Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
fill-mask
transformers
**⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne # RoBERTa large trained with data from National Library of Spain (BNE) ## Model Description RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens. The RoBERTa-large-bne pre-training consists of a masked language model training that follows the approach employed for the RoBERTa large. The training lasted a total of 96 hours with 32 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["es"], "license": "apache-2.0", "tags": ["national library of spain", "spanish", "bne"], "datasets": ["bne"], "metrics": ["ppl"], "widget": [{"text": "Este a\u00f1o las campanadas de La Sexta las <mask> Pedroche y Chicote."}, {"text": "El artista Antonio Orozco es un colaborador de La <mask>."}, {"text": "Gracias a los datos de la BNE se ha podido <mask> este modelo del lenguaje."}, {"text": "Hay base legal dentro del marco <mask> actual."}]}
BSC-LT/roberta-large-bne
null
[ "transformers", "pytorch", "roberta", "fill-mask", "national library of spain", "spanish", "bne", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4877 - Wer: 0.4895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6615 | 4.0 | 500 | 1.7423 | 1.0723 | | 0.8519 | 8.0 | 1000 | 0.4877 | 0.4895 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
BSen/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-turkish-colab", "results": []}]}
BSen/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
BW/TEST
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rebel-relation-extraction-by-end-to-end/relation-extraction-on-nyt)](https://paperswithcode.com/sota/relation-extraction-on-nyt?p=rebel-relation-extraction-by-end-to-end) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rebel-relation-extraction-by-end-to-end/relation-extraction-on-conll04)](https://paperswithcode.com/sota/relation-extraction-on-conll04?p=rebel-relation-extraction-by-end-to-end) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rebel-relation-extraction-by-end-to-end/joint-entity-and-relation-extraction-on-3)](https://paperswithcode.com/sota/joint-entity-and-relation-extraction-on-3?p=rebel-relation-extraction-by-end-to-end) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rebel-relation-extraction-by-end-to-end/relation-extraction-on-ade-corpus)](https://paperswithcode.com/sota/relation-extraction-on-ade-corpus?p=rebel-relation-extraction-by-end-to-end) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rebel-relation-extraction-by-end-to-end/relation-extraction-on-re-tacred)](https://paperswithcode.com/sota/relation-extraction-on-re-tacred?p=rebel-relation-extraction-by-end-to-end) ## Multilingual update! Check [mREBEL](https://huggingface.co/Babelscape/mrebel-large), a multilingual version covering more relation types, languages and including entity types. # REBEL <img src="https://i.ibb.co/qsLzNqS/hf-rebel.png" width="30" alt="hf-rebel" border="0" style="display:inline; white-space:nowrap;">: Relation Extraction By End-to-end Language generation This is the model card for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). We present a new linearization approach and a reframing of Relation Extraction as a seq2seq task. The paper can be found [here](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). If you use the code, please reference this work in your paper: @inproceedings{huguet-cabot-navigli-2021-rebel-relation, title = "{REBEL}: Relation Extraction By End-to-end Language generation", author = "Huguet Cabot, Pere-Llu{\'\i}s and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.204", pages = "2370--2381", abstract = "Extracting relation triplets from raw text is a crucial task in Information Extraction, enabling multiple applications such as populating or validating knowledge bases, factchecking, and other downstream tasks. However, it usually involves multiple-step pipelines that propagate errors or are limited to a small number of relation types. To overcome these issues, we propose the use of autoregressive seq2seq models. Such models have previously been shown to perform well not only in language generation, but also in NLU tasks such as Entity Linking, thanks to their framing as seq2seq tasks. In this paper, we show how Relation Extraction can be simplified by expressing triplets as a sequence of text and we present REBEL, a seq2seq model based on BART that performs end-to-end relation extraction for more than 200 different relation types. We show our model{'}s flexibility by fine-tuning it on an array of Relation Extraction and Relation Classification benchmarks, with it attaining state-of-the-art performance in most of them.", } The original repository for the paper can be found [here](https://github.com/Babelscape/rebel) Be aware that the inference widget at the right does not output special tokens, which are necessary to distinguish the subject, object and relation types. For a demo of REBEL and its pre-training dataset check the [Spaces demo](https://huggingface.co/spaces/Babelscape/rebel-demo). ## Pipeline usage ```python from transformers import pipeline triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large') # We need to use the tokenizer