sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def ngrams(string, n=3, punctuation=PUNCTUATION, continuous=False):
""" Returns a list of n-grams (tuples of n successive words) from the given string.
Alternatively, you can supply a Text or Sentence object.
With continuous=False, n-grams will not run over sentence markers (i.e., .!?).
Punctuation marks are stripped from words.
"""
def strip_punctuation(s, punctuation=set(punctuation)):
return [w for w in s if (isinstance(w, Word) and w.string or w) not in punctuation]
if n <= 0:
return []
if isinstance(string, basestring):
s = [strip_punctuation(s.split(" ")) for s in tokenize(string)]
if isinstance(string, Sentence):
s = [strip_punctuation(string)]
if isinstance(string, Text):
s = [strip_punctuation(s) for s in string]
if continuous:
s = [sum(s, [])]
g = []
for s in s:
#s = [None] + s + [None]
g.extend([tuple(s[i:i+n]) for i in range(len(s)-n+1)])
return g | Returns a list of n-grams (tuples of n successive words) from the given string.
Alternatively, you can supply a Text or Sentence object.
With continuous=False, n-grams will not run over sentence markers (i.e., .!?).
Punctuation marks are stripped from words. | entailment |
def deflood(s, n=3):
""" Returns the string with no more than n repeated characters, e.g.,
deflood("NIIIICE!!", n=1) => "Nice!"
deflood("nice.....", n=3) => "nice..."
"""
if n == 0:
return s[0:0]
return re.sub(r"((.)\2{%s,})" % (n-1), lambda m: m.group(1)[0] * n, s) | Returns the string with no more than n repeated characters, e.g.,
deflood("NIIIICE!!", n=1) => "Nice!"
deflood("nice.....", n=3) => "nice..." | entailment |
def pprint(string, token=[WORD, POS, CHUNK, PNP], column=4):
""" Pretty-prints the output of Parser.parse() as a table with outlined columns.
Alternatively, you can supply a tree.Text or tree.Sentence object.
"""
if isinstance(string, basestring):
print("\n\n".join([table(sentence, fill=column) for sentence in Text(string, token)]))
if isinstance(string, Text):
print("\n\n".join([table(sentence, fill=column) for sentence in string]))
if isinstance(string, Sentence):
print(table(string, fill=column)) | Pretty-prints the output of Parser.parse() as a table with outlined columns.
Alternatively, you can supply a tree.Text or tree.Sentence object. | entailment |
def _read(path, encoding="utf-8", comment=";;;"):
""" Returns an iterator over the lines in the file at the given path,
strippping comments and decoding each line to Unicode.
"""
if path:
if isinstance(path, basestring) and os.path.exists(path):
# From file path.
if PY2:
f = codecs.open(path, 'r', encoding='utf-8')
else:
f = open(path, 'r', encoding='utf-8')
elif isinstance(path, basestring):
# From string.
f = path.splitlines()
else:
# From file or buffer.
f = path
for i, line in enumerate(f):
line = line.strip(codecs.BOM_UTF8) if i == 0 and isinstance(line, binary_type) else line
line = line.strip()
line = decode_utf8(line, encoding)
if not line or (comment and line.startswith(comment)):
continue
yield line
return | Returns an iterator over the lines in the file at the given path,
strippping comments and decoding each line to Unicode. | entailment |
def penntreebank2universal(token, tag):
""" Returns a (token, tag)-tuple with a simplified universal part-of-speech tag.
"""
if tag.startswith(("NNP-", "NNPS-")):
return (token, "%s-%s" % (NOUN, tag.split("-")[-1]))
if tag in ("NN", "NNS", "NNP", "NNPS", "NP"):
return (token, NOUN)
if tag in ("MD", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ"):
return (token, VERB)
if tag in ("JJ", "JJR", "JJS"):
return (token, ADJ)
if tag in ("RB", "RBR", "RBS", "WRB"):
return (token, ADV)
if tag in ("PRP", "PRP$", "WP", "WP$"):
return (token, PRON)
if tag in ("DT", "PDT", "WDT", "EX"):
return (token, DET)
if tag in ("IN",):
return (token, PREP)
if tag in ("CD",):
return (token, NUM)
if tag in ("CC",):
return (token, CONJ)
if tag in ("UH",):
return (token, INTJ)
if tag in ("POS", "RP", "TO"):
return (token, PRT)
if tag in ("SYM", "LS", ".", "!", "?", ",", ":", "(", ")", "\"", "#", "$"):
return (token, PUNC)
return (token, X) | Returns a (token, tag)-tuple with a simplified universal part-of-speech tag. | entailment |
def find_tokens(string, punctuation=PUNCTUATION, abbreviations=ABBREVIATIONS, replace=replacements, linebreak=r"\n{2,}"):
""" Returns a list of sentences. Each sentence is a space-separated string of tokens (words).
Handles common cases of abbreviations (e.g., etc., ...).
Punctuation marks are split from other words. Periods (or ?!) mark the end of a sentence.
Headings without an ending period are inferred by line breaks.
"""
# Handle periods separately.
punctuation = tuple(punctuation.replace(".", ""))
# Handle replacements (contractions).
for a, b in replace.items():
string = re.sub(a, b, string)
# Handle Unicode quotes.
if isinstance(string, unicode):
string = string.replace(u"β", u" β ")
string = string.replace(u"β", u" β ")
string = string.replace(u"β", u" β ")
string = string.replace(u"β", u" β ")
# Collapse whitespace.
string = re.sub("\r\n", "\n", string)
string = re.sub(linebreak, " %s " % EOS, string)
string = re.sub(r"\s+", " ", string)
tokens = []
# Handle punctuation marks.
for t in TOKEN.findall(string+" "):
if len(t) > 0:
tail = []
while t.startswith(punctuation) and \
not t in replace:
# Split leading punctuation.
if t.startswith(punctuation):
tokens.append(t[0]); t=t[1:]
while t.endswith(punctuation+(".",)) and \
not t in replace:
# Split trailing punctuation.
if t.endswith(punctuation):
tail.append(t[-1]); t=t[:-1]
# Split ellipsis (...) before splitting period.
if t.endswith("..."):
tail.append("..."); t=t[:-3].rstrip(".")
# Split period (if not an abbreviation).
if t.endswith("."):
if t in abbreviations or \
RE_ABBR1.match(t) is not None or \
RE_ABBR2.match(t) is not None or \
RE_ABBR3.match(t) is not None:
break
else:
tail.append(t[-1]); t=t[:-1]
if t != "":
tokens.append(t)
tokens.extend(reversed(tail))
# Handle sentence breaks (periods, quotes, parenthesis).
sentences, i, j = [[]], 0, 0
while j < len(tokens):
if tokens[j] in ("...", ".", "!", "?", EOS):
while j < len(tokens) \
and tokens[j] in ("'", "\"", u"β", u"β", "...", ".", "!", "?", ")", EOS):
if tokens[j] in ("'", "\"") and sentences[-1].count(tokens[j]) % 2 == 0:
break # Balanced quotes.
j += 1
sentences[-1].extend(t for t in tokens[i:j] if t != EOS)
sentences.append([])
i = j
j += 1
# Handle emoticons.
sentences[-1].extend(tokens[i:j])
sentences = (" ".join(s) for s in sentences if len(s) > 0)
sentences = (RE_SARCASM.sub("(!)", s) for s in sentences)
sentences = [RE_EMOTICONS.sub(
lambda m: m.group(1).replace(" ", "") + m.group(2), s) for s in sentences]
return sentences | Returns a list of sentences. Each sentence is a space-separated string of tokens (words).
Handles common cases of abbreviations (e.g., etc., ...).
Punctuation marks are split from other words. Periods (or ?!) mark the end of a sentence.
Headings without an ending period are inferred by line breaks. | entailment |
def _suffix_rules(token, tag="NN"):
""" Default morphological tagging rules for English, based on word suffixes.
"""
if isinstance(token, (list, tuple)):
token, tag = token
if token.endswith("ing"):
tag = "VBG"
if token.endswith("ly"):
tag = "RB"
if token.endswith("s") and not token.endswith(("is", "ous", "ss")):
tag = "NNS"
if token.endswith(("able", "al", "ful", "ible", "ient", "ish", "ive", "less", "tic", "ous")) or "-" in token:
tag = "JJ"
if token.endswith("ed"):
tag = "VBN"
if token.endswith(("ate", "ify", "ise", "ize")):
tag = "VBP"
return [token, tag] | Default morphological tagging rules for English, based on word suffixes. | entailment |
def find_tags(tokens, lexicon={}, model=None, morphology=None, context=None, entities=None, default=("NN", "NNP", "CD"), language="en", map=None, **kwargs):
""" Returns a list of [token, tag]-items for the given list of tokens:
["The", "cat", "purs"] => [["The", "DT"], ["cat", "NN"], ["purs", "VB"]]
Words are tagged using the given lexicon of (word, tag)-items.
Unknown words are tagged NN by default.
Unknown words that start with a capital letter are tagged NNP (unless language="de").
Unknown words that consist only of digits and punctuation marks are tagged CD.
Unknown words are then improved with morphological rules.
All words are improved with contextual rules.
If a model is given, uses model for unknown words instead of morphology and context.
If map is a function, it is applied to each (token, tag) after applying all rules.
"""
tagged = []
# Tag known words.
for i, token in enumerate(tokens):
tagged.append([token, lexicon.get(token, i == 0 and lexicon.get(token.lower()) or None)])
# Tag unknown words.
for i, (token, tag) in enumerate(tagged):
prev, next = (None, None), (None, None)
if i > 0:
prev = tagged[i-1]
if i < len(tagged) - 1:
next = tagged[i+1]
if tag is None or token in (model is not None and model.unknown or ()):
# Use language model (i.e., SLP).
if model is not None:
tagged[i] = model.apply([token, None], prev, next)
# Use NNP for capitalized words (except in German).
elif token.istitle() and language != "de":
tagged[i] = [token, default[1]]
# Use CD for digits and numbers.
elif CD.match(token) is not None:
tagged[i] = [token, default[2]]
# Use suffix rules (e.g., -ly = RB).
elif morphology is not None:
tagged[i] = morphology.apply([token, default[0]], prev, next)
# Use suffix rules (English default).
elif language == "en":
tagged[i] = _suffix_rules([token, default[0]])
# Use most frequent tag (NN).
else:
tagged[i] = [token, default[0]]
# Tag words by context.
if context is not None and model is None:
tagged = context.apply(tagged)
# Tag named entities.
if entities is not None:
tagged = entities.apply(tagged)
# Map tags with a custom function.
if map is not None:
tagged = [list(map(token, tag)) or [token, default[0]] for token, tag in tagged]
return tagged | Returns a list of [token, tag]-items for the given list of tokens:
["The", "cat", "purs"] => [["The", "DT"], ["cat", "NN"], ["purs", "VB"]]
Words are tagged using the given lexicon of (word, tag)-items.
Unknown words are tagged NN by default.
Unknown words that start with a capital letter are tagged NNP (unless language="de").
Unknown words that consist only of digits and punctuation marks are tagged CD.
Unknown words are then improved with morphological rules.
All words are improved with contextual rules.
If a model is given, uses model for unknown words instead of morphology and context.
If map is a function, it is applied to each (token, tag) after applying all rules. | entailment |
def find_chunks(tagged, language="en"):
""" The input is a list of [token, tag]-items.
The output is a list of [token, tag, chunk]-items:
The/DT nice/JJ fish/NN is/VBZ dead/JJ ./. =>
The/DT/B-NP nice/JJ/I-NP fish/NN/I-NP is/VBZ/B-VP dead/JJ/B-ADJP ././O
"""
chunked = [x for x in tagged]
tags = "".join("%s%s" % (tag, SEPARATOR) for token, tag in tagged)
# Use Germanic or Romance chunking rules according to given language.
for tag, rule in CHUNKS[int(language in ("ca", "es", "pt", "fr", "it", "pt", "ro"))]:
for m in rule.finditer(tags):
# Find the start of chunks inside the tags-string.
# Number of preceding separators = number of preceding tokens.
i = m.start()
j = tags[:i].count(SEPARATOR)
n = m.group(0).count(SEPARATOR)
for k in range(j, j+n):
if len(chunked[k]) == 3:
continue
if len(chunked[k]) < 3:
# A conjunction or comma cannot be start of a chunk.
if k == j and chunked[k][1] in ("CC", "CJ", ","):
j += 1
# Mark first token in chunk with B-.
elif k == j:
chunked[k].append("B-" + tag)
# Mark other tokens in chunk with I-.
else:
chunked[k].append("I-" + tag)
# Mark chinks (tokens outside of a chunk) with O-.
for chink in filter(lambda x: len(x) < 3, chunked):
chink.append("O")
# Post-processing corrections.
for i, (word, tag, chunk) in enumerate(chunked):
if tag.startswith("RB") and chunk == "B-NP":
# "Perhaps you" => ADVP + NP
# "Really nice work" => NP
# "Really, nice work" => ADVP + O + NP
if i < len(chunked)-1 and not chunked[i+1][1].startswith("JJ"):
chunked[i+0][2] = "B-ADVP"
chunked[i+1][2] = "B-NP"
if i < len(chunked)-1 and chunked[i+1][1] in ("CC", "CJ", ","):
chunked[i+1][2] = "O"
if i < len(chunked)-2 and chunked[i+1][2] == "O":
chunked[i+2][2] = "B-NP"
return chunked | The input is a list of [token, tag]-items.
The output is a list of [token, tag, chunk]-items:
The/DT nice/JJ fish/NN is/VBZ dead/JJ ./. =>
The/DT/B-NP nice/JJ/I-NP fish/NN/I-NP is/VBZ/B-VP dead/JJ/B-ADJP ././O | entailment |
def find_prepositions(chunked):
""" The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, preposition]-items.
PP-chunks followed by NP-chunks make up a PNP-chunk.
"""
# Tokens that are not part of a preposition just get the O-tag.
for ch in chunked:
ch.append("O")
for i, chunk in enumerate(chunked):
if chunk[2].endswith("PP") and chunk[-1] == "O":
# Find PP followed by other PP, NP with nouns and pronouns, VP with a gerund.
if i < len(chunked)-1 and \
(chunked[i+1][2].endswith(("NP", "PP")) or \
chunked[i+1][1] in ("VBG", "VBN")):
chunk[-1] = "B-PNP"
pp = True
for ch in chunked[i+1:]:
if not (ch[2].endswith(("NP", "PP")) or ch[1] in ("VBG", "VBN")):
break
if ch[2].endswith("PP") and pp:
ch[-1] = "I-PNP"
if not ch[2].endswith("PP"):
ch[-1] = "I-PNP"
pp = False
return chunked | The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, preposition]-items.
PP-chunks followed by NP-chunks make up a PNP-chunk. | entailment |
def find_relations(chunked):
""" The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, relation]-items.
A noun phrase preceding a verb phrase is perceived as sentence subject.
A noun phrase following a verb phrase is perceived as sentence object.
