sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def property_set( prop, instance, value, **kwargs ): """Wrapper for property writes which auto-deferences Refs. prop A Ref (which gets dereferenced and the target value set). instance The context object used to dereference the Ref. value The value to set the property to. Throws AttributeError if prop is not a Ref. """ if isinstance( prop, Ref ): return prop.set( instance, value, **kwargs ) raise AttributeError( "can't change value of constant {} (context: {})".format( prop, instance ) )
Wrapper for property writes which auto-deferences Refs. prop A Ref (which gets dereferenced and the target value set). instance The context object used to dereference the Ref. value The value to set the property to. Throws AttributeError if prop is not a Ref.
entailment
def view_property( prop ): """Wrapper for attributes of a View class which auto-dereferences Refs. Equivalent to setting a property on the class with the getter wrapped with property_get(), and the setter wrapped with property_set(). prop A string containing the name of the class attribute to wrap. """ def getter( self ): return property_get( getattr( self, prop ), self.parent ) def setter( self, value ): return property_set( getattr( self, prop ), self.parent, value ) return property( getter, setter )
Wrapper for attributes of a View class which auto-dereferences Refs. Equivalent to setting a property on the class with the getter wrapped with property_get(), and the setter wrapped with property_set(). prop A string containing the name of the class attribute to wrap.
entailment
def get( self, instance, **kwargs ): """Return an attribute from an object using the Ref path. instance The object instance to traverse. """ target = instance for attr in self._path: target = getattr( target, attr ) return target
Return an attribute from an object using the Ref path. instance The object instance to traverse.
entailment
def set( self, instance, value, **kwargs ): """Set an attribute on an object using the Ref path. instance The object instance to traverse. value The value to set. Throws AttributeError if allow_write is False. """ if not self._allow_write: raise AttributeError( "can't set Ref directly, allow_write is disabled" ) target = instance for attr in self._path[:-1]: target = getattr( target, attr ) setattr( target, self._path[-1], value ) return
Set an attribute on an object using the Ref path. instance The object instance to traverse. value The value to set. Throws AttributeError if allow_write is False.
entailment
def traverse_until_fixpoint(predicate, tree): """Traverses the tree again and again until it is not modified.""" old_tree = None tree = simplify(tree) while tree and old_tree != tree: old_tree = tree tree = tree.traverse(predicate) if not tree: return None tree = simplify(tree) return tree
Traverses the tree again and again until it is not modified.
entailment
def runner(self): """ Run the necessary methods in the correct order """ logging.info('Starting {} analysis pipeline'.format(self.analysistype)) # Initialise the GenObject for sample in self.runmetadata.samples: setattr(sample, self.analysistype, GenObject()) try: sample[self.analysistype].pointfindergenus = self.pointfinder_org_dict[sample.general.referencegenus] except KeyError: sample[self.analysistype].pointfindergenus = 'ND' # Run the raw read mapping PointSipping(inputobject=self, cutoff=self.cutoff) # Create FASTA files from the raw read matcves self.fasta() # Run PointFinder on the FASTA files self.run_pointfinder() # Create summary reports of the PointFinder outputs self.parse_pointfinder()
Run the necessary methods in the correct order
entailment
def fasta(self): """ Create FASTA files of the PointFinder results to be fed into PointFinder """ logging.info('Extracting FASTA sequences matching PointFinder database') for sample in self.runmetadata.samples: # Ensure that there are sequence data to extract from the GenObject if GenObject.isattr(sample[self.analysistype], 'sequences'): # Set the name of the FASTA file sample[self.analysistype].pointfinderfasta = \ os.path.join(sample[self.analysistype].outputdir, '{seqid}_pointfinder.fasta'.format(seqid=sample.name)) # Create a list to store all the SeqRecords created sequences = list() with open(sample[self.analysistype].pointfinderfasta, 'w') as fasta: for gene, sequence in sample[self.analysistype].sequences.items(): # Create a SeqRecord using a Seq() of the sequence - both SeqRecord and Seq are from BioPython seq = SeqRecord(seq=Seq(sequence), id=gene, name=str(), description=str()) sequences.append(seq) # Write all the SeqRecords to file SeqIO.write(sequences, fasta, 'fasta')
Create FASTA files of the PointFinder results to be fed into PointFinder
entailment
def run_pointfinder(self): """ Run PointFinder on the FASTA sequences extracted from the raw reads """ logging.info('Running PointFinder on FASTA files') for i in range(len(self.runmetadata.samples)): # Start threads threads = Thread(target=self.pointfinder_threads, args=()) # Set the daemon to True - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() # PointFinder requires the path to the blastn executable blast_path = shutil.which('blastn') for sample in self.runmetadata.samples: # Ensure that the attribute storing the name of the FASTA file has been created if GenObject.isattr(sample[self.analysistype], 'pointfinderfasta'): sample[self.analysistype].pointfinder_outputs = os.path.join(sample[self.analysistype].outputdir, 'pointfinder_outputs') # Don't run the analyses if the outputs have already been created if not os.path.isfile(os.path.join(sample[self.analysistype].pointfinder_outputs, '{samplename}_blastn_results.tsv'.format(samplename=sample.name))): make_path(sample[self.analysistype].pointfinder_outputs) # Create and run the PointFinder system call pointfinder_cmd = \ 'python -m pointfinder.PointFinder -i {input} -s {species} -p {db_path} -m blastn ' \ '-o {output_dir} -m_p {blast_path}'\ .format(input=sample[self.analysistype].pointfinderfasta, species=sample[self.analysistype].pointfindergenus, db_path=self.targetpath, output_dir=sample[self.analysistype].pointfinder_outputs, blast_path=blast_path) self.queue.put(pointfinder_cmd) self.queue.join()
Run PointFinder on the FASTA sequences extracted from the raw reads
entailment
def populate_summary_dict(self, genus=str(), key=str()): """ :param genus: Non-supported genus to be added to the dictionary :param key: section of dictionary to be populated. Supported keys are: prediction, table, and results Populate self.summary_dict as required. If the genus is not provided, populate the dictionary for Salmonella Escherichia and Campylobacter. If the genus is provided, this genus is non-standard, and an 'empty' profile must be created for it """ # If the genus is not provided, generate the generic dictionary if not genus: # Populate the summary dict self.summary_dict = { 'Salmonella': { 'prediction': { 'header': 'Strain,Colitsin,Colistin,Spectinomycin,Quinolones,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Salmonella_prediction_summary.csv') }, 'table': { 'header': 'Strain,parE,parC,gyrA,pmrB,pmrA,gyrB,16S_rrsD,23S,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Salmonella_table_summary.csv') }, 'results': { 'header': 'Strain,Genus,Mutation,NucleotideChange,AminoAcidChange,Resistance,PMID,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'PointFinder_results_summary.csv') } }, 'Escherichia': { 'prediction': { 'header': 'Strain,Colistin,GentamicinC,gentamicinC,Streptomycin,Macrolide,Sulfonamide,' 'Tobramycin,Neomycin,Fluoroquinolones,Aminocoumarin,Tetracycline,KanamycinA,' 'Spectinomycin,B-lactamResistance,Paromomycin,Kasugamicin,Quinolones,G418,' 'QuinolonesAndfluoroquinolones,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Escherichia_prediction_summary.csv') }, 'table': { 'header': 'Strain,parE,parC,folP,gyrA,pmrB,pmrA,16S_rrsB,16S_rrsH,gyrB,ampC,' '16S_rrsC,23S,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Escherichia_table_summary.csv') }, 'results': { 'header': 'Strain,Genus,Mutation,NucleotideChange,AminoAcidChange,Resistance,PMID,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'PointFinder_results_summary.csv') } }, 'Campylobacter': { 'prediction': { 'header': 'Strain,LowLevelIncreaseMIC,AssociatedWithT86Mutations,Macrolide,Quinolone,' 'Streptinomycin,Erythromycin,IntermediateResistance,HighLevelResistance_' 'nalidixic_and_ciprofloxacin,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Campylobacter_prediction_summary.csv') }, 'table': { 'header': 'Strain,L22,rpsL,cmeR,gyrA,23S,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'Campylobacter_table_summary.csv') }, 'results': { 'header': 'Strain,Genus,Mutation,NucleotideChange,AminoAcidChange,Resistance,PMID,\n', 'output': str(), 'summary': os.path.join(self.reportpath, 'PointFinder_results_summary.csv') } } } else: # Create the nesting structure as required if genus not in self.summary_dict: self.summary_dict[genus] = dict() if key not in self.summary_dict[genus]: self.summary_dict[genus][key] = dict() # The output section is the same regardless of the key self.summary_dict[genus][key]['output'] = str() # The results report is more generic, and contains all strains, so the header and summary are set to # the default values required to generate this report if key == 'results': self.summary_dict[genus][key]['header'] = \ 'Strain,Genus,Mutation,NucleotideChange,AminoAcidChange,Resistance,PMID,\n' self.summary_dict[genus][key]['summary'] = \ os.path.join(self.reportpath, 'PointFinder_results_summary.csv') # Create an empty header, and a report with the genus name else: self.summary_dict[genus][key]['header'] = 'Strain,\n' self.summary_dict[genus][key]['summary'] = os.path.join(self.reportpath, '{genus}_{key}_summary.csv' .format(genus=genus, key=key)) # Remove the report if it exists, as the script will append data to this existing report if os.path.isfile(self.summary_dict[genus][key]['summary']): os.remove(self.summary_dict[genus][key]['summary'])
:param genus: Non-supported genus to be added to the dictionary :param key: section of dictionary to be populated. Supported keys are: prediction, table, and results Populate self.summary_dict as required. If the genus is not provided, populate the dictionary for Salmonella Escherichia and Campylobacter. If the genus is provided, this genus is non-standard, and an 'empty' profile must be created for it
entailment
def parse_pointfinder(self): """ Create summary reports for the PointFinder outputs """ # Create the nested dictionary that stores the necessary values for creating summary reports self.populate_summary_dict() # Clear out any previous reports for organism in self.summary_dict: for report in self.summary_dict[organism]: try: os.remove(self.summary_dict[organism][report]['summary']) except FileNotFoundError: pass for sample in self.runmetadata.samples: # Find the PointFinder outputs. If the outputs don't exist, create the appropriate entries in the # summary dictionary as required try: self.summary_dict[sample.general.referencegenus]['prediction']['output'] = \ glob(os.path.join(sample[self.analysistype].pointfinder_outputs, '{seq}*prediction.txt' .format(seq=sample.name)))[0] except IndexError: try: self.summary_dict[sample.general.referencegenus]['prediction']['output'] = str() except KeyError: self.populate_summary_dict(genus=sample.general.referencegenus, key='prediction') try: self.summary_dict[sample.general.referencegenus]['table']['output'] = \ glob(os.path.join(sample[self.analysistype].pointfinder_outputs, '{seq}*table.txt' .format(seq=sample.name)))[0] except IndexError: try: self.summary_dict[sample.general.referencegenus]['table']['output'] = str() except KeyError: self.populate_summary_dict(genus=sample.general.referencegenus, key='table') try: self.summary_dict[sample.general.referencegenus]['results']['output'] = \ glob(os.path.join(sample[self.analysistype].pointfinder_outputs, '{seq}*results.tsv' .format(seq=sample.name)))[0] except IndexError: try: self.summary_dict[sample.general.referencegenus]['results']['output'] = str() except KeyError: self.populate_summary_dict(genus=sample.general.referencegenus, key='results') # Process the predictions self.write_report(summary_dict=self.summary_dict, seqid=sample.name, genus=sample.general.referencegenus, key='prediction') # Process the results summary self.write_report(summary_dict=self.summary_dict, seqid=sample.name, genus=sample.general.referencegenus, key='results') # Process the table summary self.write_table_report(summary_dict=self.summary_dict, seqid=sample.name, genus=sample.general.referencegenus)
Create summary reports for the PointFinder outputs
entailment
def write_report(summary_dict, seqid, genus, key): """ Parse the PointFinder outputs, and write the summary report for the current analysis type :param summary_dict: nested dictionary containing data such as header strings, and paths to reports :param seqid: name of the strain, :param genus: MASH-calculated genus of current isolate :param key: current result type. Options are 'prediction', and 'results' """ # Set the header string if the summary report doesn't already exist if not os.path.isfile(summary_dict[genus][key]['summary']): header_string = summary_dict[genus][key]['header'] else: header_string = str() summary_string = str() try: # Read in the predictions with open(summary_dict[genus][key]['output'], 'r') as outputs: # Skip the header next(outputs) for line in outputs: # Skip empty lines if line != '\n': # When processing the results outputs, add the seqid to the summary string if key == 'results': summary_string += '{seq},{genus},'.format(seq=seqid, genus=genus) # Clean up the string before adding it to the summary string - replace commas # with semi-colons, and replace tabs with commas summary_string += line.replace(',', ';').replace('\t', ',') # Ensure that there were results to report if summary_string: if not summary_string.endswith('\n'): summary_string += '\n' else: if key == 'results': summary_string += '{seq},{genus}\n'.format(seq=seqid, genus=genus) else: summary_string += '{seq}\n'.format(seq=seqid) # Write the summaries to the summary file with open(summary_dict[genus][key]['summary'], 'a+') as summary: # Write the header if necessary if header_string: summary.write(header_string) summary.write(summary_string) # Add the strain information If no FASTA file could be created by reference mapping except FileNotFoundError: # Extract the length of the header from the dictionary. Subtract two (don't need the strain, or the # empty column created by a trailing comma header_len = len(summary_dict[genus][key]['header'].split(',')) - 2 # When processing the results outputs, add the seqid to the summary string if key == 'results': summary_string += '{seq},{genus}\n'.format(seq=seqid, genus=genus) # For the prediction summary, populate the summary string with the appropriate number of comma-separated # '0' entries elif key == 'prediction': summary_string += '{seq}{empty}\n'.format(seq=seqid, empty=',0' * header_len) # Write the summaries to the summary file with open(summary_dict[genus][key]['summary'], 'a+') as summary: # Write the header if necessary if header_string: summary.write(header_string) summary.write(summary_string)
Parse the PointFinder outputs, and write the summary report for the current analysis type :param summary_dict: nested dictionary containing data such as header strings, and paths to reports :param seqid: name of the strain, :param genus: MASH-calculated genus of current isolate :param key: current result type. Options are 'prediction', and 'results'
