
+ Case #32: 589771144
33
+ Case #33: 703459805
34
+ Case #34: 770102403
35
+ Case #35: 32994412
36
+ Case #36: 98689617
37
+ Case #37: 146465775
38
+ Case #38: 429027202
39
+ Case #39: 249562463
40
+ Case #40: 939240223
41
+ Case #41: 366445856
42
+ Case #42: 629076290
43
+ Case #43: 856574351
44
+ Case #44: 816923530
45
+ Case #45: 988573584
46
+ Case #46: 227744671
47
+ Case #47: 136671501
48
+ Case #48: 552031554
49
+ Case #49: 637297699
50
+ Case #50: 0
51
+ Case #51: 407393317
52
+ Case #52: 648160821
53
+ Case #53: 453730949
54
+ Case #54: 626850629
55
+ Case #55: 77514078
56
+ Case #56: 776033559
57
+ Case #57: 981403229
58
+ Case #58: 164846153
59
+ Case #59: 486727330
60
+ Case #60: 181718458
61
+ Case #61: 794033109
62
+ Case #62: 741574342
63
+ Case #63: 145879918
64
+ Case #64: 171838401
65
+ Case #65: 417158876
66
+ Case #66: 725642265
67
+ Case #67: 472767853
68
+ Case #68: 740493091
69
+ Case #69: 89444180
70
+ Case #70: 608421866
71
+ Case #71: 393203295
72
+ Case #72: 879337785
73
+ Case #73: 915216546
74
+ Case #74: 290037518
75
+ Case #75: 248932214
76
+ Case #76: 953715588
77
+ Case #77: 167356836
78
+ Case #78: 317540564
79
+ Case #79: 991575711
80
+ Case #80: 879687486
81
+ Case #81: 322773218
82
+ Case #82: 589228118
83
+ Case #83: 466166842
84
+ Case #84: 748094367
85
+ Case #85: 248333831
86
+ Case #86: 515789417
87
+ Case #87: 951341566
88
+ Case #88: 948722510
89
+ Case #89: 517082433
90
+ Case #90: 535310061
91
+ Case #91: 102636817
92
+ Case #92: 805901472
93
+ Case #93: 546788335
94
+ Case #94: 684359382
95
+ Case #95: 454605467
96
+ Case #96: 310565738
97
+ Case #97: 700636353
98
+ Case #98: 266780658
99
+ Case #99: 383812708
100
+ Case #100: 664630757
101
+ Case #101: 289228410
102
+ Case #102: 957511402
103
+ Case #103: 584046200
104
+ Case #104: 58349857
105
+ Case #105: 730036244
106
+ Case #106: 945387917
107
+ Case #107: 744001995
108
+ Case #108: 854694249
109
+ Case #109: 644309315
110
+ Case #110: 801361727
2020/finals/cryptoconference_sol.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ We'll maintain a set \(R\) of all "relevant" talk time intervals. An interval \([x, y]\) is considered irrelevant if ignoring it does not change the set of time intervals which may be proposed, which is the case if and only if there exists another interval which is inclusively contained within it (an interval \([x', y']\) such that \(x \le x'\) and \(y' \le y\)).
2
+
3
+ We'll maintain \(R\) ordered by intervals' start times, in strictly increasing order. Note that this also means that the intervals' end times must be strictly increasing (otherwise, they cannot all be relevant). For convenience, we'll also begin by including dummy intervals \([-1, -1]\) and \([K, K+1]\) in \(R\), whose significance is explained below. From there, updating the set for each new interval may be done relatively straightforwardly in amortized \(O(log(N))\) time, with the new interval either already being irrelevant, or being relevant and causing 0 or more existing intervals to become irrelevant.
4
+
5
+ What remains is maintaining the corresponding answer for \(R\) — that is, the number of time intervals which may be proposed without subsuming any interval in \(R\). For this purpose, let \(F([x_1, y_1], [x_2, y_2])\) be the number of different intervals \([x_p, y_p]\) which may be proposed such that \(x_1 < x_p \le x_2\), given that \([x_1, y_1]\) and \([x_2, y_2]\) form a pair of consecutive relevant intervals in \(R\). Note that \(F([x_1, y_1], [x_2, y_2])\) does not depend on any intervals in \(R\) besides those two, and may be easily computed in \(O(1)\) time using the fact that the only constraints are \(x_1 < x_p \le x_2\) and \(x_p < y_p < y_2\).
6
+
7
+ We can observe that the sum of \(F([x_1, y_1], [x_2, y_2])\) over all pairs of consecutive relevant intervals (of which there are \(|R| - 1\)) is equal to the total answer — for example, this is the case when \(R\) consists only of the initial pair of dummy intervals \([-1, -1]\) and \([K, K+1]\), with additional intervals simply partitioning the set of possible start times. We can then maintain this sum with no additional time complexity as we go. For example, when inserting an interval \(X\) between two existing intervals \(A\) and \(B\), we should increase the sum by \(F(A, X) + F(X, B) - F(A, B)\), with deletions handled similarly.
8
+
9
+ This gives us an algorithm with a time complexity of \(O(N log(N))\).
2020/finals/pond_precipitation.cpp ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Pond Precipitation
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <unordered_map>
21
+ #include <set>
22
+ #include <deque>
23
+ #include <queue>
24
+ #include <stack>
25
+ #include <bitset>
26
+ #include <sstream>
27
+ using namespace std;
28
+
29
+ #define LL long long
30
+ #define LD long double
31
+ #define PR pair<int,int>
32
+
33
+ #define Fox(i,n) for (i=0; i<n; i++)
34
+ #define Fox1(i,n) for (i=1; i<=n; i++)
35
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
36
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
37
+ #define FoxR1(i,n) for (i=n; i>0; i--)
38
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
39
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
40
+ #define Min(a,b) a=min(a,b)
41
+ #define Max(a,b) a=max(a,b)
42
+ #define Sz(s) int((s).size())
43
+ #define All(s) (s).begin(),(s).end()
44
+ #define Fill(s,v) memset(s,v,sizeof(s))
45
+ #define pb push_back
46
+ #define mp make_pair
47
+ #define x first
48
+ #define y second
49
+
50
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
51
+ template<typename T> T Sqr(T x) { return(x * x); }
52
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-12;
56
+ const LD PI = acos(-1.0);
57
+
58
+ #define GETCHAR getchar_unlocked
59
+
60
+ bool Read(int& x)
61
+ {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;)
65
+ {
66
+ c = GETCHAR();
67
+ if ((c < 0) && (!r))
68
+ return(0);
69
+ if ((c == '-') && (!r))
70
+ n = 1;
71
+ else
72
+ if ((c >= '0') && (c <= '9'))
73
+ x = x * 10 + c - '0', r = 1;
74
+ else
75
+ if (r)
76
+ break;
77
+ }
78
+ if (n)
79
+ x = -x;
80
+ return(1);
81
+ }
82
+
83
+ #define LIM 32
84
+ #define LIM2 500
85
+ #define MOD 1000000007
86
+
87
+ int N;
88
+ int D[LIM], C[LIM];
89
+ int ch[LIM2][LIM2];
90
+ int dyn[LIM][LIM2];
91
+
92
+ int Exp(int a, int b)
93
+ {
94
+ LL p = a, v = 1;
95
+ while (b)
96
+ {
97
+ if (b & 1)
98
+ v = v * p % MOD;
99
+ p = p * p % MOD;
100
+ b >>= 1;
101
+ }
102
+ return(v);
103
+ }
104
+
105
+ void Add(int& a, int b)
106
+ {
107
+ a = (a + b) % MOD;
108
+ }
109
+
110
+ int Prod(int a, int b)
111
+ {
112
+ return((LL)a * b % MOD);
113
+ }
114
+
115
+ int Div(int a, int b)
116
+ {
117
+ return Prod(a, Exp(b, MOD - 2));
118
+ }
119
+
120
+ int ProcessCase()
121
+ {
122
+ int i, j, k;
123
+ // input
124
+ Read(N);
125
+ Fox(i, N)
126
+ Read(D[i]);
127
+ // compute max prefix capacities
128
+ int p = 0, s = 0;
129
+ Fox(i, N + 1)
130
+ {
131
+ if (i == N || D[i] < D[p])
132
+ {
133
+ FoxI(j, p, i - 1)
134
+ s += D[j] - D[p];
135
+ FoxI(j, p + (p ? 1 : 0), i)
136
+ C[j] = s;
137
+ p = i;
138
+ }
139
+ }
140
+ // DP
141
+ Fill(dyn, 0);
142
+ dyn[0][0] = 1;
143
+ Fox(i, N)
144
+ {
145
+ Fox(j, (i ? C[i - 1] : 0) + 1)
146
+ {
147
+ Fox(k, C[i] - j + 1)
148
+ Add(dyn[i + 1][j + k], Prod(dyn[i][j], ch[j + k][k]));
149
+ }
150
+ }
151
+ // compute answer
152
+ int ans = 0;
153
+ Fox(i, s + 1)
154
+ Add(ans, Div(dyn[N][i], Exp(N, i)));
155
+ return(ans);
156
+ }
157
+
158
+ int main()
159
+ {
160
+ int T, t;
161
+ int i, j;
162
+ // precompute choose table
163
+ ch[0][0] = 1;
164
+ Fox1(i, LIM2 - 1)
165
+ {
166
+ Fox(j, i + 1)
167
+ {
168
+ ch[i][j] = ch[i - 1][j];
169
+ if (j)
170
+ Add(ch[i][j], ch[i - 1][j - 1]);
171
+ }
172
+ }
173
+ // testcase loop
174
+ Read(T);
175
+ Fox1(t, T)
176
+ printf("Case #%d: %d\n", t, ProcessCase());
177
+ return(0);
178
+ }
2020/finals/pond_precipitation.in ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 64
2
+ 2
3
+ 2 1
4
+ 2
5
+ 1 2
6
+ 1
7
+ 30
8
+ 3
9
+ 3 1 2
10
+ 3
11
+ 1 3 2
12
+ 5
13
+ 3 5 4 1 2
14
+ 8
15
+ 3 7 5 8 2 6 1 4
16
+ 15
17
+ 11 29 12 10 13 28 15 6 5 25 17 8 9 3 24
18
+ 2
19
+ 30 1
20
+ 2
21
+ 1 30
22
+ 16
23
+ 10 28 18 17 20 19 21 29 5 14 11 8 7 25 3 27
24
+ 19
25
+ 22 27 26 14 24 17 10 9 30 12 19 28 1 13 25 23 8 20 18
26
+ 20
27
+ 30 15 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6
28
+ 30
29
+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
30
+ 30
31
+ 3 30 22 20 14 17 27 19 24 1 23 25 5 12 11 15 29 13 2 8 21 16 26 28 18 4 6 7 9 10
32
+ 30
33
+ 30 23 9 4 14 10 20 29 26 19 3 22 16 13 24 11 2 15 18 8 7 17 5 28 27 12 6 1 21 25
34
+ 29
35
+ 23 24 25 30 14 26 22 12 27 19 18 7 8 28 13 9 15 29 10 4 20 17 6 11 3 21 5 1 2
36
+ 29
37
+ 21 26 6 14 19 27 9 8 23 3 20 4 25 12 17 16 10 22 13 30 24 11 18 15 7 5 1 29 2
38
+ 28
39
+ 21 28 18 26 10 30 13 19 6 17 24 23 11 3 2 29 4 27 22 14 9 8 1 12 7 20 15 16
40
+ 28
41
+ 4 12 28 9 15 5 1 17 26 20 27 22 13 29 3 2 21 25 14 6 24 23 10 18 30 16 8 11
42
+ 27
43
+ 30 24 25 27 20 29 26 15 11 28 23 13 16 10 14 19 3 6 17 8 22 18 2 12 5 1 4
44
+ 27
45
+ 27 22 21 1 5 7 26 23 13 18 14 28 25 19 29 6 11 3 17 30 24 10 12 16 4 15 8
46
+ 26
47
+ 22 11 2 16 1 25 15 9 29 12 4 21 8 26 24 18 6 30 13 19 5 23 17 20 7 3
48
+ 26
49
+ 2 25 29 20 21 27 28 8 23 10 18 17 26 22 24 13 7 12 3 5 14 4 1 15 6 9
50
+ 6
51
+ 18 25 26 8 10 20
52
+ 13
53
+ 16 26 25 2 30 27 19 24 22 9 6 4 14
54
+ 14
55
+ 1 7 20 26 17 11 30 14 15 27 28 5 24 12
56
+ 4
57
+ 30 7 26 2
58
+ 11
59
+ 30 24 29 9 18 17 25 13 8 11 4
60
+ 16
61
+ 10 28 18 17 20 19 21 29 5 14 11 8 7 25 3 27
62
+ 5
63
+ 30 21 18 9 8
64
+ 13
65
+ 19 13 24 7 8 21 16 20 3 15 2 30 11
66
+ 2
67
+ 1 25
68
+ 8
69
+ 13 12 23 22 25 20 30 15
70
+ 13
71
+ 20 8 13 3 17 9 30 22 28 2 21 5 12
72
+ 19
73
+ 22 27 26 14 24 17 10 9 30 12 19 28 1 13 25 23 8 20 18
74
+ 9
75
+ 30 27 28 13 5 6 2 19 15
76
+ 4
77
+ 12 25 23 11
78
+ 11
79
+ 24 6 29 16 14 22 11 1 7 15 2
80
+ 20
81
+ 11 29 12 10 13 28 15 2 3 25 21 17 8 9 5 24 27 16 23 26
82
+ 17
83
+ 11 7 6 9 20 14 21 30 23 19 24 8 27 25 2 15 12
84
+ 3
85
+ 24 20 2
86
+ 18
87
+ 30 16 25 8 6 23 14 27 29 3 12 18 22 19 9 15 13 11
88
+ 6
89
+ 17 15 14 12 3 11
90
+ 12
91
+ 4 22 23 15 13 1 19 8 12 27 14 21
92
+ 7
93
+ 1 16 25 13 23 7 6
94
+ 1
95
+ 3
96
+ 19
97
+ 7 27 24 30 23 29 8 28 25 19 13 21 12 18 1 11 16 10 4
98
+ 7
99
+ 10 29 30 9 8 5 11
100
+ 6
101
+ 29 27 25 17 7 2
102
+ 6
103
+ 29 25 12 10 15 9
104
+ 7
105
+ 26 21 24 19 20 14 13
106
+ 17
107
+ 7 25 27 17 21 28 29 24 10 2 4 19 5 8 26 3 11
108
+ 16
109
+ 18 28 14 7 26 21 17 10 16 13 12 4 8 2 6 1
110
+ 16
111
+ 23 15 30 16 4 29 1 9 14 2 12 11 22 24 21 17
112
+ 6
113
+ 30 18 24 17 8 5
114
+ 5
115
+ 27 30 17 15 5
116
+ 15
117
+ 29 26 20 28 10 17 19 9 15 5 6 4 8 11 3
118
+ 7
119
+ 26 27 24 10 17 2 4
120
+ 13
121
+ 26 22 30 18 28 14 9 20 3 10 5 2 4
122
+ 8
123
+ 15 20 24 26 14 5 1 2
124
+ 1
125
+ 26
126
+ 4
127
+ 17 5 22 7
128
+ 6
129
+ 28 24 17 5 1 3
2020/finals/pond_precipitation.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cherry the turtle lives in a long, narrow pond. When cross-sectionally viewed from the side, the floor of the pond can be divided into \(N\) columns, each flat and 1 metre wide. The \(i\)th column from the left is at a depth of \(D_i\) metres below ground level, and all \(N\) column depths are distinct. The pond is surrounded by dirt (at ground level), just to the left of column 1 and the right of column \(N\). Cherry loves to sit on the floor in the leftmost column and bask as much as possible — but only when it's dry. Fortunately for her, the pond is initially devoid of water.
