Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
1K - 10K
License:
Add dataset README with metadata
Browse files
README.md
CHANGED
@@ -1,61 +1,129 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
num_bytes: 504166
|
22 |
-
num_examples: 1310
|
23 |
-
- name: few_shot_train_15_shot
|
24 |
-
num_bytes: 522251
|
25 |
-
num_examples: 1357
|
26 |
-
- name: few_shot_train_1_shot
|
27 |
-
num_bytes: 460626
|
28 |
-
num_examples: 1198
|
29 |
-
- name: few_shot_train_20_shot
|
30 |
-
num_bytes: 539801
|
31 |
-
num_examples: 1402
|
32 |
-
- name: few_shot_train_2_shot
|
33 |
-
num_bytes: 466086
|
34 |
-
num_examples: 1212
|
35 |
-
- name: few_shot_train_5_shot
|
36 |
-
num_bytes: 480488
|
37 |
-
num_examples: 1249
|
38 |
-
download_size: 330295
|
39 |
-
dataset_size: 4104126
|
40 |
-
configs:
|
41 |
-
- config_name: default
|
42 |
-
data_files:
|
43 |
-
- split: train
|
44 |
-
path: data/train-*
|
45 |
-
- split: val
|
46 |
-
path: data/val-*
|
47 |
-
- split: test
|
48 |
-
path: data/test-*
|
49 |
-
- split: few_shot_train_10_shot
|
50 |
-
path: data/few_shot_train_10_shot-*
|
51 |
-
- split: few_shot_train_15_shot
|
52 |
-
path: data/few_shot_train_15_shot-*
|
53 |
-
- split: few_shot_train_1_shot
|
54 |
-
path: data/few_shot_train_1_shot-*
|
55 |
-
- split: few_shot_train_20_shot
|
56 |
-
path: data/few_shot_train_20_shot-*
|
57 |
-
- split: few_shot_train_2_shot
|
58 |
-
path: data/few_shot_train_2_shot-*
|
59 |
-
- split: few_shot_train_5_shot
|
60 |
-
path: data/few_shot_train_5_shot-*
|
61 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license:
|
9 |
+
- cc-by-4.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- image-classification
|
18 |
+
task_ids:
|
19 |
+
- multi-label-image-classification
|
20 |
+
pretty_name: mars-multi-label-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
+
|
23 |
+
# mars-multi-label-classification
|
24 |
+
|
25 |
+
A Mars image multi-label classification dataset for planetary science research.
|
26 |
+
|
27 |
+
## Dataset Metadata
|
28 |
+
|
29 |
+
* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International)
|
30 |
+
* **Version:** 1.0
|
31 |
+
* **Date Published:** 2025-05-10
|
32 |
+
* **Cite As:** TBD
|
33 |
+
|
34 |
+
## Classes
|
35 |
+
|
36 |
+
This dataset uses multi-label classification, meaning each image can have multiple class labels.