entailment
def write_table_report(summary_dict, seqid, genus): """ Parse the PointFinder table output, and write a summary report :param summary_dict: nested dictionary containing data such as header strings, and paths to reports :param seqid: name of the strain, :param genus: MASH-calculated genus of current isolate """ # Set the header string if the summary report doesn't already exist if not os.path.isfile(summary_dict[genus]['table']['summary']): header_string = summary_dict[genus]['table']['header'] else: header_string = str() summary_string = '{seq},'.format(seq=seqid) try: # Read in the predictions with open(summary_dict[genus]['table']['output'], 'r') as outputs: for header_value in summary_dict[genus]['table']['header'].split(',')[:-1]: for line in outputs: if line.startswith('{hv}\n'.format(hv=header_value)): # Iterate through the lines following the match for subline in outputs: if subline != '\n': if subline.startswith('Mutation'): for detailline in outputs: if detailline != '\n': summary_string += '{},'.format(detailline.split('\t')[0]) else: break else: summary_string += '{},'.format( subline.replace(',', ';').replace('\t', ',').rstrip()) break else: break break # Reset the file iterator to the first line in preparation for the next header outputs.seek(0) # Ensure that there were results to report if summary_string: if not summary_string.endswith('\n'): summary_string += '\n' # Write the summaries to the summary file with open(summary_dict[genus]['table']['summary'], 'a+') as summary: # Write the header if necessary if header_string: summary.write(header_string) summary.write(summary_string) except FileNotFoundError: # Write the summaries to the summary file with open(summary_dict[genus]['table']['summary'], 'a+') as summary: # Extract the length of the header from the dictionary. Subtract two (don't need the strain, or the # empty column created by a trailing comma header_len = len(summary_dict[genus]['table']['header'].split(',')) - 2 # Populate the summary strain with the appropriate number of comma-separated 'Gene not found' entries summary_string += '{empty}\n'.format(empty='Gene not found,' * header_len) # Write the header if necessary if header_string: summary.write(header_string) summary.write(summary_string)
Parse the PointFinder table output, and write a summary report :param summary_dict: nested dictionary containing data such as header strings, and paths to reports :param seqid: name of the strain, :param genus: MASH-calculated genus of current isolate
entailment
def targets(self): """ Search the targets folder for FASTA files, create the multi-FASTA file of all targets if necessary, and populate objects """ logging.info('Performing analysis with {} targets folder'.format(self.analysistype)) for sample in self.runmetadata: sample[self.analysistype].runanalysis = True sample[self.analysistype].targetpath = (os.path.join(self.targetpath, sample[self.analysistype].pointfindergenus)) # There is a relatively strict databasing scheme necessary for the custom targets. Eventually, # there will be a helper script to combine individual files into a properly formatted combined file try: sample[self.analysistype].baitfile = glob(os.path.join(sample[self.analysistype].targetpath, '*.fasta'))[0] # If the fasta file is missing, raise a custom error except IndexError: # Combine any .tfa files in the directory into a combined targets .fasta file fsafiles = glob(os.path.join(sample[self.analysistype].targetpath, '*.fsa')) if fsafiles: combinetargets(fsafiles, sample[self.analysistype].targetpath) try: sample[self.analysistype].baitfile = glob(os.path.join(sample[self.analysistype].targetpath, '*.fasta'))[0] except IndexError as e: # noinspection PyPropertyAccess e.args = [ 'Cannot find the combined fasta file in {}. Please note that the file must have a ' '.fasta extension'.format(sample[self.analysistype].targetpath)] if os.path.isdir(sample[self.analysistype].targetpath): raise else: sample[self.analysistype].runanalysis = False for sample in self.runmetadata: # Set the necessary attributes sample[self.analysistype].outputdir = os.path.join(sample.run.outputdirectory, self.analysistype) make_path(sample[self.analysistype].outputdir) sample[self.analysistype].logout = os.path.join(sample[self.analysistype].outputdir, 'logout.txt') sample[self.analysistype].logerr = os.path.join(sample[self.analysistype].outputdir, 'logerr.txt') sample[self.analysistype].baitedfastq = \ os.path.join(sample[self.analysistype].outputdir, '{at}_targetMatches.fastq.gz'.format(at=self.analysistype))
Search the targets folder for FASTA files, create the multi-FASTA file of all targets if necessary, and populate objects
entailment
def strains(self): """ Create a dictionary of SEQID: OLNID from the supplied """ with open(os.path.join(self.path, 'strains.csv')) as strains: next(strains) for line in strains: oln, seqid = line.split(',') self.straindict[oln] = seqid.rstrip() self.strainset.add(oln) logging.debug(oln) if self.debug: break
Create a dictionary of SEQID: OLNID from the supplied
entailment
def sequence_prep(self): """ Create metadata objects for all PacBio assembly FASTA files in the sequencepath. Create individual subdirectories for each sample. Relative symlink the original FASTA file to the appropriate subdirectory """ # Create a sorted list of all the FASTA files in the sequence path strains = sorted(glob(os.path.join(self.fastapath, '*.fa*'.format(self.fastapath)))) for sample in strains: # Create the object metadata = MetadataObject() # Set the sample name to be the file name of the sequence by removing the path and file extension sample_name = os.path.splitext(os.path.basename(sample))[0] if sample_name in self.strainset: # Extract the OLNID from the dictionary using the SEQID samplename = self.straindict[sample_name] # samplename = sample_name # Set and create the output directory outputdir = os.path.join(self.path, samplename) make_path(outputdir) # Set the name of the JSON file json_metadata = os.path.join(outputdir, '{name}.json'.format(name=samplename)) if not os.path.isfile(json_metadata): # Create the name and output directory attributes metadata.name = samplename metadata.seqid = sample_name metadata.outputdir = outputdir metadata.jsonfile = json_metadata # Set the name of the FASTA file to use in the analyses metadata.bestassemblyfile = os.path.join(metadata.outputdir, '{name}.fasta'.format(name=metadata.name)) # Symlink the original file to the output directory relative_symlink(sample, outputdir, '{sn}.fasta'.format(sn=metadata.name)) # Associate the corresponding FASTQ files with the assembly metadata.fastqfiles = sorted(glob(os.path.join(self.fastqpath, '{name}*.gz'.format(name=metadata.name)))) metadata.forward_fastq, metadata.reverse_fastq = metadata.fastqfiles # Write the object to file self.write_json(metadata) else: metadata = self.read_json(json_metadata) # Add the metadata object to the list of objects self.metadata.append(metadata)
Create metadata objects for all PacBio assembly FASTA files in the sequencepath. Create individual subdirectories for each sample. Relative symlink the original FASTA file to the appropriate subdirectory
entailment
def write_json(metadata): """ Write the metadata object to file :param metadata: Metadata object """ # Open the metadata file to write with open(metadata.jsonfile, 'w') as metadatafile: # Write the json dump of the object dump to the metadata file json.dump(metadata.dump(), metadatafile, sort_keys=True, indent=4, separators=(',', ': '))
Write the metadata object to file :param metadata: Metadata object
entailment
def read_json(json_metadata): """ Read the metadata object from file :param json_metadata: Path and file name of JSON-formatted metadata object file :return: metadata object """ # Load the metadata object from the file with open(json_metadata) as metadatareport: jsondata = json.load(metadatareport) # Create the metadata objects metadata = MetadataObject() # Initialise the metadata categories as GenObjects created using the appropriate key for attr in jsondata: if not isinstance(jsondata[attr], dict): setattr(metadata, attr, jsondata[attr]) else: setattr(metadata, attr, GenObject(jsondata[attr])) return metadata
Read the metadata object from file :param json_metadata: Path and file name of JSON-formatted metadata object file :return: metadata object
entailment
def assembly_length(self): """ Use SeqIO.parse to extract the total number of bases in each assembly file """ for sample in self.metadata: # Only determine the assembly length if is has not been previously calculated if not GenObject.isattr(sample, 'assembly_length'): # Create the assembly_length attribute, and set it to 0 sample.assembly_length = 0 for record in SeqIO.parse(sample.bestassemblyfile, 'fasta'): # Update the assembly_length attribute with the length of the current contig sample.assembly_length += len(record.seq) # Write the updated object to file self.write_json(sample)
Use SeqIO.parse to extract the total number of bases in each assembly file
entailment
def simulate_reads(self): """ Use the PacBio assembly FASTA files to generate simulated reads of appropriate forward and reverse lengths at different depths of sequencing using randomreads.sh from the bbtools suite """ logging.info('Read simulation') for sample in self.metadata: # Create the simulated_reads GenObject sample.simulated_reads = GenObject() # Iterate through all the desired depths of coverage for depth in self.read_depths: # Create the depth GenObject setattr(sample.simulated_reads, depth, GenObject()) # Set the depth and output directory attributes for the depth GenObject sample.simulated_reads[depth].depth = depth sample.simulated_reads[depth].depth_dir = os.path.join(sample.outputdir, 'simulated', depth) # Create the output directory make_path(sample.simulated_reads[depth].depth_dir) # Iterate through all the desired forward and reverse read pair lengths for read_pair in self.read_lengths: # Create the read_pair GenObject within the depth GenObject setattr(sample.simulated_reads[depth], read_pair, GenObject()) # Set and create the output directory sample.simulated_reads[depth][read_pair].outputdir = \ os.path.join(sample.simulated_reads[depth].depth_dir, read_pair) make_path(sample.simulated_reads[depth][read_pair].outputdir) # Create both forward_reads and reverse_reads sub-GenObjects sample.simulated_reads[depth][read_pair].forward_reads = GenObject() sample.simulated_reads[depth][read_pair].reverse_reads = GenObject() # Extract the forward and reverse reads lengths from the read_pair variable sample.simulated_reads[depth][read_pair].forward_reads.length, \ sample.simulated_reads[depth][read_pair].reverse_reads.length = read_pair.split('_') # Set the name of the forward reads - include the depth and read length information sample.simulated_reads[depth][read_pair].forward_reads.fastq = \ os.path.join(sample.simulated_reads[depth][read_pair].outputdir, '{name}_{depth}_{read_pair}_R1.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Reverse reads sample.simulated_reads[depth][read_pair].reverse_reads.fastq = \ os.path.join(sample.simulated_reads[depth][read_pair].outputdir, '{name}_{depth}_{read_pair}_R2.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Create the trimmed output directory attribute sample.simulated_reads[depth][read_pair].simulated_trimmed_outputdir \ = os.path.join(sample.simulated_reads[depth][read_pair].outputdir, 'simulated_trimmed') # Set the name of the forward trimmed reads - include the depth and read length information # This is set now, as the untrimmed files will be removed, and a check is necessary sample.simulated_reads[depth][read_pair].forward_reads.trimmed_simulated_fastq = \ os.path.join(sample.simulated_reads[depth][read_pair].simulated_trimmed_outputdir, '{name}_simulated_{depth}_{read_pair}_R1.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Reverse reads sample.simulated_reads[depth][read_pair].reverse_reads.trimmed_simulated_fastq = \ os.path.join(sample.simulated_reads[depth][read_pair].simulated_trimmed_outputdir, '{name}_simulated_{depth}_{read_pair}_R2.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Calculate the number of reads required for the forward and reverse reads to yield the # desired coverage depth e.g. 5Mbp genome at 20X coverage: 100Mbp in reads. 50bp forward reads # 150bp reverse reads: forward proportion is 50 / (150 + 50) = 0.25 (and reverse is 0.75). # Forward total reads is 25Mbp (75Mbp reverse). Number of reads required = 25Mbp / 50 bp # 500000 reads total (same for reverse, as the reads are longer) sample.simulated_reads[depth][read_pair].num_reads = \ int(sample.assembly_length * int(depth) * (int(sample.simulated_reads[depth][read_pair].forward_reads.length) / (int(sample.simulated_reads[depth][read_pair].forward_reads.length) + int(sample.simulated_reads[depth][read_pair].reverse_reads.length) ) ) / int(sample.simulated_reads[depth][read_pair].forward_reads.length) ) logging.info( 'Simulating {num_reads} paired reads for sample {name} with the following parameters:\n' 'depth {dp}, forward reads {fl}bp, and reverse reads {rl}bp' .format(num_reads=sample.simulated_reads[depth][read_pair].num_reads, dp=depth, name=sample.name, fl=sample.simulated_reads[depth][read_pair].forward_reads.length, rl=sample.simulated_reads[depth][read_pair].reverse_reads.length)) # If the reverse reads are set to 0, supply different parameters to randomreads if sample.simulated_reads[depth][read_pair].reverse_reads.length != '0': # Ensure that both the simulated reads, and the trimmed simulated reads files don't # exist before simulating the reads if not os.path.isfile(sample.simulated_reads[depth][read_pair].forward_reads.fastq) and \ not os.path.isfile( sample.simulated_reads[depth][read_pair].forward_reads.trimmed_simulated_fastq): # Use the randomreads method in the OLCTools bbtools wrapper to simulate the reads out, \ err, \ sample.simulated_reads[depth][read_pair].forward_reads.simulate_call = bbtools\ .randomreads(reference=sample.bestassemblyfile, length=sample.simulated_reads[depth][read_pair].reverse_reads.length, reads=sample.simulated_reads[depth][read_pair].num_reads, out_fastq=sample.simulated_reads[depth][read_pair].forward_reads.fastq, paired=True, returncmd=True, **{'ziplevel': '9', 'illuminanames': 't', 'Xmx': self.mem} ) else: try: forward_size = os.path.getsize(sample.simulated_reads[depth][read_pair] .forward_reads.fastq) except FileNotFoundError: forward_size = 0 try: reverse_size = os.path.getsize(sample.simulated_reads[depth][read_pair] .reverse_reads.fastq) except FileNotFoundError: reverse_size = 0 if forward_size <= 100 or reverse_size <= 100: try: os.remove(sample.simulated_reads[depth][read_pair].forward_reads.fastq) except FileNotFoundError: pass try: os.remove(sample.simulated_reads[depth][read_pair].reverse_reads.fastq) except FileNotFoundError: pass # Use the randomreads method in the OLCTools bbtools wrapper to simulate the reads out, \ err, \ sample.simulated_reads[depth][read_pair].forward_reads.simulate_call = bbtools \ .randomreads(reference=sample.bestassemblyfile, length=sample.simulated_reads[depth][read_pair].reverse_reads.length, reads=sample.simulated_reads[depth][read_pair].num_reads, out_fastq=sample.simulated_reads[depth][read_pair].forward_reads.fastq, paired=True, returncmd=True, **{'ziplevel': '9', 'illuminanames': 't'} ) else: if not os.path.isfile(sample.simulated_reads[depth][read_pair].forward_reads.fastq): # Use the randomreads method in the OLCTools bbtools wrapper to simulate the reads out, \ err, \ sample.simulated_reads[depth][read_pair].forward_reads.simulate_call = bbtools\ .randomreads(reference=sample.bestassemblyfile, length=sample.simulated_reads[depth][read_pair].forward_reads.length, reads=sample.simulated_reads[depth][read_pair].num_reads, out_fastq=sample.simulated_reads[depth][read_pair].forward_reads.fastq, paired=False, returncmd=True, **{'ziplevel': '9', 'illuminanames': 't'} ) # Update the JSON file self.write_json(sample)
