sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def get_context_data(self, **kwargs):
"""
We supplement the normal context data by adding our fields and labels.
"""
context = super(SmartView, self).get_context_data(**kwargs)
# derive our field config
self.field_config = self.derive_field_config()
# add our fields
self.fields = self.derive_fields()
# build up our current parameter string, EXCLUSIVE of our page. These
# are used to build pagination URLs
url_params = "?"
order_params = ""
for key in self.request.GET.keys():
if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_'):
for value in self.request.GET.getlist(key):
url_params += "%s=%s&" % (key, urlquote(value))
elif key == '_order':
order_params = "&".join(["%s=%s" % (key, _) for _ in self.request.GET.getlist(key)])
context['url_params'] = url_params
context['order_params'] = order_params + "&"
context['pjax'] = self.pjax
# set our blocks
context['blocks'] = dict()
# stuff it all in our context
context['fields'] = self.fields
context['view'] = self
context['field_config'] = self.field_config
context['title'] = self.derive_title()
# and any extra context the user specified
context.update(self.extra_context)
# by default, our base is 'base.html', but we might be pjax
base_template = "base.html"
if 'pjax' in self.request.GET or 'pjax' in self.request.POST:
base_template = "smartmin/pjax.html"
if 'HTTP_X_PJAX' in self.request.META:
base_template = "smartmin/pjax.html"
context['base_template'] = base_template
# set our refresh if we have one
refresh = self.derive_refresh()
if refresh:
context['refresh'] = refresh
return context | We supplement the normal context data by adding our fields and labels. | entailment |
def render_to_response(self, context, **response_kwargs):
"""
Overloaded to deal with _format arguments.
"""
# should we actually render in json?
if '_format' in self.request.GET and self.request.GET['_format'] == 'json':
return JsonResponse(self.as_json(context), safe=False)
# otherwise, return normally
else:
return super(SmartView, self).render_to_response(context) | Overloaded to deal with _format arguments. | entailment |
def derive_fields(self):
"""
Derives our fields. We first default to using our 'fields' variable if available,
otherwise we figure it out from our object.
"""
if self.fields:
return list(self.fields)
else:
fields = []
for field in self.object._meta.fields:
fields.append(field.name)
# only exclude? then remove those items there
exclude = self.derive_exclude()
# remove any excluded fields
fields = [field for field in fields if field not in exclude]
return fields | Derives our fields. We first default to using our 'fields' variable if available,
otherwise we figure it out from our object. | entailment |
def get_context_data(self, **kwargs):
""" Add in the field to use for the name field """
context = super(SmartDeleteView, self).get_context_data(**kwargs)
context['name_field'] = self.name_field
context['cancel_url'] = self.get_cancel_url()
return context | Add in the field to use for the name field | entailment |
def derive_title(self):
"""
Derives our title from our list
"""
title = super(SmartListView, self).derive_title()
if not title:
return force_text(self.model._meta.verbose_name_plural).title()
else:
return title | Derives our title from our list | entailment |
def derive_link_fields(self, context):
"""
Used to derive which fields should be linked. This should return a set() containing
the names of those fields which should be linkable.
"""
if self.link_fields is not None:
return self.link_fields
else:
link_fields = set()
if self.fields:
for field in self.fields:
if field != 'is_active':
link_fields.add(field)
break
return link_fields | Used to derive which fields should be linked. This should return a set() containing
the names of those fields which should be linkable. | entailment |
def lookup_field_orderable(self, field):
"""
Returns whether the passed in field is sortable or not, by default all 'raw' fields, that
is fields that are part of the model are sortable.
"""
try:
self.model._meta.get_field_by_name(field)
return True
except Exception:
# that field doesn't exist, so not sortable
return False | Returns whether the passed in field is sortable or not, by default all 'raw' fields, that
is fields that are part of the model are sortable. | entailment |
def get_context_data(self, **kwargs):
"""
Add in what fields are linkable
"""
context = super(SmartListView, self).get_context_data(**kwargs)
# our linkable fields
self.link_fields = self.derive_link_fields(context)
# stuff it all in our context
context['link_fields'] = self.link_fields
# our search term if any
if 'search' in self.request.GET:
context['search'] = self.request.GET['search']
# our ordering field if any
order = self.derive_ordering()
if order:
if order[0] == '-':
context['order'] = order[1:]
context['order_asc'] = False
else:
context['order'] = order
context['order_asc'] = True
return context | Add in what fields are linkable | entailment |
def derive_queryset(self, **kwargs):
"""
Derives our queryset.
"""
# get our parent queryset
queryset = super(SmartListView, self).get_queryset(**kwargs)
# apply any filtering
search_fields = self.derive_search_fields()
search_query = self.request.GET.get('search')
if search_fields and search_query:
term_queries = []
for term in search_query.split(' '):
field_queries = []
for field in search_fields:
field_queries.append(Q(**{field: term}))
term_queries.append(reduce(operator.or_, field_queries))
queryset = queryset.filter(reduce(operator.and_, term_queries))
# add any select related
related = self.derive_select_related()
if related:
queryset = queryset.select_related(*related)
# return our queryset
return queryset | Derives our queryset. | entailment |
def get_queryset(self, **kwargs):
"""
Gets our queryset. This takes care of filtering if there are any
fields to filter by.
"""
queryset = self.derive_queryset(**kwargs)
return self.order_queryset(queryset) | Gets our queryset. This takes care of filtering if there are any
fields to filter by. | entailment |
def derive_ordering(self):
"""
Returns what field should be used for ordering (using a prepended '-' to indicate descending sort).
If the default order of the queryset should be used, returns None
"""
if '_order' in self.request.GET:
return self.request.GET['_order']
elif self.default_order:
return self.default_order
else:
return None | Returns what field should be used for ordering (using a prepended '-' to indicate descending sort).
If the default order of the queryset should be used, returns None | entailment |
def order_queryset(self, queryset):
"""
Orders the passed in queryset, returning a new queryset in response. By default uses the _order query
parameter.
"""
order = self.derive_ordering()
# if we get our order from the request
# make sure it is a valid field in the list
if '_order' in self.request.GET:
if order.lstrip('-') not in self.derive_fields():
order = None
if order:
# if our order is a single string, convert to a simple list
if isinstance(order, str):
order = (order,)
queryset = queryset.order_by(*order)
return queryset | Orders the passed in queryset, returning a new queryset in response. By default uses the _order query
parameter. | entailment |
def derive_fields(self):
"""
Derives our fields.
"""
if self.fields:
return self.fields
else:
fields = []
for field in self.object_list.model._meta.fields:
if field.name != 'id':
fields.append(field.name)
return fields | Derives our fields. | entailment |
def render_to_response(self, context, **response_kwargs):
"""
Overloaded to deal with _format arguments.
"""
# is this a select2 format response?
if self.request.GET.get('_format', 'html') == 'select2':
results = []
for obj in context['object_list']:
result = None
if hasattr(obj, 'as_select2'):
result = obj.as_select2()
if not result:
result = dict(id=obj.pk, text="%s" % obj)
results.append(result)
json_data = dict(results=results, err='nil', more=context['page_obj'].has_next())
return JsonResponse(json_data)
# otherwise, return normally
else:
return super(SmartListView, self).render_to_response(context) | Overloaded to deal with _format arguments. | entailment |
def get_form(self):
"""
Returns an instance of the form to be used in this view.
"""
self.form = super(SmartFormMixin, self).get_form()
fields = list(self.derive_fields())
# apply our field filtering on our form class
exclude = self.derive_exclude()
exclude += self.derive_readonly()
# remove any excluded fields
for field in exclude:
if field in self.form.fields:
del self.form.fields[field]
if fields is not None:
# filter out our form fields
remove = [name for name in self.form.fields.keys() if name not in fields]
for name in remove:
del self.form.fields[name]
# stuff in our referer as the default location for where to return
location = forms.CharField(widget=forms.widgets.HiddenInput(), required=False)
if ('HTTP_REFERER' in self.request.META):
location.initial = self.request.META['HTTP_REFERER']
# add the location to our form fields
self.form.fields['loc'] = location
if fields:
fields.append('loc')
# provides a hook to programmatically customize fields before rendering
for (name, field) in self.form.fields.items():
field = self.customize_form_field(name, field)
self.form.fields[name] = field
return self.form | Returns an instance of the form to be used in this view. | entailment |
def customize_form_field(self, name, field):
"""
Allows views to customize their form fields. By default, Smartmin replaces the plain textbox
date input with it's own DatePicker implementation.
"""
if isinstance(field, forms.fields.DateField) and isinstance(field.widget, forms.widgets.DateInput):
field.widget = widgets.DatePickerWidget()
field.input_formats = [field.widget.input_format[1]] + list(field.input_formats)
if isinstance(field, forms.fields.ImageField) and isinstance(field.widget, forms.widgets.ClearableFileInput):
field.widget = widgets.ImageThumbnailWidget()
return field | Allows views to customize their form fields. By default, Smartmin replaces the plain textbox
date input with it's own DatePicker implementation. | entailment |
def lookup_field_label(self, context, field, default=None):
"""
Figures out what the field label should be for the passed in field name.
We overload this so as to use our form to see if there is label set there. If so
then we'll pass that as the default instead of having our parent derive
the field from the name.
"""
default = None
for form_field in self.form:
if form_field.name == field:
default = form_field.label
break
return super(SmartFormMixin, self).lookup_field_label(context, field, default=default) | Figures out what the field label should be for the passed in field name.
