sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def get_plugins() -> Dict[str, pkg_resources.EntryPoint]:
"""
Get all available plugins for unidown.
:return: plugin name list
:rtype: Dict[str, ~pkg_resources.EntryPoint]
"""
return {entry.name: entry for entry in pkg_resources.iter_entry_points('unidown.plugin')} | Get all available plugins for unidown.
:return: plugin name list
:rtype: Dict[str, ~pkg_resources.EntryPoint] | entailment |
def _equation_of_time(t):
"""
Find the difference between apparent and mean solar time
Parameters
----------
t : `~astropy.time.Time`
times (array)
Returns
----------
ret1 : `~astropy.units.Quantity`
the equation of time
"""
# Julian centuries since J2000.0
T = (t - Time("J2000")).to(u.year).value / 100
# obliquity of ecliptic (Meeus 1998, eq 22.2)
poly_pars = (84381.448, 46.8150, 0.00059, 0.001813)
eps = u.Quantity(polyval(T, poly_pars), u.arcsec)
y = np.tan(eps/2)**2
# Sun's mean longitude (Meeus 1998, eq 25.2)
poly_pars = (280.46646, 36000.76983, 0.0003032)
L0 = u.Quantity(polyval(T, poly_pars), u.deg)
# Sun's mean anomaly (Meeus 1998, eq 25.3)
poly_pars = (357.52911, 35999.05029, 0.0001537)
M = u.Quantity(polyval(T, poly_pars), u.deg)
# eccentricity of Earth's orbit (Meeus 1998, eq 25.4)
poly_pars = (0.016708634, -0.000042037, -0.0000001267)
e = polyval(T, poly_pars)
# equation of time, radians (Meeus 1998, eq 28.3)
eot = (y * np.sin(2*L0) - 2*e*np.sin(M) + 4*e*y*np.sin(M)*np.cos(2*L0) -
0.5*y**2 * np.sin(4*L0) - 5*e**2 * np.sin(2*M)/4) * u.rad
return eot.to(u.hourangle) | Find the difference between apparent and mean solar time
Parameters
----------
t : `~astropy.time.Time`
times (array)
Returns
----------
ret1 : `~astropy.units.Quantity`
the equation of time | entailment |
def _astropy_time_from_LST(t, LST, location, prev_next):
"""
Convert a Local Sidereal Time to an astropy Time object.
The local time is related to the LST through the RA of the Sun.
This routine uses this relationship to convert a LST to an astropy
time object.
Returns
-------
ret1 : `~astropy.time.Time`
time corresponding to LST
"""
# now we need to figure out time to return from LST
raSun = coord.get_sun(t).ra
# calculate Greenwich Apparent Solar Time, which we will use as ~UTC for now
with warnings.catch_warnings():
warnings.simplefilter('ignore')
# ignore astropy deprecation warnings
lon = location.longitude
solarTime = LST - raSun + 12*u.hourangle - lon
# assume this is on the same day as supplied time, and fix later
first_guess = Time(
u.d*int(t.mjd) + u.hour*solarTime.wrap_at('360d').hour,
format='mjd'
)
# Equation of time is difference between GAST and UTC
eot = _equation_of_time(first_guess)
first_guess = first_guess - u.hour * eot.value
if prev_next == 'next':
# if 'next', we want time to be greater than given time
mask = first_guess < t
rise_set_time = first_guess + mask * u.sday
else:
# if 'previous', we want time to be less than given time
mask = first_guess > t
rise_set_time = first_guess - mask * u.sday
return rise_set_time | Convert a Local Sidereal Time to an astropy Time object.
The local time is related to the LST through the RA of the Sun.
This routine uses this relationship to convert a LST to an astropy
time object.
Returns
-------
ret1 : `~astropy.time.Time`
time corresponding to LST | entailment |
def _rise_set_trig(t, target, location, prev_next, rise_set):
"""
Crude time at next rise/set of ``target`` using spherical trig.
This method is ~15 times faster than `_calcriseset`,
and inherently does *not* take the atmosphere into account.
The time returned should not be used in calculations; the purpose
of this routine is to supply a guess to `_calcriseset`.
Parameters
----------
t : `~astropy.time.Time` or other (see below)
Time of observation. This will be passed in as the first argument to
the `~astropy.time.Time` initializer, so it can be anything that
`~astropy.time.Time` will accept (including a `~astropy.time.Time`
object)
target : `~astropy.coordinates.SkyCoord`
Position of target or multiple positions of that target
at multiple times (if target moves, like the Sun)
location : `~astropy.coordinates.EarthLocation`
Observatory location
prev_next : str - either 'previous' or 'next'
Test next rise/set or previous rise/set
rise_set : str - either 'rising' or 'setting'
Compute prev/next rise or prev/next set
Returns
-------
ret1 : `~astropy.time.Time`
Time of rise/set
"""
dec = target.transform_to(coord.ICRS).dec
with warnings.catch_warnings():
warnings.simplefilter('ignore')
# ignore astropy deprecation warnings
lat = location.latitude
cosHA = -np.tan(dec)*np.tan(lat.radian)
# find the absolute value of the hour Angle
HA = coord.Longitude(np.fabs(np.arccos(cosHA)))
# if rise, HA is -ve and vice versa
if rise_set == 'rising':
HA = -HA
# LST = HA + RA
LST = HA + target.ra
return _astropy_time_from_LST(t, LST, location, prev_next) | Crude time at next rise/set of ``target`` using spherical trig.
This method is ~15 times faster than `_calcriseset`,
and inherently does *not* take the atmosphere into account.
The time returned should not be used in calculations; the purpose
of this routine is to supply a guess to `_calcriseset`.
Parameters
----------
t : `~astropy.time.Time` or other (see below)
Time of observation. This will be passed in as the first argument to
the `~astropy.time.Time` initializer, so it can be anything that
`~astropy.time.Time` will accept (including a `~astropy.time.Time`
object)
target : `~astropy.coordinates.SkyCoord`
Position of target or multiple positions of that target
at multiple times (if target moves, like the Sun)
location : `~astropy.coordinates.EarthLocation`
Observatory location
prev_next : str - either 'previous' or 'next'
Test next rise/set or previous rise/set
rise_set : str - either 'rising' or 'setting'
Compute prev/next rise or prev/next set
Returns
-------
ret1 : `~astropy.time.Time`
Time of rise/set | entailment |
def calc_riseset(t, target_name, location, prev_next, rise_set, horizon):
"""
Time at next rise/set of ``target``.
Parameters
----------
t : `~astropy.time.Time` or other (see below)
Time of observation. This will be passed in as the first argument to
the `~astropy.time.Time` initializer, so it can be anything that
`~astropy.time.Time` will accept (including a `~astropy.time.Time`
object)
target_name : str
'moon' or 'sun'
location : `~astropy.coordinates.EarthLocation`
Observatory location
prev_next : str - either 'previous' or 'next'
Test next rise/set or previous rise/set
rise_set : str - either 'rising' or 'setting'
Compute prev/next rise or prev/next set
location : `~astropy.coordinates.EarthLocation`
Location of observer
horizon : `~astropy.units.Quantity`
Degrees above/below actual horizon to use
for calculating rise/set times (i.e.,
-6 deg horizon = civil twilight, etc.)
Returns
-------
ret1 : `~astropy.time.Time`
Time of rise/set
"""
target = coord.get_body(target_name, t)
t0 = _rise_set_trig(t, target, location, prev_next, rise_set)
grid = t0 + np.linspace(-4*u.hour, 4*u.hour, 10)
altaz_frame = coord.AltAz(obstime=grid, location=location)
target = coord.get_body(target_name, grid)
altaz = target.transform_to(altaz_frame)
time_limits, altitude_limits = _horiz_cross(altaz.obstime, altaz.alt,
rise_set, horizon)
return _two_point_interp(time_limits, altitude_limits, horizon) | Time at next rise/set of ``target``.
Parameters
----------
t : `~astropy.time.Time` or other (see below)
Time of observation. This will be passed in as the first argument to
the `~astropy.time.Time` initializer, so it can be anything that
`~astropy.time.Time` will accept (including a `~astropy.time.Time`
object)
target_name : str
'moon' or 'sun'
location : `~astropy.coordinates.EarthLocation`
Observatory location
prev_next : str - either 'previous' or 'next'
Test next rise/set or previous rise/set
rise_set : str - either 'rising' or 'setting'
Compute prev/next rise or prev/next set
location : `~astropy.coordinates.EarthLocation`
Location of observer
horizon : `~astropy.units.Quantity`
Degrees above/below actual horizon to use
for calculating rise/set times (i.e.,
-6 deg horizon = civil twilight, etc.)
Returns
-------
ret1 : `~astropy.time.Time`
Time of rise/set | entailment |
def _horiz_cross(t, alt, rise_set, horizon=0*u.degree):
"""
Find time ``t`` when values in array ``a`` go from
negative to positive or positive to negative (exclude endpoints)
``return_limits`` will return nearest times to zero-crossing.
Parameters
----------
t : `~astropy.time.Time`
Grid of times
alt : `~astropy.units.Quantity`
Grid of altitudes
rise_set : {"rising", "setting"}
Calculate either rising or setting across the horizon
horizon : float
Number of degrees above/below actual horizon to use
for calculating rise/set times (i.e.,
-6 deg horizon = civil twilight, etc.)
Returns
-------
Returns the lower and upper limits on the time and altitudes
of the horizon crossing.
"""
if rise_set == 'rising':
# Find index where altitude goes from below to above horizon
condition = (alt[:-1] < horizon) * (alt[1:] > horizon)
elif rise_set == 'setting':
# Find index where altitude goes from above to below horizon
condition = (alt[:-1] > horizon) * (alt[1:] < horizon)
if np.count_nonzero(condition) == 0:
warnmsg = ('Target does not cross horizon={} within '
'8 hours of trigonometric estimate'.format(horizon))
warnings.warn(warnmsg)
# Fill in missing time with MAGIC_TIME
time_inds = np.nan
times = [np.nan, np.nan]
altitudes = [np.nan, np.nan]
else:
time_inds = np.nonzero(condition)[0][0]
times = t[time_inds:time_inds+2]
altitudes = alt[time_inds:time_inds+2]
return times, altitudes | Find time ``t`` when values in array ``a`` go from
negative to positive or positive to negative (exclude endpoints)
``return_limits`` will return nearest times to zero-crossing.
Parameters
----------
t : `~astropy.time.Time`
Grid of times
alt : `~astropy.units.Quantity`
Grid of altitudes
rise_set : {"rising", "setting"}
Calculate either rising or setting across the horizon
horizon : float
Number of degrees above/below actual horizon to use
for calculating rise/set times (i.e.,
-6 deg horizon = civil twilight, etc.)
Returns
-------
Returns the lower and upper limits on the time and altitudes
of the horizon crossing. | entailment |
def _two_point_interp(times, altitudes, horizon=0*u.deg):
"""
Do linear interpolation between two ``altitudes`` at
two ``times`` to determine the time where the altitude
goes through zero.
Parameters
----------
times : `~astropy.time.Time`
Two times for linear interpolation between
altitudes : array of `~astropy.units.Quantity`
Two altitudes for linear interpolation between
horizon : `~astropy.units.Quantity`
Solve for the time when the altitude is equal to
reference_alt.