"""
tag = lambda token: token[2].split("-")[-1] # B-NP => NP
# Group successive tokens with the same chunk-tag.
chunks = []
for token in chunked:
if len(chunks) == 0 \
or token[2].startswith("B-") \
or tag(token) != tag(chunks[-1][-1]):
chunks.append([])
chunks[-1].append(token+["O"])
# If a VP is preceded by a NP, the NP is tagged as NP-SBJ-(id).
# If a VP is followed by a NP, the NP is tagged as NP-OBJ-(id).
# Chunks that are not part of a relation get an O-tag.
id = 0
for i, chunk in enumerate(chunks):
if tag(chunk[-1]) == "VP" and i > 0 and tag(chunks[i-1][-1]) == "NP":
if chunk[-1][-1] == "O":
id += 1
for token in chunk:
token[-1] = "VP-" + str(id)
for token in chunks[i-1]:
token[-1] += "*NP-SBJ-" + str(id)
token[-1] = token[-1].lstrip("O-*")
if tag(chunk[-1]) == "VP" and i < len(chunks)-1 and tag(chunks[i+1][-1]) == "NP":
if chunk[-1][-1] == "O":
id += 1
for token in chunk:
token[-1] = "VP-" + str(id)
for token in chunks[i+1]:
token[-1] = "*NP-OBJ-" + str(id)
token[-1] = token[-1].lstrip("O-*")
# This is more a proof-of-concept than useful in practice:
# PP-LOC = be + in|at + the|my
# PP-DIR = go + to|towards + the|my
for i, chunk in enumerate(chunks):
if 0 < i < len(chunks)-1 and len(chunk) == 1 and chunk[-1][-1] == "O":
t0, t1, t2 = chunks[i-1][-1], chunks[i][0], chunks[i+1][0] # previous / current / next
if tag(t1) == "PP" and t2[1] in ("DT", "PR", "PRP$"):
if t0[0] in BE and t1[0] in ("in", "at") : t1[-1] = "PP-LOC"
if t0[0] in GO and t1[0] in ("to", "towards") : t1[-1] = "PP-DIR"
related = []; [related.extend(chunk) for chunk in chunks]
return related | The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, relation]-items.
A noun phrase preceding a verb phrase is perceived as sentence subject.
A noun phrase following a verb phrase is perceived as sentence object. | entailment |
def find_keywords(string, parser, top=10, frequency={}, **kwargs):
""" Returns a sorted list of keywords in the given string.
The given parser (e.g., pattern.en.parser) is used to identify noun phrases.
The given frequency dictionary can be a reference corpus,
with relative document frequency (df, 0.0-1.0) for each lemma,
e.g., {"the": 0.8, "cat": 0.1, ...}
"""
lemmata = kwargs.pop("lemmata", kwargs.pop("stem", True))
# Parse the string and extract noun phrases (NP).
chunks = []
wordcount = 0
for sentence in parser.parse(string, chunks=True, lemmata=lemmata).split():
for w in sentence: # ["cats", "NNS", "I-NP", "O", "cat"]
if w[2] == "B-NP":
chunks.append([w])
wordcount += 1
elif w[2] == "I-NP" and w[1][:3] == chunks[-1][-1][1][:3] == "NNP":
chunks[-1][-1][+0] += " " + w[+0] # Collapse NNPs: "Ms Kitty".
chunks[-1][-1][-1] += " " + w[-1]
elif w[2] == "I-NP":
chunks[-1].append(w)
wordcount += 1
# Rate the nouns in noun phrases.
m = {}
for i, chunk in enumerate(chunks):
head = True
if parser.language not in ("ca", "es", "pt", "fr", "it", "pt", "ro"):
# Head of "cat hair" => "hair".
# Head of "poils de chat" => "poils".
chunk = list(reversed(chunk))
for w in chunk:
if w[1].startswith("NN"):
if lemmata:
k = w[-1]
else:
k = w[0].lower()
if not k in m:
m[k] = [0.0, set(), 1.0, 1.0, 1.0]
# Higher score for chunks that appear more frequently.
m[k][0] += 1 / float(wordcount)
# Higher score for chunks that appear in more contexts (semantic centrality).
m[k][1].add(" ".join(map(lambda x: x[0], chunk)).lower())
# Higher score for chunks at the start (25%) of the text.
m[k][2] += 1 if float(i) / len(chunks) <= 0.25 else 0
# Higher score for chunks not in a prepositional phrase.
m[k][3] += 1 if w[3] == "O" else 0
# Higher score for chunk head.
m[k][4] += 1 if head else 0
head = False
# Rate tf-idf if a frequency dict is given.
for k in m:
if frequency:
df = frequency.get(k, 0.0)
df = max(df, 1e-10)
df = log(1.0 / df, 2.71828)
else:
df = 1.0
m[k][0] = max(1e-10, m[k][0] * df)
m[k][1] = 1 + float(len(m[k][1]))
# Sort candidates alphabetically by total score
# The harmonic mean will emphasize tf-idf score.
hmean = lambda a: len(a) / sum(1.0 / x for x in a)
m = [(hmean(m[k]), k) for k in m]
m = sorted(m, key=lambda x: x[1])
m = sorted(m, key=lambda x: x[0], reverse=True)
m = [k for score, k in m]
return m[:top] | Returns a sorted list of keywords in the given string.
The given parser (e.g., pattern.en.parser) is used to identify noun phrases.
The given frequency dictionary can be a reference corpus,
with relative document frequency (df, 0.0-1.0) for each lemma,
e.g., {"the": 0.8, "cat": 0.1, ...} | entailment |
def tense_id(*args, **kwargs):
""" Returns the tense id for a given (tense, person, number, mood, aspect, negated).
Aliases and compound forms (e.g., IMPERFECT) are disambiguated.
"""
# Unpack tense given as a tuple, e.g., tense((PRESENT, 1, SG)):
if len(args) == 1 and isinstance(args[0], (list, tuple)):
if args[0] not in ((PRESENT, PARTICIPLE), (PAST, PARTICIPLE)):
args = args[0]
# No parameters defaults to tense=INFINITIVE, tense=PRESENT otherwise.
if len(args) == 0 and len(kwargs) == 0:
t = INFINITIVE
else:
t = PRESENT
# Set default values.
tense = kwargs.get("tense" , args[0] if len(args) > 0 else t)
person = kwargs.get("person" , args[1] if len(args) > 1 else 3) or None
number = kwargs.get("number" , args[2] if len(args) > 2 else SINGULAR)
mood = kwargs.get("mood" , args[3] if len(args) > 3 else INDICATIVE)
aspect = kwargs.get("aspect" , args[4] if len(args) > 4 else IMPERFECTIVE)
negated = kwargs.get("negated", args[5] if len(args) > 5 else False)
# Disambiguate wrong order of parameters.
if mood in (PERFECTIVE, IMPERFECTIVE):
mood, aspect = INDICATIVE, mood
# Disambiguate INFINITIVE.
# Disambiguate PARTICIPLE, IMPERFECT, PRETERITE.
# These are often considered to be tenses but are in fact tense + aspect.
if tense == INFINITIVE:
person = number = mood = aspect = None; negated=False
if tense in ((PRESENT, PARTICIPLE), PRESENT+PARTICIPLE, PARTICIPLE, GERUND):
tense, aspect = PRESENT, PROGRESSIVE
if tense in ((PAST, PARTICIPLE), PAST+PARTICIPLE):
tense, aspect = PAST, PROGRESSIVE
if tense == IMPERFECT:
tense, aspect = PAST, IMPERFECTIVE
if tense == PRETERITE:
tense, aspect = PAST, PERFECTIVE
if aspect in (CONTINUOUS, PARTICIPLE, GERUND):
aspect = PROGRESSIVE
if aspect == PROGRESSIVE:
person = number = None
# Disambiguate CONDITIONAL.
# In Spanish, the conditional is regarded as an indicative tense.
if tense == CONDITIONAL and mood == INDICATIVE:
tense, mood = PRESENT, CONDITIONAL
# Disambiguate aliases: "pl" =>
# (PRESENT, None, PLURAL, INDICATIVE, IMPERFECTIVE, False).
return TENSES_ID.get(tense.lower(),
TENSES_ID.get((tense, person, number, mood, aspect, negated))) | Returns the tense id for a given (tense, person, number, mood, aspect, negated).
Aliases and compound forms (e.g., IMPERFECT) are disambiguated. | entailment |
def _multilingual(function, *args, **kwargs):
""" Returns the value from the function with the given name in the given language module.
By default, language="en".
"""
return getattr(_module(kwargs.pop("language", "en")), function)(*args, **kwargs) | Returns the value from the function with the given name in the given language module.
By default, language="en". | entailment |
def language(s):
""" Returns a (language, confidence)-tuple for the given string.
"""
s = decode_utf8(s)
s = set(w.strip(PUNCTUATION) for w in s.replace("'", "' ").split())
n = float(len(s) or 1)
p = {}
for xx in LANGUAGES:
lexicon = _module(xx).__dict__["lexicon"]
p[xx] = sum(1 for w in s if w in lexicon) / n
return max(p.items(), key=lambda kv: (kv[1], int(kv[0] == "en"))) | Returns a (language, confidence)-tuple for the given string. | entailment |
def _lazy(self, method, *args):
""" If the list is empty, calls lazylist.load().
Replaces lazylist.method() with list.method() and calls it.
"""
if list.__len__(self) == 0:
self.load()
setattr(self, method, types.MethodType(getattr(list, method), self))
return getattr(list, method)(self, *args) | If the list is empty, calls lazylist.load().
Replaces lazylist.method() with list.method() and calls it. | entailment |
def train(self, token, tag, previous=None, next=None):
""" Trains the model to predict the given tag for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
self._classifier.train(self._v(token, previous, next), type=tag) | Trains the model to predict the given tag for the given token,
in context of the given previous and next (token, tag)-tuples. | entailment |
def classify(self, token, previous=None, next=None, **kwargs):
""" Returns the predicted tag for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
return self._classifier.classify(self._v(token, previous, next), **kwargs) | Returns the predicted tag for the given token,
in context of the given previous and next (token, tag)-tuples. | entailment |
def apply(self, token, previous=(None, None), next=(None, None)):
""" Returns a (token, tag)-tuple for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
return [token[0], self._classifier.classify(self._v(token[0], previous, next))] | Returns a (token, tag)-tuple for the given token,
in context of the given previous and next (token, tag)-tuples. | entailment |
def _v(self, token, previous=None, next=None):
""" Returns a training vector for the given (word, tag)-tuple and its context.
"""
def f(v, s1, s2):
if s2:
v[s1 + " " + s2] = 1
p, n = previous, next
p = ("", "") if not p else (p[0] or "", p[1] or "")
n = ("", "") if not n else (n[0] or "", n[1] or "")
v = {}
f(v, "b", "b") # Bias.
f(v, "h", token[0]) # Capitalization.
f(v, "w", token[-6:] if token not in self.known or token in self.unknown else "")
f(v, "x", token[-3:]) # Word suffix.
f(v, "-x", p[0][-3:]) # Word suffix left.
f(v, "+x", n[0][-3:]) # Word suffix right.
f(v, "-t", p[1]) # Tag left.
f(v, "-+", p[1] + n[1]) # Tag left + right.
f(v, "+t", n[1]) # Tag right.
return v | Returns a training vector for the given (word, tag)-tuple and its context. | entailment |
def apply(self, token, previous=(None, None), next=(None, None)):
""" Applies lexical rules to the given token, which is a [word, tag] list.
"""
w = token[0]
for r in self:
if r[1] in self._cmd: # Rule = ly hassuf 2 RB x
f, x, pos, cmd = bool(0), r[0], r[-2], r[1].lower()
if r[2] in self._cmd: # Rule = NN s fhassuf 1 NNS x
f, x, pos, cmd = bool(1), r[1], r[-2], r[2].lower().lstrip("f")
if f and token[1] != r[0]:
continue
if (cmd == "word" and x == w) \
or (cmd == "char" and x in w) \
or (cmd == "haspref" and w.startswith(x)) \
or (cmd == "hassuf" and w.endswith(x)) \
or (cmd == "addpref" and x + w in self.known) \
or (cmd == "addsuf" and w + x in self.known) \
or (cmd == "deletepref" and w.startswith(x) and w[len(x):] in self.known) \
or (cmd == "deletesuf" and w.endswith(x) and w[:-len(x)] in self.known) \
or (cmd == "goodleft" and x == next[0]) \
or (cmd == "goodright" and x == previous[0]):
token[1] = pos
return token | Applies lexical rules to the given token, which is a [word, tag] list. | entailment |
def insert(self, i, tag, affix, cmd="hassuf", tagged=None):
""" Inserts a new rule that assigns the given tag to words with the given affix,
e.g., Morphology.append("RB", "-ly").
"""
if affix.startswith("-") and affix.endswith("-"):
affix, cmd = affix[+1:-1], "char"
if affix.startswith("-"):
affix, cmd = affix[+1:-0], "hassuf"
if affix.endswith("-"):
affix, cmd = affix[+0:-1], "haspref"
if tagged:
r = [tagged, affix, "f"+cmd.lstrip("f"), tag, "x"]
else:
r = [affix, cmd.lstrip("f"), tag, "x"]
lazylist.insert(self, i, r) | Inserts a new rule that assigns the given tag to words with the given affix,
e.g., Morphology.append("RB", "-ly"). | entailment |
def apply(self, tokens):
""" Applies contextual rules to the given list of tokens,
where each token is a [word, tag] list.
