sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def sonseq(word):
'''Return True if 'word' does not violate sonority sequencing.'''
parts = re.split(r'([ieaouäöy]+)', word, flags=re.I | re.U)
onset, coda = parts[0], parts[-1]
# simplex onset Finnish complex onset
if len(onset) <= 1 or onset.lower() in ONSETS:
# simplex coda Finnish complex coda
return len(coda) <= 1 # or coda in codas_inventory
return False | Return True if 'word' does not violate sonority sequencing. | entailment |
def harmonic(word):
'''Return True if the word's vowels agree in frontness/backness.'''
depth = {'ä': 0, 'ö': 0, 'y': 0, 'a': 1, 'o': 1, 'u': 1}
vowels = filter(lambda ch: is_front(ch) or is_back(ch), word)
depths = (depth[x.lower()] for x in vowels)
return len(set(depths)) < 2 | Return True if the word's vowels agree in frontness/backness. | entailment |
def put(self):
"""Updates this task type on the saltant server.
Returns:
:class:`saltant.models.container_task_type.ExecutableTaskType`:
An executable task type model instance representing the task type
just updated.
"""
return self.manager.put(
id=self.id,
name=self.name,
description=self.description,
command_to_run=self.command_to_run,
environment_variables=self.environment_variables,
required_arguments=self.required_arguments,
required_arguments_default_values=(
self.required_arguments_default_values
),
json_file_option=self.json_file_option,
) | Updates this task type on the saltant server.
Returns:
:class:`saltant.models.container_task_type.ExecutableTaskType`:
An executable task type model instance representing the task type
just updated. | entailment |
def create(
self,
name,
command_to_run,
description="",
environment_variables=None,
required_arguments=None,
required_arguments_default_values=None,
json_file_option=None,
extra_data_to_post=None,
):
"""Create a container task type.
Args:
name (str): The name of the task.
command_to_run (str): The command to run to execute the task.
description (str, optional): The description of the task type.
environment_variables (list, optional): The environment
variables required on the host to execute the task.
required_arguments (list, optional): The argument names for
the task type.
required_arguments_default_values (dict, optional): Default
values for the task's required arguments.
json_file_option (str, optional): The name of a command line
option, e.g., --json-file, which accepts a JSON-encoded
file for the command to run.
extra_data_to_post (dict, optional): Extra key-value pairs
to add to the request data. This is useful for
subclasses which require extra parameters.
Returns:
:class:`saltant.models.container_task_type.ExecutableTaskType`:
An executable task type model instance representing the
task type just created.
"""
# Add in extra data specific to container task types
if extra_data_to_post is None:
extra_data_to_post = {}
extra_data_to_post.update({"json_file_option": json_file_option})
# Call the parent create function
return super(ExecutableTaskTypeManager, self).create(
name=name,
command_to_run=command_to_run,
description=description,
environment_variables=environment_variables,
required_arguments=required_arguments,
required_arguments_default_values=required_arguments_default_values,
extra_data_to_post=extra_data_to_post,
) | Create a container task type.
Args:
name (str): The name of the task.
command_to_run (str): The command to run to execute the task.
description (str, optional): The description of the task type.
environment_variables (list, optional): The environment
variables required on the host to execute the task.
required_arguments (list, optional): The argument names for
the task type.
required_arguments_default_values (dict, optional): Default
values for the task's required arguments.
json_file_option (str, optional): The name of a command line
option, e.g., --json-file, which accepts a JSON-encoded
file for the command to run.
extra_data_to_post (dict, optional): Extra key-value pairs
to add to the request data. This is useful for
subclasses which require extra parameters.
Returns:
:class:`saltant.models.container_task_type.ExecutableTaskType`:
An executable task type model instance representing the
task type just created. | entailment |
def put(
self,
id,
name,
description,
command_to_run,
environment_variables,
required_arguments,
required_arguments_default_values,
json_file_option,
extra_data_to_put=None,
):
"""Updates a task type on the saltant server.
Args:
id (int): The ID of the task type.
name (str): The name of the task type.
description (str): The description of the task type.
command_to_run (str): The command to run to execute the task.
environment_variables (list): The environment variables
required on the host to execute the task.
required_arguments (list): The argument names for the task type.
required_arguments_default_values (dict): Default values for
the tasks required arguments.
json_file_option (str): The name of a command line option,
e.g., --json-file, which accepts a JSON-encoded file for
the command to run.
extra_data_to_put (dict, optional): Extra key-value pairs to
add to the request data. This is useful for subclasses
which require extra parameters.
"""
# Add in extra data specific to container task types
if extra_data_to_put is None:
extra_data_to_put = {}
extra_data_to_put.update({"json_file_option": json_file_option})
# Call the parent create function
return super(ExecutableTaskTypeManager, self).put(
id=id,
name=name,
description=description,
command_to_run=command_to_run,
environment_variables=environment_variables,
required_arguments=required_arguments,
required_arguments_default_values=(
required_arguments_default_values
),
extra_data_to_put=extra_data_to_put,
) | Updates a task type on the saltant server.
Args:
id (int): The ID of the task type.
name (str): The name of the task type.
description (str): The description of the task type.
command_to_run (str): The command to run to execute the task.
environment_variables (list): The environment variables
required on the host to execute the task.
required_arguments (list): The argument names for the task type.
required_arguments_default_values (dict): Default values for
the tasks required arguments.
json_file_option (str): The name of a command line option,
e.g., --json-file, which accepts a JSON-encoded file for
the command to run.
extra_data_to_put (dict, optional): Extra key-value pairs to
add to the request data. This is useful for subclasses
which require extra parameters. | entailment |
def reporter(self, analysistype='genesippr'):
"""
Creates a report of the genesippr results
:param analysistype: The variable to use when accessing attributes in the metadata object
"""
logging.info('Creating {} report'.format(analysistype))
# Create a dictionary to link all the genera with their genes
genusgenes = dict()
# The organism-specific targets are in .tfa files in the target path
targetpath = str()
for sample in self.runmetadata.samples:
if sample.general.bestassemblyfile != 'NA':
targetpath = sample[analysistype].targetpath
for organismfile in glob(os.path.join(targetpath, '*.tfa')):
organism = os.path.splitext(os.path.basename(organismfile))[0]
# Use BioPython to extract all the gene names from the file
for record in SeqIO.parse(open(organismfile), 'fasta'):
# Append the gene names to the genus-specific list
try:
genusgenes[organism].add(record.id.split('_')[0])
except (KeyError, IndexError):
genusgenes[organism] = set()
genusgenes[organism].add(record.id.split('_')[0])
# Determine from which genera the gene hits were sourced
for sample in self.runmetadata.samples:
# Initialise the list to store the genera
sample[analysistype].targetgenera = list()
if sample.general.bestassemblyfile != 'NA':
for organism in genusgenes:
# Iterate through all the genesippr hits and attribute each gene to the appropriate genus
for gene in sample[analysistype].results:
# If the gene name is in the genes from that organism, add the genus name to the list of
# genera found in the sample
if gene.split('_')[0] in genusgenes[organism]:
if organism not in sample[analysistype].targetgenera:
sample[analysistype].targetgenera.append(organism)
# Create the path in which the reports are stored
make_path(self.reportpath)
# The report will have every gene for all genera in the header
header = 'Strain,Genus,{},\n'.format(','.join(self.genelist))
data = str()
with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report:
for sample in self.runmetadata.samples:
sample[analysistype].report_output = list()
if sample.general.bestassemblyfile != 'NA':
# Add the genus/genera found in the sample
data += '{},{},'.format(sample.name, ';'.join(sample[analysistype].targetgenera))
best_dict = dict()
if sample[analysistype].results:
gene_check = list()
# Find the best match for all the hits
for target, pid in sample[analysistype].results.items():
gene_name = target.split('_')[0]
for gene in self.genelist:
# If the key matches a gene in the list of genes
if gene == gene_name:
# If the percent identity is better, update the dictionary
try:
if float(pid) > best_dict[gene]:
best_dict[gene] = float(pid)
except KeyError:
best_dict[gene] = float(pid)
for gene in self.genelist:
# If the gene was not found in the sample, print an empty cell in the report
try:
best_dict[gene]
except KeyError:
data += ','
# Print the required information for the gene
for name, identity in sample[analysistype].results.items():
if name.split('_')[0] == gene and gene not in gene_check:
data += '{pid}%'.format(pid=best_dict[gene])
try:
if not sample.general.trimmedcorrectedfastqfiles[0].endswith('.fasta'):
data += ' ({avgd} +/- {std}),'\
.format(avgd=sample[analysistype].avgdepth[name],
std=sample[analysistype].standarddev[name])
else:
data += ','
except IndexError:
data += ','
gene_check.append(gene)
# Add the simplified results to the object - used in the assembly pipeline report
sample[analysistype].report_output.append(gene)
# Add a newline after each sample
data += '\n'
# Add a newline if the sample did not have any gene hits
else:
data += '\n'
# Write the header and data to file
report.write(header)
report.write(data) | Creates a report of the genesippr results
:param analysistype: The variable to use when accessing attributes in the metadata object | entailment |
def genusspecific(self, analysistype='genesippr'):
"""
Creates simplified genus-specific reports. Instead of the % ID and the fold coverage, a simple +/- scheme is
used for presence/absence
:param analysistype: The variable to use when accessing attributes in the metadata object
"""
# Dictionary to store all the output strings
results = dict()
for genus, genelist in self.genedict.items():
# Initialise the dictionary with the appropriate genus
results[genus] = str()
for sample in self.runmetadata.samples:
try:
# Find the samples that match the current genus - note that samples with multiple hits will be
# represented in multiple outputs
if genus in sample[analysistype].targetgenera:
# Populate the results string with the sample name
results[genus] += '{},'.format(sample.name)
# Iterate through all the genes associated with this genus. If the gene is in the current
# sample, add a + to the string, otherwise, add a -
for gene in genelist:
if gene.lower() in [target[0].lower().split('_')[0] for target in
sample[analysistype].results.items()]:
results[genus] += '+,'
else:
results[genus] += '-,'
results[genus] += '\n'
# If the sample is missing the targetgenera attribute, then it is ignored for these reports
except AttributeError:
pass
# Create and populate the genus-specific reports
for genus, resultstring in results.items():
# Only create the report if there are results for the current genus
if resultstring:
with open(os.path.join(self.reportpath, '{}_genesippr.csv'.format(genus)), 'w') as genusreport:
# Write the header to the report - Strain plus add the genes associated with the genus
genusreport.write('Strain,{}\n'.format(','.join(self.genedict[genus])))
# Write the results to the report
genusreport.write(resultstring) | Creates simplified genus-specific reports. Instead of the % ID and the fold coverage, a simple +/- scheme is
used for presence/absence
:param analysistype: The variable to use when accessing attributes in the metadata object | entailment |
def gdcsreporter(self, analysistype='GDCS'):
"""
Creates a report of the GDCS results
:param analysistype: The variable to use when accessing attributes in the metadata object
"""
logging.info('Creating {} report'.format(analysistype))
# Initialise list to store all the GDCS genes, and genera in the analysis
gdcs = list()
genera = list()
for sample in self.runmetadata.samples:
if sample.general.bestassemblyfile != 'NA':
if os.path.isdir(sample[analysistype].targetpath):
# Update the fai dict with all the genes in the analysis, rather than just those with baited hits
self.gdcs_fai(sample)
sample[analysistype].createreport = True
# Determine which genera are present in the analysis
if sample.general.closestrefseqgenus not in genera:
genera.append(sample.general.closestrefseqgenus)
try:
# Add all the GDCS genes to the list
for gene in sorted(sample[analysistype].faidict):
if gene not in gdcs:
gdcs.append(gene)
except AttributeError:
sample[analysistype].createreport = False
else:
sample[analysistype].createreport = False
else:
sample[analysistype].createreport = False
sample.general.incomplete = True
header = 'Strain,Genus,Matches,MeanCoverage,Pass/Fail,{},\n'.format(','.join(gdcs))
data = str()
with open(os.path.join(self.reportpath, '{}.csv'.format(analysistype)), 'w') as report:
# Sort the samples in the report based on the closest refseq genus e.g. all samples with the same genus
# will be grouped together in the report
for genus in genera:
for sample in self.runmetadata.samples:
if sample.general.closestrefseqgenus == genus:
if sample[analysistype].createreport:
sample[analysistype].totaldepth = list()
# Add the sample to the report if it matches the current genus
# if genus == sample.general.closestrefseqgenus:
data += '{},{},'.format(sample.name, genus)
# Initialise a variable to store the number of GDCS genes were matched
count = 0
# As I want the count to be in the report before all the gene results, this string will
# store the specific sample information, and will be added to data once count is known
specific = str()
for gene in gdcs:
# As there are different genes present in the GDCS databases for each organism of
# interest, genes that did not match because they're absent in the specific database are
# indicated using an X
if gene not in [result for result in sample[analysistype].faidict]:
specific += 'X,'
else:
try:
# Report the necessary information for each gene result
identity = sample[analysistype].results[gene]
specific += '{}% ({} +/- {}),'\
.format(identity, sample[analysistype].avgdepth[gene],
sample[analysistype].standarddev[gene])
sample[analysistype].totaldepth.append(
float(sample[analysistype].avgdepth[gene]))
count += 1
# If the gene was missing from the results attribute, add a - to the cell
except (KeyError, AttributeError):
sample.general.incomplete = True
specific += '-,'
# Calculate the mean depth of the genes and the standard deviation
sample[analysistype].mean = numpy.mean(sample[analysistype].totaldepth)
sample[analysistype].stddev = numpy.std(sample[analysistype].totaldepth)
# Determine whether the sample pass the necessary quality criteria:
# Pass, all GDCS, mean coverage greater than 20X coverage;
# ?: Indeterminate value;
# -: Fail value
# Allow one missing GDCS to still be considered a pass
if count >= len(sample[analysistype].faidict) - 1:
if sample[analysistype].mean > 20:
quality = '+'
else:
quality = '?'