Returns
-------
t : `~astropy.time.Time`
Time when target crosses the horizon
"""
if not isinstance(times, Time):
return MAGIC_TIME
else:
slope = (altitudes[1] - altitudes[0])/(times[1].jd - times[0].jd)
return Time(times[1].jd - ((altitudes[1] - horizon)/slope).value,
format='jd') | Do linear interpolation between two ``altitudes`` at
two ``times`` to determine the time where the altitude
goes through zero.
Parameters
----------
times : `~astropy.time.Time`
Two times for linear interpolation between
altitudes : array of `~astropy.units.Quantity`
Two altitudes for linear interpolation between
horizon : `~astropy.units.Quantity`
Solve for the time when the altitude is equal to
reference_alt.
Returns
-------
t : `~astropy.time.Time`
Time when target crosses the horizon | entailment |
def init_dirs(main_dir: Path, logfilepath: Path):
"""
Initialize the main directories.
:param main_dir: main directory
:type main_dir: ~pathlib.Path
:param logfilepath: log file
:type logfilepath: ~pathlib.Path
"""
global MAIN_DIR, TEMP_DIR, DOWNLOAD_DIR, SAVESTAT_DIR, LOGFILE_PATH
MAIN_DIR = main_dir
TEMP_DIR = MAIN_DIR.joinpath(Path('temp/'))
DOWNLOAD_DIR = MAIN_DIR.joinpath(Path('downloads/'))
SAVESTAT_DIR = MAIN_DIR.joinpath(Path('savestates/'))
LOGFILE_PATH = MAIN_DIR.joinpath(logfilepath) | Initialize the main directories.
:param main_dir: main directory
:type main_dir: ~pathlib.Path
:param logfilepath: log file
:type logfilepath: ~pathlib.Path | entailment |
def reset():
"""
Reset all dynamic variables to the default values.
"""
global MAIN_DIR, TEMP_DIR, DOWNLOAD_DIR, SAVESTAT_DIR, LOGFILE_PATH, USING_CORES, LOG_LEVEL, DISABLE_TQDM, \
SAVE_STATE_VERSION
MAIN_DIR = Path('./')
TEMP_DIR = MAIN_DIR.joinpath(Path('temp/'))
DOWNLOAD_DIR = MAIN_DIR.joinpath(Path('downloads/'))
SAVESTAT_DIR = MAIN_DIR.joinpath(Path('savestates/'))
LOGFILE_PATH = MAIN_DIR.joinpath(Path('UniDown.log'))
USING_CORES = 1
LOG_LEVEL = 'INFO'
DISABLE_TQDM = False
SAVE_STATE_VERSION = Version('1') | Reset all dynamic variables to the default values. | entailment |
def check_dirs():
"""
Check the directories if they exist.
:raises FileExistsError: if a file exists but is not a directory
"""
dirs = [MAIN_DIR, TEMP_DIR, DOWNLOAD_DIR, SAVESTAT_DIR]
for directory in dirs:
if directory.exists() and not directory.is_dir():
raise FileExistsError(str(directory.resolve()) + " cannot be used as a directory.") | Check the directories if they exist.
:raises FileExistsError: if a file exists but is not a directory | entailment |
def parse_hstring(hs):
"""
Parse a single item from the telescope server into name, value, comment.
"""
# split the string on = and /, also stripping whitespace and annoying quotes
name, value, comment = yield_three(
[val.strip().strip("'") for val in filter(None, re.split("[=/]+", hs))]
)
# if comment has a slash in it, put it back together
try:
len(comment)
except:
pass
else:
comment = '/'.join(comment)
return name, value, comment | Parse a single item from the telescope server into name, value, comment. | entailment |
def create_header_from_telpars(telpars):
"""
Create a list of fits header items from GTC telescope pars.
The GTC telescope server gives a list of string describing
FITS header items such as RA, DEC, etc.
Arguments
---------
telpars : list
list returned by server call to getTelescopeParams
"""
# pars is a list of strings describing tel info in FITS
# style, each entry in the list is a different class of
# thing (weather, telescope, instrument etc).
# first, we munge it into a single list of strings, each one
# describing a single item whilst also stripping whitespace
pars = [val.strip() for val in (';').join(telpars).split(';')
if val.strip() != '']
# apply parse_hstring to everything in pars
with warnings.catch_warnings():
warnings.simplefilter('ignore', fits.verify.VerifyWarning)
hdr = fits.Header(map(parse_hstring, pars))
return hdr | Create a list of fits header items from GTC telescope pars.
The GTC telescope server gives a list of string describing
FITS header items such as RA, DEC, etc.
Arguments
---------
telpars : list
list returned by server call to getTelescopeParams | entailment |
def add_gtc_header_table_row(t, telpars):
"""
Add a row with current values to GTC table
Arguments
---------
t : `~astropy.table.Table`
The table to append row to
telpars : list
list returned by server call to getTelescopeParams
"""
now = Time.now().mjd
hdr = create_header_from_telpars(telpars)
# make dictionary of vals to put in table
vals = {k: v for k, v in hdr.items() if k in VARIABLE_GTC_KEYS}
vals['MJD'] = now
# store LST as hourangle
vals['LST'] = Longitude(vals['LST'], unit=u.hour).hourangle
t.add_row(vals) | Add a row with current values to GTC table
Arguments
---------
t : `~astropy.table.Table`
The table to append row to
telpars : list
list returned by server call to getTelescopeParams | entailment |
def from_protobuf(cls, proto: PluginInfoProto) -> PluginInfo:
"""
Constructor from protobuf.
:param proto: protobuf structure
:type proto: ~unidown.plugin.protobuf.plugin_info_pb2.PluginInfoProto
:return: the PluginInfo
:rtype: ~unidown.plugin.plugin_info.PluginInfo
:raises ValueError: name of PluginInfo does not exist or is empty inside the protobuf
:raises ValueError: version of PluginInfo does not exist or is empty inside the protobuf
:raises ValueError: host of PluginInfo does not exist or is empty inside the protobuf
"""
if proto.name == "":
raise ValueError("name of PluginInfo does not exist or is empty inside the protobuf.")
elif proto.version == "":
raise ValueError("version of PluginInfo does not exist or is empty inside the protobuf.")
elif proto.host == "":
raise ValueError("host of PluginInfo does not exist or is empty inside the protobuf.")
return cls(proto.name, proto.version, proto.host) | Constructor from protobuf.
:param proto: protobuf structure
:type proto: ~unidown.plugin.protobuf.plugin_info_pb2.PluginInfoProto
:return: the PluginInfo
:rtype: ~unidown.plugin.plugin_info.PluginInfo
:raises ValueError: name of PluginInfo does not exist or is empty inside the protobuf
:raises ValueError: version of PluginInfo does not exist or is empty inside the protobuf
:raises ValueError: host of PluginInfo does not exist or is empty inside the protobuf | entailment |
def to_protobuf(self) -> PluginInfoProto:
"""
Create protobuf item.
:return: protobuf structure
:rtype: ~unidown.plugin.protobuf.link_item_pb2.PluginInfoProto
"""
proto = PluginInfoProto()
proto.name = self.name
proto.version = str(self.version)
proto.host = self.host
return proto | Create protobuf item.
:return: protobuf structure
:rtype: ~unidown.plugin.protobuf.link_item_pb2.PluginInfoProto | entailment |
def from_protobuf(cls, proto: SaveStateProto) -> SaveState:
"""
Constructor from protobuf. Can raise ValueErrors from called from_protobuf() parsers.
:param proto: protobuf structure
:type proto: ~unidown.plugin.protobuf.save_state_pb2.SaveStateProto
:return: the SaveState
:rtype: ~unidown.plugin.save_state.SaveState
:raises ValueError: version of SaveState does not exist or is empty inside the protobuf
:raises ~packaging.version.InvalidVersion: version is not PEP440 conform
"""
data_dict = {}
for key, link_item in proto.data.items():
data_dict[key] = LinkItem.from_protobuf(link_item)
if proto.version == "":
raise ValueError("version of SaveState does not exist or is empty inside the protobuf.")
try:
version = Version(proto.version)
except InvalidVersion:
raise InvalidVersion(f"Plugin version is not PEP440 conform: {proto.version}")
return cls(version, PluginInfo.from_protobuf(proto.plugin_info), Timestamp.ToDatetime(proto.last_update),
data_dict) | Constructor from protobuf. Can raise ValueErrors from called from_protobuf() parsers.
:param proto: protobuf structure
:type proto: ~unidown.plugin.protobuf.save_state_pb2.SaveStateProto
:return: the SaveState
:rtype: ~unidown.plugin.save_state.SaveState
:raises ValueError: version of SaveState does not exist or is empty inside the protobuf
:raises ~packaging.version.InvalidVersion: version is not PEP440 conform | entailment |
def to_protobuf(self) -> SaveStateProto:
"""
Create protobuf item.
:return: protobuf structure
:rtype: ~unidown.plugin.protobuf.save_state_pb2.SaveStateProto
"""
result = SaveStateProto()
result.version = str(self.version)
result.last_update.CopyFrom(datetime_to_timestamp(self.last_update))
result.plugin_info.CopyFrom(self.plugin_info.to_protobuf())
for key, link_item in self.link_item_dict.items():
result.data[key].CopyFrom(link_item.to_protobuf())
return result | Create protobuf item.
:return: protobuf structure
:rtype: ~unidown.plugin.protobuf.save_state_pb2.SaveStateProto | entailment |
def definite_article(word, gender=MALE, role=SUBJECT):
""" Returns the definite article (der/die/das/die) for a given word.
"""
return article_definite.get((gender[:1].lower(), role[:3].lower())) | Returns the definite article (der/die/das/die) for a given word. | entailment |
def indefinite_article(word, gender=MALE, role=SUBJECT):
""" Returns the indefinite article (ein) for a given word.
"""
return article_indefinite.get((gender[:1].lower(), role[:3].lower())) | Returns the indefinite article (ein) for a given word. | entailment |
def article(word, function=INDEFINITE, gender=MALE, role=SUBJECT):
""" Returns the indefinite (ein) or definite (der/die/das/die) article for the given word.
"""
return function == DEFINITE \
and definite_article(word, gender, role) \
or indefinite_article(word, gender, role) | Returns the indefinite (ein) or definite (der/die/das/die) article for the given word. | entailment |
def referenced(word, article=INDEFINITE, gender=MALE, role=SUBJECT):
""" Returns a string with the article + the word.
"""
return "%s %s" % (_article(word, article, gender, role), word) | Returns a string with the article + the word. | entailment |
def gender(word, pos=NOUN):
""" Returns the gender (MALE, FEMALE or NEUTRAL) for nouns (majority vote).
Returns None for words that are not nouns.
"""
w = word.lower()
if pos == NOUN:
# Default rules (baseline = 32%).
if w.endswith(gender_masculine):
return MASCULINE
if w.endswith(gender_feminine):
return FEMININE
if w.endswith(gender_neuter):
return NEUTER
# Majority vote.
for g in gender_majority_vote:
if w.endswith(gender_majority_vote[g]):
return g | Returns the gender (MALE, FEMALE or NEUTRAL) for nouns (majority vote).
