rem
stringlengths 0
322k
| add
stringlengths 0
2.05M
| context
stringlengths 8
228k
|
---|---|---|
return csc_matrix(data, (colind, col_ptr)) | return csc_matrix(data, (rowind, col_ptr)) | def tocsc(self): # Return Compressed Sparse Column format arrays for this matrix keys = self.keys() keys.sort(csc_cmp) nnz = len(keys) data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey1 != current_col: current_col = ikey1 col_ptr[ikey1] = k data[k] = self[key] colind[k] = ikey0 k += 1 col_ptr[-1] = nnz data = array(data) colind = array(colind) col_ptr = array(col_ptr) return csc_matrix(data, (colind, col_ptr)) |
mask = (a < threshmin) | mask |= (a < threshmin) | def threshold(a, threshmin=None, threshmax=None, newval=0): """Clip array to a given value. |
aux = numpy.take( ar, perm 0,axis=0) | aux = numpy.take( ar, perm, axis=0) | def unique1d( ar1, retIndx = False ): """Unique elements of 1D array. When retIndx is True, return also the indices indx such that ar1[indx] is the resulting array of unique elements.""" ar = numpy.array( ar1 ).ravel() if retIndx: perm = numpy.argsort( ar ) aux = numpy.take( ar, perm 0,axis=0) flag = ediff1d( aux, 1 ) != 0 return numpy.compress( flag, perm ,axis=-1), numpy.compress( flag, aux ,axis=-1) else: aux = numpy.sort( ar ) return numpy.compress( ediff1d( aux, 1 ) != 0, aux ,axis=-1) |
def ppcc_max(x, dist='tukeylambda'): | def ppcc_max(x, brack=(0.0,1.0), dist='tukeylambda'): | def ppcc_max(x, dist='tukeylambda'): """Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a one-parameter family of distributions. See also ppcc_plot """ try: ppf_func = eval('distributions.%sppf'%dist) except AttributError: raise dist, "is not a valid distribution with a ppf." res = inspect.getargspec(ppf_func) if not ('loc' == res[0][-2] and 'scale' == res[0][-1] and \ 0.0==res[-1][-2] and 1.0==res[-1][-1]): raise ValueError, "Function has does not have default location", \ "and scale parameters\n that are 0.0 and 1.0 respectively." if (1 < len(res[0])-len(res[-1])-1) or \ (1 > len(res[0])-3): raise ValueError, "Must be a one-parameter family." N = len(x) Ui = zeros(N)*1.0 Ui[-1] = 0.5**(1.0/N) Ui[0] = 1-Ui[-1] i = arange(2,N) Ui[1:-1] = (i-0.3175)/(N+0.365) osr = sort(x) def tempfunc(shape, mi, yvals, func): xvals = func(mi, shape) slope, intercept, r, prob, sterrest = stats.linregress(xvals, yvals) return 1-r return optimize.brent(tempfunc, args=(Ui, osr, ppf_func)) |
return optimize.brent(tempfunc, args=(Ui, osr, ppf_func)) | return optimize.brent(tempfunc, brack=brack, args=(Ui, osr, ppf_func)) | def tempfunc(shape, mi, yvals, func): xvals = func(mi, shape) slope, intercept, r, prob, sterrest = stats.linregress(xvals, yvals) return 1-r |
""" Later have log(0) raise warning, not error | """ log(0) should print warning, but succeed. | def check_log_0(self): """ Later have log(0) raise warning, not error """ try: val = logn(3,0) assert(0) except OverflowError: pass |
assert(0) | except: assert(0) def check_log_neg(self): """ log(-1) should print warning, but still raises error. """ try: val = logn(3,-1) | def check_log_0(self): """ Later have log(0) raise warning, not error """ try: val = logn(3,0) assert(0) except OverflowError: pass |
pass def check_log_neg(self): """ Later have log(-1) raise warning, not error """ try: val = logn(3,-1) assert(0) except ValueError: | def check_log_0(self): """ Later have log(0) raise warning, not error """ try: val = logn(3,0) assert(0) except OverflowError: pass |
|
val = logn(3,0) assert(0) except OverflowError: pass | val = log2(0) except: assert(0) | def check_log_0(self): """ Later have log(0) raise warning, not error """ try: val = logn(3,0) assert(0) except OverflowError: pass |
val = logn(3,-1) assert(0) except ValueError: | val = log2(-1) assert(0) except OverflowError: | def check_log_neg(self): """ Later have log(-1) raise warning, not error """ try: val = logn(3,-1) assert(0) except ValueError: pass |
ftype, lastel, data, index0, index1 = \ mat.ftype, mat.nnz, mat.data, mat.rowind, mat.indptr | if csc: index0 = mat.rowind else: index0 = mat.colind ftype, lastel, data, index1 = mat.ftype, mat.nnz, mat.data, mat.indptr | def spsolve(A, b, permc_spec=2): if not hasattr(A, 'tocsr') and not hasattr(A, 'tocsc'): raise ValueError, "sparse matrix must be able to return CSC format--"\ "A.tocsc()--or CSR format--A.tocsr()" if not hasattr(A, 'shape'): raise ValueError, "sparse matrix must be able to return shape" \ " (rows, cols) = A.shape" M, N = A.shape if (M != N): raise ValueError, "matrix must be square" if isUmfpack and useUmfpack: mat = _toCS_umfpack( A ) if mat.dtype.char not in 'dD': raise ValueError, "convert matrix data to double, please, using"\ " .astype(), or set linsolve.useUmfpack = False" family = {'d' : 'di', 'D' : 'zi'} umf = umfpack.UmfpackContext( family[mat.dtype.char] ) return umf.linsolve( umfpack.UMFPACK_A, mat, b, autoTranspose = True ) else: mat, csc = _toCS_superLU( A ) ftype, lastel, data, index0, index1 = \ mat.ftype, mat.nnz, mat.data, mat.rowind, mat.indptr gssv = eval('_superlu.' + ftype + 'gssv') print "data-ftype: %s compared to data %s" % (ftype, data.dtype.char) print "Calling _superlu.%sgssv" % ftype return gssv(N, lastel, data, index0, index1, b, csc, permc_spec)[0] |
