Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2020 /round3 /smart_carts.cpp
wjomlex's picture
2020 Problems
f96d8dd verified
raw
history blame
5.74 kB
// Smart Carts
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <unordered_set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x)
{
char c, r = 0, n = 0;
x = 0;
for (;;)
{
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else
if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else
if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define LIM 705
int N;
int nxt[2][LIM], prv[2][LIM];
vector<int> seq[2][2];
int L[2][2];
PR pos[2][LIM];
int F[2], subS[2];
vector<int> CS;
int csInd, sumC, baseAns;
int ProcessQuery0(int* K)
{
int i, ans = 0;
// check whether either initial line is too long to be valid
Fox(i, 2)
if (L[0][i] > K[i])
return(-1);
// count initially-satisfied carts
Fox(i, N)
ans += nxt[0][i] == nxt[1][i];
return(ans);
}
void PrecomputeForQuery1(int C)
{
int i, j;
// determine which carts are free
Fox(i, 2)
F[i] = min(C - L[0][1 - i], L[0][i]);
auto IsFree = [&](int i, int e) { // if e=1, include non-free, accessible latches
PR p = pos[0][i];
return(p.y > L[0][p.x] - F[p.x] - e);
};
// compute number of potentially-satisfiable carts
baseAns = 0;
Fox(i, N)
baseAns += nxt[0][i] == nxt[1][i] || // initially satisfied?
(IsFree(i, 0) && IsFree(nxt[1][i], 1)); // free, and target accessible?
// split free, potentially-satisfiable carts into chains
// and compute achievable subset sums of chain lengths
sumC = 0;
Fill(subS, 0);
bitset<LIM> BC = 1;
Fox(i, 2)
{
auto& s = seq[1][i];
int c = 0, f = -1;
Fox(j, Sz(s))
{
if (!IsFree(s[j], 0))
continue;
c++;
// chain forced to belong to a certain line?
if (c == 1 && j && IsFree(s[j - 1], 1))
f = pos[0][s[j - 1]].x;
// chain ends with this cart?
if (j + 1 == Sz(s) || !IsFree(s[j + 1], 0))
{
if (f < 0)
sumC += c, BC |= (BC << c);
else
subS[f] += c;
c = 0, f = -1;
}
}
}
// store results
CS.clear();
Fox(i, sumC + 1)
if (BC[i])
CS.pb(i);
csInd = 0;
}
int ProcessQuery1(int* K)
{
// compute space for free carts in each line
int i, S[2];
Fox(i, 2)
S[i] = K[i] - (L[0][i] - F[i]) - subS[i];
// check whether all free cart chains may be packed into the lines
if (min(S[0], S[1]) < 0)
return(baseAns - 1);
while (csInd + 1 < Sz(CS) && CS[csInd + 1] <= S[0])
csInd++;
if (sumC - CS[csInd] <= S[1])
return(baseAns);
return(baseAns - 1); // 1 cart must remain unsatisfied due to chain breakage
}
int ProcessQuery2(int* K)
{
int i;
// check whether either target line is too long to be fully satisfied
Fox(i, 2)
if (L[1][i] > K[i])
return(N - 1);
return(N);
}
int ProcessQuery(int d, int c, int x, int y)
{
int i, K[2] = { min(c, x), min(c, y) };
// check whether either initial line is too long to be valid
Fox(i, 2)
if (L[0][i] > c)
return(-1);
// check whether there are too many carts to form valid final lines
if (N > K[0] + K[1])
return(-1);
return d == 0
? ProcessQuery0(K)
: d == 1
? ProcessQuery1(K)
: ProcessQuery2(K);
}
void ProcessCase()
{
int i, j, z;
// init
Fill(prv, -1);
// input
Read(N);
Fox(i, N)
{
Fox(z, 2)
{
Read(nxt[z][i]), nxt[z][i]--;
prv[z][nxt[z][i]] = i;
}
}
// split into lines (initial/target)
Fox(z, 2)
{
Fox(i, 2)
{
seq[z][i].clear();
j = N + i;
while (j >= 0)
{
pos[z][j] = mp(i, Sz(seq[z][i]));
seq[z][i].pb(j);
j = prv[z][j];
}
L[z][i] = Sz(seq[z][i]) - 1;
}
}
// process queries
int d, c, x, y;
LL G[LIM] = { 0 };
Fox(d, min(3, N + 1))
{
Fox(c, N + 1)
{
if (d == 1)
PrecomputeForQuery1(c);
Fox(x, N + 1)
{
Fox(y, N + 1)
G[ProcessQuery(d, c, x, y) + 1] += d == 2 ? N - 1 : 1;
}
}
}
Fox(i, N + 2)
printf(" %lld", G[i]);
printf("\n");
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
{
printf("Case #%d:", t);
ProcessCase();
}
return(0);
}