File size: 5,742 Bytes
f96d8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
// Smart Carts
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <unordered_set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x)
{
char c, r = 0, n = 0;
x = 0;
for (;;)
{
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else
if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else
if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define LIM 705
int N;
int nxt[2][LIM], prv[2][LIM];
vector<int> seq[2][2];
int L[2][2];
PR pos[2][LIM];
int F[2], subS[2];
vector<int> CS;
int csInd, sumC, baseAns;
int ProcessQuery0(int* K)
{
int i, ans = 0;
// check whether either initial line is too long to be valid
Fox(i, 2)
if (L[0][i] > K[i])
return(-1);
// count initially-satisfied carts
Fox(i, N)
ans += nxt[0][i] == nxt[1][i];
return(ans);
}
void PrecomputeForQuery1(int C)
{
int i, j;
// determine which carts are free
Fox(i, 2)
F[i] = min(C - L[0][1 - i], L[0][i]);
auto IsFree = [&](int i, int e) { // if e=1, include non-free, accessible latches
PR p = pos[0][i];
return(p.y > L[0][p.x] - F[p.x] - e);
};
// compute number of potentially-satisfiable carts
baseAns = 0;
Fox(i, N)
baseAns += nxt[0][i] == nxt[1][i] || // initially satisfied?
(IsFree(i, 0) && IsFree(nxt[1][i], 1)); // free, and target accessible?
// split free, potentially-satisfiable carts into chains
// and compute achievable subset sums of chain lengths
sumC = 0;
Fill(subS, 0);
bitset<LIM> BC = 1;
Fox(i, 2)
{
auto& s = seq[1][i];
int c = 0, f = -1;
Fox(j, Sz(s))
{
if (!IsFree(s[j], 0))
continue;
c++;
// chain forced to belong to a certain line?
if (c == 1 && j && IsFree(s[j - 1], 1))
f = pos[0][s[j - 1]].x;
// chain ends with this cart?
if (j + 1 == Sz(s) || !IsFree(s[j + 1], 0))
{
if (f < 0)
sumC += c, BC |= (BC << c);
else
subS[f] += c;
c = 0, f = -1;
}
}
}
// store results
CS.clear();
Fox(i, sumC + 1)
if (BC[i])
CS.pb(i);
csInd = 0;
}
int ProcessQuery1(int* K)
{
// compute space for free carts in each line
int i, S[2];
Fox(i, 2)
S[i] = K[i] - (L[0][i] - F[i]) - subS[i];
// check whether all free cart chains may be packed into the lines
if (min(S[0], S[1]) < 0)
return(baseAns - 1);
while (csInd + 1 < Sz(CS) && CS[csInd + 1] <= S[0])
csInd++;
if (sumC - CS[csInd] <= S[1])
return(baseAns);
return(baseAns - 1); // 1 cart must remain unsatisfied due to chain breakage
}
int ProcessQuery2(int* K)
{
int i;
// check whether either target line is too long to be fully satisfied
Fox(i, 2)
if (L[1][i] > K[i])
return(N - 1);
return(N);
}
int ProcessQuery(int d, int c, int x, int y)
{
int i, K[2] = { min(c, x), min(c, y) };
// check whether either initial line is too long to be valid
Fox(i, 2)
if (L[0][i] > c)
return(-1);
// check whether there are too many carts to form valid final lines
if (N > K[0] + K[1])
return(-1);
return d == 0
? ProcessQuery0(K)
: d == 1
? ProcessQuery1(K)
: ProcessQuery2(K);
}
void ProcessCase()
{
int i, j, z;
// init
Fill(prv, -1);
// input
Read(N);
Fox(i, N)
{
Fox(z, 2)
{
Read(nxt[z][i]), nxt[z][i]--;
prv[z][nxt[z][i]] = i;
}
}
// split into lines (initial/target)
Fox(z, 2)
{
Fox(i, 2)
{
seq[z][i].clear();
j = N + i;
while (j >= 0)
{
pos[z][j] = mp(i, Sz(seq[z][i]));
seq[z][i].pb(j);
j = prv[z][j];
}
L[z][i] = Sz(seq[z][i]) - 1;
}
}
// process queries
int d, c, x, y;
LL G[LIM] = { 0 };
Fox(d, min(3, N + 1))
{
Fox(c, N + 1)
{
if (d == 1)
PrecomputeForQuery1(c);
Fox(x, N + 1)
{
Fox(y, N + 1)
G[ProcessQuery(d, c, x, y) + 1] += d == 2 ? N - 1 : 1;
}
}
}
Fox(i, N + 2)
printf(" %lld", G[i]);
printf("\n");
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
{
printf("Case #%d:", t);
ProcessCase();
}
return(0);
} |