manually since we need special tokens. extracted_text = triplet_extractor.tokenizer.batch_decode([triplet_extractor("Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic", return_tensors=True, return_text=False)[0]["generated_token_ids"]]) print(extracted_text[0]) # Function to parse the generated text and extract the triplets def extract_triplets(text): triplets = [] relation, subject, relation, object_ = '', '', '', '' text = text.strip() current = 'x' for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").split(): if token == "<triplet>": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) relation = '' subject = '' elif token == "<subj>": current = 's' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) object_ = '' elif token == "<obj>": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) return triplets extracted_triplets = extract_triplets(extracted_text[0]) print(extracted_triplets) ``` ## Model and Tokenizer using transformers ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer def extract_triplets(text): triplets = [] relation, subject, relation, object_ = '', '', '', '' text = text.strip() current = 'x' for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").split(): if token == "<triplet>": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) relation = '' subject = '' elif token == "<subj>": current = 's' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) object_ = '' elif token == "<obj>": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) return triplets # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large") model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large") gen_kwargs = { "max_length": 256, "length_penalty": 0, "num_beams": 3, "num_return_sequences": 3, } # Text to extract triplets from text = 'Punta Cana is a resort town in the municipality of Higüey, in La Altagracia Province, the easternmost province of the Dominican Republic.' # Tokenizer text model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') # Generate generated_tokens = model.generate( model_inputs["input_ids"].to(model.device), attention_mask=model_inputs["attention_mask"].to(model.device), **gen_kwargs, ) # Extract text decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) # Extract triplets for idx, sentence in enumerate(decoded_preds): print(f'Prediction triplets sentence {idx}') print(extract_triplets(sentence)) ```
{"language": ["en"], "license": "cc-by-nc-sa-4.0", "tags": ["seq2seq", "relation-extraction"], "datasets": ["Babelscape/rebel-dataset"], "widget": [{"text": "Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic"}], "model-index": [{"name": "REBEL", "results": [{"task": {"type": "Relation-Extraction", "name": "Relation Extraction"}, "dataset": {"name": "CoNLL04", "type": "CoNLL04"}, "metrics": [{"type": "re+ macro f1", "value": 76.65, "name": "RE+ Macro F1"}]}, {"task": {"type": "Relation-Extraction", "name": "Relation Extraction"}, "dataset": {"name": "NYT", "type": "NYT"}, "metrics": [{"type": "f1", "value": 93.4, "name": "F1"}]}]}]}
Babelscape/rebel-large
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "seq2seq", "relation-extraction", "en", "dataset:Babelscape/rebel-dataset", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER This is the model card for the EMNLP 2021 paper [WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER](https://aclanthology.org/2021.findings-emnlp.215/). We fine-tuned a multilingual language model (mBERT) for 3 epochs on our [WikiNEuRal dataset](https://huggingface.co/datasets/Babelscape/wikineural) for Named Entity Recognition (NER). The resulting multilingual NER model supports the 9 languages covered by WikiNEuRal (de, en, es, fr, it, nl, pl, pt, ru), and it was trained on all 9 languages jointly. **If you use the model, please reference this work in your paper**: ```bibtex @inproceedings{tedeschi-etal-2021-wikineural-combined, title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}", author = "Tedeschi, Simone and Maiorca, Valentino and Campolungo, Niccol{\`o} and Cecconi, Francesco and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.215", pages = "2521--2533", abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.", } ``` The original repository for the paper can be found at [https://github.com/Babelscape/wikineural](https://github.com/Babelscape/wikineural). ## How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner") model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True) example = "My name is Wolfgang and I live in Berlin" ner_results = nlp(example) print(ner_results) ``` ## Limitations and bias This model is trained on WikiNEuRal, a state-of-the-art dataset for Multilingual NER automatically derived from Wikipedia. Therefore, it might not generalize well to all textual genres (e.g. news). On the other hand, models trained only on news articles (e.g. only on CoNLL03) have been proven to obtain much lower scores on encyclopedic articles. To obtain more robust systems, we encourage you to train a system on the combination of WikiNEuRal with other datasets (e.g. WikiNEuRal + CoNLL). ## Licensing Information Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents and models belongs to the original copyright holders.
