sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def evaluate(grid):
"Return the value for the player to move, assuming perfect play."
if is_won(grid): return -1
succs = successors(grid)
return -min(map(evaluate, succs)) if succs else 0 | Return the value for the player to move, assuming perfect play. | entailment |
def is_won(grid):
"Did the latest move win the game?"
p, q = grid
return any(way == (way & q) for way in ways_to_win) | Did the latest move win the game? | entailment |
def apply_move(grid, move):
"Try to move: return a new grid, or None if illegal."
p, q = grid
bit = 1 << move
return (q, p | bit) if 0 == (bit & (p | q)) else None | Try to move: return a new grid, or None if illegal. | entailment |
def player_marks(grid):
"Return two results: the player's mark and their opponent's."
p, q = grid
return 'XO' if sum(player_bits(p)) == sum(player_bits(q)) else 'OX' | Return two results: the player's mark and their opponent's. | entailment |
def view(grid):
"Show a grid human-readably."
p_mark, q_mark = player_marks(grid)
return grid_format % tuple(p_mark if by_p else q_mark if by_q else '.'
for by_p, by_q in zip(*map(player_bits, grid))) | Show a grid human-readably. | entailment |
def read_sdpa_out(filename, solutionmatrix=False, status=False,
sdp=None):
"""Helper function to parse the output file of SDPA.
:param filename: The name of the SDPA output file.
:type filename: str.
:param solutionmatrix: Optional parameter for retrieving the solution.
:type solutionmatrix: bool.
:param status: Optional parameter for retrieving the status.
:type status: bool.
:param sdp: Optional parameter to add the solution to a
relaxation.
:type sdp: sdp.
:returns: tuple of two floats and optionally two lists of `numpy.array` and
a status string
"""
primal = None
dual = None
x_mat = None
y_mat = None
status_string = None
with open(filename, 'r') as file_:
for line in file_:
if line.find("objValPrimal") > -1:
primal = float((line.split())[2])
if line.find("objValDual") > -1:
dual = float((line.split())[2])
if solutionmatrix:
if line.find("xMat =") > -1:
x_mat = parse_solution_matrix(file_)
if line.find("yMat =") > -1:
y_mat = parse_solution_matrix(file_)
if line.find("phase.value") > -1:
if line.find("pdOPT") > -1:
status_string = 'optimal'
elif line.find("pFEAS") > -1:
status_string = 'primal feasible'
elif line.find("pdFEAS") > -1:
status_string = 'primal-dual feasible'
elif line.find("dFEAS") > -1:
status_string = 'dual feasible'
elif line.find("INF") > -1:
status_string = 'infeasible'
elif line.find("UNBD") > -1:
status_string = 'unbounded'
else:
status_string = 'unknown'
for var in [primal, dual, status_string]:
if var is None:
status_string = 'invalid'
break
if solutionmatrix:
for var in [x_mat, y_mat]:
if var is None:
status_string = 'invalid'
break
if sdp is not None:
sdp.primal = primal
sdp.dual = dual
sdp.x_mat = x_mat
sdp.y_mat = y_mat
sdp.status = status_string
if solutionmatrix and status:
return primal, dual, x_mat, y_mat, status_string
elif solutionmatrix:
return primal, dual, x_mat, y_mat
elif status:
return primal, dual, status_string
else:
return primal, dual | Helper function to parse the output file of SDPA.
:param filename: The name of the SDPA output file.
:type filename: str.
:param solutionmatrix: Optional parameter for retrieving the solution.
:type solutionmatrix: bool.
:param status: Optional parameter for retrieving the status.
:type status: bool.
:param sdp: Optional parameter to add the solution to a
relaxation.
:type sdp: sdp.
:returns: tuple of two floats and optionally two lists of `numpy.array` and
a status string | entailment |
def solve_with_sdpa(sdp, solverparameters=None):
"""Helper function to write out the SDP problem to a temporary
file, call the solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param solverparameters: Optional parameters to SDPA.
:type solverparameters: dict of str.
:returns: tuple of float and list -- the primal and dual solution of the
SDP, respectively, and a status string.
"""
solverexecutable = detect_sdpa(solverparameters)
if solverexecutable is None:
raise OSError("SDPA is not in the path or the executable provided is" +
" not correct")
primal, dual = 0, 0
tempfile_ = tempfile.NamedTemporaryFile()
tmp_filename = tempfile_.name
tempfile_.close()
tmp_dats_filename = tmp_filename + ".dat-s"
tmp_out_filename = tmp_filename + ".out"
write_to_sdpa(sdp, tmp_dats_filename)
command_line = [solverexecutable, "-ds", tmp_dats_filename,
"-o", tmp_out_filename]
if solverparameters is not None:
for key, value in list(solverparameters.items()):
if key == "executable":
continue
elif key == "paramsfile":
command_line.extend(["-p", value])
else:
raise ValueError("Unknown parameter for SDPA: " + key)
if sdp.verbose < 1:
with open(os.devnull, "w") as fnull:
call(command_line, stdout=fnull, stderr=fnull)
else:
call(command_line)
primal, dual, x_mat, y_mat, status = read_sdpa_out(tmp_out_filename, True,
True)
if sdp.verbose < 2:
os.remove(tmp_dats_filename)
os.remove(tmp_out_filename)
return primal+sdp.constant_term, \
dual+sdp.constant_term, x_mat, y_mat, status | Helper function to write out the SDP problem to a temporary
file, call the solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param solverparameters: Optional parameters to SDPA.
:type solverparameters: dict of str.
:returns: tuple of float and list -- the primal and dual solution of the
SDP, respectively, and a status string. | entailment |
def convert_row_to_sdpa_index(block_struct, row_offsets, row):
"""Helper function to map to sparse SDPA index values.
"""
block_index = bisect_left(row_offsets[1:], row + 1)
width = block_struct[block_index]
row = row - row_offsets[block_index]
i, j = divmod(row, width)
return block_index, i, j | Helper function to map to sparse SDPA index values. | entailment |
def write_to_sdpa(sdp, filename):
"""Write the SDP relaxation to SDPA format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param filename: The name of the file. It must have the suffix ".dat-s"
:type filename: str.
"""
# Coefficient matrices
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
multiplier = 1
if sdp.F.dtype == np.complex128:
multiplier = 2
lines = [[] for _ in range(multiplier*sdp.n_vars+1)]
for row in range(len(sdp.F.rows)):
if len(sdp.F.rows[row]) > 0:
col_index = 0
block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct,
row_offsets, row)
for k in sdp.F.rows[row]:
value = sdp.F.data[row][col_index]
col_index += 1
if k == 0:
value *= -1
if sdp.F.dtype == np.float64:
lines[k].append('{0}\t{1}\t{2}\t{3}\n'.format(
block_index + 1, i + 1, j + 1, value))
else:
bs = sdp.block_struct[block_index]
if value.real != 0:
lines[k].append('{0}\t{1}\t{2}\t{3}\n'.format(
block_index + 1, i + 1, j + 1, value.real))
lines[k].append('{0}\t{1}\t{2}\t{3}\n'.format(
block_index + 1, i + bs + 1, j + bs + 1,
value.real))
if value.imag != 0:
lines[k + sdp.n_vars].append(
'{0}\t{1}\t{2}\t{3}\n'.format(
block_index + 1, i + 1, j + bs + 1,
value.imag))
lines[k + sdp.n_vars].append(
'{0}\t{1}\t{2}\t{3}\n'.format(
block_index + 1, j + 1, i + bs + 1,
-value.imag))
file_ = open(filename, 'w')
file_.write('"file ' + filename + ' generated by ncpol2sdpa"\n')
file_.write(str(multiplier*sdp.n_vars) + ' = number of vars\n')
# bloc structure
block_struct = [multiplier*blk_size
for blk_size in sdp.block_struct]
file_.write(str(len(block_struct)) + ' = number of blocs\n')
file_.write(str(block_struct).replace('[', '(')
.replace(']', ')'))
file_.write(' = BlocStructure\n')
# c vector (objective)
objective = \
str(list(sdp.obj_facvar)).replace('[', '').replace(']', '')
if multiplier == 2:
objective += ', ' + objective
file_.write('{'+objective+'}\n')
for k, line in enumerate(lines):
if line == []:
continue
for item in line:
file_.write('{0}\t'.format(k)+item)
file_.close() | Write the SDP relaxation to SDPA format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param filename: The name of the file. It must have the suffix ".dat-s"
:type filename: str. | entailment |
def convert_to_human_readable(sdp):
"""Convert the SDP relaxation to a human-readable format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:returns: tuple of the objective function in a string and a matrix of
strings as the symbolic representation of the moment matrix
"""
objective = ""
indices_in_objective = []
for i, tmp in enumerate(sdp.obj_facvar):
candidates = [key for key, v in
sdp.monomial_index.items() if v == i+1]
if len(candidates) > 0:
monomial = convert_monomial_to_string(candidates[0])
else:
monomial = ""
if tmp > 0:
objective += "+"+str(tmp)+monomial
indices_in_objective.append(i)
elif tmp < 0:
objective += str(tmp)+monomial
indices_in_objective.append(i)
matrix_size = 0
cumulative_sum = 0
row_offsets = [0]
block_offset = [0]
for bs in sdp.block_struct:
matrix_size += abs(bs)
cumulative_sum += bs ** 2
row_offsets.append(cumulative_sum)
block_offset.append(matrix_size)
matrix = []
for i in range(matrix_size):
matrix_line = ["0"] * matrix_size
matrix.append(matrix_line)
for row in range(len(sdp.F.rows)):
if len(sdp.F.rows[row]) > 0:
col_index = 0
for k in sdp.F.rows[row]:
value = sdp.F.data[row][col_index]
col_index += 1
block_index, i, j = convert_row_to_sdpa_index(
sdp.block_struct, row_offsets, row)
candidates = [key for key, v in
sdp.monomial_index.items()
if v == k]
if len(candidates) > 0:
monomial = convert_monomial_to_string(candidates[0])
else:
monomial = ""
offset = block_offset[block_index]
if matrix[offset+i][offset+j] == "0":
matrix[offset+i][offset+j] = ("%s%s" % (value, monomial))
else:
if value.real > 0:
matrix[offset+i][offset+j] += ("+%s%s" % (value,
monomial))
else:
matrix[offset+i][offset+j] += ("%s%s" % (value,
monomial))
return objective, matrix | Convert the SDP relaxation to a human-readable format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:returns: tuple of the objective function in a string and a matrix of
strings as the symbolic representation of the moment matrix | entailment |
def write_to_human_readable(sdp, filename):
"""Write the SDP relaxation to a human-readable format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param filename: The name of the file.
:type filename: str.
"""
objective, matrix = convert_to_human_readable(sdp)
f = open(filename, 'w')
f.write("Objective:" + objective + "\n")
for matrix_line in matrix:
f.write(str(list(matrix_line)).replace('[', '').replace(']', '')
.replace('\'', ''))
f.write('\n')
f.close() | Write the SDP relaxation to a human-readable format.
:param sdp: The SDP relaxation to write.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param filename: The name of the file.
:type filename: str. | entailment |
def main():
"""Ideally we shouldn't lose the first second of events"""
with Input() as input_generator:
def extra_bytes_callback(string):
print('got extra bytes', repr(string))
print('type:', type(string))
input_generator.unget_bytes(string)
time.sleep(1)
with CursorAwareWindow(extra_bytes_callback=extra_bytes_callback) as window:
window.get_cursor_position()
for e in input_generator:
print(repr(e)) | Ideally we shouldn't lose the first second of events | entailment |
def make_header(url,
access_key=None,
secret_key=None):
''' create request header function
:param url: URL for the new :class:`Request` object.
'''
nonce = nounce()
url = url
message = nonce + url
signature = hmac.new(secret_key.encode('utf-8'), message.encode('utf-8'), hashlib.sha256).hexdigest()
headers = {
'ACCESS-KEY' : access_key,
'ACCESS-NONCE' : nonce,
'ACCESS-SIGNATURE': signature
}
return headers | create request header function
:param url: URL for the new :class:`Request` object. | entailment |
def unget_bytes(self, string):
"""Adds bytes to be internal buffer to be read
This method is for reporting bytes from an in_stream read
not initiated by this Input object"""
self.unprocessed_bytes.extend(string[i:i + 1]
for i in range(len(string))) | Adds bytes to be internal buffer to be read
This method is for reporting bytes from an in_stream read
not initiated by this Input object | entailment |
def _wait_for_read_ready_or_timeout(self, timeout):
"""Returns tuple of whether stdin is ready to read and an event.
If an event is returned, that event is more pressing than reading
bytes on stdin to create a keyboard input event.
If stdin is ready, either there are bytes to read or a SIGTSTP
triggered by dsusp has been received"""
remaining_timeout = timeout
t0 = time.time()
while True:
try:
(rs, _, _) = select.select(
[self.in_stream.fileno()] + self.readers,
[], [], remaining_timeout)
if not rs:
return False, None
r = rs[0] # if there's more than one, get it in the next loop
if r == self.in_stream.fileno():
return True, None
else:
os.read(r, 1024)
if self.queued_interrupting_events:
return False, self.queued_interrupting_events.pop(0)
elif remaining_timeout is not None:
remaining_timeout = max(0, t0 + timeout - time.time())
continue
else:
continue
except select.error:
if self.sigints:
return False, self.sigints.pop()
if remaining_timeout is not None:
remaining_timeout = max(timeout - (time.time() - t0), 0) | Returns tuple of whether stdin is ready to read and an event.
If an event is returned, that event is more pressing than reading
bytes on stdin to create a keyboard input event.
If stdin is ready, either there are bytes to read or a SIGTSTP
triggered by dsusp has been received | entailment |
def send(self, timeout=None):
"""Returns an event or None if no events occur before timeout."""
if self.sigint_event and is_main_thread():
with ReplacedSigIntHandler(self.sigint_handler):
return self._send(timeout)
else:
return self._send(timeout) | Returns an event or None if no events occur before timeout. | entailment |
def _nonblocking_read(self):
"""Returns the number of characters read and adds them to self.unprocessed_bytes"""
with Nonblocking(self.in_stream):
if PY3:
try:
data = os.read(self.in_stream.fileno(), READ_SIZE)
except BlockingIOError:
return 0
if data:
self.unprocessed_bytes.extend(data[i:i+1] for i in range(len(data)))
return len(data)
else:
return 0
else:
try:
data = os.read(self.in_stream.fileno(), READ_SIZE)
except OSError:
return 0
else:
self.unprocessed_bytes.extend(data)
return len(data) | Returns the number of characters read and adds them to self.unprocessed_bytes | entailment |
def event_trigger(self, event_type):
"""Returns a callback that creates events.
Returned callback function will add an event of type event_type
to a queue which will be checked the next time an event is requested."""
def callback(**kwargs):
self.queued_events.append(event_type(**kwargs))
return callback | Returns a callback that creates events.
Returned callback function will add an event of type event_type
to a queue which will be checked the next time an event is requested. | entailment |
def scheduled_event_trigger(self, event_type):
"""Returns a callback that schedules events for the future.
Returned callback function will add an event of type event_type
to a queue which will be checked the next time an event is requested."""
def callback(when, **kwargs):
self.queued_scheduled_events.append((when, event_type(when=when, **kwargs)))
return callback | Returns a callback that schedules events for the future.
Returned callback function will add an event of type event_type
to a queue which will be checked the next time an event is requested. | entailment |
def threadsafe_event_trigger(self, event_type):
"""Returns a callback to creates events, interrupting current event requests.
Returned callback function will create an event of type event_type
which will interrupt an event request if one
is concurrently occuring, otherwise adding the event to a queue
that will be checked on the next event request."""
readfd, writefd = os.pipe()
self.readers.append(readfd)
def callback(**kwargs):
self.queued_interrupting_events.append(event_type(**kwargs)) #TODO use a threadsafe queue for this
logger.warning('added event to events list %r', self.queued_interrupting_events)
os.write(writefd, b'interrupting event!')
return callback | Returns a callback to creates events, interrupting current event requests.