"""
o = [("STAART", "STAART")] * 3 # Empty delimiters for look ahead/back.
t = o + tokens + o
for i, token in enumerate(t):
for r in self:
if token[1] == "STAART":
continue
if token[1] != r[0] and r[0] != "*":
continue
cmd, x, y = r[2], r[3], r[4] if len(r) > 4 else ""
cmd = cmd.lower()
if (cmd == "prevtag" and x == t[i-1][1]) \
or (cmd == "nexttag" and x == t[i+1][1]) \
or (cmd == "prev2tag" and x == t[i-2][1]) \
or (cmd == "next2tag" and x == t[i+2][1]) \
or (cmd == "prev1or2tag" and x in (t[i-1][1], t[i-2][1])) \
or (cmd == "next1or2tag" and x in (t[i+1][1], t[i+2][1])) \
or (cmd == "prev1or2or3tag" and x in (t[i-1][1], t[i-2][1], t[i-3][1])) \
or (cmd == "next1or2or3tag" and x in (t[i+1][1], t[i+2][1], t[i+3][1])) \
or (cmd == "surroundtag" and x == t[i-1][1] and y == t[i+1][1]) \
or (cmd == "curwd" and x == t[i+0][0]) \
or (cmd == "prevwd" and x == t[i-1][0]) \
or (cmd == "nextwd" and x == t[i+1][0]) \
or (cmd == "prev1or2wd" and x in (t[i-1][0], t[i-2][0])) \
or (cmd == "next1or2wd" and x in (t[i+1][0], t[i+2][0])) \
or (cmd == "prevwdtag" and x == t[i-1][0] and y == t[i-1][1]) \
or (cmd == "nextwdtag" and x == t[i+1][0] and y == t[i+1][1]) \
or (cmd == "wdprevtag" and x == t[i-1][1] and y == t[i+0][0]) \
or (cmd == "wdnexttag" and x == t[i+0][0] and y == t[i+1][1]) \
or (cmd == "wdand2aft" and x == t[i+0][0] and y == t[i+2][0]) \
or (cmd == "wdand2tagbfr" and x == t[i-2][1] and y == t[i+0][0]) \
or (cmd == "wdand2tagaft" and x == t[i+0][0] and y == t[i+2][1]) \
or (cmd == "lbigram" and x == t[i-1][0] and y == t[i+0][0]) \
or (cmd == "rbigram" and x == t[i+0][0] and y == t[i+1][0]) \
or (cmd == "prevbigram" and x == t[i-2][1] and y == t[i-1][1]) \
or (cmd == "nextbigram" and x == t[i+1][1] and y == t[i+2][1]):
t[i] = [t[i][0], r[1]]
return t[len(o):-len(o)] | Applies contextual rules to the given list of tokens,
where each token is a [word, tag] list. | entailment |
def insert(self, i, tag1, tag2, cmd="prevtag", x=None, y=None):
""" Inserts a new rule that updates words with tag1 to tag2,
given constraints x and y, e.g., Context.append("TO < NN", "VB")
"""
if " < " in tag1 and not x and not y:
tag1, x = tag1.split(" < "); cmd="prevtag"
if " > " in tag1 and not x and not y:
x, tag1 = tag1.split(" > "); cmd="nexttag"
lazylist.insert(self, i, [tag1, tag2, cmd, x or "", y or ""]) | Inserts a new rule that updates words with tag1 to tag2,
given constraints x and y, e.g., Context.append("TO < NN", "VB") | entailment |
def apply(self, tokens):
""" Applies the named entity recognizer to the given list of tokens,
where each token is a [word, tag] list.
"""
# Note: we could also scan for patterns, e.g.,
# "my|his|her name is|was *" => NNP-PERS.
i = 0
while i < len(tokens):
w = tokens[i][0].lower()
if RE_ENTITY1.match(w) \
or RE_ENTITY2.match(w) \
or RE_ENTITY3.match(w):
tokens[i][1] = self.tag
if w in self:
for e in self[w]:
# Look ahead to see if successive words match the named entity.
e, tag = (e[:-1], "-"+e[-1].upper()) if e[-1] in self._cmd else (e, "")
b = True
for j, e in enumerate(e):
if i + j >= len(tokens) or tokens[i+j][0].lower() != e:
b = False; break
if b:
for token in tokens[i:i+j+1]:
token[1] = token[1] if token[1].startswith(self.tag) else self.tag
token[1] += tag
i += j
break
i += 1
return tokens | Applies the named entity recognizer to the given list of tokens,
where each token is a [word, tag] list. | entailment |
def append(self, entity, name="pers"):
""" Appends a named entity to the lexicon,
e.g., Entities.append("Hooloovoo", "PERS")
"""
e = map(lambda s: s.lower(), entity.split(" ") + [name])
self.setdefault(e[0], []).append(e) | Appends a named entity to the lexicon,
e.g., Entities.append("Hooloovoo", "PERS") | entailment |
def find_keywords(self, string, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return find_keywords(string,
parser = self,
top = kwargs.pop("top", 10),
frequency = kwargs.pop("frequency", {}), **kwargs
) | Returns a sorted list of keywords in the given string. | entailment |
def find_tokens(self, string, **kwargs):
""" Returns a list of sentences from the given string.
Punctuation marks are separated from each word by a space.
"""
# "The cat purs." => ["The cat purs ."]
return find_tokens(string,
punctuation = kwargs.get( "punctuation", PUNCTUATION),
abbreviations = kwargs.get("abbreviations", ABBREVIATIONS),
replace = kwargs.get( "replace", replacements),
linebreak = r"\n{2,}") | Returns a list of sentences from the given string.
Punctuation marks are separated from each word by a space. | entailment |
def find_tags(self, tokens, **kwargs):
""" Annotates the given list of tokens with part-of-speech tags.
Returns a list of tokens, where each token is now a [word, tag]-list.
"""
# ["The", "cat", "purs"] => [["The", "DT"], ["cat", "NN"], ["purs", "VB"]]
return find_tags(tokens,
lexicon = kwargs.get( "lexicon", self.lexicon or {}),
model = kwargs.get( "model", self.model),
morphology = kwargs.get("morphology", self.morphology),
context = kwargs.get( "context", self.context),
entities = kwargs.get( "entities", self.entities),
language = kwargs.get( "language", self.language),
default = kwargs.get( "default", self.default),
map = kwargs.get( "map", None)) | Annotates the given list of tokens with part-of-speech tags.
Returns a list of tokens, where each token is now a [word, tag]-list. | entailment |
def find_chunks(self, tokens, **kwargs):
""" Annotates the given list of tokens with chunk tags.
Several tags can be added, for example chunk + preposition tags.
"""
# [["The", "DT"], ["cat", "NN"], ["purs", "VB"]] =>
# [["The", "DT", "B-NP"], ["cat", "NN", "I-NP"], ["purs", "VB", "B-VP"]]
return find_prepositions(
find_chunks(tokens,
language = kwargs.get("language", self.language))) | Annotates the given list of tokens with chunk tags.
Several tags can be added, for example chunk + preposition tags. | entailment |
def parse(self, s, tokenize=True, tags=True, chunks=True, relations=False, lemmata=False, encoding="utf-8", **kwargs):
""" Takes a string (sentences) and returns a tagged Unicode string (TaggedString).
Sentences in the output are separated by newlines.
With tokenize=True, punctuation is split from words and sentences are separated by \n.
With tags=True, part-of-speech tags are parsed (NN, VB, IN, ...).
With chunks=True, phrase chunk tags are parsed (NP, VP, PP, PNP, ...).
With relations=True, semantic role labels are parsed (SBJ, OBJ).
With lemmata=True, word lemmata are parsed.
Optional parameters are passed to
the tokenizer, tagger, chunker, labeler and lemmatizer.
"""
# Tokenizer.
if tokenize is True:
s = self.find_tokens(s, **kwargs)
if isinstance(s, (list, tuple)):
s = [isinstance(s, basestring) and s.split(" ") or s for s in s]
if isinstance(s, basestring):
s = [s.split(" ") for s in s.split("\n")]
# Unicode.
for i in range(len(s)):
for j in range(len(s[i])):
if isinstance(s[i][j], str):
s[i][j] = decode_string(s[i][j], encoding)
# Tagger (required by chunker, labeler & lemmatizer).
if tags or chunks or relations or lemmata:
s[i] = self.find_tags(s[i], **kwargs)
else:
s[i] = [[w] for w in s[i]]
# Chunker.
if chunks or relations:
s[i] = self.find_chunks(s[i], **kwargs)
# Labeler.
if relations:
s[i] = self.find_labels(s[i], **kwargs)
# Lemmatizer.
if lemmata:
s[i] = self.find_lemmata(s[i], **kwargs)
# Slash-formatted tagged string.
# With collapse=False (or split=True), returns raw list
# (this output is not usable by tree.Text).
if not kwargs.get("collapse", True) \
or kwargs.get("split", False):
return s
# Construct TaggedString.format.
# (this output is usable by tree.Text).
format = ["word"]
if tags:
format.append("part-of-speech")
if chunks:
format.extend(("chunk", "preposition"))
if relations:
format.append("relation")
if lemmata:
format.append("lemma")
# Collapse raw list.
# Sentences are separated by newlines, tokens by spaces, tags by slashes.
# Slashes in words are encoded with &slash;
for i in range(len(s)):
for j in range(len(s[i])):
s[i][j][0] = s[i][j][0].replace("/", "&slash;")
s[i][j] = "/".join(s[i][j])
s[i] = " ".join(s[i])
s = "\n".join(s)
s = TaggedString(s, format, language=kwargs.get("language", self.language))
return s | Takes a string (sentences) and returns a tagged Unicode string (TaggedString).
Sentences in the output are separated by newlines.
With tokenize=True, punctuation is split from words and sentences are separated by \n.
With tags=True, part-of-speech tags are parsed (NN, VB, IN, ...).
With chunks=True, phrase chunk tags are parsed (NP, VP, PP, PNP, ...).
With relations=True, semantic role labels are parsed (SBJ, OBJ).
With lemmata=True, word lemmata are parsed.
Optional parameters are passed to
the tokenizer, tagger, chunker, labeler and lemmatizer. | entailment |
def split(self, sep=TOKENS):
""" Returns a list of sentences, where each sentence is a list of tokens,
where each token is a list of word + tags.
"""
if sep != TOKENS:
return unicode.split(self, sep)
if len(self) == 0:
return []
return [[[x.replace("&slash;", "/") for x in token.split("/")]
for token in sentence.split(" ")]
for sentence in unicode.split(self, "\n")] | Returns a list of sentences, where each sentence is a list of tokens,
where each token is a list of word + tags. | entailment |
def TENSES(self):
""" Yields a list of tenses for this language, excluding negations.
Each tense is a (tense, person, number, mood, aspect)-tuple.
"""
a = set(TENSES[id] for id in self._format)
a = a.union(set(TENSES[id] for id in self._default.keys()))
a = a.union(set(TENSES[id] for id in self._default.values()))
a = sorted(x[:-2] for x in a if x[-2] is False) # Exclude negation.
return a | Yields a list of tenses for this language, excluding negations.
Each tense is a (tense, person, number, mood, aspect)-tuple. | entailment |
def lemma(self, verb, parse=True):
""" Returns the infinitive form of the given verb, or None.
"""
if dict.__len__(self) == 0:
self.load()
if verb.lower() in self._inverse:
return self._inverse[verb.lower()]
if verb in self._inverse:
return self._inverse[verb]
if parse is True: # rule-based
return self.find_lemma(verb) | Returns the infinitive form of the given verb, or None. | entailment |
def lexeme(self, verb, parse=True):
""" Returns a list of all possible inflections of the given verb.
"""
a = []
b = self.lemma(verb, parse=parse)
if b in self:
a = [x for x in self[b] if x != ""]
elif parse is True: # rule-based
a = self.find_lexeme(b)
u = []; [u.append(x) for x in a if x not in u]
return u | Returns a list of all possible inflections of the given verb. | entailment |
def conjugate(self, verb, *args, **kwargs):
""" Inflects the verb and returns the given tense (or None).
For example: be
- Verbs.conjugate("is", INFINITVE) => be
- Verbs.conjugate("be", PRESENT, 1, SINGULAR) => I am
- Verbs.conjugate("be", PRESENT, 1, PLURAL) => we are
- Verbs.conjugate("be", PAST, 3, SINGULAR) => he was
- Verbs.conjugate("be", PAST, aspect=PROGRESSIVE) => been
- Verbs.conjugate("be", PAST, person=1, negated=True) => I wasn't
"""
id = tense_id(*args, **kwargs)
# Get the tense index from the format description (or a default).
i1 = self._format.get(id)
i2 = self._format.get(self._default.get(id))
i3 = self._format.get(self._default.get(self._default.get(id)))
b = self.lemma(verb, parse=kwargs.get("parse", True))
v = []
# Get the verb lexeme and return the requested index.
if b in self:
v = self[b]
for i in (i1, i2, i3):
if i is not None and 0 <= i < len(v) and v[i]:
return v[i]
if kwargs.get("parse", True) is True: # rule-based
v = self.find_lexeme(b)
for i in (i1, i2, i3):
if i is not None and 0 <= i < len(v) and v[i]:
return v[i] | Inflects the verb and returns the given tense (or None).
For example: be
- Verbs.conjugate("is", INFINITVE) => be
- Verbs.conjugate("be", PRESENT, 1, SINGULAR) => I am
- Verbs.conjugate("be", PRESENT, 1, PLURAL) => we are
- Verbs.conjugate("be", PAST, 3, SINGULAR) => he was
- Verbs.conjugate("be", PAST, aspect=PROGRESSIVE) => been
- Verbs.conjugate("be", PAST, person=1, negated=True) => I wasn't | entailment |
def tenses(self, verb, parse=True):
""" Returns a list of possible tenses for the given inflected verb.
"""
verb = verb.lower()
a = set()
b = self.lemma(verb, parse=parse)
v = []
if b in self:
v = self[b]
elif parse is True: # rule-based
v = self.find_lexeme(b)
# For each tense in the verb lexeme that matches the given tense,
# 1) retrieve the tense tuple,
# 2) retrieve the tense tuples for which that tense is a default.
for i, tense in enumerate(v):
if tense == verb:
for id, index in self._format.items():
if i == index:
a.add(id)
for id1, id2 in self._default.items():
if id2 in a:
a.add(id1)
for id1, id2 in self._default.items():
if id2 in a:
a.add(id1)
a = (TENSES[id][:-2] for id in a)
a = Tenses(sorted(a))
return a | Returns a list of possible tenses for the given inflected verb. | entailment |
def load(self, path=None):
""" Loads the XML-file (with sentiment annotations) from the given path.
By default, Sentiment.path is lazily loaded.
"""
# <word form="great" wordnet_id="a-01123879" pos="JJ" polarity="1.0" subjectivity="1.0" intensity="1.0" />
# <word form="damnmit" polarity="-0.75" subjectivity="1.0" label="profanity" />
if not path:
path = self._path
if not os.path.exists(path):
return
words, synsets, labels = {}, {}, {}
xml = cElementTree.parse(path)
xml = xml.getroot()
for w in xml.findall("word"):
if self._confidence is None \
or self._confidence <= float(w.attrib.get("confidence", 0.0)):
w, pos, p, s, i, label, synset = (
w.attrib.get("form"),
w.attrib.get("pos"),
w.attrib.get("polarity", 0.0),
w.attrib.get("subjectivity", 0.0),
w.attrib.get("intensity", 1.0),
w.attrib.get("label"),
w.attrib.get(self._synset) # wordnet_id, cornetto_id, ...
)
psi = (float(p), float(s), float(i))
if w:
words.setdefault(w, {}).setdefault(pos, []).append(psi)
if w and label:
labels[w] = label
if synset:
synsets.setdefault(synset, []).append(psi)
self._language = xml.attrib.get("language", self._language)
# Average scores of all word senses per part-of-speech tag.
for w in words:
words[w] = dict((pos, [avg(each) for each in zip(*psi)]) for pos, psi in words[w].items())
# Average scores of all part-of-speech tags.
for w, pos in list(words.items()):
words[w][None] = [avg(each) for each in zip(*pos.values())]
# Average scores of all synonyms per synset.
for id, psi in synsets.items():
synsets[id] = [avg(each) for each in zip(*psi)]
dict.update(self, words)
dict.update(self.labeler, labels)
dict.update(self._synsets, synsets) | Loads the XML-file (with sentiment annotations) from the given path.