res = csc + other return res | return csc + other | def __add__(self, other): csc = self.tocsc() res = csc + other return res |
res = csc - other return res | return csc - other | def __sub__(self, other): csc = self.tocsc() res = csc - other return res |
res = csc.__rsub__(other) return res | return csc.__rsub__(other) | def __rsub__(self, other): # other - self csc = self.tocsc() res = csc.__rsub__(other) return res |
res = csc * other return res | return csc * other | def __mul__(self, other): csc = self.tocsc() res = csc * other return res |
res = csc.__rmul__(other) return res | return csc.__rmul__(other) | def __rmul__(self, other): csc = self.tocsc() res = csc.__rmul__(other) return res |
res = -csc return res | return -csc | def __neg__(self): csc = self.tocsc() res = -csc return res |
res = csc.transpose() return res | return csc.transpose() | def transpose(self): csc = self.tocsc() res = csc.transpose() return res |
res = csc.matrixmultiply(other) return res | return csc.matrixmultiply(other) | def matrixmultiply(self, other): """ A generic interface for matrix-matrix or matrix-vector multiplication. """ csc = self.tocsc() res = csc.matrixmultiply(other) return res |
res = csc.matmat(other) return res | return csc.matmat(other) | def matmat(self, other): csc = self.tocsc() res = csc.matmat(other) return res |
res = csc.matvec(vec) return res | return csc.matvec(vec) | def matvec(self, vec): csc = self.tocsc() res = csc.matvec(vec) return res |
res = csc.rmatvec(vec, conj=conj) return res | return csc.rmatvec(vec, conj=conj) | def rmatvec(self, vec, conj=1): csc = self.tocsc() res = csc.rmatvec(vec, conj=conj) return res |
ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] nnz1, nnz2 = self.nnz, other.nnz data1, data2 = _convert_data(self.data[:nnz1], ocs.data[:nnz2], dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind[:nnz1],self.indptr,data2,ocs.rowind[:nnz2],ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | if isscalar(other): raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') elif isspmatrix(other): ocs = other.tocsc() if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] nnz1, nnz2 = self.nnz, other.nnz data1, data2 = _convert_data(self.data[:nnz1], ocs.data[:nnz2], dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind[:nnz1],self.indptr,data2,ocs.rowind[:nnz2],ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | def __add__(self, other): ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] nnz1, nnz2 = self.nnz, other.nnz data1, data2 = _convert_data(self.data[:nnz1], ocs.data[:nnz2], dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind[:nnz1],self.indptr,data2,ocs.rowind[:nnz2],ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) |
ocs = csc_matrix(other) | ocs = other.tocsc() | def __rmul__(self, other): # other * self if isspmatrix(other): ocs = csc_matrix(other) return ocs.matmat(self) elif isscalar(other): new = self.copy() new.data = other * new.data new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: return transpose(self.rmatvec(transpose(other),conj=0)) |
new.data = -new.data | new.data *= -1 | def __neg__(self): new = self.copy() new.data = -new.data return new |
ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind,self.indptr,-data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | if isscalar(other): raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') elif isspmatrix(other): ocs = other.tocsc() if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind,self.indptr,-data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | def __sub__(self, other): ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(data1,self.rowind,self.indptr,-data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) |
ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(-data1,self.rowind,self.indptr,data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | if isscalar(other): raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') elif isspmatrix(other): ocs = other.tocsc() if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(-data1,self.rowind,self.indptr,data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) | def __rsub__(self, other): # implement other - self ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,rowc,ptrc,ierr = func(-data1,self.rowind,self.indptr,data2,ocs.rowind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) |