Returned callback function will create an event of type event_type
which will interrupt an event request if one
is concurrently occuring, otherwise adding the event to a queue
that will be checked on the next event request. | entailment |
def solve_sdp(sdp, solver=None, solverparameters=None):
"""Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices.
:param sdpRelaxation: The SDP relaxation to be solved.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param solver: The solver to be called, either `None`, "sdpa", "mosek",
"cvxpy", "scs", or "cvxopt". The default is `None`,
which triggers autodetect.
:type solver: str.
:param solverparameters: Parameters to be passed to the solver. Actual
options depend on the solver:
SDPA:
- `"executable"`:
Specify the executable for SDPA. E.g.,
`"executable":"/usr/local/bin/sdpa"`, or
`"executable":"sdpa_gmp"`
- `"paramsfile"`: Specify the parameter file
Mosek:
Refer to the Mosek documentation. All
arguments are passed on.
Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.
Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.
SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.
:type solverparameters: dict of str.
:returns: tuple of the primal and dual optimum, and the solutions for the
primal and dual.
:rtype: (float, float, list of `numpy.array`, list of `numpy.array`)
"""
solvers = autodetect_solvers(solverparameters)
solver = solver.lower() if solver is not None else solver
if solvers == []:
raise Exception("Could not find any SDP solver. Please install SDPA," +
" Mosek, Cvxpy, or Picos with Cvxopt")
elif solver is not None and solver not in solvers:
print("Available solvers: " + str(solvers))
if solver == "cvxopt":
try:
import cvxopt
except ImportError:
pass
else:
raise Exception("Cvxopt is detected, but Picos is not. "
"Please install Picos to use Cvxopt")
raise Exception("Could not detect requested " + solver)
elif solver is None:
solver = solvers[0]
primal, dual, x_mat, y_mat, status = None, None, None, None, None
tstart = time.time()
if solver == "sdpa":
primal, dual, x_mat, y_mat, status = \
solve_with_sdpa(sdp, solverparameters)
elif solver == "cvxpy":
primal, dual, x_mat, y_mat, status = \
solve_with_cvxpy(sdp, solverparameters)
elif solver == "scs":
if solverparameters is None:
solverparameters_ = {"solver": "SCS"}
else:
solverparameters_ = solverparameters.copy()
solverparameters_["solver"] = "SCS"
primal, dual, x_mat, y_mat, status = \
solve_with_cvxpy(sdp, solverparameters_)
elif solver == "mosek":
primal, dual, x_mat, y_mat, status = \
solve_with_mosek(sdp, solverparameters)
elif solver == "cvxopt":
primal, dual, x_mat, y_mat, status = \
solve_with_cvxopt(sdp, solverparameters)
# We have to compensate for the equality constraints
for constraint in sdp.constraints[sdp._n_inequalities:]:
idx = sdp._constraint_to_block_index[constraint]
sdp._constraint_to_block_index[constraint] = (idx[0],)
else:
raise Exception("Unkown solver: " + solver)
sdp.solution_time = time.time() - tstart
sdp.primal = primal
sdp.dual = dual
sdp.x_mat = x_mat
sdp.y_mat = y_mat
sdp.status = status
return primal, dual, x_mat, y_mat | Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices.
:param sdpRelaxation: The SDP relaxation to be solved.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param solver: The solver to be called, either `None`, "sdpa", "mosek",
"cvxpy", "scs", or "cvxopt". The default is `None`,
which triggers autodetect.
:type solver: str.
:param solverparameters: Parameters to be passed to the solver. Actual
options depend on the solver:
SDPA:
- `"executable"`:
Specify the executable for SDPA. E.g.,
`"executable":"/usr/local/bin/sdpa"`, or
`"executable":"sdpa_gmp"`
- `"paramsfile"`: Specify the parameter file
Mosek:
Refer to the Mosek documentation. All
arguments are passed on.
Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.
Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.
SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.
:type solverparameters: dict of str.
:returns: tuple of the primal and dual optimum, and the solutions for the
primal and dual.
:rtype: (float, float, list of `numpy.array`, list of `numpy.array`) | entailment |
def find_solution_ranks(sdp, xmat=None, baselevel=0):
"""Helper function to detect rank loop in the solution matrix.
:param sdp: The SDP relaxation.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param x_mat: Optional parameter providing the primal solution of the
moment matrix. If not provided, the solution is extracted
from the sdp object.
:type x_mat: :class:`numpy.array`.
:param base_level: Optional parameter for specifying the lower level
relaxation for which the rank loop should be tested
against.
:type base_level: int.
:returns: list of int -- the ranks of the solution matrix with in the
order of increasing degree.
"""
if sdp.status == "unsolved" and xmat is None:
raise Exception("The SDP relaxation is unsolved and no primal " +
"solution is provided!")
elif sdp.status != "unsolved" and xmat is None:
xmat = sdp.x_mat[0]
else:
xmat = sdp.x_mat[0]
if sdp.status == "unsolved":
raise Exception("The SDP relaxation is unsolved!")
ranks = []
from numpy.linalg import matrix_rank
if baselevel == 0:
levels = range(1, sdp.level + 1)
else:
levels = [baselevel]
for level in levels:
base_monomials = \
pick_monomials_up_to_degree(sdp.monomial_sets[0], level)
ranks.append(matrix_rank(xmat[:len(base_monomials),
:len(base_monomials)]))
if xmat.shape != (len(base_monomials), len(base_monomials)):
ranks.append(matrix_rank(xmat))
return ranks | Helper function to detect rank loop in the solution matrix.
:param sdp: The SDP relaxation.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param x_mat: Optional parameter providing the primal solution of the
moment matrix. If not provided, the solution is extracted
from the sdp object.
:type x_mat: :class:`numpy.array`.
:param base_level: Optional parameter for specifying the lower level
relaxation for which the rank loop should be tested
against.
:type base_level: int.
:returns: list of int -- the ranks of the solution matrix with in the
order of increasing degree. | entailment |
def get_sos_decomposition(sdp, y_mat=None, threshold=0.0):
"""Given a solution of the dual problem, it returns the SOS
decomposition.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param y_mat: Optional parameter providing the dual solution of the
moment matrix. If not provided, the solution is extracted
from the sdp object.
:type y_mat: :class:`numpy.array`.
:param threshold: Optional parameter for specifying the threshold value
below which the eigenvalues and entries of the
eigenvectors are disregarded.
:type threshold: float.
:returns: The SOS decomposition of [sigma_0, sigma_1, ..., sigma_m]
:rtype: list of :class:`sympy.core.exp.Expr`.
"""
if len(sdp.monomial_sets) != 1:
raise Exception("Cannot automatically match primal and dual " +
"variables.")
elif len(sdp.y_mat[1:]) != len(sdp.constraints):
raise Exception("Cannot automatically match constraints with blocks " +
"in the dual solution.")
elif sdp.status == "unsolved" and y_mat is None:
raise Exception("The SDP relaxation is unsolved and dual solution " +
"is not provided!")
elif sdp.status != "unsolved" and y_mat is None:
y_mat = sdp.y_mat
sos = []
for y_mat_block in y_mat:
term = 0
vals, vecs = np.linalg.eigh(y_mat_block)
for j, val in enumerate(vals):
if val < -0.001:
raise Exception("Large negative eigenvalue: " + val +
". Matrix cannot be positive.")
elif val > 0:
sub_term = 0
for i, entry in enumerate(vecs[:, j]):
sub_term += entry * sdp.monomial_sets[0][i]
term += val * sub_term**2
term = expand(term)
new_term = 0
if term.is_Mul:
elements = [term]
else:
elements = term.as_coeff_mul()[1][0].as_coeff_add()[1]
for element in elements:
_, coeff = separate_scalar_factor(element)
if abs(coeff) > threshold:
new_term += element
sos.append(new_term)
return sos | Given a solution of the dual problem, it returns the SOS
decomposition.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param y_mat: Optional parameter providing the dual solution of the
moment matrix. If not provided, the solution is extracted
from the sdp object.
:type y_mat: :class:`numpy.array`.
:param threshold: Optional parameter for specifying the threshold value
below which the eigenvalues and entries of the
eigenvectors are disregarded.
:type threshold: float.
:returns: The SOS decomposition of [sigma_0, sigma_1, ..., sigma_m]
:rtype: list of :class:`sympy.core.exp.Expr`. | entailment |
def extract_dual_value(sdp, monomial, blocks=None):
"""Given a solution of the dual problem and a monomial, it returns the
inner product of the corresponding coefficient matrix and the dual
solution. It can be restricted to certain blocks.
:param sdp: The SDP relaxation.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param monomial: The monomial for which the value is requested.
:type monomial: :class:`sympy.core.exp.Expr`.
:param monomial: The monomial for which the value is requested.
:type monomial: :class:`sympy.core.exp.Expr`.
:param blocks: Optional parameter to specify the blocks to be included.
:type blocks: list of `int`.
:returns: The value of the monomial in the solved relaxation.
:rtype: float.
"""
if sdp.status == "unsolved":
raise Exception("The SDP relaxation is unsolved!")
if blocks is None:
blocks = [i for i, _ in enumerate(sdp.block_struct)]
if is_number_type(monomial):
index = 0
else:
index = sdp.monomial_index[monomial]
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
result = 0
for row in range(len(sdp.F.rows)):
if len(sdp.F.rows[row]) > 0:
col_index = 0
for k in sdp.F.rows[row]:
if k != index:
continue
value = sdp.F.data[row][col_index]
col_index += 1
block_index, i, j = convert_row_to_sdpa_index(
sdp.block_struct, row_offsets, row)
if block_index in blocks:
result += -value*sdp.y_mat[block_index][i][j]
return result | Given a solution of the dual problem and a monomial, it returns the
inner product of the corresponding coefficient matrix and the dual
solution. It can be restricted to certain blocks.
:param sdp: The SDP relaxation.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param monomial: The monomial for which the value is requested.
:type monomial: :class:`sympy.core.exp.Expr`.
:param monomial: The monomial for which the value is requested.
:type monomial: :class:`sympy.core.exp.Expr`.
:param blocks: Optional parameter to specify the blocks to be included.
:type blocks: list of `int`.
:returns: The value of the monomial in the solved relaxation.
:rtype: float. | entailment |
def completed_number(prefix, length):
"""
'prefix' is the start of the CC number as a string, any number of digits.
'length' is the length of the CC number to generate. Typically 13 or 16
"""
ccnumber = prefix
# generate digits
while len(ccnumber) < (length - 1):
digit = random.choice(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])
ccnumber.append(digit)
# Calculate sum
sum = 0
pos = 0
reversedCCnumber = []
reversedCCnumber.extend(ccnumber)
reversedCCnumber.reverse()
while pos < length - 1:
odd = int( reversedCCnumber[pos] ) * 2
if odd > 9:
odd -= 9
sum += odd
if pos != (length - 2):
sum += int( reversedCCnumber[pos+1] )
pos += 2
# Calculate check digit
checkdigit = ((sum / 10 + 1) * 10 - sum) % 10
ccnumber.append( str(int(checkdigit)) )
return ''.join(ccnumber) | 'prefix' is the start of the CC number as a string, any number of digits.
'length' is the length of the CC number to generate. Typically 13 or 16 | entailment |
def load_module(self, fullname):
"""
load_module is always called with the same argument as finder's
find_module, see "How Import Works"
"""
mod = super(JsonLoader, self).load_module(fullname)
try:
with codecs.open(self.cfg_file, 'r', 'utf-8') as f:
mod.__dict__.update(json.load(f))
except ValueError:
# if raise here, traceback will contain ValueError
self.e = "ValueError"
self.err_msg = sys.exc_info()[1]
if self.e == "ValueError":
err_msg = "\nJson file not valid: "
err_msg += self.cfg_file + '\n'
err_msg += str(self.err_msg)
raise InvalidJsonError(err_msg)
return mod | load_module is always called with the same argument as finder's
find_module, see "How Import Works" | entailment |
def process_event(self, c):
"""Returns a message from tick() to be displayed if game is over"""
if c == "":
sys.exit()
elif c in key_directions:
self.move_entity(self.player, *vscale(self.player.speed, key_directions[c]))
else:
return "try arrow keys, w, a, s, d, or ctrl-D (you pressed %r)" % c
return self.tick() | Returns a message from tick() to be displayed if game is over | entailment |
def tick(self):
"""Returns a message to be displayed if game is over, else None"""
for npc in self.npcs:
self.move_entity(npc, *npc.towards(self.player))
for entity1, entity2 in itertools.combinations(self.entities, 2):
if (entity1.x, entity1.y) == (entity2.x, entity2.y):
if self.player in (entity1, entity2):
return 'you lost on turn %d' % self.turn
entity1.die()
entity2.die()
if all(npc.speed == 0 for npc in self.npcs):
return 'you won on turn %d' % self.turn
self.turn += 1
if self.turn % 20 == 0:
self.player.speed = max(1, self.player.speed - 1)
self.player.display = on_blue(green(bold(unicode_str(self.player.speed)))) | Returns a message to be displayed if game is over, else None | entailment |
def array_from_text(self, msg):
"""Returns a FSArray of the size of the window containing msg"""
rows, columns = self.t.height, self.t.width
return self.array_from_text_rc(msg, rows, columns) | Returns a FSArray of the size of the window containing msg | entailment |
def render_to_terminal(self, array, cursor_pos=(0, 0)):
"""Renders array to terminal and places (0-indexed) cursor
Args:
array (FSArray): Grid of styled characters to be rendered.
* If array received is of width too small, render it anyway
* If array received is of width too large,
* render the renderable portion
* If array received is of height too small, render it anyway
* If array received is of height too large,
* render the renderable portion (no scroll)
"""
# TODO there's a race condition here - these height and widths are
# super fresh - they might change between the array being constructed
# and rendered
# Maybe the right behavior is to throw away the render
# in the signal handler?
height, width = self.height, self.width
for_stdout = self.fmtstr_to_stdout_xform()
if not self.hide_cursor:
self.write(self.t.hide_cursor)
if (height != self._last_rendered_height or
width != self._last_rendered_width):
self.on_terminal_size_change(height, width)
current_lines_by_row = {}
rows = list(range(height))
rows_for_use = rows[:len(array)]
rest_of_rows = rows[len(array):]
# rows which we have content for and don't require scrolling
for row, line in zip(rows_for_use, array):
current_lines_by_row[row] = line
if line == self._last_lines_by_row.get(row, None):
continue
self.write(self.t.move(row, 0))
self.write(for_stdout(line))
if len(line) < width:
self.write(self.t.clear_eol)
# rows onscreen that we don't have content for
for row in rest_of_rows:
if self._last_lines_by_row and row not in self._last_lines_by_row:
continue
self.write(self.t.move(row, 0))
self.write(self.t.clear_eol)
self.write(self.t.clear_bol)
current_lines_by_row[row] = None
logger.debug(
'lines in last lines by row: %r' % self._last_lines_by_row.keys()
)
logger.debug(
'lines in current lines by row: %r' % current_lines_by_row.keys()
)
self.write(self.t.move(*cursor_pos))
self._last_lines_by_row = current_lines_by_row
if not self.hide_cursor:
self.write(self.t.normal_cursor) | Renders array to terminal and places (0-indexed) cursor
Args:
array (FSArray): Grid of styled characters to be rendered.