We overload this so as to use our form to see if there is label set there. If so
then we'll pass that as the default instead of having our parent derive
the field from the name. | entailment |
def lookup_field_help(self, field, default=None):
"""
Looks up the help text for the passed in field.
This is overloaded so that we can check whether our form has help text set
explicitely. If so, we will pass this as the default to our parent function.
"""
default = None
for form_field in self.form:
if form_field.name == field:
default = form_field.help_text
break
return super(SmartFormMixin, self).lookup_field_help(field, default=default) | Looks up the help text for the passed in field.
This is overloaded so that we can check whether our form has help text set
explicitely. If so, we will pass this as the default to our parent function. | entailment |
def derive_readonly(self):
"""
Figures out what fields should be readonly. We iterate our field_config to find all
that have a readonly of true
"""
readonly = list(self.readonly)
for key, value in self.field_config.items():
if 'readonly' in value and value['readonly']:
readonly.append(key)
return readonly | Figures out what fields should be readonly. We iterate our field_config to find all
that have a readonly of true | entailment |
def derive_fields(self):
"""
Derives our fields.
"""
if self.fields is not None:
fields = list(self.fields)
else:
form = self.form
fields = []
for field in form:
fields.append(field.name)
# this is slightly confusing but we add in readonly fields here because they will still
# need to be displayed
readonly = self.derive_readonly()
if readonly:
fields += readonly
# remove any excluded fields
for exclude in self.derive_exclude():
if exclude in fields:
fields.remove(exclude)
return fields | Derives our fields. | entailment |
def get_form_class(self):
"""
Returns the form class to use in this view
"""
if self.form_class:
form_class = self.form_class
else:
if self.model is not None:
# If a model has been explicitly provided, use it
model = self.model
elif hasattr(self, 'object') and self.object is not None:
# If this view is operating on a single object, use
# the class of that object
model = self.object.__class__
else:
# Try to get a queryset and extract the model class
# from that
model = self.get_queryset().model
# run time parameters when building our form
factory_kwargs = self.get_factory_kwargs()
form_class = model_forms.modelform_factory(model, **factory_kwargs)
return form_class | Returns the form class to use in this view | entailment |
def get_factory_kwargs(self):
"""
Let's us specify any extra parameters we might want to call for our form factory.
These can include: 'form', 'fields', 'exclude' or 'formfield_callback'
"""
params = dict()
exclude = self.derive_exclude()
exclude += self.derive_readonly()
if self.fields:
fields = list(self.fields)
for ex in exclude:
if ex in fields:
fields.remove(ex)
params['fields'] = fields
if exclude:
params['exclude'] = exclude
return params | Let's us specify any extra parameters we might want to call for our form factory.
These can include: 'form', 'fields', 'exclude' or 'formfield_callback' | entailment |
def get_success_url(self):
"""
By default we use the referer that was stuffed in our
form when it was created
"""
if self.success_url:
# if our smart url references an object, pass that in
if self.success_url.find('@') > 0:
return smart_url(self.success_url, self.object)
else:
return smart_url(self.success_url, None)
elif 'loc' in self.form.cleaned_data:
return self.form.cleaned_data['loc']
raise ImproperlyConfigured("No redirect location found, override get_success_url to not use redirect urls") | By default we use the referer that was stuffed in our
form when it was created | entailment |
def get_form_kwargs(self):
"""
We override this, using only those fields specified if they are specified.
Otherwise we include all fields in a standard ModelForm.
"""
kwargs = super(SmartFormMixin, self).get_form_kwargs()
kwargs['initial'] = self.derive_initial()
return kwargs | We override this, using only those fields specified if they are specified.
Otherwise we include all fields in a standard ModelForm. | entailment |
def derive_title(self):
"""
Derives our title from our object
"""
if not self.title:
return _("Create %s") % force_text(self.model._meta.verbose_name).title()
else:
return self.title | Derives our title from our object | entailment |
def permission_for_action(self, action):
"""
Returns the permission to use for the passed in action
"""
return "%s.%s_%s" % (self.app_name.lower(), self.model_name.lower(), action) | Returns the permission to use for the passed in action | entailment |
def template_for_action(self, action):
"""
Returns the template to use for the passed in action
"""
return "%s/%s_%s.html" % (self.module_name.lower(), self.model_name.lower(), action) | Returns the template to use for the passed in action | entailment |
def url_name_for_action(self, action):
"""
Returns the reverse name for this action
"""
return "%s.%s_%s" % (self.module_name.lower(), self.model_name.lower(), action) | Returns the reverse name for this action | entailment |
def view_for_action(self, action):
"""
Returns the appropriate view class for the passed in action
"""
# this turns replace_foo into ReplaceFoo and read into Read
class_name = "".join([word.capitalize() for word in action.split("_")])
view = None
# see if we have a custom class defined for this action
if hasattr(self, class_name):
# return that one
view = getattr(self, class_name)
# no model set? set it ourselves
if not getattr(view, 'model', None):
view.model = self.model
# no permission and we are supposed to set them, do so
if not hasattr(view, 'permission') and self.permissions:
view.permission = self.permission_for_action(action)
# set our link URL based on read and update
if not getattr(view, 'link_url', None):
if 'read' in self.actions:
view.link_url = 'id@%s' % self.url_name_for_action('read')
elif 'update' in self.actions:
view.link_url = 'id@%s' % self.url_name_for_action('update')
# if we can't infer a link URL then view class must override lookup_field_link
if not getattr(view, 'link_url', None) and 'lookup_field_link' not in view.__dict__:
view.link_fields = ()
# set add_button based on existence of Create view if add_button not explicitly set
if action == 'list' and getattr(view, 'add_button', None) is None:
view.add_button = 'create' in self.actions
# set edit_button based on existence of Update view if edit_button not explicitly set
if action == 'read' and getattr(view, 'edit_button', None) is None:
view.edit_button = 'update' in self.actions
# if update or create, set success url if not set
if not getattr(view, 'success_url', None) and (action == 'update' or action == 'create'):
view.success_url = '@%s' % self.url_name_for_action('list')
# otherwise, use our defaults
else:
options = dict(model=self.model)
# if this is an update or create, and we have a list view, then set the default to that
if action == 'update' or action == 'create' and 'list' in self.actions:
options['success_url'] = '@%s' % self.url_name_for_action('list')
# set permissions if appropriate
if self.permissions:
options['permission'] = self.permission_for_action(action)
if action == 'create':
view = type(str("%sCreateView" % self.model_name), (SmartCreateView,), options)
elif action == 'read':
if 'update' in self.actions:
options['edit_button'] = True
view = type(str("%sReadView" % self.model_name), (SmartReadView,), options)
elif action == 'update':
if 'delete' in self.actions:
options['delete_url'] = 'id@%s' % self.url_name_for_action('delete')
view = type(str("%sUpdateView" % self.model_name), (SmartUpdateView,), options)
elif action == 'delete':
if 'list' in self.actions:
options['cancel_url'] = '@%s' % self.url_name_for_action('list')
options['redirect_url'] = '@%s' % self.url_name_for_action('list')
elif 'update' in self.actions:
options['cancel_url'] = '@%s' % self.url_name_for_action('update')
view = type(str("%sDeleteView" % self.model_name), (SmartDeleteView,), options)
elif action == 'list':
if 'read' in self.actions:
options['link_url'] = 'id@%s' % self.url_name_for_action('read')
elif 'update' in self.actions:
options['link_url'] = 'id@%s' % self.url_name_for_action('update')
else:
options['link_fields'] = ()
if 'create' in self.actions:
options['add_button'] = True
view = type(str("%sListView" % self.model_name), (SmartListView,), options)
elif action == 'csv_import':
options['model'] = ImportTask
view = type(str("%sCSVImportView" % self.model_name), (SmartCSVImportView,), options)
if not view:
# couldn't find a view? blow up
raise Exception("No view found for action: %s" % action)
# set the url name for this view
view.url_name = self.url_name_for_action(action)
# no template set for it? set one based on our action and app name
if not getattr(view, 'template_name', None):
view.template_name = self.template_for_action(action)
view.crudl = self
return view | Returns the appropriate view class for the passed in action | entailment |
def pattern_for_view(self, view, action):
"""
Returns the URL pattern for the passed in action.
"""
# if this view knows how to define a URL pattern, call that
if getattr(view, 'derive_url_pattern', None):
return view.derive_url_pattern(self.path, action)
# otherwise take our best guess
else:
return r'^%s/%s/$' % (self.path, action) | Returns the URL pattern for the passed in action. | entailment |
def as_urlpatterns(self):
"""
Creates the appropriate URLs for this object.
