rem
stringlengths 0
322k
| add
stringlengths 0
2.05M
| context
stringlengths 8
228k
|
---|---|---|
deltax = fontsize*points / 2.8 * DX / DY | deltax = fontsize*points / 2.6 * DX / DY | def legend(text,linetypes=None,lleft=None,color='black',tfont='helvetica',fontsize=14,nobox=0): """Construct and place a legend. Description: Build a legend and place it on the current plot with an interactive prompt. Inputs: text -- A list of strings which document the curves. linetypes -- If not given, then the text strings are associated with the curves in the order they were originally drawn. Otherwise, associate the text strings with the corresponding curve types given. See plot for description. """ global _hold sys = gist.plsys() if sys == 0: gist.plsys(1) viewp = gist.viewport() gist.plsys(sys) DX = viewp[1] - viewp[0] DY = viewp[3] - viewp[2] width = DY / 10.0; if lleft is None: lleft = gist.mouse(0,0,"Click on point for lower left coordinate.") llx = lleft[0] lly = lleft[1] else: llx,lly = lleft[:2] savesys = gist.plsys() dx = width / 3.0 legarr = Numeric.arange(llx,llx+width,dx) legy = Numeric.ones(legarr.shape) dy = fontsize*points*1.2 deltay = fontsize*points / 2.8 deltax = fontsize*points / 2.8 * DX / DY ypos = lly + deltay; if linetypes is None: linetypes = _GLOBAL_LINE_TYPES[:] # copy them out gist.plsys(0) savehold = _hold _hold = 1 for k in range(len(text)): plot(legarr,ypos*legy,linetypes[k]) #print llx+width+deltax, ypos-deltay if text[k] != "": gist.plt(text[k],llx+width+deltax,ypos-deltay, color=color,font=tfont,height=fontsize,tosys=0) ypos = ypos + dy _hold = savehold if nobox: pass else: gist.plsys(0) maxlen = MLab.max(map(len,text)) c1 = (llx-deltax,lly-deltay) c2 = (llx + width + deltax + fontsize*points* maxlen/1.8 + deltax, lly + len(text)*dy) linesx0 = [c1[0],c1[0],c2[0],c2[0]] linesy0 = [c1[1],c2[1],c2[1],c1[1]] linesx1 = [c1[0],c2[0],c2[0],c1[0]] linesy1 = [c2[1],c2[1],c1[1],c1[1]] gist.pldj(linesx0,linesy0,linesx1,linesy1,color=color) gist.plsys(savesys) return |
raise ValueError, "dense array does not have rank 1 or 2" | raise ValueError, "dense array must have rank 1 or 2" | def __init__(self, arg1, dims=None, nzmax=100, dtype='d', copy=False): spmatrix.__init__(self) if isdense(arg1): # Convert the dense array or matrix arg1 to CSC format if rank(arg1) == 2: s = arg1 if s.dtype.char not in 'fdFD': # Use a double array as the source (but leave it alone) s = s*1.0 if (rank(s) == 2): M, N = s.shape dtype = s.dtype func = getattr(sparsetools, _transtabl[dtype.char]+'fulltocsc') ierr = irow = jcol = 0 nnz = sum(ravel(s != 0.0)) a = zeros((nnz,), dtype) rowa = zeros((nnz,), 'i') ptra = zeros((N+1,), 'i') while 1: a, rowa, ptra, irow, jcol, ierr = \ func(s, a, rowa, ptra, irow, jcol, ierr) if (ierr == 0): break nnz = nnz + ALLOCSIZE a = resize1d(a, nnz) rowa = resize1d(rowa, nnz) self.data = a self.rowind = rowa self.indptr = ptra self.shape = (M, N) # s = dok_matrix(arg1).tocsc(nzmax) # self.shape = s.shape # self.data = s.data # self.rowind = s.rowind # self.indptr = s.indptr else: raise ValueError, "dense array does not have rank 1 or 2" elif isspmatrix(arg1): s = arg1 if isinstance(s, csc_matrix): # do nothing but copy information self.shape = s.shape if copy: self.data = s.data.copy() self.rowind = s.rowind.copy() self.indptr = s.indptr.copy() else: self.data = s.data self.rowind = s.rowind self.indptr = s.indptr elif isinstance(s, csr_matrix): self.shape = s.shape func = getattr(sparsetools, s.ftype+'transp') self.data, self.rowind, self.indptr = \ func(s.shape[1], s.data, s.colind, s.indptr) else: temp = s.tocsc() self.data = temp.data self.rowind = temp.rowind self.indptr = temp.indptr self.shape = temp.shape elif type(arg1) == tuple: try: # Assume it's a tuple of matrix dimensions (M, N) (M, N) = arg1 M = int(M) # will raise TypeError if (data, ij) N = int(N) self.data = zeros((nzmax,), dtype) self.rowind = zeros((nzmax,), int) self.indptr = zeros((N+1,), int) self.shape = (M, N) except (ValueError, TypeError): try: # Try interpreting it as (data, ij) (s, ij) = arg1 assert isinstance(ij, ArrayType) and (rank(ij) == 2) and (shape(ij) == (len(s), 2)) except (AssertionError, TypeError, ValueError): try: # Try interpreting it as (data, rowind, indptr) (s, rowind, indptr) = arg1 if copy: self.data = array(s) self.rowind = array(rowind) self.indptr = array(indptr) else: self.data = asarray(s) self.rowind = asarray(rowind) self.indptr = asarray(indptr) except: raise ValueError, "unrecognized form for csc_matrix constructor" else: # (data, ij) format temp = coo_matrix(s, ij, dims=dims, nzmax=nzmax, \ dtype=dtype).tocsc() self.shape = temp.shape self.data = temp.data self.rowind = temp.rowind self.indptr = temp.indptr else: raise ValueError, "unrecognized form for csc_matrix constructor" |
else: raise ValueError, "dense array must have rank 1 or 2" | def __init__(self, arg1, dims=None, nzmax=100, dtype='d', copy=False): spmatrix.__init__(self) if isdense(arg1): # Convert the dense array or matrix arg1 to CSR format if rank(arg1) == 2: s = arg1 ocsc = csc_matrix(transpose(s)) self.colind = ocsc.rowind self.indptr = ocsc.indptr self.data = ocsc.data self.shape = (ocsc.shape[1], ocsc.shape[0]) |
|
def __getitem__(self, key): | def get(self, key, default=0.): """This overrides the dict.get method, providing type checking but otherwise equivalent functionality. """ try: i, j = key assert isinstance(i, int) and isinstance(j, int) except (AssertionError, TypeError, ValueError): raise IndexError, "index must be a pair of integers" try: assert not (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]) except AssertionError: raise IndexError, "index out of bounds" return dict.get(self, key, default) def __getitem__(self, key): | def __getitem__(self, key): if self._validate: # Sanity checks: key must be a pair of integers if not isinstance(key, tuple) or len(key) != 2: raise TypeError, "key must be a tuple of two integers" if type(key[0]) != int or type(key[1]) != int: raise TypeError, "key must be a tuple of two integers" |
class _test_horiz_slicing(ScipyTestCase): | class _test_horiz_slicing: | def check_solve(self): """ Test whether the lu_solve command segfaults, as reported by Nils Wagner for a 64-bit machine, 02 March 2005 (EJS) """ n = 20 A = self.spmatrix((n,n), dtype=complex) x = numpy.rand(n) y = numpy.rand(n-1)+1j*numpy.rand(n-1) r = numpy.rand(n) for i in range(len(x)): A[i,i] = x[i] for i in range(len(y)): A[i,i+1] = y[i] A[i+1,i] = numpy.conjugate(y[i]) B = A.tocsc() xx = splu(B).solve(r) # Don't actually test the output until we know what it should be ... |
class _test_vert_slicing(ScipyTestCase): | class _test_vert_slicing: | def check_get_horiz_slice(self): """Test for new slice functionality (EJS)""" B = asmatrix(arange(50.).reshape(5,10)) A = self.spmatrix(B) assert_array_equal(B[1,:], A[1,:].todense()) assert_array_equal(B[1,2:5], A[1,2:5].todense()) |
class _test_fancy_indexing(ScipyTestCase): | class _test_fancy_indexing: | def check_get_vert_slice(self): """Test for new slice functionality (EJS)""" B = asmatrix(arange(50.).reshape(5,10)) A = self.spmatrix(B) assert_array_equal(B[2:5,0], A[2:5,0].todense()) assert_array_equal(B[:,1], A[:,1].todense()) |
class test_csr(_test_cs, _test_horiz_slicing): | class test_csr(_test_cs, _test_horiz_slicing, ScipyTestCase): | def check_fancy_indexing(self): """Test for new indexing functionality""" B = ones((5,10), float) A = dok_matrix(B) # Write me! # Both slicing and fancy indexing: not yet supported # assert_array_equal(B[(1,2),:], A[(1,2),:].todense()) # assert_array_equal(B[(1,2,3),:], A[(1,2,3),:].todense()) |