* If array received is of width too small, render it anyway
* If array received is of width too large,
* render the renderable portion
* If array received is of height too small, render it anyway
* If array received is of height too large,
* render the renderable portion (no scroll) | entailment |
def get_cursor_position(self):
"""Returns the terminal (row, column) of the cursor
0-indexed, like blessings cursor positions"""
# TODO would this be cleaner as a parameter?
in_stream = self.in_stream
query_cursor_position = u"\x1b[6n"
self.write(query_cursor_position)
def retrying_read():
while True:
try:
c = in_stream.read(1)
if c == '':
raise ValueError("Stream should be blocking - should't"
" return ''. Returned %r so far",
(resp,))
return c
except IOError:
raise ValueError(
'cursor get pos response read interrupted'
)
# find out if this ever really happens - if so, continue
resp = ''
while True:
c = retrying_read()
resp += c
m = re.search('(?P<extra>.*)'
'(?P<CSI>\x1b\[|\x9b)'
'(?P<row>\\d+);(?P<column>\\d+)R', resp, re.DOTALL)
if m:
row = int(m.groupdict()['row'])
col = int(m.groupdict()['column'])
extra = m.groupdict()['extra']
if extra:
if self.extra_bytes_callback:
self.extra_bytes_callback(
extra.encode(in_stream.encoding)
)
else:
raise ValueError(("Bytes preceding cursor position "
"query response thrown out:\n%r\n"
"Pass an extra_bytes_callback to "
"CursorAwareWindow to prevent this")
% (extra,))
return (row - 1, col - 1) | Returns the terminal (row, column) of the cursor
0-indexed, like blessings cursor positions | entailment |
def get_cursor_vertical_diff(self):
"""Returns the how far down the cursor moved since last render.
Note:
If another get_cursor_vertical_diff call is already in progress,
immediately returns zero. (This situation is likely if
get_cursor_vertical_diff is called from a SIGWINCH signal
handler, since sigwinches can happen in rapid succession and
terminal emulators seem not to respond to cursor position
queries before the next sigwinch occurs.)
"""
# Probably called by a SIGWINCH handler, and therefore
# will do cursor querying until a SIGWINCH doesn't happen during
# the query. Calls to the function from a signal handler COULD STILL
# HAPPEN out of order -
# they just can't interrupt the actual cursor query.
if self.in_get_cursor_diff:
self.another_sigwinch = True
return 0
cursor_dy = 0
while True:
self.in_get_cursor_diff = True
self.another_sigwinch = False
cursor_dy += self._get_cursor_vertical_diff_once()
self.in_get_cursor_diff = False
if not self.another_sigwinch:
return cursor_dy | Returns the how far down the cursor moved since last render.
Note:
If another get_cursor_vertical_diff call is already in progress,
immediately returns zero. (This situation is likely if
get_cursor_vertical_diff is called from a SIGWINCH signal
handler, since sigwinches can happen in rapid succession and
terminal emulators seem not to respond to cursor position
queries before the next sigwinch occurs.) | entailment |
def _get_cursor_vertical_diff_once(self):
"""Returns the how far down the cursor moved."""
old_top_usable_row = self.top_usable_row
row, col = self.get_cursor_position()
if self._last_cursor_row is None:
cursor_dy = 0
else:
cursor_dy = row - self._last_cursor_row
logger.info('cursor moved %d lines down' % cursor_dy)
while self.top_usable_row > -1 and cursor_dy > 0:
self.top_usable_row += 1
cursor_dy -= 1
while self.top_usable_row > 1 and cursor_dy < 0:
self.top_usable_row -= 1
cursor_dy += 1
logger.info('top usable row changed from %d to %d', old_top_usable_row,
self.top_usable_row)
logger.info('returning cursor dy of %d from curtsies' % cursor_dy)
self._last_cursor_row = row
return cursor_dy | Returns the how far down the cursor moved. | entailment |
def render_to_terminal(self, array, cursor_pos=(0, 0)):
"""Renders array to terminal, returns the number of lines scrolled offscreen
Returns:
Number of times scrolled
Args:
array (FSArray): Grid of styled characters to be rendered.
If array received is of width too small, render it anyway
if array received is of width too large, render it anyway
if array received is of height too small, render it anyway
if array received is of height too large, render it, scroll down,
and render the rest of it, then return how much we scrolled down
"""
for_stdout = self.fmtstr_to_stdout_xform()
# caching of write and tc (avoiding the self. lookups etc) made
# no significant performance difference here
if not self.hide_cursor:
self.write(self.t.hide_cursor)
# TODO race condition here?
height, width = self.t.height, self.t.width
if (height != self._last_rendered_height or
width != self._last_rendered_width):
self.on_terminal_size_change(height, width)
current_lines_by_row = {}
rows_for_use = list(range(self.top_usable_row, height))
# rows which we have content for and don't require scrolling
# TODO rename shared
shared = min(len(array), len(rows_for_use))
for row, line in zip(rows_for_use[:shared], array[:shared]):
current_lines_by_row[row] = line
if line == self._last_lines_by_row.get(row, None):
continue
self.write(self.t.move(row, 0))
self.write(for_stdout(line))
if len(line) < width:
self.write(self.t.clear_eol)
# rows already on screen that we don't have content for
rest_of_lines = array[shared:]
rest_of_rows = rows_for_use[shared:]
for row in rest_of_rows: # if array too small
if self._last_lines_by_row and row not in self._last_lines_by_row:
continue
self.write(self.t.move(row, 0))
self.write(self.t.clear_eol)
# TODO probably not necessary - is first char cleared?
self.write(self.t.clear_bol)
current_lines_by_row[row] = None
# lines for which we need to scroll down to render
offscreen_scrolls = 0
for line in rest_of_lines: # if array too big
self.scroll_down()
if self.top_usable_row > 0:
self.top_usable_row -= 1
else:
offscreen_scrolls += 1
current_lines_by_row = dict(
(k - 1, v) for k, v in current_lines_by_row.items()
)
logger.debug('new top_usable_row: %d' % self.top_usable_row)
# since scrolling moves the cursor
self.write(self.t.move(height - 1, 0))
self.write(for_stdout(line))
current_lines_by_row[height - 1] = line
logger.debug(
'lines in last lines by row: %r' % self._last_lines_by_row.keys()
)
logger.debug(
'lines in current lines by row: %r' % current_lines_by_row.keys()
)
self._last_cursor_row = max(
0, cursor_pos[0] - offscreen_scrolls + self.top_usable_row
)
self._last_cursor_column = cursor_pos[1]
self.write(
self.t.move(self._last_cursor_row, self._last_cursor_column)
)
self._last_lines_by_row = current_lines_by_row
if not self.hide_cursor:
self.write(self.t.normal_cursor)
return offscreen_scrolls | Renders array to terminal, returns the number of lines scrolled offscreen
Returns:
Number of times scrolled
Args:
array (FSArray): Grid of styled characters to be rendered.
If array received is of width too small, render it anyway
if array received is of width too large, render it anyway
if array received is of height too small, render it anyway
if array received is of height too large, render it, scroll down,
and render the rest of it, then return how much we scrolled down | entailment |
def solve(self, solver=None, solverparameters=None):
"""Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the `sdpRelaxation` object,
along with some status information.
:param sdpRelaxation: The SDP relaxation to be solved.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param solver: The solver to be called, either `None`, "sdpa", "mosek",
"cvxpy", "scs", or "cvxopt". The default is `None`,
which triggers autodetect.
:type solver: str.
:param solverparameters: Parameters to be passed to the solver. Actual
options depend on the solver:
SDPA:
- `"executable"`:
Specify the executable for SDPA. E.g.,
`"executable":"/usr/local/bin/sdpa"`, or
`"executable":"sdpa_gmp"`
- `"paramsfile"`: Specify the parameter file
Mosek:
Refer to the Mosek documentation. All
arguments are passed on.
Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.
Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.
SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.
:type solverparameters: dict of str.
"""
if self.F is None:
raise Exception("Relaxation is not generated yet. Call "
"'SdpRelaxation.get_relaxation' first")
solve_sdp(self, solver, solverparameters) | Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the `sdpRelaxation` object,
along with some status information.
:param sdpRelaxation: The SDP relaxation to be solved.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param solver: The solver to be called, either `None`, "sdpa", "mosek",
"cvxpy", "scs", or "cvxopt". The default is `None`,
which triggers autodetect.
:type solver: str.
:param solverparameters: Parameters to be passed to the solver. Actual
options depend on the solver:
SDPA:
- `"executable"`:
Specify the executable for SDPA. E.g.,
`"executable":"/usr/local/bin/sdpa"`, or
`"executable":"sdpa_gmp"`
- `"paramsfile"`: Specify the parameter file
Mosek:
Refer to the Mosek documentation. All
arguments are passed on.
Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.
Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.
SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.
:type solverparameters: dict of str. | entailment |
def _process_monomial(self, monomial, n_vars):
"""Process a single monomial when building the moment matrix.
"""
processed_monomial, coeff = separate_scalar_factor(monomial)
# Are we substituting this moment?
try:
substitute = self.moment_substitutions[processed_monomial]
if not isinstance(substitute, (int, float, complex)):
result = []
if not isinstance(substitute, Add):
args = [substitute]
else:
args = substitute.args
for arg in args:
if is_number_type(arg):
if iscomplex(arg):
result.append((0, coeff*complex(arg)))
else:
result.append((0, coeff*float(arg)))
else:
result += [(k, coeff*c2)
for k, c2 in self._process_monomial(arg,
n_vars)]
else:
result = [(0, coeff*substitute)]
except KeyError:
# Have we seen this monomial before?
try:
# If yes, then we improve sparsity by reusing the
# previous variable to denote this entry in the matrix
k = self.monomial_index[processed_monomial]
except KeyError:
# If no, it still may be possible that we have already seen its
# conjugate. If the problem is real-valued, a monomial and its
# conjugate should be equal (Hermiticity becomes symmetry)
if not self.complex_matrix:
try:
# If we have seen the conjugate before, we just use the
# conjugate monomial instead
processed_monomial_adjoint = \
apply_substitutions(processed_monomial.adjoint(),
self.substitutions)
k = self.monomial_index[processed_monomial_adjoint]
except KeyError:
# Otherwise we define a new entry in the associated
# array recording the monomials, and add an entry in
# the moment matrix
k = n_vars + 1
self.monomial_index[processed_monomial] = k
else:
k = n_vars + 1
self.monomial_index[processed_monomial] = k
result = [(k, coeff)]
return result | Process a single monomial when building the moment matrix. | entailment |
def _generate_moment_matrix(self, n_vars, block_index, processed_entries,
monomialsA, monomialsB, ppt=False):
"""Generate the moment matrix of monomials.
Arguments:
n_vars -- current number of variables
block_index -- current block index in the SDP matrix
monomials -- |W_d| set of words of length up to the relaxation level
"""
row_offset = 0
if block_index > 0:
for block_size in self.block_struct[0:block_index]:
row_offset += block_size ** 2
N = len(monomialsA)*len(monomialsB)
func = partial(assemble_monomial_and_do_substitutions,
monomialsA=monomialsA, monomialsB=monomialsB, ppt=ppt,
substitutions=self.substitutions,
pure_substitution_rules=self.pure_substitution_rules)
if self._parallel:
pool = Pool()
# This is just a guess and can be optimized
chunksize = int(max(int(np.sqrt(len(monomialsA) * len(monomialsB) *
len(monomialsA) / 2) / cpu_count()),
1))
for rowA in range(len(monomialsA)):
if self._parallel:
iter_ = pool.map(func, [(rowA, columnA, rowB, columnB)
for rowB in range(len(monomialsB))
for columnA in range(rowA,
len(monomialsA))
for columnB in range((rowA == columnA)*rowB,
len(monomialsB))],
chunksize)
print_criterion = processed_entries + len(iter_)
else:
iter_ = imap(func, [(rowA, columnA, rowB, columnB)
for columnA in range(rowA, len(monomialsA))
for rowB in range(len(monomialsB))
for columnB in range((rowA == columnA)*rowB,
len(monomialsB))])
for columnA, rowB, columnB, monomial in iter_:
processed_entries += 1
n_vars = self._push_monomial(monomial, n_vars,
row_offset, rowA,
columnA, N, rowB,
columnB, len(monomialsB),
prevent_substitutions=True)
if self.verbose > 0 and (not self._parallel or
processed_entries == self.n_vars or
processed_entries == print_criterion):
percentage = processed_entries / self.n_vars
time_used = time.time()-self._time0
eta = (1.0 / percentage) * time_used - time_used
hours = int(eta/3600)
minutes = int((eta-3600*hours)/60)
seconds = eta-3600*hours-minutes*60
msg = ""
if self.verbose > 1 and self._parallel:
msg = ", working on block {:0} with {:0} processes with a chunksize of {:0d}"\
.format(block_index, cpu_count(),
chunksize)
msg = "{:0} (done: {:.2%}, ETA {:02d}:{:02d}:{:03.1f}"\
.format(n_vars, percentage, hours, minutes, seconds) + \
msg
msg = "\r\x1b[KCurrent number of SDP variables: " + msg + ")"
sys.stdout.write(msg)
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write("\r")
return n_vars, block_index + 1, processed_entries | Generate the moment matrix of monomials.
Arguments:
n_vars -- current number of variables
block_index -- current block index in the SDP matrix
monomials -- |W_d| set of words of length up to the relaxation level | entailment |
def _get_index_of_monomial(self, element, enablesubstitution=True,
daggered=False):
"""Returns the index of a monomial.
"""
result = []
processed_element, coeff1 = separate_scalar_factor(element)
if processed_element in self.moment_substitutions:
r = self._get_index_of_monomial(self.moment_substitutions[processed_element], enablesubstitution)
return [(k, coeff*coeff1) for k, coeff in r]
if enablesubstitution:
processed_element = \
apply_substitutions(processed_element, self.substitutions,
self.pure_substitution_rules)
# Given the monomial, we need its mapping L_y(w) to push it into
# a corresponding constraint matrix
if is_number_type(processed_element):
return [(0, coeff1)]
elif processed_element.is_Add:
monomials = processed_element.args
else:
monomials = [processed_element]
for monomial in monomials:
monomial, coeff2 = separate_scalar_factor(monomial)
coeff = coeff1*coeff2
if is_number_type(monomial):
result.append((0, coeff))
continue
k = -1
if monomial != 0:
if monomial.as_coeff_Mul()[0] < 0:
monomial = -monomial
coeff = -1.0 * coeff
try:
new_element = self.moment_substitutions[monomial]
r = self._get_index_of_monomial(self.moment_substitutions[new_element], enablesubstitution)
result += [(k, coeff*coeff3) for k, coeff3 in r]
except KeyError:
try:
k = self.monomial_index[monomial]
result.append((k, coeff))
except KeyError:
if not daggered:
dag_result = self._get_index_of_monomial(monomial.adjoint(),
daggered=True)
result += [(k, coeff0*coeff) for k, coeff0 in dag_result]
else:
raise RuntimeError("The requested monomial " +
str(monomial) + " could not be found.")
return result | Returns the index of a monomial. | entailment |
def __push_facvar_sparse(self, polynomial, block_index, row_offset, i, j):
"""Calculate the sparse vector representation of a polynomial
and pushes it to the F structure.
"""
width = self.block_struct[block_index - 1]
# Preprocess the polynomial for uniform handling later
# DO NOT EXPAND THE POLYNOMIAL HERE!!!!!!!!!!!!!!!!!!!
# The simplify_polynomial bypasses the problem.
# Simplifying here will trigger a bug in SymPy related to
# the powers of daggered variables.
# polynomial = polynomial.expand()
if is_number_type(polynomial) or polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
# Identify its constituent monomials
for element in elements:
results = self._get_index_of_monomial(element)
# k identifies the mapped value of a word (monomial) w
for (k, coeff) in results:
if k > -1 and coeff != 0:
self.F[row_offset + i * width + j, k] += coeff | Calculate the sparse vector representation of a polynomial
and pushes it to the F structure. | entailment |
def _get_facvar(self, polynomial):
"""Return dense vector representation of a polynomial. This function is
nearly identical to __push_facvar_sparse, but instead of pushing
sparse entries to the constraint matrices, it returns a dense
vector.