ocs = csc_matrix(other) | ocs = other.tocsc() | def __pow__(self, other): """ Element-by-element power (unless other is a scalar, in which case return the matrix power.) """ if isscalar(other): new = self.copy() new.data = new.data ** other new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: ocs = csc_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] nnz1, nnz2 = self.nnz, ocs.nnz data1, data2 = _convert_data(self.data[:nnz1], ocs.data[:nnz2], dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscmul') c,rowc,ptrc,ierr = func(data1,self.rowind[:nnz1],self.indptr,data2,ocs.rowind[:nnz2],ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csc_matrix.Construct(c,(rowc,ptrc),M=M,N=N) |
try: m,n = other.shape except AttributeError: | if isscalar(other): | def __add__(self, other): # First check if argument is a scalar try: m,n = other.shape except AttributeError: # Okay, assume it's scalar # Now we would add this scalar to every element. raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') other_csr = other.tocsr() #ocs = csr_matrix(other) if (other_csr.shape != self.shape): raise ValueError, "inconsistent shapes." |
other_csr = other.tocsr() if (other_csr.shape != self.shape): | ocs = other.tocsr() if (ocs.shape != self.shape): | def __add__(self, other): # First check if argument is a scalar try: m,n = other.shape except AttributeError: # Okay, assume it's scalar # Now we would add this scalar to every element. raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') other_csr = other.tocsr() #ocs = csr_matrix(other) if (other_csr.shape != self.shape): raise ValueError, "inconsistent shapes." |
dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) | dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) | def __add__(self, other): # First check if argument is a scalar try: m,n = other.shape except AttributeError: # Okay, assume it's scalar # Now we would add this scalar to every element. raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') other_csr = other.tocsr() #ocs = csr_matrix(other) if (other_csr.shape != self.shape): raise ValueError, "inconsistent shapes." |
ocs = csr_matrix(other) | ocs = other.tocsc() | def __rmul__(self, other): # other * self if isspmatrix(other): ocs = csr_matrix(other) return occ.matmat(self) elif isscalar(other): new = self.copy() new.data = other * new.data new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: return transpose(self.rmatvec(transpose(other),conj=0)) |
ocs = csr_matrix(other) | if isscalar(other): raise NotImplementedError('subtracting a scalar from a sparse matrix is not yet supported') elif isspmatrix(other): ocs = other.tocsr() if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) def __rsub__(self, other): ocs = other.tocsr() | def __sub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) |
dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) def __rsub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) | dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) | def __sub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) |
ocs = csr_matrix(other) | ocs = other.tocsr() | def __pow__(self, other): """ Element-by-element power (unless other is a scalar, in which case return the matrix power.) """ if isscalar(other): new = self.copy() new.data = new.data ** other new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscmul') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2,ocs.colind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) |
if isinstance(other, dok_matrix): | if isscalar(other): raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') elif isinstance(other, dok_matrix): | def __add__(self, other): if isinstance(other, dok_matrix): res = dok_matrix() res.update(self) res.shape = self.shape res.nnz = self.nnz for key in other.keys(): res[key] += other[key] else: csc = self.tocsc() res = csc + other return res |
if isinstance(other, dok_matrix): | if isscalar(other): raise NotImplementedError('subtracting a scalar from a sparse matrix is not yet supported') elif isinstance(other, dok_matrix): | def __sub__(self, other): if isinstance(other, dok_matrix): res = dok_matrix() res.update(self) res.shape = self.shape res.nnz = self.nnz for key in other.keys(): res[key] -= other[key] else: csc = self.tocsc() res = csc - other return res |
if isinstance(other, spmatrix): | if isspmatrix(other): | def __mul__(self, other): if isinstance(other, spmatrix): return self.matmat(other) other = asarray(other) if rank(other) > 0: return self.matvec(other) res = dok_matrix() for key in self.keys(): res[key] = other * self[key] return res |
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. | def bayes_mvs(data,alpha=0.90): """Return Bayesian confidence intervals for the mean, var, and std. | def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) |