Returns None for words that are not nouns. | entailment |
def pluralize(word, pos=NOUN, gender=MALE, role=SUBJECT, custom={}):
""" Returns the plural of a given word.
The inflection is based on probability rather than gender and role.
"""
w = word.lower().capitalize()
if word in custom:
return custom[word]
if pos == NOUN:
for a, b in plural_inflections:
if w.endswith(a):
return w[:-len(a)] + b
# Default rules (baseline = 69%).
if w.startswith("ge"):
return w
if w.endswith("gie"):
return w
if w.endswith("e"):
return w + "n"
if w.endswith("ien"):
return w[:-2] + "um"
if w.endswith(("au", "ein", "eit", "er", "en", "el", "chen", "mus", u"tät", "tik", "tum", "u")):
return w
if w.endswith(("ant", "ei", "enz", "ion", "ist", "or", "schaft", "tur", "ung")):
return w + "en"
if w.endswith("in"):
return w + "nen"
if w.endswith("nis"):
return w + "se"
if w.endswith(("eld", "ild", "ind")):
return w + "er"
if w.endswith("o"):
return w + "s"
if w.endswith("a"):
return w[:-1] + "en"
# Inflect common umlaut vowels: Kopf => Köpfe.
if w.endswith(("all", "and", "ang", "ank", "atz", "auf", "ock", "opf", "uch", "uss")):
umlaut = w[-3]
umlaut = umlaut.replace("a", u"ä")
umlaut = umlaut.replace("o", u"ö")
umlaut = umlaut.replace("u", u"ü")
return w[:-3] + umlaut + w[-2:] + "e"
for a, b in (
("ag", u"äge"),
("ann", u"änner"),
("aum", u"äume"),
("aus", u"äuser"),
("zug", u"züge")):
if w.endswith(a):
return w[:-len(a)] + b
return w + "e"
return w | Returns the plural of a given word.
The inflection is based on probability rather than gender and role. | entailment |
def singularize(word, pos=NOUN, gender=MALE, role=SUBJECT, custom={}):
""" Returns the singular of a given word.
The inflection is based on probability rather than gender and role.
"""
w = word.lower().capitalize()
if word in custom:
return custom[word]
if word in singular:
return singular[word]
if pos == NOUN:
for a, b in singular_inflections:
if w.endswith(a):
return w[:-len(a)] + b
# Default rule: strip known plural suffixes (baseline = 51%).
for suffix in ("nen", "en", "n", "e", "er", "s"):
if w.endswith(suffix):
w = w[:-len(suffix)]
break
# Corrections (these add about 1% accuracy):
if w.endswith(("rr", "rv", "nz")):
return w + "e"
return w
return w | Returns the singular of a given word.
The inflection is based on probability rather than gender and role. | entailment |
def attributive(adjective, gender=MALE, role=SUBJECT, article=None):
""" For a predicative adjective, returns the attributive form (lowercase).
In German, the attributive is formed with -e, -em, -en, -er or -es,
depending on gender (masculine, feminine, neuter or plural) and role
(nominative, accusative, dative, genitive).
"""
w, g, c, a = \
adjective.lower(), gender[:1].lower(), role[:3].lower(), article and article.lower() or None
if w in adjective_attributive:
return adjective_attributive[w]
if a is None \
or a in ("mir", "dir", "ihm") \
or a in ("ein", "etwas", "mehr") \
or a.startswith(("all", "mehrer", "wenig", "viel")):
return w + adjectives_strong.get((g, c), "")
if a.startswith(("ein", "kein")) \
or a.startswith(("mein", "dein", "sein", "ihr", "Ihr", "unser", "euer")):
return w + adjectives_mixed.get((g, c), "")
if a in ("arm", "alt", "all", "der", "die", "das", "den", "dem", "des") \
or a.startswith((
"derselb", "derjenig", "jed", "jeglich", "jen", "manch",
"dies", "solch", "welch")):
return w + adjectives_weak.get((g, c), "")
# Default to strong inflection.
return w + adjectives_strong.get((g, c), "") | For a predicative adjective, returns the attributive form (lowercase).
In German, the attributive is formed with -e, -em, -en, -er or -es,
depending on gender (masculine, feminine, neuter or plural) and role
(nominative, accusative, dative, genitive). | entailment |
def predicative(adjective):
""" Returns the predicative adjective (lowercase).
In German, the attributive form preceding a noun is always used:
"ein kleiner Junge" => strong, masculine, nominative,
"eine schöne Frau" => mixed, feminine, nominative,
"der kleine Prinz" => weak, masculine, nominative, etc.
The predicative is useful for lemmatization.
"""
w = adjective.lower()
if len(w) > 3:
for suffix in ("em", "en", "er", "es", "e"):
if w.endswith(suffix):
b = w[:max(-len(suffix), -(len(w)-3))]
if b.endswith("bl"): # plausibles => plausibel
b = b[:-1] + "el"
if b.endswith("pr"): # propres => proper
b = b[:-1] + "er"
return b
return w | Returns the predicative adjective (lowercase).
In German, the attributive form preceding a noun is always used:
"ein kleiner Junge" => strong, masculine, nominative,
"eine schöne Frau" => mixed, feminine, nominative,
"der kleine Prinz" => weak, masculine, nominative, etc.
The predicative is useful for lemmatization. | entailment |
def grade(adjective, suffix=COMPARATIVE):
""" Returns the comparative or superlative form of the given (inflected) adjective.
"""
b = predicative(adjective)
# groß => großt, schön => schönst
if suffix == SUPERLATIVE and b.endswith(("s", u"ß")):
suffix = suffix[1:]
# große => großere, schönes => schöneres
return adjective[:len(b)] + suffix + adjective[len(b):] | Returns the comparative or superlative form of the given (inflected) adjective. | entailment |
def find_lemma(self, verb):
""" Returns the base form of the given inflected verb, using a rule-based approach.
"""
v = verb.lower()
# Common prefixes: be-finden and emp-finden probably inflect like finden.
if not (v.startswith("ge") and v.endswith("t")): # Probably gerund.
for prefix in prefixes:
if v.startswith(prefix) and v[len(prefix):] in self.inflections:
return prefix + self.inflections[v[len(prefix):]]
# Common sufixes: setze nieder => niedersetzen.
b, suffix = " " in v and v.split()[:2] or (v, "")
# Infinitive -ln: trommeln.
if b.endswith(("ln", "rn")):
return b
# Lemmatize regular inflections.
for x in ("test", "est", "end", "ten", "tet", "en", "et", "te", "st", "e", "t"):
if b.endswith(x): b = b[:-len(x)]; break
# Subjunctive: hielte => halten, schnitte => schneiden.
for x, y in (
("ieb", "eib"), ( "ied", "eid"), ( "ief", "auf" ), ( "ieg", "eig" ), ("iel", "alt"),
("ien", "ein"), ("iess", "ass"), (u"ieß", u"aß" ), ( "iff", "eif" ), ("iss", "eiss"),
(u"iß", u"eiß"), ( "it", "eid"), ( "oss", "iess"), (u"öss", "iess")):
if b.endswith(x): b = b[:-len(x)] + y; break
b = b.replace("eeiss", "eiss")
b = b.replace("eeid", "eit")
# Subjunctive: wechselte => wechseln
if not b.endswith(("e", "l")) and not (b.endswith("er") and len(b) >= 3 and not b[-3] in VOWELS):
b = b + "e"
# abknallst != abknalln => abknallen
if b.endswith(("hl", "ll", "ul", "eil")):
b = b + "e"
# Strip ge- from (likely) gerund:
if b.startswith("ge") and v.endswith("t"):
b = b[2:]
# Corrections (these add about 1.5% accuracy):
if b.endswith(("lnde", "rnde")):
b = b[:-3]
if b.endswith(("ae", "al", u"öe", u"üe")):
b = b.rstrip("e") + "te"
if b.endswith(u"äl"):
b = b + "e"
return suffix + b + "n" | Returns the base form of the given inflected verb, using a rule-based approach. | entailment |
def find_lexeme(self, verb):
""" For a regular verb (base form), returns the forms using a rule-based approach.
"""
v = verb.lower()
# Stem = infinitive minus -en, -ln, -rn.
b = b0 = re.sub("en$", "", re.sub("ln$", "l", re.sub("rn$", "r", v)))
# Split common prefixes.
x, x1, x2 = "", "", ""
for prefix in prefix_separable:
if v.startswith(prefix):
b, x = b[len(prefix):], prefix
x1 = (" " + x).rstrip()
x2 = x + "ge"
break
# Present tense 1sg and subjunctive -el: handeln => ich handle, du handlest.
pl = b.endswith("el") and b[:-2]+"l" or b
# Present tense 1pl -el: handeln => wir handeln
pw = v.endswith(("ln", "rn")) and v or b+"en"
# Present tense ending in -d or -t gets -e:
pr = b.endswith(("d", "t")) and b+"e" or b
# Present tense 2sg gets -st, unless stem ends with -s or -z.
p2 = pr.endswith(("s","z")) and pr+"t" or pr+"st"
# Present participle: spiel + -end, arbeiten + -d:
pp = v.endswith(("en", "ln", "rn")) and v+"d" or v+"end"
# Past tense regular:
pt = encode_sz(pr) + "t"
# Past participle: haushalten => hausgehalten
ge = (v.startswith(prefix_inseparable) or b.endswith(("r","t"))) and pt or "ge"+pt
ge = x and x+"ge"+pt or ge
# Present subjunctive: stem + -e, -est, -en, -et:
s1 = encode_sz(pl)
# Past subjunctive: past (usually with Umlaut) + -e, -est, -en, -et:
s2 = encode_sz(pt)
# Construct the lexeme:
lexeme = a = [
v,
pl+"e"+x1, p2+x1, pr+"t"+x1, pw+x1, pr+"t"+x1, pp, # present
pt+"e"+x1, pt+"est"+x1, pt+"e"+x1, pt+"en"+x1, pt+"et"+x1, ge, # past
b+"e"+x1, pr+"t"+x1, x+pw, # imperative
s1+"e"+x1, s1+"est"+x1, s1+"en"+x1, s1+"et"+x1, # subjunctive I
s2+"e"+x1, s2+"est"+x1, s2+"en"+x1, s2+"et"+x1 # subjunctive II
]
# Encode Eszett (ß) and attempt to retrieve from the lexicon.
# Decode Eszett for present and imperative.
if encode_sz(v) in self:
a = self[encode_sz(v)]
a = [decode_sz(v) for v in a[:7]] + a[7:13] + [decode_sz(v) for v in a[13:20]] + a[20:]
# Since the lexicon does not contain imperative for all verbs, don't simply return it.
# Instead, update the rule-based lexeme with inflections from the lexicon.
return [a[i] or lexeme[i] for i in range(len(a))] | For a regular verb (base form), returns the forms using a rule-based approach. | entailment |
def tenses(self, verb, parse=True):
""" Returns a list of possible tenses for the given inflected verb.