"""
urls = []
# for each of our actions
for action in self.actions:
view_class = self.view_for_action(action)
view_pattern = self.pattern_for_view(view_class, action)
name = self.url_name_for_action(action)
urls.append(url(view_pattern, view_class.as_view(), name=name))
return urls | Creates the appropriate URLs for this object. | entailment |
def load_migrations(self): # pragma: no cover
"""
Loads all migrations in the order they would be applied to a clean database
"""
executor = MigrationExecutor(connection=None)
# create the forwards plan Django would follow on an empty database
plan = executor.migration_plan(executor.loader.graph.leaf_nodes(), clean_start=True)
if self.verbosity >= 2:
for migration, _ in plan:
self.stdout.write(" > %s" % migration)
return [m[0] for m in plan] | Loads all migrations in the order they would be applied to a clean database | entailment |
def extract_operations(self, migrations):
"""
Extract SQL operations from the given migrations
"""
operations = []
for migration in migrations:
for operation in migration.operations:
if isinstance(operation, RunSQL):
statements = sqlparse.parse(dedent(operation.sql))
for statement in statements:
operation = SqlObjectOperation.parse(statement)
if operation:
operations.append(operation)
if self.verbosity >= 2:
self.stdout.write(" > % -100s (%s)" % (operation, migration))
return operations | Extract SQL operations from the given migrations | entailment |
def normalize_operations(self, operations):
"""
Removes redundant SQL operations - e.g. a CREATE X followed by a DROP X
"""
normalized = OrderedDict()
for operation in operations:
op_key = (operation.sql_type, operation.obj_name)
# do we already have an operation for this object?
if op_key in normalized:
if self.verbosity >= 2:
self.stdout.write(" < %s" % normalized[op_key])
del normalized[op_key]
# don't add DROP operations for objects not previously created
if operation.is_create:
normalized[op_key] = operation
elif self.verbosity >= 2:
self.stdout.write(" < %s" % operation)
return normalized.values() | Removes redundant SQL operations - e.g. a CREATE X followed by a DROP X | entailment |
def write_type_dumps(self, operations, preserve_order, output_dir):
"""
Splits the list of SQL operations by type and dumps these to separate files
"""
by_type = {SqlType.INDEX: [], SqlType.FUNCTION: [], SqlType.TRIGGER: []}
for operation in operations:
by_type[operation.sql_type].append(operation)
# optionally sort each operation list by the object name
if not preserve_order:
for obj_type, ops in by_type.items():
by_type[obj_type] = sorted(ops, key=lambda o: o.obj_name)
if by_type[SqlType.INDEX]:
self.write_dump('indexes', by_type[SqlType.INDEX], output_dir)
if by_type[SqlType.FUNCTION]:
self.write_dump('functions', by_type[SqlType.FUNCTION], output_dir)
if by_type[SqlType.TRIGGER]:
self.write_dump('triggers', by_type[SqlType.TRIGGER], output_dir) | Splits the list of SQL operations by type and dumps these to separate files | entailment |
def render(self, name, value, attrs=None, renderer=None):
"""
Returns this Widget rendered as HTML, as a Unicode string.
The 'value' given is not guaranteed to be valid input, so subclass
implementations should program defensively.
"""
html = ''
html += '%s' % value
html += '<input type="hidden" name="%s" value="%s">' % (escape(name), escape(value))
return mark_safe(html) | Returns this Widget rendered as HTML, as a Unicode string.
The 'value' given is not guaranteed to be valid input, so subclass
implementations should program defensively. | entailment |
def add_atom_data(data_api, data_setters, atom_names, element_names, atom_charges, group_atom_ind):
"""Add the atomic data to the DataTransferInterface.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param atom_nams the list of atom names for the group
:param element_names the list of element names for this group
:param atom_charges the list formal atomic charges for this group
:param group_atom_ind the index of this atom in the group"""
atom_name = atom_names[group_atom_ind]
element = element_names[group_atom_ind]
charge = atom_charges[group_atom_ind]
alternative_location_id = data_api.alt_loc_list[data_api.atom_counter]
serial_number = data_api.atom_id_list[data_api.atom_counter]
x = data_api.x_coord_list[data_api.atom_counter]
y = data_api.y_coord_list[data_api.atom_counter]
z = data_api.z_coord_list[data_api.atom_counter]
occupancy = data_api.occupancy_list[data_api.atom_counter]
temperature_factor = data_api.b_factor_list[data_api.atom_counter]
data_setters.set_atom_info(atom_name, serial_number, alternative_location_id,
x, y, z, occupancy, temperature_factor, element, charge) | Add the atomic data to the DataTransferInterface.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param atom_nams the list of atom names for the group
:param element_names the list of element names for this group
:param atom_charges the list formal atomic charges for this group
:param group_atom_ind the index of this atom in the group | entailment |
def add_group_bonds(data_setters, bond_indices, bond_orders):
"""Add the bonds for this group.
:param data_setters the class to push the data to
:param bond_indices the indices of the atoms in the group that
are bonded (in pairs)
:param bond_orders the orders of the bonds"""
for bond_index in range(len(bond_orders)):
data_setters.set_group_bond(bond_indices[bond_index*2],bond_indices[bond_index*2+1],bond_orders[bond_index]) | Add the bonds for this group.
:param data_setters the class to push the data to
:param bond_indices the indices of the atoms in the group that
are bonded (in pairs)
:param bond_orders the orders of the bonds | entailment |
def add_group(data_api, data_setters, group_index):
"""Add the data for a whole group.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param group_index the index for this group"""
group_type_ind = data_api.group_type_list[group_index]
atom_count = len(data_api.group_list[group_type_ind]["atomNameList"])
insertion_code = data_api.ins_code_list[group_index]
data_setters.set_group_info(data_api.group_list[group_type_ind]["groupName"],
data_api.group_id_list[group_index], insertion_code,
data_api.group_list[group_type_ind]["chemCompType"],
atom_count, data_api.num_bonds,
data_api.group_list[group_type_ind]["singleLetterCode"],
data_api.sequence_index_list[group_index],
data_api.sec_struct_list[group_index])
for group_atom_ind in range(atom_count):
add_atom_data(data_api, data_setters,
data_api.group_list[group_type_ind]["atomNameList"],
data_api.group_list[group_type_ind]["elementList"],
data_api.group_list[group_type_ind]["formalChargeList"],
group_atom_ind)
data_api.atom_counter +=1
add_group_bonds(data_setters,
data_api.group_list[group_type_ind]["bondAtomList"],
data_api.group_list[group_type_ind]["bondOrderList"])
return atom_count | Add the data for a whole group.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param group_index the index for this group | entailment |
def add_chain_info(data_api, data_setters, chain_index):
"""Add the data for a whole chain.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param chain_index the index for this chain"""
chain_id = data_api.chain_id_list[chain_index]
chain_name = data_api.chain_name_list[chain_index]
num_groups = data_api.groups_per_chain[chain_index]
data_setters.set_chain_info(chain_id, chain_name, num_groups)
next_ind = data_api.group_counter + num_groups
last_ind = data_api.group_counter
for group_ind in range(last_ind, next_ind):
add_group(data_api, data_setters, group_ind)
data_api.group_counter +=1
data_api.chain_counter+=1 | Add the data for a whole chain.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to
:param chain_index the index for this chain | entailment |
def add_atomic_information(data_api, data_setters):
"""Add all the structural information.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to"""
for model_chains in data_api.chains_per_model:
data_setters.set_model_info(data_api.model_counter, model_chains)
tot_chains_this_model = data_api.chain_counter + model_chains
last_chain_counter = data_api.chain_counter
for chain_index in range(last_chain_counter, tot_chains_this_model):
add_chain_info(data_api, data_setters, chain_index)
data_api.model_counter+=1 | Add all the structural information.
:param data_api the data api from where to get the data
:param data_setters the class to push the data to | entailment |
def generate_bio_assembly(data_api, struct_inflator):
"""Generate the bioassembly data.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object"""
bioassembly_count = 0
for bioassembly in data_api.bio_assembly:
bioassembly_count += 1
for transform in bioassembly["transformList"]:
struct_inflator.set_bio_assembly_trans(bioassembly_count,
transform["chainIndexList"],
transform["matrix"]) | Generate the bioassembly data.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object | entailment |
def add_inter_group_bonds(data_api, struct_inflator):
""" Generate inter group bonds.
Bond indices are specified within the whole structure and start at 0.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object"""
for i in range(len(data_api.bond_order_list)):
struct_inflator.set_inter_group_bond(data_api.bond_atom_list[i * 2],
data_api.bond_atom_list[i * 2 + 1],
data_api.bond_order_list[i]) | Generate inter group bonds.
Bond indices are specified within the whole structure and start at 0.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object | entailment |
def add_header_info(data_api, struct_inflator):
""" Add ancilliary header information to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object
"""
struct_inflator.set_header_info(data_api.r_free,
data_api.r_work,
data_api.resolution,
data_api.title,
data_api.deposition_date,
data_api.release_date,
data_api.experimental_methods) | Add ancilliary header information to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object | entailment |
def add_xtalographic_info(data_api, struct_inflator):
""" Add the crystallographic data to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object"""
if data_api.unit_cell == None and data_api.space_group is not None:
struct_inflator.set_xtal_info(data_api.space_group,
constants.UNKNOWN_UNIT_CELL)
elif data_api.unit_cell is not None and data_api.space_group is None:
struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,
data_api.unit_cell)
elif data_api.unit_cell is None and data_api.space_group is None:
struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,
constants.UNKNOWN_UNIT_CELL)
else:
struct_inflator.set_xtal_info(data_api.space_group,
data_api.unit_cell) | Add the crystallographic data to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object | entailment |
def add_entity_info( data_api, struct_inflator):
"""Add the entity info to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object
"""
for entity in data_api.entity_list:
struct_inflator.set_entity_info(entity["chainIndexList"],
entity["sequence"],
entity["description"],
entity["type"]) | Add the entity info to the structure.