By default, Sentiment.path is lazily loaded. | entailment |
def synset(self, id, pos=ADJECTIVE):
""" Returns a (polarity, subjectivity)-tuple for the given synset id.
For example, the adjective "horrible" has id 193480 in WordNet:
Sentiment.synset(193480, pos="JJ") => (-0.6, 1.0, 1.0).
"""
id = str(id).zfill(8)
if not id.startswith(("n-", "v-", "a-", "r-")):
if pos == NOUN:
id = "n-" + id
if pos == VERB:
id = "v-" + id
if pos == ADJECTIVE:
id = "a-" + id
if pos == ADVERB:
id = "r-" + id
if dict.__len__(self) == 0:
self.load()
try:
return tuple(self._synsets[id])[:2]
except KeyError: # Some WordNet id's are not zero padded.
return tuple(self._synsets.get(re.sub(r"-0+", "-", id), (0.0, 0.0))[:2]) | Returns a (polarity, subjectivity)-tuple for the given synset id.
For example, the adjective "horrible" has id 193480 in WordNet:
Sentiment.synset(193480, pos="JJ") => (-0.6, 1.0, 1.0). | entailment |
def assessments(self, words=[], negation=True):
""" Returns a list of (chunk, polarity, subjectivity, label)-tuples for the given list of words:
where chunk is a list of successive words: a known word optionally
preceded by a modifier ("very good") or a negation ("not good").
"""
a = []
m = None # Preceding modifier (i.e., adverb or adjective).
n = None # Preceding negation (e.g., "not beautiful").
for w, pos in words:
# Only assess known words, preferably by part-of-speech tag.
# Including unknown words (polarity 0.0 and subjectivity 0.0) lowers the average.
if w is None:
continue
if w in self and pos in self[w]:
p, s, i = self[w][pos]
# Known word not preceded by a modifier ("good").
if m is None:
a.append(dict(w=[w], p=p, s=s, i=i, n=1, x=self.labeler.get(w)))
# Known word preceded by a modifier ("really good").
if m is not None:
a[-1]["w"].append(w)
a[-1]["p"] = max(-1.0, min(p * a[-1]["i"], +1.0))
a[-1]["s"] = max(-1.0, min(s * a[-1]["i"], +1.0))
a[-1]["i"] = i
a[-1]["x"] = self.labeler.get(w)
# Known word preceded by a negation ("not really good").
if n is not None:
a[-1]["w"].insert(0, n)
a[-1]["i"] = 1.0 / a[-1]["i"]
a[-1]["n"] = -1
# Known word may be a negation.
# Known word may be modifying the next word (i.e., it is a known adverb).
m = None
n = None
if pos and pos in self.modifiers or any(map(self[w].__contains__, self.modifiers)):
m = (w, pos)
if negation and w in self.negations:
n = w
else:
# Unknown word may be a negation ("not good").
if negation and w in self.negations:
n = w
# Unknown word. Retain negation across small words ("not a good").
elif n and len(w.strip("'")) > 1:
n = None
# Unknown word may be a negation preceded by a modifier ("really not good").
if n is not None and m is not None and (pos in self.modifiers or self.modifier(m[0])):
a[-1]["w"].append(n)
a[-1]["n"] = -1
n = None
# Unknown word. Retain modifier across small words ("really is a good").
elif m and len(w) > 2:
m = None
# Exclamation marks boost previous word.
if w == "!" and len(a) > 0:
a[-1]["w"].append("!")
a[-1]["p"] = max(-1.0, min(a[-1]["p"] * 1.25, +1.0))
# Exclamation marks in parentheses indicate sarcasm.
if w == "(!)":
a.append(dict(w=[w], p=0.0, s=1.0, i=1.0, n=1, x=IRONY))
# EMOTICONS: {("grin", +1.0): set((":-D", ":D"))}
if w.isalpha() is False and len(w) <= 5 and w not in PUNCTUATION: # speedup
for (type, p), e in EMOTICONS.items():
if w in map(lambda e: e.lower(), e):
a.append(dict(w=[w], p=p, s=1.0, i=1.0, n=1, x=MOOD))
break
for i in range(len(a)):
w = a[i]["w"]
p = a[i]["p"]
s = a[i]["s"]
n = a[i]["n"]
x = a[i]["x"]
# "not good" = slightly bad, "not bad" = slightly good.
a[i] = (w, p * -0.5 if n < 0 else p, s, x)
return a | Returns a list of (chunk, polarity, subjectivity, label)-tuples for the given list of words:
where chunk is a list of successive words: a known word optionally
preceded by a modifier ("very good") or a negation ("not good"). | entailment |
def annotate(self, word, pos=None, polarity=0.0, subjectivity=0.0, intensity=1.0, label=None):
""" Annotates the given word with polarity, subjectivity and intensity scores,
and optionally a semantic label (e.g., MOOD for emoticons, IRONY for "(!)").
"""
w = self.setdefault(word, {})
w[pos] = w[None] = (polarity, subjectivity, intensity)
if label:
self.labeler[word] = label | Annotates the given word with polarity, subjectivity and intensity scores,
and optionally a semantic label (e.g., MOOD for emoticons, IRONY for "(!)"). | entailment |
def train(self, s, path="spelling.txt"):
""" Counts the words in the given string and saves the probabilities at the given path.
This can be used to generate a new model for the Spelling() constructor.
"""
model = {}
for w in re.findall("[a-z]+", s.lower()):
model[w] = w in model and model[w] + 1 or 1
model = ("%s %s" % (k, v) for k, v in sorted(model.items()))
model = "\n".join(model)
f = open(path, "w")
f.write(model)
f.close() | Counts the words in the given string and saves the probabilities at the given path.
This can be used to generate a new model for the Spelling() constructor. | entailment |
def _edit1(self, w):
""" Returns a set of words with edit distance 1 from the given word.
"""
# Of all spelling errors, 80% is covered by edit distance 1.
# Edit distance 1 = one character deleted, swapped, replaced or inserted.
split = [(w[:i], w[i:]) for i in range(len(w) + 1)]
delete, transpose, replace, insert = (
[a + b[1:] for a, b in split if b],
[a + b[1] + b[0] + b[2:] for a, b in split if len(b) > 1],
[a + c + b[1:] for a, b in split for c in Spelling.ALPHA if b],
[a + c + b[0:] for a, b in split for c in Spelling.ALPHA]
)
return set(delete + transpose + replace + insert) | Returns a set of words with edit distance 1 from the given word. | entailment |
def _edit2(self, w):
""" Returns a set of words with edit distance 2 from the given word
"""
# Of all spelling errors, 99% is covered by edit distance 2.
# Only keep candidates that are actually known words (20% speedup).
return set(e2 for e1 in self._edit1(w) for e2 in self._edit1(e1) if e2 in self) | Returns a set of words with edit distance 2 from the given word | entailment |
def suggest(self, w):
""" Return a list of (word, confidence) spelling corrections for the given word,
based on the probability of known words with edit distance 1-2 from the given word.
"""
if len(self) == 0:
self.load()
if len(w) == 1:
return [(w, 1.0)] # I
if w in PUNCTUATION:
return [(w, 1.0)] # .?!
if w.replace(".", "").isdigit():
return [(w, 1.0)] # 1.5
candidates = self._known([w]) \
or self._known(self._edit1(w)) \
or self._known(self._edit2(w)) \
or [w]
candidates = [(self.get(c, 0.0), c) for c in candidates]
s = float(sum(p for p, w in candidates) or 1)
candidates = sorted(((p / s, w) for p, w in candidates), reverse=True)
candidates = [(w.istitle() and x.title() or x, p) for p, x in candidates] # case-sensitive
return candidates | Return a list of (word, confidence) spelling corrections for the given word,
based on the probability of known words with edit distance 1-2 from the given word. | entailment |
def zip(*args, **kwargs):
""" Returns a list of tuples, where the i-th tuple contains the i-th element
from each of the argument sequences or iterables (or default if too short).
"""
args = [list(iterable) for iterable in args]
n = max(map(len, args))
v = kwargs.get("default", None)
return _zip(*[i + [v] * (n - len(i)) for i in args]) | Returns a list of tuples, where the i-th tuple contains the i-th element
from each of the argument sequences or iterables (or default if too short). | entailment |
def chunked(sentence):
""" Returns a list of Chunk and Chink objects from the given sentence.
Chink is a subclass of Chunk used for words that have Word.chunk == None
(e.g., punctuation marks, conjunctions).
"""
# For example, to construct a training vector with the head of previous chunks as a feature.
# Doing this with Sentence.chunks would discard the punctuation marks and conjunctions
# (Sentence.chunks only yields Chunk objects), which amy be useful features.
chunks = []
for word in sentence:
if word.chunk is not None:
if len(chunks) == 0 or chunks[-1] != word.chunk:
chunks.append(word.chunk)
else:
ch = Chink(sentence)
ch.append(word.copy(ch))
chunks.append(ch)
return chunks | Returns a list of Chunk and Chink objects from the given sentence.
Chink is a subclass of Chunk used for words that have Word.chunk == None
(e.g., punctuation marks, conjunctions). | entailment |
def tree(string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Transforms the output of parse() into a Text object.
The token parameter lists the order of tags in each token in the input string.
"""
return Text(string, token) | Transforms the output of parse() into a Text object.
The token parameter lists the order of tags in each token in the input string. | entailment |
def xml_encode(string):
""" Returns the string with XML-safe special characters.
"""
string = string.replace("&", "&")
string = string.replace("<", "<")
string = string.replace(">", ">")
string = string.replace("\"",""")
string = string.replace(SLASH, "/")
return string | Returns the string with XML-safe special characters. | entailment |
def xml_decode(string):
""" Returns the string with special characters decoded.
"""
string = string.replace("&", "&")
string = string.replace("<", "<")
string = string.replace(">", ">")
string = string.replace(""","\"")
string = string.replace("/", SLASH)
return string | Returns the string with special characters decoded. | entailment |
def parse_xml(sentence, tab="\t", id=""):
""" Returns the given Sentence object as an XML-string (plain bytestring, UTF-8 encoded).
The tab delimiter is used as indendation for nested elements.
The id can be used as a unique identifier per sentence for chunk id's and anchors.
For example: "I eat pizza with a fork." =>
<sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma" language="en">
<chunk type="NP" relation="SBJ" of="1">
<word type="PRP" lemma="i">I</word>
</chunk>
<chunk type="VP" relation="VP" id="1" anchor="A1">
<word type="VBP" lemma="eat">eat</word>
</chunk>
<chunk type="NP" relation="OBJ" of="1">
<word type="NN" lemma="pizza">pizza</word>
</chunk>
<chunk type="PNP" of="A1">
<chunk type="PP">
<word type="IN" lemma="with">with</word>
</chunk>
<chunk type="NP">
<word type="DT" lemma="a">a</word>
<word type="NN" lemma="fork">fork</word>
</chunk>
</chunk>
<chink>
<word type="." lemma=".">.</word>
</chink>
</sentence>
"""
uid = lambda *parts: "".join([str(id), _UID_SEPARATOR ]+[str(x) for x in parts]).lstrip(_UID_SEPARATOR)
push = lambda indent: indent+tab # push() increases the indentation.
pop = lambda indent: indent[:-len(tab)] # pop() decreases the indentation.
indent = tab
xml = []
# Start the sentence element:
# <sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma">
xml.append('<%s%s %s="%s" %s="%s">' % (
XML_SENTENCE,
XML_ID and " %s=\"%s\"" % (XML_ID, str(id)) or "",
XML_TOKEN, ", ".join(sentence.token),
XML_LANGUAGE, sentence.language
))
# Collect chunks that are PNP anchors and assign id.
anchors = {}
for chunk in sentence.chunks:
if chunk.attachments:
anchors[chunk.start] = len(anchors) + 1
# Traverse all words in the sentence.
for word in sentence.words:
chunk = word.chunk
pnp = word.chunk and word.chunk.pnp or None
# Start the PNP element if the chunk is the first chunk in PNP:
# <chunk type="PNP" of="A1">
if pnp and pnp.start == chunk.start:
a = pnp.anchor and ' %s="%s"' % (XML_OF, uid("A", anchors.get(pnp.anchor.start, ""))) or ""
xml.append(indent + '<%s %s="PNP"%s>' % (XML_CHUNK, XML_TYPE, a))
indent = push(indent)
# Start the chunk element if the word is the first word in the chunk:
# <chunk type="VP" relation="VP" id="1" anchor="A1">
if chunk and chunk.start == word.index:
if chunk.relations:
# Create the shortest possible attribute values for multiple relations,
# e.g., [(1,"OBJ"),(2,"OBJ")]) => relation="OBJ" id="1|2"
r1 = unzip(0, chunk.relations) # Relation id's.
r2 = unzip(1, chunk.relations) # Relation roles.
r1 = [x is None and "-" or uid(x) for x in r1]
r2 = [x is None and "-" or x for x in r2]
r1 = not len(unique(r1)) == 1 and "|".join(r1) or (r1+[None])[0]
r2 = not len(unique(r2)) == 1 and "|".join(r2) or (r2+[None])[0]
xml.append(indent + '<%s%s%s%s%s%s>' % (
XML_CHUNK,
chunk.type and ' %s="%s"' % (XML_TYPE, chunk.type) or "",
chunk.relations and chunk.role != None and ' %s="%s"' % (XML_RELATION, r2) or "",
chunk.relation and chunk.type == "VP" and ' %s="%s"' % (XML_ID, uid(chunk.relation)) or "",
chunk.relation and chunk.type != "VP" and ' %s="%s"' % (XML_OF, r1) or "",
chunk.attachments and ' %s="%s"' % (XML_ANCHOR, uid("A",anchors[chunk.start])) or ""
))
indent = push(indent)
# Words outside of a chunk are wrapped in a <chink> tag:
# <chink>
if not chunk:
xml.append(indent + '<%s>' % XML_CHINK)
indent = push(indent)
# Add the word element:
# <word type="VBP" lemma="eat">eat</word>
xml.append(indent + '<%s%s%s%s>%s</%s>' % (
XML_WORD,
word.type and ' %s="%s"' % (XML_TYPE, xml_encode(word.type)) or '',
word.lemma and ' %s="%s"' % (XML_LEMMA, xml_encode(word.lemma)) or '',
(" "+" ".join(['%s="%s"' % (k,v) for k,v in word.custom_tags.items() if v != None])).rstrip(),
xml_encode(unicode(word)),
XML_WORD
))
if not chunk:
# Close the <chink> element if outside of a chunk.
indent = pop(indent); xml.append(indent + "</%s>" % XML_CHINK)
if chunk and chunk.stop-1 == word.index:
# Close the <chunk> element if this is the last word in the chunk.
indent = pop(indent); xml.append(indent + "</%s>" % XML_CHUNK)
if pnp and pnp.stop-1 == word.index:
# Close the PNP element if this is the last word in the PNP.
indent = pop(indent); xml.append(indent + "</%s>" % XML_CHUNK)
xml.append("</%s>" % XML_SENTENCE)
# Return as a plain str.
return "\n".join(xml).encode("utf-8") | Returns the given Sentence object as an XML-string (plain bytestring, UTF-8 encoded).