Use the PacBio assembly FASTA files to generate simulated reads of appropriate forward and reverse lengths at different depths of sequencing using randomreads.sh from the bbtools suite
entailment
def read_length_adjust(self, analysistype): """ Trim the reads to the correct length using reformat.sh :param analysistype: current analysis type. Will be either 'simulated' or 'sampled' """ logging.info('Trimming {at} reads'.format(at=analysistype)) for sample in self.metadata: # Iterate through all the desired depths of coverage for depth in self.read_depths: for read_pair in self.read_lengths: # Create variables using the analysis type. These will be used in setting GenObject attributes read_type = '{at}_reads'.format(at=analysistype) fastq_type = 'trimmed_{at}_fastq'.format(at=analysistype) logging.info( 'Trimming forward {at} reads for sample {name} at depth {depth} to length {length}' .format(at=analysistype, name=sample.name, depth=depth, length=sample[read_type][depth][read_pair].forward_reads.length)) # Create the output path if necessary make_path(os.path.dirname(sample[read_type][depth][read_pair].forward_reads[fastq_type])) if sample[read_type][depth][read_pair].reverse_reads.length != '0': # Use the reformat method in the OLCTools bbtools wrapper to trim the reads out, \ err, \ sample[read_type][depth][read_pair].forward_reads.sample_call = bbtools \ .reformat_reads(forward_in=sample[read_type][depth][read_pair].forward_reads.fastq, reverse_in=None, forward_out=sample[read_type][depth][read_pair].forward_reads[fastq_type], returncmd=True, **{'ziplevel': '9', 'forcetrimright': sample[read_type][depth][read_pair].forward_reads.length, 'tossbrokenreads': 't', 'tossjunk': 't', 'Xmx': self.mem } ) # # Remove the untrimmed reads # try: # os.remove(sample[read_type][depth][read_pair].forward_reads.fastq) # except FileNotFoundError: # pass else: # If the files do not need to be trimmed, create a symlink to the original file relative_symlink(sample[read_type][depth][read_pair].forward_reads.fastq, os.path.dirname(sample[read_type][depth][read_pair]. forward_reads[fastq_type]), os.path.basename(sample[read_type][depth][read_pair]. forward_reads[fastq_type]) ) # Same as above, but for the reverse reads logging.info( 'Trimming reverse {at} reads for sample {name} at depth {depth} to length {length}' .format(at=analysistype, name=sample.name, depth=depth, length=sample[read_type][depth][read_pair].reverse_reads.length)) if sample[read_type][depth][read_pair].reverse_reads.length != '0': # Use the reformat method in the OLCTools bbtools wrapper to trim the reads out, \ err, \ sample[read_type][depth][read_pair].reverse_reads.sample_call = bbtools \ .reformat_reads(forward_in=sample[read_type][depth][read_pair].reverse_reads.fastq, reverse_in=None, forward_out=sample[read_type][depth][read_pair].reverse_reads[fastq_type], returncmd=True, **{'ziplevel': '9', 'forcetrimright': sample[read_type][depth][read_pair].reverse_reads.length, 'tossbrokenreads': 't', 'tossjunk': 't', 'Xmx': self.mem }) # # Remove the untrimmed reads # try: # os.remove(sample[read_type][depth][read_pair].reverse_reads.fastq) # except FileNotFoundError: # pass # Update the JSON file self.write_json(sample)
Trim the reads to the correct length using reformat.sh :param analysistype: current analysis type. Will be either 'simulated' or 'sampled'
entailment
def read_quality_trim(self): """ Perform quality trim, and toss reads below appropriate thresholds """ logging.info('Quality trim') for sample in self.metadata: sample.sampled_reads = GenObject() sample.sampled_reads.outputdir = os.path.join(sample.outputdir, 'sampled') sample.sampled_reads.trimmed_dir = os.path.join(sample.sampled_reads.outputdir, 'qualitytrimmed_reads') make_path(sample.sampled_reads.trimmed_dir) for depth in self.read_depths: # Create the depth GenObject setattr(sample.sampled_reads, depth, GenObject()) # Set the depth and output directory attributes for the depth GenObject sample.sampled_reads[depth].depth = depth sample.sampled_reads[depth].depth_dir = os.path.join(sample.sampled_reads.outputdir, depth) # Create the output directory make_path(sample.sampled_reads[depth].depth_dir) for read_pair in self.read_lengths: # Create the read_pair GenObject within the depth GenObject setattr(sample.sampled_reads[depth], read_pair, GenObject()) # Set and create the output directory sample.sampled_reads[depth][read_pair].outputdir = \ os.path.join(sample.sampled_reads[depth].depth_dir, read_pair) make_path(sample.sampled_reads[depth][read_pair].outputdir) # Create both forward_reads and reverse_reads sub-GenObjects sample.sampled_reads[depth][read_pair].forward_reads = GenObject() sample.sampled_reads[depth][read_pair].reverse_reads = GenObject() sample.sampled_reads[depth][read_pair].trimmed_dir = \ os.path.join(sample.sampled_reads.trimmed_dir, read_pair) make_path(sample.sampled_reads[depth][read_pair].trimmed_dir) # Extract the forward and reverse reads lengths from the read_pair variable sample.sampled_reads[depth][read_pair].forward_reads.length, \ sample.sampled_reads[depth][read_pair].reverse_reads.length = read_pair.split('_') logging.info('Performing quality trimming on reads from sample {name} at depth {depth} ' 'for minimum read length {forward}' .format(name=sample.name, depth=depth, forward=sample.sampled_reads[depth][read_pair].forward_reads.length)) # Set the attributes for the trimmed forward and reverse reads to use for subsampling sample.sampled_reads[depth][read_pair].trimmed_forwardfastq = \ os.path.join(sample.sampled_reads[depth][read_pair].trimmed_dir, '{name}_{length}_R1.fastq.gz' .format(name=sample.name, length=sample.sampled_reads[depth][read_pair].forward_reads.length)) sample.sampled_reads[depth][read_pair].trimmed_reversefastq = \ os.path.join(sample.sampled_reads[depth][read_pair].trimmed_dir, '{name}_{length}_R2.fastq.gz' .format(name=sample.name, length=sample.sampled_reads[depth][read_pair].forward_reads.length)) # Create the trimmed output directory attribute sample.sampled_reads[depth][read_pair].sampled_trimmed_outputdir \ = os.path.join(sample.sampled_reads[depth][read_pair].outputdir, 'sampled_trimmed') # Set the name of the forward trimmed reads - include the depth and read length information # This is set now, as the untrimmed files will be removed, and a check is necessary sample.sampled_reads[depth][read_pair].forward_reads.trimmed_sampled_fastq = \ os.path.join(sample.sampled_reads[depth][read_pair].sampled_trimmed_outputdir, '{name}_sampled_{depth}_{read_pair}_R1.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Reverse reads sample.sampled_reads[depth][read_pair].reverse_reads.trimmed_sampled_fastq = \ os.path.join(sample.sampled_reads[depth][read_pair].sampled_trimmed_outputdir, '{name}_sampled_{depth}_{read_pair}_R2.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Sample if the forward output file does not already exist if not os.path.isfile(sample.sampled_reads[depth][read_pair].trimmed_forwardfastq) and \ not os.path.isfile( sample.sampled_reads[depth][read_pair].forward_reads.trimmed_sampled_fastq): out, \ err, \ sample.sampled_reads[depth][read_pair].sample_cmd = \ bbtools.bbduk_trim(forward_in=sample.forward_fastq, forward_out=sample.sampled_reads[depth][read_pair] .trimmed_forwardfastq, reverse_in=sample.reverse_fastq, reverse_out=sample.sampled_reads[depth][read_pair] .trimmed_reversefastq, minlength=sample.sampled_reads[depth][read_pair] .forward_reads.length, forcetrimleft=0, returncmd=True, **{'ziplevel': '9', 'Xmx': self.mem}) # Update the JSON file self.write_json(sample)
Perform quality trim, and toss reads below appropriate thresholds
entailment
def sample_reads(self): """ For each PacBio assembly, sample reads from corresponding FASTQ files for appropriate forward and reverse lengths and sequencing depths using reformat.sh from the bbtools suite """ logging.info('Read sampling') for sample in self.metadata: # Iterate through all the desired depths of coverage for depth in self.read_depths: for read_pair in self.read_lengths: # Set the name of the output directory sample.sampled_reads[depth][read_pair].sampled_outputdir \ = os.path.join(sample.sampled_reads[depth][read_pair].outputdir, 'sampled') # Set the name of the forward reads - include the depth and read length information sample.sampled_reads[depth][read_pair].forward_reads.fastq = \ os.path.join(sample.sampled_reads[depth][read_pair].sampled_outputdir, '{name}_{depth}_{read_pair}_R1.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) # Reverse reads sample.sampled_reads[depth][read_pair].reverse_reads.fastq = \ os.path.join(sample.sampled_reads[depth][read_pair].sampled_outputdir, '{name}_{depth}_{read_pair}_R2.fastq.gz' .format(name=sample.name, depth=depth, read_pair=read_pair)) logging.info( 'Sampling {num_reads} paired reads for sample {name} with the following parameters:\n' 'depth {dp}, forward reads {fl}bp, and reverse reads {rl}bp' .format(num_reads=sample.simulated_reads[depth][read_pair].num_reads, dp=depth, name=sample.name, fl=sample.sampled_reads[depth][read_pair].forward_reads.length, rl=sample.sampled_reads[depth][read_pair].reverse_reads.length)) # Use the reformat method in the OLCTools bbtools wrapper # Note that upsample=t is used to ensure that the target number of reads (samplereadstarget) is met if not os.path.isfile(sample.sampled_reads[depth][read_pair].forward_reads.trimmed_sampled_fastq): out, \ err, \ sample.sampled_reads[depth][read_pair].sample_call = bbtools \ .reformat_reads(forward_in=sample.sampled_reads[depth][read_pair].trimmed_forwardfastq, reverse_in=sample.sampled_reads[depth][read_pair].trimmed_reversefastq, forward_out=sample.sampled_reads[depth][read_pair].forward_reads.fastq, reverse_out=sample.sampled_reads[depth][read_pair].reverse_reads.fastq, returncmd=True, **{'samplereadstarget': sample.simulated_reads[depth][read_pair].num_reads, 'upsample': 't', 'minlength': sample.sampled_reads[depth][read_pair].forward_reads.length, 'ziplevel': '9', 'tossbrokenreads': 't', 'tossjunk': 't', 'Xmx': self.mem } ) # # Remove the trimmed reads, as they are no longer necessary # try: # os.remove(sample.sampled_reads[depth][read_pair].trimmed_forwardfastq) # os.remove(sample.sampled_reads[depth][read_pair].trimmed_reversefastq) # except FileNotFoundError: # pass # Update the JSON file self.write_json(sample)
For each PacBio assembly, sample reads from corresponding FASTQ files for appropriate forward and reverse lengths and sequencing depths using reformat.sh from the bbtools suite
entailment
def link_reads(self, analysistype): """ Create folders with relative symlinks to the desired simulated/sampled reads. These folders will contain all the reads created for each sample, and will be processed with GeneSippr and COWBAT pipelines :param analysistype: Current analysis type. Will either be 'simulated' or 'sampled' """ logging.info('Linking {at} reads'.format(at=analysistype)) for sample in self.metadata: # Create the output directories genesippr_dir = os.path.join(self.path, 'genesippr', sample.name) sample.genesippr_dir = genesippr_dir make_path(genesippr_dir) cowbat_dir = os.path.join(self.path, 'cowbat', sample.name) sample.cowbat_dir = cowbat_dir make_path(cowbat_dir) # Iterate through all the desired depths of coverage for depth in self.read_depths: for read_pair in self.read_lengths: # Create variables using the analysis type. These will be used in setting GenObject attributes read_type = '{at}_reads'.format(at=analysistype) fastq_type = 'trimmed_{at}_fastq'.format(at=analysistype) # Link reads to both output directories for output_dir in [genesippr_dir, cowbat_dir]: # If the original reads are shorter than the specified read length, the FASTQ files will exist, # but will be empty. Do not create links for these files size = os.path.getsize(sample[read_type][depth][read_pair].forward_reads[fastq_type]) if size > 20: # Create relative symlinks to the FASTQ files - use the relative path from the desired # output directory to the read storage path e.g. # ../../2013-SEQ-0072/simulated/40/50_150/simulated_trimmed/2013-SEQ-0072_simulated_40_50_150_R1.fastq.gz # is the relative path to the output_dir. The link name is the base name of the reads # joined to the desired output directory e.g. # output_dir/2013-SEQ-0072/2013-SEQ-0072_simulated_40_50_150_R1.fastq.gz relative_symlink(sample[read_type][depth][read_pair].forward_reads[fastq_type], output_dir) # Original FASTQ files relative_symlink(sample.forward_fastq, output_dir) relative_symlink(sample.reverse_fastq, output_dir) # Reverse reads try: size = os.path.getsize(sample[read_type][depth][read_pair].reverse_reads[fastq_type]) if size > 20: relative_symlink(sample[read_type][depth][read_pair].reverse_reads[fastq_type], output_dir) except FileNotFoundError: pass
Create folders with relative symlinks to the desired simulated/sampled reads. These folders will contain all the reads created for each sample, and will be processed with GeneSippr and COWBAT pipelines :param analysistype: Current analysis type. Will either be 'simulated' or 'sampled'
entailment
def run_genesippr(self): """ Run GeneSippr on each of the samples """ from pathlib import Path home = str(Path.home()) logging.info('GeneSippr') # These unfortunate hard coded paths appear to be necessary miniconda_path = os.path.join(home, 'miniconda3') miniconda_path = miniconda_path if os.path.isdir(miniconda_path) else os.path.join(home, 'miniconda') logging.debug(miniconda_path) activate = 'source {mp}/bin/activate {mp}/envs/sipprverse'.format(mp=miniconda_path) sippr_path = '{mp}/envs/sipprverse/bin/sippr.py'.format(mp=miniconda_path) for sample in self.metadata: logging.info(sample.name) # Run the pipeline. Check to make sure that the serosippr report, which is created last doesn't exist if not os.path.isfile(os.path.join(sample.genesippr_dir, 'reports', 'genesippr.csv')): cmd = 'python {py_path} -o {outpath} -s {seqpath} -r {refpath} -F'\ .format(py_path=sippr_path, outpath=sample.genesippr_dir, seqpath=sample.genesippr_dir, refpath=self.referencefilepath ) logging.critical(cmd) # Create another shell script to execute within the PlasmidExtractor conda environment template = "#!/bin/bash\n{activate} && {cmd}".format(activate=activate, cmd=cmd) genesippr_script = os.path.join(sample.genesippr_dir, 'run_genesippr.sh') with open(genesippr_script, 'w+') as file: file.write(template) # Modify the permissions of the script to allow it to be run on the node self.make_executable(genesippr_script) # Run shell script os.system('/bin/bash {}'.format(genesippr_script))
Run GeneSippr on each of the samples
entailment
def set_level(self, level): """ Set the logging level of this logger. :param level: must be an int or a str. """ for handler in self.__coloredlogs_handlers: handler.setLevel(level=level) self.logger.setLevel(level=level)
Set the logging level of this logger. :param level: must be an int or a str.