2
+
3
+ For example, if \(D = [3, 5, 4, 1, 2]\), the pond would look as follows (with Cherry's position indicated in green):
4
+
5
+ {{PHOTO_ID:311416436611683}}
6
+
7
+ Unusually enormous drops of rainwater are about to begin falling into the pond, one by one, each onto a random column (drawn uniformly at random from the set of \(N\) columns). Each drop contains 1 cross-sectional square metre of water, and obeys the following process:
8
+
9
+ 1. It falls until it hits a flat *surface*. This surface consists of the highest (least deep) point in its column (which might be either the floor of the pond itself or an existing layer of water atop it), as well as all contiguous equally-deep points to the left and right of it.
10
+ 2. If that surface is immediately surrounded by any deeper columns to its left and/or right, then the drop's water flows down onto one of them. If there's only one such adjacent deeper column, then the drop flows onto that one. If the columns to the left and right are both deeper than the surface (note that this can only occur if the surface consists of a single column), then the drop's water all flows to the *left* one. Either way, once the drop flows into a different column, the process repeats back from Step 1.
11
+ 3. Otherwise, the drop's 1 cross-sectional square metre of water spreads itself out evenly across the entire surface it landed on (which will never cause that surface to "overflow" by becoming strictly higher than the columns to its left or right).
12
+
13
+ Cherry will be forced to stop basking as soon as a non-zero amount of water comes to rest atop column 1. She doesn't mind if raindrops fall directly on column 1 but then immediately flow away from it.
14
+
15
+ For example, if a raindrop were to fall in column 4 of the above pond, it would flow to the left (onto column 3), and then flow left again to settle in column 2:
16
+
17
+ {{PHOTO_ID:3533638723394837}}
18
+
19
+ If a raindrop then fell in column 1, it would flow to the right and spread itself out over the surface spanning columns 2 and 3:
20
+
21
+ {{PHOTO_ID:299743861289784}}
22
+
23
+ If a raindrop then fell in column 5, it would remain there:
24
+
25
+ {{PHOTO_ID:1094784447639382}}
26
+
27
+ Another raindrop falling in column 5 (or *any* column) would then yield the following state:
28
+
29
+ {{PHOTO_ID:747829032476688}}
30
+
31
+ And one more raindrop falling in any column would yield the following state (forcing Cherry to stop basking due to column 1 becoming submerged in water):
32
+
33
+ {{PHOTO_ID:477696676534167}}
34
+
35
+ Determine the expected number of drops which will fall before Cherry is forced to stop basking. This will always occur after a finite number of drops have fallen, and before any water overflows the pond.
36
+
37
+ Let this expected number of drops be represented as a quotient of integers \(p/q\) in lowest terms. Output the value of this quotient modulo 1,000,000,007 — in other words, output the unique integer \(x\) such that \(0 \le x \lt 1,000,000,007\) and \(p \equiv x*q\text{ }(\text{modulo }1,000,000,007)\).
38
+
39
+
40
+ # Constraints
41
+
42
+ \(1 \le T \le 50\)
43
+ \(1 \le N \le 30\)
44
+ \(1 \le D_i \le 30\)
45
+ \(D_{1..N}\) are distinct
46
+
47
+ The sum of \(N\) across all ponds is at most 1000.
48
+
49
+
50
+ # Input
51
+
52
+ Input begins with an integer \(T\), the number of ponds. For each pond, there are 2 lines. The first line contains a single integer \(N\). The second line contains the \(N\) space-separated integers \(D_{1..N}\).
53
+
54
+
55
+ # Output
56
+
57
+ For the \(i\)th pond, print a line containing *"Case #i: "*, followed by a single integer, the expected number of drops which will fall before the leftmost column becomes covered in water, expressed as a quotient of integers modulo 1,000,000,007.
58
+
59
+
60
+ # Explanation of Sample
61
+
62
+ The first pond initially looks as follows:
63
+
64
+ {{PHOTO_ID:1173260263089522}}
65
+
66
+ If the first raindrop falls in column 1, it will settle there, and if it falls in column 2 instead, it will flow into column 1. Either way, Cherry's position will be submerged and she'll be forced to stop basking.
67
+
68
+ The second pond initially looks as follows:
69
+
70
+ {{PHOTO_ID:127321889008596}}
71
+
72
+ The first raindrop will always settle in column 2, leaving Cherry uninterrupted. However, the second raindrop will then always land on the surface spanning both columns, filling both up to a depth of 0.5 metres below ground level and thus forcing Cherry to stop basking.
73
+
74
+ The third pond only has a single column, and Cherry will need to stop basking as soon as the first raindrop falls in it.
75
+
76
+ The fourth pond may end up in various states depending on which columns the raindrops fall in. If the first drop falls in either column 1 or 2, then it will immediately settle in column 1, while if it falls in column 3, it will remain there and it will take a second drop to force Cherry to stop basking. The answer is therefore \(\frac{2}{3} 1 + \frac{1}{3} 2 = \frac{4}{3}\). \(4 \equiv 333,333,337 * 3\text{ }(\text{modulo }1,000,000,007)\), meaning that \(333,333,337\) should be outputted.
2020/finals/pond_precipitation.out ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1
2
+ Case #2: 2
3
+ Case #3: 1
4
+ Case #4: 333333337
5
+ Case #5: 4
6
+ Case #6: 772800010
7
+ Case #7: 600238862
8
+ Case #8: 777291572
9
+ Case #9: 1
10
+ Case #10: 30
11
+ Case #11: 937030791
12
+ Case #12: 413793850
13
+ Case #13: 839435693
14
+ Case #14: 436
15
+ Case #15: 443547255
16
+ Case #16: 396227790
17
+ Case #17: 466103174
18
+ Case #18: 817567450
19
+ Case #19: 617077188
20
+ Case #20: 328627652
21
+ Case #21: 923842801
22
+ Case #22: 461892853
23
+ Case #23: 120289842
24
+ Case #24: 898611294
25
+ Case #25: 639276210
26
+ Case #26: 153140977
27
+ Case #27: 224
28
+ Case #28: 64313891
29
+ Case #29: 492753435
30
+ Case #30: 937030791
31
+ Case #31: 1
32
+ Case #32: 147204623
33
+ Case #33: 25
34
+ Case #34: 748059186
35
+ Case #35: 716331815
36
+ Case #36: 413793850
37
+ Case #37: 351458863
38
+ Case #38: 25
39
+ Case #39: 510316599
40
+ Case #40: 840006893
41
+ Case #41: 943180527
42
+ Case #42: 1
43
+ Case #43: 249621861
44
+ Case #44: 746767720
45
+ Case #45: 981645522
46
+ Case #46: 85
47
+ Case #47: 1
48
+ Case #48: 509775157
49
+ Case #49: 3252335
50
+ Case #50: 1
51
+ Case #51: 646090541
52
+ Case #52: 822157443
53
+ Case #53: 357912021
54
+ Case #54: 532071843
55
+ Case #55: 723030647
56
+ Case #56: 799725660
57
+ Case #57: 4
58
+ Case #58: 124032548
59
+ Case #59: 677744521
60
+ Case #60: 752783508
61
+ Case #61: 893366069
62
+ Case #62: 1
63
+ Case #63: 64313891
64
+ Case #64: 194444447
2020/finals/pond_precipitation_sol.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Let \(C_i\) be the maximum number of raindrops which can fall in the first \(i\) columns without causing any water to settle atop column 1. We can compute \(C_{1..N}\) in \(O(N)\) time by iterating over the columns from left to right, looking for each new highest (least deep) column, and considering filling the columns before it (back to the previous highest column) with water up to the depth of that previous highest column.
2
+
3
+ Then, let \(\textit{DP}_{i,d}\) be the number of different ways for \(d\) raindrops to fall in the first \(i\) columns without causing any water to settle atop column 1. \(\textit{DP}_{0,0}\) = 1, with the remaining values computable using dynamic programming as follows. We can consider all triples \((i, d, d')\) in increasing order of \(i\) such that \(d\) drops have fallen in the first \(i\) columns (such that \(d \le C_i\)) and \(d'\) drops will fall in column \(i + 1\) (such that \(d + d' \le C_{i+1}\)). This allows us to increase \(\textit{DP}_{i+1,d+d'}\) by \(\textit{DP}_{i,d} * {d+d' \choose d'}\), given that the new \(d'\) drops may be mixed in anywhere amongst the total \(d+d'\) drops. Overall, this process takes \(O(N * \sum(D_{1..N})^2)\) time.
4
+
5
+ Finally, let \(S_d\) be the probability that, once \(d\) drops have fallen, no water has yet settled atop column 1. Note that \(S_d = \textit{DP}_{N,d} / N^i\). The answer may then be computed as \(\sum(S_{0..C_N})\).