The tab delimiter is used as indendation for nested elements.
The id can be used as a unique identifier per sentence for chunk id's and anchors.
For example: "I eat pizza with a fork." =>
<sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma" language="en">
<chunk type="NP" relation="SBJ" of="1">
<word type="PRP" lemma="i">I</word>
</chunk>
<chunk type="VP" relation="VP" id="1" anchor="A1">
<word type="VBP" lemma="eat">eat</word>
</chunk>
<chunk type="NP" relation="OBJ" of="1">
<word type="NN" lemma="pizza">pizza</word>
</chunk>
<chunk type="PNP" of="A1">
<chunk type="PP">
<word type="IN" lemma="with">with</word>
</chunk>
<chunk type="NP">
<word type="DT" lemma="a">a</word>
<word type="NN" lemma="fork">fork</word>
</chunk>
</chunk>
<chink>
<word type="." lemma=".">.</word>
</chink>
</sentence> | entailment |
def parse_string(xml):
""" Returns a slash-formatted string from the given XML representation.
The return value is a TokenString (for MBSP) or TaggedString (for Pattern).
"""
string = ""
# Traverse all the <sentence> elements in the XML.
dom = XML(xml)
for sentence in dom(XML_SENTENCE):
_anchors.clear() # Populated by calling _parse_tokens().
_attachments.clear() # Populated by calling _parse_tokens().
# Parse the language from <sentence language="">.
language = sentence.get(XML_LANGUAGE, "en")
# Parse the token tag format from <sentence token="">.
# This information is returned in TokenString.tags,
# so the format and order of the token tags is retained when exporting/importing as XML.
format = sentence.get(XML_TOKEN, [WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA])
format = not isinstance(format, basestring) and format or format.replace(" ","").split(",")
# Traverse all <chunk> and <chink> elements in the sentence.
# Find the <word> elements inside and create tokens.
tokens = []
for chunk in sentence:
tokens.extend(_parse_tokens(chunk, format))
# Attach PNP's to their anchors.
# Keys in _anchors have linked anchor chunks (each chunk is a list of tokens).
# The keys correspond to the keys in _attachments, which have linked PNP chunks.
if ANCHOR in format:
A, P, a, i = _anchors, _attachments, 1, format.index(ANCHOR)
for id in sorted(A.keys()):
for token in A[id]:
token[i] += "-"+"-".join(["A"+str(a+p) for p in range(len(P[id]))])
token[i] = token[i].strip("O-")
for p, pnp in enumerate(P[id]):
for token in pnp:
token[i] += "-"+"P"+str(a+p)
token[i] = token[i].strip("O-")
a += len(P[id])
# Collapse the tokens to string.
# Separate multiple sentences with a new line.
tokens = ["/".join([tag for tag in token]) for token in tokens]
tokens = " ".join(tokens)
string += tokens + "\n"
# Return a TokenString, which is a unicode string that transforms easily
# into a plain str, a list of tokens, or a Sentence.
try:
if MBSP: from mbsp import TokenString
return TokenString(string.strip(), tags=format, language=language)
except:
return TaggedString(string.strip(), tags=format, language=language) | Returns a slash-formatted string from the given XML representation.
The return value is a TokenString (for MBSP) or TaggedString (for Pattern). | entailment |
def _parse_tokens(chunk, format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Parses tokens from <word> elements in the given XML <chunk> element.
Returns a flat list of tokens, in which each token is [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA].
If a <chunk type="PNP"> is encountered, traverses all of the chunks in the PNP.
"""
tokens = []
# Only process <chunk> and <chink> elements,
# text nodes in between return an empty list.
if not (chunk.tag == XML_CHUNK or chunk.tag == XML_CHINK):
return []
type = chunk.get(XML_TYPE, "O")
if type == "PNP":
# For, <chunk type="PNP">, recurse all the child chunks inside the PNP.
for ch in chunk:
tokens.extend(_parse_tokens(ch, format))
# Tag each of them as part of the PNP.
if PNP in format:
i = format.index(PNP)
for j, token in enumerate(tokens):
token[i] = (j==0 and "B-" or "I-") + "PNP"
# Store attachments so we can construct anchor id's in parse_string().
# This has to be done at the end, when all the chunks have been found.
a = chunk.get(XML_OF).split(_UID_SEPARATOR)[-1]
if a:
_attachments.setdefault(a, [])
_attachments[a].append(tokens)
return tokens
# For <chunk type-"VP" id="1">, the relation is VP-1.
# For <chunk type="NP" relation="OBJ" of="1">, the relation is NP-OBJ-1.
relation = _parse_relation(chunk, type)
# Process all of the <word> elements in the chunk, for example:
# <word type="NN" lemma="pizza">pizza</word> => [pizza, NN, I-NP, O, NP-OBJ-1, O, pizza]
for word in filter(lambda n: n.tag == XML_WORD, chunk):
tokens.append(_parse_token(word, chunk=type, relation=relation, format=format))
# Add the IOB chunk tags:
# words at the start of a chunk are marked with B-, words inside with I-.
if CHUNK in format:
i = format.index(CHUNK)
for j, token in enumerate(tokens):
token[i] = token[i] != "O" and ((j==0 and "B-" or "I-") + token[i]) or "O"
# The chunk can be the anchor of one or more PNP chunks.
# Store anchors so we can construct anchor id's in parse_string().
a = chunk.get(XML_ANCHOR, "").split(_UID_SEPARATOR)[-1]
if a:
_anchors[a] = tokens
return tokens | Parses tokens from <word> elements in the given XML <chunk> element.
Returns a flat list of tokens, in which each token is [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA].
If a <chunk type="PNP"> is encountered, traverses all of the chunks in the PNP. | entailment |
def _parse_relation(chunk, type="O"):
""" Returns a string of the roles and relations parsed from the given <chunk> element.
The chunk type (which is part of the relation string) can be given as parameter.
"""
r1 = chunk.get(XML_RELATION)
r2 = chunk.get(XML_ID, chunk.get(XML_OF))
r1 = [x != "-" and x or None for x in r1.split("|")] or [None]
r2 = [x != "-" and x or None for x in r2.split("|")] or [None]
r2 = [x is not None and x.split(_UID_SEPARATOR )[-1] or x for x in r2]
if len(r1) < len(r2): r1 = r1 + r1 * (len(r2)-len(r1)) # [1] ["SBJ", "OBJ"] => "SBJ-1;OBJ-1"
if len(r2) < len(r1): r2 = r2 + r2 * (len(r1)-len(r2)) # [2,4] ["OBJ"] => "OBJ-2;OBJ-4"
return ";".join(["-".join([x for x in (type, r1, r2) if x]) for r1, r2 in zip(r1, r2)]) | Returns a string of the roles and relations parsed from the given <chunk> element.
The chunk type (which is part of the relation string) can be given as parameter. | entailment |
def _parse_token(word, chunk="O", pnp="O", relation="O", anchor="O",
format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Returns a list of token tags parsed from the given <word> element.
Tags that are not attributes in a <word> (e.g., relation) can be given as parameters.
"""
tags = []
for tag in format:
if tag == WORD : tags.append(xml_decode(word.value))
elif tag == POS : tags.append(xml_decode(word.get(XML_TYPE, "O")))
elif tag == CHUNK : tags.append(chunk)
elif tag == PNP : tags.append(pnp)
elif tag == REL : tags.append(relation)
elif tag == ANCHOR : tags.append(anchor)
elif tag == LEMMA : tags.append(xml_decode(word.get(XML_LEMMA, "")))
else:
# Custom tags when the parser has been extended, see also Word.custom_tags{}.
tags.append(xml_decode(word.get(tag, "O")))
return tags | Returns a list of token tags parsed from the given <word> element.
Tags that are not attributes in a <word> (e.g., relation) can be given as parameters. | entailment |
def nltk_tree(sentence):
""" Returns an NLTK nltk.tree.Tree object from the given Sentence.
The NLTK module should be on the search path somewhere.
"""
from nltk import tree
def do_pnp(pnp):
# Returns the PNPChunk (and the contained Chunk objects) in NLTK bracket format.
s = ' '.join([do_chunk(ch) for ch in pnp.chunks])
return '(PNP %s)' % s
def do_chunk(ch):
# Returns the Chunk in NLTK bracket format. Recurse attached PNP's.
s = ' '.join(['(%s %s)' % (w.pos, w.string) for w in ch.words])
s+= ' '.join([do_pnp(pnp) for pnp in ch.attachments])
return '(%s %s)' % (ch.type, s)
T = ['(S']
v = [] # PNP's already visited.
for ch in sentence.chunked():
if not ch.pnp and isinstance(ch, Chink):
T.append('(%s %s)' % (ch.words[0].pos, ch.words[0].string))
elif not ch.pnp:
T.append(do_chunk(ch))
#elif ch.pnp not in v:
elif ch.pnp.anchor is None and ch.pnp not in v:
# The chunk is part of a PNP without an anchor.
T.append(do_pnp(ch.pnp))
v.append(ch.pnp)
T.append(')')
return tree.bracket_parse(' '.join(T)) | Returns an NLTK nltk.tree.Tree object from the given Sentence.
The NLTK module should be on the search path somewhere. | entailment |
def graphviz_dot(sentence, font="Arial", colors=BLUE):
""" Returns a dot-formatted string that can be visualized as a graph in GraphViz.
"""
s = 'digraph sentence {\n'
s += '\tranksep=0.75;\n'
s += '\tnodesep=0.15;\n'
s += '\tnode [penwidth=1, fontname="%s", shape=record, margin=0.1, height=0.35];\n' % font
s += '\tedge [penwidth=1];\n'
s += '\t{ rank=same;\n'
# Create node groups for words, chunks and PNP chunks.
for w in sentence.words:
s += '\t\tword%s [label="<f0>%s|<f1>%s"%s];\n' % (w.index, w.string, w.type, _colorize(w, colors))
for w in sentence.words[:-1]:
# Invisible edges forces the words into the right order:
s += '\t\tword%s -> word%s [color=none];\n' % (w.index, w.index+1)
s += '\t}\n'
s += '\t{ rank=same;\n'
for i, ch in enumerate(sentence.chunks):
s += '\t\tchunk%s [label="<f0>%s"%s];\n' % (i+1, "-".join([x for x in (
ch.type, ch.role, str(ch.relation or '')) if x]) or '-', _colorize(ch, colors))
for i, ch in enumerate(sentence.chunks[:-1]):
# Invisible edges forces the chunks into the right order:
s += '\t\tchunk%s -> chunk%s [color=none];\n' % (i+1, i+2)
s += '}\n'
s += '\t{ rank=same;\n'
for i, ch in enumerate(sentence.pnp):
s += '\t\tpnp%s [label="<f0>PNP"%s];\n' % (i+1, _colorize(ch, colors))
s += '\t}\n'
s += '\t{ rank=same;\n S [shape=circle, margin=0.25, penwidth=2]; }\n'
# Connect words to chunks.
# Connect chunks to PNP or S.
for i, ch in enumerate(sentence.chunks):
for w in ch:
s += '\tword%s -> chunk%s;\n' % (w.index, i+1)
if ch.pnp:
s += '\tchunk%s -> pnp%s;\n' % (i+1, sentence.pnp.index(ch.pnp)+1)
else:
s += '\tchunk%s -> S;\n' % (i+1)
if ch.type == 'VP':
# Indicate related chunks with a dotted
for r in ch.related:
s += '\tchunk%s -> chunk%s [style=dotted, arrowhead=none];\n' % (
i+1, sentence.chunks.index(r)+1)
# Connect PNP to anchor chunk or S.
for i, ch in enumerate(sentence.pnp):
if ch.anchor:
s += '\tpnp%s -> chunk%s;\n' % (i+1, sentence.chunks.index(ch.anchor)+1)
s += '\tpnp%s -> S [color=none];\n' % (i+1)
else:
s += '\tpnp%s -> S;\n' % (i+1)
s += "}"
return s | Returns a dot-formatted string that can be visualized as a graph in GraphViz. | entailment |
def table(sentence, fill=1, placeholder="-"):
""" Returns a string where the tags of tokens in the sentence are organized in outlined columns.
"""
tags = [WORD, POS, IOB, CHUNK, ROLE, REL, PNP, ANCHOR, LEMMA]
tags += [tag for tag in sentence.token if tag not in tags]
def format(token, tag):
# Returns the token tag as a string.
if tag == WORD : s = token.string
elif tag == POS : s = token.type
elif tag == IOB : s = token.chunk and (token.index == token.chunk.start and "B" or "I")
elif tag == CHUNK : s = token.chunk and token.chunk.type
elif tag == ROLE : s = token.chunk and token.chunk.role
elif tag == REL : s = token.chunk and token.chunk.relation and str(token.chunk.relation)
elif tag == PNP : s = token.chunk and token.chunk.pnp and token.chunk.pnp.type
elif tag == ANCHOR : s = token.chunk and token.chunk.anchor_id
elif tag == LEMMA : s = token.lemma
else : s = token.custom_tags.get(tag)
return s or placeholder
def outline(column, fill=1, padding=3, align="left"):
# Add spaces to each string in the column so they line out to the highest width.
n = max([len(x) for x in column]+[fill])
if align == "left" : return [x+" "*(n-len(x))+" "*padding for x in column]
if align == "right" : return [" "*(n-len(x))+x+" "*padding for x in column]
# Gather the tags of the tokens in the sentece per column.
# If the IOB-tag is I-, mark the chunk tag with "^".
# Add the tag names as headers in each column.
columns = [[format(token, tag) for token in sentence] for tag in tags]
columns[3] = [columns[3][i]+(iob == "I" and " ^" or "") for i, iob in enumerate(columns[2])]
del columns[2]
for i, header in enumerate(['word', 'tag', 'chunk', 'role', 'id', 'pnp', 'anchor', 'lemma']+tags[9:]):
columns[i].insert(0, "")
columns[i].insert(0, header.upper())
# The left column (the word itself) is outlined to the right,
# and has extra spacing so that words across sentences line out nicely below each other.
for i, column in enumerate(columns):
columns[i] = outline(column, fill+10*(i==0), align=("left","right")[i==0])
# Anchor column is useful in MBSP but not in pattern.en.
if not MBSP:
del columns[6]
# Create a string with one row (i.e., one token) per line.
return "\n".join(["".join([x[i] for x in columns]) for i in range(len(columns[0]))]) | Returns a string where the tags of tokens in the sentence are organized in outlined columns. | entailment |
def tags(self):
""" Yields a list of all the token tags as they appeared when the word was parsed.