"""
facvar = [0] * (self.n_vars + 1)
# Preprocess the polynomial for uniform handling later
if is_number_type(polynomial):
facvar[0] = polynomial
return facvar
polynomial = polynomial.expand()
if polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
for element in elements:
results = self._get_index_of_monomial(element)
for (k, coeff) in results:
facvar[k] += coeff
return facvar | Return dense vector representation of a polynomial. This function is
nearly identical to __push_facvar_sparse, but instead of pushing
sparse entries to the constraint matrices, it returns a dense
vector. | entailment |
def __process_inequalities(self, block_index):
"""Generate localizing matrices
Arguments:
inequalities -- list of inequality constraints
monomials -- localizing monomials
block_index -- the current block index in constraint matrices of the
SDP relaxation
"""
initial_block_index = block_index
row_offsets = [0]
for block, block_size in enumerate(self.block_struct):
row_offsets.append(row_offsets[block] + block_size ** 2)
if self._parallel:
pool = Pool()
for k, ineq in enumerate(self.constraints):
block_index += 1
monomials = self.localizing_monomial_sets[block_index -
initial_block_index-1]
lm = len(monomials)
if isinstance(ineq, str):
self.__parse_expression(ineq, row_offsets[block_index-1])
continue
if ineq.is_Relational:
ineq = convert_relational(ineq)
func = partial(moment_of_entry, monomials=monomials, ineq=ineq,
substitutions=self.substitutions)
if self._parallel and lm > 1:
chunksize = max(int(np.sqrt(lm*lm/2) /
cpu_count()), 1)
iter_ = pool.map(func, ([row, column] for row in range(lm)
for column in range(row, lm)),
chunksize)
else:
iter_ = imap(func, ([row, column] for row in range(lm)
for column in range(row, lm)))
if block_index > self.constraint_starting_block + \
self._n_inequalities and lm > 1:
is_equality = True
else:
is_equality = False
for row, column, polynomial in iter_:
if is_equality:
row, column = 0, 0
self.__push_facvar_sparse(polynomial, block_index,
row_offsets[block_index-1],
row, column)
if is_equality:
block_index += 1
if is_equality:
block_index -= 1
if self.verbose > 0:
sys.stdout.write("\r\x1b[KProcessing %d/%d constraints..." %
(k+1, len(self.constraints)))
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write("\n")
return block_index | Generate localizing matrices
Arguments:
inequalities -- list of inequality constraints
monomials -- localizing monomials
block_index -- the current block index in constraint matrices of the
SDP relaxation | entailment |
def __process_equalities(self, equalities, momentequalities):
"""Generate localizing matrices
Arguments:
equalities -- list of equality constraints
equalities -- list of moment equality constraints
"""
monomial_sets = []
n_rows = 0
le = 0
if equalities is not None:
for equality in equalities:
le += 1
# Find the order of the localizing matrix
if equality.is_Relational:
equality = convert_relational(equality)
eq_order = ncdegree(equality)
if eq_order > 2 * self.level:
raise Exception("An equality constraint has degree %d. "
"Choose a higher level of relaxation."
% eq_order)
localization_order = (2 * self.level - eq_order)//2
index = find_variable_set(self.variables, equality)
localizing_monomials = \
pick_monomials_up_to_degree(self.monomial_sets[index],
localization_order)
if len(localizing_monomials) == 0:
localizing_monomials = [S.One]
localizing_monomials = unique(localizing_monomials)
monomial_sets.append(localizing_monomials)
n_rows += len(localizing_monomials) * \
(len(localizing_monomials) + 1) // 2
if momentequalities is not None:
for _ in momentequalities:
le += 1
monomial_sets.append([S.One])
n_rows += 1
A = np.zeros((n_rows, self.n_vars + 1), dtype=self.F.dtype)
n_rows = 0
if self._parallel:
pool = Pool()
for i, equality in enumerate(flatten([equalities, momentequalities])):
func = partial(moment_of_entry, monomials=monomial_sets[i],
ineq=equality, substitutions=self.substitutions)
lm = len(monomial_sets[i])
if self._parallel and lm > 1:
chunksize = max(int(np.sqrt(lm*lm/2) /
cpu_count()), 1)
iter_ = pool.map(func, ([row, column] for row in range(lm)
for column in range(row, lm)),
chunksize)
else:
iter_ = imap(func, ([row, column] for row in range(lm)
for column in range(row, lm)))
# Process M_y(gy)(u,w) entries
for row, column, polynomial in iter_:
# Calculate the moments of polynomial entries
if isinstance(polynomial, str):
self.__parse_expression(equality, -1, A[n_rows])
else:
A[n_rows] = self._get_facvar(polynomial)
n_rows += 1
if self.verbose > 0:
sys.stdout.write("\r\x1b[KProcessing %d/%d equalities..." %
(i+1, le))
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write("\n")
return A | Generate localizing matrices
Arguments:
equalities -- list of equality constraints
equalities -- list of moment equality constraints | entailment |
def __remove_equalities(self, equalities, momentequalities):
"""Attempt to remove equalities by solving the linear equations.
"""
A = self.__process_equalities(equalities, momentequalities)
if min(A.shape != np.linalg.matrix_rank(A)):
print("Warning: equality constraints are linearly dependent! "
"Results might be incorrect.", file=sys.stderr)
if A.shape[0] == 0:
return
c = np.array(self.obj_facvar)
if self.verbose > 0:
print("QR decomposition...")
Q, R = np.linalg.qr(A[:, 1:].T, mode='complete')
n = np.max(np.nonzero(np.sum(np.abs(R), axis=1) > 0)) + 1
x = np.dot(Q[:, :n], np.linalg.solve(np.transpose(R[:n, :]), -A[:, 0]))
self._new_basis = lil_matrix(Q[:, n:])
# Transforming the objective function
self._original_obj_facvar = self.obj_facvar
self._original_constant_term = self.constant_term
self.obj_facvar = self._new_basis.T.dot(c)
self.constant_term += c.dot(x)
x = np.append(1, x)
# Transforming the moment matrix and localizing matrices
new_F = lil_matrix((self.F.shape[0], self._new_basis.shape[1] + 1))
new_F[:, 0] = self.F[:, :self.n_vars+1].dot(x).reshape((new_F.shape[0],
1))
new_F[:, 1:] = self.F[:, 1:self.n_vars+1].\
dot(self._new_basis)
self._original_F = self.F
self.F = new_F
self.n_vars = self._new_basis.shape[1]
if self.verbose > 0:
print("Number of variables after solving the linear equations: %d"
% self.n_vars) | Attempt to remove equalities by solving the linear equations. | entailment |
def _calculate_block_structure(self, inequalities, equalities,
momentinequalities, momentequalities,
extramomentmatrix, removeequalities,
block_struct=None):
"""Calculates the block_struct array for the output file.
"""
if block_struct is None:
if self.verbose > 0:
print("Calculating block structure...")
self.block_struct = []
if self.parameters is not None:
self.block_struct += [1 for _ in self.parameters]
for monomials in self.monomial_sets:
if len(monomials) > 0 and isinstance(monomials[0], list):
self.block_struct.append(len(monomials[0]))
else:
self.block_struct.append(len(monomials))
if extramomentmatrix is not None:
for _ in extramomentmatrix:
for monomials in self.monomial_sets:
if len(monomials) > 0 and \
isinstance(monomials[0], list):
self.block_struct.append(len(monomials[0]))
else:
self.block_struct.append(len(monomials))
else:
self.block_struct = block_struct
degree_warning = False
if inequalities is not None:
self._n_inequalities = len(inequalities)
n_tmp_inequalities = len(inequalities)
else:
self._n_inequalities = 0
n_tmp_inequalities = 0
constraints = flatten([inequalities])
if momentinequalities is not None:
self._n_inequalities += len(momentinequalities)
constraints += momentinequalities
if not removeequalities:
constraints += flatten([equalities])
monomial_sets = []
for k, constraint in enumerate(constraints):
# Find the order of the localizing matrix
if k < n_tmp_inequalities or k >= self._n_inequalities:
if isinstance(constraint, str):
ineq_order = 2 * self.level
else:
if constraint.is_Relational:
constraint = convert_relational(constraint)
ineq_order = ncdegree(constraint)
if iscomplex(constraint):
self.complex_matrix = True
if ineq_order > 2 * self.level:
degree_warning = True
localization_order = (2*self.level - ineq_order)//2
if self.level == -1:
localization_order = 0
if self.localizing_monomial_sets is not None and \
self.localizing_monomial_sets[k] is not None:
localizing_monomials = self.localizing_monomial_sets[k]
else:
index = find_variable_set(self.variables, constraint)
localizing_monomials = \
pick_monomials_up_to_degree(self.monomial_sets[index],
localization_order)
ln = len(localizing_monomials)
if ln == 0:
localizing_monomials = [S.One]
else:
localizing_monomials = [S.One]
ln = 1
localizing_monomials = unique(localizing_monomials)
monomial_sets.append(localizing_monomials)
if k < self._n_inequalities:
self.block_struct.append(ln)
else:
monomial_sets += [None for _ in range(ln*(ln+1)//2-1)]
monomial_sets.append(localizing_monomials)
monomial_sets += [None for _ in range(ln*(ln+1)//2-1)]
self.block_struct += [1 for _ in range(ln*(ln+1))]
if degree_warning and self.verbose > 0:
print("A constraint has degree %d. Either choose a higher level "
"relaxation or ensure that a mixed-order relaxation has the"
" necessary monomials" % (ineq_order), file=sys.stderr)
if momentequalities is not None:
for moment_eq in momentequalities:
self._moment_equalities.append(moment_eq)
if not removeequalities:
monomial_sets += [[S.One], [S.One]]
self.block_struct += [1, 1]
self.localizing_monomial_sets = monomial_sets | Calculates the block_struct array for the output file. | entailment |
def process_constraints(self, inequalities=None, equalities=None,
momentinequalities=None, momentequalities=None,
block_index=0, removeequalities=False):
"""Process the constraints and generate localizing matrices. Useful
only if the moment matrix already exists. Call it if you want to
replace your constraints. The number of the respective types of
constraints and the maximum degree of each constraint must remain the
same.
:param inequalities: Optional parameter to list inequality constraints.
:type inequalities: list of :class:`sympy.core.exp.Expr`.
:param equalities: Optional parameter to list equality constraints.
:type equalities: list of :class:`sympy.core.exp.Expr`.
:param momentinequalities: Optional parameter of inequalities defined
on moments.
:type momentinequalities: list of :class:`sympy.core.exp.Expr`.
:param momentequalities: Optional parameter of equalities defined
on moments.
:type momentequalities: list of :class:`sympy.core.exp.Expr`.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:type removeequalities: bool.
"""
self.status = "unsolved"
if block_index == 0:
if self._original_F is not None:
self.F = self._original_F
self.obj_facvar = self._original_obj_facvar
self.constant_term = self._original_constant_term
self.n_vars = len(self.obj_facvar)
self._new_basis = None
block_index = self.constraint_starting_block
self.__wipe_F_from_constraints()
self.constraints = flatten([inequalities])
self._constraint_to_block_index = {}
for constraint in self.constraints:
self._constraint_to_block_index[constraint] = (block_index, )
block_index += 1
if momentinequalities is not None:
for mineq in momentinequalities:
self.constraints.append(mineq)
self._constraint_to_block_index[mineq] = (block_index, )
block_index += 1
if not (removeequalities or equalities is None):
# Equalities are converted to pairs of inequalities
for k, equality in enumerate(equalities):
if equality.is_Relational:
equality = convert_relational(equality)
self.constraints.append(equality)
self.constraints.append(-equality)
ln = len(self.localizing_monomial_sets[block_index-
self.constraint_starting_block])
self._constraint_to_block_index[equality] = (block_index,
block_index+ln*(ln+1)//2)
block_index += ln*(ln+1)
if momentequalities is not None and not removeequalities:
for meq in momentequalities:
self.constraints += [meq, flip_sign(meq)]
self._constraint_to_block_index[meq] = (block_index,
block_index+1)
block_index += 2
block_index = self.constraint_starting_block
self.__process_inequalities(block_index)
if removeequalities:
self.__remove_equalities(equalities, momentequalities) | Process the constraints and generate localizing matrices. Useful
only if the moment matrix already exists. Call it if you want to
replace your constraints. The number of the respective types of
constraints and the maximum degree of each constraint must remain the
same.
:param inequalities: Optional parameter to list inequality constraints.
:type inequalities: list of :class:`sympy.core.exp.Expr`.
:param equalities: Optional parameter to list equality constraints.
:type equalities: list of :class:`sympy.core.exp.Expr`.
:param momentinequalities: Optional parameter of inequalities defined
on moments.
:type momentinequalities: list of :class:`sympy.core.exp.Expr`.
:param momentequalities: Optional parameter of equalities defined
on moments.
:type momentequalities: list of :class:`sympy.core.exp.Expr`.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:type removeequalities: bool. | entailment |
def set_objective(self, objective, extraobjexpr=None):
"""Set or change the objective function of the polynomial optimization
problem.
:param objective: Describes the objective function.
:type objective: :class:`sympy.core.expr.Expr`
:param extraobjexpr: Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function
:type extraobjexpr: str.
"""
if objective is not None:
facvar = \
self._get_facvar(simplify_polynomial(objective,
self.substitutions))
self.obj_facvar = facvar[1:]
self.constant_term = facvar[0]
if self.verbose > 0 and facvar[0] != 0:
print("Warning: The objective function has a non-zero %s "
"constant term. It is not included in the SDP objective."
% facvar[0], file=sys.stderr)
else:
self.obj_facvar = self._get_facvar(0)[1:]
if extraobjexpr is not None:
for sub_expr in extraobjexpr.split(']'):
startindex = 0
if sub_expr.startswith('-') or sub_expr.startswith('+'):
startindex = 1
ind = sub_expr.find('[')
if ind > -1:
idx = sub_expr[ind+1:].split(",")
i, j = int(idx[0]), int(idx[1])
mm_ind = int(sub_expr[startindex:ind])
if sub_expr.find('*') > -1:
value = float(sub_expr[:sub_expr.find('*')])
elif sub_expr.startswith('-'):
value = -1.0
else:
value = 1.0
base_row_offset = sum([bs**2 for bs in
self.block_struct[:mm_ind]])
width = self.block_struct[mm_ind]
for column in self.F[base_row_offset + i*width + j].rows[0]:
self.obj_facvar[column-1] = \
value*self.F[base_row_offset + i*width + j, column] | Set or change the objective function of the polynomial optimization
problem.
:param objective: Describes the objective function.
:type objective: :class:`sympy.core.expr.Expr`
:param extraobjexpr: Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function
:type extraobjexpr: str. | entailment |
def find_solution_ranks(self, xmat=None, baselevel=0):
"""Helper function to detect rank loop in the solution matrix.
:param sdpRelaxation: The SDP relaxation.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param x_mat: Optional parameter providing the primal solution of the
moment matrix. If not provided, the solution is extracted
from the sdpRelaxation object.
:type x_mat: :class:`numpy.array`.
:param base_level: Optional parameter for specifying the lower level
relaxation for which the rank loop should be tested
against.
:type base_level: int.
:returns: list of int -- the ranks of the solution matrix with in the
order of increasing degree.
"""
return find_solution_ranks(self, xmat=xmat, baselevel=baselevel) | Helper function to detect rank loop in the solution matrix.
:param sdpRelaxation: The SDP relaxation.
:type sdpRelaxation: :class:`ncpol2sdpa.SdpRelaxation`.
:param x_mat: Optional parameter providing the primal solution of the
moment matrix. If not provided, the solution is extracted
from the sdpRelaxation object.
:type x_mat: :class:`numpy.array`.
:param base_level: Optional parameter for specifying the lower level
relaxation for which the rank loop should be tested
against.
:type base_level: int.
:returns: list of int -- the ranks of the solution matrix with in the
order of increasing degree. | entailment |
def get_dual(self, constraint, ymat=None):
"""Given a solution of the dual problem and a constraint of any type,
it returns the corresponding block in the dual solution. If it is an
equality constraint that was converted to a pair of inequalities, it
returns a two-tuple of the matching dual blocks.
:param constraint: The constraint.
:type index: `sympy.core.exp.Expr`
:param y_mat: Optional parameter providing the dual solution of the
SDP. If not provided, the solution is extracted
from the sdpRelaxation object.