class test_csc(_test_cs, _test_vert_slicing): | class test_csc(_test_cs, _test_vert_slicing, ScipyTestCase): | def check_empty(self): """Test manipulating empty matrices. Fails in SciPy SVN <= r1768 """ # This test should be made global (in _test_cs), but first we # need a uniform argument order / syntax for constructing an # empty sparse matrix. (coo_matrix is currently different). shape = (5, 5) for mytype in [float32, float64, complex64, complex128]: a = self.spmatrix(shape, dtype=mytype) b = a + a c = 2 * a d = a + a.tocsc() e = a * a.tocoo() assert_equal(e.A, a.A*a.A) # These fail in all revisions <= r1768: assert(e.dtype.type == mytype) assert(e.A.dtype.type == mytype) |
class test_dok(_test_cs): | class test_dok(_test_cs, ScipyTestCase): | def check_empty(self): """Test manipulating empty matrices. Fails in SciPy SVN <= r1768 """ # This test should be made global (in _test_cs), but first we # need a uniform argument order / syntax for constructing an # empty sparse matrix. (coo_matrix is currently different). shape = (5, 5) for mytype in [float32, float64, complex64, complex128]: a = self.spmatrix(shape, dtype=mytype) b = a + a c = 2 * a d = a + a.tocsc() e = a * a.tocoo() assert_equal(e.A, a.A*a.A) assert(e.dtype.type == mytype) assert(e.A.dtype.type == mytype) |
class test_lil(_test_cs, _test_horiz_slicing): | class test_lil(_test_cs, _test_horiz_slicing, ScipyTestCase): | def check_set_slice(self): """Test for slice functionality (EJS)""" A = dok_matrix((5,10)) B = zeros((5,10), float) A[:,0] = 1 B[:,0] = 1 assert_array_equal(A.todense(), B) A[1,:] = 2 B[1,:] = 2 assert_array_equal(A.todense(), B) A[:,:] = 3 B[:,:] = 3 assert_array_equal(A.todense(), B) A[1:5, 3] = 4 B[1:5, 3] = 4 assert_array_equal(A.todense(), B) A[1, 3:6] = 5 B[1, 3:6] = 5 assert_array_equal(A.todense(), B) A[1:4, 3:6] = 6 B[1:4, 3:6] = 6 assert_array_equal(A.todense(), B) A[1, 3:10:3] = 7 B[1, 3:10:3] = 7 assert_array_equal(A.todense(), B) A[1:5, 0] = range(1,5) B[1:5, 0] = range(1,5) assert_array_equal(A.todense(), B) A[0, 1:10:2] = xrange(1,10,2) B[0, 1:10:2] = xrange(1,10,2) assert_array_equal(A.todense(), B) caught = 0 # The next 6 commands should raise exceptions try: A[0,0] = range(100) except TypeError: caught += 1 try: A[0,0] = arange(100) except TypeError: caught += 1 try: A[0,:] = range(100) except ValueError: caught += 1 try: A[:,1] = range(100) except ValueError: caught += 1 try: A[:,1] = A.copy() except: caught += 1 try: A[:,-1] = range(5) except IndexError: caught += 1 assert caught == 6 |
totalname = name apath, basename = os.path.split(name) name = name + ".ps" | if ignore == '.eps': totalname = name else: totalname = name + ignore apath, basename = os.path.split(totalname) name = totalname + ".ps" | def eps(name, epsi=0, pdf=0): """ Write the picture in the current graphics window to the Encapsulated PostScript file NAME+".eps" (i.e.- the suffix .eps is added to NAME). The last extension of name is stripped to avoid .eps.eps files If epsi is 1, this function requires the ps2epsi utility which comes with the project GNU Ghostscript program and will place a bitmap image in the postscript file. Any hardcopy file associated with the current window is first closed, but the default hardcopy file is unaffected. As a side effect, legends are turned off and color table dumping is turned on for the current window. SEE ALSO: window, fma, hcp, hcp_finish, plg """ import os name,ignore = os.path.splitext(name) totalname = name apath, basename = os.path.split(name) name = name + ".ps" window (hcp = name, dump = 1, legends = 0) hcp () window (hcp="") res = 1 if epsi: res = os.system ("ps2epsi " + name) if not res: os.remove(name) os.rename ("%s.epsi" % basename, "%s.eps" % totalname) else: os.rename("%s.ps" % totalname, "%s.eps" % totalname) if pdf: os.system("epstopdf %s.eps" % totalname) |
res = os.system ("ps2epsi " + name) | res = os.system ("ps2epsi " + totalname) | def eps(name, epsi=0, pdf=0): """ Write the picture in the current graphics window to the Encapsulated PostScript file NAME+".eps" (i.e.- the suffix .eps is added to NAME). The last extension of name is stripped to avoid .eps.eps files If epsi is 1, this function requires the ps2epsi utility which comes with the project GNU Ghostscript program and will place a bitmap image in the postscript file. Any hardcopy file associated with the current window is first closed, but the default hardcopy file is unaffected. As a side effect, legends are turned off and color table dumping is turned on for the current window. SEE ALSO: window, fma, hcp, hcp_finish, plg """ import os name,ignore = os.path.splitext(name) totalname = name apath, basename = os.path.split(name) name = name + ".ps" window (hcp = name, dump = 1, legends = 0) hcp () window (hcp="") res = 1 if epsi: res = os.system ("ps2epsi " + name) if not res: os.remove(name) os.rename ("%s.epsi" % basename, "%s.eps" % totalname) else: os.rename("%s.ps" % totalname, "%s.eps" % totalname) if pdf: os.system("epstopdf %s.eps" % totalname) |
os.remove(name) | os.remove(totalname) | def eps(name, epsi=0, pdf=0): """ Write the picture in the current graphics window to the Encapsulated PostScript file NAME+".eps" (i.e.- the suffix .eps is added to NAME). The last extension of name is stripped to avoid .eps.eps files If epsi is 1, this function requires the ps2epsi utility which comes with the project GNU Ghostscript program and will place a bitmap image in the postscript file. Any hardcopy file associated with the current window is first closed, but the default hardcopy file is unaffected. As a side effect, legends are turned off and color table dumping is turned on for the current window. SEE ALSO: window, fma, hcp, hcp_finish, plg """ import os name,ignore = os.path.splitext(name) totalname = name apath, basename = os.path.split(name) name = name + ".ps" window (hcp = name, dump = 1, legends = 0) hcp () window (hcp="") res = 1 if epsi: res = os.system ("ps2epsi " + name) if not res: os.remove(name) os.rename ("%s.epsi" % basename, "%s.eps" % totalname) else: os.rename("%s.ps" % totalname, "%s.eps" % totalname) if pdf: os.system("epstopdf %s.eps" % totalname) |
0.51053920]),8) | 0.51053919]),8) | def check_airy(self): |
for n in range(4): | for n in range(2): | def check_airye(self): |
assert_array_almost_equal(a,b1,5) | for n in range(2,4): b1[n] = b[n]*exp(-abs(real(2.0/3.0*0.01*sqrt(0.01)))) assert_array_almost_equal(a,b1,6) | def check_airye(self): |
numstring = arange(0,2.2,.1) | numstring = arange(0,2.21,.1) | def check_arange(self): numstring = arange(0,2.2,.1) assert_equal(numstring,array([0.,0.1,0.2,0.3, 0.4,0.5,0.6,0.7, 0.8,0.9,1.,1.1, 1.2,1.3,1.4,1.5, 1.6,1.7,1.8,1.9, 2.,2.1])) numstringa = arange(3,4,.3) assert_array_equal(numstringa, array([3.,3.3,3.6,3.9])) numstringb = arange(3,27,3) assert_array_equal(numstringb,array([3.,6.,9.,12., 15.,18.,21.,24.,27.])) numstringc = arange(3.3,27,4) assert_array_equal(numstringc,array([3.3,7.3,11.3,15.3, 19.3,23.3])) |
2.,2.1])) | 2.,2.1,2.2])) | def check_arange(self): numstring = arange(0,2.2,.1) assert_equal(numstring,array([0.,0.1,0.2,0.3, 0.4,0.5,0.6,0.7, 0.8,0.9,1.,1.1, 1.2,1.3,1.4,1.5, 1.6,1.7,1.8,1.9, 2.,2.1])) numstringa = arange(3,4,.3) assert_array_equal(numstringa, array([3.,3.3,3.6,3.9])) numstringb = arange(3,27,3) assert_array_equal(numstringb,array([3.,6.,9.,12., 15.,18.,21.,24.,27.])) numstringc = arange(3.3,27,4) assert_array_equal(numstringc,array([3.3,7.3,11.3,15.3, 19.3,23.3])) |