:param data_api the interface to the decoded data
:param struct_inflator the interface to put the data into the client object | entailment |
def get_bonds(input_group):
"""Utility function to get indices (in pairs) of the bonds."""
out_list = []
for i in range(len(input_group.bond_order_list)):
out_list.append((input_group.bond_atom_list[i * 2], input_group.bond_atom_list[i * 2 + 1],))
return out_list | Utility function to get indices (in pairs) of the bonds. | entailment |
def get_unique_groups(input_list):
"""Function to get a unique list of groups."""
out_list = []
for item in input_list:
if item not in out_list:
out_list.append(item)
return out_list | Function to get a unique list of groups. | entailment |
def convert_to_dict(self):
"""Convert the group object to an appropriate DICT"""
out_dict = {}
out_dict["groupName"] = self.group_name
out_dict["atomNameList"] = self.atom_name_list
out_dict["elementList"] = self.element_list
out_dict["bondOrderList"] = self.bond_order_list
out_dict["bondAtomList"] = self.bond_atom_list
out_dict["formalChargeList"] = self.charge_list
out_dict["singleLetterCode"] = self.single_letter_code
out_dict["chemCompType"] = self.group_type
return out_dict | Convert the group object to an appropriate DICT | entailment |
def set_atom_info(self, atom_name, serial_number, alternative_location_id,
x, y, z, occupancy, temperature_factor, element, charge):
"""Create an atom object an set the information.
:param atom_name: the atom name, e.g. CA for this atom
:param serial_number: the serial id of the atom (e.g. 1)
:param alternative_location_id: the alternative location id for the atom, if present
:param x: the x coordiante of the atom
:param y: the y coordinate of the atom
:param z: the z coordinate of the atom
:param occupancy: the occupancy of the atom
:param temperature_factor: the temperature factor of the atom
:param element: the element of the atom, e.g. C for carbon. According to IUPAC. Calcium is Ca
:param charge: the formal atomic charge of the atom
"""
raise NotImplementedError | Create an atom object an set the information.
:param atom_name: the atom name, e.g. CA for this atom
:param serial_number: the serial id of the atom (e.g. 1)
:param alternative_location_id: the alternative location id for the atom, if present
:param x: the x coordiante of the atom
:param y: the y coordinate of the atom
:param z: the z coordinate of the atom
:param occupancy: the occupancy of the atom
:param temperature_factor: the temperature factor of the atom
:param element: the element of the atom, e.g. C for carbon. According to IUPAC. Calcium is Ca
:param charge: the formal atomic charge of the atom | entailment |
def set_group_info(self, group_name, group_number, insertion_code,
group_type, atom_count, bond_count, single_letter_code,
sequence_index, secondary_structure_type):
"""Set the information for a group
:param group_name: the name of this group,e.g. LYS
:param group_number: the residue number of this group
:param insertion_code: the insertion code for this group
:param group_type: a string indicating the type of group (as found in the chemcomp dictionary.
Empty string if none available.
:param atom_count: the number of atoms in the group
:param bond_count: the number of unique bonds in the group
:param single_letter_code: the single letter code of the group
:param sequence_index: the index of this group in the sequence defined by the enttiy
:param secondary_structure_type: the type of secondary structure used (types are according to DSSP and
number to type mappings are defined in the specification)
"""
raise NotImplementedError | Set the information for a group
:param group_name: the name of this group,e.g. LYS
:param group_number: the residue number of this group
:param insertion_code: the insertion code for this group
:param group_type: a string indicating the type of group (as found in the chemcomp dictionary.
Empty string if none available.
:param atom_count: the number of atoms in the group
:param bond_count: the number of unique bonds in the group
:param single_letter_code: the single letter code of the group
:param sequence_index: the index of this group in the sequence defined by the enttiy
:param secondary_structure_type: the type of secondary structure used (types are according to DSSP and
number to type mappings are defined in the specification) | entailment |
def set_header_info(self, r_free, r_work, resolution, title,
deposition_date, release_date, experimental_methods):
"""Sets the header information.
:param r_free: the measured R-Free for the structure
:param r_work: the measure R-Work for the structure
:param resolution: the resolution of the structure
:param title: the title of the structure
:param deposition_date: the deposition date of the structure
:param release_date: the release date of the structure
:param experimnetal_methods: the list of experimental methods in the structure
"""
raise NotImplementedError | Sets the header information.
:param r_free: the measured R-Free for the structure
:param r_work: the measure R-Work for the structure
:param resolution: the resolution of the structure
:param title: the title of the structure
:param deposition_date: the deposition date of the structure
:param release_date: the release date of the structure
:param experimnetal_methods: the list of experimental methods in the structure | entailment |
def encode_data(self):
"""Encode the data back into a dict."""
output_data = {}
output_data["groupTypeList"] = encode_array(self.group_type_list, 4, 0)
output_data["xCoordList"] = encode_array(self.x_coord_list, 10, 1000)
output_data["yCoordList"] = encode_array(self.y_coord_list, 10, 1000)
output_data["zCoordList"] = encode_array(self.z_coord_list, 10, 1000)
output_data["bFactorList"] = encode_array(self.b_factor_list, 10, 100)
output_data["occupancyList"] = encode_array(self.occupancy_list, 9, 100)
output_data["atomIdList"] = encode_array(self.atom_id_list, 8, 0)
output_data["altLocList"] = encode_array(self.alt_loc_list, 6, 0)
output_data["insCodeList"] = encode_array(self.ins_code_list, 6, 0)
output_data["groupIdList"] = encode_array(self.group_id_list, 8, 0)
output_data["groupList"] = self.group_list
output_data["sequenceIndexList"] = encode_array(self.sequence_index_list, 8, 0)
output_data["chainNameList"] = encode_array(self.chain_name_list, 5, 4)
output_data["chainIdList"] = encode_array(self.chain_id_list, 5, 4)
output_data["bondAtomList"] = encode_array(self.bond_atom_list, 4, 0)
output_data["bondOrderList"] = encode_array(self.bond_order_list, 2, 0)
output_data["secStructList"] = encode_array(self.sec_struct_list, 2, 0)
output_data["chainsPerModel"] = self.chains_per_model
output_data["groupsPerChain"] = self.groups_per_chain
output_data["spaceGroup"] = self.space_group
output_data["mmtfVersion"] = self.mmtf_version
output_data["mmtfProducer"] = self.mmtf_producer
output_data["structureId"] = self.structure_id
output_data["entityList"] = self.entity_list
output_data["bioAssemblyList"] = self.bio_assembly
output_data["rFree"] = self.r_free
output_data["rWork"] = self.r_work
output_data["resolution"] = self.resolution
output_data["title"] = self.title
output_data["experimentalMethods"] = self.experimental_methods
output_data["depositionDate"] = self.deposition_date
output_data["releaseDate"] = self.release_date
output_data["unitCell"] = self.unit_cell
output_data["numBonds"] = self.num_bonds
output_data["numChains"] = self.num_chains
output_data["numModels"] = self.num_models
output_data["numAtoms"] = self.num_atoms
output_data["numGroups"] = self.num_groups
return output_data | Encode the data back into a dict. | entailment |
def init_structure(self, total_num_bonds, total_num_atoms,
total_num_groups, total_num_chains, total_num_models,
structure_id):
"""Initialise the structure object.
:param total_num_bonds: the number of bonds in the structure
:param total_num_atoms: the number of atoms in the structure
:param total_num_groups: the number of groups in the structure
:param total_num_chains: the number of chains in the structure
:param total_num_models: the number of models in the structure
:param structure_id the: id of the structure (e.g. PDB id)
"""
self.mmtf_version = constants.MMTF_VERSION
self.mmtf_producer = constants.PRODUCER
self.num_atoms = total_num_atoms
self.num_bonds = total_num_bonds
self.num_groups = total_num_groups
self.num_chains = total_num_chains
self.num_models = total_num_models
self.structure_id = structure_id
# initialise the arrays
self.x_coord_list = []
self.y_coord_list = []
self.z_coord_list = []
self.group_type_list = []
self.entity_list = []
self.b_factor_list = []
self.occupancy_list = []
self.atom_id_list = []
self.alt_loc_list = []
self.ins_code_list = []
self.group_id_list = []
self.sequence_index_list = []
self.group_list = []
self.chain_name_list = []
self.chain_id_list = []
self.bond_atom_list = []
self.bond_order_list = []
self.sec_struct_list = []
self.chains_per_model = []
self.groups_per_chain = []
self.current_group = None
self.bio_assembly = [] | Initialise the structure object.
:param total_num_bonds: the number of bonds in the structure
:param total_num_atoms: the number of atoms in the structure
:param total_num_groups: the number of groups in the structure
:param total_num_chains: the number of chains in the structure
:param total_num_models: the number of models in the structure
:param structure_id the: id of the structure (e.g. PDB id) | entailment |
def set_atom_info(self, atom_name, serial_number, alternative_location_id,
x, y, z, occupancy, temperature_factor, element, charge):
"""Create an atom object an set the information.
:param atom_name: the atom name, e.g. CA for this atom
:param serial_number: the serial id of the atom (e.g. 1)
:param alternative_location_id: the alternative location id for the atom, if present
:param x: the x coordiante of the atom
:param y: the y coordinate of the atom
:param z: the z coordinate of the atom
:param occupancy: the occupancy of the atom
:param temperature_factor: the temperature factor of the atom
:param element: the element of the atom, e.g. C for carbon. According to IUPAC. Calcium is Ca
:param charge: the formal atomic charge of the atom
"""
self.x_coord_list.append(x)
self.y_coord_list.append(y)
self.z_coord_list.append(z)
self.atom_id_list.append(serial_number)
self.alt_loc_list.append(alternative_location_id)
self.occupancy_list.append(occupancy)
self.b_factor_list.append(temperature_factor)
## Now add the group level data
self.current_group.atom_name_list.append(atom_name)
self.current_group.charge_list.append(charge)
self.current_group.element_list.append(element) | Create an atom object an set the information.