alpha gives the probability that the returned interval contains the true parameter. | alpha gives the probability that the returned interval contains the true parameter. Uses peak of conditional pdf as starting center. | def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) |
q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 | def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) |
|
va = fac*distributions.invgamma.ppf(q1,a) | peak = 2/(n+1.) a = (n-1)/2.0 F_peak = distributions.invgamma.cdf(peak,a) q1 = F_peak - alpha/2.0 q2 = F_peak + alpha/2.0 if (q1 < 0): q2 = alpha va = 0.0 else: va = fac*distributions.invgamma.ppf(q1,a) | def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) |
return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) | fac = sqrt(fac) peak = sqrt(2./n) F_peak = distributions.gengamma.cdf(peak,a,-2) q1 = F_peak - alpha/2.0 q2 = F_peak + alpha/2.0 if (q1 < 0): q2 = alpha sta = 0.0 else: sta = fac*distributions.gengamma.ppf(q1,a,-2) stb = fac*distributions.gengamma.ppf(q2,a,-2) return (ma,mb),(va,vb),(sta,stb) | def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb)) |
return special.bdtr(k,n,pr) | sv = errp(0) vals = special.bdtr(k,n,pr) sv = errp(sv) return where(k>=0,vals,0.0) | def binomcdf(k, n, pr=0.5): return special.bdtr(k,n,pr) |
return special.bdtrc(k,n,pr) | sv = errp(0) vals = special.bdtrc(k,n,pr) sv = errp(sv) return where(k>=0,vals,1.0) | def binomsf(k, n, pr=0.5): return special.bdtrc(k,n,pr) |
cond2 = (pr >= 1) || (pr <=0) | cond2 = (pr >= 1) | (pr <=0) | def nbinompdf(k, n, pr=0.5): k = arr(k) cond2 = (pr >= 1) || (pr <=0) cond1 = arr((k > n) & (k == floor(k))) sv =errp(0) temp = special.nbdtr(k,n,pr) temp2 = special.nbdtr(k-1,n,pr) sv = errp(sv) return select([cond2,cond1,k==n], [scipy.nan,temp-temp2,temp],0.0) |
k, K = 0, len(stream._buffer) | k, K = stream.linelist[0], len(stream._buffer) | def getcolumns(stream, columns, separator): comment = stream.comment lenc = stream.lencomment k, K = 0, len(stream._buffer) while k < K: firstline = stream._buffer[k] if firstline != '' and firstline[:lenc] != comment: break k = k + 1 if k == K: raise ValueError, "No data found in file." firstline = stream._buffer[k] N = len(columns) collist = [None]*N colsize = [None]*N for k in range(N): collist[k] = build_numberlist(columns[k]) val = process_line(firstline, separator, collist, [Numeric.Float]*N, 0) for k in range(N): colsize[k] = len(val[k]) return colsize, collist |
raise ValueError, "No data found in file." | raise ValueError, "First line to read not within %d lines of top." % K | def getcolumns(stream, columns, separator): comment = stream.comment lenc = stream.lencomment k, K = 0, len(stream._buffer) while k < K: firstline = stream._buffer[k] if firstline != '' and firstline[:lenc] != comment: break k = k + 1 if k == K: raise ValueError, "No data found in file." firstline = stream._buffer[k] N = len(columns) collist = [None]*N colsize = [None]*N for k in range(N): collist[k] = build_numberlist(columns[k]) val = process_line(firstline, separator, collist, [Numeric.Float]*N, 0) for k in range(N): colsize[k] = len(val[k]) return colsize, collist |
assert_array_almost_equal(row*M, row*M.todense()) | def check_rmatvec(self): M = self.spmatrix(matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]])) assert_array_almost_equal([1,2,3,4]*M, dot([1,2,3,4], M.toarray())) row = matrix([[1,2,3,4]]) # This doesn't work since row*M computes incorrectly when row is 2d. # NumPy needs special hooks for this. # assert_array_almost_equal(row*M, row*M.todense()) |
|
assert_array_almost_equal((a*bsp).todense(), a*b) | def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b) |
|
assert_array_almost_equal((a*csp).todense(), a*c) | def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b) |
|
z = self.dot(x) + self.dot(y) - 2*self.dot(x, y) | z = self.dot(x, x) + self.dot(y, y) - 2*self.dot(x, y) | def __call__(self, x, y): z = self.dot(x) + self.dot(y) - 2*self.dot(x, y) return N.exp(-self.gamma*z) |
def blackman(M): | def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = grid[1:(M+1)/2+1] if M % 2 == 0: w = (2*n-1.0)/M w = r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w def blackman(M,sym=1): | def blackman(M): """The M-point Blackman window. """ n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) |
return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): | w = 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def bartlett(M,sym=1): | def blackman(M): """The M-point Blackman window. """ n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) |