entailment
def disable_logger(self, disabled=True): """ Disable all logging calls. """ # Disable standard IO streams if disabled: sys.stdout = _original_stdout sys.stderr = _original_stderr else: sys.stdout = self.__stdout_stream sys.stderr = self.__stderr_stream # Disable handlers self.logger.disabled = disabled
Disable all logging calls.
entailment
def redirect_stdout(self, enabled=True, log_level=logging.INFO): """ Redirect sys.stdout to file-like object. """ if enabled: if self.__stdout_wrapper: self.__stdout_wrapper.update_log_level(log_level=log_level) else: self.__stdout_wrapper = StdOutWrapper(logger=self, log_level=log_level) self.__stdout_stream = self.__stdout_wrapper else: self.__stdout_stream = _original_stdout # Assign the new stream to sys.stdout sys.stdout = self.__stdout_stream
Redirect sys.stdout to file-like object.
entailment
def redirect_stderr(self, enabled=True, log_level=logging.ERROR): """ Redirect sys.stderr to file-like object. """ if enabled: if self.__stderr_wrapper: self.__stderr_wrapper.update_log_level(log_level=log_level) else: self.__stderr_wrapper = StdErrWrapper(logger=self, log_level=log_level) self.__stderr_stream = self.__stderr_wrapper else: self.__stderr_stream = _original_stderr # Assign the new stream to sys.stderr sys.stderr = self.__stderr_stream
Redirect sys.stderr to file-like object.
entailment
def use_file(self, enabled=True, file_name=None, level=logging.WARNING, when='d', interval=1, backup_count=30, delay=False, utc=False, at_time=None, log_format=None, date_format=None): """ Handler for logging to a file, rotating the log file at certain timed intervals. """ if enabled: if not self.__file_handler: assert file_name, 'File name is missing!' # Create new TimedRotatingFileHandler instance kwargs = { 'filename': file_name, 'when': when, 'interval': interval, 'backupCount': backup_count, 'encoding': 'UTF-8', 'delay': delay, 'utc': utc, } if sys.version_info[0] >= 3: kwargs['atTime'] = at_time self.__file_handler = TimedRotatingFileHandler(**kwargs) # Use this format for default case if not log_format: log_format = '%(asctime)s %(name)s[%(process)d] ' \ '%(programname)s/%(module)s/%(funcName)s[%(lineno)d] ' \ '%(levelname)s %(message)s' # Set formatter formatter = logging.Formatter(fmt=log_format, datefmt=date_format) self.__file_handler.setFormatter(fmt=formatter) # Set level for this handler self.__file_handler.setLevel(level=level) # Add this handler to logger self.add_handler(hdlr=self.__file_handler) elif self.__file_handler: # Remove handler from logger self.remove_handler(hdlr=self.__file_handler) self.__file_handler = None
Handler for logging to a file, rotating the log file at certain timed intervals.
entailment
def use_loggly(self, enabled=True, loggly_token=None, loggly_tag=None, level=logging.WARNING, log_format=None, date_format=None): """ Enable handler for sending the record to Loggly service. """ if enabled: if not self.__loggly_handler: assert loggly_token, 'Loggly token is missing!' # Use logger name for default Loggly tag if not loggly_tag: loggly_tag = self.name # Create new LogglyHandler instance self.__loggly_handler = LogglyHandler(token=loggly_token, tag=loggly_tag) # Use this format for default case if not log_format: log_format = '{"name":"%(name)s","process":"%(process)d",' \ '"levelname":"%(levelname)s","time":"%(asctime)s",' \ '"filename":"%(filename)s","programname":"%(programname)s",' \ '"module":"%(module)s","funcName":"%(funcName)s",' \ '"lineno":"%(lineno)d","message":"%(message)s"}' # Set formatter formatter = logging.Formatter(fmt=log_format, datefmt=date_format) self.__loggly_handler.setFormatter(fmt=formatter) # Set level for this handler self.__loggly_handler.setLevel(level=level) # Add this handler to logger self.add_handler(hdlr=self.__loggly_handler) elif self.__loggly_handler: # Remove handler from logger self.remove_handler(hdlr=self.__loggly_handler) self.__loggly_handler = None
Enable handler for sending the record to Loggly service.
entailment
def __find_caller(stack_info=False): """ Find the stack frame of the caller so that we can note the source file name, line number and function name. """ frame = logging.currentframe() # On some versions of IronPython, currentframe() returns None if # IronPython isn't run with -X:Frames. if frame: frame = frame.f_back caller_info = '(unknown file)', 0, '(unknown function)', None while hasattr(frame, 'f_code'): co = frame.f_code if _logone_src in os.path.normcase(co.co_filename): frame = frame.f_back continue tb_info = None if stack_info: with StringIO() as _buffer: _buffer.write('Traceback (most recent call last):\n') traceback.print_stack(frame, file=_buffer) tb_info = _buffer.getvalue().strip() caller_info = co.co_filename, frame.f_lineno, co.co_name, tb_info break return caller_info
Find the stack frame of the caller so that we can note the source file name, line number and function name.
entailment
def _log(self, level, msg, *args, **kwargs): """ Log 'msg % args' with the integer severity 'level'. To pass exception information, use the keyword argument exc_info with a true value, e.g. logger.log(level, "We have a %s", "mysterious problem", exc_info=1) """ if not isinstance(level, int): if logging.raiseExceptions: raise TypeError('Level must be an integer!') else: return if self.logger.isEnabledFor(level=level): """ Low-level logging routine which creates a LogRecord and then calls all the handlers of this logger to handle the record. """ exc_info = kwargs.get('exc_info', None) extra = kwargs.get('extra', None) stack_info = kwargs.get('stack_info', False) record_filter = kwargs.get('record_filter', None) tb_info = None if _logone_src: # IronPython doesn't track Python frames, so findCaller raises an # exception on some versions of IronPython. We trap it here so that # IronPython can use logging. try: fn, lno, func, tb_info = self.__find_caller(stack_info=stack_info) except ValueError: # pragma: no cover fn, lno, func = '(unknown file)', 0, '(unknown function)' else: # pragma: no cover fn, lno, func = '(unknown file)', 0, '(unknown function)' if exc_info: if sys.version_info[0] >= 3: if isinstance(exc_info, BaseException): # noinspection PyUnresolvedReferences exc_info = type(exc_info), exc_info, exc_info.__traceback__ elif not isinstance(exc_info, tuple): exc_info = sys.exc_info() else: if not isinstance(exc_info, tuple): exc_info = sys.exc_info() if sys.version_info[0] >= 3: # noinspection PyArgumentList record = self.logger.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra, tb_info) else: record = self.logger.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra) if record_filter: record = record_filter(record) self.logger.handle(record=record)
Log 'msg % args' with the integer severity 'level'. To pass exception information, use the keyword argument exc_info with a true value, e.g. logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
entailment
def flush(self): """ Flush the buffer, if applicable. """ if self.__buffer.tell() > 0: # Write the buffer to log # noinspection PyProtectedMember self.__logger._log(level=self.__log_level, msg=self.__buffer.getvalue().strip(), record_filter=StdErrWrapper.__filter_record) # Remove the old buffer self.__buffer.truncate(0) self.__buffer.seek(0)
Flush the buffer, if applicable.
entailment
def syllabify(word): '''Syllabify the given word, whether simplex or complex.''' compound = bool(re.search(r'(-| |=)', word)) syllabify = _syllabify_compound if compound else _syllabify syllabifications = list(syllabify(word)) for syll, rules in syllabifications: yield syll, rules n = 16 - len(syllabifications) # yield empty syllabifications and rules for i in range(n): yield '', ''
Syllabify the given word, whether simplex or complex.
entailment
def apply_T4(word): '''An agglutination diphthong that ends in /u, y/ optionally contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].''' WORD = word.split('.') PARTS = [[] for part in range(len(WORD))] for i, v in enumerate(WORD): # i % 2 != 0 prevents this rule from applying to first, third, etc. # syllables, which receive stress (WSP) if is_consonant(v[-1]) and i % 2 != 0: if i + 1 == len(WORD) or is_consonant(WORD[i + 1][0]): vv = u_y_final_diphthongs(v) if vv: I = vv.start(1) + 1 PARTS[i].append(v[:I] + '.' + v[I:]) # include original form (non-application of rule) PARTS[i].append(v) WORDS = [w for w in product(*PARTS)] for WORD in WORDS: WORD = '.'.join(WORD) RULE = ' T4' if word != WORD else '' yield WORD, RULE
An agglutination diphthong that ends in /u, y/ optionally contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].
entailment
def setup(product_name): """Setup logging.""" if CONF.log_config: _load_log_config(CONF.log_config) else: _setup_logging_from_conf() sys.excepthook = _create_logging_excepthook(product_name)
Setup logging.
entailment
def format(self, record): """Uses contextstring if request_id is set, otherwise default.""" # NOTE(sdague): default the fancier formating params # to an empty string so we don't throw an exception if # they get used for key in ('instance', 'color'): if key not in record.__dict__: record.__dict__[key] = '' if record.__dict__.get('request_id', None): self._fmt = CONF.logging_context_format_string else: self._fmt = CONF.logging_default_format_string if (record.levelno == logging.DEBUG and CONF.logging_debug_format_suffix): self._fmt += " " + CONF.logging_debug_format_suffix # Cache this on the record, Logger will respect our formated copy if record.exc_info: record.exc_text = self.formatException(record.exc_info, record) return logging.Formatter.format(self, record)
Uses contextstring if request_id is set, otherwise default.
entailment
def formatException(self, exc_info, record=None): """Format exception output with CONF.logging_exception_prefix.""" if not record: return logging.Formatter.formatException(self, exc_info) stringbuffer = cStringIO.StringIO() traceback.print_exception(exc_info[0], exc_info[1], exc_info[2], None, stringbuffer) lines = stringbuffer.getvalue().split('\n') stringbuffer.close() if CONF.logging_exception_prefix.find('%(asctime)') != -1: record.asctime = self.formatTime(record, self.datefmt) formatted_lines = [] for line in lines: pl = CONF.logging_exception_prefix % record.__dict__ fl = '%s%s' % (pl, line) formatted_lines.append(fl) return '\n'.join(formatted_lines)
Format exception output with CONF.logging_exception_prefix.