{"language": ["de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual"], "license": ["cc-by-nc-sa-4.0"], "tags": ["named-entity-recognition", "sequence-tagger-model"], "datasets": ["Babelscape/wikineural"], "annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "widget": [{"text": "My name is Wolfgang and I live in Berlin."}, {"text": "George Washington went to Washington."}, {"text": "Mi nombre es Sarah y vivo en Londres."}, {"text": "\u041c\u0435\u043d\u044f \u0437\u043e\u0432\u0443\u0442 \u0421\u0438\u043c\u043e\u043d\u0430, \u0438 \u044f \u0436\u0438\u0432\u0443 \u0432 \u0420\u0438\u043c\u0435."}], "pretty_name": "wikineural-dataset", "source_datasets": ["original"], "task_categories": ["structure-prediction"], "task_ids": ["named-entity-recognition"]}
Babelscape/wikineural-multilingual-ner
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "named-entity-recognition", "sequence-tagger-model", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Anika Bot
{"tags": ["conversational"]}
Backedman/DialoGPT-small-Anika
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Badr/model1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bagus/SER-LSSED
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bagus/ser-japanese
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
Dataset used for training: - Name: Common Voice - Language: Indonesian [id] - Version: 6.1 Test WER: 19.3 % Contact: [email protected]
{"language": "el", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "bahasa-indonesia"], "datasets": ["common_voice_id_6.1"]}
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "bahasa-indonesia", "el", "dataset:common_voice_id_6.1", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-classification
transformers
~~~ # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !git clone https://github.com/m3hrdadfi/soxan cd soxan ~~~ # prediction ~~~ import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ~~~ ~~~ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ~~~ ~~~ def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ~~~ # prediction ~~~ # path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) ~~~ ~~~ [{'Emotion': 'anger', 'Score': '98.3%'}, {'Emotion': 'disgust', 'Score': '0.0%'}, {'Emotion': 'fear', 'Score': '0.4%'}, {'Emotion': 'happiness', 'Score': '0.7%'}, {'Emotion': 'sadness', 'Score': '0.5%'}] ~~~
{"language": "el", "license": "apache-2.0", "tags": ["audio", "audio-classification", "speech"], "datasets": ["aesdd"]}
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio", "audio-classification", "speech", "el", "dataset:aesdd", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-classification
transformers
This is for (private) DEMO only.
{"language": "ja", "tags": ["audio", "audio-classification", "speech", "speech-emotion-recognition"], "datasets": ["jtes"]}
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
null
[ "transformers", "pytorch", "safetensors", "wav2vec2", "audio-classification", "audio", "speech", "speech-emotion-recognition", "ja", "dataset:jtes", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bakkes/BakkesModWiki
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bala/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Harry Potter DialoGPT Model
{"tags": ["conversational"]}
BalajiSathesh/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Balgow/prod_desc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Banshee/LukeSkywalker
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Banshee/dialoGPT-luke-small
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Banshee/dialoGPT-small-luke
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Barbarameerr/Barbara
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
**Dataset** ToTTo is an open-domain English Table-to-Text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table, a set of highlighted table cells, page title and section title as inputs, it produces a one-sentence description summarising the key details from the inputs. This dataset can be taken from hugging face (https://huggingface.co/datasets/totto). **Model** The pre-trained Text-to-Text "t5-base" model is fine-tuned with the Table-to-Text ToTTo dataset(downstream task) for the complete train dataset split of around 120,761 examples. During the fine-tuning process for this downstream task, BertScore metric was used as an evaluation metric instead of the standard BLEU metric.