sample.general.incomplete = True
else:
quality = '-'
sample.general.incomplete = True
# Add the count, mean depth with standard deviation, the pass/fail determination,
# and the total number of GDCS genes as well as the results
data += '{hits}/{total},{mean} +/- {std},{fail},{gdcs}\n'\
.format(hits=str(count),
total=len(sample[analysistype].faidict),
mean='{:.2f}'.format(sample[analysistype].mean),
std='{:.2f}'.format(sample[analysistype].stddev),
fail=quality,
gdcs=specific)
# # Any samples with a best assembly of 'NA' are considered incomplete.
# else:
# data += '{},{},,,-\n'.format(sample.name, sample.general.closestrefseqgenus)
# sample.general.incomplete = True
elif sample.general.closestrefseqgenus == 'NA':
data += '{}\n'.format(sample.name)
sample.general.incomplete = True
# Write the header and data to file
report.write(header)
report.write(data) | Creates a report of the GDCS results
:param analysistype: The variable to use when accessing attributes in the metadata object | entailment |
def gdcs_fai(sample, analysistype='GDCS'):
"""
GDCS analyses need to use the .fai file supplied in the targets folder rather than the one created following
reverse baiting
:param sample: sample object
:param analysistype: current analysis being performed
"""
try:
# Find the .fai file in the target path
sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0]
except IndexError:
target_file = glob(os.path.join(sample[analysistype].targetpath, '*.fasta'))[0]
samindex = SamtoolsFaidxCommandline(reference=target_file)
map(StringIO, samindex(cwd=sample[analysistype].targetpath))
sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0]
# Get the fai file into a dictionary to be used in parsing results
try:
with open(sample[analysistype].faifile, 'r') as faifile:
for line in faifile:
data = line.split('\t')
try:
sample[analysistype].faidict[data[0]] = int(data[1])
except KeyError:
sample[analysistype].faidict = dict()
sample[analysistype].faidict[data[0]] = int(data[1])
except FileNotFoundError:
pass | GDCS analyses need to use the .fai file supplied in the targets folder rather than the one created following
reverse baiting
:param sample: sample object
:param analysistype: current analysis being performed | entailment |
def sixteensreporter(self, analysistype='sixteens_full'):
"""
Creates a report of the results
:param analysistype: The variable to use when accessing attributes in the metadata object
"""
# Create the path in which the reports are stored
make_path(self.reportpath)
# Initialise the header and data strings
header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n'
data = ''
with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report:
with open(os.path.join(self.reportpath, analysistype + '_sequences.fa'), 'w') as sequences:
for sample in self.runmetadata.samples:
try:
# Select the best hit of all the full-length 16S genes mapped
sample[analysistype].besthit = sorted(sample[analysistype].results.items(),
key=operator.itemgetter(1), reverse=True)[0][0]
# Add the sample name to the data string
data += sample.name + ','
# Find the record that matches the best hit, and extract the necessary values to be place in the
# data string
for name, identity in sample[analysistype].results.items():
if name == sample[analysistype].besthit:
data += '{},{},{},{}\n'.format(name, identity, sample[analysistype].genus,
sample[analysistype].avgdepth[name])
# Create a FASTA-formatted sequence output of the 16S sequence
record = SeqRecord(Seq(sample[analysistype].sequences[name],
IUPAC.unambiguous_dna),
id='{}_{}'.format(sample.name, '16S'),
description='')
SeqIO.write(record, sequences, 'fasta')
except (KeyError, IndexError):
data += '{}\n'.format(sample.name)
# Write the results to the report
report.write(header)
report.write(data) | Creates a report of the results
:param analysistype: The variable to use when accessing attributes in the metadata object | entailment |
def confindr_reporter(self, analysistype='confindr'):
"""
Creates a final report of all the ConFindr results
"""
# Initialise the data strings
data = 'Strain,Genus,NumContamSNVs,ContamStatus,PercentContam,PercentContamSTD\n'
with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report:
# Iterate through all the results
for sample in self.runmetadata.samples:
data += '{str},{genus},{numcontamsnv},{status},{pc},{pcs}\n'.format(
str=sample.name,
genus=sample.confindr.genus,
numcontamsnv=sample.confindr.num_contaminated_snvs,
status=sample.confindr.contam_status,
pc=sample.confindr.percent_contam,
pcs=sample.confindr.percent_contam_std
)
# Write the string to the report
report.write(data) | Creates a final report of all the ConFindr results | entailment |
def methodreporter(self):
"""
Create final reports collating results from all the individual iterations through the method pipeline
"""
# Ensure that the analyses are set to complete
self.analysescomplete = True
# Reset the report path to original value
self.reportpath = os.path.join(self.path, 'reports')
# Clear the runmetadata - it will be populated with all the metadata from completemetadata
self.runmetadata = MetadataObject()
self.runmetadata.samples = list()
# As the samples were entered into self.completemetadata depending on when they passed the quality threshold,
# this list is not ordered numerically/alphabetically like the original runmetadata. Reset the order.
for strain in self.samples:
for sample in self.completemetadata:
if sample.name == strain:
# Append the sample to the ordered list of objects
self.runmetadata.samples.append(sample)
# Create the reports
self.reporter()
self.genusspecific()
self.sixteensreporter()
self.gdcsreporter()
self.confindr_reporter() | Create final reports collating results from all the individual iterations through the method pipeline | entailment |
def main(self):
"""
Run the methods required to create the genesippr report summary image
"""
self.dataframe_setup()
self.figure_populate(self.outputfolder,
self.image_report,
self.header_list,
self.samples,
'genesippr',
'report',
fail=self.fail) | Run the methods required to create the genesippr report summary image | entailment |
def data_sanitise(self, inputstring, header=None):
"""
Format the data to be consistent with heatmaps
:param inputstring: string containing data to be formatted
:param header: class of the data - certain categories have specific formatting requirements
:return: the formatted output string
"""
if str(inputstring) == 'nan':
outputstring = 0
elif '%' in str(inputstring):
group = re.findall('(\d+)\..+', str(inputstring))
outputstring = group[0]
elif header == 'Pass/Fail':
if str(inputstring) == '+':
outputstring = '100'
else:
outputstring = -100
self.fail = True
elif header == 'ContamStatus':
if str(inputstring) == 'Clean':
outputstring = '100'
else:
outputstring = -100
self.fail = True
elif header == 'MeanCoverage':
cov = float(str(inputstring).split(' ')[0])
if cov >= 20:
outputstring = 100
else:
outputstring = -100
self.fail = True
else:
outputstring = str(inputstring)
return outputstring | Format the data to be consistent with heatmaps
:param inputstring: string containing data to be formatted
:param header: class of the data - certain categories have specific formatting requirements
:return: the formatted output string | entailment |
def dataframe_setup(self):
"""
Set-up a report to store the desired header: sanitized string combinations
"""
# Initialise a dictionary to store the sanitized headers and strings
genesippr_dict = dict()
# Try to open all the reports - use pandas to extract the results from any report that exists
try:
sippr_matrix = pd.read_csv(os.path.join(self.reportpath, 'genesippr.csv'),
delimiter=',', index_col=0).T.to_dict()
except FileNotFoundError:
sippr_matrix = dict()
try:
conf_matrix = pd.read_csv(os.path.join(self.reportpath, 'confindr_report.csv'),
delimiter=',', index_col=0).T.to_dict()
except FileNotFoundError:
conf_matrix = dict()
try:
gdcs_matrix = pd.read_csv(os.path.join(self.reportpath, 'GDCS.csv'),
delimiter=',', index_col=0).T.to_dict()
except FileNotFoundError:
gdcs_matrix = dict()
# Populate the header:sanitized string dictionary with results from all strains
for sample in self.metadata:
genesippr_dict[sample.name] = dict()
try:
genesippr_dict[sample.name]['eae'] = self.data_sanitise(sippr_matrix[sample.name]['eae'])
except KeyError:
genesippr_dict[sample.name]['eae'] = 0
try:
genesippr_dict[sample.name]['hlyAEc'] = self.data_sanitise(sippr_matrix[sample.name]['hlyAEc'])
except KeyError:
genesippr_dict[sample.name]['hlyAEc'] = 0
try:
genesippr_dict[sample.name]['VT1'] = self.data_sanitise(sippr_matrix[sample.name]['VT1'])
except KeyError:
genesippr_dict[sample.name]['VT1'] = 0
try:
genesippr_dict[sample.name]['VT2'] = self.data_sanitise(sippr_matrix[sample.name]['VT2'])
except KeyError:
genesippr_dict[sample.name]['VT2'] = 0
try:
genesippr_dict[sample.name]['hlyALm'] = self.data_sanitise(sippr_matrix[sample.name]['hlyALm'])
except KeyError:
genesippr_dict[sample.name]['hlyALm'] = 0
try:
genesippr_dict[sample.name]['IGS'] = self.data_sanitise(sippr_matrix[sample.name]['IGS'])
except KeyError:
genesippr_dict[sample.name]['IGS'] = 0
try:
genesippr_dict[sample.name]['inlJ'] = self.data_sanitise(sippr_matrix[sample.name]['inlJ'])
except KeyError:
genesippr_dict[sample.name]['inlJ'] = 0
try:
genesippr_dict[sample.name]['invA'] = self.data_sanitise(sippr_matrix[sample.name]['invA'])
except KeyError:
genesippr_dict[sample.name]['invA'] = 0
try:
genesippr_dict[sample.name]['stn'] = self.data_sanitise(sippr_matrix[sample.name]['stn'])
except KeyError:
genesippr_dict[sample.name]['stn'] = 0
try:
genesippr_dict[sample.name]['GDCS'] = self.data_sanitise(gdcs_matrix[sample.name]['Pass/Fail'],
header='Pass/Fail')
except KeyError:
genesippr_dict[sample.name]['GDCS'] = 0
try:
genesippr_dict[sample.name]['Contamination'] = self.data_sanitise(
conf_matrix[sample.name]['ContamStatus'], header='ContamStatus')
except KeyError:
genesippr_dict[sample.name]['Contamination'] = 0
try:
genesippr_dict[sample.name]['Coverage'] = self.data_sanitise(
gdcs_matrix[sample.name]['MeanCoverage'], header='MeanCoverage')
except KeyError:
genesippr_dict[sample.name]['Coverage'] = 0
# Create a report from the header: sanitized string dictionary to be used in the creation of the report image
with open(self.image_report, 'w') as csv:
data = '{}\n'.format(','.join(self.header_list))
for strain in sorted(genesippr_dict):
data += '{str},'.format(str=strain)
for header in self.header_list[1:]:
data += '{value},'.format(value=genesippr_dict[strain][header])
data = data.rstrip(',')
data += '\n'
csv.write(data) | Set-up a report to store the desired header: sanitized string combinations | entailment |
def figure_populate(outputpath, csv, xlabels, ylabels, analysistype, description, fail=False):
"""
Create the report image from the summary report created in self.dataframesetup
:param outputpath: Path in which the outputs are to be created
:param csv: Name of the report file from which data are to be extracted
:param xlabels: List of all the labels to use on the x-axis
:param ylabels: List of all the labels to use on the y-axis
:param analysistype: String of the analysis type
:param description: String describing the analysis: set to either template for the empty heatmap created prior
to analyses or report for normal functionality
:param fail: Boolean of whether any samples have failed the quality checks - used for determining the palette
"""
# Create a data frame from the summary report
df = pd.read_csv(
os.path.join(outputpath, csv),
delimiter=',',
index_col=0)
# Set the palette appropriately - 'template' uses only grey
if description == 'template':
cmap = ['#a0a0a0']
# 'fail' uses red (fail), grey (not detected), and green (detected/pass)
elif fail:
cmap = ['#ff0000', '#a0a0a0', '#00cc00']
# Otherwise only use grey (not detected) and green (detected/pass)
else:
cmap = ['#a0a0a0', '#00cc00']
# Use seaborn to create a heatmap of the data
plot = sns.heatmap(df,
cbar=False,
linewidths=.5,
cmap=cmap)
# Move the x-axis to the top of the plot
plot.xaxis.set_ticks_position('top')
# Remove the y-labels
plot.set_ylabel('')
# Set the x-tick labels as a slice of the x-labels list (first entry is not required, as it makes the
# report image look crowded. Rotate the x-tick labels 90 degrees
plot.set_xticklabels(xlabels[1:], rotation=90)
# Set the y-tick labels from the supplied list
plot.set_yticklabels(ylabels, rotation=0)
# Create the figure
fig = plot.get_figure()
# Save the figure in .png format, using the bbox_inches='tight' option to ensure that everything is scaled
fig.savefig(os.path.join(outputpath, '{at}_{desc}.png'.format(at=analysistype,
desc=description)),
bbox_inches='tight'
) | Create the report image from the summary report created in self.dataframesetup
:param outputpath: Path in which the outputs are to be created
:param csv: Name of the report file from which data are to be extracted
:param xlabels: List of all the labels to use on the x-axis
:param ylabels: List of all the labels to use on the y-axis
:param analysistype: String of the analysis type
:param description: String describing the analysis: set to either template for the empty heatmap created prior
to analyses or report for normal functionality
:param fail: Boolean of whether any samples have failed the quality checks - used for determining the palette | entailment |
def add_usr_local_bin_to_path(log=False):
""" adds /usr/local/bin to $PATH """
if log:
bookshelf2.logging_helpers.log_green('inserts /usr/local/bin into PATH')
with settings(hide('warnings', 'running', 'stdout', 'stderr'),
capture=True):
try:
sudo('echo "export PATH=/usr/local/bin:$PATH" '
'|sudo /usr/bin/tee /etc/profile.d/fix-path.sh')
return True
except:
raise SystemExit(1) | adds /usr/local/bin to $PATH | entailment |
def dir_attribs(location, mode=None, owner=None,
group=None, recursive=False, use_sudo=False):
""" cuisine dir_attribs doesn't do sudo, so we implement our own
Updates the mode/owner/group for the given remote directory."""