:type y_mat: :class:`numpy.array`.
:returns: The corresponding block in the dual solution.
:rtype: :class:`numpy.array` or a tuple thereof.
"""
if not isinstance(constraint, Expr):
raise Exception("Not a monomial or polynomial!")
elif self.status == "unsolved" and ymat is None:
raise Exception("SDP relaxation is not solved yet!")
elif ymat is None:
ymat = self.y_mat
index = self._constraint_to_block_index.get(constraint)
if index is None:
raise Exception("Constraint is not in the dual!")
if len(index) == 2:
return ymat[index[0]], self.y_mat[index[1]]
else:
return ymat[index[0]] | Given a solution of the dual problem and a constraint of any type,
it returns the corresponding block in the dual solution. If it is an
equality constraint that was converted to a pair of inequalities, it
returns a two-tuple of the matching dual blocks.
:param constraint: The constraint.
:type index: `sympy.core.exp.Expr`
:param y_mat: Optional parameter providing the dual solution of the
SDP. If not provided, the solution is extracted
from the sdpRelaxation object.
:type y_mat: :class:`numpy.array`.
:returns: The corresponding block in the dual solution.
:rtype: :class:`numpy.array` or a tuple thereof. | entailment |
def write_to_file(self, filename, filetype=None):
"""Write the relaxation to a file.
:param filename: The name of the file to write to. The type can be
autodetected from the extension: .dat-s for SDPA,
.task for mosek or .csv for human readable format.
:type filename: str.
:param filetype: Optional parameter to define the filetype. It can be
"sdpa" for SDPA , "mosek" for Mosek, or "csv" for
human readable format.
:type filetype: str.
"""
if filetype == "sdpa" and not filename.endswith(".dat-s"):
raise Exception("SDPA files must have .dat-s extension!")
if filetype == "mosek" and not filename.endswith(".task"):
raise Exception("Mosek files must have .task extension!")
elif filetype is None and filename.endswith(".dat-s"):
filetype = "sdpa"
elif filetype is None and filename.endswith(".csv"):
filetype = "csv"
elif filetype is None and filename.endswith(".task"):
filetype = "mosek"
elif filetype is None:
raise Exception("Cannot detect filetype from extension!")
if filetype == "sdpa":
write_to_sdpa(self, filename)
elif filetype == "mosek":
task = convert_to_mosek(self)
task.writedata(filename)
elif filetype == "csv":
write_to_human_readable(self, filename)
else:
raise Exception("Unknown filetype") | Write the relaxation to a file.
:param filename: The name of the file to write to. The type can be
autodetected from the extension: .dat-s for SDPA,
.task for mosek or .csv for human readable format.
:type filename: str.
:param filetype: Optional parameter to define the filetype. It can be
"sdpa" for SDPA , "mosek" for Mosek, or "csv" for
human readable format.
:type filetype: str. | entailment |
def get_relaxation(self, level, objective=None, inequalities=None,
equalities=None, substitutions=None,
momentinequalities=None, momentequalities=None,
momentsubstitutions=None,
removeequalities=False, extramonomials=None,
extramomentmatrices=None, extraobjexpr=None,
localizing_monomials=None, chordal_extension=False):
"""Get the SDP relaxation of a noncommutative polynomial optimization
problem.
:param level: The level of the relaxation. The value -1 will skip
automatic monomial generation and use only the monomials
supplied by the option `extramonomials`.
:type level: int.
:param obj: Optional parameter to describe the objective function.
:type obj: :class:`sympy.core.exp.Expr`.
:param inequalities: Optional parameter to list inequality constraints.
:type inequalities: list of :class:`sympy.core.exp.Expr`.
:param equalities: Optional parameter to list equality constraints.
:type equalities: list of :class:`sympy.core.exp.Expr`.
:param substitutions: Optional parameter containing monomials that can
be replaced (e.g., idempotent variables).
:type substitutions: dict of :class:`sympy.core.exp.Expr`.
:param momentinequalities: Optional parameter of inequalities defined
on moments.
:type momentinequalities: list of :class:`sympy.core.exp.Expr`.
:param momentequalities: Optional parameter of equalities defined
on moments.
:type momentequalities: list of :class:`sympy.core.exp.Expr`.
:param momentsubstitutions: Optional parameter containing moments that
can be replaced.
:type momentsubstitutions: dict of :class:`sympy.core.exp.Expr`.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:type removeequalities: bool.
:param extramonomials: Optional paramter of monomials to be included,
on top of the requested level of relaxation.
:type extramonomials: list of :class:`sympy.core.exp.Expr`.
:param extramomentmatrices: Optional paramter of duplicating or adding
moment matrices. A new moment matrix can be
unconstrained (""), a copy of the first one
("copy"), and satisfying a partial positivity
constraint ("ppt"). Each new moment matrix is
requested as a list of string of these options.
For instance, adding a single new moment matrix
as a copy of the first would be
``extramomentmatrices=[["copy"]]``.
:type extramomentmatrices: list of list of str.
:param extraobjexpr: Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function.
:type extraobjexpr: str.
:param localizing_monomials: Optional parameter to specify sets of
localizing monomials for each constraint.
The internal order of constraints is
inequalities first, followed by the
equalities. If the parameter is specified,
but for a certain constraint the automatic
localization is requested, leave None in
its place in this parameter.
:type localizing_monomials: list of list of `sympy.core.exp.Expr`.
:param chordal_extension: Optional parameter to request a sparse
chordal extension.
:type chordal_extension: bool.
"""
if self.level < -1:
raise Exception("Invalid level of relaxation")
self.level = level
if substitutions is None:
self.substitutions = {}
else:
self.substitutions = substitutions
for lhs, rhs in substitutions.items():
if not is_pure_substitution_rule(lhs, rhs):
self.pure_substitution_rules = False
if iscomplex(lhs) or iscomplex(rhs):
self.complex_matrix = True
if momentsubstitutions is not None:
self.moment_substitutions = momentsubstitutions.copy()
# If we have a real-valued problem, the moment matrix is symmetric
# and moment substitutions also apply to the conjugate monomials
if not self.complex_matrix:
for key, val in self.moment_substitutions.copy().items():
adjoint_monomial = apply_substitutions(key.adjoint(),
self.substitutions)
self.moment_substitutions[adjoint_monomial] = val
if chordal_extension:
self.variables = find_variable_cliques(self.variables, objective,
inequalities, equalities,
momentinequalities,
momentequalities)
self.__generate_monomial_sets(extramonomials)
self.localizing_monomial_sets = localizing_monomials
# Figure out basic structure of the SDP
self._calculate_block_structure(inequalities, equalities,
momentinequalities, momentequalities,
extramomentmatrices,
removeequalities)
self._estimate_n_vars()
if extramomentmatrices is not None:
for parameters in extramomentmatrices:
copy = False
for parameter in parameters:
if parameter == "copy":
copy = True
if copy:
self.n_vars += self.n_vars + 1
else:
self.n_vars += (self.block_struct[0]**2)/2
if self.complex_matrix:
dtype = np.complex128
else:
dtype = np.float64
self.F = lil_matrix((sum([bs**2 for bs in self.block_struct]),
self.n_vars + 1), dtype=dtype)
if self.verbose > 0:
print(('Estimated number of SDP variables: %d' % self.n_vars))
print('Generating moment matrix...')
# Generate moment matrices
new_n_vars, block_index = self.__add_parameters()
self._time0 = time.time()
new_n_vars, block_index = \
self._generate_all_moment_matrix_blocks(new_n_vars, block_index)
if extramomentmatrices is not None:
new_n_vars, block_index = \
self.__add_extra_momentmatrices(extramomentmatrices,
new_n_vars, block_index)
# The initial estimate for the size of F was overly generous.
self.n_vars = new_n_vars
# We don't correct the size of F, because that would trigger
# memory copies, and extra columns in lil_matrix are free anyway.
# self.F = self.F[:, 0:self.n_vars + 1]
if self.verbose > 0:
print(('Reduced number of SDP variables: %d' % self.n_vars))
# Objective function
self.set_objective(objective, extraobjexpr)
# Process constraints
self.constraint_starting_block = block_index
self.process_constraints(inequalities, equalities, momentinequalities,
momentequalities, block_index,
removeequalities) | Get the SDP relaxation of a noncommutative polynomial optimization
problem.
:param level: The level of the relaxation. The value -1 will skip
automatic monomial generation and use only the monomials
supplied by the option `extramonomials`.
:type level: int.
:param obj: Optional parameter to describe the objective function.
:type obj: :class:`sympy.core.exp.Expr`.
:param inequalities: Optional parameter to list inequality constraints.
:type inequalities: list of :class:`sympy.core.exp.Expr`.
:param equalities: Optional parameter to list equality constraints.
:type equalities: list of :class:`sympy.core.exp.Expr`.
:param substitutions: Optional parameter containing monomials that can
be replaced (e.g., idempotent variables).
:type substitutions: dict of :class:`sympy.core.exp.Expr`.
:param momentinequalities: Optional parameter of inequalities defined
on moments.
:type momentinequalities: list of :class:`sympy.core.exp.Expr`.
:param momentequalities: Optional parameter of equalities defined
on moments.
:type momentequalities: list of :class:`sympy.core.exp.Expr`.
:param momentsubstitutions: Optional parameter containing moments that
can be replaced.
:type momentsubstitutions: dict of :class:`sympy.core.exp.Expr`.
:param removeequalities: Optional parameter to attempt removing the
equalities by solving the linear equations.
:type removeequalities: bool.
:param extramonomials: Optional paramter of monomials to be included,
on top of the requested level of relaxation.
:type extramonomials: list of :class:`sympy.core.exp.Expr`.
:param extramomentmatrices: Optional paramter of duplicating or adding
moment matrices. A new moment matrix can be
unconstrained (""), a copy of the first one
("copy"), and satisfying a partial positivity
constraint ("ppt"). Each new moment matrix is
requested as a list of string of these options.
For instance, adding a single new moment matrix
as a copy of the first would be
``extramomentmatrices=[["copy"]]``.
:type extramomentmatrices: list of list of str.
:param extraobjexpr: Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function.
:type extraobjexpr: str.
:param localizing_monomials: Optional parameter to specify sets of
localizing monomials for each constraint.
The internal order of constraints is
inequalities first, followed by the
equalities. If the parameter is specified,
but for a certain constraint the automatic
localization is requested, leave None in
its place in this parameter.
:type localizing_monomials: list of list of `sympy.core.exp.Expr`.
:param chordal_extension: Optional parameter to request a sparse
chordal extension.
:type chordal_extension: bool. | entailment |
def flatten(lol):
"""Flatten a list of lists to a list.
:param lol: A list of lists in arbitrary depth.
:type lol: list of list.
:returns: flat list of elements.
"""
new_list = []
for element in lol:
if element is None:
continue
elif not isinstance(element, list) and not isinstance(element, tuple):
new_list.append(element)
elif len(element) > 0:
new_list.extend(flatten(element))
return new_list | Flatten a list of lists to a list.
:param lol: A list of lists in arbitrary depth.
:type lol: list of list.
:returns: flat list of elements. | entailment |
def simplify_polynomial(polynomial, monomial_substitutions):
"""Simplify a polynomial for uniform handling later.
"""
if isinstance(polynomial, (int, float, complex)):
return polynomial
polynomial = (1.0 * polynomial).expand(mul=True,
multinomial=True)
if is_number_type(polynomial):
return polynomial
if polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
new_polynomial = 0
# Identify its constituent monomials
for element in elements:
monomial, coeff = separate_scalar_factor(element)
monomial = apply_substitutions(monomial, monomial_substitutions)
new_polynomial += coeff * monomial
return new_polynomial | Simplify a polynomial for uniform handling later. | entailment |
def __separate_scalar_factor(monomial):
"""Separate the constant factor from a monomial.
"""
scalar_factor = 1
if is_number_type(monomial):
return S.One, monomial
if monomial == 0:
return S.One, 0
comm_factors, _ = split_commutative_parts(monomial)
if len(comm_factors) > 0:
if isinstance(comm_factors[0], Number):
scalar_factor = comm_factors[0]
if scalar_factor != 1:
return monomial / scalar_factor, scalar_factor
else:
return monomial, scalar_factor | Separate the constant factor from a monomial. | entailment |
def get_support(variables, polynomial):
"""Gets the support of a polynomial.
"""
support = []
if is_number_type(polynomial):
support.append([0] * len(variables))
return support
for monomial in polynomial.expand().as_coefficients_dict():
tmp_support = [0] * len(variables)
mon, _ = __separate_scalar_factor(monomial)
symbolic_support = flatten(split_commutative_parts(mon))
for s in symbolic_support:
if isinstance(s, Pow):
base = s.base
if is_adjoint(base):
base = base.adjoint()
tmp_support[variables.index(base)] = s.exp
elif is_adjoint(s):
tmp_support[variables.index(s.adjoint())] = 1
elif isinstance(s, (Operator, Symbol)):
tmp_support[variables.index(s)] = 1
support.append(tmp_support)
return support | Gets the support of a polynomial. | entailment |
def get_support_variables(polynomial):
"""Gets the support of a polynomial.
"""
support = []
if is_number_type(polynomial):
return support
for monomial in polynomial.expand().as_coefficients_dict():
mon, _ = __separate_scalar_factor(monomial)
symbolic_support = flatten(split_commutative_parts(mon))
for s in symbolic_support:
if isinstance(s, Pow):
base = s.base
if is_adjoint(base):
base = base.adjoint()
support.append(base)
elif is_adjoint(s):
support.append(s.adjoint())
elif isinstance(s, Operator):
support.append(s)
return support | Gets the support of a polynomial. | entailment |
def separate_scalar_factor(element):
"""Construct a monomial with the coefficient separated
from an element in a polynomial.
"""
coeff = 1.0
monomial = S.One
if isinstance(element, (int, float, complex)):
coeff *= element
return monomial, coeff
for var in element.as_coeff_mul()[1]:
if not (var.is_Number or var.is_imaginary):
monomial = monomial * var
else:
if var.is_Number:
coeff = float(var)
# If not, then it is imaginary
else:
coeff = 1j * coeff
coeff = float(element.as_coeff_mul()[0]) * coeff
return monomial, coeff | Construct a monomial with the coefficient separated
from an element in a polynomial. | entailment |
def count_ncmonomials(monomials, degree):
"""Given a list of monomials, it counts those that have a certain degree,
or less. The function is useful when certain monomials were eliminated
from the basis.
:param variables: The noncommutative variables making up the monomials
:param monomials: List of monomials (the monomial basis).
:param degree: Maximum degree to count.
:returns: The count of appropriate monomials.
"""
ncmoncount = 0
for monomial in monomials:
if ncdegree(monomial) <= degree:
ncmoncount += 1
else:
break
return ncmoncount | Given a list of monomials, it counts those that have a certain degree,
or less. The function is useful when certain monomials were eliminated
from the basis.
:param variables: The noncommutative variables making up the monomials
:param monomials: List of monomials (the monomial basis).
:param degree: Maximum degree to count.
:returns: The count of appropriate monomials. | entailment |
def apply_substitutions(monomial, monomial_substitutions, pure=False):
"""Helper function to remove monomials from the basis."""
if is_number_type(monomial):
return monomial
original_monomial = monomial
changed = True
if not pure:
substitutions = monomial_substitutions
else:
substitutions = {}
for lhs, rhs in monomial_substitutions.items():
irrelevant = False
for atom in lhs.atoms():
if atom.is_Number:
continue
if not monomial.has(atom):
irrelevant = True
break
if not irrelevant:
substitutions[lhs] = rhs
while changed:
for lhs, rhs in substitutions.items():
monomial = fast_substitute(monomial, lhs, rhs)
if original_monomial == monomial:
changed = False
original_monomial = monomial
return monomial | Helper function to remove monomials from the basis. | entailment |
def fast_substitute(monomial, old_sub, new_sub):
"""Experimental fast substitution routine that considers only restricted
cases of noncommutative algebras. In rare cases, it fails to find a
substitution. Use it with proper testing.