assert_array_equal(numstringb,array([3.,6.,9.,12., 15.,18.,21.,24.,27.])) | assert_array_equal(numstringb,array([3,6,9,12, 15,18,21,24])) | def check_arange(self): numstring = arange(0,2.2,.1) assert_equal(numstring,array([0.,0.1,0.2,0.3, 0.4,0.5,0.6,0.7, 0.8,0.9,1.,1.1, 1.2,1.3,1.4,1.5, 1.6,1.7,1.8,1.9, 2.,2.1])) numstringa = arange(3,4,.3) assert_array_equal(numstringa, array([3.,3.3,3.6,3.9])) numstringb = arange(3,27,3) assert_array_equal(numstringb,array([3.,6.,9.,12., 15.,18.,21.,24.,27.])) numstringc = arange(3.3,27,4) assert_array_equal(numstringc,array([3.3,7.3,11.3,15.3, 19.3,23.3])) |
assert_array_equal(a,z) | assert_array_equal(a,x) | def check_array(self): x = array([1,2,3,4]) y = array([1,2,3,4]) z = x*y assert_array_equal(z,array([1,4,9,16])) a = arange(1,5,1) assert_array_equal(a,z) |
suites.append( unittest.makeSuite(test_airy,'check_') ) suites.append( unittest.makeSuite(test_airye,'check_') ) suites.append( unittest.makeSuite(test_arange,'check_') ) | def test_suite(level=1): suites = [] if level > 0: |
|
suites.append( unittest.makeSuite(test_array,'check_') ) | def test_suite(level=1): suites = [] if level > 0: |
|
s = asarray(s) if s.typecode() not in 'fdFD': s = s*1.0 | def __init__(self,s,ij=None,M=None,N=None,nzmax=100,typecode=Float,copy=0): spmatrix.__init__(self, 'csc') if isinstance(s,spmatrix): if isinstance(s, csc_matrix): # do nothing but copy information self.shape = s.shape if copy: self.data = s.data.copy() self.rowind = s.rowind.copy() self.indptr = s.indptr.copy() else: self.data = s.data self.rowind = s.rowind self.indptr = s.indptr elif isinstance(s, csr_matrix): self.shape = s.shape func = getattr(sparsetools,s.ftype+'transp') self.data, self.rowind, self.indptr = \ func(s.shape[1], s.data, s.colind, s.indptr) else: temp = s.tocsc() self.data = temp.data self.rowind = temp.rowind self.indptr = temp.indptr self.shape = temp.shape elif isinstance(s,type(3)): M=s N=ij self.data = zeros((nzmax,),typecode) self.rowind = zeros((nzmax,),'i') self.indptr = zeros((N+1,),'i') self.shape = (M,N) elif (isinstance(s,ArrayType) or \ isinstance(s,type([]))): s = asarray(s) if (rank(s) == 2): # converting from a full array M, N = s.shape s = asarray(s) if s.typecode() not in 'fdFD': s = s*1.0 typecode = s.typecode() func = getattr(sparsetools,_transtabl[typecode]+'fulltocsc') ierr = irow = jcol = 0 nnz = sum(ravel(s != 0.0)) a = zeros((nnz,),typecode) rowa = zeros((nnz,),'i') ptra = zeros((N+1,),'i') while 1: a, rowa, ptra, irow, jcol, ierr = \ func(s, a, rowa, ptra, irow, jcol, ierr) if (ierr == 0): break nnz = nnz + ALLOCSIZE a = resize1d(a, nnz) rowa = resize1d(rowa, nnz) |
|
a = spmatrix(arange(1,9),[0,1,1,2,2,3,3,4],[0,1,3,0,2,3,4,4]) | a = csc_matrix(arange(1,9),ij=transpose([[0,1,1,2,2,3,3,4],[0,1,3,0,2,3,4,4]])) | def lu_factor(A, permc_spec=2, diag_pivot_thresh=1.0, drop_tol=0.0, relax=1, panel_size=10): M,N = A.shape if (M != N): raise ValueError, "Can only factor square matrices." csc = A.tocsc() gstrf = eval('_superlu.' + csc.ftype + 'gstrf') return gstrf(N,csc.nnz,csc.data,csc.rowind,csc.indptr,permc_spec, diag_pivot_thresh, drop_tol, relax, panel_size) |
xplt.plot(x0,y0,type,x1,y1,type,hold=1) | plot(x0,y0,type,x1,y1,type,hold=1) | def axes(type='b|'): vals = gist.limits() x0 = [vals[0],vals[1]] y0 = [0,0] x1 = [0,0] y1 = [vals[2], vals[3]] xplt.plot(x0,y0,type,x1,y1,type,hold=1) |
hist = scipy.histogram | from scipy.stats import histogram as hist | def histogram(data,nbins=80,range=None,ntype=0,bar=1,bwidth=0.8,bcolor=0): """Plot a histogram. ntype is the normalization type. Use ntype == 2 to compare with probability density function. """ h = SSH.histogram(data,nbins,range) if ntype == 1: h.normalize() elif ntype == 2: h.normalizeArea() if bar: barplot(h[:,0],h[:,1],width=bwidth,color=bcolor) else: plot(h[:,0],h[:,1]) return h |
approx_grad = False, | approx_grad=0, | def fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad = False, bounds=None, m=10, factr=1e7, pgtol=1e-5, epsilon=1e-8, iprint=-1, maxfun=15000): """ Minimize a function func using the L-BFGS-B algorithm. Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum fprime -- gradient of func. If None, then func returns the function value and the gradient ( f, g = func(x, *args) ), unless approx_grad is True then func returns only f. Called as fprime(x, *args) args -- arguments to pass to function approx_grad -- if true, approximate the gradient numerically and func returns only function value. bounds -- a list of (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction m -- the maximum number of variable metric corrections used to define the limited memory matrix. (the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it). factr -- The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch where epsmch is the machine precision, which is automatically generated by the code. Typical values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol -- The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the ith component of the projected gradient. epsilon -- step size used when approx_grad is true, for numerically calculating the gradient iprint -- controls the frequency of output. <0 means no output. maxfun -- maximum number of function evaluations. Returns: x, f, d = fmin_lbfgs_b(func, x0, ...) x -- position of the minimum f -- value of func at the minimum d -- dictionary of information from routine d['warnflag'] is 0 if converged, 1 if too many function evaluations, 2 if stopped for another reason, given in d['task'] d['grad'] is the gradient at the minimum (should be 0 ish) d['funcalls'] is the number of function calls made. License of L-BFGS-B (Fortran code) ================================== The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <[email protected]>. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below. References * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. """ n = len(x0) if bounds is None: bounds = [(None,None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if approx_grad: def func_and_grad(x): f = func(x, *args) g = approx_fprime(x, func, epsilon, *args) return f, g elif fprime is None: def func_and_grad(x): f, g = func(x, *args) return f, g else: def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g nbd = NA.zeros((n,), NA.Int32) low_bnd = NA.zeros((n,), NA.Float) upper_bnd = NA.zeros((n,), NA.Float) bounds_map = {(None, None): 0, (1, None) : 1, (1, 1) : 2, (None, 1) : 3} for i in range(0, n): l,u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] x = NA.array(x0) f = NA.array(0.0, NA.Float64) g = NA.zeros((n,), NA.Float64) wa = NA.zeros((2*m*n+4*n + 12*m**2 + 12*m,), NA.Float64) iwa = NA.zeros((3*n,), NA.Int32) task = NA.zeros((60,), NA.Character) csave = NA.zeros((60,), NA.Character) lsave = NA.zeros((4,), NA.Int32) isave = NA.zeros((44,), NA.Int32) dsave = NA.zeros((29,), NA.Float64) task[:] = 'START' n_function_evals = 0 while 1: |
x, f, d = fmin_l_bfgs_b(func, x0, approx_grad=True, | x, f, d = fmin_l_bfgs_b(func, x0, approx_grad=1, | def grad(x): g = NA.zeros(x.shape, NA.Float) t1 = x[1] - x[0]**2 g[0] = 2*(x[0]-1) - 16*x[0]*t1 for i in range(1, g.shape[0]-1): t2 = t1 t1 = x[i+1] - x[i]**2 g[i] = 8*t2 - 16*x[i]*t1 g[-1] = 8*t1 return g |
