File size: 4,771 Bytes
f96d8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
// Tree Training
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x) {
char c, r = 0, n = 0;
x = 0;
for (;;) {
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define MOD 1000000007
#define LIM 1000005
#define LOG 20
int N, M;
char S[LIM];
int Z[LIM];
int DS[LIM];
int TreeCnt(int h) // # of nodes in binary tree with height h
{
return((1 << (h + 1)) - 1);
}
// E(z, s, h) = max. *s which can fit alongside z 0s (with s *s before the 1st 0) in a tree of height at most h (only relevant for z > 0)
int E(int z, int s, int h)
{
if (h >= LOG)
return(N);
int left = min(s, h + 1 - z); // *s at root and along leftmost branch
int cnt = TreeCnt(h); // full tree
cnt -= TreeCnt(h - left); // subtract subtree of 1st 0
if (cnt >= s)
cnt += TreeCnt(h - left - 1); // add back right subtree of 1st 0
return(cnt);
}
// F(p, z, s) = min. tree height for p *s, z 0s, and s *s before 1st 0 (s ignored if z = 0)
int F(int p, int z, int s)
{
int r1 = z ? (s > 0 ? z : z - 1) : 0;
int r2 = max(r1, min(LOG, p + z - 1));
while (r1 < r2)
{
int m = (r1 + r2) >> 1;
if ((z ? E(z, s, m) : TreeCnt(m)) >= p)
r2 = m;
else
r1 = m + 1;
}
return(r1);
}
int ProcessCase()
{
int i, j, z;
// input
scanf("%s", &S);
N = strlen(S);
// find 0s
M = 0;
Z[M++] = -1;
Fox(i, N)
if (S[i] == '0')
Z[M++] = i;
Z[M++] = N;
// A) z = 0
int ans = 0;
int v = 0, s = 0;
Fill(DS, 0);
Fox1(i, M - 1)
{
int x = Z[i] - Z[i - 1] - 1; // sequence of x *s before ith 0
v += x;
DS[2]--, DS[x + 2]++;
}
Fox1(i, N)
{
s += DS[i];
v += s;
ans = (ans + (LL)v * F(i, 0, 0)) % MOD;
}
// B) 1 <= z <= LOG
Fox1(z, LOG) // z 0s
{
Fox1(i, M - z - 1) // ith 0 as the leftmost 0
{
int j = i + z - 1;
int c1 = Z[i] - Z[i - 1] - 1; // c1 *s to the left
int c2 = Z[j + 1] - Z[j] - 1; // c2 *s to the right
int m = Z[j] - Z[i] + 1 - z; // m *s in between
Fox(s, c1 + 1) // use s *s to the left
{
int p = s + m, mp = s + m + c2;
int h = F(p, z, s);
while (p <= mp)
{
int p2 = min(mp, E(z, s, h));
ans = (ans + (LL)(p2 - p + 1) * h) % MOD;
p = p2 + 1, h++;
}
}
}
}
// C) z > LOG
Fox1(i, M - 2) // count contribution of the ith 0
{
// add # of intervals containing it
ans = (ans + (LL)(Z[i] + 1) * (N - Z[i])) % MOD;
// subtract # of intervals containing it, with <= LOG 0s
FoxI(j, max(1, i - LOG + 1), i) // jth 0 as the leftmost 0
{
int k = min(M - 1, j + LOG); // first disallowed 0
int c = (LL)(Z[j] - Z[j - 1]) * (Z[k] - Z[i]) % MOD;
ans = (ans + MOD - c) % MOD;
}
// subtract # of intervals starting with it, with > LOG 0s
int j = i + LOG;
if (j < M)
ans = (ans + MOD - (N - Z[j])) % MOD;
}
return(ans);
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
printf("Case #%d: %d\n", t, ProcessCase());
return(0);
} |