:param monomial: The monomial with parts need to be substituted.
:param old_sub: The part to be replaced.
:param new_sub: The replacement.
"""
if is_number_type(monomial):
return monomial
if monomial.is_Add:
return sum([fast_substitute(element, old_sub, new_sub) for element in
monomial.as_ordered_terms()])
comm_factors, ncomm_factors = split_commutative_parts(monomial)
old_comm_factors, old_ncomm_factors = split_commutative_parts(old_sub)
# This is a temporary hack
if not isinstance(new_sub, (int, float, complex)):
new_comm_factors, _ = split_commutative_parts(new_sub)
else:
new_comm_factors = [new_sub]
comm_monomial = 1
is_constant_term = False
if comm_factors != ():
if len(comm_factors) == 1 and is_number_type(comm_factors[0]):
is_constant_term = True
comm_monomial = comm_factors[0]
else:
for comm_factor in comm_factors:
comm_monomial *= comm_factor
if old_comm_factors != ():
comm_old_sub = 1
for comm_factor in old_comm_factors:
comm_old_sub *= comm_factor
comm_new_sub = 1
for comm_factor in new_comm_factors:
comm_new_sub *= comm_factor
# Dummy heuristic to get around retarded SymPy bug
if isinstance(comm_old_sub, Pow):
# In this case, we are in trouble
old_base = comm_old_sub.base
if comm_monomial.has(old_base):
old_degree = comm_old_sub.exp
new_monomial = 1
match = False
for factor in comm_monomial.as_ordered_factors():
if factor.has(old_base):
if isinstance(factor, Pow):
degree = factor.exp
if degree >= old_degree:
match = True
new_monomial *= \
old_base**(degree-old_degree) * \
comm_new_sub
else:
new_monomial *= factor
else:
new_monomial *= factor
if match:
comm_monomial = new_monomial
else:
comm_monomial = comm_monomial.subs(comm_old_sub,
comm_new_sub)
if ncomm_factors == () or old_ncomm_factors == ():
return comm_monomial
# old_factors = old_sub.as_ordered_factors()
# factors = monomial.as_ordered_factors()
new_var_list = []
new_monomial = 1
left_remainder = 1
right_remainder = 1
for i in range(len(ncomm_factors) - len(old_ncomm_factors) + 1):
for j, old_ncomm_factor in enumerate(old_ncomm_factors):
ncomm_factor = ncomm_factors[i + j]
if isinstance(ncomm_factor, Symbol) and \
(isinstance(old_ncomm_factor, Operator) or
(isinstance(old_ncomm_factor, Symbol) and
ncomm_factor != old_ncomm_factor)):
break
if isinstance(ncomm_factor, Operator) and \
((isinstance(old_ncomm_factor, Operator) and
ncomm_factor != old_ncomm_factor) or
isinstance(old_ncomm_factor, Pow)):
break
if is_adjoint(ncomm_factor):
if not is_adjoint(old_ncomm_factor) or \
ncomm_factor != old_ncomm_factor:
break
else:
if not isinstance(ncomm_factor, Pow):
if is_adjoint(old_ncomm_factor):
break
else:
if isinstance(old_ncomm_factor, Pow):
old_base = old_ncomm_factor.base
old_degree = old_ncomm_factor.exp
else:
old_base = old_ncomm_factor
old_degree = 1
if old_base != ncomm_factor.base:
break
if old_degree > ncomm_factor.exp:
break
if old_degree < ncomm_factor.exp:
if j != len(old_ncomm_factors) - 1:
if j != 0:
break
else:
left_remainder = old_base ** (
ncomm_factor.exp - old_degree)
else:
right_remainder = old_base ** (
ncomm_factor.exp - old_degree)
else:
new_monomial = 1
for var in new_var_list:
new_monomial *= var
new_monomial *= left_remainder * new_sub * right_remainder
for j in range(i + len(old_ncomm_factors), len(ncomm_factors)):
new_monomial *= ncomm_factors[j]
new_monomial *= comm_monomial
break
new_var_list.append(ncomm_factors[i])
else:
if not is_constant_term and comm_factors != ():
new_monomial = comm_monomial
for factor in ncomm_factors:
new_monomial *= factor
else:
return monomial
if not isinstance(new_sub, (float, int, complex)) and new_sub.is_Add:
return expand(new_monomial)
else:
return new_monomial | Experimental fast substitution routine that considers only restricted
cases of noncommutative algebras. In rare cases, it fails to find a
substitution. Use it with proper testing.
:param monomial: The monomial with parts need to be substituted.
:param old_sub: The part to be replaced.
:param new_sub: The replacement. | entailment |
def generate_variables(name, n_vars=1, hermitian=None, commutative=True):
"""Generates a number of commutative or noncommutative variables
:param name: The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.
:type name: str.
:param n_vars: The number of variables.
:type n_vars: int.
:param hermitian: Optional parameter to request Hermitian variables .
:type hermitian: bool.
:param commutative: Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.
:type commutative: bool.
:returns: list of :class:`sympy.physics.quantum.operator.Operator` or
:class:`sympy.physics.quantum.operator.HermitianOperator`
variables or `sympy.Symbol`
:Example:
>>> generate_variables('y', 2, commutative=True)
[y0, y1]
"""
variables = []
for i in range(n_vars):
if n_vars > 1:
var_name = '%s%s' % (name, i)
else:
var_name = '%s' % name
if commutative:
if hermitian is None or hermitian:
variables.append(Symbol(var_name, real=True))
else:
variables.append(Symbol(var_name, complex=True))
elif hermitian is not None and hermitian:
variables.append(HermitianOperator(var_name))
else:
variables.append(Operator(var_name))
return variables | Generates a number of commutative or noncommutative variables
:param name: The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.
:type name: str.
:param n_vars: The number of variables.
:type n_vars: int.
:param hermitian: Optional parameter to request Hermitian variables .
:type hermitian: bool.
:param commutative: Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.
:type commutative: bool.
:returns: list of :class:`sympy.physics.quantum.operator.Operator` or
:class:`sympy.physics.quantum.operator.HermitianOperator`
variables or `sympy.Symbol`
:Example:
>>> generate_variables('y', 2, commutative=True)
[y0, y1] | entailment |
def generate_operators(name, n_vars=1, hermitian=None, commutative=False):
"""Generates a number of commutative or noncommutative operators
:param name: The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.
:type name: str.
:param n_vars: The number of variables.
:type n_vars: int.
:param hermitian: Optional parameter to request Hermitian variables .
:type hermitian: bool.
:param commutative: Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.
:type commutative: bool.
:returns: list of :class:`sympy.physics.quantum.operator.Operator` or
:class:`sympy.physics.quantum.operator.HermitianOperator`
variables
:Example:
>>> generate_variables('y', 2, commutative=True)
[y0, y1]
"""
variables = []
for i in range(n_vars):
if n_vars > 1:
var_name = '%s%s' % (name, i)
else:
var_name = '%s' % name
if hermitian is not None and hermitian:
variables.append(HermitianOperator(var_name))
else:
variables.append(Operator(var_name))
variables[-1].is_commutative = commutative
return variables | Generates a number of commutative or noncommutative operators
:param name: The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.
:type name: str.
:param n_vars: The number of variables.
:type n_vars: int.
:param hermitian: Optional parameter to request Hermitian variables .
:type hermitian: bool.
:param commutative: Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.
:type commutative: bool.
:returns: list of :class:`sympy.physics.quantum.operator.Operator` or
:class:`sympy.physics.quantum.operator.HermitianOperator`
variables
:Example:
>>> generate_variables('y', 2, commutative=True)
[y0, y1] | entailment |
def get_monomials(variables, degree):
"""Generates all noncommutative monomials up to a degree
:param variables: The noncommutative variables to generate monomials from
:type variables: list of :class:`sympy.physics.quantum.operator.Operator`
or
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:param degree: The maximum degree.
:type degree: int.
:returns: list of monomials.
"""
if degree == -1:
return []
if not variables:
return [S.One]
else:
_variables = variables[:]
_variables.insert(0, 1)
ncmonomials = [S.One]
ncmonomials.extend(var for var in variables)
for var in variables:
if not is_hermitian(var):
ncmonomials.append(var.adjoint())
for _ in range(1, degree):
temp = []
for var in _variables:
for new_var in ncmonomials:
temp.append(var * new_var)
if var != 1 and not is_hermitian(var):
temp.append(var.adjoint() * new_var)
ncmonomials = unique(temp[:])
return ncmonomials | Generates all noncommutative monomials up to a degree
:param variables: The noncommutative variables to generate monomials from
:type variables: list of :class:`sympy.physics.quantum.operator.Operator`
or
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:param degree: The maximum degree.
:type degree: int.
:returns: list of monomials. | entailment |
def ncdegree(polynomial):
"""Returns the degree of a noncommutative polynomial.
:param polynomial: Polynomial of noncommutive variables.
:type polynomial: :class:`sympy.core.expr.Expr`.
:returns: int -- the degree of the polynomial.
"""
degree = 0
if is_number_type(polynomial):
return degree
polynomial = polynomial.expand()
for monomial in polynomial.as_coefficients_dict():
subdegree = 0
for variable in monomial.as_coeff_mul()[1]:
if isinstance(variable, Pow):
subdegree += variable.exp
elif not isinstance(variable, Number) and variable != I:
subdegree += 1
if subdegree > degree:
degree = subdegree
return degree | Returns the degree of a noncommutative polynomial.
:param polynomial: Polynomial of noncommutive variables.
:type polynomial: :class:`sympy.core.expr.Expr`.
:returns: int -- the degree of the polynomial. | entailment |
def iscomplex(polynomial):
"""Returns whether the polynomial has complex coefficients
:param polynomial: Polynomial of noncommutive variables.
:type polynomial: :class:`sympy.core.expr.Expr`.
:returns: bool -- whether there is a complex coefficient.
"""
if isinstance(polynomial, (int, float)):
return False
if isinstance(polynomial, complex):
return True
polynomial = polynomial.expand()
for monomial in polynomial.as_coefficients_dict():
for variable in monomial.as_coeff_mul()[1]:
if isinstance(variable, complex) or variable == I:
return True
return False | Returns whether the polynomial has complex coefficients
:param polynomial: Polynomial of noncommutive variables.
:type polynomial: :class:`sympy.core.expr.Expr`.
:returns: bool -- whether there is a complex coefficient. | entailment |
def get_all_monomials(variables, extramonomials, substitutions, degree,
removesubstitutions=True):
"""Return the monomials of a certain degree.
"""
monomials = get_monomials(variables, degree)
if extramonomials is not None:
monomials.extend(extramonomials)
if removesubstitutions and substitutions is not None:
monomials = [monomial for monomial in monomials if monomial not
in substitutions]
monomials = [remove_scalar_factor(apply_substitutions(monomial,
substitutions))
for monomial in monomials]
monomials = unique(monomials)
return monomials | Return the monomials of a certain degree. | entailment |
def pick_monomials_up_to_degree(monomials, degree):
"""Collect monomials up to a given degree.
"""
ordered_monomials = []
if degree >= 0:
ordered_monomials.append(S.One)
for deg in range(1, degree + 1):
ordered_monomials.extend(pick_monomials_of_degree(monomials, deg))
return ordered_monomials | Collect monomials up to a given degree. | entailment |
def pick_monomials_of_degree(monomials, degree):
"""Collect all monomials up of a given degree.
"""
selected_monomials = []
for monomial in monomials:
if ncdegree(monomial) == degree:
selected_monomials.append(monomial)
return selected_monomials | Collect all monomials up of a given degree. | entailment |
def save_monomial_index(filename, monomial_index):
"""Save a monomial dictionary for debugging purposes.
:param filename: The name of the file to save to.
:type filename: str.
:param monomial_index: The monomial index of the SDP relaxation.
:type monomial_index: dict of :class:`sympy.core.expr.Expr`.
"""
monomial_translation = [''] * (len(monomial_index) + 1)
for key, k in monomial_index.items():
monomial_translation[k] = convert_monomial_to_string(key)
file_ = open(filename, 'w')
for k in range(len(monomial_translation)):
file_.write('%s %s\n' % (k, monomial_translation[k]))
file_.close() | Save a monomial dictionary for debugging purposes.
:param filename: The name of the file to save to.
:type filename: str.
:param monomial_index: The monomial index of the SDP relaxation.
:type monomial_index: dict of :class:`sympy.core.expr.Expr`. | entailment |
def unique(seq):
"""Helper function to include only unique monomials in a basis."""
seen = {}
result = []
for item in seq:
marker = item
if marker in seen:
continue
seen[marker] = 1
result.append(item)
return result | Helper function to include only unique monomials in a basis. | entailment |
def build_permutation_matrix(permutation):
"""Build a permutation matrix for a permutation.
"""
matrix = lil_matrix((len(permutation), len(permutation)))
column = 0
for row in permutation:
matrix[row, column] = 1
column += 1
return matrix | Build a permutation matrix for a permutation. | entailment |
def convert_relational(relational):
"""Convert all inequalities to >=0 form.
"""
rel = relational.rel_op
if rel in ['==', '>=', '>']:
return relational.lhs-relational.rhs
elif rel in ['<=', '<']:
return relational.rhs-relational.lhs
else:
raise Exception("The relational operation ' + rel + ' is not "
"implemented!") | Convert all inequalities to >=0 form. | entailment |
def value(board, who='x'):
"""Returns the value of a board
>>> b = Board(); b._rows = [['x', 'x', 'x'], ['x', 'x', 'x'], ['x', 'x', 'x']]
>>> value(b)
1
>>> b = Board(); b._rows = [['o', 'o', 'o'], ['o', 'o', 'o'], ['o', 'o', 'o']]
>>> value(b)
-1
>>> b = Board(); b._rows = [['x', 'o', ' '], ['x', 'o', ' '], [' ', ' ', ' ']]
>>> value(b)
1
>>> b._rows[0][2] = 'x'
>>> value(b)
-1
"""
w = board.winner()
if w == who:
return 1
if w == opp(who):
return -1
if board.turn == 9:
return 0
if who == board.whose_turn:
return max([value(b, who) for b in board.possible()])
else:
return min([value(b, who) for b in board.possible()]) | Returns the value of a board
>>> b = Board(); b._rows = [['x', 'x', 'x'], ['x', 'x', 'x'], ['x', 'x', 'x']]
>>> value(b)
1
>>> b = Board(); b._rows = [['o', 'o', 'o'], ['o', 'o', 'o'], ['o', 'o', 'o']]
>>> value(b)
-1
>>> b = Board(); b._rows = [['x', 'o', ' '], ['x', 'o', ' '], [' ', ' ', ' ']]
>>> value(b)
1
>>> b._rows[0][2] = 'x'
>>> value(b)
-1 | entailment |
def ai(board, who='x'):
"""
Returns best next board
>>> b = Board(); b._rows = [['x', 'o', ' '], ['x', 'o', ' '], [' ', ' ', ' ']]
>>> ai(b)
< Board |xo.xo.x..| >
"""
return sorted(board.possible(), key=lambda b: value(b, who))[-1] | Returns best next board
>>> b = Board(); b._rows = [['x', 'o', ' '], ['x', 'o', ' '], [' ', ' ', ' ']]
>>> ai(b)
< Board |xo.xo.x..| > | entailment |
def winner(self):
"""Returns either x or o if one of them won, otherwise None"""
for c in 'xo':
for comb in [(0,3,6), (1,4,7), (2,5,8), (0,1,2), (3,4,5), (6,7,8), (0,4,8), (2,4,6)]:
if all(self.spots[p] == c for p in comb):
return c
return None | Returns either x or o if one of them won, otherwise None | entailment |
def get_relaxation(self, A_configuration, B_configuration, I):
"""Get the sparse SDP relaxation of a Bell inequality.
:param A_configuration: The definition of measurements of Alice.
:type A_configuration: list of list of int.
:param B_configuration: The definition of measurements of Bob.