"""Convolve two N-dimensional arrays using FFT. SEE convolve | """Convolve two N-dimensional arrays using FFT. See convolve. | def fftconvolve(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. SEE convolve """ s1 = array(in1.shape) s2 = array(in2.shape) if (s1.dtype.char in ['D','F']) or (s2.dtype.char in ['D', 'F']): cmplx=1 else: cmplx=0 size = s1+s2-1 IN1 = fftn(in1,size) IN1 *= fftn(in2,size) ret = ifftn(IN1) del IN1 if not cmplx: ret = real(ret) if mode == "full": return ret elif mode == "same": if product(s1) > product(s2): osize = s1 else: osize = s2 return _centered(ret,osize) elif mode == "valid": return _centered(ret,abs(s2-s1)+1) |
if (Numeric.product(kernel.shape) > Numeric.product(volume.shape)): | if (product(kernel.shape) > product(volume.shape)): | def convolve(in1, in2, mode='full'): """Convolve two N-dimensional arrays. Description: Convolve in1 and in2 with output size determined by mode. Inputs: in1 -- an N-dimensional array. in2 -- an array with the same number of dimensions as in1. mode -- a flag indicating the size of the output 'valid' (0): The output consists only of those elements that are computed by scaling the larger array with all the values of the smaller array. 'same' (1): The output is the same size as the largest input centered with respect to the 'full' output. 'full' (2): The output is the full discrete linear convolution of the inputs. (Default) Outputs: (out,) out -- an N-dimensional array containing a subset of the discrete linear convolution of in1 with in2. """ volume = asarray(in1) kernel = asarray(in2) if rank(volume) == rank(kernel) == 0: return volume*kernel if (Numeric.product(kernel.shape) > Numeric.product(volume.shape)): temp = kernel kernel = volume volume = temp del temp slice_obj = [slice(None,None,-1)]*len(kernel.shape) val = _valfrommode(mode) return sigtools._correlateND(volume,kernel[slice_obj],val) |
domain = Numeric.ones(kernel_size) numels = Numeric.product(kernel_size) | domain = ones(kernel_size) numels = product(kernel_size) | def medfilt(volume,kernel_size=None): """Perform a median filter on an N-dimensional array. Description: Apply a median filter to the input array using a local window-size given by kernel_size. Inputs: in -- An N-dimensional input array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. Outputs: (out,) out -- An array the same size as input containing the median filtered result. """ volume = asarray(volume) if kernel_size is None: kernel_size = [3] * len(volume.shape) kernel_size = asarray(kernel_size) if len(kernel_size.shape) == 0: kernel_size = [kernel_size.item()] * len(volume.shape) kernel_size = asarray(kernel_size) for k in range(len(volume.shape)): if (kernel_size[k] % 2) != 1: raise ValueError, "Each element of kernel_size should be odd." domain = Numeric.ones(kernel_size) numels = Numeric.product(kernel_size) order = int(numels/2) return sigtools._order_filterND(volume,domain,order) |
"""Perform a wiener filter on an N-dimensional array. | """Perform a Wiener filter on an N-dimensional array. | def wiener(im,mysize=None,noise=None): """Perform a wiener filter on an N-dimensional array. Description: Apply a wiener filter to the N-dimensional array in. Inputs: in -- an N-dimensional array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. noise -- The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Outputs: (out,) out -- Wiener filtered result with the same shape as in. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize); # Estimate the local mean lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) # Estimate the local variance lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 # Estimate the noise power if needed. if noise==None: noise = mean(Numeric.ravel(lVar)) res = (im - lMean) res *= (1-noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out |
Apply a wiener filter to the N-dimensional array in. | Apply a Wiener filter to the N-dimensional array in. | def wiener(im,mysize=None,noise=None): """Perform a wiener filter on an N-dimensional array. Description: Apply a wiener filter to the N-dimensional array in. Inputs: in -- an N-dimensional array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. noise -- The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Outputs: (out,) out -- Wiener filtered result with the same shape as in. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize); # Estimate the local mean lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) # Estimate the local variance lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 # Estimate the noise power if needed. if noise==None: noise = mean(Numeric.ravel(lVar)) res = (im - lMean) res *= (1-noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out |
lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) | lMean = correlate(im,ones(mysize),1) / product(mysize) | def wiener(im,mysize=None,noise=None): """Perform a wiener filter on an N-dimensional array. Description: Apply a wiener filter to the N-dimensional array in. Inputs: in -- an N-dimensional array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. noise -- The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Outputs: (out,) out -- Wiener filtered result with the same shape as in. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize); # Estimate the local mean lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) # Estimate the local variance lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 # Estimate the noise power if needed. if noise==None: noise = mean(Numeric.ravel(lVar)) res = (im - lMean) res *= (1-noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out |
lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 | lVar = correlate(im**2,ones(mysize),1) / product(mysize) - lMean**2 | def wiener(im,mysize=None,noise=None): """Perform a wiener filter on an N-dimensional array. Description: Apply a wiener filter to the N-dimensional array in. Inputs: in -- an N-dimensional array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. noise -- The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Outputs: (out,) out -- Wiener filtered result with the same shape as in. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize); # Estimate the local mean lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) # Estimate the local variance lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 # Estimate the noise power if needed. if noise==None: noise = mean(Numeric.ravel(lVar)) res = (im - lMean) res *= (1-noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out |
noise = mean(Numeric.ravel(lVar)) | noise = mean(ravel(lVar)) | def wiener(im,mysize=None,noise=None): """Perform a wiener filter on an N-dimensional array. Description: Apply a wiener filter to the N-dimensional array in. Inputs: in -- an N-dimensional array. kernel_size -- A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. noise -- The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Outputs: (out,) out -- Wiener filtered result with the same shape as in. """ im = asarray(im) if mysize is None: mysize = [3] * len(im.shape) mysize = asarray(mysize); # Estimate the local mean lMean = correlate(im,Numeric.ones(mysize),1) / Numeric.product(mysize) # Estimate the local variance lVar = correlate(im**2,Numeric.ones(mysize),1) / Numeric.product(mysize) - lMean**2 # Estimate the noise power if needed. if noise==None: noise = mean(Numeric.ravel(lVar)) res = (im - lMean) res *= (1-noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out |