For example: ["was", "VBD", "B-VP", "O", "VP-1", "A1", "be"]
"""
# See also. Sentence.__repr__().
ch, I,O,B = self.chunk, INSIDE+"-", OUTSIDE, BEGIN+"-"
tags = [OUTSIDE for i in range(len(self.sentence.token))]
for i, tag in enumerate(self.sentence.token): # Default: [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA]
if tag == WORD:
tags[i] = encode_entities(self.string)
elif tag == POS and self.type:
tags[i] = self.type
elif tag == CHUNK and ch and ch.type:
tags[i] = (self == ch[0] and B or I) + ch.type
elif tag == PNP and self.pnp:
tags[i] = (self == self.pnp[0] and B or I) + "PNP"
elif tag == REL and ch and len(ch.relations) > 0:
tags[i] = ["-".join([str(x) for x in [ch.type]+list(reversed(r)) if x]) for r in ch.relations]
tags[i] = "*".join(tags[i])
elif tag == ANCHOR and ch:
tags[i] = ch.anchor_id or OUTSIDE
elif tag == LEMMA:
tags[i] = encode_entities(self.lemma or "")
elif tag in self.custom_tags:
tags[i] = self.custom_tags.get(tag) or OUTSIDE
return tags | Yields a list of all the token tags as they appeared when the word was parsed.
For example: ["was", "VBD", "B-VP", "O", "VP-1", "A1", "be"] | entailment |
def next(self, type=None):
""" Returns the next word in the sentence with the given type.
"""
i = self.index + 1
s = self.sentence
while i < len(s):
if type in (s[i].type, None):
return s[i]
i += 1 | Returns the next word in the sentence with the given type. | entailment |
def previous(self, type=None):
""" Returns the next previous word in the sentence with the given type.
"""
i = self.index - 1
s = self.sentence
while i > 0:
if type in (s[i].type, None):
return s[i]
i -= 1 | Returns the next previous word in the sentence with the given type. | entailment |
def head(self):
""" Yields the head of the chunk (usually, the last word in the chunk).
"""
if self.type == "NP" and any(w.type.startswith("NNP") for w in self):
w = find(lambda w: w.type.startswith("NNP"), reversed(self))
elif self.type == "NP": # "the cat" => "cat"
w = find(lambda w: w.type.startswith("NN"), reversed(self))
elif self.type == "VP": # "is watching" => "watching"
w = find(lambda w: w.type.startswith("VB"), reversed(self))
elif self.type == "PP": # "from up on" => "from"
w = find(lambda w: w.type.startswith(("IN", "PP")), self)
elif self.type == "PNP": # "from up on the roof" => "roof"
w = find(lambda w: w.type.startswith("NN"), reversed(self))
else:
w = None
if w is None:
w = self[-1]
return w | Yields the head of the chunk (usually, the last word in the chunk). | entailment |
def related(self):
""" Yields a list of all chunks in the sentence with the same relation id.
"""
return [ch for ch in self.sentence.chunks
if ch != self and intersects(unzip(0, ch.relations), unzip(0, self.relations))] | Yields a list of all chunks in the sentence with the same relation id. | entailment |
def anchor_id(self):
""" Yields the anchor tag as parsed from the original token.
Chunks that are anchors have a tag with an "A" prefix (e.g., "A1").
Chunks that are PNP attachmens (or chunks inside a PNP) have "P" (e.g., "P1").
Chunks inside a PNP can be both anchor and attachment (e.g., "P1-A2"),
as in: "clawed/A1 at/P1 mice/P1-A2 in/P2 the/P2 wall/P2"
"""
id = ""
f = lambda ch: filter(lambda k: self.sentence._anchors[k] == ch, self.sentence._anchors)
if self.pnp and self.pnp.anchor:
id += "-" + "-".join(f(self.pnp))
if self.anchor:
id += "-" + "-".join(f(self))
if self.attachments:
id += "-" + "-".join(f(self))
return id.strip("-") or None | Yields the anchor tag as parsed from the original token.
Chunks that are anchors have a tag with an "A" prefix (e.g., "A1").
Chunks that are PNP attachmens (or chunks inside a PNP) have "P" (e.g., "P1").
Chunks inside a PNP can be both anchor and attachment (e.g., "P1-A2"),
as in: "clawed/A1 at/P1 mice/P1-A2 in/P2 the/P2 wall/P2" | entailment |
def modifiers(self):
""" For verb phrases (VP), yields a list of the nearest adjectives and adverbs.
"""
if self._modifiers is None:
# Iterate over all the chunks and attach modifiers to their VP-anchor.
is_modifier = lambda ch: ch.type in ("ADJP", "ADVP") and ch.relation is None
for chunk in self.sentence.chunks:
chunk._modifiers = []
for chunk in filter(is_modifier, self.sentence.chunks):
anchor = chunk.nearest("VP")
if anchor: anchor._modifiers.append(chunk)
return self._modifiers | For verb phrases (VP), yields a list of the nearest adjectives and adverbs. | entailment |
def nearest(self, type="VP"):
""" Returns the nearest chunk in the sentence with the given type.
This can be used (for example) to find adverbs and adjectives related to verbs,
as in: "the cat is ravenous" => is what? => "ravenous".
"""
candidate, d = None, len(self.sentence.chunks)
if isinstance(self, PNPChunk):
i = self.sentence.chunks.index(self.chunks[0])
else:
i = self.sentence.chunks.index(self)
for j, chunk in enumerate(self.sentence.chunks):
if chunk.type.startswith(type) and abs(i-j) < d:
candidate, d = chunk, abs(i-j)
return candidate | Returns the nearest chunk in the sentence with the given type.
This can be used (for example) to find adverbs and adjectives related to verbs,
as in: "the cat is ravenous" => is what? => "ravenous". | entailment |
def next(self, type=None):
""" Returns the next chunk in the sentence with the given type.
"""
i = self.stop
s = self.sentence
while i < len(s):
if s[i].chunk is not None and type in (s[i].chunk.type, None):
return s[i].chunk
i += 1 | Returns the next chunk in the sentence with the given type. | entailment |
def previous(self, type=None):
""" Returns the next previous chunk in the sentence with the given type.
"""
i = self.start - 1
s = self.sentence
while i > 0:
if s[i].chunk is not None and type in (s[i].chunk.type, None):
return s[i].chunk
i -= 1 | Returns the next previous chunk in the sentence with the given type. | entailment |
def append(self, word, lemma=None, type=None, chunk=None, role=None, relation=None, pnp=None, anchor=None, iob=None, custom={}):
""" Appends the next word to the sentence / chunk / preposition.
For example: Sentence.append("clawed", "claw", "VB", "VP", role=None, relation=1)
- word : the current word,
- lemma : the canonical form of the word,
- type : part-of-speech tag for the word (NN, JJ, ...),
- chunk : part-of-speech tag for the chunk this word is part of (NP, VP, ...),
- role : the chunk's grammatical role (SBJ, OBJ, ...),
- relation : an id shared by other related chunks (e.g., SBJ-1 <=> VP-1),
- pnp : PNP if this word is in a prepositional noun phrase (B- prefix optional),
- iob : BEGIN if the word marks the start of a new chunk,
INSIDE (optional) if the word is part of the previous chunk,
- custom : a dictionary of (tag, value)-items for user-defined word tags.
"""
self._do_word(word, lemma, type) # Append Word object.
self._do_chunk(chunk, role, relation, iob) # Append Chunk, or add last word to last chunk.
self._do_conjunction()
self._do_relation()
self._do_pnp(pnp, anchor)
self._do_anchor(anchor)
self._do_custom(custom) | Appends the next word to the sentence / chunk / preposition.
For example: Sentence.append("clawed", "claw", "VB", "VP", role=None, relation=1)
- word : the current word,
- lemma : the canonical form of the word,
- type : part-of-speech tag for the word (NN, JJ, ...),
- chunk : part-of-speech tag for the chunk this word is part of (NP, VP, ...),
- role : the chunk's grammatical role (SBJ, OBJ, ...),
- relation : an id shared by other related chunks (e.g., SBJ-1 <=> VP-1),
- pnp : PNP if this word is in a prepositional noun phrase (B- prefix optional),
- iob : BEGIN if the word marks the start of a new chunk,
INSIDE (optional) if the word is part of the previous chunk,
- custom : a dictionary of (tag, value)-items for user-defined word tags. | entailment |
def parse_token(self, token, tags=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Returns the arguments for Sentence.append() from a tagged token representation.
The order in which token tags appear can be specified.
The default order is (separated by slashes):
- word,
- part-of-speech,
- (IOB-)chunk,
- (IOB-)preposition,
- chunk(-relation)(-role),
- anchor,
- lemma.
Examples:
The/DT/B-NP/O/NP-SBJ-1/O/the
cats/NNS/I-NP/O/NP-SBJ-1/O/cat
clawed/VBD/B-VP/O/VP-1/A1/claw
at/IN/B-PP/B-PNP/PP/P1/at
the/DT/B-NP/I-PNP/NP/P1/the
sofa/NN/I-NP/I-PNP/NP/P1/sofa
././O/O/O/O/.
Returns a (word, lemma, type, chunk, role, relation, preposition, anchor, iob, custom)-tuple,
which can be passed to Sentence.append(): Sentence.append(*Sentence.parse_token("cats/NNS/NP"))
The custom value is a dictionary of (tag, value)-items of unrecognized tags in the token.
"""
p = { WORD: "",
POS: None,
IOB: None,
CHUNK: None,
PNP: None,
REL: None,
ROLE: None,
ANCHOR: None,
LEMMA: None }
# Split the slash-formatted token into separate tags in the given order.
# Decode &slash; characters (usually in words and lemmata).
# Assume None for missing tags (except the word itself, which defaults to an empty string).
custom = {}
for k, v in izip(tags, token.split("/")):
if SLASH0 in v:
v = v.replace(SLASH, "/")
if k not in p:
custom[k] = None
if v != OUTSIDE or k == WORD or k == LEMMA: # "type O negative" => "O" != OUTSIDE.
(p if k not in custom else custom)[k] = v
# Split IOB-prefix from the chunk tag:
# B- marks the start of a new chunk,
# I- marks inside of a chunk.
ch = p[CHUNK]
if ch is not None and ch.startswith(("B-", "I-")):
p[IOB], p[CHUNK] = ch[:1], ch[2:] # B-NP
# Split the role from the relation:
# NP-SBJ-1 => relation id is 1 and role is SBJ,
# VP-1 => relation id is 1 with no role.
# Tokens may be tagged with multiple relations (e.g., NP-OBJ-1*NP-OBJ-3).
if p[REL] is not None:
ch, p[REL], p[ROLE] = self._parse_relation(p[REL])
# Infer a missing chunk tag from the relation tag (e.g., NP-SBJ-1 => NP).
# For PP relation tags (e.g., PP-CLR-1), the first chunk is PP, the following chunks NP.
if ch == "PP" \
and self._previous \
and self._previous[REL] == p[REL] \
and self._previous[ROLE] == p[ROLE]:
ch = "NP"
if p[CHUNK] is None and ch != OUTSIDE:
p[CHUNK] = ch
self._previous = p
# Return the tags in the right order for Sentence.append().
return p[WORD], p[LEMMA], p[POS], p[CHUNK], p[ROLE], p[REL], p[PNP], p[ANCHOR], p[IOB], custom | Returns the arguments for Sentence.append() from a tagged token representation.
The order in which token tags appear can be specified.
The default order is (separated by slashes):
- word,
- part-of-speech,
- (IOB-)chunk,
- (IOB-)preposition,
- chunk(-relation)(-role),
- anchor,
- lemma.
Examples:
The/DT/B-NP/O/NP-SBJ-1/O/the
cats/NNS/I-NP/O/NP-SBJ-1/O/cat
clawed/VBD/B-VP/O/VP-1/A1/claw
at/IN/B-PP/B-PNP/PP/P1/at
the/DT/B-NP/I-PNP/NP/P1/the
sofa/NN/I-NP/I-PNP/NP/P1/sofa
././O/O/O/O/.
Returns a (word, lemma, type, chunk, role, relation, preposition, anchor, iob, custom)-tuple,
which can be passed to Sentence.append(): Sentence.append(*Sentence.parse_token("cats/NNS/NP"))
The custom value is a dictionary of (tag, value)-items of unrecognized tags in the token. | entailment |
def _parse_relation(self, tag):
""" Parses the chunk tag, role and relation id from the token relation tag.
- VP => VP, [], []
- VP-1 => VP, [1], [None]
- ADJP-PRD => ADJP, [None], [PRD]
- NP-SBJ-1 => NP, [1], [SBJ]
- NP-OBJ-1*NP-OBJ-2 => NP, [1,2], [OBJ,OBJ]
- NP-SBJ;NP-OBJ-1 => NP, [1,1], [SBJ,OBJ]
"""
chunk, relation, role = None, [], []
if ";" in tag:
# NP-SBJ;NP-OBJ-1 => 1 relates to both SBJ and OBJ.
id = tag.split("*")[0][-2:]
id = id if id.startswith("-") else ""
tag = tag.replace(";", id + "*")
if "*" in tag:
tag = tag.split("*")
else:
tag = [tag]
for s in tag:
s = s.split("-")
n = len(s)
if n == 1:
chunk = s[0]
if n == 2:
chunk = s[0]; relation.append(s[1]); role.append(None)
if n >= 3:
chunk = s[0]; relation.append(s[2]); role.append(s[1])
if n > 1:
id = relation[-1]
if id.isdigit():
relation[-1] = int(id)
else:
# Correct "ADJP-PRD":
# (ADJP, [PRD], [None]) => (ADJP, [None], [PRD])
relation[-1], role[-1] = None, id
return chunk, relation, role | Parses the chunk tag, role and relation id from the token relation tag.
- VP => VP, [], []
- VP-1 => VP, [1], [None]
- ADJP-PRD => ADJP, [None], [PRD]
- NP-SBJ-1 => NP, [1], [SBJ]
- NP-OBJ-1*NP-OBJ-2 => NP, [1,2], [OBJ,OBJ]
- NP-SBJ;NP-OBJ-1 => NP, [1,1], [SBJ,OBJ] | entailment |
def _do_word(self, word, lemma=None, type=None):
""" Adds a new Word to the sentence.
Other Sentence._do_[tag] functions assume a new word has just been appended.
"""
# Improve 3rd person singular "'s" lemma to "be", e.g., as in "he's fine".
if lemma == "'s" and type in ("VB", "VBZ"):
lemma = "be"
self.words.append(Word(self, word, lemma, type, index=len(self.words))) | Adds a new Word to the sentence.
Other Sentence._do_[tag] functions assume a new word has just been appended. | entailment |
def _do_chunk(self, type, role=None, relation=None, iob=None):
""" Adds a new Chunk to the sentence, or adds the last word to the previous chunk.
The word is attached to the previous chunk if both type and relation match,
and if the word's chunk tag does not start with "B-" (i.e., iob != BEGIN).
Punctuation marks (or other "O" chunk tags) are not chunked.