entailment
def _set_boutons_interface(self, buttons): """Display buttons given by the list of tuples (id,function,description,is_active)""" for id_action, f, d, is_active in buttons: icon = self.get_icon(id_action) action = self.addAction(QIcon(icon), d) action.setEnabled(is_active) action.triggered.connect(f)
Display buttons given by the list of tuples (id,function,description,is_active)
entailment
def set_interface(self, interface): """Add update toolbar callback to the interface""" self.interface = interface self.interface.callbacks.update_toolbar = self._update self._update()
Add update toolbar callback to the interface
entailment
def _update(self): """Update the display of button after querying data from interface""" self.clear() self._set_boutons_communs() if self.interface: self.addSeparator() l_actions = self.interface.get_actions_toolbar() self._set_boutons_interface(l_actions)
Update the display of button after querying data from interface
entailment
def init_login(self, from_local=False): """Display login screen. May ask for local data loading if from_local is True.""" if self.toolbar: self.removeToolBar(self.toolbar) widget_login = login.Loading(self.statusBar(), self.theory_main) self.centralWidget().addWidget(widget_login) widget_login.loaded.connect(self.init_tabs) widget_login.canceled.connect(self._quit) widget_login.updated.connect(self.on_update_at_launch) if from_local: widget_login.propose_load_local() else: self.statusBar().showMessage("Données chargées depuis le serveur.", 5000)
Display login screen. May ask for local data loading if from_local is True.
entailment
def make_response(self, status, content_type, response): """Shortcut for making a response to the client's request.""" headers = [('Access-Control-Allow-Origin', '*'), ('Access-Control-Allow-Methods', 'GET, POST, OPTIONS'), ('Access-Control-Allow-Headers', 'Content-Type'), ('Access-Control-Max-Age', '86400'), ('Content-type', content_type) ] self.start_response(status, headers) return [response.encode()]
Shortcut for making a response to the client's request.
entailment
def process_request(self, request): """Processes a request.""" try: request = Request.from_json(request.read().decode()) except ValueError: raise ClientError('Data is not valid JSON.') except KeyError: raise ClientError('Missing mandatory field in request object.') except AttributeNotProvided as exc: raise ClientError('Attribute not provided: %s.' % exc.args[0]) (start_wall_time, start_process_time) = self._get_times() answers = self.router_class(request).answer() self._add_times_to_answers(answers, start_wall_time, start_process_time) answers = [x.as_dict() for x in answers] return self.make_response('200 OK', 'application/json', json.dumps(answers) )
Processes a request.
entailment
def on_post(self): """Extracts the request, feeds the module, and returns the response.""" request = self.environ['wsgi.input'] try: return self.process_request(request) except ClientError as exc: return self.on_client_error(exc) except BadGateway as exc: return self.on_bad_gateway(exc) except InvalidConfig: raise except Exception as exc: # pragma: no cover # pylint: disable=W0703 logging.error('Unknown exception: ', exc_info=exc) return self.on_internal_error()
Extracts the request, feeds the module, and returns the response.
entailment
def dispatch(self): """Handles dispatching of the request.""" method_name = 'on_' + self.environ['REQUEST_METHOD'].lower() method = getattr(self, method_name, None) if method: return method() else: return self.on_bad_method()
Handles dispatching of the request.
entailment
def sync(self): """Sync this model with latest data on the saltant server. Note that in addition to returning the updated object, it also updates the existing object. Returns: :class:`saltant.models.user.User`: This user instance after syncing. """ self = self.manager.get(username=self.username) return self
Sync this model with latest data on the saltant server. Note that in addition to returning the updated object, it also updates the existing object. Returns: :class:`saltant.models.user.User`: This user instance after syncing.
entailment
def serialised( self ): """Tuple containing the contents of the Block.""" klass = self.__class__ return ((klass.__module__, klass.__name__), tuple( (name, field.serialise( self._field_data[name], parent=self ) ) for name, field in klass._fields.items()))
Tuple containing the contents of the Block.
entailment
def clone_data( self, source ): """Clone data from another Block. source Block instance to copy from. """ klass = self.__class__ assert isinstance( source, klass ) for name in klass._fields: self._field_data[name] = getattr( source, name )
Clone data from another Block. source Block instance to copy from.
entailment
def import_data( self, raw_buffer ): """Import data from a byte array. raw_buffer Byte array to import from. """ klass = self.__class__ if raw_buffer: assert common.is_bytes( raw_buffer ) # raw_buffer = memoryview( raw_buffer ) self._field_data = {} for name in klass._fields: if raw_buffer: self._field_data[name] = klass._fields[name].get_from_buffer( raw_buffer, parent=self ) else: self._field_data[name] = klass._fields[name].default if raw_buffer: for name, check in klass._checks.items(): check.check_buffer( raw_buffer, parent=self ) # if we have debug logging on, check the roundtrip works if logger.isEnabledFor( logging.INFO ): test = self.export_data() if logger.getEffectiveLevel() <= logging.DEBUG: logger.debug( 'Stats for {}:'.format( self ) ) logger.debug( 'Import buffer size: {}'.format( len( raw_buffer ) ) ) logger.debug( 'Export size: {}'.format( len( test ) ) ) if test == raw_buffer: logger.debug( 'Content: exact match!' ) elif test == raw_buffer[:len( test )]: logger.debug( 'Content: partial match!' ) else: logger.debug( 'Content: different!' ) for x in utils.hexdump_diff_iter( raw_buffer[:len( test )], test ): logger.debug( x ) elif test != raw_buffer[:len( test )]: logger.info( '{} export produced changed output from import'.format( self ) ) # if raw_buffer: # raw_buffer.release() return
Import data from a byte array. raw_buffer Byte array to import from.
entailment
def export_data( self ): """Export data to a byte array.""" klass = self.__class__ output = bytearray( b'\x00'*self.get_size() ) # prevalidate all data before export. # this is important to ensure that any dependent fields # are updated beforehand, e.g. a count referenced # in a BlockField queue = [] for name in klass._fields: self.scrub_field( name ) self.validate_field( name ) self.update_deps() for name in klass._fields: klass._fields[name].update_buffer_with_value( self._field_data[name], output, parent=self ) for name, check in klass._checks.items(): check.update_buffer( output, parent=self ) return output
Export data to a byte array.
entailment
def update_deps( self ): """Update dependencies on all the fields on this Block instance.""" klass = self.__class__ for name in klass._fields: self.update_deps_on_field( name ) return
Update dependencies on all the fields on this Block instance.
entailment
def validate( self ): """Validate all the fields on this Block instance.""" klass = self.__class__ for name in klass._fields: self.validate_field( name ) return
Validate all the fields on this Block instance.
entailment
def get_size( self ): """Get the projected size (in bytes) of the exported data from this Block instance.""" klass = self.__class__ size = 0 for name in klass._fields: size = max( size, klass._fields[name].get_end_offset( self._field_data[name], parent=self ) ) for check in klass._checks.values(): size = max( size, check.get_end_offset( parent=self ) ) return size
Get the projected size (in bytes) of the exported data from this Block instance.
entailment
def save(self, path, compressed=True, exist_ok=False): """ Save the GADDAG to file. Args: path: path to save the GADDAG to. compressed: compress the saved GADDAG using gzip. exist_ok: overwrite existing file at `path`. """ path = os.path.expandvars(os.path.expanduser(path)) if os.path.isfile(path) and not exist_ok: raise OSError(17, os.strerror(17), path) if os.path.isdir(path): path = os.path.join(path, "out.gdg") if compressed: bytes_written = cgaddag.gdg_save_compressed(self.gdg, path.encode("ascii")) else: bytes_written = cgaddag.gdg_save(self.gdg, path.encode("ascii")) if bytes_written == -1: errno = ctypes.c_int.in_dll(ctypes.pythonapi, "errno").value raise OSError(errno, os.strerror(errno), path) return bytes_written
Save the GADDAG to file. Args: path: path to save the GADDAG to. compressed: compress the saved GADDAG using gzip. exist_ok: overwrite existing file at `path`.
entailment
def load(self, path): """ Load a GADDAG from file, replacing the words currently in this GADDAG. Args: path: path to saved GADDAG to be loaded. """ path = os.path.expandvars(os.path.expanduser(path)) gdg = cgaddag.gdg_load(path.encode("ascii")) if not gdg: errno = ctypes.c_int.in_dll(ctypes.pythonapi, "errno").value raise OSError(errno, os.strerror(errno), path) self.__del__() self.gdg = gdg.contents
Load a GADDAG from file, replacing the words currently in this GADDAG. Args: path: path to saved GADDAG to be loaded.
entailment
def starts_with(self, prefix): """ Find all words starting with a prefix. Args: prefix: A prefix to be searched for. Returns: A list of all words found. """ prefix = prefix.lower() found_words = [] res = cgaddag.gdg_starts_with(self.gdg, prefix.encode(encoding="ascii")) tmp = res while tmp: word = tmp.contents.str.decode("ascii") found_words.append(word) tmp = tmp.contents.next cgaddag.gdg_destroy_result(res) return found_words
Find all words starting with a prefix. Args: prefix: A prefix to be searched for. Returns: A list of all words found.
entailment
def contains(self, sub): """ Find all words containing a substring. Args: sub: A substring to be searched for. Returns: A list of all words found. """ sub = sub.lower() found_words = set() res = cgaddag.gdg_contains(self.gdg, sub.encode(encoding="ascii")) tmp = res while tmp: word = tmp.contents.str.decode("ascii") found_words.add(word) tmp = tmp.contents.next cgaddag.gdg_destroy_result(res) return list(found_words)
Find all words containing a substring. Args: sub: A substring to be searched for. Returns: A list of all words found.
entailment
def ends_with(self, suffix): """ Find all words ending with a suffix. Args: suffix: A suffix to be searched for. Returns: A list of all words found. """ suffix = suffix.lower() found_words = [] res = cgaddag.gdg_ends_with(self.gdg, suffix.encode(encoding="ascii")) tmp = res while tmp: word = tmp.contents.str.decode("ascii") found_words.append(word) tmp = tmp.contents.next cgaddag.gdg_destroy_result(res) return found_words
Find all words ending with a suffix. Args: suffix: A suffix to be searched for. Returns: A list of all words found.
entailment
def add_word(self, word): """ Add a word to the GADDAG. Args: word: A word to be added to the GADDAG. """ word = word.lower() if not (word.isascii() and word.isalpha()): raise ValueError("Invalid character in word '{}'".format(word)) word = word.encode(encoding="ascii") result = cgaddag.gdg_add_word(self.gdg, word) if result == 1: raise ValueError("Invalid character in word '{}'".format(word)) elif result == 2: raise MemoryError("Out of memory, GADDAG is in an undefined state")
Add a word to the GADDAG. Args: word: A word to be added to the GADDAG.
entailment
def formatLog(source="", level="", title="", data={}): """ Similar to format, but takes additional reserved params to promote logging best-practices :param level - severity of message - how bad is it? :param source - application context - where did it come from? :param title - brief description - what kind of event happened? :param data - additional information - what details help to investigate? """ # consistently output empty string for unset params, because null values differ by language source = "" if source is None else source level = "" if level is None else level title = "" if title is None else title if not type(data) is dict: data = {} data['source'] = source data['level'] = level data['title'] = title return format(data)
Similar to format, but takes additional reserved params to promote logging best-practices :param level - severity of message - how bad is it? :param source - application context - where did it come from? :param title - brief description - what kind of event happened? :param data - additional information - what details help to investigate?
entailment
def put(self): """Updates this task type on the saltant server. Returns: :class:`saltant.models.container_task_type.ContainerTaskType`: A task type model instance representing the task type just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, command_to_run=self.command_to_run, environment_variables=self.environment_variables, required_arguments=self.required_arguments, required_arguments_default_values=( self.required_arguments_default_values ), logs_path=self.logs_path, results_path=self.results_path, container_image=self.container_image, container_type=self.container_type, )
Updates this task type on the saltant server. Returns: :class:`saltant.models.container_task_type.ContainerTaskType`: A task type model instance representing the task type just updated.
entailment
def create( self, name, command_to_run, container_image, container_type, description="", logs_path="", results_path="", environment_variables=None, required_arguments=None, required_arguments_default_values=None, extra_data_to_post=None, ): """Create a container task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. container_image (str): The container name and tag. For example, ubuntu:14.04 for Docker; and docker://ubuntu:14:04 or shub://vsoch/hello-world for Singularity. container_type (str): The type of the container. description (str, optional): The description of the task type. logs_path (str, optional): The path of the logs directory inside the container. results_path (str, optional): The path of the results directory inside the container. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the task's required arguments. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.container_task_type.ContainerTaskType`: A container task type model instance representing the task type just created. """ # Add in extra data specific to container task types if extra_data_to_post is None: extra_data_to_post = {} extra_data_to_post.update( { "container_image": container_image, "container_type": container_type, "logs_path": logs_path, "results_path": results_path, } ) # Call the parent create function return super(ContainerTaskTypeManager, self).create( name=name, command_to_run=command_to_run, description=description, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=required_arguments_default_values, extra_data_to_post=extra_data_to_post, )
Create a container task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. container_image (str): The container name and tag. For example, ubuntu:14.04 for Docker; and docker://ubuntu:14:04 or shub://vsoch/hello-world for Singularity. container_type (str): The type of the container. description (str, optional): The description of the task type. logs_path (str, optional): The path of the logs directory inside the container. results_path (str, optional): The path of the results directory inside the container. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the task's required arguments. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.container_task_type.ContainerTaskType`: A container task type model instance representing the task type just created.
entailment
def put( self, id, name, description, command_to_run, environment_variables, required_arguments, required_arguments_default_values, logs_path, results_path, container_image, container_type, extra_data_to_put=None, ): """Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. logs_path (str): The path of the logs directory inside the container. results_path (str): The path of the results directory inside the container. container_image (str): The container name and tag. For example, ubuntu:14.04 for Docker; and docker://ubuntu:14:04 or shub://vsoch/hello-world for Singularity. container_type (str): The type of the container. """ # Add in extra data specific to container task types if extra_data_to_put is None: extra_data_to_put = {} extra_data_to_put.update( { "logs_path": logs_path, "results_path": results_path, "container_image": container_image, "container_type": container_type, } ) # Call the parent create function return super(ContainerTaskTypeManager, self).put( id=id, name=name, description=description, command_to_run=command_to_run, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=( required_arguments_default_values ), extra_data_to_put=extra_data_to_put, )
Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. logs_path (str): The path of the logs directory inside the container. results_path (str): The path of the results directory inside the container. container_image (str): The container name and tag. For example, ubuntu:14.04 for Docker; and docker://ubuntu:14:04 or shub://vsoch/hello-world for Singularity. container_type (str): The type of the container.
entailment
def _strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', '0' and ''. Raises ValueError if 'val' is anything else. """ val = val.lower() if val in ('y', 'yes', 't', 'true', 'on', '1'): return 1 elif val in ('n', 'no', 'f', 'false', 'off', '0', ''): return 0 else: raise ValueError('Invalid truth value: {0}'.format(val))
Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', '0' and ''. Raises ValueError if 'val' is anything else.
entailment
def _str_to_list(value, separator): """Convert a string to a list with sanitization.""" value_list = [item.strip() for item in value.split(separator)] value_list_sanitized = builtins.list(filter(None, value_list)) if len(value_list_sanitized) > 0: return value_list_sanitized else: raise ValueError('Invalid list variable.')