:param atom_name: the atom name, e.g. CA for this atom
:param serial_number: the serial id of the atom (e.g. 1)
:param alternative_location_id: the alternative location id for the atom, if present
:param x: the x coordiante of the atom
:param y: the y coordinate of the atom
:param z: the z coordinate of the atom
:param occupancy: the occupancy of the atom
:param temperature_factor: the temperature factor of the atom
:param element: the element of the atom, e.g. C for carbon. According to IUPAC. Calcium is Ca
:param charge: the formal atomic charge of the atom | entailment |
def set_chain_info(self, chain_id, chain_name, num_groups):
"""Set the chain information.
:param chain_id: the asym chain id from mmCIF
:param chain_name: the auth chain id from mmCIF
:param num_groups: the number of groups this chain has
"""
self.chain_id_list.append(chain_id)
self.chain_name_list.append(chain_name)
self.groups_per_chain.append(num_groups) | Set the chain information.
:param chain_id: the asym chain id from mmCIF
:param chain_name: the auth chain id from mmCIF
:param num_groups: the number of groups this chain has | entailment |
def set_entity_info(self, chain_indices, sequence, description, entity_type):
"""Set the entity level information for the structure.
:param chain_indices: the indices of the chains for this entity
:param sequence: the one letter code sequence for this entity
:param description: the description for this entity
:param entity_type: the entity type (polymer,non-polymer,water)
"""
self.entity_list.append(make_entity_dict(chain_indices,sequence,description,entity_type)) | Set the entity level information for the structure.
:param chain_indices: the indices of the chains for this entity
:param sequence: the one letter code sequence for this entity
:param description: the description for this entity
:param entity_type: the entity type (polymer,non-polymer,water) | entailment |
def set_group_info(self, group_name, group_number, insertion_code,
group_type, atom_count, bond_count, single_letter_code,
sequence_index, secondary_structure_type):
"""Set the information for a group
:param group_name: the name of this group,e.g. LYS
:param group_number: the residue number of this group
:param insertion_code: the insertion code for this group
:param group_type: a string indicating the type of group (as found in the chemcomp dictionary.
Empty string if none available.
:param atom_count: the number of atoms in the group
:param bond_count: the number of unique bonds in the group
:param single_letter_code: the single letter code of the group
:param sequence_index: the index of this group in the sequence defined by the enttiy
:param secondary_structure_type: the type of secondary structure used (types are according to DSSP and
number to type mappings are defined in the specification)
"""
# Add the group to the overall list - unless it's the first time round
if self.current_group is not None:
self.group_list.append(self.current_group)
# Add the group level information
self.group_id_list.append(group_number)
self.ins_code_list.append(insertion_code)
self.sequence_index_list.append(sequence_index)
self.sec_struct_list.append(secondary_structure_type)
self.current_group = Group()
self.current_group.group_name = group_name
self.current_group.group_type = group_type
self.current_group.single_letter_code = single_letter_code | Set the information for a group
:param group_name: the name of this group,e.g. LYS
:param group_number: the residue number of this group
:param insertion_code: the insertion code for this group
:param group_type: a string indicating the type of group (as found in the chemcomp dictionary.
Empty string if none available.
:param atom_count: the number of atoms in the group
:param bond_count: the number of unique bonds in the group
:param single_letter_code: the single letter code of the group
:param sequence_index: the index of this group in the sequence defined by the enttiy
:param secondary_structure_type: the type of secondary structure used (types are according to DSSP and
number to type mappings are defined in the specification) | entailment |
def set_xtal_info(self, space_group, unit_cell):
"""Set the crystallographic information for the structure
:param space_group: the space group name, e.g. "P 21 21 21"
:param unit_cell: an array of length 6 with the unit cell parameters in order: a, b, c, alpha, beta, gamma
"""
self.space_group = space_group
self.unit_cell = unit_cell | Set the crystallographic information for the structure
:param space_group: the space group name, e.g. "P 21 21 21"
:param unit_cell: an array of length 6 with the unit cell parameters in order: a, b, c, alpha, beta, gamma | entailment |
def set_header_info(self, r_free, r_work, resolution, title,
deposition_date, release_date, experimental_methods):
"""Sets the header information.
:param r_free: the measured R-Free for the structure
:param r_work: the measure R-Work for the structure
:param resolution: the resolution of the structure
:param title: the title of the structure
:param deposition_date: the deposition date of the structure
:param release_date: the release date of the structure
:param experimnetal_methods: the list of experimental methods in the structure
"""
self.r_free = r_free
self.r_work = r_work
self.resolution = resolution
self.title = title
self.deposition_date = deposition_date
self.release_date = release_date
self.experimental_methods = experimental_methods | Sets the header information.
:param r_free: the measured R-Free for the structure
:param r_work: the measure R-Work for the structure
:param resolution: the resolution of the structure
:param title: the title of the structure
:param deposition_date: the deposition date of the structure
:param release_date: the release date of the structure
:param experimnetal_methods: the list of experimental methods in the structure | entailment |
def set_bio_assembly_trans(self, bio_assembly_index, input_chain_indices, input_transform):
"""Set the Bioassembly transformation information. A single bioassembly can have multiple transforms,
:param bio_assembly_index: the integer index of the bioassembly
:param input_chain_indices: the list of integer indices for the chains of this bioassembly
:param input_transformation: the list of doubles for the transform of this bioassmbly transform"""
this_bioass = None
for bioass in self.bio_assembly:
if bioass['name'] == str(bio_assembly_index):
this_bioass = bioass
break
if not this_bioass:
this_bioass = {"name": str(bio_assembly_index), 'transformList': []}
else:
self.bio_assembly.remove(this_bioass)
this_bioass['transformList'].append({'chainIndexList':input_chain_indices,'matrix': input_transform})
self.bio_assembly.append(this_bioass) | Set the Bioassembly transformation information. A single bioassembly can have multiple transforms,
:param bio_assembly_index: the integer index of the bioassembly
:param input_chain_indices: the list of integer indices for the chains of this bioassembly
:param input_transformation: the list of doubles for the transform of this bioassmbly transform | entailment |
def finalize_structure(self):
"""Any functions needed to cleanup the structure."""
self.group_list.append(self.current_group)
group_set = get_unique_groups(self.group_list)
for item in self.group_list:
self.group_type_list.append(group_set.index(item))
self.group_list = [x.convert_to_dict() for x in group_set] | Any functions needed to cleanup the structure. | entailment |
def set_group_bond(self, atom_index_one, atom_index_two, bond_order):
"""Add bonds within a group.
:param atom_index_one: the integer atom index (in the group) of the first partner in the bond
:param atom_index_two: the integer atom index (in the group) of the second partner in the bond
:param bond_order: the integer bond order
"""
self.current_group.bond_atom_list.append(atom_index_one)
self.current_group.bond_atom_list.append(atom_index_two)
self.current_group.bond_order_list.append(bond_order) | Add bonds within a group.
:param atom_index_one: the integer atom index (in the group) of the first partner in the bond
:param atom_index_two: the integer atom index (in the group) of the second partner in the bond
:param bond_order: the integer bond order | entailment |
def set_inter_group_bond(self, atom_index_one, atom_index_two, bond_order):
"""Add bonds between groups.
:param atom_index_one: the integer atom index (in the structure) of the first partner in the bond
:param atom_index_two: the integer atom index (in the structure) of the second partner in the bond
:param bond_order the bond order
"""
self.bond_atom_list.append(atom_index_one)
self.bond_atom_list.append(atom_index_two)
self.bond_order_list.append(bond_order) | Add bonds between groups.
:param atom_index_one: the integer atom index (in the structure) of the first partner in the bond
:param atom_index_two: the integer atom index (in the structure) of the second partner in the bond
:param bond_order the bond order | entailment |
def run_length_encode(in_array):
"""A function to run length decode an int array.
:param in_array: the inptut array of integers
:return the encoded integer array"""
if(len(in_array)==0):
return []
curr_ans = in_array[0]
out_array = [curr_ans]
counter = 1
for in_int in in_array[1:]:
if in_int == curr_ans:
counter+=1
else:
out_array.append(counter)
out_array.append(in_int)
curr_ans = in_int
counter = 1
# Add the final counter
out_array.append(counter)
return out_array | A function to run length decode an int array.
:param in_array: the inptut array of integers
:return the encoded integer array | entailment |
def delta_encode(in_array):
"""A function to delta decode an int array.
:param in_array: the inut array to be delta encoded
:return the encoded integer array"""
if(len(in_array)==0):
return []
curr_ans = in_array[0]
out_array = [curr_ans]
for in_int in in_array[1:]:
out_array.append(in_int-curr_ans)
curr_ans = in_int
return out_array | A function to delta decode an int array.
:param in_array: the inut array to be delta encoded
:return the encoded integer array | entailment |
def decode_array(input_array):
"""Parse the header of an input byte array and then decode using the input array,
the codec and the appropirate parameter.
:param input_array: the array to be decoded
:return the decoded array"""
codec, length, param, input_array = parse_header(input_array)
return codec_dict[codec].decode(input_array, param) | Parse the header of an input byte array and then decode using the input array,
the codec and the appropirate parameter.
:param input_array: the array to be decoded
:return the decoded array | entailment |
def encode_array(input_array, codec, param):
"""Encode the array using the method and then add the header to this array.
:param input_array: the array to be encoded
:param codec: the integer index of the codec to use
:param param: the integer parameter to use in the function
:return an array with the header added to the fornt"""
return add_header(codec_dict[codec].encode(input_array, param), codec, len(input_array), param) | Encode the array using the method and then add the header to this array.