N = Numeric.size(a)-1 M = Numeric.size(b)-1 | N = size(a)-1 M = size(b)-1 | def lfiltic(b,a,y,x=None): """Given a linear filter (b,a) and initial conditions on the output y and the input x, return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input. If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given in the vectors x and y as x = {x[-1],x[-2],...,x[-M]} y = {y[-1],y[-2],...,y[-N]} If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length. The output vector zi contains zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N). """ N = Numeric.size(a)-1 M = Numeric.size(b)-1 K = max(M,N) y = asarray(y) zi = zeros(K,y.dtype.char) if x is None: x = zeros(M,y.dtype.char) else: x = asarray(x) L = Numeric.size(x) if L < M: x = r_[x,zeros(M-L)] L = Numeric.size(y) if L < N: y = r_[y,zeros(N-L)] for m in range(M): zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) for m in range(N): zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) return zi |
L = Numeric.size(x) | L = size(x) | def lfiltic(b,a,y,x=None): """Given a linear filter (b,a) and initial conditions on the output y and the input x, return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input. If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given in the vectors x and y as x = {x[-1],x[-2],...,x[-M]} y = {y[-1],y[-2],...,y[-N]} If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length. The output vector zi contains zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N). """ N = Numeric.size(a)-1 M = Numeric.size(b)-1 K = max(M,N) y = asarray(y) zi = zeros(K,y.dtype.char) if x is None: x = zeros(M,y.dtype.char) else: x = asarray(x) L = Numeric.size(x) if L < M: x = r_[x,zeros(M-L)] L = Numeric.size(y) if L < N: y = r_[y,zeros(N-L)] for m in range(M): zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) for m in range(N): zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) return zi |
L = Numeric.size(y) | L = size(y) | def lfiltic(b,a,y,x=None): """Given a linear filter (b,a) and initial conditions on the output y and the input x, return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input. If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given in the vectors x and y as x = {x[-1],x[-2],...,x[-M]} y = {y[-1],y[-2],...,y[-N]} If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length. The output vector zi contains zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N). """ N = Numeric.size(a)-1 M = Numeric.size(b)-1 K = max(M,N) y = asarray(y) zi = zeros(K,y.dtype.char) if x is None: x = zeros(M,y.dtype.char) else: x = asarray(x) L = Numeric.size(x) if L < M: x = r_[x,zeros(M-L)] L = Numeric.size(y) if L < N: y = r_[y,zeros(N-L)] for m in range(M): zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) for m in range(N): zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) return zi |
zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) | zi[m] = sum(b[m+1:]*x[:M-m]) | def lfiltic(b,a,y,x=None): """Given a linear filter (b,a) and initial conditions on the output y and the input x, return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input. If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given in the vectors x and y as x = {x[-1],x[-2],...,x[-M]} y = {y[-1],y[-2],...,y[-N]} If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length. The output vector zi contains zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N). """ N = Numeric.size(a)-1 M = Numeric.size(b)-1 K = max(M,N) y = asarray(y) zi = zeros(K,y.dtype.char) if x is None: x = zeros(M,y.dtype.char) else: x = asarray(x) L = Numeric.size(x) if L < M: x = r_[x,zeros(M-L)] L = Numeric.size(y) if L < N: y = r_[y,zeros(N-L)] for m in range(M): zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) for m in range(N): zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) return zi |
zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) | zi[m] -= sum(a[m+1:]*y[:N-m]) | def lfiltic(b,a,y,x=None): """Given a linear filter (b,a) and initial conditions on the output y and the input x, return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input. If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given in the vectors x and y as x = {x[-1],x[-2],...,x[-M]} y = {y[-1],y[-2],...,y[-N]} If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length. The output vector zi contains zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N). """ N = Numeric.size(a)-1 M = Numeric.size(b)-1 K = max(M,N) y = asarray(y) zi = zeros(K,y.dtype.char) if x is None: x = zeros(M,y.dtype.char) else: x = asarray(x) L = Numeric.size(x) if L < M: x = r_[x,zeros(M-L)] L = Numeric.size(y) if L < N: y = r_[y,zeros(N-L)] for m in range(M): zi[m] = Numeric.sum(b[m+1:]*x[:M-m]) for m in range(N): zi[m] -= Numeric.sum(a[m+1:]*y[:N-m]) return zi |
return Numeric.ones(M,Numeric.Float) | return ones(M, float) | def boxcar(M,sym=1): """The M-point boxcar window. """ return Numeric.ones(M,Numeric.Float) |
return Numeric.array([]) | return array([]) | def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(1,int((M+1)/2)+1) if M % 2 == 0: w = (2*n-1.0)/M w = numpy.r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = numpy.r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(1,int((M+1)/2)+1) if M % 2 == 0: w = (2*n-1.0)/M w = numpy.r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = numpy.r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w |
w = numpy.r_[w, w[::-1]] | w = r_[w, w[::-1]] | def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(1,int((M+1)/2)+1) if M % 2 == 0: w = (2*n-1.0)/M w = numpy.r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = numpy.r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w |
w = numpy.r_[w, w[-2::-1]] | w = r_[w, w[-2::-1]] | def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(1,int((M+1)/2)+1) if M % 2 == 0: w = (2*n-1.0)/M w = numpy.r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = numpy.r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def parzen(M,sym=1): """The M-point Parzen window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = Numeric.arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) na = extract(n < -(M-1)/4.0, n) nb = extract(abs(n) <= (M-1)/4.0, n) wa = 2*(1-abs(na)/(M/2.0))**3.0 wb = 1-6*(abs(nb)/(M/2.0))**2.0 + 6*(abs(nb)/(M/2.0))**3.0 w = numpy.r_[wa,wb,wa[::-1]] if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def parzen(M,sym=1): """The M-point Parzen window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = Numeric.arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) na = extract(n < -(M-1)/4.0, n) nb = extract(abs(n) <= (M-1)/4.0, n) wa = 2*(1-abs(na)/(M/2.0))**3.0 wb = 1-6*(abs(nb)/(M/2.0))**2.0 + 6*(abs(nb)/(M/2.0))**3.0 w = numpy.r_[wa,wb,wa[::-1]] if not sym and not odd: w = w[:-1] return w |
n = Numeric.arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) | n = arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) | def parzen(M,sym=1): """The M-point Parzen window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = Numeric.arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) na = extract(n < -(M-1)/4.0, n) nb = extract(abs(n) <= (M-1)/4.0, n) wa = 2*(1-abs(na)/(M/2.0))**3.0 wb = 1-6*(abs(nb)/(M/2.0))**2.0 + 6*(abs(nb)/(M/2.0))**3.0 w = numpy.r_[wa,wb,wa[::-1]] if not sym and not odd: w = w[:-1] return w |