args = ''
if recursive:
args = args + ' -R '
if mode:
if use_sudo:
sudo('chmod %s %s %s' % (args, mode, location))
else:
run('chmod %s %s %s' % (args, mode, location))
if owner:
if use_sudo:
sudo('chown %s %s %s' % (args, owner, location))
else:
run('chown %s %s %s' % (args, owner, location))
if group:
if use_sudo:
sudo('chgrp %s %s %s' % (args, group, location))
else:
run('chgrp %s %s %s' % (args, group, location))
return True | cuisine dir_attribs doesn't do sudo, so we implement our own
Updates the mode/owner/group for the given remote directory. | entailment |
def dir_ensure(location, recursive=False, mode=None,
owner=None, group=None, use_sudo=False):
""" cuisine dir_ensure doesn't do sudo, so we implement our own
Ensures that there is a remote directory at the given location,
optionally updating its mode/owner/group.
If we are not updating the owner/group then this can be done as a single
ssh call, so use that method, otherwise set owner/group after creation."""
args = ''
if recursive:
args = args + ' -p '
if not dir_exists(location):
if use_sudo:
sudo('mkdir %s %s' % (args, location))
else:
run('mkdir %s %s' % (args, location))
if owner or group or mode:
if use_sudo:
dir_attribs(location,
owner=owner,
group=group,
mode=mode,
recursive=recursive,
use_sudo=True)
else:
dir_attribs(location,
owner=owner,
group=group,
mode=mode,
recursive=recursive)
return True | cuisine dir_ensure doesn't do sudo, so we implement our own
Ensures that there is a remote directory at the given location,
optionally updating its mode/owner/group.
If we are not updating the owner/group then this can be done as a single
ssh call, so use that method, otherwise set owner/group after creation. | entailment |
def dir_exists(location, use_sudo=False):
"""Tells if there is a remote directory at the given location."""
with settings(hide('running', 'stdout', 'stderr'), warn_only=True):
if use_sudo:
# convert return code 0 to True
return not bool(sudo('test -d %s' % (location)).return_code)
else:
return not bool(run('test -d %s' % (location)).return_code) | Tells if there is a remote directory at the given location. | entailment |
def disable_env_reset_on_sudo(log=False):
""" updates /etc/sudoers so that users from %wheel keep their
environment when executing a sudo call
"""
if log:
bookshelf2.logging_helpers.log_green('disabling env reset on sudo')
file_append('/etc/sudoers',
'Defaults:%wheel !env_reset,!secure_path',
use_sudo=True,
partial=True)
return True | updates /etc/sudoers so that users from %wheel keep their
environment when executing a sudo call | entailment |
def disable_requiretty_on_sudoers(log=False):
""" allow sudo calls through ssh without a tty """
if log:
bookshelf2.logging_helpers.log_green(
'disabling requiretty on sudo calls')
comment_line('/etc/sudoers',
'^Defaults.*requiretty', use_sudo=True)
return True | allow sudo calls through ssh without a tty | entailment |
def file_attribs(location,
mode=None,
owner=None,
group=None,
use_sudo=False,
recursive=True):
"""Updates the mode/owner/group for the remote file at the given
location."""
return dir_attribs(location=location,
mode=mode,
owner=owner,
group=group,
recursive=recursive,
use_sudo=False) | Updates the mode/owner/group for the remote file at the given
location. | entailment |
def os_release():
""" returns /etc/os-release in a dictionary """
with settings(hide('warnings', 'running', 'stderr'),
warn_only=True, capture=True):
release = {}
data = run('cat /etc/os-release')
for line in data.split('\n'):
if not line:
continue
parts = line.split('=')
if len(parts) == 2:
release[parts[0]] = parts[1].strip('\n\r"')
return release | returns /etc/os-release in a dictionary | entailment |
def linux_distribution():
""" returns the linux distribution in lower case """
with settings(hide('warnings', 'running', 'stdout', 'stderr'),
warn_only=True, capture=True):
data = os_release()
return(data['ID']) | returns the linux distribution in lower case | entailment |
def lsb_release():
""" returns /etc/lsb-release in a dictionary """
with settings(hide('warnings', 'running'), capture=True):
_lsb_release = {}
data = sudo('cat /etc/lsb-release')
for line in data.split('\n'):
if not line:
continue
parts = line.split('=')
if len(parts) == 2:
_lsb_release[parts[0]] = parts[1].strip('\n\r"')
return _lsb_release | returns /etc/lsb-release in a dictionary | entailment |
def restart_service(service, log=False):
""" restarts a service """
with settings():
if log:
bookshelf2.logging_helpers.log_yellow(
'stoping service %s' % service)
sudo('service %s stop' % service)
if log:
bookshelf2.logging_helpers.log_yellow(
'starting service %s' % service)
sudo('service %s start' % service)
return True | restarts a service | entailment |
def systemd(service, start=True, enabled=True, unmask=False, restart=False):
""" manipulates systemd services """
with settings(hide('warnings', 'running', 'stdout', 'stderr'),
warn_only=True, capture=True):
if restart:
sudo('systemctl restart %s' % service)
else:
if start:
sudo('systemctl start %s' % service)
else:
sudo('systemctl stop %s' % service)
if enabled:
sudo('systemctl enable %s' % service)
else:
sudo('systemctl disable %s' % service)
if unmask:
sudo('systemctl unmask %s' % service) | manipulates systemd services | entailment |
def install_os_updates(distribution, force=False):
""" installs OS updates """
if ('centos' in distribution or
'rhel' in distribution or
'redhat' in distribution):
bookshelf2.logging_helpers.log_green('installing OS updates')
sudo("yum -y --quiet clean all")
sudo("yum group mark convert")
sudo("yum -y --quiet update")
if ('ubuntu' in distribution or
'debian' in distribution):
with settings(hide('warnings', 'running', 'stdout', 'stderr'),
warn_only=False, capture=True):
sudo("DEBIAN_FRONTEND=noninteractive apt-get update")
if force:
sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o "
"Dpkg::Options::='--force-confdef' "
"-o Dpkg::Options::='--force-confold' upgrade --force-yes")
else:
sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o "
"Dpkg::Options::='--force-confdef' -o "
"Dpkg::Options::='--force-confold' upgrade") | installs OS updates | entailment |
def ansi_format( self, width=64, height=12 ):
"""Return a human readable ANSI-terminal printout of the stats.
width
Custom width for the graph (in characters).
height
Custom height for the graph (in characters).
"""
from mrcrowbar.ansi import format_bar_graph_iter
if (256 % width) != 0:
raise ValueError( 'Width of the histogram must be a divisor of 256' )
elif (width <= 0):
raise ValueError( 'Width of the histogram must be greater than zero' )
elif (width > 256):
raise ValueError( 'Width of the histogram must be less than or equal to 256' )
buckets = self.histogram( width )
result = []
for line in format_bar_graph_iter( buckets, width=width, height=height ):
result.append( ' {}\n'.format( line ) )
result.append( '╘'+('═'*width)+'╛\n' )
result.append( 'entropy: {:.10f}\n'.format( self.entropy ) )
result.append( 'samples: {}'.format( self.samples ) )
return ''.join( result ) | Return a human readable ANSI-terminal printout of the stats.
width
Custom width for the graph (in characters).
height
Custom height for the graph (in characters). | entailment |
def put(self):
"""Updates this task whitelist on the saltant server.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just updated.
"""
return self.manager.put(
id=self.id,
name=self.name,
description=self.description,
whitelisted_container_task_types=(
self.whitelisted_container_task_types
),
whitelisted_executable_task_types=(
self.whitelisted_executable_task_types
),
) | Updates this task whitelist on the saltant server.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just updated. | entailment |
def create(
self,
name,
description="",
whitelisted_container_task_types=None,
whitelisted_executable_task_types=None,
):
"""Create a task whitelist.
Args:
name (str): The name of the task whitelist.
description (str, optional): A description of the task whitelist.
whitelisted_container_task_types (list, optional): A list of
whitelisted container task type IDs.
whitelisted_executable_task_types (list, optional): A list
of whitelisted executable task type IDs.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just created.
"""
# Translate whitelists None to [] if necessary
if whitelisted_container_task_types is None:
whitelisted_container_task_types = []
if whitelisted_executable_task_types is None:
whitelisted_executable_task_types = []
# Create the object
request_url = self._client.base_api_url + self.list_url
data_to_post = {
"name": name,
"description": description,
"whitelisted_container_task_types": whitelisted_container_task_types,
"whitelisted_executable_task_types": whitelisted_executable_task_types,
}
response = self._client.session.post(request_url, data=data_to_post)
# Validate that the request was successful
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_201_CREATED,
)
# Return a model instance representing the task instance
return self.response_data_to_model_instance(response.json()) | Create a task whitelist.