:type B_configuration: list of list of int.
:param I: The matrix describing the Bell inequality in the
Collins-Gisin picture.
:type I: list of list of int.
"""
coefficients = collinsgisin_to_faacets(I)
M, ncIndices = get_faacets_moment_matrix(A_configuration,
B_configuration, coefficients)
self.n_vars = M.max() - 1
bs = len(M) # The block size
self.block_struct = [bs]
self.F = lil_matrix((bs**2, self.n_vars + 1))
# Constructing the internal representation of the constraint matrices
# See Section 2.1 in the SDPA manual and also Yalmip's internal
# representation
for i in range(bs):
for j in range(i, bs):
if M[i, j] != 0:
self.F[i*bs+j, abs(M[i, j])-1] = copysign(1, M[i, j])
self.obj_facvar = [0 for _ in range(self.n_vars)]
for i in range(1, len(ncIndices)):
self.obj_facvar[abs(ncIndices[i])-2] += \
copysign(1, ncIndices[i])*coefficients[i] | Get the sparse SDP relaxation of a Bell inequality.
:param A_configuration: The definition of measurements of Alice.
:type A_configuration: list of list of int.
:param B_configuration: The definition of measurements of Bob.
:type B_configuration: list of list of int.
:param I: The matrix describing the Bell inequality in the
Collins-Gisin picture.
:type I: list of list of int. | entailment |
def share(track_id=None, url=None, users=None):
"""
Returns list of users track has been shared with.
Either track or url need to be provided.
"""
client = get_client()
if url:
track_id = client.get('/resolve', url=url).id
if not users:
return client.get('/tracks/%d/permissions' % track_id)
permissions = {'user_id': []}
for username in users:
# check cache for user
user = settings.users.get(username, None)
if user:
permissions['user_id'].append(user['id'])
else:
user = client.get('/resolve', url='http://soundcloud.com/%s' % username)
permissions['user_id'].append(user.id)
settings.users[username] = user.obj
settings.save()
return client.put('/tracks/%d/permissions' % track_id, permissions=permissions) | Returns list of users track has been shared with.
Either track or url need to be provided. | entailment |
def solve_with_cvxopt(sdp, solverparameters=None):
"""Helper function to convert the SDP problem to PICOS
and call CVXOPT solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
"""
P = convert_to_picos(sdp)
P.set_option("solver", "cvxopt")
P.set_option("verbose", sdp.verbose)
if solverparameters is not None:
for key, value in solverparameters.items():
P.set_option(key, value)
solution = P.solve()
x_mat = [np.array(P.get_valued_variable('X'))]
y_mat = [np.array(P.get_constraint(i).dual)
for i in range(len(P.constraints))]
return -solution["cvxopt_sol"]["primal objective"] + \
sdp.constant_term, \
-solution["cvxopt_sol"]["dual objective"] + \
sdp.constant_term, \
x_mat, y_mat, solution["status"] | Helper function to convert the SDP problem to PICOS
and call CVXOPT solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`. | entailment |
def convert_to_picos(sdp, duplicate_moment_matrix=False):
"""Convert an SDP relaxation to a PICOS problem such that the exported
.dat-s file is extremely sparse, there is not penalty imposed in terms of
SDP variables or number of constraints. This conversion can be used for
imposing extra constraints on the moment matrix, such as partial transpose.
:param sdp: The SDP relaxation to convert.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param duplicate_moment_matrix: Optional parameter to add an unconstrained
moment matrix to the problem with the same
structure as the moment matrix with the PSD
constraint.
:type duplicate_moment_matrix: bool.
:returns: :class:`picos.Problem`.
"""
import picos as pic
import cvxopt as cvx
P = pic.Problem(verbose=sdp.verbose)
block_size = sdp.block_struct[0]
if sdp.F.dtype == np.float64:
X = P.add_variable('X', (block_size, block_size), vtype="symmetric")
if duplicate_moment_matrix:
Y = P.add_variable('Y', (block_size, block_size), vtype="symmetric")
else:
X = P.add_variable('X', (block_size, block_size), vtype="hermitian")
if duplicate_moment_matrix:
Y = P.add_variable('X', (block_size, block_size), vtype="hermitian")
row_offset = 0
theoretical_n_vars = sdp.block_struct[0]**2
eq_block_start = sdp.constraint_starting_block+sdp._n_inequalities
block_idx = 0
while (block_idx < len(sdp.block_struct)):
block_size = sdp.block_struct[block_idx]
x, Ix, Jx = [], [], []
c, Ic, Jc = [], [], []
for i, row in enumerate(sdp.F.rows[row_offset:row_offset +
block_size**2]):
for j, column in enumerate(row):
if column > 0:
x.append(sdp.F.data[row_offset+i][j])
Ix.append(i)
Jx.append(column-1)
i0 = (i//block_size)+(i % block_size)*block_size
if i != i0:
x.append(sdp.F.data[row_offset+i][j])
Ix.append(i0)
Jx.append(column-1)
else:
c.append(sdp.F.data[row_offset+i][j])
Ic.append(i%block_size)
Jc.append(i//block_size)
permutation = cvx.spmatrix(x, Ix, Jx, (block_size**2,
theoretical_n_vars))
constant = cvx.spmatrix(c, Ic, Jc, (block_size, block_size))
if duplicate_moment_matrix:
constraint = X
else:
constraint = X.copy()
for k in constraint.factors:
constraint.factors[k] = permutation
constraint._size = (block_size, block_size)
if block_idx < eq_block_start:
P.add_constraint(constant + constraint >> 0)
else:
P.add_constraint(constant + constraint == 0)
row_offset += block_size**2
block_idx += 1
if duplicate_moment_matrix and \
block_size == sdp.block_struct[0]:
for k in Y.factors:
Y.factors[k] = permutation
row_offset += block_size**2
block_idx += 1
if len(np.nonzero(sdp.obj_facvar)[0]) > 0:
x, Ix, Jx = [], [], []
for k, val in enumerate(sdp.obj_facvar):
if val != 0:
x.append(val)
Ix.append(0)
Jx.append(k)
permutation = cvx.spmatrix(x, Ix, Jx)
objective = X.copy()
for k in objective.factors:
objective.factors[k] = permutation
objective._size = (1, 1)
P.set_objective('min', objective)
return P | Convert an SDP relaxation to a PICOS problem such that the exported
.dat-s file is extremely sparse, there is not penalty imposed in terms of
SDP variables or number of constraints. This conversion can be used for
imposing extra constraints on the moment matrix, such as partial transpose.
:param sdp: The SDP relaxation to convert.
:type sdp: :class:`ncpol2sdpa.sdp`.
:param duplicate_moment_matrix: Optional parameter to add an unconstrained
moment matrix to the problem with the same
structure as the moment matrix with the PSD
constraint.
:type duplicate_moment_matrix: bool.
:returns: :class:`picos.Problem`. | entailment |
def solve_with_cvxpy(sdp, solverparameters=None):
"""Helper function to convert the SDP problem to CVXPY
and call the solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`.
"""
problem = convert_to_cvxpy(sdp)
if solverparameters is not None and 'solver' in solverparameters:
solver = solverparameters.pop('solver')
v = problem.solve(solver=solver, verbose=(sdp.verbose > 0))
else:
v = problem.solve(verbose=(sdp.verbose > 0))
if v is None:
status = "infeasible"
x_mat, y_mat = [], []
elif v == float("inf") or v == -float("inf"):
status = "unbounded"
x_mat, y_mat = [], []
else:
status = "optimal"
x_pre = sdp.F[:, 1:sdp.n_vars+1].dot(problem.variables()[0].value)
x_pre += sdp.F[:, 0]
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
x_mat = []
for bi, bs in enumerate(sdp.block_struct):
x = x_pre[row_offsets[bi]:row_offsets[bi+1]].reshape((bs, bs))
x += x.T - np.diag(np.array(x.diagonal())[0])
x_mat.append(x)
y_mat = [constraint.dual_value for constraint in problem.constraints]
return v+sdp.constant_term, v+sdp.constant_term, x_mat, y_mat, status | Helper function to convert the SDP problem to CVXPY
and call the solver, and parse the output.
:param sdp: The SDP relaxation to be solved.
:type sdp: :class:`ncpol2sdpa.sdp`. | entailment |
def convert_to_cvxpy(sdp):
"""Convert an SDP relaxation to a CVXPY problem.
:param sdp: The SDP relaxation to convert.
:type sdp: :class:`ncpol2sdpa.sdp`.
:returns: :class:`cvxpy.Problem`.
"""
from cvxpy import Minimize, Problem, Variable
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
x = Variable(sdp.n_vars)
# The moment matrices are the first blocks of identical size
constraints = []
for idx, bs in enumerate(sdp.block_struct):
nonzero_set = set()
F = [lil_matrix((bs, bs)) for _ in range(sdp.n_vars+1)]
for ri, row in enumerate(sdp.F.rows[row_offsets[idx]:
row_offsets[idx+1]],
row_offsets[idx]):
block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct,
row_offsets, ri)
for col_index, k in enumerate(row):
value = sdp.F.data[ri][col_index]
F[k][i, j] = value
F[k][j, i] = value
nonzero_set.add(k)
if bs > 1:
sum_ = sum(F[k]*x[k-1] for k in nonzero_set if k > 0)
if not isinstance(sum_, (int, float)):
if F[0].getnnz() > 0:
sum_ += F[0]
constraints.append(sum_ >> 0)
else:
sum_ = sum(F[k][0, 0]*x[k-1] for k in nonzero_set if k > 0)
if not isinstance(sum_, (int, float)):
sum_ += F[0][0, 0]
constraints.append(sum_ >= 0)
obj = sum(ci*xi for ci, xi in zip(sdp.obj_facvar, x) if ci != 0)
problem = Problem(Minimize(obj), constraints)
return problem | Convert an SDP relaxation to a CVXPY problem.
:param sdp: The SDP relaxation to convert.
:type sdp: :class:`ncpol2sdpa.sdp`.
:returns: :class:`cvxpy.Problem`. | entailment |
def get_neighbors(index, lattice_length, width=0, periodic=False):
"""Get the forward neighbors of a site in a lattice.
:param index: Linear index of operator.
:type index: int.
:param lattice_length: The size of the 2D lattice in either dimension
:type lattice_length: int.
:param width: Optional parameter to define width.
:type width: int.
:param periodic: Optional parameter to indicate periodic boundary
conditions.
:type periodic: bool
:returns: list of int -- the neighbors in linear index.
"""
if width == 0:
width = lattice_length
neighbors = []
coords = divmod(index, width)
if coords[1] < width - 1:
neighbors.append(index + 1)
elif periodic and width > 1:
neighbors.append(index - width + 1)
if coords[0] < lattice_length - 1:
neighbors.append(index + width)
elif periodic:
neighbors.append(index - (lattice_length - 1) * width)
return neighbors | Get the forward neighbors of a site in a lattice.
:param index: Linear index of operator.
:type index: int.
:param lattice_length: The size of the 2D lattice in either dimension
:type lattice_length: int.
:param width: Optional parameter to define width.
:type width: int.
:param periodic: Optional parameter to indicate periodic boundary
conditions.
:type periodic: bool
:returns: list of int -- the neighbors in linear index. | entailment |
def get_next_neighbors(indices, lattice_length, width=0, distance=1,
periodic=False):
"""Get the forward neighbors at a given distance of a site or set of sites
in a lattice.
:param index: Linear index of operator.
:type index: int.
:param lattice_length: The size of the 2D lattice in either dimension
:type lattice_length: int.
:param width: Optional parameter to define width.
:type width: int.
:param distance: Optional parameter to define distance.
:type width: int.
:param periodic: Optional parameter to indicate periodic boundary
conditions.
:type periodic: bool
:returns: list of int -- the neighbors at given distance in linear index.
"""
if not isinstance(indices, list):
indices = [indices]
if distance == 1:
return flatten(get_neighbors(index, lattice_length, width, periodic)
for index in indices)
else:
s1 = set(flatten(get_next_neighbors(get_neighbors(index,
lattice_length,
width, periodic),
lattice_length, width, distance-1,
periodic) for index in indices))
s2 = set(get_next_neighbors(indices, lattice_length, width, distance-1,
periodic))
return list(s1 - s2) | Get the forward neighbors at a given distance of a site or set of sites
in a lattice.
:param index: Linear index of operator.
:type index: int.
:param lattice_length: The size of the 2D lattice in either dimension
:type lattice_length: int.
:param width: Optional parameter to define width.
:type width: int.
:param distance: Optional parameter to define distance.
:type width: int.
:param periodic: Optional parameter to indicate periodic boundary
conditions.
:type periodic: bool
:returns: list of int -- the neighbors at given distance in linear index. | entailment |
def bosonic_constraints(a):
"""Return a set of constraints that define fermionic ladder operators.
:param a: The non-Hermitian variables.
:type a: list of :class:`sympy.physics.quantum.operator.Operator`.
:returns: a dict of substitutions.
"""
substitutions = {}
for i, ai in enumerate(a):
substitutions[ai * Dagger(ai)] = 1.0 + Dagger(ai) * ai
for aj in a[i+1:]:
# substitutions[ai*Dagger(aj)] = -Dagger(ai)*aj
substitutions[ai*Dagger(aj)] = Dagger(aj)*ai
substitutions[Dagger(ai)*aj] = aj*Dagger(ai)
substitutions[ai*aj] = aj*ai
substitutions[Dagger(ai) * Dagger(aj)] = Dagger(aj) * Dagger(ai)
return substitutions | Return a set of constraints that define fermionic ladder operators.
:param a: The non-Hermitian variables.
:type a: list of :class:`sympy.physics.quantum.operator.Operator`.
:returns: a dict of substitutions. | entailment |
def fermionic_constraints(a):
"""Return a set of constraints that define fermionic ladder operators.
:param a: The non-Hermitian variables.
:type a: list of :class:`sympy.physics.quantum.operator.Operator`.
:returns: a dict of substitutions.
"""
substitutions = {}
for i, ai in enumerate(a):
substitutions[ai ** 2] = 0
substitutions[Dagger(ai) ** 2] = 0
substitutions[ai * Dagger(ai)] = 1.0 - Dagger(ai) * ai
for aj in a[i+1:]:
# substitutions[ai*Dagger(aj)] = -Dagger(ai)*aj
substitutions[ai*Dagger(aj)] = -Dagger(aj)*ai
substitutions[Dagger(ai)*aj] = -aj*Dagger(ai)
substitutions[ai*aj] = -aj*ai
substitutions[Dagger(ai) * Dagger(aj)] = - Dagger(aj) * Dagger(ai)
return substitutions | Return a set of constraints that define fermionic ladder operators.
:param a: The non-Hermitian variables.
:type a: list of :class:`sympy.physics.quantum.operator.Operator`.
:returns: a dict of substitutions. | entailment |
def pauli_constraints(X, Y, Z):
"""Return a set of constraints that define Pauli spin operators.
:param X: List of Pauli X operator on sites.
:type X: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:param Y: List of Pauli Y operator on sites.
:type Y: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:param Z: List of Pauli Z operator on sites.
:type Z: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: tuple of substitutions and equalities.
"""
substitutions = {}
n_vars = len(X)
for i in range(n_vars):
# They square to the identity
substitutions[X[i] * X[i]] = 1
substitutions[Y[i] * Y[i]] = 1
substitutions[Z[i] * Z[i]] = 1
# Anticommutation relations
substitutions[Y[i] * X[i]] = - X[i] * Y[i]
substitutions[Z[i] * X[i]] = - X[i] * Z[i]
substitutions[Z[i] * Y[i]] = - Y[i] * Z[i]
# Commutation relations.
# equalities.append(X[i]*Y[i] - 1j*Z[i])
# equalities.append(X[i]*Z[i] + 1j*Y[i])
# equalities.append(Y[i]*Z[i] - 1j*X[i])
# They commute between the sites
for j in range(i + 1, n_vars):
substitutions[X[j] * X[i]] = X[i] * X[j]
substitutions[Y[j] * Y[i]] = Y[i] * Y[j]
substitutions[Y[j] * X[i]] = X[i] * Y[j]
substitutions[Y[i] * X[j]] = X[j] * Y[i]
substitutions[Z[j] * Z[i]] = Z[i] * Z[j]
substitutions[Z[j] * X[i]] = X[i] * Z[j]
substitutions[Z[i] * X[j]] = X[j] * Z[i]
substitutions[Z[j] * Y[i]] = Y[i] * Z[j]
substitutions[Z[i] * Y[j]] = Y[j] * Z[i]
return substitutions | Return a set of constraints that define Pauli spin operators.