"""
tenses = _Verbs.tenses(self, verb, parse)
if len(tenses) == 0:
# auswirkte => wirkte aus
for prefix in prefix_separable:
if verb.startswith(prefix):
tenses = _Verbs.tenses(self, verb[len(prefix):] + " " + prefix, parse)
break
return tenses | Returns a list of possible tenses for the given inflected verb. | entailment |
def _get_words_from_dataset(dataset):
"""Return a set of all words in a dataset.
:param dataset: A list of tuples of the form ``(words, label)`` where
``words`` is either a string of a list of tokens.
"""
# Words may be either a string or a list of tokens. Return an iterator
# of tokens accordingly
def tokenize(words):
if isinstance(words, basestring):
return word_tokenize(words, include_punc=False)
else:
return words
all_words = chain.from_iterable(tokenize(words) for words, _ in dataset)
return set(all_words) | Return a set of all words in a dataset.
:param dataset: A list of tuples of the form ``(words, label)`` where
``words`` is either a string of a list of tokens. | entailment |
def basic_extractor(document, train_set):
"""A basic document feature extractor that returns a dict indicating what
words in ``train_set`` are contained in ``document``.
:param document: The text to extract features from. Can be a string or an iterable.
:param list train_set: Training data set, a list of tuples of the form
``(words, label)``.
"""
word_features = _get_words_from_dataset(train_set)
tokens = _get_document_tokens(document)
features = dict(((u'contains({0})'.format(word), (word in tokens))
for word in word_features))
return features | A basic document feature extractor that returns a dict indicating what
words in ``train_set`` are contained in ``document``.
:param document: The text to extract features from. Can be a string or an iterable.
:param list train_set: Training data set, a list of tuples of the form
``(words, label)``. | entailment |
def contains_extractor(document):
"""A basic document feature extractor that returns a dict of words that the
document contains."""
tokens = _get_document_tokens(document)
features = dict((u'contains({0})'.format(w), True) for w in tokens)
return features | A basic document feature extractor that returns a dict of words that the
document contains. | entailment |
def _read_data(self, dataset, format=None):
"""Reads a data file and returns and iterable that can be used as
testing or training data."""
# Attempt to detect file format if "format" isn't specified
if not format:
format_class = formats.detect(dataset)
else:
if format not in formats.AVAILABLE.keys():
raise ValueError("'{0}' format not supported.".format(format))
format_class = formats.AVAILABLE[format]
return format_class(dataset).to_iterable() | Reads a data file and returns and iterable that can be used as
testing or training data. | entailment |
def extract_features(self, text):
"""Extracts features from a body of text.
:rtype: dictionary of features
"""
# Feature extractor may take one or two arguments
try:
return self.feature_extractor(text, self.train_set)
except (TypeError, AttributeError):
return self.feature_extractor(text) | Extracts features from a body of text.
:rtype: dictionary of features | entailment |
def train(self, *args, **kwargs):
"""Train the classifier with a labeled feature set and return the
classifier. Takes the same arguments as the wrapped NLTK class. This
method is implicitly called when calling ``classify`` or ``accuracy``
methods and is included only to allow passing in arguments to the
``train`` method of the wrapped NLTK class.
.. versionadded:: 0.6.2
:rtype: A classifier
"""
try:
self.classifier = self.nltk_class.train(self.train_features,
*args, **kwargs)
return self.classifier
except AttributeError:
raise ValueError("NLTKClassifier must have a nltk_class"
" variable that is not None.") | Train the classifier with a labeled feature set and return the
classifier. Takes the same arguments as the wrapped NLTK class. This
method is implicitly called when calling ``classify`` or ``accuracy``
methods and is included only to allow passing in arguments to the
``train`` method of the wrapped NLTK class.
.. versionadded:: 0.6.2
:rtype: A classifier | entailment |
def classify(self, text):
"""Classifies the text.
:param str text: A string of text.
"""
text_features = self.extract_features(text)
return self.classifier.classify(text_features) | Classifies the text.
:param str text: A string of text. | entailment |
def accuracy(self, test_set, format=None):
"""Compute the accuracy on a test set.
:param test_set: A list of tuples of the form ``(text, label)``, or a
filename.
:param format: If ``test_set`` is a filename, the file format, e.g.
``"csv"`` or ``"json"``. If ``None``, will attempt to detect the
file format.
"""
if isinstance(test_set, basestring): # test_set is a filename
test_data = self._read_data(test_set)
else: # test_set is a list of tuples
test_data = test_set
test_features = [(self.extract_features(d), c) for d, c in test_data]
return nltk.classify.accuracy(self.classifier, test_features) | Compute the accuracy on a test set.
:param test_set: A list of tuples of the form ``(text, label)``, or a
filename.
:param format: If ``test_set`` is a filename, the file format, e.g.
``"csv"`` or ``"json"``. If ``None``, will attempt to detect the
file format. | entailment |
def update(self, new_data, *args, **kwargs):
'''Update the classifier with new training data and re-trains the
classifier.
:param new_data: New data as a list of tuples of the form
``(text, label)``.
'''
self.train_set += new_data
self.train_features = [(self.extract_features(d), c)
for d, c in self.train_set]
try:
self.classifier = self.nltk_class.train(self.train_features,
*args, **kwargs)
except AttributeError: # Descendant has not defined nltk_class
raise ValueError("NLTKClassifier must have a nltk_class"
" variable that is not None.")
return True | Update the classifier with new training data and re-trains the
classifier.
:param new_data: New data as a list of tuples of the form
``(text, label)``. | entailment |
def prob_classify(self, text):
"""Return the label probability distribution for classifying a string
of text.
Example:
::
>>> classifier = NaiveBayesClassifier(train_data)
>>> prob_dist = classifier.prob_classify("I feel happy this morning.")
>>> prob_dist.max()
'positive'
>>> prob_dist.prob("positive")
0.7
:rtype: nltk.probability.DictionaryProbDist
"""
text_features = self.extract_features(text)
return self.classifier.prob_classify(text_features) | Return the label probability distribution for classifying a string
of text.
Example:
::
>>> classifier = NaiveBayesClassifier(train_data)
>>> prob_dist = classifier.prob_classify("I feel happy this morning.")
>>> prob_dist.max()
'positive'
>>> prob_dist.prob("positive")
0.7
:rtype: nltk.probability.DictionaryProbDist | entailment |
def train(self, *args, **kwargs):
"""Train the classifier with a labeled and unlabeled feature sets and
return the classifier. Takes the same arguments as the wrapped NLTK
class. This method is implicitly called when calling ``classify`` or
``accuracy`` methods and is included only to allow passing in arguments
to the ``train`` method of the wrapped NLTK class.
:rtype: A classifier
"""
self.classifier = self.nltk_class.train(self.positive_features,
self.unlabeled_features,
self.positive_prob_prior)
return self.classifier | Train the classifier with a labeled and unlabeled feature sets and
return the classifier. Takes the same arguments as the wrapped NLTK
class. This method is implicitly called when calling ``classify`` or
``accuracy`` methods and is included only to allow passing in arguments
to the ``train`` method of the wrapped NLTK class.
:rtype: A classifier | entailment |
def update(self, new_positive_data=None,
new_unlabeled_data=None, positive_prob_prior=0.5,
*args, **kwargs):
'''Update the classifier with new data and re-trains the
classifier.
:param new_positive_data: List of new, labeled strings.
:param new_unlabeled_data: List of new, unlabeled strings.
'''
self.positive_prob_prior = positive_prob_prior
if new_positive_data:
self.positive_set += new_positive_data
self.positive_features += [self.extract_features(d)
for d in new_positive_data]
if new_unlabeled_data:
self.unlabeled_set += new_unlabeled_data
self.unlabeled_features += [self.extract_features(d)
for d in new_unlabeled_data]
self.classifier = self.nltk_class.train(self.positive_features,
self.unlabeled_features,
self.positive_prob_prior,
*args, **kwargs)
return True | Update the classifier with new data and re-trains the
classifier.
:param new_positive_data: List of new, labeled strings.
:param new_unlabeled_data: List of new, unlabeled strings. | entailment |
def prob_classify(self, text):
"""Return the label probability distribution for classifying a string
of text.
Example:
::
>>> classifier = MaxEntClassifier(train_data)
>>> prob_dist = classifier.prob_classify("I feel happy this morning.")
>>> prob_dist.max()
'positive'
>>> prob_dist.prob("positive")
0.7
:rtype: nltk.probability.DictionaryProbDist
"""
feats = self.extract_features(text)
return self.classifier.prob_classify(feats) | Return the label probability distribution for classifying a string
of text.
Example:
::
>>> classifier = MaxEntClassifier(train_data)
>>> prob_dist = classifier.prob_classify("I feel happy this morning.")
>>> prob_dist.max()
'positive'
>>> prob_dist.prob("positive")
0.7
:rtype: nltk.probability.DictionaryProbDist | entailment |
def lemmatize(self, text):
"""Return a list of (lemma, tag) tuples.
:param str text: A string.
"""
#: Do not process empty strings (Issue #3)
if text.strip() == "":
return []
parsed_sentences = self._parse_text(text)
_lemmalist = []
for s in parsed_sentences:
tokens = s.split()
for i, t in enumerate(tokens):
#: Filter empty tokens from the parser output (Issue #5)
#: This only happens if parser input is improperly tokenized
#: e.g. if there are empty strings in the list of tokens ['A', '', '.']
if t.startswith('/'):
continue
w, tag, phrase, role, lemma = t.split('/')
# The lexicon uses Swiss spelling: "ss" instead of "ß".
lemma = lemma.replace(u"ß", "ss")
# Reverse previous replacement
lemma = lemma.strip().replace("forwardslash", "/")
if w[0].isupper() and i > 0:
lemma = lemma.title()
elif tag.startswith("N") and i == 0:
lemma = lemma.title()
# Todo: Check if it makes sense to treat '/' as punctuation
# (especially for sentiment analysis it might be interesting
# to treat it as OR ('oder')).
if w in string.punctuation or lemma == '/':
continue
else:
lemma = lemma
_lemmalist.append((lemma, tag))
return _lemmalist | Return a list of (lemma, tag) tuples.
:param str text: A string. | entailment |
def _parse_text(self, text):
"""Parse text (string) and return list of parsed sentences (strings).
Each sentence consists of space separated token elements and the
token format returned by the PatternParser is WORD/TAG/PHRASE/ROLE/LEMMA
(separated by a forward slash '/')
:param str text: A string.
"""
# Fix for issue #1
text = text.replace("/", " FORWARDSLASH ")
_tokenized = " ".join(self.tokenizer.tokenize(text))
parsed_text = pattern_parse(_tokenized, tokenize=False, lemmata=True)
return parsed_text.split('\n') | Parse text (string) and return list of parsed sentences (strings).
Each sentence consists of space separated token elements and the
token format returned by the PatternParser is WORD/TAG/PHRASE/ROLE/LEMMA
(separated by a forward slash '/')
:param str text: A string. | entailment |
def _match(string, pattern):
""" Returns True if the pattern matches the given word string.
The pattern can include a wildcard (*front, back*, *both*, in*side),
or it can be a compiled regular expression.