Args:
name (str): The name of the task whitelist.
description (str, optional): A description of the task whitelist.
whitelisted_container_task_types (list, optional): A list of
whitelisted container task type IDs.
whitelisted_executable_task_types (list, optional): A list
of whitelisted executable task type IDs.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just created. | entailment |
def patch(
self,
id,
name=None,
description=None,
whitelisted_container_task_types=None,
whitelisted_executable_task_types=None,
):
"""Partially updates a task whitelist on the saltant server.
Args:
id (int): The ID of the task whitelist.
name (str, optional): The name of the task whitelist.
description (str, optional): A description of the task whitelist.
whitelisted_container_task_types (list, optional): A list of
whitelisted container task type IDs.
whitelisted_executable_task_types (list, optional): A list
of whitelisted executable task type IDs.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just updated.
"""
# Update the object
request_url = self._client.base_api_url + self.detail_url.format(id=id)
data_to_patch = {}
if name is not None:
data_to_patch["name"] = name
if description is not None:
data_to_patch["description"] = description
if whitelisted_container_task_types is not None:
data_to_patch[
"whitelisted_container_task_types"
] = whitelisted_container_task_types
if whitelisted_executable_task_types is not None:
data_to_patch[
"whitelisted_executable_task_types"
] = whitelisted_executable_task_types
response = self._client.session.patch(request_url, data=data_to_patch)
# Validate that the request was successful
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_200_OK,
)
# Return a model instance representing the task instance
return self.response_data_to_model_instance(response.json()) | Partially updates a task whitelist on the saltant server.
Args:
id (int): The ID of the task whitelist.
name (str, optional): The name of the task whitelist.
description (str, optional): A description of the task whitelist.
whitelisted_container_task_types (list, optional): A list of
whitelisted container task type IDs.
whitelisted_executable_task_types (list, optional): A list
of whitelisted executable task type IDs.
Returns:
:class:`saltant.models.task_whitelist.TaskWhitelist`:
A task whitelist model instance representing the task
whitelist just updated. | entailment |
def enable_logging( level='WARNING' ):
"""Enable sending logs to stderr. Useful for shell sessions.
level
Logging threshold, as defined in the logging module of the Python
standard library. Defaults to 'WARNING'.
"""
log = logging.getLogger( 'mrcrowbar' )
log.setLevel( level )
out = logging.StreamHandler()
out.setLevel( level )
form = logging.Formatter( '[%(levelname)s] %(name)s - %(message)s' )
out.setFormatter( form )
log.addHandler( out ) | Enable sending logs to stderr. Useful for shell sessions.
level
Logging threshold, as defined in the logging module of the Python
standard library. Defaults to 'WARNING'. | entailment |
def find_all_iter( source, substring, start=None, end=None, overlap=False ):
"""Iterate through every location a substring can be found in a source string.
source
The source string to search.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
overlap
Whether to return overlapping matches (default: false)
"""
data = source
base = 0
if end is not None:
data = data[:end]
if start is not None:
data = data[start:]
base = start
pointer = 0
increment = 1 if overlap else (len( substring ) or 1)
while True:
pointer = data.find( substring, pointer )
if pointer == -1:
return
yield base+pointer
pointer += increment | Iterate through every location a substring can be found in a source string.
source
The source string to search.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
overlap
Whether to return overlapping matches (default: false) | entailment |
def find_all( source, substring, start=None, end=None, overlap=False ):
"""Return every location a substring can be found in a source string.
source
The source string to search.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
overlap
Whether to return overlapping matches (default: false)
"""
return [x for x in find_all_iter( source, substring, start, end, overlap )] | Return every location a substring can be found in a source string.
source
The source string to search.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
overlap
Whether to return overlapping matches (default: false) | entailment |
def basic_diff( source1, source2, start=None, end=None ):
"""Perform a basic diff between two equal-sized binary strings and
return a list of (offset, size) tuples denoting the differences.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
"""
start = start if start is not None else 0
end = end if end is not None else min( len( source1 ), len( source2 ) )
end_point = min( end, len( source1 ), len( source2 ) )
pointer = start
diff_start = None
results = []
while pointer < end_point:
if source1[pointer] != source2[pointer]:
if diff_start is None:
diff_start = pointer
else:
if diff_start is not None:
results.append( (diff_start, pointer-diff_start) )
diff_start = None
pointer += 1
if diff_start is not None:
results.append( (diff_start, pointer-diff_start) )
diff_start = None
return results | Perform a basic diff between two equal-sized binary strings and
return a list of (offset, size) tuples denoting the differences.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end) | entailment |
def hexdump_iter( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ):
"""Return the contents of a byte string in tabular hexadecimal/ASCII format.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined.
"""
assert is_bytes( source )
start, end = bounds( start, end, length, len( source ) )
start = max( start, 0 )
end = min( end, len( source ) )
if len( source ) == 0 or (start == end == 0):
return
address_base_offset = address_base-start if address_base is not None else 0
for offset in range( start, end, minor_len*major_len ):
yield ansi.format_hexdump_line( source, offset, end, major_len, minor_len, colour, address_base_offset=address_base_offset )
return | Return the contents of a byte string in tabular hexadecimal/ASCII format.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined. | entailment |
def hexdump( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ):
"""Print the contents of a byte string in tabular hexadecimal/ASCII format.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined.
"""
for line in hexdump_iter( source, start, end, length, major_len, minor_len, colour, address_base ):
print( line ) | Print the contents of a byte string in tabular hexadecimal/ASCII format.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined. | entailment |
def hexdump_diff_iter( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ):
"""Returns the differences between two byte strings in tabular hexadecimal/ASCII format.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
before
Number of lines of context preceeding a match to show
after
Number of lines of context following a match to show
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined.
"""
stride = minor_len*major_len
start = start if start is not None else 0
end = end if end is not None else max( len( source1 ), len( source2 ) )
start = max( start, 0 )
end = min( end, max( len( source1 ), len( source2 ) ) )
address_base_offset = address_base-start if address_base is not None else 0
diff_lines = []
for offset in range( start, end, stride ):
if source1[offset:offset+stride] != source2[offset:offset+stride]:
diff_lines.append( offset )
show_all = before is None or after is None
if show_all:
show_lines = {x: (2 if x in diff_lines else 1) for x in range( start, end, stride )}
else:
show_lines = {x: (2 if x in diff_lines else 0) for x in range( start, end, stride )}
for index in diff_lines:
for b in [index-(x+1)*stride for x in range( before )]:
if b in show_lines and show_lines[b] == 0:
show_lines[b] = 1
for a in [index+(x+1)*stride for x in range( after )]:
if a in show_lines and show_lines[a] == 0:
show_lines[a] = 1
skip = False
for offset in sorted( show_lines.keys() ):
if skip == True and show_lines[offset] != 0:
yield '...'
skip = False
if show_lines[offset] == 2:
check = basic_diff( source1, source2, start=offset, end=offset+stride )
highlights = {}
for (o, l) in check:
for i in range( o, o+l ):
highlights[i] = DIFF_COLOUR_MAP[0]
if offset < len( source1 ):
yield ansi.format_hexdump_line( source1, offset, min( end, len( source1 ) ), major_len, minor_len, colour, prefix='-', highlight_addr=DIFF_COLOUR_MAP[0], highlight_map=highlights, address_base_offset=address_base_offset )
highlights = {k: DIFF_COLOUR_MAP[1] for k in highlights.keys()}
if offset < len( source2 ):
yield ansi.format_hexdump_line( source2, offset, min( end, len( source2 ) ), major_len, minor_len, colour, prefix='+' , highlight_addr=DIFF_COLOUR_MAP[1], highlight_map=highlights, address_base_offset=address_base_offset )
elif show_lines[offset] == 1:
yield ansi.format_hexdump_line( source1, offset, end, major_len, minor_len, colour, prefix=' ', address_base_offset=address_base_offset )
elif show_lines[offset] == 0:
skip = True
if skip == True:
yield '...'
skip = False
return | Returns the differences between two byte strings in tabular hexadecimal/ASCII format.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
before
Number of lines of context preceeding a match to show
after
Number of lines of context following a match to show
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined. | entailment |
def hexdump_diff( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ):
"""Returns the differences between two byte strings in tabular hexadecimal/ASCII format.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
before
Number of lines of context preceeding a match to show
after
Number of lines of context following a match to show
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined.
"""
for line in hexdump_diff_iter( source1, source2, start, end, length, major_len, minor_len, colour, before, after, address_base ):
print( line ) | Returns the differences between two byte strings in tabular hexadecimal/ASCII format.
source1
The first byte string source.
source2
The second byte string source.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
major_len
Number of hexadecimal groups per line
minor_len
Number of bytes per hexadecimal group
colour
Add ANSI colour formatting to output (default: true)
before
Number of lines of context preceeding a match to show
after
Number of lines of context following a match to show
address_base
Base address to use for labels (default: start)
Raises ValueError if both end and length are defined. | entailment |
def unpack_bits( byte ):
"""Expand a bitfield into a 64-bit int (8 bool bytes)."""
longbits = byte & (0x00000000000000ff)
longbits = (longbits | (longbits<<28)) & (0x0000000f0000000f)
longbits = (longbits | (longbits<<14)) & (0x0003000300030003)
longbits = (longbits | (longbits<<7)) & (0x0101010101010101)
return longbits | Expand a bitfield into a 64-bit int (8 bool bytes). | entailment |
def pack_bits( longbits ):
"""Crunch a 64-bit int (8 bool bytes) into a bitfield."""
byte = longbits & (0x0101010101010101)
byte = (byte | (byte>>7)) & (0x0003000300030003)
byte = (byte | (byte>>14)) & (0x0000000f0000000f)
byte = (byte | (byte>>28)) & (0x00000000000000ff)
return byte | Crunch a 64-bit int (8 bool bytes) into a bitfield. | entailment |
def pixdump_iter( source, start=None, end=None, length=None, width=64, height=None, palette=None ):
"""Return the contents of a byte string as a 256 colour image.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
width
Width of image to render in pixels (default: 64)
height
Height of image to render in pixels (default: auto)
palette
List of Colours to use (default: test palette)
"""
assert is_bytes( source )
if not palette:
palette = colour.TEST_PALETTE
start = 0 if (start is None) else start
if (end is not None) and (length is not None):
raise ValueError( 'Can\'t define both an end and a length!' )
elif (length is not None):
end = start+length
elif (end is not None):
pass
else:
end = len( source )
start = max( start, 0 )
end = min( end, len( source ) )
if len( source ) == 0 or (start == end == 0):
return iter(())
if height is None:
height = math.ceil( (end-start)/width )
def data_fetch( x_pos, y_pos, frame ):
index = y_pos*width + x_pos + start
if index >= end:
return (0, 0, 0, 0)
return palette[source[index]]
return ansi.format_image_iter( data_fetch, width=width, height=height ) | Return the contents of a byte string as a 256 colour image.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
width
Width of image to render in pixels (default: 64)
height
Height of image to render in pixels (default: auto)
palette
List of Colours to use (default: test palette) | entailment |
def pixdump( source, start=None, end=None, length=None, width=64, height=None, palette=None ):
"""Print the contents of a byte string as a 256 colour image.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
width
Width of image to render in pixels (default: 64)
height
Height of image to render in pixels (default: auto)
palette
List of Colours to use (default: test palette)
"""
for line in pixdump_iter( source, start, end, length, width, height, palette ):
print( line ) | Print the contents of a byte string as a 256 colour image.
source
The byte string to print.
start
Start offset to read from (default: start)
end
End offset to stop reading at (default: end)
length
Length to read in (optional replacement for end)
width
Width of image to render in pixels (default: 64)
height
Height of image to render in pixels (default: auto)
palette
List of Colours to use (default: test palette) | entailment |
def set_offset( self, offset ):
"""Set the current read offset (in bytes) for the instance."""
assert offset in range( len( self.buffer ) )
self.pos = offset
self._fill_buffer() | Set the current read offset (in bytes) for the instance. | entailment |
def get_bits( self, count ):
"""Get an integer containing the next [count] bits from the source."""
result = 0
for i in range( count ):
if self.bits_remaining <= 0:
self._fill_buffer()
if self.bits_reverse:
bit = (1 if (self.current_bits & (0x80 << 8*(self.bytes_to_cache-1))) else 0)
self.current_bits <<= 1
self.current_bits &= 0xff
else:
bit = (self.current_bits & 1)
self.current_bits >>= 1
self.bits_remaining -= 1
if self.output_reverse:
result <<= 1
result |= bit
else:
result |= bit << i
return result | Get an integer containing the next [count] bits from the source. | entailment |
def put_bits( self, value, count ):
"""Push bits into the target.
value
Integer containing bits to push, ordered from least-significant bit to
most-significant bit.
count
Number of bits to push to the target.
