Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
1K - 10K
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- found | |
language: | |
- en | |
license: | |
- cc-by-4.0 | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- original | |
task_categories: | |
- image-classification | |
task_ids: | |
- multi-label-image-classification | |
pretty_name: MER - Mars Exploration Rover Dataset | |
# MER - Mars Exploration Rover Dataset | |
A multi-label classification dataset containing Mars images from the Mars Exploration Rover (MER) mission for planetary science research. | |
## Dataset Metadata | |
* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International) | |
* **Version:** 1.0 | |
* **Date Published:** 2025-05-10 | |
* **Cite As:** TBD | |
## Classes | |
This dataset uses multi-label classification, meaning each image can have multiple class labels. | |
The dataset contains the following classes: | |
- **rah** (0): Rock Abrasion Tool (RAT) Hole | |
- **cla** (1): Clasts | |
- **dur** (2): Dunes/Ripples | |
- **soi** (3): Soil | |
- **roc** (4): Rock Outcrops | |
- **clr** (5): Close-up Rock | |
- **rab** (6): Rock Abrasion Tool (RAT) Brushed Target | |
- **div** (7): Distant Vista | |
- **rod** (8): Rover Deck | |
- **bso** (9): Bright Soil | |
- **flr** (10): Float Rocks | |
- **art** (11): Artifacts | |
- **pct** (12): Pancam Calibration Target | |
- **arh** (13): Arm Hardware | |
- **rrf** (14): Rock (Round Features) | |
- **sph** (15): Spherules | |
- **ohw** (16): Other Hardware | |
- **ast** (17): Astronomy | |
- **nbs** (18): Nearby Surface | |
- **rmi** (19): Rocks (Misc) | |
- **rtr** (20): Rover Tracks | |
- **sky** (21): Sky | |
- **rpa** (22): Rover Parts | |
- **rlf** (23): Rock (Linear Features) | |
- **sot** (24): Soil Trench | |
## Statistics | |
- **train**: 1762 images | |
- **val**: 443 images | |
- **test**: 739 images | |
- **few_shot_train_10_shot**: 128 images | |
- **few_shot_train_15_shot**: 175 images | |
- **few_shot_train_1_shot**: 16 images | |
- **few_shot_train_20_shot**: 220 images | |
- **few_shot_train_2_shot**: 30 images | |
- **few_shot_train_5_shot**: 67 images | |
## Few-shot Splits | |
This dataset includes the following few-shot training splits: | |
- **few_shot_train_10_shot**: 128 images | |
- **few_shot_train_15_shot**: 175 images | |
- **few_shot_train_1_shot**: 16 images | |
- **few_shot_train_20_shot**: 220 images | |
- **few_shot_train_2_shot**: 30 images | |
- **few_shot_train_5_shot**: 67 images | |
Few-shot configurations: | |
- **10_shot.csv** | |
- **15_shot.csv** | |
- **1_shot.csv** | |
- **20_shot.csv** | |
- **2_shot.csv** | |
- **5_shot.csv** | |
## Format | |
Each example in the dataset has the following format: | |
``` | |
{ | |
'image': Image(...), # PIL image | |
'labels': List[int], # Multi-hot encoded binary vector (1 if class is present, 0 otherwise) | |
'feature_names': List[str], # List of feature names (class short codes) | |
} | |
``` | |
## Usage | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("gremlin97/mars-multi-label-classification") | |
# Access an example | |
example = dataset['train'][0] | |
image = example['image'] # PIL image | |
labels = example['labels'] # Multi-hot encoded binary vector | |
# Example of how to find which classes are present in an image | |
present_classes = [i for i, is_present in enumerate(labels) if is_present == 1] | |
print(f"Classes present in this image: {present_classes}") | |
``` | |
## Multi-label Classification | |
In multi-label classification, each image can belong to multiple classes simultaneously. The labels are represented as a binary vector where a 1 indicates the presence of a class and a 0 indicates its absence. | |
Unlike single-label classification where each image has exactly one class, multi-label classification allows modeling scenarios where multiple features can be present in the same image, which is often the case with Mars imagery. | |