{}
Barkavi/t5base_totto
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Barleysack/AERoberta
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Barleysack/AERoberta2
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Barleysack/klue-roberta-LSTM
null
[ "transformers", "pytorch", "roberta", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Hello hugging face
{"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]}
Barytes/hellohf
null
[ "transformers", "tf", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Bella Swan DialoGPT model
{"tags": ["conversational"]}
Batsy24/DialoGPT-medium-Twilight_BellaBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Twilight Edward DialoGPT Model
{"tags": ["conversational"]}
Batsy24/DialoGPT-small-Twilight_EdBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Battlehooks/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/bert-finetuned-mrpc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/bert-finetuned-nerxD
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/code-search-net-tokenizer1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en"], "license": "apache-2.0", "tags": ["question-answering"], "datasets": ["squad"], "metrics": ["squad"], "thumbnail": "https://github.com/karanchahal/distiller/blob/master/distiller.jpg"}
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "dummy-model", "results": []}]}
BatuhanYilmaz/dummy-model
null
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/dummy
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/marian-finetuned-kde4-en-to-fr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/mlm-finetuned-imdb
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BatuhanYilmaz/mt5-small-finetuned-amazonbooks-en-es
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Baybars/debateGPT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-10500](https://huggingface.co/./checkpoint-10500) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.7540 - Wer: 0.4647 - Cer: 0.1318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.999,0.9999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 1.0779 | 4.59 | 500 | 0.2354 | 0.8260 | 0.7395 | | 0.7573 | 9.17 | 1000 | 0.2100 | 0.7544 | 0.6960 | | 0.8225 | 13.76 | 1500 | 0.2021 | 0.6867 | 0.6672 | | 0.621 | 18.35 | 2000 | 0.1874 | 0.6824 | 0.6209 | | 0.6362 | 22.94 | 2500 | 0.1904 | 0.6712 | 0.6286 | | 0.624 | 27.52 | 3000 | 0.1820 | 0.6940 | 0.6116 | | 0.4781 | 32.11 | 3500 | 0.1735 | 0.6966 | 0.5989 | | 0.5685 | 36.7 | 4000 | 0.1769 | 0.6742 | 0.5971 | | 0.4384 | 41.28 | 4500 | 0.1767 | 0.6904 | 0.5999 | | 0.5509 | 45.87 | 5000 | 0.1692 | 0.6734 | 0.5641 | | 0.3665 | 50.46 | 5500 | 0.1680 | 0.7018 | 0.5662 | | 0.3914 | 55.05 | 6000 | 0.1631 | 0.7121 | 0.5552 | | 0.2467 | 59.63 | 6500 | 0.1563 | 0.6657 | 0.5374 | | 0.2576 | 64.22 | 7000 | 0.1554 | 0.6920 | 0.5316 | | 0.2711 | 68.81 | 7500 | 0.1495 | 0.6900 | 0.5176 | | 0.2626 | 73.39 | 8000 | 0.1454 | 0.6843 | 0.5043 | | 0.1377 | 77.98 | 8500 | 0.1470 | 0.7383 | 0.5101 | | 0.2005 | 82.57 | 9000 | 0.1430 | 0.7228 | 0.5045 | | 0.1355 | 87.16 | 9500 | 0.1375 | 0.7231 | 0.4869 | | 0.0431 | 91.74 | 10000 | 0.1350 | 0.7397 | 0.4749 | | 0.0586 | 96.33 | 10500 | 0.1339 | 0.7360 | 0.4754 | | 0.0896 | 100.92 | 11000 | 0.7187 | 0.4885 | 0.1398 | | 0.183 | 105.5 | 11500 | 0.7310 | 0.4838 | 0.1392 | | 0.0963 | 110.09 | 12000 | 0.7643 | 0.4759 | 0.1362 | | 0.0437 | 114.68 | 12500 | 0.7525 | 0.4641 | 0.1328 | | 0.1122 | 119.27 | 13000 | 0.7535 | 0.4651 | 0.1317 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["tr"], "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Baybars/wav2vec2-xls-r-1b-turkish
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4164 - Wer: 0.3098 - Cer: 0.0764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Language Model N-gram language model is trained by [mpoyraz](https://huggingface.co/mpoyraz/wav2vec2-xls-r-300m-cv7-turkish) on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6356 | 9.09 | 500 | 0.5055 | 0.5536 | 0.1381 | | 0.3847 | 18.18 | 1000 | 0.4002 | 0.4247 | 0.1065 | | 0.3377 | 27.27 | 1500 | 0.4193 | 0.4167 | 0.1078 | | 0.2175 | 36.36 | 2000 | 0.4351 | 0.3861 | 0.0974 | | 0.2074 | 45.45 | 2500 | 0.3962 | 0.3622 | 0.0916 | | 0.159 | 54.55 | 3000 | 0.4062 | 0.3526 | 0.0888 | | 0.1882 | 63.64 | 3500 | 0.3991 | 0.3445 | 0.0850 | | 0.1766 | 72.73 | 4000 | 0.4214 | 0.3396 | 0.0847 | | 0.116 | 81.82 | 4500 | 0.4182 | 0.3265 | 0.0812 | | 0.0718 | 90.91 | 5000 | 0.4259 | 0.3191 | 0.0781 | | 0.019 | 100.0 | 5500 | 0.4164 | 0.3098 | 0.0764 | ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Baybars/wav2vec2-xls-r-300m-cv8-turkish
