Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
vikkyyy/michaeljackson_vic
null
[ "region:us" ]
null
2024-05-02T03:33:32+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.4768 | | 2.7735 | 2.0 | 500 | 1.9128 | | 2.7735 | 3.0 | 750 | 1.8364 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "my_awesome_qa_model", "results": []}]}
novalentino94/my_awesome_qa_model
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:33:43+00:00
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - yuffish/plush-1.5 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks object using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers"], "inference": true, "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "a photo of sks object"}
yuffish/plush-1.5
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-05-02T03:36:25+00:00
text-generation
transformers
> **CAUTION:** This model scores high on the Leaderboard but outputs gibberish! # Llama-3-OpenBioMed-8B-slerp-v0.3 Llama-3-OpenBioMed-8B-slerp-v0.3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Jayant9928/orpo_med_v3](https://huggingface.co/Jayant9928/orpo_med_v3) * [skumar9/Llama-medx_v3](https://huggingface.co/skumar9/Llama-medx_v3) ## 🧩 Configuration ```yaml slices: - sources: - model: Jayant9928/orpo_med_v3 layer_range: [0, 32] - model: skumar9/Llama-medx_v3 layer_range: [0, 32] merge_method: slerp base_model: Jayant9928/orpo_med_v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abhinand/Llama-3-OpenBioMed-8B-slerp-v0.3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "llama3", "tags": ["merge", "mergekit", "lazymergekit", "Jayant9928/orpo_med_v3", "skumar9/Llama-medx_v3"], "base_model": ["Jayant9928/orpo_med_v3", "skumar9/Llama-medx_v3"]}
abhinand/Llama-3-OpenBioMed-8B-slerp-v0.3
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "Jayant9928/orpo_med_v3", "skumar9/Llama-medx_v3", "conversational", "base_model:Jayant9928/orpo_med_v3", "base_model:skumar9/Llama-medx_v3", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:36:58+00:00
null
peft
**Note**: This model card has been generated automatically according to the information the Trainer had access to. Visit the [model card](https://ritvik19.github.io/zephyr-mini/) to see the full description. # zephyr-danube-sft-qlora This model is a fine-tuned version of [h2oai/h2o-danube-1.8b-base](https://huggingface.co/h2oai/h2o-danube-1.8b-base) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.0893 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0883 | 0.9998 | 1140 | 1.0893 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["alignment-handbook", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrachat_200k"], "base_model": "h2oai/h2o-danube-1.8b-base", "model-index": [{"name": "zephyr-danube-sft-qlora", "results": []}]}
Ritvik19/zephyr-danube-sft-qlora
null
[ "peft", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:h2oai/h2o-danube-1.8b-base", "license:apache-2.0", "region:us" ]
null
2024-05-02T03:37:12+00:00
null
transformers
# Uploaded model - **Developed by:** theGhoul21 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "gguf"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
theGhoul21/srl-sft-010524-gguf-q4_k_m-v0.2
null
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:37:43+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ayon128/CM_BN_EN_0
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:38:01+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/stablecell_v60
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:38:44+00:00
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - yuffish/mug-1.5 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks object using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers"], "inference": true, "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "a photo of sks object"}
yuffish/mug-1.5
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-05-02T03:39:19+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ttrung1402/blip2-opt-2.7b-vietnamese-image-captions-adapters
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:40:04+00:00
null
null
{}
John2007john/Moxxine
null
[ "region:us" ]
null
2024-05-02T03:41:02+00:00
null
null
{}
Fathan117/Gensin
null
[ "region:us" ]
null
2024-05-02T03:41:09+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-410m_mz-133_EnronSpam_n-its-10-seed-0 This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-410m", "model-index": [{"name": "robust_llm_pythia-410m_mz-133_EnronSpam_n-its-10-seed-0", "results": []}]}
AlignmentResearch/robust_llm_pythia-410m_mz-133_EnronSpam_n-its-10-seed-0
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-410m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:41:21+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
yuiseki/Mistral-7B-v0.1-ja-wikipedia-databricks-dolly-v0.1
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:41:38+00:00
null
transformers
# Model Card This model is pretrained as a reference baseline to the Based model provided here: https://huggingface.co/hazyresearch/based-1b-50b. Both checkpoints are pretrained on **50Bn tokens** of the Pile in the exact same data order using next token prediction. ### Model Sources The model is a standard Transformer model, using the Llama architecture (Rotary encodings, SwiGLU, RMS Norm, etc.) The training code is provided here and can be used to reproduce training: https://github.com/HazyResearch/based The paper for the work is here, and the appendix includes additional experimental details/hyperparameters: https://arxiv.org/abs/2402.18668 ### Uses The purpose of this work is to evaluate the language modeling quality of a new efficient architecture, Based. We include a series of benchmarks that you can use to evaluate quality: - FDA: https://huggingface.co/datasets/hazyresearch/based-fda - SWDE: https://huggingface.co/datasets/hazyresearch/based-swde - SQUAD: https://huggingface.co/datasets/hazyresearch/based-squad ## Citation Please consider citing this paper if you use our work: ``` @article{arora2024simple, title={Simple linear attention language models balance the recall-throughput tradeoff}, author={Arora, Simran and Eyuboglu, Sabri and Zhang, Michael and Timalsina, Aman and Alberti, Silas and Zinsley, Dylan and Zou, James and Rudra, Atri and Ré, Christopher}, journal={arXiv:2402.18668}, year={2024} } ``` Please reach out to [email protected], [email protected], and [email protected] with questions.
