Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
listlengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
text-generation
|
transformers
|
# Stark DialoGPT Model
|
{"tags": ["conversational"]}
|
ArJakusz/DialoGPT-small-stark
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
ArJakusz/DialoGPT-small-starky
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Araby/Arabic-TTS
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Aracatto/Catto
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Araf/Ummah
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
AragornII/DialoGPT-small-harrypotter
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
Aran/DialoGPT-medium-harrypotter
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
Aran/DialoGPT-small-harrypotter
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
ArashEsk95/bert-base-uncased-finetuned-cola
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArashEsk95/bert-base-uncased-finetuned-sst2
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArashEsk95/bert-base-uncased-finetuned-stsb
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Aravinth/test
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArcQ/gpt-experiments
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arcanos/1
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Archie/myProject
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Rick DialoGPT Model
|
{"tags": ["conversational"]}
|
Arcktosh/DialoGPT-small-rick
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
ArenaGrenade/char-cnn
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arghyad/Loki_small
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Cultured Kumiko DialoGPT Model
|
{"tags": ["conversational"]}
|
AriakimTaiyo/DialoGPT-cultured-Kumiko
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
| null |
# Medium Kumiko DialoGPT Model
|
{"tags": ["conversational"]}
|
AriakimTaiyo/DialoGPT-medium-Kumiko
| null |
[
"conversational",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# Revised Kumiko DialoGPT Model
|
{"tags": ["conversational"]}
|
AriakimTaiyo/DialoGPT-revised-Kumiko
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# Kumiko DialoGPT Model
|
{"tags": ["conversational"]}
|
AriakimTaiyo/DialoGPT-small-Kumiko
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# Rikka DialoGPT Model
|
{"tags": ["conversational"]}
|
AriakimTaiyo/DialoGPT-small-Rikka
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
a
|
{}
|
AriakimTaiyo/kumiko
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text2text-generation
|
transformers
|
{}
|
Aries/T5_question_answering
| null |
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text2text-generation
|
transformers
|
{}
|
Aries/T5_question_generation
| null |
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arina/Erine
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArjunKadya/HuggingFace
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arkadiusz/Test-model
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
asaakyan/mbart-poetic-all
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArnaudPannatier/MLPMixer
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arnold/common_voiceha
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arnold/wav2vec2-hausa-demo-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-hausa2-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2032
- Wer: 0.7237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1683 | 12.49 | 400 | 1.0279 | 0.7211 |
| 0.0995 | 24.98 | 800 | 1.2032 | 0.7237 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-hausa2-demo-colab", "results": []}]}
|
Arnold/wav2vec2-hausa2-demo-colab
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-hausa2-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2993
- Wer: 0.4826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.6e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 3
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.1549 | 12.5 | 400 | 2.7289 | 1.0 |
| 2.0566 | 25.0 | 800 | 0.4582 | 0.6768 |
| 0.4423 | 37.5 | 1200 | 0.3037 | 0.5138 |
| 0.2991 | 50.0 | 1600 | 0.2993 | 0.4826 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-hausa2-demo-colab", "results": []}]}
|
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Arnold/wav2vec2-large-xlsr-turkish-demo-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-classification
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2295
- Accuracy: 0.92
- F1: 0.9202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8187 | 1.0 | 250 | 0.3137 | 0.902 | 0.8983 |
| 0.2514 | 2.0 | 500 | 0.2295 | 0.92 | 0.9202 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.92, "name": "Accuracy"}, {"type": "f1", "value": 0.9201604193183255, "name": "F1"}]}]}]}
|
Aron/distilbert-base-uncased-finetuned-emotion
| null |
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
question-answering
|
transformers
|
{}
|
ArpanZS/debug_squad
| null |
[
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArpanZS/search_model
| null |
[
"joblib",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text2text-generation
|
transformers
|
{}
|
Arpita/opus-mt-en-ro-finetuned-syn-to-react
| null |
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
token-classification
|
transformers
|
{}
|
ArseniyBolotin/bert-multi-PAD-ner
| null |
[
"transformers",
"pytorch",
"jax",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArshdeepSekhon050/DialoGPT-medium-RickAndMorty
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
#Okarin Bot
|
{"tags": ["conversational"]}
|
ArtemisZealot/DialoGTP-small-Qkarin
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
ArthurBaia/bert-base-portuguese-cased-finetuned-squad
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
ArthurcJP/DialoGPT-small-YODA
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
Aruden/DialoGPT-medium-harrypotterall
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text2text-generation
|
transformers
|
```
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("ArvinZhuang/BiTAG-t5-large")
tokenizer = AutoTokenizer.from_pretrained("ArvinZhuang/BiTAG-t5-large")
text = "abstract: [your abstract]" # use 'title:' as the prefix for title_to_abs task.