2020/finals/somebody_elses_problem.cpp ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Somebody Else's Problem
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <set>
21
+ #include <unordered_map>
22
+ #include <unordered_set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (auto i:s)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x * x); }
53
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
54
+
55
+ const int INF = (int)1e9;
56
+ const LD EPS = 1e-12;
57
+ const LD PI = acos(-1.0);
58
+
59
+ #define GETCHAR getchar_unlocked
60
+
61
+ bool Read(int& x) {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;) {
65
+ c = GETCHAR();
66
+ if ((c < 0) && (!r))
67
+ return(0);
68
+ if ((c == '-') && (!r))
69
+ n = 1;
70
+ else if ((c >= '0') && (c <= '9'))
71
+ x = x * 10 + c - '0', r = 1;
72
+ else if (r)
73
+ break;
74
+ }
75
+ if (n)
76
+ x = -x;
77
+ return(1);
78
+ }
79
+
80
+ #define MOD 1000000007
81
+ #define LIM 1000001
82
+
83
+ int N, ans;
84
+ vector<int> ch[LIM];
85
+ int dyn1[LIM]; // max. len. of downward i -> leaf
86
+ int dyn2[LIM]; // max. len. of downward root -> leaf outside i's subtree
87
+ int dyn3[LIM]; // max. disjoint len. of downward root -> leaf plus other path ongoing from i's parent
88
+
89
+ void rec1(int i)
90
+ {
91
+ // recurse, and compute dyn1[i]
92
+ dyn1[i] = 0;
93
+ Foxen(c, ch[i])
94
+ {
95
+ rec1(c);
96
+ Max(dyn1[i], dyn1[c] + 1);
97
+ }
98
+ }
99
+
100
+ void rec2(int i, int d)
101
+ {
102
+ // compute answer for i
103
+ ans = ans * (LL)max(dyn1[i] + dyn2[i] + (!i ? 0 : 1), dyn3[i]) % MOD;
104
+ // compute max 2 (dyn1[c] + 1, c) pairs
105
+ PR m1, m2;
106
+ m1 = m2 = mp(0, -1);
107
+ Foxen(c, ch[i])
108
+ {
109
+ PR p = mp(dyn1[c] + 1, c);
110
+ if (p > m1)
111
+ m2 = m1, m1 = p;
112
+ else if (p > m2)
113
+ m2 = p;
114
+ }
115
+ // compute dyn2[c] and dyn3[c], and recurse
116
+ Foxen(c, ch[i])
117
+ {
118
+ int m = (m1.y == c ? m2 : m1).x;
119
+ dyn2[c] = max(d + m, dyn2[i]);
120
+ dyn3[c] = max(dyn3[i] + 1, dyn2[i] + m + 1 + (!i ? 0 : 1));
121
+ rec2(c, d + 1);
122
+ }
123
+ }
124
+
125
+ int ProcessCase()
126
+ {
127
+ int i, j;
128
+ // input
129
+ Read(N);
130
+ Fox1(i, N - 1)
131
+ {
132
+ Read(j), j--;
133
+ ch[j].pb(i);
134
+ }
135
+ // DP
136
+ ans = 1;
137
+ rec1(0);
138
+ rec2(0, 0);
139
+ // reset
140
+ Fox(i, N)
141
+ ch[i].clear();
142
+ return(ans);
143
+ }
144
+
145
+ int main()
146
+ {
147
+ int T, t;
148
+ Read(T);
149
+ Fox1(t, T)
150
+ printf("Case #%d: %d\n", t, ProcessCase());
151
+ return(0);
152
+ }
2020/finals/somebody_elses_problem.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42fb026894d3a2c67d12bff5c8c7605976525e17fb94ed2dfc18ae0b5a91a494
3
+ size 29992845
2020/finals/somebody_elses_problem.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ H Combinator (HC) is a business incubator that provides seed funding to startups. It operates on the core value that "nothing is somebody else's problem" (since businesses slow down when tasks get perpetually passed from person to person). HC currently supports \(T\) companies. As a managing director hoping to weed out some bad investments, you would like to assess how well the structure of each company holds up to this important principle.
2
+
3
+ Suppose a company has \(N\) employees, numbered \(1\) to \(N\) in decreasing order of seniority. Employee \(1\) is the CEO, while each other employee \(i\) \((i \ge 2)\) has a manager, employee \(M_i\) \((M_i \lt i)\).
4
+
5
+ When employee \(i\) is assigned a task to complete, they may instead reassign it to one of the following employees:
6
+
7
+ 1. One of their direct reports (any employee \(j\) such that \(M_j = i\)), if any exist
8
+ 2. Their manager (employee \(M_i\)), if \(i \ge 2\)
9
+ 3. The CEO (employee \(1\)), if \(i \ge 2\)
10
+
11
+ That employee may then reassign the task to yet another employee, and so on. However, an employee may never be reassigned a task that has ever been previously assigned to them, as the lack of responsibility would become too apparent. For example, an employee and manager cannot repeatedly pass a task back and forth.
12
+
13
+ Let \(R_i\) be the maximum number of times that a task could be reassigned from one employee to another if it were initially assigned to employee \(i\). For each company, you would like to calculate the product \((R_1 * R_2 * ... * R_N)\), modulo 1,000,000,007.
14
+
15
+ # Constraints
16
+
17
+ \(1 \le T \le 100\)
18
+ \(2 \le N \le 1,000,000\)
19
+ \(1 \le M_i \lt i\)
20
+
21
+ The sum of \(N\) across all companies is at most 6,000,000.
22
+
23
+
24
+ # Input
25
+
26
+ Input begins with an integer \(T\), the number of companies. For each company there are 2 lines. The first line contains the single integer \(N\). The second line contains \(N - 1\) space-separated integers, \(M_{2..N}\).
27
+
28
+
29
+ # Output
30
+
31
+ For the \(i\)th company, print a line containing *"Case #i: "*, followed by a single integer, the product of \(R_{1..N}\) modulo 1,000,000,007.
32
+
33
+
34
+ # Explanation of Sample
35
+
36
+ For the first company, if the CEO is initially assigned a task, all they can do is reassign it to one of their reports, who cannot then assign it back. On the other hand, if another employee is initially assigned a task, they can reassign it to the CEO, who can then assign it to the other remaining employee. Therefore, \(R = [1, 2, 2]\), and the final answer is (1 * 2 * 2) modulo 1,000,000,007 = 4.
37
+
38
+ For the second company, no matter which employee is initially assigned a task, it can then be reassigned twice. For example, employee 2 can assign their task to their report (employee 3), who can then assign it to the CEO. Therefore, \(R = [2, 2, 2]\).
39
+
40
+ For the third company, \(R = [2, 2, 3, 3]\).
41
+
42
+ For the fourth company, \(R = [3, 6, 6, 6, 7, 7, 7, 7, 8, 8]\).
43
+
44
+ For the fifth company, \(R = [4, 6, 6, 7, 8, 6, 7, 7, 8, 7, 7, 8, 8, 9, 9]\).
2020/finals/somebody_elses_problem.out ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 4
2
+ Case #2: 8
3
+ Case #3: 36
4
+ Case #4: 99574272
5
+ Case #5: 801542729
6
+ Case #6: 512
7
+ Case #7: 110638080
8
+ Case #8: 100755024
9
+ Case #9: 609548256
10
+ Case #10: 449377614
11
+ Case #11: 697200545
12
+ Case #12: 40681884
13
+ Case #13: 801335875
14
+ Case #14: 912420599
15
+ Case #15: 828211555
16
+ Case #16: 222945837
17
+ Case #17: 794621467
18
+ Case #18: 539189349
19
+ Case #19: 153951545
20
+ Case #20: 403356442
21
+ Case #21: 158834216
22
+ Case #22: 757493143
23
+ Case #23: 124049818
24
+ Case #24: 157599195
25
+ Case #25: 210009530
26
+ Case #26: 934651967
27
+ Case #27: 846283835
28
+ Case #28: 135977128
29
+ Case #29: 96550718
30
+ Case #30: 460241648
31
+ Case #31: 168595112
32
+ Case #32: 212089364
33
+ Case #33: 533764564
34
+ Case #34: 887365886
35
+ Case #35: 959297767
36
+ Case #36: 518707324
37
+ Case #37: 926754190
38
+ Case #38: 800571094
39
+ Case #39: 352762395
40
+ Case #40: 446732699
41
+ Case #41: 137078595
42
+ Case #42: 82460488
43
+ Case #43: 63988313
44
+ Case #44: 368079615
45
+ Case #45: 874039636
46
+ Case #46: 259792328
47
+ Case #47: 680495316
48
+ Case #48: 310927912
49
+ Case #49: 159825100
50
+ Case #50: 757078864
51
+ Case #51: 11192700
52
+ Case #52: 815983871
53
+ Case #53: 221642594
54
+ Case #54: 881701383
55
+ Case #55: 233697937
56
+ Case #56: 842482923
57
+ Case #57: 765406592
58
+ Case #58: 989866696
59
+ Case #59: 898464379
60
+ Case #60: 345934457
61
+ Case #61: 451190753
62
+ Case #62: 322496398
63
+ Case #63: 475160557
64
+ Case #64: 996799426
65
+ Case #65: 211994997
66
+ Case #66: 690657310
67
+ Case #67: 971619993
68
+ Case #68: 440397393
69
+ Case #69: 481512798
70
+ Case #70: 186452849
71
+ Case #71: 708281413
72
+ Case #72: 357202043
73
+ Case #73: 777137428
74
+ Case #74: 841177015
75
+ Case #75: 825117615
76
+ Case #76: 853698291
77
+ Case #77: 594949860
78
+ Case #78: 404255967
79
+ Case #79: 458058760
80
+ Case #80: 589833391
81
+ Case #81: 311188915
82
+ Case #82: 858709805
83
+ Case #83: 457598660
84
+ Case #84: 291250389
85
+ Case #85: 89919554
86
+ Case #86: 964724850
87
+ Case #87: 87366696
88
+ Case #88: 253283539
89
+ Case #89: 417747428
90
+ Case #90: 10644788
91
+ Case #91: 95418217
92
+ Case #92: 560671530
93
+ Case #93: 326047040
94
+ Case #94: 463949173
95
+ Case #95: 905018983
96
+ Case #96: 201781788
97
+ Case #97: 955583192
98
+ Case #98: 319780485
99
+ Case #99: 514572911
100
+ Case #100: 92757427
101
+ Case #101: 829713327
102
+ Case #102: 367443664
103
+ Case #103: 932977208
104
+ Case #104: 247500328
105
+ Case #105: 387055634
106
+ Case #106: 191909169
107
+ Case #107: 421840147
108
+ Case #108: 730451318
109
+ Case #109: 493473473
2020/finals/somebody_elses_problem_sol.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The employees can be considered nodes of a tree rooted at node 1 (the CEO), with each node \(i\)'s set of children \(C_i\) consisting of all nodes \(j\) such that \(M_j = i\). We'll additionally let \(D_i\) be the depth of node \(i\), and \(S_i\) be its set of siblings.
2
+
3
+ We can observe that \(R_i\) corresponds to either of the following:
4
+
5
+ - The maximum length of any single simple path starting at node \(i\) (potentially going upwards to some ancestor and then back downwards)
6
+ - 1 plus the maximum combined length of any node-disjoint pair of simple paths, the first one starting at node \(i\) (potentially going upwards to some ancestor and then back downwards) and the second starting at the root (and only going downwards)
7
+
8
+ We'll approach computing these lengths and sums with dynamic programming.
9
+
10
+ First, let \(\textit{DP1}_i\) be the maximum length of any path starting at node \(i\) and contained within \(i\)'s subtree. \(\textit{DP1}_{1..N}\) may be computed in standard fashion based on the recurrence \(\textit{DP1}_i = \max(c \in C_i | \textit{DP1}_c + 1)\).
11
+
12
+ Next, let \(\textit{DP2}_i\) be the maximum length of any path starting at the root and never entering node \(i\)'s subtree. If \(i\) is the root, then \(\textit{DP2}_i = 0\). Otherwise, \(\textit{DP2}_i = \max(D_{M_i} + \max(s \in S_i | \textit{DP1}_s + 1), \textit{DP2}_{M_i})\).
13
+
14
+ Now, let \(\textit{DP3}_i\) be 1 plus the maximum combined length of any node-disjoint pair of simple paths, the first one starting at node \(i\) but not including any of \(i\)'s children, and the second starting at the root. If \(i\) is the root, then \(\textit{DP3}_i = 0\). Otherwise, \(\textit{DP3}_i = \max(\textit{DP3}_{M_i} + 1, \textit{DP2}_{M_i} + \max(s \in S_i | \textit{DP1}_s + 1) + 2)\).
15
+
16
+ Finally, if \(i\) is the root, then \(R_i = \textit{DP1}_i\). Otherwise, \(R_i = \max(\textit{DP1}_i + \textit{DP2}_i + 1, \textit{DP3}_i)\).
17
+
18
+ We can compute all of the above values in \(O(N)\) time through two recursive (or iterative) passes over the tree.