:param input_array: the array to be encoded
:param codec: the integer index of the codec to use
:param param: the integer parameter to use in the function
:return an array with the header added to the fornt | entailment |
def run_length_decode(in_array):
"""A function to run length decode an int array.
:param in_array: the input array of integers
:return the decoded array"""
switch=False
out_array=[]
for item in in_array:
if switch==False:
this_item = item
switch=True
else:
switch=False
out_array.extend([this_item]*int(item))
return out_array | A function to run length decode an int array.
:param in_array: the input array of integers
:return the decoded array | entailment |
def delta_decode(in_array):
"""A function to delta decode an int array.
:param in_array: the input array of integers
:return the decoded array"""
if len(in_array) == 0:
return []
this_ans = in_array[0]
out_array = [this_ans]
for i in range(1, len(in_array)):
this_ans += in_array[i]
out_array.append(this_ans)
return out_array | A function to delta decode an int array.
:param in_array: the input array of integers
:return the decoded array | entailment |
def convert_bytes_to_ints(in_bytes, num):
"""Convert a byte array into an integer array. The number of bytes forming an integer
is defined by num
:param in_bytes: the input bytes
:param num: the number of bytes per int
:return the integer array"""
dt = numpy.dtype('>i' + str(num))
return numpy.frombuffer(in_bytes, dt) | Convert a byte array into an integer array. The number of bytes forming an integer
is defined by num
:param in_bytes: the input bytes
:param num: the number of bytes per int
:return the integer array | entailment |
def decode_chain_list(in_bytes):
"""Convert a list of bytes to a list of strings. Each string is of length mmtf.CHAIN_LEN
:param in_bytes: the input bytes
:return the decoded list of strings"""
bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils.constants.CHAIN_LEN)))
return [s.decode("ascii").strip(mmtf.utils.constants.NULL_BYTE) for s in bstrings] | Convert a list of bytes to a list of strings. Each string is of length mmtf.CHAIN_LEN
:param in_bytes: the input bytes
:return the decoded list of strings | entailment |
def recursive_index_decode(int_array, max=32767, min=-32768):
"""Unpack an array of integers using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index decoding"""
out_arr = []
decoded_val = 0
for item in int_array.tolist():
if item==max or item==min:
decoded_val += item
else:
decoded_val += item
out_arr.append(decoded_val)
decoded_val = 0
return numpy.asarray(out_arr,dtype=numpy.int32) | Unpack an array of integers using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index decoding | entailment |
def get_coords(self):
"""Utility function to get the coordinates as a single list of tuples."""
out_list = []
for i in range(len(self.x_coord_list)):
out_list.append((self.x_coord_list[i],self.y_coord_list[i],self.z_coord_list[i],))
return out_list | Utility function to get the coordinates as a single list of tuples. | entailment |
def decode_data(self, input_data):
"""Function to decode the input data and place it onto the class.
:param input_data: the input data as a dict"""
self.group_type_list = decode_array(input_data["groupTypeList"])
self.x_coord_list = decode_array(input_data["xCoordList"])
self.y_coord_list = decode_array(input_data["yCoordList"])
self.z_coord_list = decode_array(input_data["zCoordList"])
if "bFactorList" in input_data:
self.b_factor_list = decode_array(input_data["bFactorList"])
else:
self.b_factor_list = []
if "occupancyList" in input_data:
self.occupancy_list = decode_array(input_data["occupancyList"])
else:
self.occupancy_list = []
if "atomIdList" in input_data:
self.atom_id_list = decode_array(input_data["atomIdList"])
else:
self.atom_id_list = []
if "altLocList" in input_data:
self.alt_loc_list = decode_array(input_data["altLocList"])
else:
self.alt_loc_list = []
if "insCodeList" in input_data:
self.ins_code_list = decode_array(input_data["insCodeList"])
else:
self.ins_code_list = []
self.group_id_list = decode_array(input_data["groupIdList"])
self.group_list = input_data["groupList"]
if "sequenceIndexList" in input_data:
self.sequence_index_list = decode_array(input_data["sequenceIndexList"])
else:
self.sequence_index_list = []
self.chains_per_model = input_data["chainsPerModel"]
self.groups_per_chain = input_data["groupsPerChain"]
if "chainNameList" in input_data:
self.chain_name_list = decode_array(input_data["chainNameList"])
else:
self.chain_name_list = []
self.chain_id_list = decode_array(input_data["chainIdList"])
if "spaceGroup" in input_data:
self.space_group = input_data["spaceGroup"]
else:
self.space_group = None
if "bondAtomList" in input_data:
self.bond_atom_list = decode_array(input_data["bondAtomList"])
else:
self.bond_atom_list = None
if "bondOrderList" in input_data:
self.bond_order_list = decode_array(input_data["bondOrderList"])
else:
self.bond_order_list = None
if sys.version_info[0] < 3:
if "mmtfVersion" in input_data:
self.mmtf_version = input_data["mmtfVersion"]
else:
self.mmtf_version = None
if "mmtfProducer" in input_data:
self.mmtf_producer = input_data["mmtfProducer"]
else:
self.mmtf_producer = None
if "structureId" in input_data:
self.structure_id = input_data["structureId"]
else:
self.structure_id = None
else:
if "mmtfVersion" in input_data:
self.mmtf_version = input_data["mmtfVersion"]
else:
self.mmtf_version = None
if "mmtfProducer" in input_data:
self.mmtf_producer = input_data["mmtfProducer"]
else:
self.mmtf_producer = None
if "structureId" in input_data:
self.structure_id = input_data["structureId"]
else:
self.structure_id = None
if "title" in input_data:
if sys.version_info[0] < 3:
self.title = input_data["title"]
else:
self.title = input_data["title"]
if "experimentalMethods" in input_data:
self.experimental_methods = input_data["experimentalMethods"]
else:
self.experimental_methods = None
if "depositionDate" in input_data:
self.deposition_date = input_data["depositionDate"]
else:
self.deposition_date = None
if "releaseDate" in input_data:
self.release_date = input_data["releaseDate"]
else:
self.release_date = None
if "entityList" in input_data:
self.entity_list = input_data["entityList"]
else:
self.entity_list = []
if "bioAssemblyList" in input_data:
self.bio_assembly = input_data["bioAssemblyList"]
else:
self.bio_assembly = []
if "rFree" in input_data:
self.r_free = input_data["rFree"]
else:
self.r_free = None
if "rWork" in input_data:
self.r_work = input_data["rWork"]
else:
self.r_work = None
if "resolution" in input_data:
self.resolution = input_data["resolution"]
else:
self.resolution = None
if "unitCell" in input_data:
self.unit_cell = input_data["unitCell"]
else:
self.unit_cell = None
if "secStructList" in input_data:
self.sec_struct_list = decode_array(input_data["secStructList"])
# Now all the numbers to defien the
self.num_bonds = int(input_data["numBonds"])
self.num_chains = int(input_data["numChains"])
self.num_models = int(input_data["numModels"])
self.num_atoms = int(input_data["numAtoms"])
self.num_groups = int(input_data["numGroups"]) | Function to decode the input data and place it onto the class.
:param input_data: the input data as a dict | entailment |
def pass_data_on(self, data_setters):
"""Write the data from the getters to the setters.
:param data_setters: a series of functions that can fill a chemical
data structure
:type data_setters: DataTransferInterface
"""
data_setters.init_structure(self.num_bonds, len(self.x_coord_list), len(self.group_type_list),
len(self.chain_id_list), len(self.chains_per_model), self.structure_id)
decoder_utils.add_entity_info(self, data_setters)
decoder_utils.add_atomic_information(self, data_setters)
decoder_utils.add_header_info(self, data_setters)
decoder_utils.add_xtalographic_info(self, data_setters)
decoder_utils.generate_bio_assembly(self, data_setters)
decoder_utils.add_inter_group_bonds(self, data_setters)
data_setters.finalize_structure() | Write the data from the getters to the setters.
:param data_setters: a series of functions that can fill a chemical
data structure
:type data_setters: DataTransferInterface | entailment |
def _internet_on(address):
"""
Check to see if the internet is on by pinging a set address.
:param address: the IP or address to hit
:return: a boolean - true if can be reached, false if not.
"""
try:
urllib2.urlopen(address, timeout=1)
return True
except urllib2.URLError as err:
return False | Check to see if the internet is on by pinging a set address.
:param address: the IP or address to hit
:return: a boolean - true if can be reached, false if not. | entailment |
def write_mmtf(file_path, input_data, input_function):
"""API function to write data as MMTF to a file
:param file_path the path of the file to write
:param input_data the input data in any user format
:param input_function a function to converte input_data to an output format. Must contain all methods in TemplateEncoder
"""
mmtf_encoder = MMTFEncoder()
pass_data_on(input_data, input_function, mmtf_encoder)
mmtf_encoder.write_file(file_path) | API function to write data as MMTF to a file
:param file_path the path of the file to write
:param input_data the input data in any user format
:param input_function a function to converte input_data to an output format. Must contain all methods in TemplateEncoder | entailment |
def get_raw_data_from_url(pdb_id, reduced=False):
"""" Get the msgpack unpacked data given a PDB id.
:param pdb_id: the input PDB id
:return the unpacked data (a dict) """
url = get_url(pdb_id,reduced)
request = urllib2.Request(url)
request.add_header('Accept-encoding', 'gzip')
response = urllib2.urlopen(request)
if response.info().get('Content-Encoding') == 'gzip':
data = ungzip_data(response.read())
else:
data = response.read()
return _unpack(data) | Get the msgpack unpacked data given a PDB id.