w = numpy.r_[wa,wb,wa[::-1]] | w = r_[wa,wb,wa[::-1]] | def parzen(M,sym=1): """The M-point Parzen window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = Numeric.arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0) na = extract(n < -(M-1)/4.0, n) nb = extract(abs(n) <= (M-1)/4.0, n) wa = 2*(1-abs(na)/(M/2.0))**3.0 wb = 1-6*(abs(nb)/(M/2.0))**2.0 + 6*(abs(nb)/(M/2.0))**3.0 w = numpy.r_[wa,wb,wa[::-1]] if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def bohman(M,sym=1): """The M-point Bohman window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 fac = abs(linspace(-1,1,M)[1:-1]) w = (1 - fac)* cos(pi*fac) + 1.0/pi*sin(pi*fac) w = numpy.r_[0,w,0] if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def bohman(M,sym=1): """The M-point Bohman window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 fac = abs(linspace(-1,1,M)[1:-1]) w = (1 - fac)* cos(pi*fac) + 1.0/pi*sin(pi*fac) w = numpy.r_[0,w,0] if not sym and not odd: w = w[:-1] return w |
w = numpy.r_[0,w,0] | w = r_[0,w,0] | def bohman(M,sym=1): """The M-point Bohman window """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 fac = abs(linspace(-1,1,M)[1:-1]) w = (1 - fac)* cos(pi*fac) + 1.0/pi*sin(pi*fac) w = numpy.r_[0,w,0] if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def blackman(M,sym=1): """The M-point Blackman window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def blackman(M,sym=1): """The M-point Blackman window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def nuttall(M,sym=1): """A minimum 4-term Blackman-Harris window according to Nuttall. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 a = [0.3635819, 0.4891775, 0.1365995, 0.0106411] n = arange(0,M) fac = n*2*pi/(M-1.0) w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def nuttall(M,sym=1): """A minimum 4-term Blackman-Harris window according to Nuttall. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 a = [0.3635819, 0.4891775, 0.1365995, 0.0106411] n = arange(0,M) fac = n*2*pi/(M-1.0) w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def blackmanharris(M,sym=1): """The M-point minimum 4-term Blackman-Harris window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 a = [0.35875, 0.48829, 0.14128, 0.01168]; n = arange(0,M) fac = n*2*pi/(M-1.0) w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def blackmanharris(M,sym=1): """The M-point minimum 4-term Blackman-Harris window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 a = [0.35875, 0.48829, 0.14128, 0.01168]; n = arange(0,M) fac = n*2*pi/(M-1.0) w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def bartlett(M,sym=1): """The M-point Bartlett window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = where(Numeric.less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def bartlett(M,sym=1): """The M-point Bartlett window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = where(Numeric.less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
w = where(Numeric.less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) | w = where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) | def bartlett(M,sym=1): """The M-point Bartlett window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = where(Numeric.less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def hanning(M,sym=1): """The M-point Hanning window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.5-0.5*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def hanning(M,sym=1): """The M-point Hanning window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.5-0.5*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def barthann(M,sym=1): """Return the M-point modified Bartlett-Hann window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) fac = abs(n/(M-1.0)-0.5) w = 0.62 - 0.48*fac + 0.38*cos(2*pi*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def barthann(M,sym=1): """Return the M-point modified Bartlett-Hann window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) fac = abs(n/(M-1.0)-0.5) w = 0.62 - 0.48*fac + 0.38*cos(2*pi*fac) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def hamming(M,sym=1): """The M-point Hamming window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.54-0.46*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def hamming(M,sym=1): """The M-point Hamming window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.54-0.46*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def kaiser(M,beta,sym=1): """Returns a Kaiser window of length M with shape parameter beta. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) alpha = (M-1)/2.0 w = special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def kaiser(M,beta,sym=1): """Returns a Kaiser window of length M with shape parameter beta. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) alpha = (M-1)/2.0 w = special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def gaussian(M,std,sym=1): """Returns a Gaussian window of length M with standard-deviation std. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(0,M)-(M-1.0)/2.0 sig2 = 2*std*std w = exp(-n**2 / sig2) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def gaussian(M,std,sym=1): """Returns a Gaussian window of length M with standard-deviation std. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = arange(0,M)-(M-1.0)/2.0 sig2 = 2*std*std w = exp(-n**2 / sig2) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def general_gaussian(M,p,sig,sym=1): """Returns a window with a generalized Gaussian shape. exp(-0.5*(x/sig)**(2*p)) half power point is at (2*log(2)))**(1/(2*p))*sig """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M)-(M-1.0)/2.0 w = exp(-0.5*(n/sig)**(2*p)) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def general_gaussian(M,p,sig,sym=1): """Returns a window with a generalized Gaussian shape. exp(-0.5*(x/sig)**(2*p)) half power point is at (2*log(2)))**(1/(2*p))*sig """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M)-(M-1.0)/2.0 w = exp(-0.5*(n/sig)**(2*p)) if not sym and not odd: w = w[:-1] return w |
return Numeric.array([]) | return array([]) | def slepian(M,width,sym=1): if (M*width > 27.38): raise ValueError, "Cannot reliably obtain slepian sequences for"\ " M*width > 27.38." if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 twoF = width/2.0 alpha = (M-1)/2.0 m = arange(0,M)-alpha n = m[:,NewAxis] k = m[NewAxis,:] AF = twoF*special.sinc(twoF*(n-k)) [lam,vec] = linalg.eig(AF) ind = argmax(abs(lam)) w = abs(vec[:,ind]) w = w / max(w) if not sym and not odd: w = w[:-1] return w |
return Numeric.ones(1,'d') | return ones(1,'d') | def slepian(M,width,sym=1): if (M*width > 27.38): raise ValueError, "Cannot reliably obtain slepian sequences for"\ " M*width > 27.38." if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 twoF = width/2.0 alpha = (M-1)/2.0 m = arange(0,M)-alpha n = m[:,NewAxis] k = m[NewAxis,:] AF = twoF*special.sinc(twoF*(n-k)) [lam,vec] = linalg.eig(AF) ind = argmax(abs(lam)) w = abs(vec[:,ind]) w = w / max(w) if not sym and not odd: w = w[:-1] return w |
if numpy.iscomplexobj(x): | if iscomplexobj(x): | def hilbert(x, N=None): """Return the hilbert transform of x of length N. """ x = asarray(x) if N is None: N = len(x) if N <=0: raise ValueError, "N must be positive." if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) Xf = fft(x,N,axis=0) h = Numeric.zeros(N) if N % 2 == 0: h[0] = h[N/2] = 1 h[1:N/2] = 2 else: h[0] = 1 h[1:(N+1)/2] = 2 if len(x.shape) > 1: h = h[:,Numeric.NewAxis] x = ifft(Xf*h) return x |