2020/finals/spider_spring.cpp ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Spider Spring
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <set>
21
+ #include <unordered_map>
22
+ #include <unordered_set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x * x); }
53
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
54
+
55
+ const int INF = (int)1e9;
56
+ const LD EPS = 1e-12;
57
+ const LD PI = acos(-1.0);
58
+
59
+ #define GETCHAR getchar_unlocked
60
+
61
+ bool Read(int& x) {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;) {
65
+ c = GETCHAR();
66
+ if ((c < 0) && (!r))
67
+ return(0);
68
+ if ((c == '-') && (!r))
69
+ n = 1;
70
+ else if ((c >= '0') && (c <= '9'))
71
+ x = x * 10 + c - '0', r = 1;
72
+ else if (r)
73
+ break;
74
+ }
75
+ if (n)
76
+ x = -x;
77
+ return(1);
78
+ }
79
+
80
+ void ReadSeq(int* V, int N, int K)
81
+ {
82
+ int i, A, B, C, D;
83
+ Fox(i, K)
84
+ Read(V[i]);
85
+ Read(A), Read(B), Read(C), Read(D);
86
+ FoxI(i, K, N - 1)
87
+ V[i] = ((LL)A * V[i - 2] + (LL)B * V[i - 1] + C) % D + 1;
88
+ }
89
+
90
+ #define MOD 1000000007
91
+ #define LIM 1000001
92
+
93
+ #define TVAL LL
94
+ #define TLAZY pair<LL,LL> // (set, increase)
95
+ #define TLIM 2100000
96
+
97
+ TVAL ZERO_VAL = 0;
98
+ TLAZY ZERO_LAZY = mp(0, 0);
99
+
100
+ struct SegTree
101
+ {
102
+ void UpdateValForUpdateOrLazy(TVAL& a, TLAZY v)
103
+ {
104
+ if (v.x)
105
+ a = v.x;
106
+ if (v.y)
107
+ a += v.y;
108
+ }
109
+
110
+ void UpdateLazyForUpdateOrLazy(TLAZY& a, TLAZY v)
111
+ {
112
+ if (v.x)
113
+ a.x = v.x;
114
+ if (v.y)
115
+ a.y += v.y;
116
+ }
117
+
118
+ TVAL CombVals(TVAL v1, TVAL v2)
119
+ {
120
+ return(v1 + v2);
121
+ }
122
+
123
+ int N, sz;
124
+ TVAL tree[TLIM];
125
+ TLAZY lazy[TLIM];
126
+
127
+ SegTree() {}
128
+
129
+ SegTree(int _N)
130
+ {
131
+ Init(_N);
132
+ }
133
+
134
+ void Init(int _N)
135
+ {
136
+ N = _N;
137
+ for (sz = 1; sz < N; sz <<= 1);
138
+ Clear();
139
+ }
140
+
141
+ void Clear()
142
+ {
143
+ int i;
144
+ Fox(i, sz << 1)
145
+ tree[i] = ZERO_VAL;
146
+ Fox(i, sz << 1)
147
+ lazy[i] = ZERO_LAZY;
148
+ }
149
+
150
+ void Prop(int i)
151
+ {
152
+ TLAZY v = lazy[i];
153
+ lazy[i] = ZERO_LAZY;
154
+ UpdateValForUpdateOrLazy(tree[i], v);
155
+ if (i < sz)
156
+ {
157
+ int c1 = i << 1, c2 = c1 + 1;
158
+ UpdateLazyForUpdateOrLazy(lazy[c1], v);
159
+ UpdateLazyForUpdateOrLazy(lazy[c2], v);
160
+ }
161
+ }
162
+
163
+ void Comp(int i)
164
+ {
165
+ int c1 = i << 1, c2 = c1 + 1;
166
+ tree[i] = CombVals(tree[c1], tree[c2]);
167
+ }
168
+
169
+ TVAL Query(
170
+ int a, int b,
171
+ int i = 1, int r1 = 0, int r2 = -1
172
+ ) {
173
+ if (r2 < 0)
174
+ r2 = sz - 1;
175
+ Prop(i);
176
+ if (a <= r1 && r2 <= b)
177
+ return(tree[i]);
178
+ int m = (r1 + r2) >> 1, c = i << 1;
179
+ TVAL ret = ZERO_VAL;
180
+ if (a <= m)
181
+ ret = CombVals(ret, Query(a, b, c, r1, m));
182
+ if (b > m)
183
+ ret = CombVals(ret, Query(a, b, c + 1, m + 1, r2));
184
+ return(ret);
185
+ }
186
+
187
+ void Update(
188
+ int a, int b,
189
+ TLAZY v,
190
+ int i = 1, int r1 = 0, int r2 = -1
191
+ ) {
192
+ if (r2 < 0)
193
+ r2 = sz - 1;
194
+ Prop(i);
195
+ if (a <= r1 && r2 <= b)
196
+ {
197
+ UpdateLazyForUpdateOrLazy(lazy[i], v);
198
+ Prop(i);
199
+ return;
200
+ }
201
+ int m = (r1 + r2) >> 1, c = i << 1;
202
+ if (a <= m)
203
+ Update(a, b, v, c, r1, m);
204
+ if (b > m)
205
+ Update(a, b, v, c + 1, m + 1, r2);
206
+ Prop(c), Prop(c + 1), Comp(i);
207
+ }
208
+
209
+ void UpdateOne(int i, TLAZY v) {
210
+ i += sz;
211
+ UpdateValForUpdateOrLazy(tree[i], v);
212
+ while (i > 1)
213
+ {
214
+ i >>= 1;
215
+ Comp(i);
216
+ }
217
+ }
218
+ };
219
+
220
+ int N, M, K;
221
+ int H[LIM], X[LIM], Y[LIM], Z[LIM], W[LIM];
222
+ set<int> LS;
223
+
224
+ // 0: height of column i
225
+ // 1: sum of A endpoint weights with endpoint value i
226
+ // 2: sum of A endpoint weighted values with endpoint value i
227
+ // 3: sum of B endpoint weights with endpoint value i
228
+ // 4: sum of B endpoint weighted values with endpoint value i
229
+ SegTree ST[5];
230
+
231
+ void UpdateHeights(int a, int b, int h)
232
+ {
233
+ ST[0].Update(a, b, mp(h, 0));
234
+ }
235
+
236
+ void UpdateLineSegment(int i, int d) // d = 1 (add) / -1 (remove)
237
+ {
238
+ if (i < 0 || i + 1 >= N)
239
+ return;
240
+ int a = ST[0].Query(i, i), b = ST[0].Query(i + 1, i + 1);
241
+ if (a > b)
242
+ swap(a, b);
243
+ LL w = (LL)(i + 1) * (N - i - 1);
244
+ ST[1].UpdateOne(a, mp(0, w % MOD * d));
245
+ ST[2].UpdateOne(a, mp(0, a * w % MOD * d));
246
+ ST[3].UpdateOne(b, mp(0, w % MOD * d));
247
+ ST[4].UpdateOne(b, mp(0, b * w % MOD * d));
248
+ if (d > 0)
249
+ LS.insert(i);
250
+ else
251
+ LS.erase(i);
252
+ }
253
+
254
+ int ProcessCase()
255
+ {
256
+ int i;
257
+ // input
258
+ Read(N), Read(M), Read(K);
259
+ ReadSeq(H, N, K);
260
+ ReadSeq(X, M, K);
261
+ ReadSeq(Y, M, K);
262
+ ReadSeq(Z, M, K);
263
+ ReadSeq(W, M, K);
264
+ // init segment trees, line segment set, and horizontal sum
265
+ Fox(i, 5)
266
+ ST[i].Init(!i ? N : LIM);
267
+ LS.clear();
268
+ LL horiz = 0;
269
+ Fox(i, N)
270
+ {
271
+ UpdateHeights(i, i, H[i]);
272
+ UpdateLineSegment(i - 1, 1);
273
+ horiz = (horiz + (LL)i * (N - i)) % MOD;
274
+ }
275
+ // process events
276
+ int ans = 1;
277
+ Fox(i, M)
278
+ {
279
+ // update
280
+ int x = X[i] - 1;
281
+ int y = min(x + Y[i], N) - 1;
282
+ int z = Z[i];
283
+ auto I = LS.lower_bound(x - 1);
284
+ while (I != LS.end() && *I <= y)
285
+ {
286
+ int k = *I;
287
+ I++;
288
+ UpdateLineSegment(k, -1);
289
+ }
290
+ UpdateHeights(x, y, z);
291
+ UpdateLineSegment(x - 1, 1);
292
+ UpdateLineSegment(y, 1);
293
+ // query
294
+ int w = W[i];
295
+ LL d1 = ST[4].Query(w + 1, LIM - 1) - ST[2].Query(w + 1, LIM - 1);
296
+ LL d2 = ST[3].Query(w + 1, LIM - 1) - ST[1].Query(w + 1, LIM - 1);
297
+ LL vert = ((d1 - d2 % MOD * w) % MOD + MOD) % MOD;
298
+ ans = (LL)ans * (horiz + vert) * 2 % MOD;
299
+ }
300
+ return(ans);
301
+ }
302
+
303
+ int main()
304
+ {
305
+ int T, t;
306
+ Read(T);
307
+ Fox1(t, T)
308
+ printf("Case #%d: %d\n", t, ProcessCase());
309
+ return(0);
310
+ }
2020/finals/spider_spring.in ADDED
@@ -0,0 +1,1189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 108
2
+ 2 2 2
3
+ 2 3
4
+ 0 0 0 100
5
+ 2 1
6
+ 0 0 0 2
7
+ 1 1
8
+ 0 0 0 2
9
+ 4 1
10
+ 0 0 0 100
11
+ 1 3
12
+ 0 0 0 100
13
+ 3 3 3
14
+ 1 2 4
15
+ 0 0 0 100
16
+ 2 3 1
17
+ 0 0 0 3
18
+ 1 1 2
19
+ 0 0 0 3
20
+ 2 4 6
21
+ 0 0 0 100
22
+ 1 5 5
23
+ 0 0 0 100
24
+ 6 6 6
25
+ 13 4 7 11 2 5
26
+ 0 0 0 100
27
+ 1 3 6 1 1 4
28
+ 0 0 0 6
29
+ 1 2 1 1 3 2
30
+ 0 0 0 6
31
+ 13 9 5 4 10 12
32
+ 0 0 0 100
33
+ 8 2 9 3 6 11
34
+ 0 0 0 100
35
+ 10 12 2
36
+ 37 11
37
+ 1 2 3 45
38
+ 2 7
39
+ 2 3 4 9
40
+ 2 1
41
+ 3 4 5 4
42
+ 24 38
43
+ 4 5 6 78
44
+ 16 9
45
+ 5 6 7 87
46
+ 100 200 3
47
+ 470 104 185
48
+ 213 20 226 692
49
+ 76 35 8
50
+ 499 768 377 92
51
+ 23 9 12
52
+ 880 205 286 31
53
+ 165 249 43
54
+ 883 477 453 674
55
+ 385 68 409
56
+ 853 105 54 410
57
+ 903 930 2
58
+ 1633 1521
59
+ 701 815 358 1878
60
+ 753 662
61
+ 656 986 148 901
62
+ 1 1
63
+ 401 8 25 5
64
+ 165 131
65
+ 282 747 129 1191
66
+ 116 123
67
+ 618 891 846 1164
68
+ 1000000 1000000 2
69
+ 1000000 1000000
70
+ 0 0 999999 1000000
71
+ 1000000 1000000
72
+ 0 0 999999 1000000
73
+ 1000000 1000000
74
+ 0 0 999999 1000000
75
+ 1000000 1000000
76
+ 0 0 999999 1000000
77
+ 1000000 1000000
78
+ 0 0 999999 1000000
79
+ 1000000 1000000 2
80
+ 1000000 1
81
+ 1 0 999999 1000000
82
+ 1 1
83
+ 0 0 0 1
84
+ 1 1
85
+ 0 0 0 1
86
+ 1000000 1000000
87
+ 0 0 999999 1000000
88
+ 1 2
89
+ 0 1 0 1000000
90
+ 1000000 1000000 2
91
+ 178 556
92
+ 584 595 823 1000000
93
+ 1 4
94
+ 433 783 232 1000000
95
+ 2 2
96
+ 0 0 1 3
97
+ 177 100
98
+ 680 28 717 1000000
99
+ 528 410
100
+ 60 815 683 1000000
101
+ 1000000 1000000 2
102
+ 19 24
103
+ 350 303 365 1000000
104
+ 51 52
105
+ 216 967 821 1000000
106
+ 2 3
107
+ 106 327 154 20
108
+ 82 163
109
+ 744 449 414 1000000
110
+ 464 306
111
+ 362 471 820 1000000
112
+ 1000000 1000000 2
113
+ 324 111
114
+ 101 937 252 1000000
115
+ 33 171
116
+ 175 798 441 12345
117
+ 987654 987654
118
+ 0 0 987654 1000000
119
+ 44 811
120
+ 459 777 237 1000000
121
+ 257 35
122
+ 704 951 629 1000000
123
+ 1000000 1000000 2