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Query Generation This model is the t5-base model from [docTTTTTquery](https://github.com/castorini/docTTTTTquery). The T5-base model was trained on the [MS MARCO Passage Dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking), which consists of about 500k real search queries from Bing together with the relevant passage. The model can be used for query generation to learn semantic search models without requiring annotated training data: [Synthetic Query Generation](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/query_generation). ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('model-name') model = T5ForConditionalGeneration.from_pretrained('model-name') para = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(para, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=3) print("Paragraph:") print(para) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ```
{}
BeIR/query-gen-msmarco-t5-base-v1
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Query Generation This model is the t5-base model from [docTTTTTquery](https://github.com/castorini/docTTTTTquery). The T5-base model was trained on the [MS MARCO Passage Dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking), which consists of about 500k real search queries from Bing together with the relevant passage. The model can be used for query generation to learn semantic search models without requiring annotated training data: [Synthetic Query Generation](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/query_generation). ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('model-name') model = T5ForConditionalGeneration.from_pretrained('model-name') para = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(para, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=3) print("Paragraph:") print(para) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ```
{}
BeIR/query-gen-msmarco-t5-large-v1
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
# SPARTA Re-Implementation of [SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval](https://arxiv.org/abs/2009.13013). It is the re-implementation we used for [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://arxiv.org/abs/2104.08663). Also have a look at our BEIR repository: https://github.com/UKPLab/beir Have a look at https://github.com/nreimers/beir-sparta for the training and inference code of this SPARTA model
{}
BeIR/sparta-msmarco-distilbert-base-v1
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "arxiv:2009.13013", "arxiv:2104.08663", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5774 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2347 | 1.0 | 535 | 0.5774 | 0.5332 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.533214904586951, "name": "Matthews Correlation"}]}]}]}
BearThreat/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Beatriz/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bee-Garbs/DialoGPT-cartman-small
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Cartman Southpark DialoGPT2 small 18 epochs
{"tags": ["conversational"]}
Bee-Garbs/DialoGPT-real-cartman-small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Beelow/model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Beelow/wav2vec2-ukrainian-model-large
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
from transformers import GPTNeoForCausalLM, GPT2Tokenizer model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") prompt = "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " \ ... "previously unexplored valley, in the Andes Mountains. Even more surprising to the " \ ... "researchers was the fact that the unicorns spoke perfect English." input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.9, max_length=100,) gen_text = tokenizer.batch_decode(gen_tokens)[0]
{}
Begimay/Task
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Belin/T5-Terms-and-Conditions
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bella4322/Sarah
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
BenDavis71/GPT-2-Finetuning-AIRaid
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BenGeorge/MyModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BenQLange/HF_bot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
\ntags: -conversational inference: false conversational: true #First time chat bot using a guide, low epoch count due to limited resources.