"""
for _ in range( count ):
# bits are retrieved from the source LSB first
bit = (value & 1)
value >>= 1
# however, bits are put into the result based on the rule
if self.bits_reverse:
if self.insert_at_msb:
self.current_bits |= (bit << (self.bits_remaining-1))
else:
self.current_bits <<= 1
self.current_bits |= bit
else:
if self.insert_at_msb:
self.current_bits >>= 1
self.current_bits |= (bit << 7)
else:
self.current_bits |= (bit << (8-self.bits_remaining))
self.bits_remaining -= 1
if self.bits_remaining <= 0:
self.output.append( self.current_bits )
self.current_bits = 0
self.bits_remaining = 8 | Push bits into the target.
value
Integer containing bits to push, ordered from least-significant bit to
most-significant bit.
count
Number of bits to push to the target. | entailment |
def get_buffer( self ):
"""Return a byte string containing the target as currently written."""
last_byte = self.current_bits if (self.bits_remaining < 8) else None
result = self.output
if last_byte is not None:
result = bytearray( result )
result.append( last_byte )
if self.bytes_reverse:
return bytes( reversed( result ) )
else:
return bytes( result ) | Return a byte string containing the target as currently written. | entailment |
def get_for_update(self, connection_name='DEFAULT', **kwargs):
"""
http://docs.sqlalchemy.org/en/latest/orm/query.html?highlight=update#sqlalchemy.orm.query.Query.with_for_update # noqa
"""
if not kwargs:
raise InvalidQueryError(
"Can not execute a query without parameters")
obj = self.pool.connections[connection_name].session.query(
self._model).with_for_update(
nowait=True, of=self._model).filter_by(**kwargs).first()
if not obj:
raise NotFoundError('Object not found')
return obj | http://docs.sqlalchemy.org/en/latest/orm/query.html?highlight=update#sqlalchemy.orm.query.Query.with_for_update # noqa | entailment |
def syllabify(word, compound=None):
'''Syllabify the given word, whether simplex or complex.'''
if compound is None:
compound = bool(re.search(r'(-| |=)', word))
syllabify = _syllabify_compound if compound else _syllabify
syll, rules = syllabify(word)
yield syll, rules
n = 7
if 'T4' in rules:
yield syllabify(word, T4=False)
n -= 1
if 'e' in rules:
yield syllabify(word, T1E=False)
n -= 1
if 'e' in rules and 'T4' in rules:
yield syllabify(word, T4=False, T1E=False)
n -= 1
# yield empty syllabifications and rules
for i in range(n):
yield '', '' | Syllabify the given word, whether simplex or complex. | entailment |
def convert_case(name):
"""Converts name from CamelCase to snake_case"""
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() | Converts name from CamelCase to snake_case | entailment |
def table_name(self):
"""Pluralises the class_name using utterly simple algo and returns as table_name"""
if not self.class_name:
raise ValueError
else:
tbl_name = ModelCompiler.convert_case(self.class_name)
last_letter = tbl_name[-1]
if last_letter in ("y",):
return "{}ies".format(tbl_name[:-1])
elif last_letter in ("s",):
return "{}es".format(tbl_name)
else:
return "{}s".format(tbl_name) | Pluralises the class_name using utterly simple algo and returns as table_name | entailment |
def types(self):
"""All the unique types found in user supplied model"""
res = []
for column in self.column_definitions:
tmp = column.get('type', None)
res.append(ModelCompiler.get_column_type(tmp)) if tmp else False
res = list(set(res))
return res | All the unique types found in user supplied model | entailment |
def basic_types(self):
"""Returns non-postgres types referenced in user supplied model """
if not self.foreign_key_definitions:
return self.standard_types
else:
tmp = self.standard_types
tmp.append('ForeignKey')
return tmp | Returns non-postgres types referenced in user supplied model | entailment |
def primary_keys(self):
"""Returns the primary keys referenced in user supplied model"""
res = []
for column in self.column_definitions:
if 'primary_key' in column.keys():
tmp = column.get('primary_key', None)
res.append(column['name']) if tmp else False
return res | Returns the primary keys referenced in user supplied model | entailment |
def compiled_named_imports(self):
"""Returns compiled named imports required for the model"""
res = []
if self.postgres_types:
res.append(
ALCHEMY_TEMPLATES.named_import.safe_substitute(
module='sqlalchemy.dialects.postgresql',
labels=", ".join(self.postgres_types)))
if self.mutable_dict_types:
res.append(
ALCHEMY_TEMPLATES.named_import.safe_substitute(
module='sqlalchemy.ext.mutable', labels='MutableDict'
))
return "\n".join(res) | Returns compiled named imports required for the model | entailment |
def compiled_orm_imports(self):
"""Returns compiled named imports required for the model"""
module = 'sqlalchemy.orm'
labels = []
if self.relationship_definitions:
labels.append("relationship")
return ALCHEMY_TEMPLATES.named_import.safe_substitute(module=module, labels=", ".join(labels)) | Returns compiled named imports required for the model | entailment |
def compiled_columns(self):
"""Returns compiled column definitions"""
def get_column_args(column):
tmp = []
for arg_name, arg_val in column.items():
if arg_name not in ('name', 'type'):
if arg_name in ('server_default', 'server_onupdate'):
arg_val = '"{}"'.format(arg_val)
tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name,
arg_val=arg_val))
return ", ".join(tmp)
res = []
for column in self.column_definitions:
column_args = get_column_args(column)
column_type, type_params = ModelCompiler.get_col_type_info(column.get('type'))
column_name = column.get('name')
if column_type in MUTABLE_DICT_TYPES:
column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type,
type_params=type_params)
type_params = ''
res.append(
ALCHEMY_TEMPLATES.column_definition.safe_substitute(column_name=column_name,
column_type=column_type,
column_args=column_args,
type_params=type_params))
join_string = "\n" + self.tab
return join_string.join(res) | Returns compiled column definitions | entailment |
def compiled_foreign_keys(self):
"""Returns compiled foreign key definitions"""
def get_column_args(column):
tmp = []
for arg_name, arg_val in column.items():
if arg_name not in ('name', 'type', 'reference'):
if arg_name in ('server_default', 'server_onupdate'):
arg_val = '"{}"'.format(arg_val)
tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name,
arg_val=arg_val))
return ", ".join(tmp)
def get_fkey_args(column):
table = column['reference']['table']
column = column['reference']['column']
return ALCHEMY_TEMPLATES.foreign_key_arg.safe_substitute(reference_table=table, reference_column=column)
res = []
for column in self.foreign_key_definitions:
column_args = get_column_args(column)
column_type, type_params = ModelCompiler.get_col_type_info(column.get('type'))
column_name = column.get('name')
reference = get_fkey_args(column)
if column_type in MUTABLE_DICT_TYPES:
column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type,
type_params=type_params)
type_params = ''
res.append(
ALCHEMY_TEMPLATES.foreign_key.safe_substitute(column_name=column_name,
column_type=column_type,
column_args=column_args,
foreign_key_args=reference,
type_params=type_params))
join_string = "\n" + self.tab
return join_string.join(res) | Returns compiled foreign key definitions | entailment |
def compiled_relationships(self):
"""Returns compiled relationship definitions"""
def get_column_args(column):
tmp = []
for arg_name, arg_val in column.items():
if arg_name not in ('name', 'type', 'reference', 'class'):
if arg_name in ('back_populates', ):
arg_val = "'{}'".format(arg_val)
tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name,
arg_val=arg_val))
return ", ".join(tmp)
res = []
for column in self.relationship_definitions:
column_args = get_column_args(column)
column_name = column.get('name')
cls_name = column.get("class")
res.append(
ALCHEMY_TEMPLATES.relationship.safe_substitute(column_name=column_name,
column_args=column_args,
class_name=cls_name))
join_string = "\n" + self.tab
return join_string.join(res) | Returns compiled relationship definitions | entailment |
def columns(self):
"""Return names of all the addressable columns (including foreign keys) referenced in user supplied model"""
res = [col['name'] for col in self.column_definitions]
res.extend([col['name'] for col in self.foreign_key_definitions])
return res | Return names of all the addressable columns (including foreign keys) referenced in user supplied model | entailment |
def compiled_init_func(self):
"""Returns compiled init function"""
def get_column_assignment(column_name):
return ALCHEMY_TEMPLATES.col_assignment.safe_substitute(col_name=column_name)
def get_compiled_args(arg_name):
return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name)
join_string = "\n" + self.tab + self.tab
column_assignments = join_string.join([get_column_assignment(n) for n in self.columns])
init_args = ", ".join(get_compiled_args(n) for n in self.columns)
return ALCHEMY_TEMPLATES.init_function.safe_substitute(col_assignments=column_assignments,
init_args=init_args) | Returns compiled init function | entailment |
def compiled_update_func(self):
"""Returns compiled update function"""
def get_not_none_col_assignment(column_name):
return ALCHEMY_TEMPLATES.not_none_col_assignment.safe_substitute(col_name=column_name)
def get_compiled_args(arg_name):
return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name)
join_string = "\n" + self.tab + self.tab
columns = [n for n in self.columns if n not in self.primary_keys]
not_none_col_assignments = join_string.join([get_not_none_col_assignment(n) for n in columns])
update_args = ", ".join(get_compiled_args(n) for n in columns)
return ALCHEMY_TEMPLATES.update_function.safe_substitute(not_none_col_assignments=not_none_col_assignments,
update_args=update_args,
class_name=self.class_name) | Returns compiled update function | entailment |
def compiled_hash_func(self):
"""Returns compiled hash function based on hash of stringified primary_keys.
This isn't the most efficient way"""
def get_primary_key_str(pkey_name):
return "str(self.{})".format(pkey_name)
hash_str = "+ ".join([get_primary_key_str(n) for n in self.primary_keys])
return ALCHEMY_TEMPLATES.hash_function.safe_substitute(concated_primary_key_strs=hash_str) | Returns compiled hash function based on hash of stringified primary_keys.
This isn't the most efficient way | entailment |
def representation_function_compiler(self, func_name):
"""Generic function can be used to compile __repr__ or __unicode__ or __str__"""
def get_col_accessor(col):
return ALCHEMY_TEMPLATES.col_accessor.safe_substitute(col=col)
def get_col_evaluator(col):
return ALCHEMY_TEMPLATES.col_evaluator.safe_substitute(col=col)
col_evaluators = ", ".join([get_col_evaluator(n) for n in self.primary_keys])
col_accessors = ", ".join([get_col_accessor(n) for n in self.primary_keys])
return ALCHEMY_TEMPLATES.representor_function.safe_substitute(func_name=func_name,
col_accessors=col_accessors,
col_evaluators=col_evaluators,
class_name=self.class_name) | Generic function can be used to compile __repr__ or __unicode__ or __str__ | entailment |
def compiled_model(self):
"""Returns compile ORM class for the user supplied model"""
return ALCHEMY_TEMPLATES.model.safe_substitute(class_name=self.class_name,
table_name=self.table_name,
column_definitions=self.compiled_columns,
init_function=self.compiled_init_func,
update_function=self.compiled_update_func,
hash_function=self.compiled_hash_func,
eq_function=self.compiled_eq_func,
neq_function=self.compiled_neq_func,
str_function=self.compiled_str_func,
unicode_function=self.compiled_unicode_func,
repr_function=self.compiled_repr_func,
types=", ".join(self.basic_types),
username=self.username,
foreign_keys=self.compiled_foreign_keys,
relationships=self.compiled_relationships,
named_imports=self.compiled_named_imports,
orm_imports=self.compiled_orm_imports,
get_proxy_cls_function=self.compiled_proxy_cls_func,
add_function=ALCHEMY_TEMPLATES.add_function.template,
delete_function=ALCHEMY_TEMPLATES.delete_function.template,
to_dict_function=ALCHEMY_TEMPLATES.to_dict_function.template,
to_proxy_function=ALCHEMY_TEMPLATES.to_proxy_function.template,
from_proxy_function=ALCHEMY_TEMPLATES.from_proxy_function.template) | Returns compile ORM class for the user supplied model | entailment |
def put(self):
"""Updates this task queue on the saltant server.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated.