124
+ 430 157
125
+ 514 758 528 1000000
126
+ 548 141
127
+ 945 926 558 1000000
128
+ 47 42
129
+ 268 531 962 1000000
130
+ 3 162
131
+ 86 400 6 1000000
132
+ 1 2
133
+ 154 756 683 1000000
134
+ 100000 100000 2
135
+ 125 149
136
+ 311 576 518 100000
137
+ 6 32
138
+ 563 173 458 100000
139
+ 4 4
140
+ 544 210 328 100000
141
+ 14 286
142
+ 340 267 60 100000
143
+ 369 57
144
+ 509 315 521 100000
145
+ 100000 100000 2
146
+ 44 88
147
+ 242 300 281 100000
148
+ 25 30
149
+ 634 853 304 100000
150
+ 2 1
151
+ 208 685 950 100000
152
+ 327 11
153
+ 289 357 883 100000
154
+ 135 93
155
+ 891 910 259 100000
156
+ 903 930 2
157
+ 633 521
158
+ 701 815 358 878
159
+ 753 662
160
+ 656 986 148 901
161
+ 1 1
162
+ 401 8 25 2
163
+ 65 31
164
+ 282 747 129 191
165
+ 16 23
166
+ 618 891 846 164
167
+ 560 696 2
168
+ 169 198
169
+ 198 539 496 255
170
+ 140 17
171
+ 282 82 691 446
172
+ 24 14
173
+ 831 13 414 42
174
+ 376 39
175
+ 882 608 720 885
176
+ 227 52
177
+ 261 461 789 381
178
+ 972 540 2
179
+ 331 334
180
+ 648 253 91 489
181
+ 530 322
182
+ 732 335 927 893
183
+ 6 7
184
+ 301 667 399 18
185
+ 48 178
186
+ 430 392 172 301
187
+ 284 653
188
+ 32 807 789 962
189
+ 855 600 2
190
+ 145 135
191
+ 920 730 668 224
192
+ 247 646
193
+ 898 870 550 833
194
+ 67 10
195
+ 744 620 881 82
196
+ 392 316
197
+ 553 191 883 424
198
+ 79 223
199
+ 71 463 361 248
200
+ 301 113 2
201
+ 52 155
202
+ 208 684 646 784
203
+ 33 215
204
+ 736 691 995 259
205
+ 9 23
206
+ 76 461 136 25
207
+ 293 85
208
+ 823 97 279 420
209
+ 695 133
210
+ 239 888 885 698
211
+ 530 859 2
212
+ 70 763
213
+ 70 537 870 950
214
+ 18 262
215
+ 866 322 130 508
216
+ 3 18
217
+ 93 713 359 21
218
+ 21 77
219
+ 85 331 644 197
220
+ 309 496
221
+ 866 213 902 580
222
+ 634 721 2
223
+ 60 231
224
+ 468 492 479 357
225
+ 178 412
226
+ 811 454 239 522
227
+ 21 45
228
+ 414 524 132 49
229
+ 325 45
230
+ 207 720 216 638
231
+ 570 43
232
+ 534 876 111 875
233
+ 561 329 2
234
+ 614 541
235
+ 832 480 598 697
236
+ 261 76
237
+ 873 340 462 436
238
+ 31 20
239
+ 243 979 906 32
240
+ 292 107
241
+ 447 597 189 468
242
+ 59 146
243
+ 582 280 677 290
244
+ 330 749 2
245
+ 142 499
246
+ 701 963 70 583
247
+ 186 108
248
+ 622 896 827 249
249
+ 13 11
250
+ 290 282 580 13
251
+ 371 522
252
+ 619 692 591 594
253
+ 144 302
254
+ 942 108 659 661
255
+ 251 322 2
256
+ 30 135
257
+ 399 56 251 226
258
+ 190 52
259
+ 456 382 867 239
260
+ 7 2
261
+ 149 100 640 13
262
+ 360 48
263
+ 959 859 940 492
264
+ 48 237
265
+ 282 686 565 240
266
+ 958 436 2
267
+ 533 818
268
+ 59 810 553 950
269
+ 540 762
270
+ 177 425 49 954
271
+ 27 4
272
+ 552 414 728 27
273
+ 209 180
274
+ 622 438 998 496
275
+ 32 16
276
+ 6 969 88 72
277
+ 513 902 2
278
+ 301 435
279
+ 779 823 750 519
280
+ 175 356
281
+ 750 231 89 418
282
+ 31 28
283
+ 265 947 489 32
284
+ 39 7
285
+ 316 983 505 48
286
+ 30 369
287
+ 103 713 87 480
288
+ 206 517 2
289
+ 151 118
290
+ 85 178 267 834
291
+ 22 69
292
+ 859 466 727 186
293
+ 7 7
294
+ 418 864 848 8
295
+ 328 411
296
+ 358 164 939 696
297
+ 287 427
298
+ 127 386 335 604
299
+ 594 981 2
300
+ 1 2
301
+ 163 999 302 18
302
+ 334 239
303
+ 508 223 271 581
304
+ 5 5
305
+ 327 457 791 5
306
+ 433 13
307
+ 471 904 69 461
308
+ 617 534
309
+ 756 256 43 737
310
+ 833 242 2
311
+ 209 103
312
+ 939 521 682 243
313
+ 97 67
314
+ 373 545 125 730
315
+ 78 43
316
+ 341 224 763 82
317
+ 661 289
318
+ 475 751 558 938
319
+ 540 43
320
+ 641 407 96 834
321
+ 479 552 2
322
+ 773 95
323
+ 561 14 84 873
324
+ 138 298
325
+ 434 550 678 363
326
+ 5 11
327
+ 96 820 744 15
328
+ 5 16
329
+ 479 790 808 20
330
+ 316 544
331
+ 890 507 177 827
332
+ 408 650 2
333
+ 7 797
334
+ 495 737 239 825
335
+ 90 89
336
+ 766 944 708 370
337
+ 16 16
338
+ 580 975 345 28
339
+ 445 239
340
+ 142 720 688 462
341
+ 140 210
342
+ 571 928 250 224
343
+ 791 957 2
344
+ 615 452
345
+ 42 934 832 710
346
+ 781 48
347
+ 319 308 733 782
348
+ 7 4
349
+ 364 533 596 34
350
+ 334 346
351
+ 261 705 922 421
352
+ 90 92
353
+ 529 138 584 158
354
+ 546 301 2
355
+ 393 679
356
+ 919 681 106 789
357
+ 425 523
358
+ 792 958 404 533
359
+ 1 1
360
+ 589 283 628 1
361
+ 59 239
362
+ 903 702 401 373
363
+ 123 247
364
+ 942 685 70 608
365
+ 76 542 2
366
+ 211 172
367
+ 144 246 457 352
368
+ 27 42
369
+ 500 977 733 75
370
+ 3 2
371
+ 523 893 924 8
372
+ 21 15
373
+ 329 889 114 57
374
+ 33 178
375
+ 960 453 552 778
376
+ 360 84 2
377
+ 2 29
378
+ 707 417 370 29
379
+ 40 196
380
+ 696 131 893 327
381
+ 1 12
382
+ 465 830 658 27
383
+ 539 401
384
+ 518 768 936 566
385
+ 357 18
386
+ 242 566 931 464
387
+ 820 98 2
388
+ 3 295
389
+ 587 398 408 407
390
+ 525 548
391
+ 225 646 190 797
392
+ 7 6
393
+ 340 738 936 18
394
+ 303 31
395
+ 314 951 152 343
396
+ 32 24
397
+ 592 101 794 55
398
+ 930 117 2
399
+ 143 444
400
+ 445 505 199 931
401
+ 34 859
402
+ 225 935 398 926
403
+ 62 13
404
+ 815 727 139 74
405
+ 382 610
406
+ 938 136 78 976
407
+ 91 162
408
+ 374 20 826 578
409
+ 263 745 2
410
+ 153 59
411
+ 315 654 700 172
412
+ 5 186
413
+ 581 314 479 218
414
+ 14 7
415
+ 816 774 927 26
416
+ 65 27
417
+ 817 265 822 70
418
+ 18 77
419
+ 368 696 166 85
420
+ 279 738 2
421
+ 159 142
422
+ 898 425 339 318
423
+ 43 150
424
+ 769 530 503 259
425
+ 8 3
426
+ 672 517 872 18
427
+ 83 551
428
+ 732 669 499 685
429
+ 257 456
430
+ 947 301 419 789
431
+ 598 555 2
432
+ 30 7
433
+ 575 679 622 37
434
+ 536 186
435
+ 41 588 65 537
436
+ 43 2
437
+ 966 616 818 59
438
+ 248 256
439
+ 926 345 362 320
440
+ 7 212
441
+ 450 360 668 365
442
+ 264 577 2
443
+ 15 2
444
+ 717 154 500 21
445
+ 102 111
446
+ 656 620 658 219
447
+ 8 2
448
+ 892 626 865 8
449
+ 743 525
450
+ 179 112 70 876
451
+ 429 679
452
+ 880 3 973 825
453
+ 897 144 2
454
+ 540 332
455
+ 840 455 830 627
456
+ 562 400
457
+ 212 814 564 861
458
+ 6 8
459
+ 967 216 433 48
460
+ 53 397
461
+ 720 766 244 636
462
+ 135 196
463
+ 803 924 987 262
464
+ 429 612 2
465
+ 17 55
466
+ 996 594 794 123
467
+ 226 321
468
+ 720 686 277 385
469
+ 1 1
470
+ 890 830 894 1
471
+ 899 590
472
+ 168 359 680 933
473
+ 331 402
474
+ 446 717 585 638
475
+ 839 233 2
476
+ 521 845
477
+ 61 640 876 975
478
+ 551 296
479
+ 911 703 495 798
480
+ 34 29
481
+ 763 214 43 49
482
+ 159 144
483
+ 728 711 733 707
484
+ 687 417
485
+ 766 235 436 919
486
+ 365 586 2
487
+ 84 74
488
+ 448 91 430 285
489
+ 4 97
490
+ 110 366 424 305
491
+ 2 9
492
+ 867 175 438 15
493
+ 415 156
494
+ 819 867 368 520
495
+ 517 426
496
+ 533 851 639 597
497
+ 465 60 2
498
+ 330 409
499
+ 767 64 479 424
500
+ 343 275
501
+ 386 527 467 353
502
+ 1 1
503
+ 921 595 49 1
504
+ 324 322
505
+ 605 22 541 475
506
+ 480 415
507
+ 753 135 614 850
508
+ 801 771 2
509
+ 63 291
510
+ 144 684 80 412
511
+ 555 472
512
+ 749 518 924 684
513
+ 55 38
514
+ 775 334 474 65
515
+ 5 233
516
+ 907 805 320 742
517
+ 8 10
518
+ 213 117 454 404
519
+ 783 771 2
520
+ 598 530
521
+ 846 857 583 798
522
+ 553 176
523
+ 508 278 568 603
524
+ 7 25
525
+ 290 565 235 33
526
+ 3 94
527
+ 656 619 860 237
528
+ 529 436
529
+ 236 48 762 662
530
+ 432 863 2
531
+ 704 427
532
+ 213 389 808 976
533
+ 275 77
534
+ 851 125 737 385
535
+ 4 9
536
+ 957 52 233 15
537
+ 595 365
538
+ 905 284 117 861
539
+ 647 91
540
+ 292 115 735 765
541
+ 992 300 2
542
+ 525 297
543
+ 649 530 454 720
544
+ 834 212
545
+ 934 685 909 883
546
+ 28 12
547
+ 805 982 864 51
548
+ 24 511
549
+ 505 668 249 578
550
+ 187 182
551
+ 153 428 304 235
552
+ 427 382 2
553
+ 190 227
554
+ 759 686 149 442
555
+ 159 204
556
+ 313 771 135 420
557
+ 7 29
558
+ 294 207 468 30
559
+ 323 129
560
+ 44 983 618 527
561
+ 385 130
562
+ 837 293 873 478
563
+ 509 937 2
564
+ 73 76
565
+ 121 923 553 257
566
+ 370 177
567
+ 415 250 899 453
568
+ 3 7
569
+ 435 812 337 11
570
+ 252 311
571
+ 623 186 732 401
572
+ 180 470
573
+ 238 772 839 514
574
+ 842 577 2
575
+ 273 625
576
+ 269 271 271 657
577
+ 748 140
578
+ 414 784 901 768
579
+ 29 5
580
+ 721 553 330 37
581
+ 583 440
582
+ 69 152 381 723
583
+ 368 364
584
+ 414 820 333 689
585
+ 477 441 2
586
+ 89 1
587
+ 78 356 819 110
588
+ 90 387
589
+ 433 743 609 408
590
+ 16 3
591
+ 516 625 885 28
592
+ 75 65
593
+ 939 438 215 281
594
+ 566 739
595
+ 555 353 992 913
596
+ 356 406 2
597
+ 531 300
598
+ 232 72 584 972
599
+ 288 202
600
+ 971 588 35 346
601
+ 9 25