return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) def hanning(M): | w = where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) if not sym and not odd: w = w[:-1] return w def hanning(M,sym=1): | def bartlett(M): """The M-point Bartlett window. """ n = arange(0,M) return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) |
return 0.5-0.5*cos(2.0*pi*n/(M-1)) def hamming(M): | w = 0.5-0.5*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def hamming(M,sym=1): | def hanning(M): """The M-point Hanning window. """ n = arange(0,M) return 0.5-0.5*cos(2.0*pi*n/(M-1)) |
n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) def kaiser(M,beta): | if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.54-0.46*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def kaiser(M,beta,sym=1): | def hamming(M): """The M-point Hamming window. """ n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) |
return special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) def gaussian(M,std): | w = special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) if not sym and not odd: w = w[:-1] return w def gaussian(M,std,sym=1): | def kaiser(M,beta): """Returns a Kaiser window of length M with shape parameter beta. """ n = arange(0,M) alpha = (M-1)/2.0 return special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) |
return exp(-n**2 / sig2) def general_gaussian(M,p,sig): | w = exp(-n**2 / sig2) if not sym and not odd: w = w[:-1] return w def general_gaussian(M,p,sig,sym=1): | def gaussian(M,std): """Returns a Gaussian window of length M with standard-deviation std. """ n = arange(0,M)-(M-1.0)/2.0 sig2 = 2*std*std return exp(-n**2 / sig2) |
return exp(-0.5*(n/sig)**(2*p)) | w = exp(-0.5*(n/sig)**(2*p)) if not sym and not odd: w = w[:-1] return w | def general_gaussian(M,p,sig): """Returns a window with a generalized Gaussian shape. exp(-0.5*(x/sig)**(2*p)) half power point is at (2*log(2)))**(1/(2*p))*sig """ n = arange(0,M)-(M-1.0)/2.0 return exp(-0.5*(n/sig)**(2*p)) |
a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] | a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1] | def invres(r,p,k,tol=1e-3,rtype='avg'): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval, unique_roots """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = r1array(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] | b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1] | def residue(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += sig return r, p, k |
a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] | a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1] | def residue(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += sig return r, p, k |
def residuez(b,a,tol=1e-3): pass def _get_window(window,Nx): | def residuez(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(z) / a(z). If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: invresz, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) gain = a[0] brev, arev = b[::-1],a[::-1] krev,brev = polydiv(brev,arev) k,b = krev[::-1],brev[::-1] p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn))[::-1] sig = mult[n] for m in range(sig,0,-1): if sig > m: term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,1.0/pout[n]) / polyval(an,1.0/pout[n]) \ / factorial(sig-m) / (-pout[n])**(sig-m) indx += sig return r/gain, p, k def invresz(r,p,k,tol=1e-3,rtype='avg'): """Compute b(z) and a(z) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: residuez, poly, polyval, unique_roots """ extra = Numeric.asarray(k) p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = r1array(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) brev = polyadd(brev,(r[indx]*poly(t2))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a def get_window(window,Nx,fftbins=1): """Return a window of length Nx and type window. If fftbins is 1, create a "periodic" window ready to use with ifftshift and be multiplied by the result of an fft (SEE ALSO fftfreq). Window types: boxcar, triang, blackman, hamming, hanning, bartlett, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width). If the window requires no parameters, then it can be a string. If the window requires parameters, the window argument should be a tuple with the first argument the string name of the window, and the next arguments the needed parameters. If window is a floating point number, it is interpreted as the beta parameter of the kaiser window. """ sym = not fftbins | def residuez(b,a,tol=1e-3): pass |
params = (Nx,)+args | params = (Nx,)+args + (sym,) | def _get_window(window,Nx): try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, types.TupleType): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, types.StringType): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: raise ValueError, "That window needs a parameter -- pass a tuple" else: winstr = window if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hanning elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian else: raise ValueError, "Unknown window type." params = (Nx,)+args else: winfunc = kaiser params = (Nx,beta) return winfunc(*params) |
