|
|
|
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <unordered_set>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <bitset>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
#define LL long long
|
|
#define LD long double
|
|
#define PR pair<int,int>
|
|
|
|
#define Fox(i,n) for (i=0; i<n; i++)
|
|
#define Fox1(i,n) for (i=1; i<=n; i++)
|
|
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
|
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
|
#define FoxR1(i,n) for (i=n; i>0; i--)
|
|
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
|
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
|
#define Min(a,b) a=min(a,b)
|
|
#define Max(a,b) a=max(a,b)
|
|
#define Sz(s) int((s).size())
|
|
#define All(s) (s).begin(),(s).end()
|
|
#define Fill(s,v) memset(s,v,sizeof(s))
|
|
#define pb push_back
|
|
#define mp make_pair
|
|
#define x first
|
|
#define y second
|
|
|
|
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
|
|
template<typename T> T Sqr(T x) { return(x * x); }
|
|
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
|
|
|
|
const int INF = (int)1e9;
|
|
const LD EPS = 1e-12;
|
|
const LD PI = acos(-1.0);
|
|
|
|
#define GETCHAR getchar_unlocked
|
|
|
|
bool Read(int& x)
|
|
{
|
|
char c, r = 0, n = 0;
|
|
x = 0;
|
|
for (;;)
|
|
{
|
|
c = GETCHAR();
|
|
if ((c < 0) && (!r))
|
|
return(0);
|
|
if ((c == '-') && (!r))
|
|
n = 1;
|
|
else
|
|
if ((c >= '0') && (c <= '9'))
|
|
x = x * 10 + c - '0', r = 1;
|
|
else
|
|
if (r)
|
|
break;
|
|
}
|
|
if (n)
|
|
x = -x;
|
|
return(1);
|
|
}
|
|
|
|
#define LIM 705
|
|
|
|
int N;
|
|
int nxt[2][LIM], prv[2][LIM];
|
|
vector<int> seq[2][2];
|
|
int L[2][2];
|
|
PR pos[2][LIM];
|
|
|
|
int F[2], subS[2];
|
|
vector<int> CS;
|
|
int csInd, sumC, baseAns;
|
|
|
|
int ProcessQuery0(int* K)
|
|
{
|
|
int i, ans = 0;
|
|
|
|
Fox(i, 2)
|
|
if (L[0][i] > K[i])
|
|
return(-1);
|
|
|
|
Fox(i, N)
|
|
ans += nxt[0][i] == nxt[1][i];
|
|
return(ans);
|
|
}
|
|
|
|
void PrecomputeForQuery1(int C)
|
|
{
|
|
int i, j;
|
|
|
|
Fox(i, 2)
|
|
F[i] = min(C - L[0][1 - i], L[0][i]);
|
|
auto IsFree = [&](int i, int e) {
|
|
PR p = pos[0][i];
|
|
return(p.y > L[0][p.x] - F[p.x] - e);
|
|
};
|
|
|
|
baseAns = 0;
|
|
Fox(i, N)
|
|
baseAns += nxt[0][i] == nxt[1][i] ||
|
|
(IsFree(i, 0) && IsFree(nxt[1][i], 1));
|
|
|
|
|
|
sumC = 0;
|
|
Fill(subS, 0);
|
|
bitset<LIM> BC = 1;
|
|
Fox(i, 2)
|
|
{
|
|
auto& s = seq[1][i];
|
|
int c = 0, f = -1;
|
|
Fox(j, Sz(s))
|
|
{
|
|
if (!IsFree(s[j], 0))
|
|
continue;
|
|
c++;
|
|
|
|
if (c == 1 && j && IsFree(s[j - 1], 1))
|
|
f = pos[0][s[j - 1]].x;
|
|
|
|
if (j + 1 == Sz(s) || !IsFree(s[j + 1], 0))
|
|
{
|
|
if (f < 0)
|
|
sumC += c, BC |= (BC << c);
|
|
else
|
|
subS[f] += c;
|
|
c = 0, f = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
CS.clear();
|
|
Fox(i, sumC + 1)
|
|
if (BC[i])
|
|
CS.pb(i);
|
|
csInd = 0;
|
|
}
|
|
|
|
int ProcessQuery1(int* K)
|
|
{
|
|
|
|
int i, S[2];
|
|
Fox(i, 2)
|
|
S[i] = K[i] - (L[0][i] - F[i]) - subS[i];
|
|
|
|
if (min(S[0], S[1]) < 0)
|
|
return(baseAns - 1);
|
|
while (csInd + 1 < Sz(CS) && CS[csInd + 1] <= S[0])
|
|
csInd++;
|
|
if (sumC - CS[csInd] <= S[1])
|
|
return(baseAns);
|
|
return(baseAns - 1);
|
|
}
|
|
|
|
int ProcessQuery2(int* K)
|
|
{
|
|
int i;
|
|
|
|
Fox(i, 2)
|
|
if (L[1][i] > K[i])
|
|
return(N - 1);
|
|
return(N);
|
|
}
|
|
|
|
int ProcessQuery(int d, int c, int x, int y)
|
|
{
|
|
int i, K[2] = { min(c, x), min(c, y) };
|
|
|
|
Fox(i, 2)
|
|
if (L[0][i] > c)
|
|
return(-1);
|
|
|
|
if (N > K[0] + K[1])
|
|
return(-1);
|
|
return d == 0
|
|
? ProcessQuery0(K)
|
|
: d == 1
|
|
? ProcessQuery1(K)
|
|
: ProcessQuery2(K);
|
|
}
|
|
|
|
void ProcessCase()
|
|
{
|
|
int i, j, z;
|
|
|
|
Fill(prv, -1);
|
|
|
|
Read(N);
|
|
Fox(i, N)
|
|
{
|
|
Fox(z, 2)
|
|
{
|
|
Read(nxt[z][i]), nxt[z][i]--;
|
|
prv[z][nxt[z][i]] = i;
|
|
}
|
|
}
|
|
|
|
Fox(z, 2)
|
|
{
|
|
Fox(i, 2)
|
|
{
|
|
seq[z][i].clear();
|
|
j = N + i;
|
|
while (j >= 0)
|
|
{
|
|
pos[z][j] = mp(i, Sz(seq[z][i]));
|
|
seq[z][i].pb(j);
|
|
j = prv[z][j];
|
|
}
|
|
L[z][i] = Sz(seq[z][i]) - 1;
|
|
}
|
|
}
|
|
|
|
int d, c, x, y;
|
|
LL G[LIM] = { 0 };
|
|
Fox(d, min(3, N + 1))
|
|
{
|
|
Fox(c, N + 1)
|
|
{
|
|
if (d == 1)
|
|
PrecomputeForQuery1(c);
|
|
Fox(x, N + 1)
|
|
{
|
|
Fox(y, N + 1)
|
|
G[ProcessQuery(d, c, x, y) + 1] += d == 2 ? N - 1 : 1;
|
|
}
|
|
}
|
|
}
|
|
Fox(i, N + 2)
|
|
printf(" %lld", G[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int T, t;
|
|
Read(T);
|
|
Fox1(t, T)
|
|
{
|
|
printf("Case #%d:", t);
|
|
ProcessCase();
|
|
}
|
|
return(0);
|
|
} |