602
+ 199 601 573 30
603
+ 26 46
604
+ 124 574 366 169
605
+ 387 451
606
+ 384 662 131 637
607
+ 913 20 2
608
+ 21 81
609
+ 695 806 658 88
610
+ 628 413
611
+ 737 3 576 755
612
+ 2 21
613
+ 351 988 165 61
614
+ 256 57
615
+ 837 302 864 324
616
+ 55 653
617
+ 881 641 578 882
618
+ 698 679 2
619
+ 47 673
620
+ 551 473 606 997
621
+ 184 28
622
+ 216 911 779 691
623
+ 2 4
624
+ 704 423 546 14
625
+ 347 196
626
+ 792 634 838 689
627
+ 74 59
628
+ 915 525 986 842
629
+ 393 922 2
630
+ 240 570
631
+ 965 583 455 776
632
+ 330 323
633
+ 698 365 640 364
634
+ 8 16
635
+ 245 373 833 20
636
+ 152 449
637
+ 532 500 183 745
638
+ 62 14
639
+ 832 222 151 243
640
+ 315 43 2
641
+ 86 16
642
+ 395 803 569 187
643
+ 92 258
644
+ 828 665 547 273
645
+ 6 8
646
+ 667 827 876 12
647
+ 429 194
648
+ 346 346 589 843
649
+ 170 319
650
+ 206 272 331 385
651
+ 669 404 2
652
+ 258 490
653
+ 527 689 745 524
654
+ 212 388
655
+ 130 943 920 546
656
+ 8 13
657
+ 574 788 848 29
658
+ 43 119
659
+ 64 487 333 496
660
+ 243 140
661
+ 183 95 468 526
662
+ 273 706 2
663
+ 414 353
664
+ 436 437 355 942
665
+ 244 23
666
+ 640 387 315 251
667
+ 15 13
668
+ 553 925 689 18
669
+ 4 11
670
+ 370 471 315 119
671
+ 166 161
672
+ 569 223 990 208
673
+ 531 32 2
674
+ 506 504
675
+ 486 554 489 654
676
+ 384 77
677
+ 170 520 889 507
678
+ 7 41
679
+ 825 153 339 49
680
+ 123 129
681
+ 683 207 26 378
682
+ 240 222
683
+ 879 356 276 426
684
+ 745 956 2
685
+ 141 202
686
+ 874 518 913 207
687
+ 385 554
688
+ 787 532 492 617
689
+ 31 24
690
+ 474 781 354 42
691
+ 269 339
692
+ 239 554 367 389
693
+ 44 73
694
+ 590 458 10 280
695
+ 958 776 2
696
+ 176 226
697
+ 362 980 71 565
698
+ 83 658
699
+ 113 657 2 790
700
+ 5 18
701
+ 15 701 673 49
702
+ 75 308
703
+ 715 108 614 541
704
+ 269 339
705
+ 416 733 949 423
706
+ 798 353 2
707
+ 296 63
708
+ 499 720 142 388
709
+ 261 325
710
+ 590 147 182 693
711
+ 9 7
712
+ 421 916 646 11
713
+ 628 103
714
+ 50 562 658 982
715
+ 605 446
716
+ 323 289 464 610
717
+ 796 595 2
718
+ 49 46
719
+ 842 758 506 57
720
+ 101 616
721
+ 224 112 764 703
722
+ 10 3
723
+ 847 990 147 12
724
+ 172 574
725
+ 537 366 920 667
726
+ 439 108
727
+ 729 34 95 661
728
+ 350 73 2
729
+ 466 42
730
+ 546 898 16 895
731
+ 214 24
732
+ 585 290 713 280
733
+ 1 1
734
+ 931 720 958 11
735
+ 344 379
736
+ 387 158 827 552
737
+ 335 182
738
+ 928 388 807 397
739
+ 382 1000 2
740
+ 68 52
741
+ 911 968 211 82
742
+ 266 319
743
+ 398 831 183 353
744
+ 4 6
745
+ 898 78 585 25
746
+ 539 288
747
+ 804 190 800 698
748
+ 18 30
749
+ 107 564 732 36
750
+ 73 276 2
751
+ 118 139
752
+ 573 84 696 174
753
+ 56 37
754
+ 228 872 892 58
755
+ 2 2
756
+ 83 435 585 7
757
+ 785 430
758
+ 481 464 27 981
759
+ 367 105
760
+ 399 788 560 464
761
+ 52 65 2
762
+ 765 384
763
+ 369 187 978 776
764
+ 22 24
765
+ 501 428 954 47
766
+ 5 2
767
+ 656 300 499 6
768
+ 494 546
769
+ 5 402 392 548
770
+ 75 278
771
+ 606 745 297 309
772
+ 241 627 2
773
+ 12 586
774
+ 549 559 189 779
775
+ 137 4
776
+ 46 958 7 194
777
+ 18 19
778
+ 526 740 817 21
779
+ 186 92
780
+ 340 447 970 236
781
+ 771 140
782
+ 717 71 787 885
783
+ 341 917 2
784
+ 562 425
785
+ 783 957 382 739
786
+ 218 190
787
+ 498 57 390 299
788
+ 1 1
789
+ 233 320 920 1
790
+ 49 233
791
+ 219 332 549 248
792
+ 480 359
793
+ 969 659 769 718
794
+ 500 77 2
795
+ 800 453
796
+ 506 665 520 821
797
+ 412 21
798
+ 871 378 204 478
799
+ 20 40
800
+ 172 963 747 44
801
+ 163 109
802
+ 846 564 775 277
803
+ 411 509
804
+ 709 367 247 699
805
+ 913 517 2
806
+ 438 495
807
+ 242 879 176 652
808
+ 374 102
809
+ 216 69 835 708
810
+ 30 58
811
+ 524 794 32 71
812
+ 397 26
813
+ 88 571 386 886
814
+ 232 481
815
+ 333 192 794 809
816
+ 434 729 2
817
+ 353 664
818
+ 739 708 624 916
819
+ 14 49
820
+ 520 853 9 376
821
+ 1 3
822
+ 340 496 434 3
823
+ 283 657
824
+ 349 85 955 800
825
+ 215 830
826
+ 21 251 109 899
827
+ 290 327 2
828
+ 221 488
829
+ 425 90 815 561
830
+ 97 159
831
+ 109 760 64 267
832
+ 4 2
833
+ 801 242 69 7
834
+ 209 220
835
+ 97 574 13 286
836
+ 131 302
837
+ 729 106 277 333
838
+ 628 337 2
839
+ 23 130
840
+ 161 406 455 224
841
+ 389 430
842
+ 793 896 886 605
843
+ 7 11
844
+ 871 715 940 13
845
+ 309 149
846
+ 833 43 29 317
847
+ 14 101
848
+ 206 619 221 323
849
+ 950 324 2
850
+ 382 386
851
+ 237 285 492 788
852
+ 539 532
853
+ 842 746 526 809
854
+ 62 60
855
+ 641 128 580 92
856
+ 5 7
857
+ 137 119 15 9
858
+ 402 563
859
+ 446 248 393 842
860
+ 642 580 2
861
+ 253 437
862
+ 451 745 475 753
863
+ 288 48
864
+ 34 290 884 620
865
+ 18 40
866
+ 148 37 74 65
867
+ 52 25
868
+ 564 791 334 77
869
+ 4 93
870
+ 823 63 646 284
871
+ 533 381 2
872
+ 93 295
873
+ 942 79 375 684
874
+ 83 23
875
+ 422 291 917 430
876
+ 10 15
877
+ 692 613 456 23
878
+ 155 464
879
+ 142 558 663 557
880
+ 126 444
881
+ 764 906 703 768
882
+ 956 610 2
883
+ 175 203
884
+ 642 420 108 632
885
+ 199 335
886
+ 658 874 715 779
887
+ 27 26
888
+ 37 956 739 53
889
+ 103 240
890
+ 251 232 222 614
891
+ 262 326
892
+ 697 623 521 527
893
+ 473 209 2
894
+ 38 26
895
+ 435 450 519 65
896
+ 167 341
897
+ 714 563 948 358
898
+ 20 7
899
+ 890 511 311 32
900
+ 241 98
901
+ 585 209 622 316
902
+ 415 83
903
+ 194 145 527 543
904
+ 769 340 2
905
+ 240 205
906
+ 149 511 59 939
907
+ 447 428
908
+ 834 906 987 702
909
+ 10 1
910
+ 783 226 664 20
911
+ 368 469
912
+ 177 445 637 850
913
+ 328 22
914
+ 492 283 357 619
915
+ 16 568 2
916
+ 380 542
917
+ 445 325 581 683
918
+ 13 10
919
+ 101 971 396 15
920
+ 1 2
921
+ 234 168 442 2
922
+ 9 152
923
+ 945 89 932 172
924
+ 348 248
925
+ 689 627 696 447
926
+ 769 864 2
927
+ 345 114
928
+ 182 290 472 452
929
+ 355 601
930
+ 481 609 643 710
931
+ 53 19
932
+ 133 829 577 76
933
+ 378 66
934
+ 348 336 433 519
935
+ 574 271
936
+ 847 252 667 608
937
+ 330 330 2
938
+ 245 597
939
+ 684 89 256 650
940
+ 30 46
941
+ 417 409 636 312
942
+ 5 2
943
+ 236 943 280 6
944
+ 117 146
945
+ 615 775 832 223
946
+ 7 12
947
+ 353 186 107 16
948
+ 462 280 2
949
+ 824 24
950
+ 243 589 242 946
951
+ 368 74
952
+ 480 415 75 375
953
+ 5 8
954
+ 589 223 293 8
955
+ 647 594
956
+ 981 952 541 983
957
+ 284 257
958
+ 427 632 555 365
959
+ 816 159 2
960
+ 519 623
961
+ 519 756 873 679
962
+ 435 609
963
+ 891 719 333 632
964
+ 6 6
965
+ 874 500 522 28
966
+ 49 210
967
+ 954 657 739 388
968
+ 20 36
969
+ 473 708 831 251
970
+ 998 170 2
971
+ 455 327
972
+ 12 321 890 469
973
+ 236 78
974
+ 255 637 797 818
975
+ 34 1
976
+ 167 191 237 39
977
+ 608 27
978
+ 187 494 159 649
979
+ 249 180
980
+ 935 825 164 533
981
+ 514 863 2
982
+ 212 139
983
+ 951 359 544 272
984
+ 393 233
985
+ 742 52 391 425
986
+ 1 3
987
+ 210 583 168 47
988
+ 59 33
989
+ 371 633 77 179
990
+ 707 806
991
+ 522 643 958 903
992
+ 497 712 2
993
+ 58 80
994
+ 786 316 104 173
995
+ 141 341
996
+ 397 937 967 468
997
+ 12 6
998
+ 485 909 296 36
999
+ 426 270
1000
+ 687 160 576 493
1001
+ 28 177
1002
+ 932 726 631 685
1003
+ 351 490 2
1004
+ 588 656
1005
+ 867 187 989 903
1006
+ 149 14
1007
+ 408 504 113 343
1008
+ 11 2
1009
+ 116 72 65 21
1010
+ 91 36
1011
+ 146 590 781 140
1012
+ 80 42
1013
+ 547 6 173 267
1014
+ 296 633 2
1015
+ 48 8
1016
+ 421 784 83 58
1017
+ 34 89
1018
+ 315 421 241 278
1019
+ 7 13
1020
+ 573 626 111 26
1021
+ 361 257
1022
+ 265 39 8 364
1023
+ 14 44
1024
+ 674 303 876 46
1025
+ 136 801 2
1026
+ 99 483
1027
+ 436 695 919 618
1028
+ 22 41
1029
+ 666 715 388 127
1030
+ 1 2
1031
+ 482 583 478 2
1032
+ 458 234
1033
+ 39 160 420 496
1034
+ 438 484
1035
+ 349 709 431 537
1036
+ 387 85 2
1037
+ 82 221
1038
+ 596 268 556 924
1039
+ 97 246
1040
+ 608 39 236 344
1041
+ 30 16
1042
+ 607 604 162 36
1043
+ 284 611
1044
+ 656 372 886 676
1045
+ 31 47
1046
+ 160 324 970 297
1047
+ 165 354 2
1048
+ 597 760
1049
+ 538 219 926 859
1050
+ 110 91
1051
+ 283 621 671 150
1052
+ 5 11
1053
+ 49 404 158 13
1054
+ 42 17
1055
+ 345 31 409 61
1056
+ 41 16
1057
+ 160 448 354 120
1058
+ 249 540 2
1059
+ 918 839
1060
+ 400 927 410 996
1061
+ 186 176
1062
+ 669 393 88 213
1063
+ 1 1
1064
+ 788 628 528 1
1065
+ 402 528
1066
+ 181 22 523 543
1067
+ 175 141
1068
+ 799 997 402 644
1069
+ 445 287 2
1070
+ 361 156
1071
+ 628 174 747 369
1072
+ 237 314
1073
+ 12 879 291 424
1074
+ 22 20
1075
+ 452 512 387 40
1076
+ 57 384
1077
+ 864 339 957 421
1078
+ 501 8
1079