Convert a string to a list with sanitization.
entailment
def write(name, value): """Write a raw env value. A ``None`` value clears the environment variable. Args: name: The environment variable name value: The value to write """ if value is not None: environ[name] = builtins.str(value) elif environ.get(name): del environ[name]
Write a raw env value. A ``None`` value clears the environment variable. Args: name: The environment variable name value: The value to write
entailment
def read(name, default=None, allow_none=False, fallback=None): """Read the raw env value. Read the raw environment variable or use the default. If the value is not found and no default is set throw an exception. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) fallback: A list of fallback env variables to try and read if the primary environment variable is unavailable. """ raw_value = environ.get(name) if raw_value is None and fallback is not None: if not isinstance(fallback, builtins.list) and not isinstance(fallback, builtins.tuple): fallback = [fallback] for fall in fallback: raw_value = environ.get(fall) if raw_value is not None: break if raw_value or raw_value == '': return raw_value elif default is not None or allow_none: return default else: raise KeyError('Set the "{0}" environment variable'.format(name))
Read the raw env value. Read the raw environment variable or use the default. If the value is not found and no default is set throw an exception. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) fallback: A list of fallback env variables to try and read if the primary environment variable is unavailable.
entailment
def str(name, default=None, allow_none=False, fallback=None): """Get a string based environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) """ value = read(name, default, allow_none, fallback=fallback) if value is None and allow_none: return None else: return builtins.str(value).strip()
Get a string based environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional)
entailment
def bool(name, default=None, allow_none=False, fallback=None): """Get a boolean based environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) """ value = read(name, default, allow_none, fallback=fallback) if isinstance(value, builtins.bool): return value elif isinstance(value, builtins.int): return True if value > 0 else False elif value is None and allow_none: return None else: value_str = builtins.str(value).lower().strip() return _strtobool(value_str)
Get a boolean based environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional)
entailment
def int(name, default=None, allow_none=False, fallback=None): """Get a string environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) """ value = read(name, default, allow_none, fallback=fallback) if isinstance(value, builtins.str): value = value.strip() if value is None and allow_none: return None else: return builtins.int(value)
Get a string environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional)
entailment
def list(name, default=None, allow_none=False, fallback=None, separator=','): """Get a list of strings or the default. The individual list elements are whitespace-stripped. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) separator: The list item separator character or pattern """ value = read(name, default, allow_none, fallback=fallback) if isinstance(value, builtins.list): return value elif isinstance(value, builtins.str): return _str_to_list(value, separator) elif value is None and allow_none: return None else: return [builtins.str(value)]
Get a list of strings or the default. The individual list elements are whitespace-stripped. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional) separator: The list item separator character or pattern
entailment
def includeme(config): """this function adds some configuration for the application""" config.add_route('references', '/references') _add_referencer(config.registry) config.add_view_deriver(protected_resources.protected_view) config.add_renderer('json_item', json_renderer) config.scan()
this function adds some configuration for the application
entailment
def _add_referencer(registry): """ Gets the Referencer from config and adds it to the registry. """ referencer = registry.queryUtility(IReferencer) if referencer is not None: return referencer ref = registry.settings['urireferencer.referencer'] url = registry.settings['urireferencer.registry_url'] r = DottedNameResolver() registry.registerUtility(r.resolve(ref)(url), IReferencer) return registry.queryUtility(IReferencer)
Gets the Referencer from config and adds it to the registry.
entailment
def get_referencer(registry): """ Get the referencer class :rtype: pyramid_urireferencer.referencer.AbstractReferencer """ # Argument might be a config or request regis = getattr(registry, 'registry', None) if regis is None: regis = registry return regis.queryUtility(IReferencer)
Get the referencer class :rtype: pyramid_urireferencer.referencer.AbstractReferencer
entailment
def _connect_to_ec2(region, credentials): """ :param region: The region of AWS to connect to. :param EC2Credentials credentials: The credentials to use to authenticate with EC2. :return: a connection object to AWS EC2 """ conn = boto.ec2.connect_to_region( region, aws_access_key_id=credentials.access_key_id, aws_secret_access_key=credentials.secret_access_key ) if conn: return conn else: log_red('Failure to authenticate to EC2.') return False
:param region: The region of AWS to connect to. :param EC2Credentials credentials: The credentials to use to authenticate with EC2. :return: a connection object to AWS EC2
entailment
def write(self, *args, **kwargs): """ :param args: tuple(value, style), tuple(value, style) :param kwargs: header=tuple(value, style), header=tuple(value, style) :param args: value, value :param kwargs: header=value, header=value """ if args: kwargs = dict(zip(self.header, args)) for header in kwargs: cell = kwargs[header] if not isinstance(cell, tuple): cell = (cell,) self.write_cell(self._row, self.header.index(header), *cell) self._row += 1
:param args: tuple(value, style), tuple(value, style) :param kwargs: header=tuple(value, style), header=tuple(value, style) :param args: value, value :param kwargs: header=value, header=value
entailment
def clear_layout(layout: QLayout) -> None: """Clear the layout off all its components""" if layout is not None: while layout.count(): item = layout.takeAt(0) widget = item.widget() if widget is not None: widget.deleteLater() else: clear_layout(item.layout())
Clear the layout off all its components
entailment
def _load_hangul_syllable_types(): """ Helper function for parsing the contents of "HangulSyllableType.txt" from the Unicode Character Database (UCD) and generating a lookup table for determining whether or not a given Hangul syllable is of type "L", "V", "T", "LV" or "LVT". For more info on the UCD, see the following website: https://www.unicode.org/ucd/ """ filename = "HangulSyllableType.txt" current_dir = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(current_dir, filename), mode="r", encoding="utf-8") as fp: for line in fp: if not line.strip() or line.startswith("#"): continue # Skip empty lines or lines that are comments (comments start with '#') data = line.strip().split(";") syllable_type, _ = map(six.text_type.strip, data[1].split("#")) if ".." in data[0]: # If it is a range and not a single value start, end = map(lambda x: int(x, 16), data[0].strip().split("..")) for idx in range(start, end + 1): _hangul_syllable_types[idx] = syllable_type else: _hangul_syllable_types[int(data[0].strip(), 16)] = syllable_type
Helper function for parsing the contents of "HangulSyllableType.txt" from the Unicode Character Database (UCD) and generating a lookup table for determining whether or not a given Hangul syllable is of type "L", "V", "T", "LV" or "LVT". For more info on the UCD, see the following website: https://www.unicode.org/ucd/
entailment
def _load_jamo_short_names(): """ Function for parsing the Jamo short names from the Unicode Character Database (UCD) and generating a lookup table For more info on how this is used, see the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior" and ch. 04, section 4.8, "Name". https://www.unicode.org/versions/latest/ch03.pdf https://www.unicode.org/versions/latest/ch04.pdf """ filename = "Jamo.txt" current_dir = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(current_dir, filename), mode="r", encoding="utf-8") as fp: for line in fp: if not line.strip() or line.startswith("#"): continue # Skip empty lines or lines that are comments (comments start with '#') data = line.strip().split(";") code = int(data[0].strip(), 16) char_info = data[1].split("#") short_name = char_info[0].strip() _jamo_short_names[code] = short_name
Function for parsing the Jamo short names from the Unicode Character Database (UCD) and generating a lookup table For more info on how this is used, see the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior" and ch. 04, section 4.8, "Name". https://www.unicode.org/versions/latest/ch03.pdf https://www.unicode.org/versions/latest/ch04.pdf
entailment
def _get_hangul_syllable_type(hangul_syllable): """ Function for taking a Unicode scalar value representing a Hangul syllable and determining the correct value for its Hangul_Syllable_Type property. For more information on the Hangul_Syllable_Type property see the Unicode Standard, ch. 03, section 3.12, Conjoining Jamo Behavior. https://www.unicode.org/versions/latest/ch03.pdf :param hangul_syllable: Unicode scalar value representing a Hangul syllable :return: Returns a string representing its Hangul_Syllable_Type property ("L", "V", "T", "LV" or "LVT") """ if not _is_hangul_syllable(hangul_syllable): raise ValueError("Value 0x%0.4x does not represent a Hangul syllable!" % hangul_syllable) if not _hangul_syllable_types: _load_hangul_syllable_types() return _hangul_syllable_types[hangul_syllable]
Function for taking a Unicode scalar value representing a Hangul syllable and determining the correct value for its Hangul_Syllable_Type property. For more information on the Hangul_Syllable_Type property see the Unicode Standard, ch. 03, section 3.12, Conjoining Jamo Behavior. https://www.unicode.org/versions/latest/ch03.pdf :param hangul_syllable: Unicode scalar value representing a Hangul syllable :return: Returns a string representing its Hangul_Syllable_Type property ("L", "V", "T", "LV" or "LVT")
entailment
def _get_jamo_short_name(jamo): """ Function for taking a Unicode scalar value representing a Jamo and determining the correct value for its Jamo_Short_Name property. For more information on the Jamo_Short_Name property see the Unicode Standard, ch. 03, section 3.12, Conjoining Jamo Behavior. https://www.unicode.org/versions/latest/ch03.pdf :param jamo: Unicode scalar value representing a Jamo :return: Returns a string representing its Jamo_Short_Name property """ if not _is_jamo(jamo): raise ValueError("Value 0x%0.4x passed in does not represent a Jamo!" % jamo) if not _jamo_short_names: _load_jamo_short_names() return _jamo_short_names[jamo]
Function for taking a Unicode scalar value representing a Jamo and determining the correct value for its Jamo_Short_Name property. For more information on the Jamo_Short_Name property see the Unicode Standard, ch. 03, section 3.12, Conjoining Jamo Behavior. https://www.unicode.org/versions/latest/ch03.pdf :param jamo: Unicode scalar value representing a Jamo :return: Returns a string representing its Jamo_Short_Name property
entailment
def compose_hangul_syllable(jamo): """ Function for taking a tuple or list of Unicode scalar values representing Jamo and composing it into a Hangul syllable. If the values in the list or tuple passed in are not in the ranges of Jamo, a ValueError will be raised. The algorithm for doing the composition is described in the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior." Example: (U+1111, U+1171) -> U+D4CC (U+D4CC, U+11B6) -> U+D4DB (U+1111, U+1171, U+11B6) -> U+D4DB :param jamo: Tuple of list of Jamo to compose :return: Composed Hangul syllable """ fmt_str_invalid_sequence = "{0} does not represent a valid sequence of Jamo!" if len(jamo) == 3: l_part, v_part, t_part = jamo if not (l_part in range(0x1100, 0x1112 + 1) and v_part in range(0x1161, 0x1175 + 1) and t_part in range(0x11a8, 0x11c2 + 1)): raise ValueError(fmt_str_invalid_sequence.format(jamo)) l_index = l_part - L_BASE v_index = v_part - V_BASE t_index = t_part - T_BASE lv_index = l_index * N_COUNT + v_index * T_COUNT return S_BASE + lv_index + t_index elif len(jamo) == 2: if jamo[0] in range(0x1100, 0x1112 + 1) and jamo[1] in range(0x1161, 0x1175 + 1): l_part, v_part = jamo l_index = l_part - L_BASE v_index = v_part - V_BASE lv_index = l_index * N_COUNT + v_index * T_COUNT return S_BASE + lv_index elif _get_hangul_syllable_type(jamo[0]) == "LV" and jamo[1] in range(0x11a8, 0x11c2 + 1): lv_part, t_part = jamo t_index = t_part - T_BASE return lv_part + t_index else: raise ValueError(fmt_str_invalid_sequence.format(jamo)) else: raise ValueError(fmt_str_invalid_sequence.format(jamo))
Function for taking a tuple or list of Unicode scalar values representing Jamo and composing it into a Hangul syllable. If the values in the list or tuple passed in are not in the ranges of Jamo, a ValueError will be raised. The algorithm for doing the composition is described in the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior." Example: (U+1111, U+1171) -> U+D4CC (U+D4CC, U+11B6) -> U+D4DB (U+1111, U+1171, U+11B6) -> U+D4DB :param jamo: Tuple of list of Jamo to compose :return: Composed Hangul syllable
entailment
def decompose_hangul_syllable(hangul_syllable, fully_decompose=False): """ Function for taking a Unicode scalar value representing a Hangul syllable and decomposing it into a tuple representing the scalar values of the decomposed (canonical decomposition) Jamo. If the Unicode scalar value passed in is not in the range of Hangul syllable values (as defined in UnicodeData.txt), a ValueError will be raised. The algorithm for doing the decomposition is described in the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior". Example: U+D4DB -> (U+D4CC, U+11B6) # (canonical decomposition, default) U+D4DB -> (U+1111, U+1171, U+11B6) # (full canonical decomposition) :param hangul_syllable: Unicode scalar value for Hangul syllable :param fully_decompose: Boolean indicating whether or not to do a canonical decomposition (default behavior is fully_decompose=False) or a full canonical decomposition (fully_decompose=True) :return: Tuple of Unicode scalar values for the decomposed Jamo. """ if not _is_hangul_syllable(hangul_syllable): raise ValueError("Value passed in does not represent a Hangul syllable!") s_index = hangul_syllable - S_BASE if fully_decompose: l_index = s_index // N_COUNT v_index = (s_index % N_COUNT) // T_COUNT t_index = s_index % T_COUNT l_part = L_BASE + l_index v_part = V_BASE + v_index t_part = (T_BASE + t_index) if t_index > 0 else None return l_part, v_part, t_part else: if _get_hangul_syllable_type(hangul_syllable) == "LV": # Hangul_Syllable_Type = LV l_index = s_index // N_COUNT v_index = (s_index % N_COUNT) // T_COUNT l_part = L_BASE + l_index v_part = V_BASE + v_index return l_part, v_part else: # Assume Hangul_Syllable_Type = LVT lv_index = (s_index // T_COUNT) * T_COUNT t_index = s_index % T_COUNT lv_part = S_BASE + lv_index t_part = T_BASE + t_index return lv_part, t_part
Function for taking a Unicode scalar value representing a Hangul syllable and decomposing it into a tuple representing the scalar values of the decomposed (canonical decomposition) Jamo. If the Unicode scalar value passed in is not in the range of Hangul syllable values (as defined in UnicodeData.txt), a ValueError will be raised. The algorithm for doing the decomposition is described in the Unicode Standard, ch. 03, section 3.12, "Conjoining Jamo Behavior". Example: U+D4DB -> (U+D4CC, U+11B6) # (canonical decomposition, default) U+D4DB -> (U+1111, U+1171, U+11B6) # (full canonical decomposition) :param hangul_syllable: Unicode scalar value for Hangul syllable :param fully_decompose: Boolean indicating whether or not to do a canonical decomposition (default behavior is fully_decompose=False) or a full canonical decomposition (fully_decompose=True) :return: Tuple of Unicode scalar values for the decomposed Jamo.