"""
p = pattern
try:
if p[:1] == WILDCARD and (p[-1:] == WILDCARD and p[1:-1] in string or string.endswith(p[1:])):
return True
if p[-1:] == WILDCARD and not p[-2:-1] == "\\" and string.startswith(p[:-1]):
return True
if p == string:
return True
if WILDCARD in p[1:-1]:
p = p.split(WILDCARD)
return string.startswith(p[0]) and string.endswith(p[-1])
except:
# For performance, calling isinstance() last is 10% faster for plain strings.
if isinstance(p, regexp):
return p.search(string) is not None
return False | Returns True if the pattern matches the given word string.
The pattern can include a wildcard (*front, back*, *both*, in*side),
or it can be a compiled regular expression. | entailment |
def unique(iterable):
""" Returns a list copy in which each item occurs only once (in-order).
"""
seen = set()
return [x for x in iterable if x not in seen and not seen.add(x)] | Returns a list copy in which each item occurs only once (in-order). | entailment |
def product(*args, **kwargs):
""" Yields all permutations with replacement:
list(product("cat", repeat=2)) =>
[("c", "c"),
("c", "a"),
("c", "t"),
("a", "c"),
("a", "a"),
("a", "t"),
("t", "c"),
("t", "a"),
("t", "t")]
"""
p = [[]]
for iterable in map(tuple, args) * kwargs.get("repeat", 1):
p = [x + [y] for x in p for y in iterable]
for p in p:
yield tuple(p) | Yields all permutations with replacement:
list(product("cat", repeat=2)) =>
[("c", "c"),
("c", "a"),
("c", "t"),
("a", "c"),
("a", "a"),
("a", "t"),
("t", "c"),
("t", "a"),
("t", "t")] | entailment |
def variations(iterable, optional=lambda x: False):
""" Returns all possible variations of a sequence with optional items.
"""
# For example: variations(["A?", "B?", "C"], optional=lambda s: s.endswith("?"))
# defines a sequence where constraint A and B are optional:
# [("A?", "B?", "C"), ("B?", "C"), ("A?", "C"), ("C")]
iterable = tuple(iterable)
# Create a boolean sequence where True means optional:
# ("A?", "B?", "C") => [True, True, False]
o = [optional(x) for x in iterable]
# Find all permutations of the boolean sequence:
# [True, False, True], [True, False, False], [False, False, True], [False, False, False].
# Map to sequences of constraints whose index in the boolean sequence yields True.
a = set()
for p in product([False, True], repeat=sum(o)):
p = list(p)
v = [b and (b and p.pop(0)) for b in o]
v = tuple(iterable[i] for i in xrange(len(v)) if not v[i])
a.add(v)
# Longest-first.
return sorted(a, cmp=lambda x, y: len(y) - len(x)) | Returns all possible variations of a sequence with optional items. | entailment |
def compile(pattern, *args, **kwargs):
""" Returns a Pattern from the given string or regular expression.
Recently compiled patterns are kept in cache
(if they do not use taxonomies, which are mutable dicts).
"""
id, p = repr(pattern) + repr(args), pattern
if id in _cache and not kwargs:
return _cache[id]
if isinstance(pattern, basestring):
p = Pattern.fromstring(pattern, *args, **kwargs)
if isinstance(pattern, regexp):
p = Pattern([Constraint(words=[pattern], taxonomy=kwargs.get("taxonomy", TAXONOMY))], *args, **kwargs)
if len(_cache) > _CACHE_SIZE:
_cache.clear()
if isinstance(p, Pattern) and not kwargs:
_cache[id] = p
if isinstance(p, Pattern):
return p
else:
raise TypeError("can't compile '%s' object" % pattern.__class__.__name__) | Returns a Pattern from the given string or regular expression.
Recently compiled patterns are kept in cache
(if they do not use taxonomies, which are mutable dicts). | entailment |
def scan(pattern, string, *args, **kwargs):
""" Returns True if pattern.search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it.
"""
return compile(pattern, *args, **kwargs).scan(string) | Returns True if pattern.search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it. | entailment |
def match(pattern, sentence, *args, **kwargs):
""" Returns the first match found in the given sentence, or None.
"""
return compile(pattern, *args, **kwargs).match(sentence) | Returns the first match found in the given sentence, or None. | entailment |
def search(pattern, sentence, *args, **kwargs):
""" Returns a list of all matches found in the given sentence.
"""
return compile(pattern, *args, **kwargs).search(sentence) | Returns a list of all matches found in the given sentence. | entailment |
def push(self, kv):
""" Adds a new item from the given (key, value)-tuple.
If the key exists, pushes the updated item to the head of the dict.
"""
if kv[0] in self:
self.__delitem__(kv[0])
self.__setitem__(kv[0], kv[1]) | Adds a new item from the given (key, value)-tuple.
If the key exists, pushes the updated item to the head of the dict. | entailment |
def append(self, term, type=None, value=None):
""" Appends the given term to the taxonomy and tags it as the given type.
Optionally, a disambiguation value can be supplied.
For example: taxonomy.append("many", "quantity", "50-200")
"""
term = self._normalize(term)
type = self._normalize(type)
self.setdefault(term, (odict(), odict()))[0].push((type, True))
self.setdefault(type, (odict(), odict()))[1].push((term, True))
self._values[term] = value | Appends the given term to the taxonomy and tags it as the given type.
Optionally, a disambiguation value can be supplied.
For example: taxonomy.append("many", "quantity", "50-200") | entailment |
def classify(self, term, **kwargs):
""" Returns the (most recently added) semantic type for the given term ("many" => "quantity").
If the term is not in the dictionary, try Taxonomy.classifiers.
"""
term = self._normalize(term)
if dict.__contains__(self, term):
return self[term][0].keys()[-1]
# If the term is not in the dictionary, check the classifiers.
# Returns the first term in the list returned by a classifier.
for classifier in self.classifiers:
# **kwargs are useful if the classifier requests extra information,
# for example the part-of-speech tag.
v = classifier.parents(term, **kwargs)
if v:
return v[0] | Returns the (most recently added) semantic type for the given term ("many" => "quantity").
If the term is not in the dictionary, try Taxonomy.classifiers. | entailment |
def parents(self, term, recursive=False, **kwargs):
""" Returns a list of all semantic types for the given term.
If recursive=True, traverses parents up to the root.
"""
def dfs(term, recursive=False, visited={}, **kwargs):
if term in visited: # Break on cyclic relations.
return []
visited[term], a = True, []
if dict.__contains__(self, term):
a = self[term][0].keys()
for classifier in self.classifiers:
a.extend(classifier.parents(term, **kwargs) or [])
if recursive:
for w in a: a += dfs(w, recursive, visited, **kwargs)
return a
return unique(dfs(self._normalize(term), recursive, {}, **kwargs)) | Returns a list of all semantic types for the given term.
If recursive=True, traverses parents up to the root. | entailment |
def value(self, term, **kwargs):
""" Returns the value of the given term ("many" => "50-200")
"""
term = self._normalize(term)
if term in self._values:
return self._values[term]
for classifier in self.classifiers:
v = classifier.value(term, **kwargs)
if v is not None:
return v | Returns the value of the given term ("many" => "50-200") | entailment |
def fromstring(cls, s, **kwargs):
""" Returns a new Constraint from the given string.
Uppercase words indicate either a tag ("NN", "JJ", "VP")
or a taxonomy term (e.g., "PRODUCT", "PERSON").
Syntax:
( defines an optional constraint, e.g., "(JJ)".
[ defines a constraint with spaces, e.g., "[Mac OS X | Windows Vista]".
_ is converted to spaces, e.g., "Windows_Vista".
| separates different options, e.g., "ADJP|ADVP".
! can be used as a word prefix to disallow it.
* can be used as a wildcard character, e.g., "soft*|JJ*".
? as a suffix defines a constraint that is optional, e.g., "JJ?".
+ as a suffix defines a constraint that can span multiple words, e.g., "JJ+".
^ as a prefix defines a constraint that can only match the first word.
These characters need to be escaped if used as content: "\(".
"""
C = cls(**kwargs)
s = s.strip()
s = s.strip("{}")
s = s.strip()
for i in range(3):
# Wrapping order of control characters is ignored:
# (NN+) == (NN)+ == NN?+ == NN+? == [NN+?] == [NN]+?
if s.startswith("^"):
s = s[1: ]; C.first = True
if s.endswith("+") and not s.endswith("\+"):
s = s[0:-1]; C.multiple = True
if s.endswith("?") and not s.endswith("\?"):
s = s[0:-1]; C.optional = True
if s.startswith("(") and s.endswith(")"):
s = s[1:-1]; C.optional = True
if s.startswith("[") and s.endswith("]"):
s = s[1:-1]
s = re.sub(r"^\\\^", "^", s)
s = re.sub(r"\\\+$", "+", s)
s = s.replace("\_", "&uscore;")
s = s.replace("_"," ")
s = s.replace("&uscore;", "_")
s = s.replace("&lparen;", "(")
s = s.replace("&rparen;", ")")
s = s.replace("[", "[")
s = s.replace("]", "]")
s = s.replace("&lcurly;", "{")
s = s.replace("&rcurly;", "}")
s = s.replace("\(", "(")
s = s.replace("\)", ")")
s = s.replace("\[", "[")
s = s.replace("\]", "]")
s = s.replace("\{", "{")
s = s.replace("\}", "}")
s = s.replace("\*", "*")
s = s.replace("\?", "?")
s = s.replace("\+", "+")
s = s.replace("\^", "^")
s = s.replace("\|", "⊢")
s = s.split("|")
s = [v.replace("⊢", "|").strip() for v in s]
for v in s:
C._append(v)
return C | Returns a new Constraint from the given string.
Uppercase words indicate either a tag ("NN", "JJ", "VP")
or a taxonomy term (e.g., "PRODUCT", "PERSON").
Syntax:
( defines an optional constraint, e.g., "(JJ)".
[ defines a constraint with spaces, e.g., "[Mac OS X | Windows Vista]".
_ is converted to spaces, e.g., "Windows_Vista".
| separates different options, e.g., "ADJP|ADVP".
! can be used as a word prefix to disallow it.
* can be used as a wildcard character, e.g., "soft*|JJ*".
? as a suffix defines a constraint that is optional, e.g., "JJ?".
+ as a suffix defines a constraint that can span multiple words, e.g., "JJ+".
^ as a prefix defines a constraint that can only match the first word.
These characters need to be escaped if used as content: "\(". | entailment |
def match(self, word):
""" Return True if the given Word is part of the constraint:
- the word (or lemma) occurs in Constraint.words, OR
- the word (or lemma) occurs in Constraint.taxa taxonomy tree, AND
- the word and/or chunk tags match those defined in the constraint.
Individual terms in Constraint.words or the taxonomy can contain wildcards (*).
Some part-of-speech-tags can also contain wildcards: NN*, VB*, JJ*, RB*
If the given word contains spaces (e.g., proper noun),
the entire chunk will also be compared.
For example: Constraint(words=["Mac OS X*"])
matches the word "Mac" if the word occurs in a Chunk("Mac OS X 10.5").