x = numpy.real(x) | x = real(x) | def hilbert(x, N=None): """Return the hilbert transform of x of length N. """ x = asarray(x) if N is None: N = len(x) if N <=0: raise ValueError, "N must be positive." if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) Xf = fft(x,N,axis=0) h = Numeric.zeros(N) if N % 2 == 0: h[0] = h[N/2] = 1 h[1:N/2] = 2 else: h[0] = 1 h[1:(N+1)/2] = 2 if len(x.shape) > 1: h = h[:,Numeric.NewAxis] x = ifft(Xf*h) return x |
h = Numeric.zeros(N) | h = zeros(N) | def hilbert(x, N=None): """Return the hilbert transform of x of length N. """ x = asarray(x) if N is None: N = len(x) if N <=0: raise ValueError, "N must be positive." if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) Xf = fft(x,N,axis=0) h = Numeric.zeros(N) if N % 2 == 0: h[0] = h[N/2] = 1 h[1:N/2] = 2 else: h[0] = 1 h[1:(N+1)/2] = 2 if len(x.shape) > 1: h = h[:,Numeric.NewAxis] x = ifft(Xf*h) return x |
h = h[:,Numeric.NewAxis] | h = h[:, NewAxis] | def hilbert(x, N=None): """Return the hilbert transform of x of length N. """ x = asarray(x) if N is None: N = len(x) if N <=0: raise ValueError, "N must be positive." if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) Xf = fft(x,N,axis=0) h = Numeric.zeros(N) if N % 2 == 0: h[0] = h[N/2] = 1 h[1:N/2] = 2 else: h[0] = 1 h[1:(N+1)/2] = 2 if len(x.shape) > 1: h = h[:,Numeric.NewAxis] x = ifft(Xf*h) return x |
if numpy.iscomplexobj(x): | if iscomplexobj(x): | def hilbert2(x,N=None): """Return the '2-D' hilbert transform of x of length N. """ x = asarray(x) x = asarray(x) if N is None: N = x.shape if len(N) < 2: if N <=0: raise ValueError, "N must be positive." N = (N,N) if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) print N Xf = fft2(x,N,axes=(0,1)) h1 = Numeric.zeros(N[0],'d') h2 = Numeric.zeros(N[1],'d') for p in range(2): h = eval("h%d"%(p+1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1/2] = 1 h[1:N1/2] = 2 else: h[0] = 1 h[1:(N1+1)/2] = 2 exec("h%d = h" % (p+1), globals(), locals()) h = h1[:,NewAxis] * h2[NewAxis,:] k = len(x.shape) while k > 2: h = h[:,Numeric.NewAxis] k -= 1 x = ifft2(Xf*h,axes=(0,1)) return x |
x = numpy.real(x) | x = real(x) | def hilbert2(x,N=None): """Return the '2-D' hilbert transform of x of length N. """ x = asarray(x) x = asarray(x) if N is None: N = x.shape if len(N) < 2: if N <=0: raise ValueError, "N must be positive." N = (N,N) if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) print N Xf = fft2(x,N,axes=(0,1)) h1 = Numeric.zeros(N[0],'d') h2 = Numeric.zeros(N[1],'d') for p in range(2): h = eval("h%d"%(p+1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1/2] = 1 h[1:N1/2] = 2 else: h[0] = 1 h[1:(N1+1)/2] = 2 exec("h%d = h" % (p+1), globals(), locals()) h = h1[:,NewAxis] * h2[NewAxis,:] k = len(x.shape) while k > 2: h = h[:,Numeric.NewAxis] k -= 1 x = ifft2(Xf*h,axes=(0,1)) return x |
h1 = Numeric.zeros(N[0],'d') h2 = Numeric.zeros(N[1],'d') | h1 = zeros(N[0],'d') h2 = zeros(N[1],'d') | def hilbert2(x,N=None): """Return the '2-D' hilbert transform of x of length N. """ x = asarray(x) x = asarray(x) if N is None: N = x.shape if len(N) < 2: if N <=0: raise ValueError, "N must be positive." N = (N,N) if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) print N Xf = fft2(x,N,axes=(0,1)) h1 = Numeric.zeros(N[0],'d') h2 = Numeric.zeros(N[1],'d') for p in range(2): h = eval("h%d"%(p+1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1/2] = 1 h[1:N1/2] = 2 else: h[0] = 1 h[1:(N1+1)/2] = 2 exec("h%d = h" % (p+1), globals(), locals()) h = h1[:,NewAxis] * h2[NewAxis,:] k = len(x.shape) while k > 2: h = h[:,Numeric.NewAxis] k -= 1 x = ifft2(Xf*h,axes=(0,1)) return x |
h = h[:,Numeric.NewAxis] | h = h[:, NewAxis] | def hilbert2(x,N=None): """Return the '2-D' hilbert transform of x of length N. """ x = asarray(x) x = asarray(x) if N is None: N = x.shape if len(N) < 2: if N <=0: raise ValueError, "N must be positive." N = (N,N) if numpy.iscomplexobj(x): print "Warning: imaginary part of x ignored." x = numpy.real(x) print N Xf = fft2(x,N,axes=(0,1)) h1 = Numeric.zeros(N[0],'d') h2 = Numeric.zeros(N[1],'d') for p in range(2): h = eval("h%d"%(p+1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1/2] = 1 h[1:N1/2] = 2 else: h[0] = 1 h[1:(N1+1)/2] = 2 exec("h%d = h" % (p+1), globals(), locals()) h = h1[:,NewAxis] * h2[NewAxis,:] k = len(x.shape) while k > 2: h = h[:,Numeric.NewAxis] k -= 1 x = ifft2(Xf*h,axes=(0,1)) return x |
if numpy.iscomplexobj(p): indx = Numeric.argsort(abs(p)) | if iscomplexobj(p): indx = argsort(abs(p)) | def cmplx_sort(p): "sort roots based on magnitude." p = asarray(p) if numpy.iscomplexobj(p): indx = Numeric.argsort(abs(p)) else: indx = Numeric.argsort(p) return Numeric.take(p,indx), indx |
indx = Numeric.argsort(p) return Numeric.take(p,indx), indx | indx = argsort(p) return take(p,indx), indx | def cmplx_sort(p): "sort roots based on magnitude." p = asarray(p) if numpy.iscomplexobj(p): indx = Numeric.argsort(abs(p)) else: indx = Numeric.argsort(p) return Numeric.take(p,indx), indx |
from numpy import real_if_close, atleast_1d | def unique_roots(p,tol=1e-3,rtype='min'): """Determine the unique roots and their multiplicities in two lists Inputs: p -- The list of roots tol --- The tolerance for two roots to be considered equal. rtype --- How to determine the returned root from the close ones: 'max': pick the maximum 'min': pick the minimum 'avg': average roots Outputs: (pout, mult) pout -- The list of sorted roots mult -- The multiplicity of each root """ if rtype in ['max','maximum']: comproot = numpy.maximum elif rtype in ['min','minimum']: comproot = numpy.minimum elif rtype in ['avg','mean']: comproot = numpy.mean p = asarray(p)*1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5*tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr-curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult) |
|
r = Numeric.take(r,indx) | r = take(r,indx) | def invres(r,p,k,tol=1e-3,rtype='avg'): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval, unique_roots """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): | while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): | def invres(r,p,k,tol=1e-3,rtype='avg'): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval, unique_roots """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a |
r = Numeric.take(r,indx) | r = take(r,indx) | def invresz(r,p,k,tol=1e-3,rtype='avg'): """Compute b(z) and a(z) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: residuez, poly, polyval, unique_roots """ extra = asarray(k) p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] # Construct polynomial which does not include any of this root for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) brev = polyadd(brev,(r[indx]*poly(t2))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a |
N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') | N = int(numpy.minimum(num,Nx)) Y = zeros(newshape,'D') | def resample(x,num,t=None,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. The resampled signal starts at the same value of x but is sampled with a spacing of len(x) / num * (spacing of x). Because a Fourier method is used, the signal is assumed periodic. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) The first sample of the returned vector is the same as the first sample of the input vector, the spacing between samples is changed from dx to dx * len(x) / num If t is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. """ x = asarray(x) X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = ifftshift(get_window(window,Nx)) newshape = ones(len(x.shape)) newshape[axis] = len(W) W=W.reshape(newshape) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.dtype.char not in ['F','D']: y = y.real if t is None: return y else: new_t = arange(0,num)*(t[1]-t[0])* Nx / float(num) + t[0] return y, new_t |