"""
return self.manager.put(
id=self.id,
name=self.name,
description=self.description,
private=self.private,
runs_executable_tasks=self.runs_executable_tasks,
runs_docker_container_tasks=self.runs_docker_container_tasks,
runs_singularity_container_tasks=self.runs_singularity_container_tasks,
active=self.active,
whitelists=self.whitelists,
) | Updates this task queue on the saltant server.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated. | entailment |
def get(self, id=None, name=None):
"""Get a task queue.
Either the id xor the name of the task type must be specified.
Args:
id (int, optional): The id of the task type to get.
name (str, optional): The name of the task type to get.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
requested.
Raises:
ValueError: Neither id nor name were set *or* both id and
name were set.
"""
# Validate arguments - use an xor
if not (id is None) ^ (name is None):
raise ValueError("Either id or name must be set (but not both!)")
# If it's just ID provided, call the parent function
if id is not None:
return super(TaskQueueManager, self).get(id=id)
# Try getting the task queue by name
return self.list(filters={"name": name})[0] | Get a task queue.
Either the id xor the name of the task type must be specified.
Args:
id (int, optional): The id of the task type to get.
name (str, optional): The name of the task type to get.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
requested.
Raises:
ValueError: Neither id nor name were set *or* both id and
name were set. | entailment |
def create(
self,
name,
description="",
private=False,
runs_executable_tasks=True,
runs_docker_container_tasks=True,
runs_singularity_container_tasks=True,
active=True,
whitelists=None,
):
"""Create a task queue.
Args:
name (str): The name of the task queue.
description (str, optional): A description of the task queue.
private (bool, optional): A boolean specifying whether the
queue is exclusive to its creator. Defaults to False.
runs_executable_tasks (bool, optional): A Boolean specifying
whether the queue runs executable tasks. Defaults to
True.
runs_docker_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Docker containers. Defaults to True.
runs_singularity_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers. Defaults to True.
active (bool, optional): A boolean specifying whether the
queue is active. Default to True.
whitelists (list, optional): A list of task whitelist IDs.
Defaults to None (which gets translated to []).
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just created.
"""
# Translate whitelists None to [] if necessary
if whitelists is None:
whitelists = []
# Create the object
request_url = self._client.base_api_url + self.list_url
data_to_post = {
"name": name,
"description": description,
"private": private,
"runs_executable_tasks": runs_executable_tasks,
"runs_docker_container_tasks": runs_docker_container_tasks,
"runs_singularity_container_tasks": runs_singularity_container_tasks,
"active": active,
"whitelists": whitelists,
}
response = self._client.session.post(request_url, data=data_to_post)
# Validate that the request was successful
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_201_CREATED,
)
# Return a model instance representing the task instance
return self.response_data_to_model_instance(response.json()) | Create a task queue.
Args:
name (str): The name of the task queue.
description (str, optional): A description of the task queue.
private (bool, optional): A boolean specifying whether the
queue is exclusive to its creator. Defaults to False.
runs_executable_tasks (bool, optional): A Boolean specifying
whether the queue runs executable tasks. Defaults to
True.
runs_docker_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Docker containers. Defaults to True.
runs_singularity_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers. Defaults to True.
active (bool, optional): A boolean specifying whether the
queue is active. Default to True.
whitelists (list, optional): A list of task whitelist IDs.
Defaults to None (which gets translated to []).
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just created. | entailment |
def patch(
self,
id,
name=None,
description=None,
private=None,
runs_executable_tasks=None,
runs_docker_container_tasks=None,
runs_singularity_container_tasks=None,
active=None,
whitelists=None,
):
"""Partially updates a task queue on the saltant server.
Args:
id (int): The ID of the task queue.
name (str, optional): The name of the task queue.
description (str, optional): The description of the task
queue.
private (bool, optional): A Booleon signalling whether the
queue can only be used by its associated user.
runs_executable_tasks (bool, optional): A Boolean specifying
whether the queue runs executable tasks.
runs_docker_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Docker containers.
runs_singularity_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers.
active (bool, optional): A Booleon signalling whether the
queue is active.
whitelists (list, optional): A list of task whitelist IDs.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated.
"""
# Update the object
request_url = self._client.base_api_url + self.detail_url.format(id=id)
data_to_patch = {}
if name is not None:
data_to_patch["name"] = name
if description is not None:
data_to_patch["description"] = description
if private is not None:
data_to_patch["private"] = private
if runs_executable_tasks is not None:
data_to_patch["runs_executable_tasks"] = runs_executable_tasks
if runs_docker_container_tasks is not None:
data_to_patch[
"runs_docker_container_tasks"
] = runs_docker_container_tasks
if runs_singularity_container_tasks is not None:
data_to_patch[
"runs_singularity_container_tasks"
] = runs_singularity_container_tasks
if active is not None:
data_to_patch["active"] = active
if whitelists is not None:
data_to_patch["whitelists"] = whitelists
response = self._client.session.patch(request_url, data=data_to_patch)
# Validate that the request was successful
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_200_OK,
)
# Return a model instance representing the task instance
return self.response_data_to_model_instance(response.json()) | Partially updates a task queue on the saltant server.
Args:
id (int): The ID of the task queue.
name (str, optional): The name of the task queue.
description (str, optional): The description of the task
queue.
private (bool, optional): A Booleon signalling whether the
queue can only be used by its associated user.
runs_executable_tasks (bool, optional): A Boolean specifying
whether the queue runs executable tasks.
runs_docker_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Docker containers.
runs_singularity_container_tasks (bool, optional): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers.
active (bool, optional): A Booleon signalling whether the
queue is active.
whitelists (list, optional): A list of task whitelist IDs.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated. | entailment |
def put(
self,
id,
name,
description,
private,
runs_executable_tasks,
runs_docker_container_tasks,
runs_singularity_container_tasks,
active,
whitelists,
):
"""Updates a task queue on the saltant server.
Args:
id (int): The ID of the task queue.
name (str): The name of the task queue.
description (str): The description of the task queue.
private (bool): A Booleon signalling whether the queue can
only be used by its associated user.
runs_executable_tasks (bool): A Boolean specifying whether
the queue runs executable tasks.
runs_docker_container_tasks (bool): A Boolean specifying
whether the queue runs container tasks that run in
Docker containers.
runs_singularity_container_tasks (bool): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers.
active (bool): A Booleon signalling whether the queue is
active.
whitelists (list): A list of task whitelist IDs.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated.
"""
# Update the object
request_url = self._client.base_api_url + self.detail_url.format(id=id)
data_to_put = {
"name": name,
"description": description,
"private": private,
"runs_executable_tasks": runs_executable_tasks,
"runs_docker_container_tasks": runs_docker_container_tasks,
"runs_singularity_container_tasks": runs_singularity_container_tasks,
"active": active,
"whitelists": whitelists,
}
response = self._client.session.put(request_url, data=data_to_put)
# Validate that the request was successful
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_200_OK,
)
# Return a model instance representing the task instance
return self.response_data_to_model_instance(response.json()) | Updates a task queue on the saltant server.
Args:
id (int): The ID of the task queue.
name (str): The name of the task queue.
description (str): The description of the task queue.
private (bool): A Booleon signalling whether the queue can
only be used by its associated user.
runs_executable_tasks (bool): A Boolean specifying whether
the queue runs executable tasks.
runs_docker_container_tasks (bool): A Boolean specifying
whether the queue runs container tasks that run in
Docker containers.
runs_singularity_container_tasks (bool): A Boolean
specifying whether the queue runs container tasks that
run in Singularity containers.
active (bool): A Booleon signalling whether the queue is
active.
whitelists (list): A list of task whitelist IDs.
Returns:
:class:`saltant.models.task_queue.TaskQueue`:
A task queue model instance representing the task queue
just updated. | entailment |
def main(self):
"""
Run the required methods in the appropriate order
"""
self.targets()
self.bait(k=49)
self.reversebait(maskmiddle='t', k=19)
self.subsample_reads() | Run the required methods in the appropriate order | entailment |
def targets(self):
"""
Create the GenObject for the analysis type, create the hash file for baiting (if necessary)
"""
for sample in self.runmetadata:
if sample.general.bestassemblyfile != 'NA':
setattr(sample, self.analysistype, GenObject())
sample[self.analysistype].runanalysis = True
sample[self.analysistype].targetpath = self.targetpath
baitpath = os.path.join(self.targetpath, 'bait')
sample[self.analysistype].baitfile = glob(os.path.join(baitpath, '*.fa'))[0]
try:
sample[self.analysistype].outputdir = os.path.join(sample.run.outputdirectory, self.analysistype)
except AttributeError:
sample[self.analysistype].outputdir = \
os.path.join(sample.general.outputdirectory, self.analysistype)
sample.run.outputdirectory = sample.general.outputdirectory
sample[self.analysistype].logout = os.path.join(sample[self.analysistype].outputdir, 'logout.txt')
sample[self.analysistype].logerr = os.path.join(sample[self.analysistype].outputdir, 'logerr.txt')
sample[self.analysistype].baitedfastq = os.path.join(sample[self.analysistype].outputdir,
'{}_targetMatches.fastq'.format(self.analysistype))
sample[self.analysistype].complete = False | Create the GenObject for the analysis type, create the hash file for baiting (if necessary) | entailment |
def targets(self):
"""
Using the data from the BLAST analyses, set the targets folder, and create the 'mapping file'. This is the
genera-specific FASTA file that will be used for all the reference mapping; it replaces the 'bait file' in the
code
"""
logging.info('Performing analysis with {} targets folder'.format(self.analysistype))
for sample in self.runmetadata:
if sample.general.bestassemblyfile != 'NA':
sample[self.analysistype].targetpath = \
os.path.join(self.targetpath, 'genera', sample[self.analysistype].genus, '')
# There is a relatively strict databasing scheme necessary for the custom targets. Eventually,
# there will be a helper script to combine individual files into a properly formatted combined file
try:
sample[self.analysistype].mappingfile = glob('{}*.fa'
.format(sample[self.analysistype].targetpath))[0]
# If the fasta file is missing, raise a custom error
except IndexError as e:
# noinspection PyPropertyAccess
e.args = ['Cannot find the combined fasta file in {}. Please note that the file must have a '
'.fasta extension'.format(sample[self.analysistype].targetpath)]
if os.path.isdir(sample[self.analysistype].targetpath):
raise
else:
sample.general.bestassemblyfile = 'NA' | Using the data from the BLAST analyses, set the targets folder, and create the 'mapping file'. This is the
genera-specific FASTA file that will be used for all the reference mapping; it replaces the 'bait file' in the
code | entailment |
def runner(self):
"""
Run the necessary methods in the correct order
"""
logging.info('Starting {} analysis pipeline'.format(self.analysistype))
if not self.pipeline:
# If the metadata has been passed from the method script, self.pipeline must still be false in order to
# get Sippr() to function correctly, but the metadata shouldn't be recreated
try:
_ = vars(self.runmetadata)['samples']
except AttributeError:
# Create the objects to be used in the analyses
objects = Objectprep(self)
objects.objectprep()
self.runmetadata = objects.samples
else:
for sample in self.runmetadata.samples:
setattr(sample, self.analysistype, GenObject())
sample.run.outputdirectory = sample.general.outputdirectory
self.threads = int(self.cpus / len(self.runmetadata.samples)) \
if self.cpus / len(self.runmetadata.samples) > 1 \
else 1
# Use a custom sippr method to use the full reference database as bait, and run mirabait against the FASTQ
# reads - do not perform reference mapping yet
SixteenSBait(self, self.cutoff)
# Subsample 1000 reads from the FASTQ files
self.subsample()
# Convert the subsampled FASTQ files to FASTA format
self.fasta()
# Create BLAST databases if required
self.makeblastdb()
# Run BLAST analyses of the subsampled FASTA files against the NCBI 16S reference database
self.blast()
# Parse the BLAST results
self.blastparse()
# Feed the BLAST results into a modified sippr method to perform reference mapping using the calculated
# genus of the sample as the mapping file
SixteenSSipper(self, self.cutoff)
# Create reports
self.reporter() | Run the necessary methods in the correct order | entailment |
def subsample(self):
"""
Subsample 1000 reads from the baited files
"""
# Create the threads for the analysis
logging.info('Subsampling FASTQ reads')
for _ in range(self.cpus):
threads = Thread(target=self.subsamplethreads, args=())
threads.setDaemon(True)
threads.start()
with progressbar(self.runmetadata.samples) as bar:
for sample in bar:
if sample.general.bestassemblyfile != 'NA':
# Set the name of the subsampled FASTQ file
sample[self.analysistype].subsampledfastq = \
os.path.splitext(sample[self.analysistype].baitedfastq)[0] + '_subsampled.fastq'
# Set the system call
sample[self.analysistype].seqtkcall = 'reformat.sh in={} out={} samplereadstarget=1000'\
.format(sample[self.analysistype].baitedfastq,
sample[self.analysistype].subsampledfastq)
# Add the sample to the queue
self.samplequeue.put(sample)
self.samplequeue.join() | Subsample 1000 reads from the baited files | entailment |
def fasta(self):
"""
Convert the subsampled reads to FASTA format using reformat.sh
"""
logging.info('Converting FASTQ files to FASTA format')
# Create the threads for the analysis
for _ in range(self.cpus):
threads = Thread(target=self.fastathreads, args=())
threads.setDaemon(True)
threads.start()
with progressbar(self.runmetadata.samples) as bar:
for sample in bar:
if sample.general.bestassemblyfile != 'NA':
# Set the name as the FASTA file - the same as the FASTQ, but with .fa file extension
sample[self.analysistype].fasta = \
os.path.splitext(sample[self.analysistype].subsampledfastq)[0] + '.fa'
# Set the system call
sample[self.analysistype].reformatcall = 'reformat.sh in={fastq} out={fasta}'\
.format(fastq=sample[self.analysistype].subsampledfastq,
fasta=sample[self.analysistype].fasta)
# Add the sample to the queue
self.fastaqueue.put(sample)
self.fastaqueue.join() | Convert the subsampled reads to FASTA format using reformat.sh | entailment |
def makeblastdb(self):
"""
Makes blast database files from targets as necessary
"""