params = (Nx,beta) | params = (Nx,beta,sym) | def _get_window(window,Nx): try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, types.TupleType): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, types.StringType): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: raise ValueError, "That window needs a parameter -- pass a tuple" else: winstr = window if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hanning elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian else: raise ValueError, "Unknown window type." params = (Nx,)+args else: winfunc = kaiser params = (Nx,beta) return winfunc(*params) |
def resample(x,num,axis=0,window=None): | def resample(x,num,t=None,axis=0,window=None): | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
non, band-limited signals. | sampled signals you didn't intend to be interpreted as band-limited. | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
from scipy import fft,ifft | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
|
W = _get_window(window,Nx) | W = ifftshift(get_window(window,Nx)) newshape = ones(len(x.shape)) newshape[axis] = len(W) W.shape = newshape | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
return y.real | y = y.real if t is None: return y | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
return y | new_t = arange(0,num)*(t[1]-t[0])* Nx / float(num) + t[0] return y, new_t | def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y |
class truncnorm_gen(norm_gen): | class truncnorm_gen(rv_continuous): | def _entropy(self, b): eB = exp(b) return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB) |
self.nb = norm_gen._cdf(self,b) self.na = norm_gen._cdf(self,a) | self.nb = norm._cdf(b) self.na = norm._cdf(a) | def _argcheck(self, a, b): self.a = a self.b = b self.nb = norm_gen._cdf(self,b) self.na = norm_gen._cdf(self,a) return (a != b) |
return norm_gen._pdf(self, x) / (self.nb - self.na) | return norm._pdf(x) / (self.nb - self.na) | def _pdf(self, x, a, b): return norm_gen._pdf(self, x) / (self.nb - self.na) |
return (norm_gen._cdf(self, x) - self.na) / (self.nb - self.na) | return (norm._cdf(x) - self.na) / (self.nb - self.na) | def _cdf(self, x, a, b): return (norm_gen._cdf(self, x) - self.na) / (self.nb - self.na) |
return norm_gen._ppf(self, q*self.nb + self.na*(1.0-q)) | return norm._ppf(q*self.nb + self.na*(1.0-q)) | def _ppf(self, q, a, b): return norm_gen._ppf(self, q*self.nb + self.na*(1.0-q)) |
pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b) | pA, pB = norm._pdf(a), norm._pdf(b) | def _stats(self, a, b): nA, nB = self.na, self.nb d = nB - nA pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b) mu = (pB - pA) / d mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None |
Truncated Normal distribution | Truncated Normal distribution. The standard form of this distribution is a standard normal truncated to the range [a,b] --- notice that a and b are defined over the domain of the standard normal. | def _stats(self, a, b): nA, nB = self.na, self.nb d = nB - nA pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b) mu = (pB - pA) / d mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None |
nbd = NA.zeros((n,), NA.Int) | nbd = NA.zeros((n,), NA.Int32) | def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g |
iwa = NA.zeros((3*n,), NA.Int) | iwa = NA.zeros((3*n,), NA.Int32) | def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g |
lsave = NA.zeros((4,), NA.Int) isave = NA.zeros((44,), NA.Int) | lsave = NA.zeros((4,), NA.Int32) isave = NA.zeros((44,), NA.Int32) | def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g |
v v v v v v v ^ ^ ^ ^ ^ ^ ^ | def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c |
|
idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] | if m.mask is ma.nomask: return 0 | def __unmasked(m, get_val, relpos): idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx |
idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx | idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx | def __unmasked(m, get_val, relpos): idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx |
return 0.0 | shape = list(a.shape) del shape[axis] if shape: return np.zeros(shape, dtype=float) else: return np.float64(0.0) | def moment(a, moment=1, axis=0): """Calculates the nth moment about the mean for a sample. Generally used to calculate coefficients of skewness and kurtosis. Parameters ---------- a : array moment : int axis : int or None Returns ------- The appropriate moment along the given axis or over all values if axis is None. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. return 0.0 else: mn = np.expand_dims(np.mean(a,axis),axis) s = np.power((a-mn), moment) return np.mean(s,axis) |