|
37 |
+
|
38 |
+
The dataset contains the following classes:
|
39 |
+
|
40 |
+
- **rah** (0): Rock Abrasion Tool (RAT) Hole
|
41 |
+
- **cla** (1): Clasts
|
42 |
+
- **dur** (2): Dunes/Ripples
|
43 |
+
- **soi** (3): Soil
|
44 |
+
- **roc** (4): Rock Outcrops
|
45 |
+
- **clr** (5): Close-up Rock
|
46 |
+
- **rab** (6): Rock Abrasion Tool (RAT) Brushed Target
|
47 |
+
- **div** (7): Distant Vista
|
48 |
+
- **rod** (8): Rover Deck
|
49 |
+
- **bso** (9): Bright Soil
|
50 |
+
- **flr** (10): Float Rocks
|
51 |
+
- **art** (11): Artifacts
|
52 |
+
- **pct** (12): Pancam Calibration Target
|
53 |
+
- **arh** (13): Arm Hardware
|
54 |
+
- **rrf** (14): Rock (Round Features)
|
55 |
+
- **sph** (15): Spherules
|
56 |
+
- **ohw** (16): Other Hardware
|
57 |
+
- **ast** (17): Astronomy
|
58 |
+
- **nbs** (18): Nearby Surface
|
59 |
+
- **rmi** (19): Rocks (Misc)
|
60 |
+
- **rtr** (20): Rover Tracks
|
61 |
+
- **sky** (21): Sky
|
62 |
+
- **rpa** (22): Rover Parts
|
63 |
+
- **rlf** (23): Rock (Linear Features)
|
64 |
+
- **sot** (24): Soil Trench
|
65 |
+
## Statistics
|
66 |
+
|
67 |
+
- **train**: 1762 images
|
68 |
+
- **val**: 443 images
|
69 |
+
- **test**: 739 images
|
70 |
+
- **few_shot_train_10_shot**: 1310 images
|
71 |
+
- **few_shot_train_15_shot**: 1357 images
|
72 |
+
- **few_shot_train_1_shot**: 1198 images
|
73 |
+
- **few_shot_train_20_shot**: 1402 images
|
74 |
+
- **few_shot_train_2_shot**: 1212 images
|
75 |
+
- **few_shot_train_5_shot**: 1249 images
|
76 |
+
|
77 |
+
## Few-shot Splits
|
78 |
+
|
79 |
+
This dataset includes the following few-shot training splits:
|
80 |
+
|
81 |
+
- **few_shot_train_10_shot**: 1310 images
|
82 |
+
- **few_shot_train_15_shot**: 1357 images
|
83 |
+
- **few_shot_train_1_shot**: 1198 images
|
84 |
+
- **few_shot_train_20_shot**: 1402 images
|
85 |
+
- **few_shot_train_2_shot**: 1212 images
|
86 |
+
- **few_shot_train_5_shot**: 1249 images
|
87 |
+
|
88 |
+
Few-shot configurations:
|
89 |
+
|
90 |
+
- **10_shot.csv**
|
91 |
+
- **15_shot.csv**
|
92 |
+
- **1_shot.csv**
|
93 |
+
- **20_shot.csv**
|
94 |
+
- **2_shot.csv**
|
95 |
+
- **5_shot.csv**
|
96 |
+
## Format
|
97 |
+
|
98 |
+
Each example in the dataset has the following format:
|
99 |
+
|
100 |
+
```
|
101 |
+
{
|
102 |
+
'image': Image(...), # PIL image
|
103 |
+
'labels': List[int], # Multi-hot encoded binary vector (1 if class is present, 0 otherwise)
|
104 |
+
'feature_names': List[str], # List of feature names (class short codes)
|
105 |
+
}
|
106 |
+
```
|
107 |
+
|
108 |
+
## Usage
|
109 |
+
|
110 |
+
```python
|
111 |
+
from datasets import load_dataset
|
112 |
+
|
113 |
+
dataset = load_dataset("gremlin97/mars-multi-label-classification")
|
114 |
+
|
115 |
+
# Access an example
|
116 |
+
example = dataset['train'][0]
|
117 |
+
image = example['image'] # PIL image
|
118 |
+
labels = example['labels'] # Multi-hot encoded binary vector
|
119 |
+
|
120 |
+
# Example of how to find which classes are present in an image
|
121 |
+
present_classes = [i for i, is_present in enumerate(labels) if is_present == 1]
|
122 |
+
print(f"Classes present in this image: {present_classes}")
|
123 |
+
```
|
124 |
+
|
125 |
+
## Multi-label Classification
|
126 |
+
|
127 |
+
In multi-label classification, each image can belong to multiple classes simultaneously. The labels are represented as a binary vector where a 1 indicates the presence of a class and a 0 indicates its absence.
|
128 |
+
|
129 |
+
Unlike single-label classification where each image has exactly one class, multi-label classification allows modeling scenarios where multiple features can be present in the same image, which is often the case with Mars imagery.
|