# Iterate through the samples to set the bait file.
for sample in self.runmetadata.samples:
if sample.general.bestassemblyfile != 'NA':
# Remove the file extension
db = os.path.splitext(sample[self.analysistype].baitfile)[0]
# Add '.nhr' for searching below
nhr = '{}.nhr'.format(db)
# Check for already existing database files
if not os.path.isfile(str(nhr)):
# Create the databases
command = 'makeblastdb -in {} -parse_seqids -max_file_sz 2GB -dbtype nucl -out {}'\
.format(sample[self.analysistype].baitfile, db)
out, err = run_subprocess(command)
write_to_logfile(command,
command,
self.logfile, sample.general.logout, sample.general.logerr,
sample[self.analysistype].logout, sample[self.analysistype].logerr)
write_to_logfile(out,
err,
self.logfile, sample.general.logout, sample.general.logerr,
sample[self.analysistype].logout, sample[self.analysistype].logerr) | Makes blast database files from targets as necessary | entailment |
def blast(self):
"""
Run BLAST analyses of the subsampled FASTQ reads against the NCBI 16S reference database
"""
logging.info('BLASTing FASTA files against {} database'.format(self.analysistype))
for _ in range(self.cpus):
threads = Thread(target=self.blastthreads, args=())
threads.setDaemon(True)
threads.start()
with progressbar(self.runmetadata.samples) as bar:
for sample in bar:
if sample.general.bestassemblyfile != 'NA':
# Set the name of the BLAST report
sample[self.analysistype].blastreport = os.path.join(
sample[self.analysistype].outputdir,
'{}_{}_blastresults.csv'.format(sample.name, self.analysistype))
# Use the NCBI BLASTn command line wrapper module from BioPython to set the parameters of the search
blastn = NcbiblastnCommandline(query=sample[self.analysistype].fasta,
db=os.path.splitext(sample[self.analysistype].baitfile)[0],
max_target_seqs=1,
num_threads=self.threads,
outfmt="'6 qseqid sseqid positive mismatch gaps evalue "
"bitscore slen length qstart qend qseq sstart send sseq'",
out=sample[self.analysistype].blastreport)
# Add a string of the command to the metadata object
sample[self.analysistype].blastcall = str(blastn)
# Add the object and the command to the BLAST queue
self.blastqueue.put((sample, blastn))
self.blastqueue.join() | Run BLAST analyses of the subsampled FASTQ reads against the NCBI 16S reference database | entailment |
def blastparse(self):
"""
Parse the blast results, and store necessary data in dictionaries in sample object
"""
logging.info('Parsing BLAST results')
# Load the NCBI 16S reference database as a dictionary
for sample in self.runmetadata.samples:
if sample.general.bestassemblyfile != 'NA':
# Load the NCBI 16S reference database as a dictionary
dbrecords = SeqIO.to_dict(SeqIO.parse(sample[self.analysistype].baitfile, 'fasta'))
# Allow for no BLAST results
if os.path.isfile(sample[self.analysistype].blastreport):
# Initialise a dictionary to store the number of times a genus is the best hit
sample[self.analysistype].frequency = dict()
# Open the sequence profile file as a dictionary
blastdict = DictReader(open(sample[self.analysistype].blastreport),
fieldnames=self.fieldnames, dialect='excel-tab')
recorddict = dict()
for record in blastdict:
# Create the subject id. It will look like this: gi|1018196593|ref|NR_136472.1|
subject = record['subject_id']
# Extract the genus name. Use the subject id as a key in the dictionary of the reference db.
# It will return the full record e.g. gi|1018196593|ref|NR_136472.1| Escherichia marmotae
# strain HT073016 16S ribosomal RNA, partial sequence
# This full description can be manipulated to extract the genus e.g. Escherichia
genus = dbrecords[subject].description.split('|')[-1].split()[0]
# Increment the number of times this genus was found, or initialise the dictionary with this
# genus the first time it is seen
try:
sample[self.analysistype].frequency[genus] += 1
except KeyError:
sample[self.analysistype].frequency[genus] = 1
try:
recorddict[dbrecords[subject].description] += 1
except KeyError:
recorddict[dbrecords[subject].description] = 1
# Sort the dictionary based on the number of times a genus is seen
sample[self.analysistype].sortedgenera = sorted(sample[self.analysistype].frequency.items(),
key=operator.itemgetter(1), reverse=True)
try:
# Extract the top result, and set it as the genus of the sample
sample[self.analysistype].genus = sample[self.analysistype].sortedgenera[0][0]
# Previous code relies on having the closest refseq genus, so set this as above
# sample.general.closestrefseqgenus = sample[self.analysistype].genus
except IndexError:
# Populate attributes with 'NA'
sample[self.analysistype].sortedgenera = 'NA'
sample[self.analysistype].genus = 'NA'
# sample.general.closestrefseqgenus = 'NA'
else:
# Populate attributes with 'NA'
sample[self.analysistype].sortedgenera = 'NA'
sample[self.analysistype].genus = 'NA'
# sample.general.closestrefseqgenus = 'NA'
else:
# Populate attributes with 'NA'
sample[self.analysistype].sortedgenera = 'NA'
sample[self.analysistype].genus = 'NA' | Parse the blast results, and store necessary data in dictionaries in sample object | entailment |
def reporter(self):
"""
Creates a report of the results
"""
# Create the path in which the reports are stored
make_path(self.reportpath)
logging.info('Creating {} report'.format(self.analysistype))
# Initialise the header and data strings
header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n'
data = ''
with open(self.sixteens_report, 'w') as report:
with open(os.path.join(self.reportpath, self.analysistype + '_sequences.fa'), 'w') as sequences:
for sample in self.runmetadata.samples:
# Initialise
sample[self.analysistype].sixteens_match = 'NA'
sample[self.analysistype].species = 'NA'
try:
# Select the best hit of all the full-length 16S genes mapped - for 16S use the hit with the
# fewest number of SNPs rather than the highest percent identity
sample[self.analysistype].besthit = sorted(sample[self.analysistype].resultssnp.items(),
key=operator.itemgetter(1))[0][0]
# Parse the baited FASTA file to pull out the the description of the hit
for record in SeqIO.parse(sample[self.analysistype].baitfile, 'fasta'):
# If the best hit e.g. gi|631251361|ref|NR_112558.1| is present in the current record,
# gi|631251361|ref|NR_112558.1| Escherichia coli strain JCM 1649 16S ribosomal RNA ...,
# extract the match and the species
if sample[self.analysistype].besthit in record.id:
# Set the best match and species from the records
sample[self.analysistype].sixteens_match = record.description.split(' 16S')[0]
sample[self.analysistype].species = \
sample[self.analysistype].sixteens_match.split('|')[-1].split()[1]
# Add the sample name to the data string
data += sample.name + ','
# Find the record that matches the best hit, and extract the necessary values to be place in the
# data string
for name, identity in sample[self.analysistype].results.items():
if name == sample[self.analysistype].besthit:
data += '{},{},{},{}\n'.format(name, identity, sample[self.analysistype].genus,
sample[self.analysistype].avgdepth[name])
# Create a FASTA-formatted sequence output of the 16S sequence
record = SeqRecord(Seq(sample[self.analysistype].sequences[name],
IUPAC.unambiguous_dna),
id='{}_{}'.format(sample.name, '16S'),
description='')
SeqIO.write(record, sequences, 'fasta')
except (AttributeError, IndexError):
data += '{}\n'.format(sample.name)
# Write the results to the report
report.write(header)
report.write(data) | Creates a report of the results | entailment |
def add_listener(self, evt_name, fn):
"""添加观察者函数。
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数
.. note::
允许一个函数多次注册,多次注册意味着一次 :func:`fire_event` 多次调用。
"""
self._listeners.setdefault(evt_name, [])
listeners = self.__get_listeners(evt_name)
listeners.append(fn) | 添加观察者函数。
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数
.. note::
允许一个函数多次注册,多次注册意味着一次 :func:`fire_event` 多次调用。 | entailment |
def remove_listener(self, evt_name, fn, remove_all=False):
"""删除观察者函数。
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数
:params remove_all: 是否删除fn在evt_name中的所有注册\n
如果为 `True`,则删除所有\n
如果为 `False`,则按注册先后顺序删除第一个\n
.. note::
允许一个函数多次注册,多次注册意味着一次时间多次调用。
"""
listeners = self.__get_listeners(evt_name)
if not self.has_listener(evt_name, fn):
raise ObservableError(
"function %r does not exist in the %r event",
fn, evt_name)
if remove_all:
listeners[:] = [i for i in listeners if i != fn]
else:
listeners.remove(fn) | 删除观察者函数。
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数
:params remove_all: 是否删除fn在evt_name中的所有注册\n
如果为 `True`,则删除所有\n
如果为 `False`,则按注册先后顺序删除第一个\n
.. note::
允许一个函数多次注册,多次注册意味着一次时间多次调用。 | entailment |
def has_listener(self, evt_name, fn):
"""指定listener是否存在
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数
"""
listeners = self.__get_listeners(evt_name)
return fn in listeners | 指定listener是否存在
:params evt_name: 事件名称
:params fn: 要注册的触发函数函数 | entailment |
def fire_event(self, evt_name, *args, **kwargs):
"""触发事件
:params evt_name: 事件名称
:params args: 给事件接受者的参数
:params kwargs: 给事件接受者的参数
"""
listeners = self.__get_listeners(evt_name)
evt = self.generate_event(evt_name)
for listener in listeners:
listener(evt, *args, **kwargs) | 触发事件
:params evt_name: 事件名称
:params args: 给事件接受者的参数
:params kwargs: 给事件接受者的参数 | entailment |
def create_server_ec2(connection,
region,
disk_name,
disk_size,
ami,
key_pair,
instance_type,
tags={},
security_groups=None,
delete_on_termination=True,
log=False,
wait_for_ssh_available=True):
"""
Creates EC2 Instance
"""
if log:
log_green("Started...")