wxPython_thread = ppimport_attr(ppimport('gui_thread'),wxPython_thread) | wxPython_thread = ppimport_attr(ppimport('gui_thread'),'wxPython_thread') | def _import_packages(): """ Import packages in scipy directory that implement info_<packagename>.py. See DEVELOPERS.txt for more info. """ from glob import glob import os frame = sys._getframe(1) for info_file in glob(os.path.join(__path__[0],'*','info_*.py')): package_name = os.path.basename(os.path.dirname(info_file)) if package_name != os.path.splitext(os.path.basename(info_file))[0][5:]: print ' !! Mismatch of package name %r and %s' \ % (package_name, info_file) continue sys.path.insert(0,os.path.dirname(info_file)) # TODO: catch exceptions here: exec 'import info_%s as info_module' % (package_name) del sys.path[0] if getattr(info_module,'ignore',0): continue global_symbols = getattr(info_module,'global_symbols',[]) if getattr(info_module,'postpone_import',1): code = '%s = ppimport(%r)' % (package_name,package_name) for name in global_symbols: code += '\n%s = ppimport_attr(%s,%r)' % (name,package_name,name) else: code = 'import %s' % (package_name) # XXX: Should we check the existence of package.test? Warn? code += '\n%s.test = ScipyTest(%s).test' % (package_name,package_name) if global_symbols: code += '\nfrom '+package_name+' import '+','.join(global_symbols) # XXX: Should we catch exceptions here?? exec (code, frame.f_globals,frame.f_locals) _level_docs(info_module) # XXX: Ugly hack to fix package name: code = '_level_docs()[-1] = (%s.__name__,_level_docs()[-1][1])' \ % (package_name) exec (code, frame.f_globals,frame.f_locals) |
if self.iter >= GeneralizedLinearModel.niter: | if self.iter >= Model.niter: | def cont(self, results, tol=1.0e-05): """ Continue iterating, or has convergence been obtained? """ if self.iter >= GeneralizedLinearModel.niter: return False |
self.mu = lband self.ml = uband | self.mu = uband self.ml = lband | def __init__(self, method = 'adams', with_jacobian = 0, rtol=1e-6,atol=1e-12, lband=None,uband=None, order = 12, nsteps = 500, max_step = 0.0, # corresponds to infinite min_step = 0.0, first_step = 0.0, # determined by solver ): |
print "x = ", x print "f = ", f | def calcfc(x, con): f = func(x, *args) k = 0 print "x = ", x print "f = ", f for constraints in cons: con[k] = constraints(x, *consargs) k += 1 print "con = ", con return f |
|
print "con = ", con | def calcfc(x, con): f = func(x, *args) k = 0 print "x = ", x print "f = ", f for constraints in cons: con[k] = constraints(x, *consargs) k += 1 print "con = ", con return f |
|
def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None) | def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None): | def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None) if badvalue is None: badvalue = nan self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -scipy.inf if b is None: self.b = scipy.inf self.xa = xa self.xb = xb self.xtol = xtol self._size = 1 self.m = 0.0 self.moment_type = momtype self.vecfunc = new.instancemethod(sgf(self._ppf_single_call), self, rv_continuous) self.expandarr = 1 if momtype == 0: self.generic_moment = new.instancemethod(sgf(self._mom0_sc), self, rv_continuous) else: self.generic_moment = new.instancemethod(sgf(self._mom1_sc), self, rv_continuous) cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pdf_signature = inspect.getargspec(self._pdf.im_func) numargs2 = len(pdf_signature[0]) - 2 self.numargs = max(numargs1, numargs2) |
alpha = alpha_gen(a=0.0,name='alpha',d1='this',d2='is',d3='a test') | alpha = alpha_gen(a=0.0,name='alpha') | def _stats(self): return [scipy.inf]*2 + [scipy.nan]*2 |
result = result + cast[imag.typecode()](1j) * imag | try: result = result + _unit_imag[imag.typecode()] * imag except KeyError: result = result + 1j*imag | def _parse_mimatrix(fid,bytes): dclass, cmplx, nzmax =_parse_array_flags(fid) dims = _get_element(fid)[0] name = ''.join(asarray(_get_element(fid)[0]).astype('c')) tupdims = tuple(dims[::-1]) if dclass in mxArrays: result, unused =_get_element(fid) if type == mxCHAR_CLASS: result = ''.join(asarray(result).astype('c')) else: if cmplx: imag, unused =_get_element(fid) result = result + cast[imag.typecode()](1j) * imag result = squeeze(transpose(reshape(result,tupdims))) elif dclass == mxCELL_CLASS: length = product(dims) result = zeros(length, PyObject) for i in range(length): sa, unused = _get_element(fid) result[i]= sa result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSTRUCT_CLASS: length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_struct() for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() # object is like a structure with but with a class name elif dclass == mxOBJECT_CLASS: class_name = ''.join(asarray(_get_element(fid)[0]).astype('c')) length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_obj() result[i]._classname = class_name for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSPARSE_CLASS: rowind, unused = _get_element(fid) colind, unused = _get_element(fid) res, unused = _get_element(fid) if cmplx: imag, unused = _get_element(fid) res = res + cast[imag.typecode()](1j)*imag if have_sparse: spmat = scipy.sparse.csc_matrix(res, (rowind[:len(res)], colind), M=dims[0],N=dims[1]) result = spmat else: result = (dims, rowind, colind, res) return result, name |