"""
# If the constraint has a custom function it must return True.
if self.custom is not None and self.custom(word) is False:
return False
# If the constraint can only match the first word, Word.index must be 0.
if self.first and word.index > 0:
return False
# If the constraint defines excluded options, Word can not match any of these.
if self.exclude and self.exclude.match(word):
return False
# If the constraint defines allowed tags, Word.tag needs to match one of these.
if self.tags:
if find(lambda w: _match(word.tag, w), self.tags) is None:
return False
# If the constraint defines allowed chunks, Word.chunk.tag needs to match one of these.
if self.chunks:
ch = word.chunk and word.chunk.tag or None
if find(lambda w: _match(ch, w), self.chunks) is None:
return False
# If the constraint defines allowed role, Word.chunk.tag needs to match one of these.
if self.roles:
R = word.chunk and [r2 for r1, r2 in word.chunk.relations] or []
if find(lambda w: w in R, self.roles) is None:
return False
# If the constraint defines allowed words,
# Word.string.lower() OR Word.lemma needs to match one of these.
b = True # b==True when word in constraint (or Constraints.words=[]).
if len(self.words) + len(self.taxa) > 0:
s1 = word.string.lower()
s2 = word.lemma
b = False
for w in itertools.chain(self.words, self.taxa):
# If the constraint has a word with spaces (e.g., a proper noun),
# compare it to the entire chunk.
try:
if " " in w and (s1 in w or s2 and s2 in w or "*" in w):
s1 = word.chunk and word.chunk.string.lower() or s1
s2 = word.chunk and " ".join([x or "" for x in word.chunk.lemmata]) or s2
except:
s1 = s1
s2 = None
# Compare the word to the allowed words (which can contain wildcards).
if _match(s1, w):
b=True; break
# Compare the word lemma to the allowed words, e.g.,
# if "was" is not in the constraint, perhaps "be" is, which is a good match.
if s2 and _match(s2, w):
b=True; break
# If the constraint defines allowed taxonomy terms,
# and the given word did not match an allowed word, traverse the taxonomy.
# The search goes up from the given word to its parents in the taxonomy.
# This is faster than traversing all the children of terms in Constraint.taxa.
# The drawback is that:
# 1) Wildcards in the taxonomy are not detected (use classifiers instead),
# 2) Classifier.children() has no effect, only Classifier.parent().
if self.taxa and (not self.words or (self.words and not b)):
for s in (
word.string, # "ants"
word.lemma, # "ant"
word.chunk and word.chunk.string or None, # "army ants"
word.chunk and " ".join([x or "" for x in word.chunk.lemmata]) or None): # "army ant"
if s is not None:
if self.taxonomy.case_sensitive is False:
s = s.lower()
# Compare ancestors of the word to each term in Constraint.taxa.
for p in self.taxonomy.parents(s, recursive=True):
if find(lambda s: p==s, self.taxa): # No wildcards.
return True
return b | Return True if the given Word is part of the constraint:
- the word (or lemma) occurs in Constraint.words, OR
- the word (or lemma) occurs in Constraint.taxa taxonomy tree, AND
- the word and/or chunk tags match those defined in the constraint.
Individual terms in Constraint.words or the taxonomy can contain wildcards (*).
Some part-of-speech-tags can also contain wildcards: NN*, VB*, JJ*, RB*
If the given word contains spaces (e.g., proper noun),
the entire chunk will also be compared.
For example: Constraint(words=["Mac OS X*"])
matches the word "Mac" if the word occurs in a Chunk("Mac OS X 10.5"). | entailment |
def fromstring(cls, s, *args, **kwargs):
""" Returns a new Pattern from the given string.
Constraints are separated by a space.
If a constraint contains a space, it must be wrapped in [].
"""
s = s.replace("\(", "&lparen;")
s = s.replace("\)", "&rparen;")
s = s.replace("\[", "[")
s = s.replace("\]", "]")
s = s.replace("\{", "&lcurly;")
s = s.replace("\}", "&rcurly;")
p = []
i = 0
for m in re.finditer(r"\[.*?\]|\(.*?\)", s):
# Spaces in a range encapsulated in square brackets are encoded.
# "[Windows Vista]" is one range, don't split on space.
p.append(s[i:m.start()])
p.append(s[m.start():m.end()].replace(" ", "&space;")); i=m.end()
p.append(s[i:])
s = "".join(p)
s = s.replace("][", "] [")
s = s.replace(")(", ") (")
s = s.replace("\|", "⊢")
s = re.sub(r"\s+\|\s+", "|", s)
s = re.sub(r"\s+", " ", s)
s = re.sub(r"\{\s+", "{", s)
s = re.sub(r"\s+\}", "}", s)
s = s.split(" ")
s = [v.replace("&space;"," ") for v in s]
P = cls([], *args, **kwargs)
G, O, i = [], [], 0
for s in s:
constraint = Constraint.fromstring(s.strip("{}"), taxonomy=kwargs.get("taxonomy", TAXONOMY))
constraint.index = len(P.sequence)
P.sequence.append(constraint)
# Push a new group on the stack if string starts with "{".
# Parse constraint from string, add it to all open groups.
# Pop latest group from stack if string ends with "}".
# Insert groups in opened-first order (i).
while s.startswith("{"):
s = s[1:]
G.append((i, [])); i+=1
O.append([])
for g in G:
g[1].append(constraint)
while s.endswith("}"):
s = s[:-1]
if G: O[G[-1][0]] = G[-1][1]; G.pop()
P.groups = [g for g in O if g]
return P | Returns a new Pattern from the given string.
Constraints are separated by a space.
If a constraint contains a space, it must be wrapped in []. | entailment |
def scan(self, string):
""" Returns True if search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it.
"""
# In the following example, first scan the string for "good" and "bad":
# p = Pattern.fromstring("good|bad NN")
# for s in open("parsed.txt"):
# if p.scan(s):
# s = Sentence(s)
# m = p.search(s)
# if m:
# print(m)
w = (constraint.words for constraint in self.sequence if not constraint.optional)
w = itertools.chain(*w)
w = [w.strip(WILDCARD) for w in w if WILDCARD not in w[1:-1]]
if w and not any(w in string.lower() for w in w):
return False
return True | Returns True if search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it. | entailment |
def search(self, sentence):
""" Returns a list of all matches found in the given sentence.
"""
if sentence.__class__.__name__ == "Sentence":
pass
elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
a=[]; [a.extend(self.search(s)) for s in sentence]; return a
elif isinstance(sentence, basestring):
sentence = Sentence(sentence)
elif isinstance(sentence, Match) and len(sentence) > 0:
sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
a = []
v = self._variations()
u = {}
m = self.match(sentence, _v=v)
while m:
a.append(m)
m = self.match(sentence, start=m.words[-1].index+1, _v=v, _u=u)
return a | Returns a list of all matches found in the given sentence. | entailment |
def match(self, sentence, start=0, _v=None, _u=None):
""" Returns the first match found in the given sentence, or None.
"""
if sentence.__class__.__name__ == "Sentence":
pass
elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
return find(lambda m,s: m is not None, ((self.match(s, start, _v), s) for s in sentence))[0]
elif isinstance(sentence, basestring):
sentence = Sentence(sentence)
elif isinstance(sentence, Match) and len(sentence) > 0:
sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
# Variations (_v) further down the list may match words more to the front.
# We need to check all of them. Unmatched variations are blacklisted (_u).
# Pattern.search() calls Pattern.match() with a persistent blacklist (1.5x faster).
a = []
for sequence in (_v is not None and _v or self._variations()):
if _u is not None and id(sequence) in _u:
continue
m = self._match(sequence, sentence, start)
if m is not None:
a.append((m.words[0].index, len(m.words), m))
if m is not None and m.words[0].index == start:
return m
if m is None and _u is not None:
_u[id(sequence)] = False
# Return the leftmost-longest.
if len(a) > 0:
return sorted(a)[0][-1] | Returns the first match found in the given sentence, or None. | entailment |
def constraint(self, word):
""" Returns the constraint that matches the given Word, or None.
"""
if word.index in self._map1:
return self._map1[word.index] | Returns the constraint that matches the given Word, or None. | entailment |
def constraints(self, chunk):
""" Returns a list of constraints that match the given Chunk.
"""
a = [self._map1[w.index] for w in chunk.words if w.index in self._map1]
b = []; [b.append(constraint) for constraint in a if constraint not in b]
return b | Returns a list of constraints that match the given Chunk. | entailment |
def constituents(self, constraint=None):
""" Returns a list of Word and Chunk objects,
where words have been grouped into their chunks whenever possible.
Optionally, returns only chunks/words that match given constraint(s), or constraint index.
"""
# Select only words that match the given constraint.
# Note: this will only work with constraints from Match.pattern.sequence.
W = self.words
n = len(self.pattern.sequence)
if isinstance(constraint, (int, Constraint)):
if isinstance(constraint, int):
i = constraint
i = i<0 and i%n or i
else:
i = self.pattern.sequence.index(constraint)
W = self._map2.get(i,[])
W = [self.words[i-self.words[0].index] for i in W]
if isinstance(constraint, (list, tuple)):
W = []; [W.extend(self._map2.get(j<0 and j%n or j,[])) for j in constraint]
W = [self.words[i-self.words[0].index] for i in W]
W = unique(W)
a = []
i = 0
while i < len(W):
w = W[i]
if w.chunk and W[i:i+len(w.chunk)] == w.chunk.words:
i += len(w.chunk) - 1
a.append(w.chunk)
else:
a.append(w)
i += 1
return a | Returns a list of Word and Chunk objects,
where words have been grouped into their chunks whenever possible.
Optionally, returns only chunks/words that match given constraint(s), or constraint index. | entailment |
def group(self, index, chunked=False):
""" Returns a list of Word objects that match the given group.
With chunked=True, returns a list of Word + Chunk objects - see Match.constituents().
A group consists of consecutive constraints wrapped in { }, e.g.,
search("{JJ JJ} NN", Sentence(parse("big black cat"))).group(1) => big black.
"""
if index < 0 or index > len(self.pattern.groups):
raise IndexError("no such group")
if index > 0 and index <= len(self.pattern.groups):
g = self.pattern.groups[index-1]
if index == 0:
g = self.pattern.sequence
if chunked is True:
return Group(self, self.constituents(constraint=[self.pattern.sequence.index(x) for x in g]))
return Group(self, [w for w in self.words if self.constraint(w) in g]) | Returns a list of Word objects that match the given group.
With chunked=True, returns a list of Word + Chunk objects - see Match.constituents().
A group consists of consecutive constraints wrapped in { }, e.g.,
search("{JJ JJ} NN", Sentence(parse("big black cat"))).group(1) => big black. | entailment |
def analyze(self, text):
"""Return the sentiment as a tuple of the form:
``(polarity, subjectivity)``
:param str text: A string.
.. todo::
Figure out best format to be passed to the analyzer.
There might be a better format than a string of space separated
lemmas (e.g. with pos tags) but the parsing/tagging
results look rather inaccurate and a wrong pos
might prevent the lexicon lookup of an otherwise correctly
lemmatized word form (or would it not?) - further checks needed.
"""
if self.lemmatize:
text = self._lemmatize(text)
return self.RETURN_TYPE(*pattern_sentiment(text)) | Return the sentiment as a tuple of the form:
``(polarity, subjectivity)``
:param str text: A string.
.. todo::
Figure out best format to be passed to the analyzer.