entailment
def _get_hangul_syllable_name(hangul_syllable): """ Function for taking a Unicode scalar value representing a Hangul syllable and converting it to its syllable name as defined by the Unicode naming rule NR1. See the Unicode Standard, ch. 04, section 4.8, Names, for more information. :param hangul_syllable: Unicode scalar value representing the Hangul syllable to convert :return: String representing its syllable name as transformed according to naming rule NR1. """ if not _is_hangul_syllable(hangul_syllable): raise ValueError("Value passed in does not represent a Hangul syllable!") jamo = decompose_hangul_syllable(hangul_syllable, fully_decompose=True) result = '' for j in jamo: if j is not None: result += _get_jamo_short_name(j) return result
Function for taking a Unicode scalar value representing a Hangul syllable and converting it to its syllable name as defined by the Unicode naming rule NR1. See the Unicode Standard, ch. 04, section 4.8, Names, for more information. :param hangul_syllable: Unicode scalar value representing the Hangul syllable to convert :return: String representing its syllable name as transformed according to naming rule NR1.
entailment
def generate_client_callers(spec, timeout, error_callback, local, app): """Return a dict mapping method names to anonymous functions that will call the server's endpoint of the corresponding name as described in the api defined by the swagger dict and bravado spec""" callers_dict = {} def mycallback(endpoint): if not endpoint.handler_client: return callers_dict[endpoint.handler_client] = _generate_client_caller(spec, endpoint, timeout, error_callback, local, app) spec.call_on_each_endpoint(mycallback) return callers_dict
Return a dict mapping method names to anonymous functions that will call the server's endpoint of the corresponding name as described in the api defined by the swagger dict and bravado spec
entailment
def _call_retry(self, force_retry): """Call request and retry up to max_attempts times (or none if self.max_attempts=1)""" last_exception = None for i in range(self.max_attempts): try: log.info("Calling %s %s" % (self.method, self.url)) response = self.requests_method( self.url, data=self.data, params=self.params, headers=self.headers, timeout=(self.connect_timeout, self.read_timeout), verify=self.verify_ssl, ) if response is None: log.warn("Got response None") if self._method_is_safe_to_retry(): delay = 0.5 + i * 0.5 log.info("Waiting %s sec and Retrying since call is a %s" % (delay, self.method)) time.sleep(delay) continue else: raise PyMacaronCoreException("Call %s %s returned empty response" % (self.method, self.url)) return response except Exception as e: last_exception = e retry = force_retry if isinstance(e, ReadTimeout): # Log enough to help debugging... log.warn("Got a ReadTimeout calling %s %s" % (self.method, self.url)) log.warn("Exception was: %s" % str(e)) resp = e.response if not resp: log.info("Requests error has no response.") # TODO: retry=True? Is it really safe? else: b = resp.content log.info("Requests has a response with content: " + pprint.pformat(b)) if self._method_is_safe_to_retry(): # It is safe to retry log.info("Retrying since call is a %s" % self.method) retry = True elif isinstance(e, ConnectTimeout): log.warn("Got a ConnectTimeout calling %s %s" % (self.method, self.url)) log.warn("Exception was: %s" % str(e)) # ConnectTimeouts are safe to retry whatever the call... retry = True if retry: continue else: raise e # max_attempts has been reached: propagate the last received Exception if not last_exception: last_exception = Exception("Reached max-attempts (%s). Giving up calling %s %s" % (self.max_attempts, self.method, self.url)) raise last_exception
Call request and retry up to max_attempts times (or none if self.max_attempts=1)
entailment
def syllabify(word): '''Syllabify the given word, whether simplex or complex.''' word = split(word) # detect any non-delimited compounds compound = True if re.search(r'-| |\.', word) else False syllabify = _syllabify_compound if compound else _syllabify syll, rules = syllabify(word) yield syll, rules n = 3 if 'T4' in rules: yield syllabify(word, T4=False) n -= 1 # yield empty syllabifications and rules for n in range(3): yield '', ''
Syllabify the given word, whether simplex or complex.
entailment
def _syllabify(word, T4=True): '''Syllabify the given word.''' word = replace_umlauts(word) word, rules = apply_T1(word) if re.search(r'[^ieAyOauo]*([ieAyOauo]{2})[^ieAyOauo]*', word): word, T2 = apply_T2(word) word, T8 = apply_T8(word) word, T9 = apply_T9(word) word, T4 = apply_T4(word) if T4 else (word, '') rules += T2 + T8 + T9 + T4 if re.search(r'[ieAyOauo]{3}', word): word, T6 = apply_T6(word) word, T5 = apply_T5(word) word, T7 = apply_T7(word) word, T2 = apply_T2(word) rules += T5 + T6 + T7 + T2 word = replace_umlauts(word, put_back=True) rules = rules or ' T0' # T0 means no rules have applied return word, rules
Syllabify the given word.
entailment
def apply_T1(word): '''There is a syllable boundary in front of every CV-sequence.''' # split consonants and vowels: 'balloon' -> ['b', 'a', 'll', 'oo', 'n'] WORD = [w for w in re.split('([ieAyOauo]+)', word) if w] count = 0 for i, v in enumerate(WORD): if i == 0 and is_consonant(v[0]): continue elif is_consonant(v[0]) and i + 1 != len(WORD): if is_cluster(v): # WSP if count % 2 == 0: WORD[i] = v[0] + '.' + v[1:] # CC > C.C, CCC > C.CC else: WORD[i] = '.' + v # CC > .CC, CCC > .CCC # elif is_sonorant(v[0]) and is_cluster(v[1:]): # NEW # if count % 2 == 0: # WORD[i] = v[0:2] + '.' + v[2:] # else: # WORD[i] = v[0] + '.' + v[1:] else: WORD[i] = v[:-1] + '.' + v[-1] # CC > C.C, CCC > CC.C count += 1 WORD = ''.join(WORD) RULE = ' T1' if word != WORD else '' return WORD, RULE
There is a syllable boundary in front of every CV-sequence.
entailment
def extended_cigar(aligned_template, aligned_query): ''' Convert mutation annotations to extended cigar format https://github.com/lh3/minimap2#the-cs-optional-tag USAGE: >>> template = 'CGATCGATAAATAGAGTAG---GAATAGCA' >>> query = 'CGATCG---AATAGAGTAGGTCGAATtGCA' >>> extended_cigar(template, query) == ':6-ata:10+gtc:4*at:3' True ''' # - Go through each position in the alignment insertion = [] deletion = [] matches = [] cigar = [] for r_aa, q_aa in zip(aligned_template.lower(), aligned_query.lower()): gap_ref = r_aa == '-' gap_que = q_aa == '-' match = r_aa == q_aa if matches and not match: # End match block cigar.append(":%s"%len(matches)) matches = [] if insertion and not gap_ref: # End insertion cigar.append("+%s"%''.join(insertion)) insertion = [] elif deletion and not gap_que: # End deletion cigar.append("-%s"%''.join(deletion)) deletion = [] if gap_ref: if insertion: # Extend insertion insertion.append(q_aa) else: # Start insertion insertion = [q_aa] elif gap_que: if deletion: # Extend deletion deletion.append(r_aa) else: # Start deletion deletion = [r_aa] elif match: if matches: # Extend match block matches.append(r_aa) else: # Start match block matches = [r_aa] else: # Add SNP annotation cigar.append("*%s%s"%(r_aa, q_aa)) if matches: cigar.append(":%s"%len(matches)) del matches if insertion: # End insertion cigar.append("+%s"%''.join(insertion)) del insertion elif deletion: # End deletion cigar.append("-%s"%''.join(deletion)) del deletion return ''.join(cigar)
Convert mutation annotations to extended cigar format https://github.com/lh3/minimap2#the-cs-optional-tag USAGE: >>> template = 'CGATCGATAAATAGAGTAG---GAATAGCA' >>> query = 'CGATCG---AATAGAGTAGGTCGAATtGCA' >>> extended_cigar(template, query) == ':6-ata:10+gtc:4*at:3' True
entailment
def cigar2query(template, cigar): ''' Generate query sequence from the template and extended cigar annotation USAGE: >>> template = 'CGATCGATAAATAGAGTAGGAATAGCA' >>> cigar = ':6-ata:10+gtc:4*at:3' >>> cigar2query(template, cigar) == 'CGATCGAATAGAGTAGGTCGAATtGCA'.upper() True ''' query = [] entries = ['+','-','*',':'] number = list(map(str,range(10))) cigar_length = len(cigar) num = [] entry = None pos = 0 i = 0 while i < cigar_length: if cigar[i] in entries: # New entry if entry == ':': old_pos = pos pos += int(''.join(num)) query.append(template[old_pos:pos]) num = [] entry = cigar[i] if entry == '*': i += 2 query.append(cigar[i]) pos += 1 elif cigar[i] in number: num.append(cigar[i]) elif entry == '-': pos += 1 elif entry == '+': query.append(cigar[i]) i += 1 if entry == ':': old_pos = pos pos += int(''.join(num)) query.append(template[old_pos:pos]) return ''.join(query).upper()
Generate query sequence from the template and extended cigar annotation USAGE: >>> template = 'CGATCGATAAATAGAGTAGGAATAGCA' >>> cigar = ':6-ata:10+gtc:4*at:3' >>> cigar2query(template, cigar) == 'CGATCGAATAGAGTAGGTCGAATtGCA'.upper() True
entailment
def Blaster(inputfile, databases, db_path, out_path='.', min_cov=0.6, threshold=0.9, blast='blastn', cut_off=True): ''' BLAST wrapper method, that takes a simple input and produces a overview list of the hits to templates, and their alignments Usage >>> import os, subprocess, collections >>> from Bio.Blast import NCBIXML >>> from Bio import SeqIO >>> from string import maketrans >>> inputfile = 'test.fsa' >>> databases = ['enterobacteriaceae'] >>> db_path = '/path/to/databases/plasmidfinder/' >>> Blaster(inputfile, databases, db_path) ''' min_cov = 100 * float(min_cov) threshold = 100 * float(threshold) # For alignment gene_align_query = dict() #will contain the sequence alignment lines gene_align_homo = dict() #will contain the sequence alignment homolog string gene_align_sbjct = dict() #will contain the sequence alignment allele string results = dict() #will contain the results for db in databases: # Adding the path to the database and output db_file = "%s/%s.fsa"%(db_path, db) os.system("mkdir -p %s/tmp"%(out_path)) os.system("chmod 775 %s/tmp"%(out_path)) out_file = "%s/tmp/out_%s.xml"%(out_path, db) # Running blast cmd = "%s -subject %s -query %s -out %s -outfmt '5' -perc_identity %s -dust 'no'"%(blast, db_file, inputfile, out_file, threshold) process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() # Getting the results result_handle = open(out_file) blast_records = NCBIXML.parse(result_handle) # Declaring variables for saving the results gene_results = dict() #will contain the results for each gene # For finding the best hits best_hsp = dict() # Keeping track of gene split gene_split = collections.defaultdict(dict) # Making the dicts for sequence outputs gene_align_query[db] = dict() gene_align_homo[db] = dict() gene_align_sbjct[db] = dict() # Parsing over the hits and only keeping the best for blast_record in blast_records: query = blast_record.query blast_record.alignments.sort(key = lambda align: -max((len(hsp.query) * (int(hsp.identities)/float(len(hsp.query))) for hsp in align.hsps))) for alignment in blast_record.alignments: # Setting the e-value as 1 and bit as 0 to get the best HSP fragment best_e_value = 1 best_bit = 0 for hsp in alignment.hsps: if hsp.expect < best_e_value or hsp.bits > best_bit: best_e_value = hsp.expect best_bit = hsp.bits tmp = alignment.title.split(" ") sbjct_header = tmp[1] bit = hsp.bits sbjct_length = alignment.length sbjct_start = hsp.sbjct_start sbjct_end = hsp.sbjct_end gaps = hsp.gaps query_string = str(hsp.query) homo_string = str(hsp.match) sbjct_string = str(hsp.sbjct) contig_name = query.replace(">","") query_start = hsp.query_start query_end = hsp.query_end HSP_length = len(query_string) perc_ident = int(hsp.identities)/float(HSP_length) * 100 strand = 0 coverage = ((int(HSP_length) - int(gaps))/float(sbjct_length)) perc_coverage = ((int(HSP_length) - int(gaps))/float(sbjct_length)) * 100 if int(HSP_length) == int(sbjct_length): cal_score = perc_ident * coverage * 100 else: cal_score = perc_ident * coverage hit_id = "%s:%s..