res = res + cast[imag.typecode()](1j)*imag | try: res = res + _unit_imag[imag.typecode()] * imag except KeyError: res = res + 1j*imag | def _parse_mimatrix(fid,bytes): dclass, cmplx, nzmax =_parse_array_flags(fid) dims = _get_element(fid)[0] name = ''.join(asarray(_get_element(fid)[0]).astype('c')) tupdims = tuple(dims[::-1]) if dclass in mxArrays: result, unused =_get_element(fid) if type == mxCHAR_CLASS: result = ''.join(asarray(result).astype('c')) else: if cmplx: imag, unused =_get_element(fid) result = result + cast[imag.typecode()](1j) * imag result = squeeze(transpose(reshape(result,tupdims))) elif dclass == mxCELL_CLASS: length = product(dims) result = zeros(length, PyObject) for i in range(length): sa, unused = _get_element(fid) result[i]= sa result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSTRUCT_CLASS: length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_struct() for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() # object is like a structure with but with a class name elif dclass == mxOBJECT_CLASS: class_name = ''.join(asarray(_get_element(fid)[0]).astype('c')) length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_obj() result[i]._classname = class_name for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSPARSE_CLASS: rowind, unused = _get_element(fid) colind, unused = _get_element(fid) res, unused = _get_element(fid) if cmplx: imag, unused = _get_element(fid) res = res + cast[imag.typecode()](1j)*imag if have_sparse: spmat = scipy.sparse.csc_matrix(res, (rowind[:len(res)], colind), M=dims[0],N=dims[1]) result = spmat else: result = (dims, rowind, colind, res) return result, name |
xplt_path = os.path.join(local_path,'xplt') | xplt_path = os.path.join(dot_join(parent_package,'xplt')) | def configuration(parent_package=''): """ gist only works with an X-windows server This will install *.gs and *.gp files to '%spython%s/site-packages/scipy/xplt' % (sys.prefix,sys.version[:3]) """ x11 = x11_info().get_info() if not x11: return config = default_config_dict('xplt',parent_package) local_path = get_path(__name__) sources = ['gistCmodule.c'] sources = [os.path.join(local_path,x) for x in sources] ext_arg = {'name':dot_join(parent_package,'xplt.gistC'), 'sources':sources} dict_append(ext_arg,**x11) dict_append(ext_arg,libraries=['m']) ext = Extension (**ext_arg) config['ext_modules'].append(ext) from glob import glob gist = glob(os.path.join(local_path,'gist','*.c')) # libraries are C static libraries config['libraries'].append(('gist',{'sources':gist, 'macros':[('STDC_HEADERS',1)]})) file_ext = ['*.gs','*.gp', '*.ps', '*.help'] xplt_files = [glob(os.path.join(local_path,x)) for x in file_ext] xplt_files = reduce(lambda x,y:x+y,xplt_files,[]) xplt_path = os.path.join(local_path,'xplt') config['data_files'].extend( [(xplt_path,xplt_files)]) return config |
from scipy import real_if_close def invres(r,p,k,tol=1e-3): | from scipy import real_if_close, r1array def invres(r,p,k,tol=1e-3,rtype='avg'): | def unique_roots(p,tol=1e-3,rtype='min'): """Determine the unique roots and their multiplicities in two lists Inputs: p -- The list of roots tol --- The tolerance for two roots to be considered equal. rtype --- How to determine the returned root from the close ones: 'max': pick the maximum 'min': pick the minimum 'avg': average roots Outputs: (pout, mult) pout -- The list of sorted roots mult -- The multiplicity of each root """ if rtype in ['max','maximum']: comproot = scipy.max elif rtype in ['min','minimum']: comproot = scipy.min elif rtype in ['avg','mean']: comproot = scipy.mean p = asarray(p)*1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5*tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr-curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult) |
See also: residue, poly, polyval | See also: residue, poly, polyval, unique_roots | def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
pout, mult = unique_roots(p,tol=tol,rtype='avg') | pout, mult = unique_roots(p,tol=tol,rtype=rtype) | def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
a = poly(p) | a = r1array(poly(p)) | def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
Subsets and Splits