There might be a better format than a string of space separated
lemmas (e.g. with pos tags) but the parsing/tagging
results look rather inaccurate and a wrong pos
might prevent the lexicon lookup of an otherwise correctly
lemmatized word form (or would it not?) - further checks needed. | entailment |
def stts2universal(token, tag):
""" Converts an STTS tag to a universal tag.
For example: ohne/APPR => ohne/PREP
"""
if tag in ("KON", "KOUI", "KOUS", "KOKOM"):
return (token, CONJ)
if tag in ("PTKZU", "PTKNEG", "PTKVZ", "PTKANT"):
return (token, PRT)
if tag in ("PDF", "PDAT", "PIS", "PIAT", "PIDAT", "PPER", "PPOS", "PPOSAT"):
return (token, PRON)
if tag in ("PRELS", "PRELAT", "PRF", "PWS", "PWAT", "PWAV", "PAV"):
return (token, PRON)
return penntreebank2universal(*stts2penntreebank(token, tag)) | Converts an STTS tag to a universal tag.
For example: ohne/APPR => ohne/PREP | entailment |
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
if pos.startswith(("DT", "JJ")):
lemma = predicative(word)
if pos == "NNS":
lemma = singularize(word)
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens | Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list. | entailment |
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token) | Returns a parsed Text from the given parsed string. | entailment |
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags | Returns a list of (token, tag)-tuples from the given string. | entailment |
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, top=top, frequency=parser.frequency) | Returns a sorted list of keywords in the given string. | entailment |
def sent_tokenize(text, tokenizer=None):
"""Convenience function for tokenizing sentences (not iterable).
If tokenizer is not specified, the default tokenizer NLTKPunktTokenizer()
is used (same behaviour as in the main `TextBlob`_ library).
This function returns the sentences as a generator object.
.. _TextBlob: http://textblob.readthedocs.org/
"""
_tokenizer = tokenizer if tokenizer is not None else NLTKPunktTokenizer()
return SentenceTokenizer(tokenizer=_tokenizer).itokenize(text) | Convenience function for tokenizing sentences (not iterable).
If tokenizer is not specified, the default tokenizer NLTKPunktTokenizer()
is used (same behaviour as in the main `TextBlob`_ library).
This function returns the sentences as a generator object.
.. _TextBlob: http://textblob.readthedocs.org/ | entailment |
def word_tokenize(text, tokenizer=None, include_punc=True, *args, **kwargs):
"""Convenience function for tokenizing text into words.
NOTE: NLTK's word tokenizer expects sentences as input, so the text will be
tokenized to sentences before being tokenized to words.
This function returns an itertools chain object (generator).
"""
_tokenizer = tokenizer if tokenizer is not None else NLTKPunktTokenizer()
words = chain.from_iterable(
WordTokenizer(tokenizer=_tokenizer).itokenize(sentence, include_punc,
*args, **kwargs)
for sentence in sent_tokenize(text, tokenizer=_tokenizer))
return words | Convenience function for tokenizing text into words.
NOTE: NLTK's word tokenizer expects sentences as input, so the text will be
tokenized to sentences before being tokenized to words.
This function returns an itertools chain object (generator). | entailment |
def tokenize(self, text, include_punc=True, nested=False):
"""Return a list of word tokens.
:param text: string of text.
:param include_punc: (optional) whether to include punctuation as separate
tokens. Default to True.
:param nested: (optional) whether to return tokens as nested lists of
sentences. Default to False.
"""
self.tokens = [
w for w in (
self.word_tokenize(
s,
include_punc) for s in self.sent_tokenize(text))]
if nested:
return self.tokens
else:
return list(chain.from_iterable(self.tokens)) | Return a list of word tokens.
:param text: string of text.
:param include_punc: (optional) whether to include punctuation as separate
tokens. Default to True.
:param nested: (optional) whether to return tokens as nested lists of
sentences. Default to False. | entailment |
def sent_tokenize(self, text, **kwargs):
"""NLTK's sentence tokenizer (currently PunktSentenceTokenizer).
Uses an unsupervised algorithm to build a model for abbreviation
words, collocations, and words that start sentences, then uses
that to find sentence boundaries.
"""
sentences = self.sent_tok.tokenize(
text,
realign_boundaries=kwargs.get(
"realign_boundaries",
True))
return sentences | NLTK's sentence tokenizer (currently PunktSentenceTokenizer).
Uses an unsupervised algorithm to build a model for abbreviation
words, collocations, and words that start sentences, then uses
that to find sentence boundaries. | entailment |
def word_tokenize(self, text, include_punc=True):
"""The Treebank tokenizer uses regular expressions to tokenize text as
in Penn Treebank.
It assumes that the text has already been segmented into sentences,
e.g. using ``self.sent_tokenize()``.
This tokenizer performs the following steps:
- split standard contractions, e.g. ``don't`` -> ``do n't`` and ``they'll`` -> ``they 'll``
- treat most punctuation characters as separate tokens
- split off commas and single quotes, when followed by whitespace
- separate periods that appear at the end of line
Source: NLTK's docstring of ``TreebankWordTokenizer`` (accessed: 02/10/2014)
"""
#: Do not process empty strings (Issue #3)
if text.strip() == "":
return []
_tokens = self.word_tok.tokenize(text)
#: Handle strings consisting of a single punctuation mark seperately (Issue #4)
if len(_tokens) == 1:
if _tokens[0] in PUNCTUATION:
if include_punc:
return _tokens
else:
return []
if include_punc:
return _tokens
else:
# Return each word token
# Strips punctuation unless the word comes from a contraction
# e.g. "gibt's" => ["gibt", "'s"] in "Heute gibt's viel zu tun!"
# e.g. "hat's" => ["hat", "'s"]
# e.g. "home." => ['home']
words = [
word if word.startswith("'") else strip_punc(
word,
all=False) for word in _tokens if strip_punc(
word,
all=False)]
return list(words) | The Treebank tokenizer uses regular expressions to tokenize text as
in Penn Treebank.
It assumes that the text has already been segmented into sentences,
e.g. using ``self.sent_tokenize()``.
This tokenizer performs the following steps:
- split standard contractions, e.g. ``don't`` -> ``do n't`` and ``they'll`` -> ``they 'll``
- treat most punctuation characters as separate tokens
- split off commas and single quotes, when followed by whitespace
- separate periods that appear at the end of line
Source: NLTK's docstring of ``TreebankWordTokenizer`` (accessed: 02/10/2014) | entailment |
def sent_tokenize(self, text, **kwargs):
"""Returns a list of sentences.
Each sentence is a space-separated string of tokens (words).
Handles common cases of abbreviations (e.g., etc., ...).
Punctuation marks are split from other words. Periods (or ?!) mark the end of a sentence.
Headings without an ending period are inferred by line breaks.
"""
sentences = find_sentences(text,
punctuation=kwargs.get(
"punctuation",
PUNCTUATION),
abbreviations=kwargs.get(
"abbreviations",
ABBREVIATIONS_DE),
replace=kwargs.get("replace", replacements),
linebreak=r"\n{2,}")
return sentences | Returns a list of sentences.
Each sentence is a space-separated string of tokens (words).
Handles common cases of abbreviations (e.g., etc., ...).
Punctuation marks are split from other words. Periods (or ?!) mark the end of a sentence.
Headings without an ending period are inferred by line breaks. | entailment |
def tokenize(self, text, include_punc=True, **kwargs):
"""Return a list of word tokens.
:param text: string of text.
:param include_punc: (optional) whether to include punctuation as separate
tokens. Default to True.
"""
return self.tokenizer.word_tokenize(text, include_punc, **kwargs) | Return a list of word tokens.
:param text: string of text.
:param include_punc: (optional) whether to include punctuation as separate
tokens. Default to True. | entailment |
def parse(self, text):
"""Parses the text.
``pattern.de.parse(**kwargs)`` can be passed to the parser instance and
are documented in the main docstring of
:class:`PatternParser() <textblob_de.parsers.PatternParser>`.
:param str text: A string.
"""
#: Do not process empty strings (Issue #3)
if text.strip() == "":
return ""
#: Do not process strings consisting of a single punctuation mark (Issue #4)
elif text.strip() in PUNCTUATION:
_sym = text.strip()
if _sym in tuple('.?!'):
_tag = "."
else:
_tag = _sym
if self.lemmata:
return "{0}/{1}/O/O/{0}".format(_sym, _tag)
else:
return "{0}/{1}/O/O".format(_sym, _tag)
if self.tokenize:
_tokenized = " ".join(self.tokenizer.tokenize(text))
else:
_tokenized = text
_parsed = pattern_parse(_tokenized,
# text is tokenized before it is passed on to
# pattern.de.parse
tokenize=False,
tags=self.tags, chunks=self.chunks,
relations=self.relations, lemmata=self.lemmata,
encoding=self.encoding, tagset=self.tagset)
if self.pprint:
_parsed = pattern_pprint(_parsed)
return _parsed | Parses the text.
``pattern.de.parse(**kwargs)`` can be passed to the parser instance and
are documented in the main docstring of
:class:`PatternParser() <textblob_de.parsers.PatternParser>`.
:param str text: A string. | entailment |
def extract(self, text):
"""Return a list of noun phrases (strings) for a body of text.
:param str text: A string.
"""
_extracted = []
if text.strip() == "":
return _extracted
parsed_sentences = self._parse_text(text)
for s in parsed_sentences:
tokens = s.split()
new_np = []
for t in tokens:
w, tag, phrase, role = t.split('/')
# exclude some parser errors (e.g. VB within NP),
# extend startswith tuple if necessary
if 'NP' in phrase and not self._is_verb(w, tag):
if len(new_np) > 0 and w.lower() in START_NEW_NP:
_extracted.append(" ".join(new_np))
new_np = [w]
else:
# normalize capitalisation of sentence starters, except
# for nouns
new_np.append(w.lower() if tokens[0].startswith(w) and
not tag.startswith('N') else w)
else:
if len(new_np) > 0:
_extracted.append(" ".join(new_np))
new_np = []
return self._filter_extracted(_extracted) | Return a list of noun phrases (strings) for a body of text.
:param str text: A string. | entailment |
def _filter_extracted(self, extracted_list):
"""Filter insignificant words for key noun phrase extraction.
determiners, relative pronouns, reflexive pronouns
In general, pronouns are not useful, as you need context to know what they refer to.
Most of the pronouns, however, are filtered out by blob.noun_phrase method's
np length (>1) filter
:param list extracted_list: A list of noun phrases extracted from parser output.
"""
_filtered = []
for np in extracted_list:
_np = np.split()
if _np[0] in INSIGNIFICANT:
_np.pop(0)
try:
if _np[-1] in INSIGNIFICANT:
_np.pop(-1)
# e.g. 'welcher die ...'
if _np[0] in INSIGNIFICANT:
_np.pop(0)
except IndexError:
_np = []
if len(_np) > 0:
_filtered.append(" ".join(_np))
return _filtered | Filter insignificant words for key noun phrase extraction.
determiners, relative pronouns, reflexive pronouns
In general, pronouns are not useful, as you need context to know what they refer to.
