File size: 3,616 Bytes
6cda309
16bbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e95129
6cda309
16bbebd
3e95129
16bbebd
3e95129
16bbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e95129
 
 
 
 
 
16bbebd
3e95129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16bbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
task_ids:
- multi-label-image-classification
pretty_name: MER - Mars Exploration Rover Dataset
---

# MER - Mars Exploration Rover Dataset

A multi-label classification dataset containing Mars images from the Mars Exploration Rover (MER) mission for planetary science research.

## Dataset Metadata

* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International)
* **Version:** 1.0
* **Date Published:** 2025-05-10
* **Cite As:** TBD

## Classes

This dataset uses multi-label classification, meaning each image can have multiple class labels.

The dataset contains the following classes:

- **rah** (0): Rock Abrasion Tool (RAT) Hole
- **cla** (1): Clasts
- **dur** (2): Dunes/Ripples
- **soi** (3): Soil
- **roc** (4): Rock Outcrops
- **clr** (5): Close-up Rock
- **rab** (6): Rock Abrasion Tool (RAT) Brushed Target
- **div** (7): Distant Vista
- **rod** (8): Rover Deck
- **bso** (9): Bright Soil
- **flr** (10): Float Rocks
- **art** (11): Artifacts
- **pct** (12): Pancam Calibration Target
- **arh** (13): Arm Hardware
- **rrf** (14): Rock (Round Features)
- **sph** (15): Spherules
- **ohw** (16): Other Hardware
- **ast** (17): Astronomy
- **nbs** (18): Nearby Surface
- **rmi** (19): Rocks (Misc)
- **rtr** (20): Rover Tracks
- **sky** (21): Sky
- **rpa** (22): Rover Parts
- **rlf** (23): Rock (Linear Features)
- **sot** (24): Soil Trench
## Statistics

- **train**: 1762 images
- **val**: 443 images
- **test**: 739 images
- **few_shot_train_10_shot**: 128 images
- **few_shot_train_15_shot**: 175 images
- **few_shot_train_1_shot**: 16 images
- **few_shot_train_20_shot**: 220 images
- **few_shot_train_2_shot**: 30 images
- **few_shot_train_5_shot**: 67 images

## Few-shot Splits

This dataset includes the following few-shot training splits:

- **few_shot_train_10_shot**: 128 images
- **few_shot_train_15_shot**: 175 images
- **few_shot_train_1_shot**: 16 images
- **few_shot_train_20_shot**: 220 images
- **few_shot_train_2_shot**: 30 images
- **few_shot_train_5_shot**: 67 images

Few-shot configurations:

- **10_shot.csv**
- **15_shot.csv**
- **1_shot.csv**
- **20_shot.csv**
- **2_shot.csv**
- **5_shot.csv**
## Format

Each example in the dataset has the following format:

```
{
  'image': Image(...),  # PIL image
  'labels': List[int],  # Multi-hot encoded binary vector (1 if class is present, 0 otherwise)
  'feature_names': List[str],  # List of feature names (class short codes)
}
```

## Usage

```python
from datasets import load_dataset

dataset = load_dataset("gremlin97/mars-multi-label-classification")

# Access an example
example = dataset['train'][0]
image = example['image']  # PIL image
labels = example['labels']  # Multi-hot encoded binary vector

# Example of how to find which classes are present in an image
present_classes = [i for i, is_present in enumerate(labels) if is_present == 1]
print(f"Classes present in this image: {present_classes}")
```

## Multi-label Classification

In multi-label classification, each image can belong to multiple classes simultaneously. The labels are represented as a binary vector where a 1 indicates the presence of a class and a 0 indicates its absence.

Unlike single-label classification where each image has exactly one class, multi-label classification allows modeling scenarios where multiple features can be present in the same image, which is often the case with Mars imagery.