:param pdb_id: the input PDB id
:return the unpacked data (a dict) | entailment |
def parse(file_path):
"""Return a decoded API to the data from a file path.
:param file_path: the input file path. Data is not entropy compressed (e.g. gzip)
:return an API to decoded data """
newDecoder = MMTFDecoder()
with open(file_path, "rb") as fh:
newDecoder.decode_data(_unpack(fh))
return newDecoder | Return a decoded API to the data from a file path.
:param file_path: the input file path. Data is not entropy compressed (e.g. gzip)
:return an API to decoded data | entailment |
def parse_gzip(file_path):
"""Return a decoded API to the data from a file path. File is gzip compressed.
:param file_path: the input file path. Data is gzip compressed.
:return an API to decoded data"""
newDecoder = MMTFDecoder()
newDecoder.decode_data(_unpack(gzip.open(file_path, "rb")))
return newDecoder | Return a decoded API to the data from a file path. File is gzip compressed.
:param file_path: the input file path. Data is gzip compressed.
:return an API to decoded data | entailment |
def ungzip_data(input_data):
"""Return a string of data after gzip decoding
:param the input gziped data
:return the gzip decoded data"""
buf = StringIO(input_data)
f = gzip.GzipFile(fileobj=buf)
return f | Return a string of data after gzip decoding
:param the input gziped data
:return the gzip decoded data | entailment |
def parse_header(input_array):
"""Parse the header and return it along with the input array minus the header.
:param input_array the array to parse
:return the codec, the length of the decoded array, the parameter and the remainder
of the array"""
codec = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[0:4])[0]
length = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[4:8])[0]
param = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[8:12])[0]
return codec,length,param,input_array[12:] | Parse the header and return it along with the input array minus the header.
:param input_array the array to parse
:return the codec, the length of the decoded array, the parameter and the remainder
of the array | entailment |
def add_header(input_array, codec, length, param):
"""Add the header to the appropriate array.
:param the encoded array to add the header to
:param the codec being used
:param the length of the decoded array
:param the parameter to add to the header
:return the prepended encoded byte array"""
return struct.pack(mmtf.utils.constants.NUM_DICT[4], codec) + \
struct.pack(mmtf.utils.constants.NUM_DICT[4], length) + \
struct.pack(mmtf.utils.constants.NUM_DICT[4], param) + input_array | Add the header to the appropriate array.
:param the encoded array to add the header to
:param the codec being used
:param the length of the decoded array
:param the parameter to add to the header
:return the prepended encoded byte array | entailment |
def convert_bytes_to_ints(in_bytes, num):
"""Convert a byte array into an integer array. The number of bytes forming an integer
is defined by num
:param in_bytes: the input bytes
:param num: the number of bytes per int
:return the integer array"""
out_arr = []
for i in range(len(in_bytes)//num):
val = in_bytes[i * num:i * num + num]
unpacked = struct.unpack(mmtf.utils.constants.NUM_DICT[num], val)
out_arr.append(unpacked[0])
return out_arr | Convert a byte array into an integer array. The number of bytes forming an integer
is defined by num
:param in_bytes: the input bytes
:param num: the number of bytes per int
:return the integer array | entailment |
def convert_ints_to_bytes(in_ints, num):
"""Convert an integer array into a byte arrays. The number of bytes forming an integer
is defined by num
:param in_ints: the input integers
:param num: the number of bytes per int
:return the integer array"""
out_bytes= b""
for val in in_ints:
out_bytes+=struct.pack(mmtf.utils.constants.NUM_DICT[num], val)
return out_bytes | Convert an integer array into a byte arrays. The number of bytes forming an integer
is defined by num
:param in_ints: the input integers
:param num: the number of bytes per int
:return the integer array | entailment |
def decode_chain_list(in_bytes):
"""Convert a list of bytes to a list of strings. Each string is of length mmtf.CHAIN_LEN
:param in_bytes: the input bytes
:return the decoded list of strings"""
tot_strings = len(in_bytes) // mmtf.utils.constants.CHAIN_LEN
out_strings = []
for i in range(tot_strings):
out_s = in_bytes[i * mmtf.utils.constants.CHAIN_LEN:i * mmtf.utils.constants.CHAIN_LEN + mmtf.utils.constants.CHAIN_LEN]
out_strings.append(out_s.decode("ascii").strip(mmtf.utils.constants.NULL_BYTE))
return out_strings | Convert a list of bytes to a list of strings. Each string is of length mmtf.CHAIN_LEN
:param in_bytes: the input bytes
:return the decoded list of strings | entailment |
def encode_chain_list(in_strings):
"""Convert a list of strings to a list of byte arrays.
:param in_strings: the input strings
:return the encoded list of byte arrays"""
out_bytes = b""
for in_s in in_strings:
out_bytes+=in_s.encode('ascii')
for i in range(mmtf.utils.constants.CHAIN_LEN -len(in_s)):
out_bytes+= mmtf.utils.constants.NULL_BYTE.encode('ascii')
return out_bytes | Convert a list of strings to a list of byte arrays.
:param in_strings: the input strings
:return the encoded list of byte arrays | entailment |
def recursive_index_encode(int_array, max=32767, min=-32768):
"""Pack an integer array using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index encoding"""
out_arr = []
for curr in int_array:
if curr >= 0 :
while curr >= max:
out_arr.append(max)
curr -= max
else:
while curr <= min:
out_arr.append(min)
curr += int(math.fabs(min))
out_arr.append(curr)
return out_arr | Pack an integer array using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index encoding | entailment |
def recursive_index_decode(int_array, max=32767, min=-32768):
"""Unpack an array of integers using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index decoding"""
out_arr = []
encoded_ind = 0
while encoded_ind < len(int_array):
decoded_val = 0
while int_array[encoded_ind]==max or int_array[encoded_ind]==min:
decoded_val += int_array[encoded_ind]
encoded_ind+=1
if int_array[encoded_ind]==0:
break
decoded_val += int_array[encoded_ind]
encoded_ind+=1
out_arr.append(decoded_val)
return out_arr | Unpack an array of integers using recursive indexing.
:param int_array: the input array of integers
:param max: the maximum integer size
:param min: the minimum integer size
:return the array of integers after recursive index decoding | entailment |
def run_length_decode(in_array):
"""A function to run length decode an int array.
:param in_array: the input array of integers
:return the decoded array"""
switch=False
out_array=[]
in_array = in_array.tolist()
for item in in_array:
if switch==False:
this_item = item
switch=True
else:
switch=False
out_array.extend([this_item]*int(item))
return numpy.asarray(out_array, dtype=numpy.int32) | A function to run length decode an int array.
:param in_array: the input array of integers
:return the decoded array | entailment |
def build(algo, init):
'''Build and return an optimizer for the rosenbrock function.
In downhill, an optimizer can be constructed using the build() top-level
function. This function requires several Theano quantities such as the loss
being optimized and the parameters to update during optimization.
'''
x = theano.shared(np.array(init, FLOAT), name='x')
n = 0.1 * RandomStreams().normal((len(init) - 1, ))
monitors = []
if len(init) == 2:
# this gives us access to the x and y locations during optimization.
monitors.extend([('x', x[:-1].sum()), ('y', x[1:].sum())])
return downhill.build(
algo,
loss=(n + 100 * (x[1:] - x[:-1] ** 2) ** 2 + (1 - x[:-1]) ** 2).sum(),
params=[x],
monitors=monitors,
monitor_gradients=True) | Build and return an optimizer for the rosenbrock function.
In downhill, an optimizer can be constructed using the build() top-level
function. This function requires several Theano quantities such as the loss
being optimized and the parameters to update during optimization. | entailment |
def build_and_trace(algo, init, limit=100, **kwargs):
'''Run an optimizer on the rosenbrock function. Return xs, ys, and losses.
In downhill, optimization algorithms can be iterated over to progressively
minimize the loss. At each iteration, the optimizer yields a dictionary of
monitor values that were computed during that iteration. Here we build an
optimizer and then run it for a fixed number of iterations.
'''
kw = dict(min_improvement=0, patience=0, max_gradient_norm=100)
kw.update(kwargs)
xs, ys, loss = [], [], []
for tm, _ in build(algo, init).iterate([[]], **kw):
if len(init) == 2:
xs.append(tm['x'])
ys.append(tm['y'])
loss.append(tm['loss'])
if len(loss) == limit:
break
# Return the optimization up to any failure of patience.
return xs[:-9], ys[:-9], loss[-9] | Run an optimizer on the rosenbrock function. Return xs, ys, and losses.
In downhill, optimization algorithms can be iterated over to progressively
minimize the loss. At each iteration, the optimizer yields a dictionary of
monitor values that were computed during that iteration. Here we build an
optimizer and then run it for a fixed number of iterations. | entailment |
def minimize(loss, train, valid=None, params=None, inputs=None, algo='rmsprop',
updates=(), monitors=(), monitor_gradients=False, batch_size=32,
train_batches=None, valid_batches=None, **kwargs):
'''Minimize a loss function with respect to some symbolic parameters.
Additional keyword arguments are passed to the underlying :class:`Optimizer
<downhill.base.Optimizer>` instance.