{}
BenWitter/DialoGPT-small-Tyrion
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Benicio/t5-small-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Benicio/t5-small-finetuned-en-to-ru
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Beri/legal-qa
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
BertChristiaens/EmojiPredictor
null
[ "transformers", "pytorch", "distilbert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Berzemu/Coco
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Betaniaolivo/Foto
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BhanuSama/gpt2-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hindi-colab", "results": []}]}
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hindi", "results": []}]}
Bharathdamu/wav2vec2-large-xls-r-300m-hindi
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bharathdamu/wav2vec2-large-xls-r-300m-hindi2-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bharathdamu/wav2vec2-large-xls-r-300m-hindi3-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bharathdamu/wav2vec2-model-hindi-stt
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bharathdamu/wav2vec2-model-hindibhasha
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sst2 This model was trained from scratch on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3000 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.1106 | 1.0 | 4210 | 0.9255 | 0.3326 | | 0.1497 | 2.0 | 8420 | 0.9369 | 0.2858 | | 0.1028 | 3.0 | 12630 | 0.3128 | 0.9335 | | 0.0872 | 4.0 | 16840 | 0.3000 | 0.9450 | | 0.0571 | 5.0 | 21050 | 0.3378 | 0.9427 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.944954128440367, "name": "Accuracy"}]}]}]}
Bhumika/roberta-base-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Spell checker using T5 base transformer A simple spell checker built using T5-Base transformer. To use this model ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker") model = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker") def correct(inputs): input_ids = tokenizer.encode(inputs,return_tensors='pt') sample_output = model.generate( input_ids, do_sample=True, max_length=50, top_p=0.99, num_return_sequences=1 ) res = tokenizer.decode(sample_output[0], skip_special_tokens=True) return res text = "christmas is celbrated on decembr 25 evry ear" print(correct(text)) ``` This should print the corrected statement ``` christmas is celebrated on december 25 every year ``` You can also type the text under the Hosted inference API and get predictions online.
{"widget": [{"text": "christmas is celbrated on decembr 25 evry ear"}]}
Bhuvana/t5-base-spellchecker
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Bia18/Beatriz
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#hi
{"tags": ["conversational"]}
Biasface/DDDC
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#hi
{"tags": ["conversational"]}
Biasface/DDDC2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BigBoy/model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BigDaddyNe1L/Hhaa
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
`````` !pip install transformers from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("roberta-base") model = AutoModelForMaskedLM.from_pretrained("BigSalmon/BertaMyWorda") ``````
{}
BigSalmon/BertaMyWorda
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
BigSalmon/BestMask2
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
BigSalmon/DaBlank
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
BigSalmon/Flowberta
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
BigSalmon/FormalBerta
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
BigSalmon/FormalBerta2
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
https://huggingface.co/spaces/BigSalmon/MASK2
{}
BigSalmon/FormalBerta3
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
https://huggingface.co/spaces/BigSalmon/MASK2
{}
BigSalmon/FormalRobertaa
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
https://huggingface.co/spaces/BigSalmon/MASK2
{}
BigSalmon/FormalRobertaaa
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BigSalmon/FroBurta
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
BigSalmon/GPT2HardandEasy
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
BigSalmon/GPTHeHe
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
BigSalmon/GPTIntro
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln2
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln3
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln4
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln5
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln6") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln6") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ```
{}
BigSalmon/GPTNeo350MInformalToFormalLincoln6
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
BigSalmon/GPTT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
BigSalmon/GoodMaskResults
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InfillFormalLincoln") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InfillFormalLincoln") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2Space (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ```` ``` infill: increasing the number of sidewalks in suburban areas will [MASK]. Translated into the Style of Abraham Lincoln: increasing the number of sidewalks in suburban areas will ( ( enhance / maximize ) community cohesion / facilitate ( communal ties / the formation of neighborhood camaraderie ) / forge neighborly relations / lend themselves to the advancement of neighborly ties / plant the seeds of community building / flower anew the bonds of friendship / invite the budding of neighborhood rapport / enrich neighborhood life ). infill: corn fields [MASK], [MASK] visibly as one ventures beyond chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), ( manifesting themselves ) visibly as one ventures beyond chicago. infill: the [MASK] the SAT will soon be [MASK]. [MASK] an examination undertaken on one's laptop. [MASK] will allow students to retrieve test results promptly. Translated into the Style of Abraham Lincoln: the ( conventional form of ) the SAT will soon be ( consigned to history ). ( replacing it will be ) an examination undertaken on one's laptop. ( so doing ) will allow students to retrieve test results promptly. infill: ```
{}
BigSalmon/InfillFormalLincoln
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00