Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
1K - 10K
License:
File size: 3,616 Bytes
6cda309 16bbebd 3e95129 6cda309 16bbebd 3e95129 16bbebd 3e95129 16bbebd 3e95129 16bbebd 3e95129 16bbebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
task_ids:
- multi-label-image-classification
pretty_name: MER - Mars Exploration Rover Dataset
---
# MER - Mars Exploration Rover Dataset
A multi-label classification dataset containing Mars images from the Mars Exploration Rover (MER) mission for planetary science research.
## Dataset Metadata
* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International)
* **Version:** 1.0
* **Date Published:** 2025-05-10
* **Cite As:** TBD
## Classes
This dataset uses multi-label classification, meaning each image can have multiple class labels.
The dataset contains the following classes:
- **rah** (0): Rock Abrasion Tool (RAT) Hole
- **cla** (1): Clasts
- **dur** (2): Dunes/Ripples
- **soi** (3): Soil
- **roc** (4): Rock Outcrops
- **clr** (5): Close-up Rock
- **rab** (6): Rock Abrasion Tool (RAT) Brushed Target
- **div** (7): Distant Vista
- **rod** (8): Rover Deck
- **bso** (9): Bright Soil
- **flr** (10): Float Rocks
- **art** (11): Artifacts
- **pct** (12): Pancam Calibration Target
- **arh** (13): Arm Hardware
- **rrf** (14): Rock (Round Features)
- **sph** (15): Spherules
- **ohw** (16): Other Hardware
- **ast** (17): Astronomy
- **nbs** (18): Nearby Surface
- **rmi** (19): Rocks (Misc)
- **rtr** (20): Rover Tracks
- **sky** (21): Sky
- **rpa** (22): Rover Parts
- **rlf** (23): Rock (Linear Features)
- **sot** (24): Soil Trench
## Statistics
- **train**: 1762 images
- **val**: 443 images
- **test**: 739 images
- **few_shot_train_10_shot**: 128 images
- **few_shot_train_15_shot**: 175 images
- **few_shot_train_1_shot**: 16 images
- **few_shot_train_20_shot**: 220 images
- **few_shot_train_2_shot**: 30 images
- **few_shot_train_5_shot**: 67 images
## Few-shot Splits
This dataset includes the following few-shot training splits:
- **few_shot_train_10_shot**: 128 images
- **few_shot_train_15_shot**: 175 images
- **few_shot_train_1_shot**: 16 images
- **few_shot_train_20_shot**: 220 images
- **few_shot_train_2_shot**: 30 images
- **few_shot_train_5_shot**: 67 images
Few-shot configurations:
- **10_shot.csv**
- **15_shot.csv**
- **1_shot.csv**
- **20_shot.csv**
- **2_shot.csv**
- **5_shot.csv**
## Format
Each example in the dataset has the following format:
```
{
'image': Image(...), # PIL image
'labels': List[int], # Multi-hot encoded binary vector (1 if class is present, 0 otherwise)
'feature_names': List[str], # List of feature names (class short codes)
}
```
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("gremlin97/mars-multi-label-classification")
# Access an example
example = dataset['train'][0]
image = example['image'] # PIL image
labels = example['labels'] # Multi-hot encoded binary vector
# Example of how to find which classes are present in an image
present_classes = [i for i, is_present in enumerate(labels) if is_present == 1]
print(f"Classes present in this image: {present_classes}")
```
## Multi-label Classification
In multi-label classification, each image can belong to multiple classes simultaneously. The labels are represented as a binary vector where a 1 indicates the presence of a class and a 0 indicates its absence.
Unlike single-label classification where each image has exactly one class, multi-label classification allows modeling scenarios where multiple features can be present in the same image, which is often the case with Mars imagery.
|