input_ids = tokenizer.encode(text, return_tensors='pt')
outputs = model.generate(
input_ids,
do_sample=True,
max_length=500,
top_p=0.9,
top_k=20,
temperature=1,
num_return_sequences=10,
)
print("Output:\n" + 100 * '-')
for i, output in enumerate(outputs):
print("{}: {}".format(i+1, tokenizer.decode(output, skip_special_tokens=True)))
```
GitHub: https://github.com/ArvinZhuang/BiTAG
|
{"inference": {"parameters": {"do_sample": true, "max_length": 500, "top_p": 0.9, "top_k": 20, "temperature": 1, "num_return_sequences": 10}}, "widget": [{"text": "abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).", "example_title": "BERT abstract"}]}
|
ielabgroup/BiTAG-t5-large
| null |
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text2text-generation
|
transformers
|
# Model Trained Using AutoNLP
- Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum)
- Problem type: Summarization
- Model ID: 34558227
- CO2 Emissions (in grams): 137.60574081887984
- Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator
- Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv)
- Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator
## Validation Metrics
- Loss: 2.578599214553833
- Rouge1: 44.8482
- Rouge2: 24.4052
- RougeL: 40.1716
- RougeLsum: 40.1396
- Gen Len: 11.4675
## Social
- LinkedIn: https://www.linkedin.com/in/aryanlala/
- Twitter: https://twitter.com/AryanLala20
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/AryanLala/autonlp-Scientific_Title_Generator-34558227
```
|
{"language": "en", "tags": "autonlp", "datasets": ["AryanLala/autonlp-data-Scientific_Title_Generator"], "widget": [{"text": "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets."}], "co2_eq_emissions": 137.60574081887984}
|
AryanLala/autonlp-Scientific_Title_Generator-34558227
| null |
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"en",
"dataset:AryanLala/autonlp-data-Scientific_Title_Generator",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
AshLukass/AshLukass
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Ashagi/Ashvx
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
AshiNLP/Bert_model
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Ashim/dga-transformer
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
fill-mask
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-parsbert-uncased-finetuned
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5596 | 1.0 | 515 | 3.2097 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"]}
|
Ashkanmh/bert-base-parsbert-uncased-finetuned
| null |
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Ashl3y/model_name
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Ashok/my-new-tokenizer
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
AshtonBenson/DialoGPT-small-quentin-coldwater
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
AshtonBenson/DialoGPT-small-quentin
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
A discord chatbot trained on the whole LiS script to simulate character speech
|
{"tags": ["conversational"]}
|
Aspect11/DialoGPT-Medium-LiSBot
| null |
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# RinTohsaka bot
|
{"tags": ["conversational"]}
|
Asuramaru/DialoGPT-small-rintohsaka
| null |
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
At3ee/wav2vec2-base-timit-demo-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
GPT-Glacier, a GPT-Neo 125M model finetuned on the Glacier2 Modding Discord server.