Parameters
----------
loss : Theano expression
Loss function to minimize. This must be a scalar-valued expression.
train : :class:`Dataset <downhill.dataset.Dataset>`, ndarray, or callable
Dataset to use for computing gradient updates.
valid : :class:`Dataset <downhill.dataset.Dataset>`, ndarray, or callable, optional
Dataset to use for validating the minimization process. The training
dataset is used if this is not provided.
params : list of Theano variables, optional
Symbolic variables to adjust to minimize the loss. If not given, these
will be computed automatically by walking the computation graph.
inputs : list of Theano variables, optional
Symbolic variables required to compute the loss. If not given, these
will be computed automatically by walking the computation graph.
algo : str, optional
Name of the minimization algorithm to use. Must be one of the strings
that can be passed to :func:`build`. Defaults to ``'rmsprop'``.
updates : list of update pairs, optional
A list of pairs providing updates for the internal of the loss
computation. Normally this is empty, but it can be provided if the loss,
for example, requires an update to an internal random number generator.
monitors : dict or sequence of (str, Theano expression) tuples, optional
Additional values to monitor during optimization. These must be provided
as either a sequence of (name, expression) tuples, or as a dictionary
mapping string names to Theano expressions.
monitor_gradients : bool, optional
If True, add monitors to log the norms of the parameter gradients during
optimization. Defaults to False.
batch_size : int, optional
Size of batches provided by datasets. Defaults to 32.
train_batches : int, optional
Number of batches of training data to iterate over during one pass of
optimization. Defaults to None, which uses the entire training dataset.
valid_batches : int, optional
Number of batches of validation data to iterate over during one pass of
validation. Defaults to None, which uses the entire validation dataset.
Returns
-------
train_monitors : dict
A dictionary mapping monitor names to monitor values. This dictionary
will always contain the ``'loss'`` key, giving the value of the loss
evaluated on the training dataset.
valid_monitors : dict
A dictionary mapping monitor names to monitor values, evaluated on the
validation dataset. This dictionary will always contain the ``'loss'``
key, giving the value of the loss function. Because validation is not
always computed after every optimization update, these monitor values
may be "stale"; however, they will always contain the most recently
computed values.
'''
if not isinstance(train, Dataset):
train = Dataset(
train,
name='train',
batch_size=batch_size,
iteration_size=train_batches,
)
if valid is not None and not isinstance(valid, Dataset):
valid = Dataset(
valid,
name='valid',
batch_size=batch_size,
iteration_size=valid_batches,
)
return build(
algo,
loss=loss,
params=params,
inputs=inputs,
updates=updates,
monitors=monitors,
monitor_gradients=monitor_gradients,
).minimize(train, valid, **kwargs) | Minimize a loss function with respect to some symbolic parameters.
Additional keyword arguments are passed to the underlying :class:`Optimizer
<downhill.base.Optimizer>` instance.
Parameters
----------
loss : Theano expression
Loss function to minimize. This must be a scalar-valued expression.
train : :class:`Dataset <downhill.dataset.Dataset>`, ndarray, or callable
Dataset to use for computing gradient updates.
valid : :class:`Dataset <downhill.dataset.Dataset>`, ndarray, or callable, optional
Dataset to use for validating the minimization process. The training
dataset is used if this is not provided.
params : list of Theano variables, optional
Symbolic variables to adjust to minimize the loss. If not given, these
will be computed automatically by walking the computation graph.
inputs : list of Theano variables, optional
Symbolic variables required to compute the loss. If not given, these
will be computed automatically by walking the computation graph.
algo : str, optional
Name of the minimization algorithm to use. Must be one of the strings
that can be passed to :func:`build`. Defaults to ``'rmsprop'``.
updates : list of update pairs, optional
A list of pairs providing updates for the internal of the loss
computation. Normally this is empty, but it can be provided if the loss,
for example, requires an update to an internal random number generator.
monitors : dict or sequence of (str, Theano expression) tuples, optional
Additional values to monitor during optimization. These must be provided
as either a sequence of (name, expression) tuples, or as a dictionary
mapping string names to Theano expressions.
monitor_gradients : bool, optional
If True, add monitors to log the norms of the parameter gradients during
optimization. Defaults to False.
batch_size : int, optional
Size of batches provided by datasets. Defaults to 32.
train_batches : int, optional
Number of batches of training data to iterate over during one pass of
optimization. Defaults to None, which uses the entire training dataset.
valid_batches : int, optional
Number of batches of validation data to iterate over during one pass of
validation. Defaults to None, which uses the entire validation dataset.
Returns
-------
train_monitors : dict
A dictionary mapping monitor names to monitor values. This dictionary
will always contain the ``'loss'`` key, giving the value of the loss
evaluated on the training dataset.
valid_monitors : dict
A dictionary mapping monitor names to monitor values, evaluated on the
validation dataset. This dictionary will always contain the ``'loss'``
key, giving the value of the loss function. Because validation is not
always computed after every optimization update, these monitor values
may be "stale"; however, they will always contain the most recently
computed values. | entailment |
def make_label(loss, key):
'''Create a legend label for an optimization run.'''
algo, rate, mu, half, reg = key
slots, args = ['{:.3f}', '{}', 'm={:.3f}'], [loss, algo, mu]
if algo in 'SGD NAG RMSProp Adam ESGD'.split():
slots.append('lr={:.2e}')
args.append(rate)
if algo in 'RMSProp ADADELTA ESGD'.split():
slots.append('rmsh={}')
args.append(half)
slots.append('rmsr={:.2e}')
args.append(reg)
return ' '.join(slots).format(*args) | Create a legend label for an optimization run. | entailment |
def iterate(self, shuffle=True):
'''Iterate over batches in the dataset.
This method generates ``iteration_size`` batches from the dataset and
then returns.
Parameters
----------
shuffle : bool, optional
Shuffle the batches in this dataset if the iteration reaches the end
of the batch list. Defaults to True.
Yields
------
batches : data batches
A sequence of batches---often from a training, validation, or test
dataset.
'''
for _ in range(self.iteration_size):
if self._callable is not None:
yield self._callable()
else:
yield self._next_batch(shuffle) | Iterate over batches in the dataset.
This method generates ``iteration_size`` batches from the dataset and
then returns.
Parameters
----------
shuffle : bool, optional
Shuffle the batches in this dataset if the iteration reaches the end
of the batch list. Defaults to True.
Yields
------
batches : data batches
A sequence of batches---often from a training, validation, or test
dataset. | entailment |
def shared_like(param, suffix, init=0):
'''Create a Theano shared variable like an existing parameter.
Parameters
----------
param : Theano variable
Theano variable to use for shape information.
suffix : str
Suffix to append to the parameter's name for the new variable.
init : float or ndarray, optional
Initial value of the shared variable. Defaults to 0.
Returns
-------
shared : Theano shared variable
A new shared variable with the same shape and data type as ``param``.
'''
return theano.shared(np.zeros_like(param.get_value()) + init,
name='{}_{}'.format(param.name, suffix),
broadcastable=param.broadcastable) | Create a Theano shared variable like an existing parameter.
Parameters
----------
param : Theano variable
Theano variable to use for shape information.
suffix : str
Suffix to append to the parameter's name for the new variable.
init : float or ndarray, optional
Initial value of the shared variable. Defaults to 0.
Returns
-------
shared : Theano shared variable
A new shared variable with the same shape and data type as ``param``. | entailment |
def find_inputs_and_params(node):
'''Walk a computation graph and extract root variables.
Parameters
----------
node : Theano expression
A symbolic Theano expression to walk.
Returns
-------
inputs : list Theano variables
A list of candidate inputs for this graph. Inputs are nodes in the graph
with no parents that are not shared and are not constants.
params : list of Theano shared variables
A list of candidate parameters for this graph. Parameters are nodes in
the graph that are shared variables.
'''
queue, seen, inputs, params = [node], set(), set(), set()
while queue:
node = queue.pop()
seen.add(node)
queue.extend(p for p in node.get_parents() if p not in seen)
if not node.get_parents():
if isinstance(node, theano.compile.SharedVariable):
params.add(node)
elif not isinstance(node, TT.Constant):
inputs.add(node)
return list(inputs), list(params) | Walk a computation graph and extract root variables.
Parameters
----------
node : Theano expression
A symbolic Theano expression to walk.
Returns
-------
inputs : list Theano variables
A list of candidate inputs for this graph. Inputs are nodes in the graph
with no parents that are not shared and are not constants.
params : list of Theano shared variables
A list of candidate parameters for this graph. Parameters are nodes in
the graph that are shared variables. | entailment |
def log(msg, *args, **kwargs):
'''Log a message to the console.
Parameters
----------
msg : str
A string to display on the console. This can contain {}-style
formatting commands; the remaining positional and keyword arguments
will be used to fill them in.
'''
now = datetime.datetime.now()
module = 'downhill'
if _detailed_callsite:
caller = inspect.stack()[1]
parts = caller.filename.replace('.py', '').split('/')
module = '{}:{}'.format(
'.'.join(parts[parts.index('downhill')+1:]), caller.lineno)
click.echo(' '.join((
click.style(now.strftime('%Y%m%d'), fg='blue'),
click.style(now.strftime('%H%M%S'), fg='cyan'),
click.style(module, fg='magenta'),
msg.format(*args, **kwargs),
))) | Log a message to the console.
Parameters
----------
msg : str
A string to display on the console. This can contain {}-style
formatting commands; the remaining positional and keyword arguments
will be used to fill them in. | entailment |
def log_param(name, value):
'''Log a parameter value to the console.
Parameters
----------
name : str
Name of the parameter being logged.
value : any
Value of the parameter being logged.
'''
log('setting {} = {}', click.style(str(name)),
click.style(str(value), fg='yellow')) | Log a parameter value to the console.
Parameters
----------
name : str
Name of the parameter being logged.
value : any
Value of the parameter being logged. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.