+ 827 151 78 520
1080
+ 763 374 2
1081
+ 321 421
1082
+ 601 323 70 456
1083
+ 527 148
1084
+ 642 74 93 748
1085
+ 20 15
1086
+ 244 11 914 23
1087
+ 350 191
1088
+ 807 860 574 939
1089
+ 620 156
1090
+ 279 634 675 809
1091
+ 425 39 2
1092
+ 752 385
1093
+ 811 187 622 948
1094
+ 292 222
1095
+ 12 143 608 386
1096
+ 9 5
1097
+ 633 146 514 23
1098
+ 211 215
1099
+ 894 693 864 310
1100
+ 709 396
1101
+ 135 691 837 778
1102
+ 865 348 2
1103
+ 278 484
1104
+ 166 576 304 730
1105
+ 533 474
1106
+ 903 642 498 670
1107
+ 3 2
1108
+ 495 32 416 4
1109
+ 9 10
1110
+ 607 416 472 10
1111
+ 83 112
1112
+ 647 116 990 327
1113
+ 800 954 2
1114
+ 144 117
1115
+ 710 703 439 245
1116
+ 389 75
1117
+ 133 615 901 646
1118
+ 3 10
1119
+ 537 481 182 16
1120
+ 544 483
1121
+ 369 91 585 618
1122
+ 489 423
1123
+ 403 858 268 524
1124
+ 930 12 2
1125
+ 304 30
1126
+ 304 916 887 305
1127
+ 638 32
1128
+ 26 625 967 930
1129
+ 40 52
1130
+ 68 475 73 54
1131
+ 67 31
1132
+ 645 729 529 171
1133
+ 392 703
1134
+ 120 969 483 710
1135
+ 715 72 2
1136
+ 441 540
1137
+ 423 115 917 570
1138
+ 467 94
1139
+ 100 549 243 565
1140
+ 1 1
1141
+ 227 199 797 1
1142
+ 33 123
1143
+ 977 775 857 1000
1144
+ 2 6
1145
+ 280 958 590 8
1146
+ 663 16 2
1147
+ 169 477
1148
+ 510 376 476 540
1149
+ 339 503
1150
+ 614 248 494 604
1151
+ 39 15
1152
+ 843 132 278 48
1153
+ 520 459
1154
+ 313 584 80 718
1155
+ 285 173
1156
+ 41 67 913 870
1157
+ 338 665 2
1158
+ 173 140
1159
+ 267 792 521 276
1160
+ 304 187
1161
+ 868 923 970 337
1162
+ 12 2
1163
+ 992 923 463 16
1164
+ 73 195
1165
+ 775 24 288 296
1166
+ 224 406
1167
+ 686 197 913 564
1168
+ 656 687 2
1169
+ 18 20
1170
+ 490 573 447 150
1171
+ 420 57
1172
+ 25 789 37 648
1173
+ 14 21
1174
+ 606 571 686 22
1175
+ 72 180
1176
+ 282 131 414 219
1177
+ 158 618
1178
+ 51 585 489 751
1179
+ 589 797 2
1180
+ 470 11
1181
+ 213 20 226 692
1182
+ 376 35
1183
+ 499 768 377 478
1184
+ 23 9
1185
+ 880 205 286 41
1186
+ 165 249
1187
+ 883 477 453 674
1188
+ 385 68
1189
+ 853 105 54 410
2020/finals/spider_spring.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A family of water spiders lives at a spring located on an earthquake hotspot. The spring features \(N\) columns of rocks in a row, numbered \(1\) to \(N\) from left to right. Each rocky column \(i\) has a width of 1 cm and a height of \(H_i\) cm.
2
+
3
+ The spring always has some global water level. The rocky columns can each be below the water, at water level, or protrude above its surface. A spider in a given column must float on the surface of the water (if the rock is below water level) or stand atop the rock (if it's at or above water level). This means that, when the water level is W cm, the **effective elevation** at column \(i\) is \(max(H_i, W)\) cm.
4
+
5
+ For example, the following diagram illustrates a spring with \(H = [2, 1, 3, 1]\) and \(W = 2\), with the effective elevations outlined in black:
6
+
7
+ {{PHOTO_ID:1583104035206937}}
8
+
9
+ Water spiders sometimes want to travel from one column \(a\) to another column \(b\). This involves starting horizontally in the middle of column \(a\), at its effective elevation, and walking along the outline of the effective elevations until ending up horizontally in the middle of column \(b\). This may include walking left/right across the tops of rocks or the surface of the water, as well as up/down along the sides of the protruding rocks. Note that a spider's route will never take it left of column \(1\), right of column \(N\), below the surface of the water, nor into mid-air.
10
+
11
+ For example, the path which a water spider would follow from column 1 to column 4 (having a length of 5 cm) is indicated in red below:
12
+
13
+ {{PHOTO_ID:862340924576901}}
14
+
15
+ Unfortunately for the spring's inhabitants, frequent earthquakes occur, altering the heights of the rocky columns and the water. The spiders would like to survey the accessibility of the spring after each earthquake.
16
+
17
+ Specifically, \(M\) earthquakes are about to occur, one after another. As part of the \(i\)th earthquake, the height of each rocky column \(c\) such that \(X_i \le c \le min(X_i + Y_i - 1, N)\) will become equal to \(Z_i\) cm, and the global water level will become \(W_i\) cm. After each earthquake \(i\), the spiders are interested in the current sum of travel distances (in cm) over all \(N*(N - 1)\) ordered pairs of starting and ending columns — we'll call this quantity \(S_i\).
18
+
19
+ Please determine the value of \((S_1 * S_2 * ... * S_M)\) modulo 1,000,000,007.
20
+
21
+ In order to reduce the size of the input, the above values will not all be provided explicitly. Instead, you'll be given the first \(K\) values \(H_{1..K}\), \(X_{1..K}\), \(Y_{1..K}\), \(Z_{1..K}\), and \(W_{1..K}\), as well as the five quadruples of constants \((A_H, B_H, C_H, D_H)\), \((A_X, B_X, C_X, D_X)\), \((A_Y, B_Y, C_Y, D_Y)\), \((A_Z, B_Z, C_Z, D_Z)\), and \((A_W, B_W, C_W, D_W)\), and must then compute \(H_{(K+1)..N}\), \(X_{(K+1)..M}\), \(Y_{(K+1)..M}\), \(Z_{(K+1)..M}\), and \(W_{(K+1)..M}\) as follows:
22
+
23
+ \(H_i = ((A_H * H_{i-2} + B_H * H_{i-1} + C_H) \text{ modulo } D_H) + 1\) for \(i > K\)
24
+ \(X_i = ((A_X * X_{i-2} + B_X * X_{i-1} + C_X) \text{ modulo } D_X) + 1\) for \(i > K\)
25
+ \(Y_i = ((A_Y * Y_{i-2} + B_Y * Y_{i-1} + C_Y) \text{ modulo } D_Y) + 1\) for \(i > K\)
26
+ \(Z_i = ((A_Z * Z_{i-2} + B_Z * Z_{i-1} + C_Z) \text{ modulo } D_Z) + 1\) for \(i > K\)
27
+ \(W_i = ((A_W * W_{i-2} + B_W * W_{i-1} + C_W) \text{ modulo } D_W) + 1\) for \(i > K\)
28
+
29
+
30
+ # Constraints
31
+
32
+ \(1 \le T \le 90\)
33
+ \(2 \le N \le 1,000,000\)
34
+ \(2 \le M \le 1,000,000\)
35
+ \(2 \le K \le min(N, M)\)
36
+ \(0 \le A_H, B_H, C_H, A_X, B_X, C_X, A_Y, B_Y, C_Y, A_Z, B_Z, C_Z, A_W, B_W, C_W \le 1,000,000\)
37
+ \(1 \le D_H, D_Z, D_W \le 1,000,000\)
38
+ \(1 \le D_X, D_Y \le N\)
39
+ \(1 \le H_i \le D_H\)
40
+ \(1 \le X_i \le D_X\)
41
+ \(1 \le Y_i \le D_Y\)
42
+ \(1 \le Z_i \le D_Z\)
43
+ \(1 \le W_i \le D_W\)
44
+
45
+ The sum of \(N + M\) across all springs is at most 15,000,000.
46
+
47
+
48
+ # Input:
49
+
50
+ Input begins with an integer \(T\), the number of springs. For each spring there are 11 lines:
51
+
52
+ The first line contains the 3 space-separated integers \(N\), \(M\), and \(K\).
53
+
54
+ The second line contains the \(K\) space-separated integers \(H_{1..K}\).
55
+
56
+ The third line contains the 4 space-separated integers \(A_H\), \(B_H\), \(C_H\), and \(D_H\).
57
+
58
+ The fourth line contains the \(K\) space-separated integers \(X_{1..K}\).
59
+
60
+ The fifth line contains the 4 space-separated integers \(A_X\), \(B_X\), \(C_X\), and \(D_X\).
61
+
62
+ The sixth line contains the \(K\) space-separated integers \(Y_{1..K}\).
63
+
64
+ The seventh line contains the 4 space-separated integers \(A_Y\), \(B_Y\), \(C_Y\), and \(D_Y\).
65
+
66
+ The eighth line contains the \(K\) space-separated integers \(Z_{1..K}\).
67
+
68
+ The ninth line contains the 4 space-separated integers \(A_Z\), \(B_Z\), \(C_Z\), and \(D_Z\).
69
+
70
+ The tenth line contains the \(K\) space-separated integers \(W_{1..K}\).
71
+
72
+ The eleventh line contains the 4 space-separated integers \(A_W\), \(B_W\), \(C_W\), and \(D_W\).
73
+
74
+
75
+ # Output
76
+
77
+ For the \(i\)th spring, print a line containing *"Case #i: "*, followed by a single integer, the product of \(S_{1..M}\) modulo 1,000,000,007.
78
+
79
+
80
+ # Explanation of Sample
81
+
82
+ For the first spring, after the first earthquake, the spring looks as follows (with the 3 cm-long path which a water spider would follow from column 1 to column 2, or vice versa, indicated in red):
83
+
84
+ {{PHOTO_ID:825086724953069}}
85
+
86
+ After the second earthquake, the spring looks as follows (with the path now only being 2 cm long in either direction):
87
+
88
+ {{PHOTO_ID:2854957798069201}}
89
+
90
+ Therefore, \(S = [6, 4]\), and the final answer is (6 * 4) modulo 1,000,000,007 = 24.
91
+
92
+ For the second spring, \(S = [20, 8, 12]\), with the spring left in the following state after the final earthquake:
93
+
94
+ {{PHOTO_ID:2008456099296384}}
95
+
96
+ For the third spring, \(S = [222, 382, 110, 266, 136, 98]\).