|
{}
|
Atampy26/GPT-Glacier
| null |
[
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Atarax/rick
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Atchuth/DialoGPT-small-MBOT
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Michael Scott DialoGPT Model
|
{"tags": ["conversational"]}
|
Atchuth/DialoGPT-small-MichaelBot
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Atchuth/MBOT
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-classification
|
transformers
|
{}
|
Ateeb/EmotionDetector
| null |
[
"transformers",
"pytorch",
"funnel",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-classification
|
transformers
|
{}
|
Ateeb/FullEmotionDetector
| null |
[
"transformers",
"pytorch",
"funnel",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
question-answering
|
transformers
|
{}
|
Ateeb/QA
| null |
[
"transformers",
"pytorch",
"distilbert",
"question-answering",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Ateeb/SquadQA
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Ateeb/asd
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{"license": "artistic-2.0"}
|
Atiqah/Atiqah
| null |
[
"license:artistic-2.0",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
Placeholder
|
{}
|
Atlasky/Turkish-Negator
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Atlasky/turkish-negator-nn
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustab/distilbert-base-uncased-finetuned-cola
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
#MyAwesomeModel
|
{"tags": ["conversational"]}
|
Augustvember/WOKKAWOKKA
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Augustvember/WokkaBot
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot2
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
| null |
{"tags": ["conversational"]}
|
Augustvember/WokkaBot3
| null |
[
"conversational",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot4
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot5
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot6
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot7
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot8
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot9
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBot99
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
{}
|
Augustvember/WokkaBotF
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
#MyAwesomeModel
|
{"tags": ["conversational"]}
|
Augustvember/test
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
{}
|
Augustvember/wokka
| null |
[
"transformers",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
{"tags": ["conversational"]}
|
Augustvember/wokka2
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
| null |
{"tags": ["conversational"]}
|
Augustvember/wokka4
| null |
[
"conversational",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
#MyAwesomeModel
|
{"tags": ["conversational"]}
|
Augustvember/wokka5
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
#MyAwesomeModel
|
{"tags": ["conversational"]}
|
Augustvember/wokkabottest2
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Augustvember/your-model-name
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
null | null |
https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj
|
{}
|
Aurora/asdawd
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
https://community.afpglobal.org/network/members/profile?UserKey=b0b38adc-86c7-4d30-85c6-ac7d15c5eeb0
https://community.afpglobal.org/network/members/profile?UserKey=f4ddef89-b508-4695-9d1e-3d4d1a583279
https://community.afpglobal.org/network/members/profile?UserKey=36081479-5e7b-41ba-8370-ecf72989107a
https://community.afpglobal.org/network/members/profile?UserKey=e1a88332-be7f-4997-af4e-9fcb7bb366da
https://community.afpglobal.org/network/members/profile?UserKey=4738b405-2017-4025-9e5f-eadbf7674840
https://community.afpglobal.org/network/members/profile?UserKey=eb96d91c-31ae-46e1-8297-a3c8551f2e6a
https://u.mpi.org/network/members/profile?UserKey=9867e2d9-d22a-4dab-8bcf-3da5c2f30745
https://u.mpi.org/network/members/profile?UserKey=5af232f2-a66e-438f-a5ab-9768321f791d
https://community.afpglobal.org/network/members/profile?UserKey=481305df-48ea-4c50-bca4-a82008efb427
https://u.mpi.org/network/members/profile?UserKey=039fbb91-52c6-40aa-b58d-432fb4081e32
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj
https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5
|
{}
|
Aurora/community.afpglobal
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
text-generation
|
transformers
|
# Blitzo DialoGPT Model
|
{"tags": ["conversational"]}
|
AvatarXD/DialoGPT-medium-Blitzo
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
# w2v with news
|
{}
|
Aviora/news2vec
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
null | null |
{}
|
Aviora/phobert-ner
| null |
[
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
|
text-generation
|
transformers
|
# Eren Yeager DialoGPT Model
|
{"tags": ["conversational"]}
|
Awsaf/DialoGPT-medium-eren
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:04+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.