from numpy import expand_dims, unique, prod, sort, zeros, ones, \ reshape, r_, any, c_, transpose, take, dot import scipy.linalg as linalg | def resample(x,num,t=None,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. The resampled signal starts at the same value of x but is sampled with a spacing of len(x) / num * (spacing of x). Because a Fourier method is used, the signal is assumed periodic. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) The first sample of the returned vector is the same as the first sample of the input vector, the spacing between samples is changed from dx to dx * len(x) / num If t is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. """ x = asarray(x) X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = ifftshift(get_window(window,Nx)) newshape = ones(len(x.shape)) newshape[axis] = len(W) W=W.reshape(newshape) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.dtype.char not in ['F','D']: y = y.real if t is None: return y else: new_t = arange(0,num)*(t[1]-t[0])* Nx / float(num) + t[0] return y, new_t |
|
if mode == 'F': image = Image.fromstring(mode,shape,data.astype('f').tostring()) elif mode == 'I': | if mode == 'I': | def toimage(arr,high=255,low=0,cmin=None,cmax=None,pal=None, mode=None,channel_axis=None): """Takes a Numeric array and returns a PIL image. The mode of the PIL image depends on the array shape, the pal keyword, and the mode keyword. For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values (from 0 to 255) then mode='P', otherwise mode='L', unless mode is given as 'F' or 'I' in which case a float and/or integer array is made For 3-D arrays, the channel_axis argument tells which dimension of the array holds the channel data. For 3-D arrays if one of the dimensions is 3, the mode is 'RGB' by default or 'YCbCr' if selected. if the The Numeric array must be either 2 dimensional or 3 dimensional. """ data = Numeric.asarray(arr) shape = list(data.shape) valid = len(shape)==2 or ((len(shape)==3) and \ ((3 in shape) or (4 in shape))) assert valid, "Not a suitable array shape for any mode." if len(shape) == 2: shape = (shape[1],shape[0]) # columns show up first if mode in [None, 'L', 'P']: bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax) image = Image.fromstring('L',shape,bytedata.tostring()) if pal is not None: image.putpalette(asarray(pal,typecode=_UInt8).tostring()) # Becomes a mode='P' automagically. elif mode == 'P': # default gray-scale pal = arange(0,256,1,typecode='b')[:,NewAxis] * \ ones((3,),typecode='b')[NewAxis,:] image.putpalette(asarray(pal,typecode=_UInt8).tostring()) return image if mode == '1': # high input gives threshold for 1 bytedata = ((data > high)*255).astype('b') image = Image.fromstring('L',shape,bytedata.tostring()) image = image.convert(mode='1') return image if cmin is None: cmin = amin(ravel(data)) if cmax is None: cmax = amax(ravel(data)) data = (data*1.0 - cmin)*(high-low)/(cmax-cmin) + low if mode == 'F': image = Image.fromstring(mode,shape,data.astype('f').tostring()) elif mode == 'I': image = Image.fromstring(mode,shape,data.astype('i').tostring()) else: raise ValueError, _errstr return image # if here then 3-d array with a 3 or a 4 in the shape length. # Check for 3 in datacube shape --- 'RGB' or 'YCbCr' if channel_axis is None: if (3 in shape): ca = Numeric.nonzero(asarray(shape) == 3)[0] else: ca = Numeric.nonzero(asarray(shape) == 4) if len(ca): ca = ca[0] else: raise ValueError, "Could not find channel dimension." else: ca = channel_axis numch = shape[ca] if numch not in [3,4]: raise ValueError, "Channel axis dimension is not valid." bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax) if ca == 2: strdata = bytedata.tostring() shape = (shape[1],shape[0]) elif ca == 1: strdata = transpose(bytedata,(0,2,1)).tostring() shape = (shape[2],shape[0]) elif ca == 0: strdata = transpose(bytedata,(1,2,0)).tostring() shape = (shape[2],shape[1]) if mode is None: if numch == 3: mode = 'RGB' else: mode = 'RGBA' if mode not in ['RGB','RGBA','YCbCr','CMYK']: raise ValueError, _errstr if mode in ['RGB', 'YCbCr']: assert numch == 3, "Invalid array shape for mode." if mode in ['RGBA', 'CMYK']: assert numch == 4, "Invalid array shape for mode." # Here we know data and mode is coorect image = Image.fromstring(mode, shape, strdata) return image |
if isinstance(other, dok_matrix): | if isinstance(other, spmatrix): | def __mul__(self, other): if isinstance(other, dok_matrix): return self.matmat(other) other = asarray(other) if rank(other) > 0: return self.matvec(other) res = dok_matrix() for key in self.keys(): res[key] = other * self[key] return res |
current_row = ikey0 row_ptr[ikey0] = k | N = ikey1-current_col row_ptr[current_row+1:ikey0+1] = [k]*N current_row = ikey0 | def tocsr(self): # Return Compressed Sparse Row format arrays for this matrix keys = self.keys() keys.sort() nnz = len(keys) data = [0]*nnz colind = [0]*nnz row_ptr = [0]*(self.shape[0]+1) current_row = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey0 != current_row: current_row = ikey0 row_ptr[ikey0] = k data[k] = self[key] colind[k] = ikey1 k += 1 row_ptr[-1] = nnz data = array(data) colind = array(colind) row_ptr = array(row_ptr) return csr_matrix(data,(colind, row_ptr)) |
data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 | data = [0]*nnz rowind = [0]*nnz col_ptr = [0]*(self.shape[1]+1) current_col = 0 | def tocsc(self): # Return Compressed Sparse Column format arrays for this matrix keys = self.keys() keys.sort(csc_cmp) nnz = len(keys) data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey1 != current_col: current_col = ikey1 col_ptr[ikey1] = k data[k] = self[key] colind[k] = ikey0 k += 1 col_ptr[-1] = nnz data = array(data) colind = array(colind) col_ptr = array(col_ptr) return csc_matrix(data, (colind, col_ptr)) |
col_ptr[ikey1] = k | def tocsc(self): # Return Compressed Sparse Column format arrays for this matrix keys = self.keys() keys.sort(csc_cmp) nnz = len(keys) data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey1 != current_col: current_col = ikey1 col_ptr[ikey1] = k data[k] = self[key] colind[k] = ikey0 k += 1 col_ptr[-1] = nnz data = array(data) colind = array(colind) col_ptr = array(col_ptr) return csc_matrix(data, (colind, col_ptr)) |
|
colind[k] = ikey0 | rowind[k] = ikey0 | def tocsc(self): # Return Compressed Sparse Column format arrays for this matrix keys = self.keys() keys.sort(csc_cmp) nnz = len(keys) data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey1 != current_col: current_col = ikey1 col_ptr[ikey1] = k data[k] = self[key] colind[k] = ikey0 k += 1 col_ptr[-1] = nnz data = array(data) colind = array(colind) col_ptr = array(col_ptr) return csc_matrix(data, (colind, col_ptr)) |
colind = array(colind) | rowind = array(rowind) | def tocsc(self): # Return Compressed Sparse Column format arrays for this matrix keys = self.keys() keys.sort(csc_cmp) nnz = len(keys) data = [None]*nnz colind = [None]*nnz col_ptr = [None]*(self.shape[1]+1) current_col = -1 k = 0 for key in keys: ikey0 = int(key[0]) ikey1 = int(key[1]) if ikey1 != current_col: current_col = ikey1 col_ptr[ikey1] = k data[k] = self[key] colind[k] = ikey0 k += 1 col_ptr[-1] = nnz data = array(data) colind = array(colind) col_ptr = array(col_ptr) return csc_matrix(data, (colind, col_ptr)) |
Subsets and Splits