"""
if (type is None or type == OUTSIDE) and \
(role is None or role == OUTSIDE) and (relation is None or relation == OUTSIDE):
return
if iob != BEGIN \
and self.chunks \
and self.chunks[-1].type == type \
and self._relation == (relation, role) \
and self.words[-2].chunk is not None: # "one, two" => "one" & "two" different chunks.
self.chunks[-1].append(self.words[-1])
else:
ch = Chunk(self, [self.words[-1]], type, role, relation)
self.chunks.append(ch)
self._relation = (relation, role) | Adds a new Chunk to the sentence, or adds the last word to the previous chunk.
The word is attached to the previous chunk if both type and relation match,
and if the word's chunk tag does not start with "B-" (i.e., iob != BEGIN).
Punctuation marks (or other "O" chunk tags) are not chunked. | entailment |
def _do_relation(self):
""" Attaches subjects, objects and verbs.
If the previous chunk is a subject/object/verb, it is stored in Sentence.relations{}.
"""
if self.chunks:
ch = self.chunks[-1]
for relation, role in ch.relations:
if role == "SBJ" or role == "OBJ":
self.relations[role][relation] = ch
if ch.type in ("VP",):
self.relations[ch.type][ch.relation] = ch | Attaches subjects, objects and verbs.
If the previous chunk is a subject/object/verb, it is stored in Sentence.relations{}. | entailment |
def _do_pnp(self, pnp, anchor=None):
""" Attaches prepositional noun phrases.
Identifies PNP's from either the PNP tag or the P-attachment tag.
This does not determine the PP-anchor, it only groups words in a PNP chunk.
"""
if anchor or pnp and pnp.endswith("PNP"):
if anchor is not None:
m = find(lambda x: x.startswith("P"), anchor)
else:
m = None
if self.pnp \
and pnp \
and pnp != OUTSIDE \
and pnp.startswith("B-") is False \
and self.words[-2].pnp is not None:
self.pnp[-1].append(self.words[-1])
elif m is not None and m == self._attachment:
self.pnp[-1].append(self.words[-1])
else:
ch = PNPChunk(self, [self.words[-1]], type="PNP")
self.pnp.append(ch)
self._attachment = m | Attaches prepositional noun phrases.
Identifies PNP's from either the PNP tag or the P-attachment tag.
This does not determine the PP-anchor, it only groups words in a PNP chunk. | entailment |
def _do_anchor(self, anchor):
""" Collects preposition anchors and attachments in a dictionary.
Once the dictionary has an entry for both the anchor and the attachment, they are linked.
"""
if anchor:
for x in anchor.split("-"):
A, P = None, None
if x.startswith("A") and len(self.chunks) > 0: # anchor
A, P = x, x.replace("A","P")
self._anchors[A] = self.chunks[-1]
if x.startswith("P") and len(self.pnp) > 0: # attachment (PNP)
A, P = x.replace("P","A"), x
self._anchors[P] = self.pnp[-1]
if A in self._anchors and P in self._anchors and not self._anchors[P].anchor:
pnp = self._anchors[P]
pnp.anchor = self._anchors[A]
pnp.anchor.attachments.append(pnp) | Collects preposition anchors and attachments in a dictionary.
Once the dictionary has an entry for both the anchor and the attachment, they are linked. | entailment |
def _do_conjunction(self, _and=("and", "e", "en", "et", "und", "y")):
""" Attach conjunctions.
CC-words like "and" and "or" between two chunks indicate a conjunction.
"""
w = self.words
if len(w) > 2 and w[-2].type == "CC" and w[-2].chunk is None:
cc = w[-2].string.lower() in _and and AND or OR
ch1 = w[-3].chunk
ch2 = w[-1].chunk
if ch1 is not None and \
ch2 is not None:
ch1.conjunctions.append(ch2, cc)
ch2.conjunctions.append(ch1, cc) | Attach conjunctions.
CC-words like "and" and "or" between two chunks indicate a conjunction. | entailment |
def get(self, index, tag=LEMMA):
""" Returns a tag for the word at the given index.
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
"""
if tag == WORD:
return self.words[index]
if tag == LEMMA:
return self.words[index].lemma
if tag == POS:
return self.words[index].type
if tag == CHUNK:
return self.words[index].chunk
if tag == PNP:
return self.words[index].pnp
if tag == REL:
ch = self.words[index].chunk; return ch and ch.relation
if tag == ROLE:
ch = self.words[index].chunk; return ch and ch.role
if tag == ANCHOR:
ch = self.words[index].pnp; return ch and ch.anchor
if tag in self.words[index].custom_tags:
return self.words[index].custom_tags[tag]
return None | Returns a tag for the word at the given index.
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag. | entailment |
def loop(self, *tags):
""" Iterates over the tags in the entire Sentence,
For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata.
Possible tags: WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
Any order or combination of tags can be supplied.
"""
for i in range(len(self.words)):
yield tuple([self.get(i, tag=tag) for tag in tags]) | Iterates over the tags in the entire Sentence,
For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata.
Possible tags: WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
Any order or combination of tags can be supplied. | entailment |
def indexof(self, value, tag=WORD):
""" Returns the indices of tokens in the sentence where the given token tag equals the string.
The string can contain a wildcard "*" at the end (this way "NN*" will match "NN" and "NNS").
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
For example: Sentence.indexof("VP", tag=CHUNK)
returns the indices of all the words that are part of a VP chunk.
"""
match = lambda a, b: a.endswith("*") and b.startswith(a[:-1]) or a==b
indices = []
for i in range(len(self.words)):
if match(value, unicode(self.get(i, tag))):
indices.append(i)
return indices | Returns the indices of tokens in the sentence where the given token tag equals the string.
The string can contain a wildcard "*" at the end (this way "NN*" will match "NN" and "NNS").
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
For example: Sentence.indexof("VP", tag=CHUNK)
returns the indices of all the words that are part of a VP chunk. | entailment |
def slice(self, start, stop):
""" Returns a portion of the sentence from word start index to word stop index.
The returned slice is a subclass of Sentence and a deep copy.
"""
s = Slice(token=self.token, language=self.language)
for i, word in enumerate(self.words[start:stop]):
# The easiest way to copy (part of) a sentence
# is by unpacking all of the token tags and passing them to Sentence.append().
p0 = word.string # WORD
p1 = word.lemma # LEMMA
p2 = word.type # POS
p3 = word.chunk is not None and word.chunk.type or None # CHUNK
p4 = word.pnp is not None and "PNP" or None # PNP
p5 = word.chunk is not None and unzip(0, word.chunk.relations) or None # REL
p6 = word.chunk is not None and unzip(1, word.chunk.relations) or None # ROLE
p7 = word.chunk and word.chunk.anchor_id or None # ANCHOR
p8 = word.chunk and word.chunk.start == start+i and BEGIN or None # IOB
p9 = word.custom_tags # User-defined tags.
# If the given range does not contain the chunk head, remove the chunk tags.
if word.chunk is not None and (word.chunk.stop > stop):
p3, p4, p5, p6, p7, p8 = None, None, None, None, None, None
# If the word starts the preposition, add the IOB B-prefix (i.e., B-PNP).
if word.pnp is not None and word.pnp.start == start+i:
p4 = BEGIN+"-"+"PNP"
# If the given range does not contain the entire PNP, remove the PNP tags.
# The range must contain the entire PNP,
# since it starts with the PP and ends with the chunk head (and is meaningless without these).
if word.pnp is not None and (word.pnp.start < start or word.chunk.stop > stop):
p4, p7 = None, None
s.append(word=p0, lemma=p1, type=p2, chunk=p3, pnp=p4, relation=p5, role=p6, anchor=p7, iob=p8, custom=p9)
s.parent = self
s._start = start
return s | Returns a portion of the sentence from word start index to word stop index.
The returned slice is a subclass of Sentence and a deep copy. | entailment |
def constituents(self, pnp=False):
""" Returns an in-order list of mixed Chunk and Word objects.
With pnp=True, also contains PNPChunk objects whenever possible.
"""
a = []
for word in self.words:
if pnp and word.pnp is not None:
if len(a) == 0 or a[-1] != word.pnp:
a.append(word.pnp)
elif word.chunk is not None:
if len(a) == 0 or a[-1] != word.chunk:
a.append(word.chunk)
else:
a.append(word)
return a | Returns an in-order list of mixed Chunk and Word objects.
With pnp=True, also contains PNPChunk objects whenever possible. | entailment |
def from_xml(cls, xml):
""" Returns a new Text from the given XML string.
"""
s = parse_string(xml)
return Sentence(s.split("\n")[0], token=s.tags, language=s.language) | Returns a new Text from the given XML string. | entailment |
def xml(self):
""" Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
All the sentences in the XML are wrapped in a <text> element.
"""
xml = []
xml.append('<?xml version="1.0" encoding="%s"?>' % XML_ENCODING.get(self.encoding, self.encoding))
xml.append("<%s>" % XML_TEXT)
xml.extend([sentence.xml for sentence in self])
xml.append("</%s>" % XML_TEXT)
return "\n".join(xml) | Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
All the sentences in the XML are wrapped in a <text> element. | entailment |
def get_credits():
"""Extract credits from `AUTHORS.rst`"""
credits = read(os.path.join(_HERE, "AUTHORS.rst")).split("\n")
from_index = credits.index("Active Contributors")
credits = "\n".join(credits[from_index + 2:])
return credits | Extract credits from `AUTHORS.rst` | entailment |
def rst2markdown_github(path_to_rst, path_to_md, pandoc="pandoc"):
"""
Converts ``rst`` to **markdown_github**, using :program:`pandoc`
**Input**
* ``FILE.rst``
**Output**
* ``FILE.md``
"""
_proc = subprocess.Popen([pandoc, "-f", "rst",
"-t", "markdown_github",
#"-o", path_to_md,
path_to_rst],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
print("Converting README.rst to markdown_github, "
"using 'pandoc' ...")
_stdout, _stderr = _proc.communicate()
with _open(path_to_md, "w", encoding="utf-8") as _md:
_skip_newline = False
for line in _stdout.decode('utf-8').split(os.linesep):
line = re.sub("``` sourceCode", "``` python", line)
if line.startswith("[!["):
_md.write(line)
_md.write("\n")
if not line.startswith(("[![LICENSE")):
_skip_newline = True
elif _skip_newline and line == "":
_skip_newline = False
continue
else:
_md.write(line)
_md.write("\n")
if _stderr:
print("pandoc.exe STDERR: ", _stderr)
if os.path.isfile(path_to_md) and os.stat(path_to_md).st_size > 0:
print("README.rst converted and saved as: {}".format(path_to_md)) | Converts ``rst`` to **markdown_github**, using :program:`pandoc`
**Input**
* ``FILE.rst``
**Output**
* ``FILE.md`` | entailment |
def console_help2rst(cwd, help_cmd, path_to_rst, rst_title,
format_as_code=False):
"""
Extract HELP information from ``<program> -h | --help`` message
**Input**
* ``$ <program> -h | --help``
* ``$ cd <cwd> && make help``
**Output**
* ``docs/src/console_help_xy.rst``
"""
generated_time_str = """
::
generated: {0}
""".format(time.strftime("%d %B %Y - %H:%M"))
with _open(path_to_rst, "w", encoding='utf-8') as f:
print("File", f)
print("cwd", cwd)
print("help_cmd", help_cmd)
os.chdir(cwd)
_proc = subprocess.Popen(
help_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,)
help_msg = _proc.stdout.readlines()
f.write(get_rst_title(
rst_title,
"-",
overline=True))
f.write(generated_time_str)
if "README" in path_to_rst:
help_msg = "".join(help_msg[10:])
#help_msg = PACKAGE_DOCSTRING + help_msg
for line in help_msg:
# exclude directory walk messages of 'make'
if line.strip().startswith("make[1]:"):
print("skipped line: {}".format(line))
# exclude warning messages
elif line.strip().startswith("\x1b[1m"):
print("skipped line: {}".format(line))
# exclude warning messages on Windows (without ``colorama``)
elif line.strip().startswith("Using fallback version of '"):
print("skipped line: {}".format(line))
else:
# correctly indent tips in 'make help'
if line.strip().startswith("-->"):
f.write(3 * "\t")
if format_as_code:
f.write("\t" + line.strip())
f.write("\n")
else:
f.write(line)
f.write("\n")
if "README" in path_to_rst:
f.write(get_rst_title("Credits", "^"))
f.write(get_credits())
print("\ncmd:{} in dir:{} --> RST generated:\n\t{}\n\n".format(
help_cmd, cwd, path_to_rst)) | Extract HELP information from ``<program> -h | --help`` message
**Input**
* ``$ <program> -h | --help``
* ``$ cd <cwd> && make help``
**Output**
* ``docs/src/console_help_xy.rst`` | entailment |
def update_docs(readme=True, makefiles=True):
"""Update documentation (ready for publishing new release)
Usually called by ``make docs``
:param bool make_doc: generate DOC page from Makefile help messages
"""
if readme:
_pandoc = get_external_executable("pandoc")
rst2markdown_github(os.path.join(_HERE, "README.rst"),
os.path.join(_HERE, "README.md"),
pandoc=_pandoc)
if makefiles:
_make = get_external_executable("make")
project_makefile_dir = os.path.abspath(_HERE)
project_makefile_rst = os.path.join(
_HERE,
'docs',
'src',
'project_makefile.rst')
docs_makefile_dir = os.path.join(_HERE, 'docs', 'src')
docs_makefile_rst = os.path.join(
_HERE,
'docs',
'src',
'docs_makefile.rst')
#: ``help2rst_queue`` stores tuples of
#: ``(cwd, help_cmd, path_to_rst_file, rst_title_of_new_file)``
help2rst_queue = [
(project_makefile_dir, [_make, "help"], project_makefile_rst,
"Project ``Makefile``"),
(docs_makefile_dir, [_make, "help"], docs_makefile_rst,
"Documentation ``Makefile``")]
for cwd, help_cmd, outfile, title in help2rst_queue:
console_help2rst(
cwd,
help_cmd,
outfile,
title,
format_as_code=True) | Update documentation (ready for publishing new release)
Usually called by ``make docs``
:param bool make_doc: generate DOC page from Makefile help messages | entailment |
def rms(self, x, params=()):
""" Returns root mean square value of f(x, params) """
internal_x, internal_params = self.pre_process(np.asarray(x),
np.asarray(params))
if internal_params.ndim > 1:
raise NotImplementedError("Parameters should be constant.")
result = np.empty(internal_x.size//self.nx)
for idx in range(internal_x.shape[0]):
result[idx] = np.sqrt(np.mean(np.square(self.f_cb(
internal_x[idx, :], internal_params))))
return result | Returns root mean square value of f(x, params) | entailment |
def solve_series(self, x0, params, varied_data, varied_idx,
internal_x0=None, solver=None, propagate=True, **kwargs):
""" Solve system for a set of parameters in which one is varied
Parameters
----------
x0 : array_like
Guess (subject to ``self.post_processors``)
params : array_like
Parameter values
vaired_data : array_like
Numerical values of the varied parameter.
varied_idx : int or str
Index of the varied parameter (indexing starts at 0).