log_yellow("...Creating EC2 instance...")
ebs_volume = EBSBlockDeviceType()
ebs_volume.size = disk_size
bdm = BlockDeviceMapping()
bdm[disk_name] = ebs_volume
# get an ec2 ami image object with our choosen ami
image = connection.get_all_images(ami)[0]
# start a new instance
reservation = image.run(1, 1,
key_name=key_pair,
security_groups=security_groups,
block_device_map=bdm,
instance_type=instance_type)
# and get our instance_id
instance = reservation.instances[0]
# and loop and wait until ssh is available
while instance.state == u'pending':
if log:
log_yellow("Instance state: %s" % instance.state)
sleep(10)
instance.update()
if log:
log_green("Instance state: %s" % instance.state)
if wait_for_ssh_available:
wait_for_ssh(instance.public_dns_name)
# update the EBS volumes to be deleted on instance termination
if delete_on_termination:
for dev, bd in instance.block_device_mapping.items():
instance.modify_attribute('BlockDeviceMapping',
["%s=%d" % (dev, 1)])
# add a tag to our instance
connection.create_tags([instance.id], tags)
if log:
log_green("Public dns: %s" % instance.public_dns_name)
# returns our new instance
return instance | Creates EC2 Instance | entailment |
def destroy_ebs_volume(connection, region, volume_id, log=False):
""" destroys an ebs volume """
if ebs_volume_exists(connection, region, volume_id):
if log:
log_yellow('destroying EBS volume ...')
try:
connection.delete_volume(volume_id)
except:
# our EBS volume may be gone, but AWS info tables are stale
# wait a bit and ask again
sleep(5)
if not ebs_volume_exists(connection, region, volume_id):
pass
else:
raise("Couldn't delete EBS volume") | destroys an ebs volume | entailment |
def destroy_ec2(connection, region, instance_id, log=False):
""" terminates the instance """
data = get_ec2_info(connection=connection,
instance_id=instance_id,
region=region)
instance = connection.terminate_instances(instance_ids=[data['id']])[0]
if log:
log_yellow('destroying instance ...')
while instance.state != "terminated":
if log:
log_yellow("Instance state: %s" % instance.state)
sleep(10)
instance.update()
volume_id = data['volume']
if volume_id:
destroy_ebs_volume(connection, region, volume_id) | terminates the instance | entailment |
def down_ec2(connection, instance_id, region, log=False):
""" shutdown of an existing EC2 instance """
# get the instance_id from the state file, and stop the instance
instance = connection.stop_instances(instance_ids=instance_id)[0]
while instance.state != "stopped":
if log:
log_yellow("Instance state: %s" % instance.state)
sleep(10)
instance.update()
if log:
log_green('Instance state: %s' % instance.state) | shutdown of an existing EC2 instance | entailment |
def ebs_volume_exists(connection, region, volume_id):
""" finds out if a ebs volume exists """
for vol in connection.get_all_volumes():
if vol.id == volume_id:
return True
return False | finds out if a ebs volume exists | entailment |
def get_ec2_info(connection,
instance_id,
region,
username=None):
""" queries EC2 for details about a particular instance_id
"""
instance = connection.get_only_instances(
filters={'instance_id': instance_id}
)[0]
data = instance.__dict__
data['state'] = instance.state
data['cloud_type'] = 'ec2'
try:
volume = connection.get_all_volumes(
filters={'attachment.instance-id': instance.id}
)[0].id
data['volume'] = volume
except:
data['volume'] = ''
return data | queries EC2 for details about a particular instance_id | entailment |
def up_ec2(connection,
region,
instance_id,
wait_for_ssh_available=True,
log=False,
timeout=600):
""" boots an existing ec2_instance """
# boot the ec2 instance
instance = connection.start_instances(instance_ids=instance_id)[0]
instance.update()
while instance.state != "running" and timeout > 1:
log_yellow("Instance state: %s" % instance.state)
if log:
log_yellow("Instance state: %s" % instance.state)
sleep(10)
timeout = timeout - 10
instance.update()
# and make sure we don't return until the instance is fully up
if wait_for_ssh_available:
wait_for_ssh(instance.ip_address) | boots an existing ec2_instance | entailment |
def apply_T4(word):
'''An agglutination diphthong that ends in /u, y/ usually contains a
syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us],
[va.ka.ut.taa].'''
WORD = word.split('.')
for i, v in enumerate(WORD):
# i % 2 != 0 prevents this rule from applying to first, third, etc.
# syllables, which receive stress (WSP)
if is_consonant(v[-1]) and i % 2 != 0:
if i + 1 == len(WORD) or is_consonant(WORD[i + 1][0]):
vv = u_or_y_final_diphthongs(v)
if vv and not is_long(vv.group(1)):
I = vv.start(1) + 1
WORD[i] = v[:I] + '.' + v[I:]
WORD = '.'.join(WORD)
RULE = ' T4' if word != WORD else ''
return WORD, RULE | An agglutination diphthong that ends in /u, y/ usually contains a
syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us],
[va.ka.ut.taa]. | entailment |
def seqs_from_file(filename, exit_on_err=False, return_qual=False):
"""Extract sequences from a file
Name:
seqs_from_file
Author(s):
Martin C F Thomsen
Date:
18 Jul 2013
Description:
Iterator which extract sequence data from the input file
Args:
filename: string which contain a path to the input file
Supported Formats:
fasta, fastq
USAGE:
>>> import os, sys
>>> # Create fasta test file
>>> file_content = ('>head1 desc1\nthis_is_seq_1\n>head2 desc2\n'
'this_is_seq_2\n>head3 desc3\nthis_is_seq_3\n')
>>> with open_('test.fsa', 'w') as f: f.write(file_content)
>>> # Parse and print the fasta file
>>> for seq, name, desc in SeqsFromFile('test.fsa'):
... print ">%s %s\n%s"%(name, desc, seq)
...
>head1 desc1
this_is_seq_1
>head2 desc2
this_is_seq_2
>head3 desc3
this_is_seq_3
"""
# VALIDATE INPUT
if not isinstance(filename, str):
msg = 'Filename has to be a string.'
if exit_on_err:
sys.stderr.write('Error: %s\n'%msg)
sys.exit(1)
else: raise IOError(msg)
if not os.path.exists(filename):
msg = 'File "%s" does not exist.'%filename
if exit_on_err:
sys.stderr.write('Error: %s\n'%msg)
sys.exit(1)
else: raise IOError(msg)
# EXTRACT DATA
with open_(filename,"rt") as f:
query_seq_segments = []
seq, name, desc, qual = '', '', '', ''
add_segment = query_seq_segments.append
for l in f:
if len(l.strip()) == 0: continue
#sys.stderr.write("%s\n"%line)
fields=l.strip().split()
if l.startswith(">"):
# FASTA HEADER FOUND
if query_seq_segments != []:
# YIELD SEQUENCE AND RESET
seq = ''.join(query_seq_segments)
yield (seq, name, desc)
seq, name, desc = '', '', ''
del query_seq_segments[:]
name = fields[0][1:]
desc = ' '.join(fields[1:])
elif l.startswith("@"):
# FASTQ HEADER FOUND
name = fields[0][1:]
desc = ' '.join(fields[1:])
try:
# EXTRACT FASTQ SEQUENCE
seq = next(f).strip().split()[0]
# SKIP SECOND HEADER LINE AND QUALITY SCORES
l = next(f)
qual = next(f).strip() # Qualities
except:
break
else:
# YIELD SEQUENCE AND RESET
if return_qual:
yield (seq, qual, name, desc)
else:
yield (seq, name, desc)
seq, name, desc, qual = '', '', '', ''
elif len(fields[0])>0:
# EXTRACT FASTA SEQUENCE
add_segment(fields[0])
# CHECK FOR LAST FASTA SEQUENCE
if query_seq_segments != []:
# YIELD SEQUENCE
seq = ''.join(query_seq_segments)
yield (seq, name, desc) | Extract sequences from a file
Name:
seqs_from_file
Author(s):
Martin C F Thomsen
Date:
18 Jul 2013
Description:
Iterator which extract sequence data from the input file
Args:
filename: string which contain a path to the input file
Supported Formats:
fasta, fastq
USAGE:
>>> import os, sys
>>> # Create fasta test file
>>> file_content = ('>head1 desc1\nthis_is_seq_1\n>head2 desc2\n'
'this_is_seq_2\n>head3 desc3\nthis_is_seq_3\n')
>>> with open_('test.fsa', 'w') as f: f.write(file_content)
>>> # Parse and print the fasta file
>>> for seq, name, desc in SeqsFromFile('test.fsa'):
... print ">%s %s\n%s"%(name, desc, seq)
...
>head1 desc1
this_is_seq_1
>head2 desc2
this_is_seq_2
>head3 desc3
this_is_seq_3 | entailment |
def open_(filename, mode=None, compresslevel=9):
"""Switch for both open() and gzip.open().
Determines if the file is normal or gzipped by looking at the file
extension.
The filename argument is required; mode defaults to 'rb' for gzip and 'r'
for normal and compresslevel defaults to 9 for gzip.
>>> import gzip
>>> from contextlib import closing
>>> with open_(filename) as f:
... f.read()
"""
if filename[-3:] == '.gz':
if mode is None: mode = 'rt'
return closing(gzip.open(filename, mode, compresslevel))
else:
if mode is None: mode = 'r'
return open(filename, mode) | Switch for both open() and gzip.open().
Determines if the file is normal or gzipped by looking at the file
extension.
The filename argument is required; mode defaults to 'rb' for gzip and 'r'
for normal and compresslevel defaults to 9 for gzip.
>>> import gzip
>>> from contextlib import closing
>>> with open_(filename) as f:
... f.read() | entailment |
def load_json(json_object):
''' Load json from file or file name '''
content = None
if isinstance(json_object, str) and os.path.exists(json_object):
with open_(json_object) as f:
try:
content = json.load(f)
except Exception as e:
debug.log("Warning: Content of '%s' file is not json."%f.name)
elif hasattr(json_object, 'read'):
try:
content = json.load(json_object)
except Exception as e:
debug.log("Warning: Content of '%s' file is not json."%json_object.name)
else:
debug.log("%s\nWarning: Object type invalid!"%json_object)
return content | Load json from file or file name | entailment |
def sort2groups(array, gpat=['_R1','_R2']):
""" Sort an array of strings to groups by patterns """
groups = [REGroup(gp) for gp in gpat]
unmatched = []
for item in array:
matched = False
for m in groups:
if m.match(item):
matched = True
break
if not matched: unmatched.append(item)
return [sorted(m.list) for m in groups], sorted(unmatched) | Sort an array of strings to groups by patterns | entailment |
def sort_and_distribute(array, splits=2):
""" Sort an array of strings to groups by alphabetically continuous
distribution
"""
if not isinstance(array, (list,tuple)): raise TypeError("array must be a list")
if not isinstance(splits, int): raise TypeError("splits must be an integer")
remaining = sorted(array)
if sys.version_info < (3, 0):
myrange = xrange(splits)
else:
myrange = range(splits)
groups = [[] for i in myrange]
while len(remaining) > 0:
for i in myrange:
if len(remaining) > 0: groups[i].append(remaining.pop(0))
return groups | Sort an array of strings to groups by alphabetically continuous
distribution | entailment |
def mkpath(filepath, permissions=0o777):
""" This function executes a mkdir command for filepath and with permissions
(octal number with leading 0 or string only)
# eg. mkpath("path/to/file", "0o775")
"""
# Converting string of octal to integer, if string is given.
if isinstance(permissions, str):
permissions = sum([int(x)*8**i for i,x in enumerate(reversed(permissions))])
# Creating directory
if not os.path.exists(filepath):
debug.log("Creating Directory %s (permissions: %s)"%(
filepath, permissions))
os.makedirs(filepath, permissions)
else:
debug.log("Warning: The directory "+ filepath +" already exists")
return filepath | This function executes a mkdir command for filepath and with permissions
(octal number with leading 0 or string only)
# eg. mkpath("path/to/file", "0o775") | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.