Most of the pronouns, however, are filtered out by blob.noun_phrase method's
np length (>1) filter
:param list extracted_list: A list of noun phrases extracted from parser output. | entailment |
def _parse_text(self, text):
"""Parse text (string) and return list of parsed sentences (strings).
Each sentence consists of space separated token elements and the
token format returned by the PatternParser is WORD/TAG/PHRASE/ROLE/(LEMMA)
(separated by a forward slash '/')
:param str text: A string.
"""
if isinstance(self.tokenizer, PatternTokenizer):
parsed_text = pattern_parse(text, tokenize=True, lemmata=False)
else:
_tokenized = []
_sentences = sent_tokenize(text, tokenizer=self.tokenizer)
for s in _sentences:
_tokenized.append(" ".join(self.tokenizer.tokenize(s)))
parsed_text = pattern_parse(
_tokenized,
tokenize=False,
lemmata=False)
return parsed_text.split('\n') | Parse text (string) and return list of parsed sentences (strings).
Each sentence consists of space separated token elements and the
token format returned by the PatternParser is WORD/TAG/PHRASE/ROLE/(LEMMA)
(separated by a forward slash '/')
:param str text: A string. | entailment |
def tag(self, sentence, tokenize=True):
"""Tag a string `sentence`.
:param str or list sentence: A string or a list of sentence strings.
:param tokenize: (optional) If ``False`` string has to be tokenized before
(space separated string).
"""
#: Do not process empty strings (Issue #3)
if sentence.strip() == "":
return []
#: Do not process strings consisting of a single punctuation mark (Issue #4)
elif sentence.strip() in PUNCTUATION:
if self.include_punc:
_sym = sentence.strip()
if _sym in tuple('.?!'):
_tag = "."
else:
_tag = _sym
return [(_sym, _tag)]
else:
return []
if tokenize:
_tokenized = " ".join(self.tokenizer.tokenize(sentence))
sentence = _tokenized
# Sentence is tokenized before it is passed on to pattern.de.tag
# (i.e. it is either submitted tokenized or if )
_tagged = pattern_tag(sentence, tokenize=False,
encoding=self.encoding,
tagset=self.tagset)
if self.include_punc:
return _tagged
else:
_tagged = [
(word, t) for word, t in _tagged if not PUNCTUATION_REGEX.match(
unicode(t))]
return _tagged | Tag a string `sentence`.
:param str or list sentence: A string or a list of sentence strings.
:param tokenize: (optional) If ``False`` string has to be tokenized before
(space separated string). | entailment |
def decode_string(v, encoding="utf-8"):
"""Returns the given value as a Unicode string (if possible)."""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, binary_type):
for e in encoding:
try:
return v.decode(*e)
except:
pass
return v
return unicode(v) | Returns the given value as a Unicode string (if possible). | entailment |
def encode_string(v, encoding="utf-8"):
"""Returns the given value as a Python byte string (if possible)."""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, unicode):
for e in encoding:
try:
return v.encode(*e)
except:
pass
return v
return str(v) | Returns the given value as a Python byte string (if possible). | entailment |
def _shutil_which(cmd, mode=os.F_OK | os.X_OK, path=None):
"""Given a command, mode, and a PATH string, return the path which conforms
to the given mode on the PATH, or None if there is no such file.
`mode` defaults to os.F_OK | os.X_OK. `path` defaults to the result
of os.environ.get("PATH"), or can be overridden with a custom search
path.
"""
# Check that a given file can be accessed with the correct mode.
# Additionally check that `file` is not a directory, as on Windows
# directories pass the os.access check.
def _access_check(fn, mode):
return (os.path.exists(fn) and os.access(fn, mode)
and not os.path.isdir(fn))
# If we're given a path with a directory part, look it up directly rather
# than referring to PATH directories. This includes checking relative to the
# current directory, e.g. ./script
if os.path.dirname(cmd):
if _access_check(cmd, mode):
return cmd
return None
if path is None:
path = os.environ.get("PATH", os.defpath)
if not path:
return None
path = path.split(os.pathsep)
if sys.platform == "win32":
# The current directory takes precedence on Windows.
if not os.curdir in path:
path.insert(0, os.curdir)
# PATHEXT is necessary to check on Windows.
pathext = os.environ.get("PATHEXT", "").split(os.pathsep)
# See if the given file matches any of the expected path extensions.
# This will allow us to short circuit when given "python.exe".
# If it does match, only test that one, otherwise we have to try
# others.
if any([cmd.lower().endswith(ext.lower()) for ext in pathext]):
files = [cmd]
else:
files = [cmd + ext for ext in pathext]
else:
# On other platforms you don't have things like PATHEXT to tell you
# what file suffixes are executable, so just pass on cmd as-is.
files = [cmd]
seen = set()
for dir in path:
normdir = os.path.normcase(dir)
if normdir not in seen:
seen.add(normdir)
for thefile in files:
name = os.path.join(dir, thefile)
if _access_check(name, mode):
return name
return None | Given a command, mode, and a PATH string, return the path which conforms
to the given mode on the PATH, or None if there is no such file.
`mode` defaults to os.F_OK | os.X_OK. `path` defaults to the result
of os.environ.get("PATH"), or can be overridden with a custom search
path. | entailment |
def translate(self, from_lang=None, to="de"):
"""Translate the word to another language using Google's Translate API.
.. versionadded:: 0.5.0 (``textblob``)
"""
if from_lang is None:
from_lang = self.translator.detect(self.string)
return self.translator.translate(self.string,
from_lang=from_lang, to_lang=to) | Translate the word to another language using Google's Translate API.
.. versionadded:: 0.5.0 (``textblob``) | entailment |
def lemmatize(self):
"""Return the lemma of each word in this WordList.
Currently using NLTKPunktTokenizer() for all lemmatization
tasks. This might cause slightly different tokenization results
compared to the TextBlob.words property.
"""
_lemmatizer = PatternParserLemmatizer(tokenizer=NLTKPunktTokenizer())
# WordList object --> Sentence.string
# add a period (improves parser accuracy)
_raw = " ".join(self) + "."
_lemmas = _lemmatizer.lemmatize(_raw)
return self.__class__([Word(l, t) for l, t in _lemmas]) | Return the lemma of each word in this WordList.
Currently using NLTKPunktTokenizer() for all lemmatization
tasks. This might cause slightly different tokenization results
compared to the TextBlob.words property. | entailment |
def tokenize(self, tokenizer=None):
"""Return a list of tokens, using ``tokenizer``.
:param tokenizer: (optional) A tokenizer object. If None, defaults to
this blob's default tokenizer.
"""
t = tokenizer if tokenizer is not None else self.tokenizer
return WordList(t.tokenize(self.raw)) | Return a list of tokens, using ``tokenizer``.
:param tokenizer: (optional) A tokenizer object. If None, defaults to
this blob's default tokenizer. | entailment |
def noun_phrases(self):
"""Returns a list of noun phrases for this blob."""
return WordList([phrase.strip()
for phrase in self.np_extractor.extract(self.raw)
if len(phrase.split()) > 1]) | Returns a list of noun phrases for this blob. | entailment |
def pos_tags(self):
"""Returns an list of tuples of the form (word, POS tag).
Example:
::
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]
:rtype: list of tuples
"""
return [(Word(word, pos_tag=t), unicode(t))
for word, t in self.pos_tagger.tag(self.raw)
# new keyword PatternTagger(include_punc=False)
# if not PUNCTUATION_REGEX.match(unicode(t))
] | Returns an list of tuples of the form (word, POS tag).
Example:
::
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]
:rtype: list of tuples | entailment |
def word_counts(self):
"""Dictionary of word frequencies in this text."""
counts = defaultdict(int)
stripped_words = [lowerstrip(word) for word in self.words]
for word in stripped_words:
counts[word] += 1
return counts | Dictionary of word frequencies in this text. | entailment |
def dict(self):
"""The dict representation of this sentence."""
return {
'raw': self.raw,
'start_index': self.start_index,
'end_index': self.end_index,
'stripped': self.stripped,
'noun_phrases': self.noun_phrases,
'polarity': self.polarity,
'subjectivity': self.subjectivity,
} | The dict representation of this sentence. | entailment |
def words(self):
"""Return a list of word tokens. This excludes punctuation characters.
If you want to include punctuation characters, access the ``tokens``
property.
:returns: A :class:`WordList <WordList>` of word tokens.
"""
return WordList(
word_tokenize(self.raw, self.tokenizer, include_punc=False)) | Return a list of word tokens. This excludes punctuation characters.
If you want to include punctuation characters, access the ``tokens``
property.
:returns: A :class:`WordList <WordList>` of word tokens. | entailment |
def sentiment(self):
"""Return a tuple of form (polarity, subjectivity ) where polarity
is a float within the range [-1.0, 1.0] and subjectivity is a float
within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is
very subjective.
:rtype: named tuple of the form ``Sentiment(polarity=0.0, subjectivity=0.0)``
"""
#: Enhancement Issue #2
#: adapted from 'textblob.en.sentiments.py'
#: Return type declaration
_RETURN_TYPE = namedtuple('Sentiment', ['polarity', 'subjectivity'])
_polarity = 0
_subjectivity = 0
for s in self.sentences:
_polarity += s.polarity
_subjectivity += s.subjectivity
try:
polarity = _polarity / len(self.sentences)
except ZeroDivisionError:
polarity = 0.0
try:
subjectivity = _subjectivity / len(self.sentences)
except ZeroDivisionError:
subjectivity = 0.0
return _RETURN_TYPE(polarity, subjectivity) | Return a tuple of form (polarity, subjectivity ) where polarity
is a float within the range [-1.0, 1.0] and subjectivity is a float
within the range [0.0, 1.0] where 0.0 is very objective and 1.0 is
very subjective.
:rtype: named tuple of the form ``Sentiment(polarity=0.0, subjectivity=0.0)`` | entailment |
def to_json(self, *args, **kwargs):
"""Return a json representation (str) of this blob. Takes the same
arguments as json.dumps.
.. versionadded:: 0.5.1 (``textblob``)
"""
return json.dumps(self.serialized, *args, **kwargs) | Return a json representation (str) of this blob. Takes the same
arguments as json.dumps.
.. versionadded:: 0.5.1 (``textblob``) | entailment |
def _create_sentence_objects(self):
"""Returns a list of Sentence objects from the raw text."""
sentence_objects = []
sentences = sent_tokenize(self.raw, tokenizer=self.tokenizer)
char_index = 0 # Keeps track of character index within the blob
for sent in sentences:
# Compute the start and end indices of the sentence
# within the blob. This only works if the sentence splitter
# does not perform any character replacements or changes to
# white space.
# Working: NLTKPunktTokenizer
# Not working: PatternTokenizer
try:
start_index = self.raw.index(sent, char_index)
char_index += len(sent)
end_index = start_index + len(sent)
except ValueError:
start_index = None
end_index = None
# Sentences share the same models as their parent blob
s = Sentence(
sent,
start_index=start_index,
end_index=end_index,
tokenizer=self.tokenizer,
np_extractor=self.np_extractor,
pos_tagger=self.pos_tagger,
analyzer=self.analyzer,
parser=self.parser,
classifier=self.classifier)
sentence_objects.append(s)
return sentence_objects | Returns a list of Sentence objects from the raw text. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.