97
+
98
+ For the fourth spring:
99
+ - \(H = [37, 11, 18, 6, 34, 33, 14, 20, 13, 5]\)
100
+ - \(X = [2, 7, 3, 1, 5, 4, 9, 4, 8, 1, 6, 7]\)
101
+ - \(Y = [2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1]\)
102
+ - \(Z = [24, 38, 59, 64, 17, 36, 21, 22, 45, 8, 71, 4]\)
103
+ - \(W = [16, 9, 55, 35, 58, 9, 4, 77, 55, 27, 10, 29]\)
104
+ - \(S = [2926, 3736, 650, 2754, 518, 6108, 5844, 330, 788, 3844, 7096, 9186]\)
2020/finals/spider_spring.out ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 24
2
+ Case #2: 1920
3
+ Case #3: 633021623
4
+ Case #4: 26104609
5
+ Case #5: 222201367
6
+ Case #6: 294984794
7
+ Case #7: 126230317
8
+ Case #8: 701835095
9
+ Case #9: 476355486
10
+ Case #10: 569072565
11
+ Case #11: 770890219
12
+ Case #12: 331545300
13
+ Case #13: 586465964
14
+ Case #14: 527373588
15
+ Case #15: 660459755
16
+ Case #16: 300060524
17
+ Case #17: 334130994
18
+ Case #18: 388975932
19
+ Case #19: 463042989
20
+ Case #20: 304920201
21
+ Case #21: 113772377
22
+ Case #22: 930176068
23
+ Case #23: 769102540
24
+ Case #24: 408615819
25
+ Case #25: 38456416
26
+ Case #26: 151183167
27
+ Case #27: 495825208
28
+ Case #28: 379977285
29
+ Case #29: 464573744
30
+ Case #30: 54753620
31
+ Case #31: 245195659
32
+ Case #32: 641620440
33
+ Case #33: 598545150
34
+ Case #34: 537132549
35
+ Case #35: 923113036
36
+ Case #36: 526657807
37
+ Case #37: 842401388
38
+ Case #38: 419985955
39
+ Case #39: 964642955
40
+ Case #40: 740556252
41
+ Case #41: 841709531
42
+ Case #42: 878347921
43
+ Case #43: 312086860
44
+ Case #44: 955911834
45
+ Case #45: 276614878
46
+ Case #46: 487022859
47
+ Case #47: 795786176
48
+ Case #48: 343190954
49
+ Case #49: 74385760
50
+ Case #50: 321245598
51
+ Case #51: 965080929
52
+ Case #52: 823067303
53
+ Case #53: 135908834
54
+ Case #54: 585300036
55
+ Case #55: 926495473
56
+ Case #56: 931152045
57
+ Case #57: 894178522
58
+ Case #58: 787600444
59
+ Case #59: 293173412
60
+ Case #60: 68209924
61
+ Case #61: 209830385
62
+ Case #62: 912463885
63
+ Case #63: 575215794
64
+ Case #64: 685242113
65
+ Case #65: 444403624
66
+ Case #66: 962706125
67
+ Case #67: 248763200
68
+ Case #68: 792547224
69
+ Case #69: 91173824
70
+ Case #70: 826460523
71
+ Case #71: 236496818
72
+ Case #72: 562509057
73
+ Case #73: 910930512
74
+ Case #74: 534456170
75
+ Case #75: 3476227
76
+ Case #76: 336398749
77
+ Case #77: 196148390
78
+ Case #78: 715823122
79
+ Case #79: 83714804
80
+ Case #80: 641318271
81
+ Case #81: 725243218
82
+ Case #82: 573492387
83
+ Case #83: 510219501
84
+ Case #84: 199176480
85
+ Case #85: 612804801
86
+ Case #86: 425635646
87
+ Case #87: 969437741
88
+ Case #88: 378662112
89
+ Case #89: 507530203
90
+ Case #90: 513904049
91
+ Case #91: 848838110
92
+ Case #92: 322953305
93
+ Case #93: 517889920
94
+ Case #94: 334400162
95
+ Case #95: 466456064
96
+ Case #96: 798068428
97
+ Case #97: 300601975
98
+ Case #98: 64947010
99
+ Case #99: 468758813
100
+ Case #100: 34487030
101
+ Case #101: 259390400
102
+ Case #102: 457033816
103
+ Case #103: 683157728
104
+ Case #104: 793162616
105
+ Case #105: 992419153
106
+ Case #106: 429921572
107
+ Case #107: 165351954
108
+ Case #108: 782762430
2020/finals/spider_spring_sol.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Let a line segment \((a, b)\) refer to a consecutive pair of columns with distinct heights \(a\) and \(b\), such that \(a < b\). If the column indices are \(i\) and \(i+1\), then we'll refer to \(i\) as the line segment's *position*.
2
+
3
+ We'll define the *weight* \(w\) of a line segment to be the number of spider paths which would cross it. If its index is \(i\), then \(w = i*(N-i)\). We'll say that each line segment has two separate *endpoints* with values \(a\) and \(b\), each with weight \(w\), and with weighted values \(w*a\) and \(w*b\).
4
+
5
+ When evaluating an \(S\) value for a water level \(W\), we'll define a *relevant line segment endpoint* as one with a value greater than \(W\). We'll start by computing the sum of relevant \(b\) endpoints' weighted values, and subtract the sum of relevant \(a\) endpoints' weighted values. There may be line segments for which we only added the \(b\) endpoint but didn't subtract the \(a\) endpoint (due to it being having a value no greater than \(W\)). To account for this, we'll take the sum of relevant \(b\) endpoints' weights, subtract the sum of relevant \(a\) endpoints' weights, multiply that difference by \(W\), and finally subtract that product to arrive at our final answer.
6
+
7
+ In order to compute the above values efficiently, we can maintain 4 Fenwick (binary indexed) trees, containing the \(a\) / \(b\) endpoints' weights / weighted values (in each case indexed by the endpoints' values). Assuming these have been maintained, we can compute each \(S\) value in \(O(log(N))\) time.
8
+
9
+ At first glance, it appears we'll need to perform up to \(O(NM)\) updates to these trees, given that up to \(N\) line segments may be affected by each of the \(M\) earthquakes. However, we can observe that setting the heights of an interval of columns \([L, R]\) causes all line segments at positions in \([L, R-1]\) to disappear, causes at most 2 new line segments (at positions \(L-1\) and \(R\)) to appear, and doesn't update any other line segments. Therefore, across all of the earthquakes, only \(O(N + M)\) line segments need to be updated, and we just need to not waste time iterating over positions not featuring line segments.
10
+
11
+ This can be done either by maintaining a set of intervals of equal-height columns (such that there's a line segment between each consecutive pair of intervals), or by maintaining a segment tree of column heights combined with a set of line segment positions. Either way, these data structures may be updated in amortized \(O(log(N))\) time per earthquake and allow us to only update the Fenwick trees described above for \(O(N + M)\) line segments overall. The total complexity is therefore \(O((N + M) log(N))\).
2020/finals/tree_training.cpp ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Tree Training
2
+ // Solution by Jacob Plachta
3
+
4
+ #include <algorithm>
5
+ #include <functional>
6
+ #include <numeric>
7
+ #include <iostream>
8
+ #include <iomanip>
9
+ #include <cstdio>
10
+ #include <cmath>
11
+ #include <complex>
12
+ #include <cstdlib>
13
+ #include <ctime>
14
+ #include <cstring>
15
+ #include <cassert>
16
+ #include <string>
17
+ #include <vector>
18
+ #include <list>
19
+ #include <map>
20
+ #include <set>
21
+ #include <unordered_map>
22
+ #include <unordered_set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x * x); }
53
+ string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
54
+
55
+ const int INF = (int)1e9;
56
+ const LD EPS = 1e-12;
57
+ const LD PI = acos(-1.0);
58
+
59
+ #define GETCHAR getchar_unlocked
60
+
61
+ bool Read(int& x) {
62
+ char c, r = 0, n = 0;
63
+ x = 0;
64
+ for (;;) {
65
+ c = GETCHAR();
66
+ if ((c < 0) && (!r))
67
+ return(0);
68
+ if ((c == '-') && (!r))
69
+ n = 1;
70
+ else if ((c >= '0') && (c <= '9'))
71
+ x = x * 10 + c - '0', r = 1;
72
+ else if (r)
73
+ break;
74
+ }
75
+ if (n)
76
+ x = -x;
77
+ return(1);
78
+ }
79
+
80
+ #define MOD 1000000007
81
+ #define LIM 1000005
82
+ #define LOG 20
83
+
84
+ int N, M;
85
+ char S[LIM];
86
+ int Z[LIM];
87
+ int DS[LIM];
88
+
89
+ int TreeCnt(int h) // # of nodes in binary tree with height h
90
+ {
91
+ return((1 << (h + 1)) - 1);
92
+ }
93
+
94
+ // E(z, s, h) = max. *s which can fit alongside z 0s (with s *s before the 1st 0) in a tree of height at most h (only relevant for z > 0)
95
+ int E(int z, int s, int h)
96
+ {
97
+ if (h >= LOG)
98
+ return(N);
99
+ int left = min(s, h + 1 - z); // *s at root and along leftmost branch
100
+ int cnt = TreeCnt(h); // full tree
101
+ cnt -= TreeCnt(h - left); // subtract subtree of 1st 0
102
+ if (cnt >= s)
103
+ cnt += TreeCnt(h - left - 1); // add back right subtree of 1st 0
104
+ return(cnt);
105
+ }
106
+
107
+ // F(p, z, s) = min. tree height for p *s, z 0s, and s *s before 1st 0 (s ignored if z = 0)
108
+ int F(int p, int z, int s)
109
+ {
110
+ int r1 = z ? (s > 0 ? z : z - 1) : 0;
111
+ int r2 = max(r1, min(LOG, p + z - 1));
112
+ while (r1 < r2)
113
+ {
114
+ int m = (r1 + r2) >> 1;
115
+ if ((z ? E(z, s, m) : TreeCnt(m)) >= p)
116
+ r2 = m;
117
+ else
118
+ r1 = m + 1;
119
+ }
120
+ return(r1);
121
+ }
122
+
123
+ int ProcessCase()
124
+ {
125
+ int i, j, z;
126
+ // input
127
+ scanf("%s", &S);
128
+ N = strlen(S);
129
+ // find 0s
130
+ M = 0;
131
+ Z[M++] = -1;
132
+ Fox(i, N)
133
+ if (S[i] == '0')
134
+ Z[M++] = i;
135
+ Z[M++] = N;
136
+ // A) z = 0
137
+ int ans = 0;
138
+ int v = 0, s = 0;
139
+ Fill(DS, 0);
140
+ Fox1(i, M - 1)
141
+ {
142
+ int x = Z[i] - Z[i - 1] - 1; // sequence of x *s before ith 0
143
+ v += x;
144
+ DS[2]--, DS[x + 2]++;
145
+ }
146
+ Fox1(i, N)
147
+ {
148
+ s += DS[i];
149
+ v += s;
150
+ ans = (ans + (LL)v * F(i, 0, 0)) % MOD;
151
+ }
152
+ // B) 1 <= z <= LOG
153
+ Fox1(z, LOG) // z 0s
154
+ {
155
+ Fox1(i, M - z - 1) // ith 0 as the leftmost 0
156
+ {
157
+ int j = i + z - 1;
158
+ int c1 = Z[i] - Z[i - 1] - 1; // c1 *s to the left
159
+ int c2 = Z[j + 1] - Z[j] - 1; // c2 *s to the right
160
+ int m = Z[j] - Z[i] + 1 - z; // m *s in between
161
+ Fox(s, c1 + 1) // use s *s to the left
162
+ {
163
+ int p = s + m, mp = s + m + c2;
164
+ int h = F(p, z, s);
165
+ while (p <= mp)
166
+ {
167
+ int p2 = min(mp, E(z, s, h));
168
+ ans = (ans + (LL)(p2 - p + 1) * h) % MOD;
169
+ p = p2 + 1, h++;
170
+ }
171
+ }
172
+ }
173
+ }
174
+ // C) z > LOG
175
+ Fox1(i, M - 2) // count contribution of the ith 0
176
+ {
177
+ // add # of intervals containing it
178
+ ans = (ans + (LL)(Z[i] + 1) * (N - Z[i])) % MOD;
179
+ // subtract # of intervals containing it, with <= LOG 0s
180
+ FoxI(j, max(1, i - LOG + 1), i) // jth 0 as the leftmost 0
181
+ {
182
+ int k = min(M - 1, j + LOG); // first disallowed 0
183
+ int c = (LL)(Z[j] - Z[j - 1]) * (Z[k] - Z[i]) % MOD;
184
+ ans = (ans + MOD - c) % MOD;
185
+ }
186
+ // subtract # of intervals starting with it, with > LOG 0s
187
+ int j = i + LOG;
188
+ if (j < M)
189
+ ans = (ans + MOD - (N - Z[j])) % MOD;
190
+ }
191
+ return(ans);
192
+ }
193
+
194
+ int main()
195
+ {
196
+ int T, t;
197
+ Read(T);
198
+ Fox1(t, T)
199
+ printf("Case #%d: %d\n", t, ProcessCase());
200
+ return(0);
201
+ }
2020/finals/tree_training.in ADDED
The diff for this file is too large to render. See raw diff