If ``self.par_by_name`` this should be the name (str) of the varied
parameter.
internal_x0 : array_like (default: None)
Guess (*not* subject to ``self.post_processors``).
Overrides ``x0`` when given.
solver : str or callback
See :meth:`solve`.
propagate : bool (default: True)
Use last successful solution as ``x0`` in consecutive solves.
\\*\\*kwargs :
Keyword arguments pass along to :meth:`solve`.
Returns
-------
xout : array
Of shape ``(varied_data.size, x0.size)``.
info_dicts : list of dictionaries
Dictionaries each containing keys such as containing 'success', 'nfev', 'njev' etc.
"""
if self.x_by_name and isinstance(x0, dict):
x0 = [x0[k] for k in self.names]
if self.par_by_name:
if isinstance(params, dict):
params = [params[k] for k in self.param_names]
if isinstance(varied_idx, str):
varied_idx = self.param_names.index(varied_idx)
new_params = np.atleast_1d(np.array(params, dtype=np.float64))
xout = np.empty((len(varied_data), len(x0)))
self.internal_xout = np.empty_like(xout)
self.internal_params_out = np.empty((len(varied_data),
len(new_params)))
info_dicts = []
new_x0 = np.array(x0, dtype=np.float64) # copy
conds = kwargs.get('initial_conditions', None) # see ConditionalNeqSys
for idx, value in enumerate(varied_data):
try:
new_params[varied_idx] = value
except TypeError:
new_params = value # e.g. type(new_params) == int
if conds is not None:
kwargs['initial_conditions'] = conds
x, info_dict = self.solve(new_x0, new_params, internal_x0, solver,
**kwargs)
if propagate:
if info_dict['success']:
try:
# See ChainedNeqSys.solve
new_x0 = info_dict['x_vecs'][0]
internal_x0 = info_dict['internal_x_vecs'][0]
conds = info_dict['intermediate_info'][0].get(
'conditions', None)
except:
new_x0 = x
internal_x0 = None
conds = info_dict.get('conditions', None)
xout[idx, :] = x
self.internal_xout[idx, :] = self.internal_x
self.internal_params_out[idx, :] = self.internal_params
info_dicts.append(info_dict)
return xout, info_dicts | Solve system for a set of parameters in which one is varied
Parameters
----------
x0 : array_like
Guess (subject to ``self.post_processors``)
params : array_like
Parameter values
vaired_data : array_like
Numerical values of the varied parameter.
varied_idx : int or str
Index of the varied parameter (indexing starts at 0).
If ``self.par_by_name`` this should be the name (str) of the varied
parameter.
internal_x0 : array_like (default: None)
Guess (*not* subject to ``self.post_processors``).
Overrides ``x0`` when given.
solver : str or callback
See :meth:`solve`.
propagate : bool (default: True)
Use last successful solution as ``x0`` in consecutive solves.
\\*\\*kwargs :
Keyword arguments pass along to :meth:`solve`.
Returns
-------
xout : array
Of shape ``(varied_data.size, x0.size)``.
info_dicts : list of dictionaries
Dictionaries each containing keys such as containing 'success', 'nfev', 'njev' etc. | entailment |
def plot_series(self, xres, varied_data, varied_idx, **kwargs):
""" Plots the results from :meth:`solve_series`.
Parameters
----------
xres : array
Of shape ``(varied_data.size, self.nx)``.
varied_data : array
See :meth:`solve_series`.
varied_idx : int or str
See :meth:`solve_series`.
\\*\\*kwargs :
Keyword arguments passed to :func:`pyneqsys.plotting.plot_series`.
"""
for attr in 'names latex_names'.split():
if kwargs.get(attr, None) is None:
kwargs[attr] = getattr(self, attr)
ax = plot_series(xres, varied_data, **kwargs)
if self.par_by_name and isinstance(varied_idx, str):
varied_idx = self.param_names.index(varied_idx)
if self.latex_param_names:
ax.set_xlabel('$%s$' % self.latex_param_names[varied_idx])
elif self.param_names:
ax.set_xlabel(self.param_names[varied_idx])
return ax | Plots the results from :meth:`solve_series`.
Parameters
----------
xres : array
Of shape ``(varied_data.size, self.nx)``.
varied_data : array
See :meth:`solve_series`.
varied_idx : int or str
See :meth:`solve_series`.
\\*\\*kwargs :
Keyword arguments passed to :func:`pyneqsys.plotting.plot_series`. | entailment |
def plot_series_residuals(self, xres, varied_data, varied_idx, params, **kwargs):
""" Analogous to :meth:`plot_series` but will plot residuals. """
nf = len(self.f_cb(*self.pre_process(xres[0], params)))
xerr = np.empty((xres.shape[0], nf))
new_params = np.array(params)
for idx, row in enumerate(xres):
new_params[varied_idx] = varied_data[idx]
xerr[idx, :] = self.f_cb(*self.pre_process(row, params))
return self.plot_series(xerr, varied_data, varied_idx, **kwargs) | Analogous to :meth:`plot_series` but will plot residuals. | entailment |
def plot_series_residuals_internal(self, varied_data, varied_idx, **kwargs):
""" Analogous to :meth:`plot_series` but for internal residuals from last run. """
nf = len(self.f_cb(*self.pre_process(
self.internal_xout[0], self.internal_params_out[0])))
xerr = np.empty((self.internal_xout.shape[0], nf))
for idx, (res, params) in enumerate(zip(self.internal_xout, self.internal_params_out)):
xerr[idx, :] = self.f_cb(res, params)
return self.plot_series(xerr, varied_data, varied_idx, **kwargs) | Analogous to :meth:`plot_series` but for internal residuals from last run. | entailment |
def solve_and_plot_series(self, x0, params, varied_data, varied_idx, solver=None, plot_kwargs=None,
plot_residuals_kwargs=None, **kwargs):
""" Solve and plot for a series of a varied parameter.
Convenience method, see :meth:`solve_series`, :meth:`plot_series` &
:meth:`plot_series_residuals_internal` for more information.
"""
sol, nfo = self.solve_series(
x0, params, varied_data, varied_idx, solver=solver, **kwargs)
ax_sol = self.plot_series(sol, varied_data, varied_idx, info=nfo,
**(plot_kwargs or {}))
extra = dict(ax_sol=ax_sol, info=nfo)
if plot_residuals_kwargs:
extra['ax_resid'] = self.plot_series_residuals_internal(
varied_data, varied_idx, info=nfo,
**(plot_residuals_kwargs or {})
)
return sol, extra | Solve and plot for a series of a varied parameter.
Convenience method, see :meth:`solve_series`, :meth:`plot_series` &
:meth:`plot_series_residuals_internal` for more information. | entailment |
def pre_process(self, x0, params=()):
""" Used internally for transformation of variables. """
# Should be used by all methods matching "solve_*"
if self.x_by_name and isinstance(x0, dict):
x0 = [x0[k] for k in self.names]
if self.par_by_name and isinstance(params, dict):
params = [params[k] for k in self.param_names]
for pre_processor in self.pre_processors:
x0, params = pre_processor(x0, params)
return x0, np.atleast_1d(params) | Used internally for transformation of variables. | entailment |
def post_process(self, xout, params_out):
""" Used internally for transformation of variables. """
# Should be used by all methods matching "solve_*"
for post_processor in self.post_processors:
xout, params_out = post_processor(xout, params_out)
return xout, params_out | Used internally for transformation of variables. | entailment |
def solve(self, x0, params=(), internal_x0=None, solver=None, attached_solver=None, **kwargs):
""" Solve with user specified ``solver`` choice.
Parameters
----------
x0: 1D array of floats
Guess (subject to ``self.post_processors``)
params: 1D array_like of floats
Parameters (subject to ``self.post_processors``)
internal_x0: 1D array of floats
When given it overrides (processed) ``x0``. ``internal_x0`` is not
subject to ``self.post_processors``.
solver: str or callable or None or iterable of such
if str: uses _solve_``solver``(\*args, \*\*kwargs).
if ``None``: chooses from PYNEQSYS_SOLVER environment variable.
if iterable: chain solving.
attached_solver: callable factory
Invokes: solver = attached_solver(self).
Returns
-------
array:
solution vector (post-processed by self.post_processors)
dict:
info dictionary containing 'success', 'nfev', 'njev' etc.
Examples
--------
>>> neqsys = NeqSys(2, 2, lambda x, p: [
... (x[0] - x[1])**p[0]/2 + x[0] - 1,
... (x[1] - x[0])**p[0]/2 + x[1]
... ])
>>> x, sol = neqsys.solve([1, 0], [3], solver=(None, 'mpmath'))
>>> assert sol['success']
>>> print(x)
[0.841163901914009663684741869855]
[0.158836098085990336315258130144]
"""
if not isinstance(solver, (tuple, list)):
solver = [solver]
if not isinstance(attached_solver, (tuple, list)):
attached_solver = [attached_solver] + [None]*(len(solver) - 1)
_x0, self.internal_params = self.pre_process(x0, params)
for solv, attached_solv in zip(solver, attached_solver):
if internal_x0 is not None:
_x0 = internal_x0
elif self.internal_x0_cb is not None:
_x0 = self.internal_x0_cb(x0, params)
nfo = self._get_solver_cb(solv, attached_solv)(_x0, **kwargs)
_x0 = nfo['x'].copy()
self.internal_x = _x0
x0 = self.post_process(self.internal_x, self.internal_params)[0]
return x0, nfo | Solve with user specified ``solver`` choice.
Parameters
----------
x0: 1D array of floats
Guess (subject to ``self.post_processors``)
params: 1D array_like of floats
Parameters (subject to ``self.post_processors``)
internal_x0: 1D array of floats
When given it overrides (processed) ``x0``. ``internal_x0`` is not
subject to ``self.post_processors``.
solver: str or callable or None or iterable of such
if str: uses _solve_``solver``(\*args, \*\*kwargs).
if ``None``: chooses from PYNEQSYS_SOLVER environment variable.
if iterable: chain solving.
attached_solver: callable factory
Invokes: solver = attached_solver(self).
Returns
-------
array:
solution vector (post-processed by self.post_processors)
dict:
info dictionary containing 'success', 'nfev', 'njev' etc.
Examples
--------
>>> neqsys = NeqSys(2, 2, lambda x, p: [
... (x[0] - x[1])**p[0]/2 + x[0] - 1,
... (x[1] - x[0])**p[0]/2 + x[1]
... ])
>>> x, sol = neqsys.solve([1, 0], [3], solver=(None, 'mpmath'))
>>> assert sol['success']
>>> print(x)
[0.841163901914009663684741869855]
[0.158836098085990336315258130144] | entailment |
def _solve_scipy(self, intern_x0, tol=1e-8, method=None, **kwargs):
""" Uses ``scipy.optimize.root``
See: http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
Parameters
----------
intern_x0: array_like
initial guess
tol: float
Tolerance
method: str
What method to use. Defaults to ``'lm'`` if ``self.nf > self.nx`` otherwise ``'hybr'``.
"""
from scipy.optimize import root
if method is None:
if self.nf > self.nx:
method = 'lm'
elif self.nf == self.nx:
method = 'hybr'
else:
raise ValueError('Underdetermined problem')
if 'band' in kwargs:
raise ValueError("Set 'band' at initialization instead.")
if 'args' in kwargs:
raise ValueError("Set 'args' as params in initialization instead.")
new_kwargs = kwargs.copy()
if self.band is not None:
warnings.warn("Band argument ignored (see SciPy docs)")
new_kwargs['band'] = self.band
new_kwargs['args'] = self.internal_params
return root(self.f_cb, intern_x0, jac=self.j_cb, method=method, tol=tol, **new_kwargs) | Uses ``scipy.optimize.root``
See: http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
Parameters
----------
intern_x0: array_like
initial guess
tol: float
Tolerance
method: str
What method to use. Defaults to ``'lm'`` if ``self.nf > self.nx`` otherwise ``'hybr'``. | entailment |
def solve(self, x0, params=(), internal_x0=None, solver=None,
conditional_maxiter=20, initial_conditions=None, **kwargs):
""" Solve the problem (systems of equations)
Parameters
----------
x0 : array
Guess.
params : array
See :meth:`NeqSys.solve`.
internal_x0 : array
See :meth:`NeqSys.solve`.
solver : str or callable or iterable of such.
See :meth:`NeqSys.solve`.
conditional_maxiter : int
Maximum number of switches between conditions.
initial_conditions : iterable of bools
Corresponding conditions to ``x0``
\\*\\*kwargs :
Keyword arguments passed on to :meth:`NeqSys.solve`.
"""
if initial_conditions is not None:
conds = initial_conditions
else:
conds = self.get_conds(x0, params, initial_conditions)
idx, nfev, njev = 0, 0, 0
while idx < conditional_maxiter:
neqsys = self.neqsys_factory(conds)
x0, info = neqsys.solve(x0, params, internal_x0, solver, **kwargs)
if idx == 0:
internal_x0 = None
nfev += info['nfev']
njev += info.get('njev', 0)
new_conds = self.get_conds(x0, params, conds)
if new_conds == conds:
break
else:
conds = new_conds
idx += 1
if idx == conditional_maxiter:
raise Exception("Solving failed, conditional_maxiter reached")
self.internal_x = info['x']
self.internal_params = neqsys.internal_params
result = {
'x': info['x'],
'success': info['success'],
'conditions': conds,
'nfev': nfev,
'njev': njev,
}
if 'fun' in info:
result['fun'] = info['fun']
return x0, result | Solve the problem (systems of equations)
Parameters
----------
x0 : array
Guess.
params : array
See :meth:`NeqSys.solve`.
internal_x0 : array
See :meth:`NeqSys.solve`.
solver : str or callable or iterable of such.
See :meth:`NeqSys.solve`.
conditional_maxiter : int
Maximum number of switches between conditions.
initial_conditions : iterable of bools
Corresponding conditions to ``x0``
\\*\\*kwargs :
Keyword arguments passed on to :meth:`NeqSys.solve`. | entailment |
def solve(guess_a, guess_b, power, solver='scipy'):
""" Constructs a pyneqsys.symbolic.SymbolicSys instance and returns from its ``solve`` method. """
# The problem is 2 dimensional so we need 2 symbols
x = sp.symbols('x:2', real=True)
# There is a user specified parameter ``p`` in this problem:
p = sp.Symbol('p', real=True, negative=False, integer=True)
# Our system consists of 2-non-linear equations:
f = [x[0] + (x[0] - x[1])**p/2 - 1,
(x[1] - x[0])**p/2 + x[1]]
# We construct our ``SymbolicSys`` instance by passing variables, equations and parameters:
neqsys = SymbolicSys(x, f, [p]) # (this will derive the Jacobian symbolically)
# Finally we solve the system using user-specified ``solver`` choice:
return neqsys.solve([guess_a, guess_b], [power], solver=solver) | Constructs a pyneqsys.symbolic.SymbolicSys instance and returns from its ``solve`` method. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.