%s:%s:%f"%(contig_name, query_start, query_end, sbjct_header, cal_score) # If the hit is on the other strand if sbjct_start > sbjct_end: tmp = sbjct_start sbjct_start = sbjct_end sbjct_end = tmp query_string = reverse_complement(query_string) homo_string = homo_string[::-1] sbjct_string = reverse_complement(sbjct_string) strand = 1 if cut_off == True: if perc_coverage > 20 : best_hsp = {'evalue': hsp.expect, 'sbjct_header': sbjct_header, 'bit': bit, 'perc_ident': perc_ident, 'sbjct_length':sbjct_length, 'sbjct_start': sbjct_start, 'sbjct_end': sbjct_end, 'gaps': gaps, 'query_string': query_string, 'homo_string': homo_string, 'sbjct_string': sbjct_string, 'contig_name': contig_name, 'query_start': query_start, 'query_end': query_end, 'HSP_length': HSP_length, 'coverage': coverage, 'cal_score': cal_score, 'hit_id': hit_id, 'strand': strand, 'perc_coverage': perc_coverage } else: best_hsp = {'evalue': hsp.expect, 'sbjct_header': sbjct_header, 'bit': bit, 'perc_ident': perc_ident, 'sbjct_length':sbjct_length, 'sbjct_start': sbjct_start, 'sbjct_end': sbjct_end, 'gaps': gaps, 'query_string': query_string, 'homo_string': homo_string, 'sbjct_string': sbjct_string, 'contig_name': contig_name, 'query_start': query_start, 'query_end': query_end, 'HSP_length': HSP_length, 'coverage': coverage, 'cal_score': cal_score, 'hit_id': hit_id, 'strand': strand, 'perc_coverage': perc_coverage } # Saving the result if any if best_hsp: save = 1 # If there are other gene alignments they are compared if gene_results: tmp_gene_split = gene_split tmp_results = gene_results # Compare the hit results save, gene_split, gene_results = compare_results(save, best_hsp, tmp_results, tmp_gene_split) # If the hit is not overlapping with other hit seqeunces it is kept if save == 1: gene_results[hit_id] = best_hsp else: pass # If the hit does not cover the entire database reference the missing seqence data are extracted for hit_id in list(gene_results): hit = gene_results[hit_id] # Calculate possible split gene coverage perc_coverage = hit['perc_coverage'] if hit['sbjct_header'] in gene_split and len(gene_split[hit['sbjct_header']]) > 1: # Calculate new length new_length = calculate_new_length(gene_split, gene_results, hit) hit['split_length'] = new_length # Calculate new coverage perc_coverage = new_length / float(hit['sbjct_length']) * 100 # If the hit is above the minimum length threshold it is kept if perc_coverage >= min_cov: if hit['coverage'] == 1: gene_align_query[db][hit_id] = hit['query_string'] gene_align_homo[db][hit_id] = hit['homo_string'] gene_align_sbjct[db][hit_id] = hit['sbjct_string'] elif hit['coverage'] != 1: # Getting the whole database sequence for seq_record in SeqIO.parse(db_file, "fasta"): if seq_record.description == hit['sbjct_header']: gene_align_sbjct[db][hit_id] = str(seq_record.seq) break # Getting the whole contig to extract extra query seqeunce contig = '' for seq_record in SeqIO.parse(inputfile, "fasta"): if seq_record.description == hit['contig_name']: contig = str(seq_record.seq) break # Extract extra sequence from query query_seq, homo_seq = get_query_align(hit, contig) # Saving the new alignment sequences gene_align_query[db][hit_id] = query_seq gene_align_homo[db][hit_id] = homo_seq else: del gene_results[hit_id] if hit['sbjct_header'] in gene_split: del gene_split[hit['sbjct_header']] # Save the database result if gene_results: results[db] = gene_results else: results[db] = "No hit found" return (results, gene_align_query, gene_align_homo, gene_align_sbjct)
BLAST wrapper method, that takes a simple input and produces a overview list of the hits to templates, and their alignments Usage >>> import os, subprocess, collections >>> from Bio.Blast import NCBIXML >>> from Bio import SeqIO >>> from string import maketrans >>> inputfile = 'test.fsa' >>> databases = ['enterobacteriaceae'] >>> db_path = '/path/to/databases/plasmidfinder/' >>> Blaster(inputfile, databases, db_path)
entailment
def compare_results(save, best_hsp, tmp_results, tmp_gene_split): ''' Function for comparing hits and saving only the best hit ''' # Get data for comparison hit_id = best_hsp['hit_id'] new_start_query = best_hsp['query_start'] new_end_query = best_hsp['query_end'] new_start_sbjct = int(best_hsp['sbjct_start']) new_end_sbjct = int(best_hsp['sbjct_end']) new_score = best_hsp['cal_score'] new_db_hit = best_hsp['sbjct_header'] new_contig = best_hsp['contig_name'] new_HSP = best_hsp['HSP_length'] # See if the best HSP fragment overlap with another allignment and keep the # allignment with the highest score - if the new fragment is not providing new seqeunce for hit in list(tmp_results): hit_data = tmp_results[hit] old_start_query = hit_data['query_start'] old_end_query = hit_data['query_end'] old_start_sbjct = int(hit_data['sbjct_start']) old_end_sbjct = int(hit_data['sbjct_end']) old_score = hit_data['cal_score'] old_db_hit = hit_data['sbjct_header'] old_contig = hit_data['contig_name'] old_HSP = hit_data['HSP_length'] remove_old = 0 # If they align to the same gene in the database they are compared if new_db_hit == old_db_hit: # If the hit provids additional sequence it is kept and the new coverage is saved # otherwise the one with the highest score is kept if new_start_sbjct < (old_start_sbjct) or new_end_sbjct > (old_end_sbjct): # Save the hits as splitted tmp_gene_split[old_db_hit][hit_id] = 1 if not hit in tmp_gene_split[old_db_hit]: tmp_gene_split[old_db_hit][hit] = 1 else: if new_score > old_score: # Set to remove old hit remove_old = 1 # Save a split if the new hit still creats one if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]: tmp_gene_split[new_db_hit][hit_id] = 1 else: save = 0 # If the old and new hit is not identical the possible saved gene split for the new hit is removed if hit_id != hit: if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]: del tmp_gene_split[new_db_hit][hit_id] break # If the hits comes form the same part of the contig sequnce but match different genes only the best hit is kept if new_contig == old_contig: # if the two hits cover the exact same place on the contig only # the percentage of identity is compared if old_start_query == new_start_query and old_end_query == new_end_query: if best_hsp['perc_ident'] > hit_data['perc_ident']: # Set to remove old hit remove_old = 1 # Save a split if the new hit still creats one if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]: tmp_gene_split[new_db_hit][hit_id] = 1 elif best_hsp['perc_ident'] == hit_data['perc_ident']: # Save both # Save a split if the new hit still creats one if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]: tmp_gene_split[new_db_hit][hit_id] = 1 else: save = 0 # Remove new gene from gene split if present if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]: del tmp_gene_split[new_db_hit][hit_id] break elif (max(old_end_query, new_end_query) - min(old_start_query, new_start_query)) <= ((old_end_query - old_start_query) + (new_end_query - new_start_query)): if new_score > old_score: # Set to remove old gene remove_old = 1 # Save a split if the new hit still creats one if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]: tmp_gene_split[new_db_hit][hit_id] = 1 elif new_score == old_score: # If both genes are completly covered the longest hit is chosen if int(best_hsp['perc_coverage']) == 100 and int(hit_data['perc_coverage']) == 100 and new_HSP > old_HSP: # Set to remove old gene remove_old = 1 # Save a split if the new hit creats one - both hits are saved if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]: tmp_gene_split[new_db_hit][hit_id] = 1 else: # Remove new gene from gene split if present if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]: del tmp_gene_split[new_db_hit][hit_id] save = 0 break # Remove old hit if new hit is better if remove_old == 1: del tmp_results[hit] # Remove gene from gene split if present if old_db_hit in tmp_gene_split and hit in tmp_gene_split[old_db_hit]: del tmp_gene_split[old_db_hit][hit] return save, tmp_gene_split, tmp_results
Function for comparing hits and saving only the best hit
entailment
def calculate_new_length(gene_split, gene_results, hit): ''' Function for calcualting new length if the gene is split on several contigs ''' # Looping over splitted hits and calculate new length first = 1 for split in gene_split[hit['sbjct_header']]: new_start = int(gene_results[split]['sbjct_start']) new_end = int(gene_results[split]['sbjct_end']) # Get the frist HSP if first == 1: new_length = int(gene_results[split]['HSP_length']) old_start = new_start old_end = new_end first = 0 continue if new_start < old_start: new_length = new_length + (old_start - new_start) old_start = new_start if new_end > old_end: new_length = new_length + (new_end - old_end) old_end = new_end return(new_length)
Function for calcualting new length if the gene is split on several contigs
entailment
def stream_to_packet(data): """ Chop a stream of data into MODBUS packets. :param data: stream of data :returns: a tuple of the data that is a packet with the remaining data, or ``None`` """ if len(data) < 6: return None # unpack the length pktlen = struct.unpack(">H", data[4:6])[0] + 6 if (len(data) < pktlen): return None return (data[:pktlen], data[pktlen:])
Chop a stream of data into MODBUS packets. :param data: stream of data :returns: a tuple of the data that is a packet with the remaining data, or ``None``
entailment
def to_primitive(value, convert_instances=False, convert_datetime=True, level=0, max_depth=3): """Convert a complex object into primitives. Handy for JSON serialization. We can optionally handle instances, but since this is a recursive function, we could have cyclical data structures. To handle cyclical data structures we could track the actual objects visited in a set, but not all objects are hashable. Instead we just track the depth of the object inspections and don't go too deep. Therefore, convert_instances=True is lossy ... be aware. """ # handle obvious types first - order of basic types determined by running # full tests on nova project, resulting in the following counts: # 572754 <type 'NoneType'> # 460353 <type 'int'> # 379632 <type 'unicode'> # 274610 <type 'str'> # 199918 <type 'dict'> # 114200 <type 'datetime.datetime'> # 51817 <type 'bool'> # 26164 <type 'list'> # 6491 <type 'float'> # 283 <type 'tuple'> # 19 <type 'long'> if isinstance(value, _simple_types): return value if isinstance(value, datetime.datetime): if convert_datetime: return timeutils.strtime(value) else: return value # value of itertools.count doesn't get caught by nasty_type_tests # and results in infinite loop when list(value) is called. if type(value) == itertools.count: return six.text_type(value) # FIXME(vish): Workaround for LP bug 852095. Without this workaround, # tests that raise an exception in a mocked method that # has a @wrap_exception with a notifier will fail. If # we up the dependency to 0.5.4 (when it is released) we # can remove this workaround. if getattr(value, '__module__', None) == 'mox': return 'mock' if level > max_depth: return '?' # The try block may not be necessary after the class check above, # but just in case ... try: recursive = functools.partial(to_primitive, convert_instances=convert_instances, convert_datetime=convert_datetime, level=level, max_depth=max_depth) if isinstance(value, dict): return dict((k, recursive(v)) for k, v in six.iteritems(value)) elif isinstance(value, (list, tuple)): return [recursive(lv) for lv in value] # It's not clear why xmlrpclib created their own DateTime type, but # for our purposes, make it a datetime type which is explicitly # handled if xmlrpclib and isinstance(value, xmlrpclib.DateTime): value = datetime.datetime(*tuple(value.timetuple())[:6]) if convert_datetime and isinstance(value, datetime.datetime): return timeutils.strtime(value) elif isinstance(value, gettextutils.Message): return value.data elif hasattr(value, 'iteritems'): return recursive(dict(value.iteritems()), level=level + 1) elif hasattr(value, '__iter__'): return recursive(list(value)) elif convert_instances and hasattr(value, '__dict__'): # Likely an instance of something. Watch for cycles. # Ignore class member vars. return recursive(value.__dict__, level=level + 1) elif netaddr and isinstance(value, netaddr.IPAddress): return six.text_type(value) else: if any(test(value) for test in _nasty_type_tests): return six.text_type(value) return value except TypeError: # Class objects are tricky since they may define something like # __iter__ defined but it isn't callable as list(). return six.text_type(value)
Convert a complex object into primitives. Handy for JSON serialization. We can optionally handle instances, but since this is a recursive function, we could have cyclical data structures. To handle cyclical data structures we could track the actual objects visited in a set, but not all objects are hashable. Instead we just track the depth of the object inspections and don't go too deep. Therefore, convert_instances=True is lossy ... be aware.
entailment
def get_vowel(syll): '''Return the firstmost vowel in 'syll'.''' return re.search(r'([ieaouäöy]{1})', syll, flags=FLAGS).group(1).upper()
Return the firstmost vowel in 'syll'.
entailment
def is_light(syll): '''Return True if 'syll' is light.''' return re.match(r'(^|[^ieaouäöy]+)[ieaouäöy]{1}$', syll, flags=FLAGS)
Return True if 'syll' is light.
entailment
def stress(syllabified_simplex_word): '''Assign primary and secondary stress to 'syllabified_simplex_word'.''' syllables = syllabified_simplex_word.split('.') stressed = '\'' + syllables[0] # primary stress try: n = 0 medial = syllables[1:-1] for i, syll in enumerate(medial): if (i + n) % 2 == 0: stressed += '.' + syll else: try: if is_light(syll) and is_heavy(medial[i + 1]): stressed += '.' + syll n += 1 continue except IndexError: pass # secondary stress stressed += '.`' + syll except IndexError: pass if len(syllables) > 1: stressed += '.' + syllables[-1] return stressed
Assign primary and secondary stress to 'syllabified_simplex_word'.
entailment