:param X: List of Pauli X operator on sites.
:type X: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:param Y: List of Pauli Y operator on sites.
:type Y: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:param Z: List of Pauli Z operator on sites.
:type Z: list of :class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: tuple of substitutions and equalities. | entailment |
def generate_measurements(party, label):
"""Generate variables that behave like measurements.
:param party: The list of number of measurement outputs a party has.
:type party: list of int.
:param label: The label to be given to the symbolic variables.
:type label: str.
:returns: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
"""
measurements = []
for i in range(len(party)):
measurements.append(generate_operators(label + '%s' % i, party[i] - 1,
hermitian=True))
return measurements | Generate variables that behave like measurements.
:param party: The list of number of measurement outputs a party has.
:type party: list of int.
:param label: The label to be given to the symbolic variables.
:type label: str.
:returns: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`. | entailment |
def projective_measurement_constraints(*parties):
"""Return a set of constraints that define projective measurements.
:param parties: Measurements of different parties.
:type A: list or tuple of list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: substitutions containing idempotency, orthogonality and
commutation relations.
"""
substitutions = {}
# Idempotency and orthogonality of projectors
if isinstance(parties[0][0][0], list):
parties = parties[0]
for party in parties:
for measurement in party:
for projector1 in measurement:
for projector2 in measurement:
if projector1 == projector2:
substitutions[projector1**2] = projector1
else:
substitutions[projector1*projector2] = 0
substitutions[projector2*projector1] = 0
# Projectors commute between parties in a partition
for n1 in range(len(parties)):
for n2 in range(n1+1, len(parties)):
for measurement1 in parties[n1]:
for measurement2 in parties[n2]:
for projector1 in measurement1:
for projector2 in measurement2:
substitutions[projector2*projector1] = \
projector1*projector2
return substitutions | Return a set of constraints that define projective measurements.
:param parties: Measurements of different parties.
:type A: list or tuple of list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: substitutions containing idempotency, orthogonality and
commutation relations. | entailment |
def define_objective_with_I(I, *args):
"""Define a polynomial using measurements and an I matrix describing a Bell
inequality.
:param I: The I matrix of a Bell inequality in the Collins-Gisin notation.
:type I: list of list of int.
:param args: Either the measurements of Alice and Bob or a `Probability`
class describing their measurement operators.
:type A: tuple of list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator` or
:class:`ncpol2sdpa.Probability`
:returns: :class:`sympy.core.expr.Expr` -- the objective function to be
solved as a minimization problem to find the maximum quantum
violation. Note that the sign is flipped compared to the Bell
inequality.
"""
objective = I[0][0]
if len(args) > 2 or len(args) == 0:
raise Exception("Wrong number of arguments!")
elif len(args) == 1:
A = args[0].parties[0]
B = args[0].parties[1]
else:
A = args[0]
B = args[1]
i, j = 0, 1 # Row and column index in I
for m_Bj in B: # Define first row
for Bj in m_Bj:
objective += I[i][j] * Bj
j += 1
i += 1
for m_Ai in A:
for Ai in m_Ai:
objective += I[i][0] * Ai
j = 1
for m_Bj in B:
for Bj in m_Bj:
objective += I[i][j] * Ai * Bj
j += 1
i += 1
return -objective | Define a polynomial using measurements and an I matrix describing a Bell
inequality.
:param I: The I matrix of a Bell inequality in the Collins-Gisin notation.
:type I: list of list of int.
:param args: Either the measurements of Alice and Bob or a `Probability`
class describing their measurement operators.
:type A: tuple of list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator` or
:class:`ncpol2sdpa.Probability`
:returns: :class:`sympy.core.expr.Expr` -- the objective function to be
solved as a minimization problem to find the maximum quantum
violation. Note that the sign is flipped compared to the Bell
inequality. | entailment |
def correlator(A, B):
"""Correlators between the probabilities of two parties.
:param A: Measurements of Alice.
:type A: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:param B: Measurements of Bob.
:type B: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: list of correlators.
"""
correlators = []
for i in range(len(A)):
correlator_row = []
for j in range(len(B)):
corr = 0
for k in range(len(A[i])):
for l in range(len(B[j])):
if k == l:
corr += A[i][k] * B[j][l]
else:
corr -= A[i][k] * B[j][l]
correlator_row.append(corr)
correlators.append(correlator_row)
return correlators | Correlators between the probabilities of two parties.
:param A: Measurements of Alice.
:type A: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:param B: Measurements of Bob.
:type B: list of list of
:class:`sympy.physics.quantum.operator.HermitianOperator`.
:returns: list of correlators. | entailment |
def maximum_violation(A_configuration, B_configuration, I, level, extra=None):
"""Get the maximum violation of a two-party Bell inequality.
:param A_configuration: Measurement settings of Alice.
:type A_configuration: list of int.
:param B_configuration: Measurement settings of Bob.
:type B_configuration: list of int.
:param I: The I matrix of a Bell inequality in the Collins-Gisin notation.
:type I: list of list of int.
:param level: Level of relaxation.
:type level: int.
:returns: tuple of primal and dual solutions of the SDP relaxation.
"""
P = Probability(A_configuration, B_configuration)
objective = define_objective_with_I(I, P)
if extra is None:
extramonomials = []
else:
extramonomials = P.get_extra_monomials(extra)
sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0)
sdpRelaxation.get_relaxation(level, objective=objective,
substitutions=P.substitutions,
extramonomials=extramonomials)
solve_sdp(sdpRelaxation)
return sdpRelaxation.primal, sdpRelaxation.dual | Get the maximum violation of a two-party Bell inequality.
:param A_configuration: Measurement settings of Alice.
:type A_configuration: list of int.
:param B_configuration: Measurement settings of Bob.
:type B_configuration: list of int.
:param I: The I matrix of a Bell inequality in the Collins-Gisin notation.
:type I: list of list of int.
:param level: Level of relaxation.
:type level: int.
:returns: tuple of primal and dual solutions of the SDP relaxation. | entailment |
def stable_format_dict(d):
"""A sorted, python2/3 stable formatting of a dictionary.
Does not work for dicts with unicode strings as values."""
inner = ', '.join('{}: {}'.format(repr(k)[1:]
if repr(k).startswith(u"u'") or repr(k).startswith(u'u"')
else repr(k),
v)
for k, v in sorted(d.items()))
return '{%s}' % inner | A sorted, python2/3 stable formatting of a dictionary.
Does not work for dicts with unicode strings as values. | entailment |
def interval_overlap(a, b, x, y):
"""Returns by how much two intervals overlap
assumed that a <= b and x <= y"""
if b <= x or a >= y:
return 0
elif x <= a <= y:
return min(b, y) - a
elif x <= b <= y:
return b - max(a, x)
elif a >= x and b <= y:
return b - a
else:
assert False | Returns by how much two intervals overlap
assumed that a <= b and x <= y | entailment |
def width_aware_slice(s, start, end, replacement_char=u' '):
# type: (Text, int, int, Text)
"""
>>> width_aware_slice(u'a\uff25iou', 0, 2)[1] == u' '
True
"""
divides = [0]
for c in s:
divides.append(divides[-1] + wcswidth(c))
new_chunk_chars = []
for char, char_start, char_end in zip(s, divides[:-1], divides[1:]):
if char_start == start and char_end == start:
continue # don't use zero-width characters at the beginning of a slice
# (combining characters combine with the chars before themselves)
elif char_start >= start and char_end <= end:
new_chunk_chars.append(char)
else:
new_chunk_chars.extend(replacement_char * interval_overlap(char_start, char_end, start, end))
return ''.join(new_chunk_chars) | >>> width_aware_slice(u'a\uff25iou', 0, 2)[1] == u' '
True | entailment |
def linesplit(string, columns):
# type: (Union[Text, FmtStr], int) -> List[FmtStr]
"""Returns a list of lines, split on the last possible space of each line.
Split spaces will be removed. Whitespaces will be normalized to one space.
Spaces will be the color of the first whitespace character of the
normalized whitespace.
If a word extends beyond the line, wrap it anyway.
>>> linesplit(fmtstr(" home is where the heart-eating mummy is", 'blue'), 10)
[blue('home')+blue(' ')+blue('is'), blue('where')+blue(' ')+blue('the'), blue('heart-eati'), blue('ng')+blue(' ')+blue('mummy'), blue('is')]
"""
if not isinstance(string, FmtStr):
string = fmtstr(string)
string_s = string.s
matches = list(re.finditer(r'\s+', string_s))
spaces = [string[m.start():m.end()] for m in matches if m.start() != 0 and m.end() != len(string_s)]
words = [string[start:end] for start, end in zip(
[0] + [m.end() for m in matches],
[m.start() for m in matches] + [len(string_s)]) if start != end]
word_to_lines = lambda word: [word[columns*i:columns*(i+1)] for i in range((len(word) - 1) // columns + 1)]
lines = word_to_lines(words[0])
for word, space in zip(words[1:], spaces):
if len(lines[-1]) + len(word) < columns:
lines[-1] += fmtstr(' ', **space.shared_atts)
lines[-1] += word
else:
lines.extend(word_to_lines(word))
return lines | Returns a list of lines, split on the last possible space of each line.
Split spaces will be removed. Whitespaces will be normalized to one space.
Spaces will be the color of the first whitespace character of the
normalized whitespace.
If a word extends beyond the line, wrap it anyway.
>>> linesplit(fmtstr(" home is where the heart-eating mummy is", 'blue'), 10)
[blue('home')+blue(' ')+blue('is'), blue('where')+blue(' ')+blue('the'), blue('heart-eati'), blue('ng')+blue(' ')+blue('mummy'), blue('is')] | entailment |
def normalize_slice(length, index):
"Fill in the Nones in a slice."
is_int = False
if isinstance(index, int):
is_int = True
index = slice(index, index+1)
if index.start is None:
index = slice(0, index.stop, index.step)
if index.stop is None:
index = slice(index.start, length, index.step)
if index.start < -1: # XXX why must this be -1?
index = slice(length - index.start, index.stop, index.step)
if index.stop < -1: # XXX why must this be -1?
index = slice(index.start, length - index.stop, index.step)
if index.step is not None:
raise NotImplementedError("You can't use steps with slicing yet")
if is_int:
if index.start < 0 or index.start > length:
raise IndexError("index out of bounds: %r for length %s" % (index, length))
return index | Fill in the Nones in a slice. | entailment |
def parse_args(args, kwargs):
"""Returns a kwargs dictionary by turning args into kwargs"""
if 'style' in kwargs:
args += (kwargs['style'],)
del kwargs['style']
for arg in args:
if not isinstance(arg, (bytes, unicode)):
raise ValueError("args must be strings:" + repr(args))
if arg.lower() in FG_COLORS:
if 'fg' in kwargs: raise ValueError("fg specified twice")
kwargs['fg'] = FG_COLORS[arg]
elif arg.lower().startswith('on_') and arg[3:].lower() in BG_COLORS:
if 'bg' in kwargs: raise ValueError("fg specified twice")
kwargs['bg'] = BG_COLORS[arg[3:]]
elif arg.lower() in STYLES:
kwargs[arg] = True
else:
raise ValueError("couldn't process arg: "+repr(arg))
for k in kwargs:
if k not in ['fg', 'bg'] + list(STYLES.keys()):
raise ValueError("Can't apply that transformation")
if 'fg' in kwargs:
if kwargs['fg'] in FG_COLORS:
kwargs['fg'] = FG_COLORS[kwargs['fg']]
if kwargs['fg'] not in list(FG_COLORS.values()):
raise ValueError("Bad fg value: %r" % kwargs['fg'])
if 'bg' in kwargs:
if kwargs['bg'] in BG_COLORS:
kwargs['bg'] = BG_COLORS[kwargs['bg']]
if kwargs['bg'] not in list(BG_COLORS.values()):
raise ValueError("Bad bg value: %r" % kwargs['bg'])
return kwargs | Returns a kwargs dictionary by turning args into kwargs | entailment |
def fmtstr(string, *args, **kwargs):
# type: (Union[Text, bytes, FmtStr], *Any, **Any) -> FmtStr
"""
Convenience function for creating a FmtStr
>>> fmtstr('asdf', 'blue', 'on_red', 'bold')
on_red(bold(blue('asdf')))
>>> fmtstr('blarg', fg='blue', bg='red', bold=True)
on_red(bold(blue('blarg')))
"""
atts = parse_args(args, kwargs)
if isinstance(string, FmtStr):
pass
elif isinstance(string, (bytes, unicode)):
string = FmtStr.from_str(string)
else:
raise ValueError("Bad Args: %r (of type %s), %r, %r" % (string, type(string), args, kwargs))
return string.copy_with_new_atts(**atts) | Convenience function for creating a FmtStr
>>> fmtstr('asdf', 'blue', 'on_red', 'bold')
on_red(bold(blue('asdf')))
>>> fmtstr('blarg', fg='blue', bg='red', bold=True)
on_red(bold(blue('blarg'))) | entailment |
def color_str(self):
"Return an escape-coded string to write to the terminal."
s = self.s
for k, v in sorted(self.atts.items()):
# (self.atts sorted for the sake of always acting the same.)
if k not in xforms:
# Unsupported SGR code
continue
elif v is False:
continue
elif v is True:
s = xforms[k](s)
else:
s = xforms[k](s, v)
return s | Return an escape-coded string to write to the terminal. | entailment |
def repr_part(self):
"""FmtStr repr is build by concatenating these."""
def pp_att(att):
if att == 'fg': return FG_NUMBER_TO_COLOR[self.atts[att]]
elif att == 'bg': return 'on_' + BG_NUMBER_TO_COLOR[self.atts[att]]
else: return att
atts_out = dict((k, v) for (k, v) in self.atts.items() if v)
return (''.join(pp_att(att)+'(' for att in sorted(atts_out))
+ (repr(self.s) if PY3 else repr(self.s)[1:]) + ')'*len(atts_out)) | FmtStr repr is build by concatenating these. | entailment |
def request(self, max_width):
# type: (int) -> Optional[Tuple[int, Chunk]]
"""Requests a sub-chunk of max_width or shorter. Returns None if no chunks left."""
if max_width < 1:
raise ValueError('requires positive integer max_width')
s = self.chunk.s
length = len(s)
if self.internal_offset == len(s):
return None
width = 0
start_offset = i = self.internal_offset
replacement_char = u' '
while True:
w = wcswidth(s[i])
# If adding a character puts us over the requested width, return what we've got so far
if width + w > max_width:
self.internal_offset = i # does not include ith character
self.internal_width += width
# if not adding it us makes us short, this must have been a double-width character
if width < max_width:
assert width + 1 == max_width, 'unicode character width of more than 2!?!'
assert w == 2, 'unicode character of width other than 2?'
return (width + 1, Chunk(s[start_offset:self.internal_offset] + replacement_char,
atts=self.chunk.atts))
return (width, Chunk(s[start_offset:self.internal_offset], atts=self.chunk.atts))
# otherwise add this width
width += w
# If one more char would put us over, return whatever we've got
if i + 1 == length:
self.internal_offset = i + 1 # beware the fencepost, i is an index not an offset
self.internal_width += width
return (width, Chunk(s[start_offset:self.internal_offset], atts=self.chunk.atts))
# otherwise attempt to add the next character
i += 1 | Requests a sub-chunk of max_width or shorter. Returns None if no chunks left. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.