{"language": ["en"], "datasets": ["EleutherAI/pile"]}
hazyresearch/attn-1b-50bn
null
[ "transformers", "pytorch", "gpt2", "en", "dataset:EleutherAI/pile", "arxiv:2402.18668", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:41:46+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model37
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:42:42+00:00
null
null
{}
mtgrunt/ywebsite
null
[ "region:us" ]
null
2024-05-02T03:44:07+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ayon128/CM_BN_EN_2
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:44:54+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ayon128/CM_BN_EN_3
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:46:23+00:00
null
null
{"license": "unknown"}
wickedsploit/Geauxhuggingface
null
[ "license:unknown", "region:us" ]
null
2024-05-02T03:47:24+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ayon128/CM_BN_EN_1
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:47:50+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
rainerberger/planetn8
null
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:48:03+00:00
null
null
{"license": "mit"}
TanZzzzz/a4
null
[ "license:mit", "region:us" ]
null
2024-05-02T03:48:15+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ayon128/CM_BN_EN_4
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:49:44+00:00
null
null
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/vb6SmA3hxu) ## This repo contains GGUF versions of the cognitivecomputations/dolphin-2.9-llama3-8b-1m model. # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.com/invite/vb6SmA3hxu) to share feedback/suggestions or get help. **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with GGUF. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***What is the model format?*** We use GGUF format. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). # Downloading and running the models You can download the individual files from the Files & versions section. Here is a list of the different versions we provide. For more info checkout [this chart](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) and [this guide](https://www.reddit.com/r/LocalLLaMA/comments/1ba55rj/overview_of_gguf_quantization_methods/): | Quant type | Description | |------------|--------------------------------------------------------------------------------------------| | Q5_K_M | High quality, recommended. | | Q5_K_S | High quality, recommended. | | Q4_K_M | Good quality, uses about 4.83 bits per weight, recommended. | | Q4_K_S | Slightly lower quality with more space savings, recommended. | | IQ4_NL | Decent quality, slightly smaller than Q4_K_S with similar performance, recommended. | | IQ4_XS | Decent quality, smaller than Q4_K_S with similar performance, recommended. | | Q3_K_L | Lower quality but usable, good for low RAM availability. | | Q3_K_M | Even lower quality. | | IQ3_M | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | IQ3_S | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. | | Q3_K_S | Low quality, not recommended. | | IQ3_XS | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | Q2_K | Very low quality but surprisingly usable. | ## How to download GGUF files ? **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev - **Option A** - Downloading in `text-generation-webui`: - **Step 1**: Under Download Model, you can enter the model repo: PrunaAI/dolphin-2.9-llama3-8b-1m-GGUF-smashed and below it, a specific filename to download, such as: phi-2.IQ3_M.gguf. - **Step 2**: Then click Download. - **Option B** - Downloading on the command line (including multiple files at once): - **Step 1**: We recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` - **Step 2**: Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download PrunaAI/dolphin-2.9-llama3-8b-1m-GGUF-smashed dolphin-2.9-llama3-8b-1m.IQ3_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> Alternatively, you can also download multiple files at once with a pattern: ```shell huggingface-cli download PrunaAI/dolphin-2.9-llama3-8b-1m-GGUF-smashed --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download PrunaAI/dolphin-2.9-llama3-8b-1m-GGUF-smashed dolphin-2.9-llama3-8b-1m.IQ3_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## How to run model in GGUF format? - **Option A** - Introductory example with `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m dolphin-2.9-llama3-8b-1m.IQ3_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt\} [/INST]" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) - **Option B** - Running in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20-%20Model%20Tab.md#llamacpp). - **Option C** - Running from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./dolphin-2.9-llama3-8b-1m.IQ3_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<s>[INST] {prompt} [/INST]", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./dolphin-2.9-llama3-8b-1m.IQ3_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` - **Option D** - Running with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
{"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"}
PrunaAI/dolphin-2.9-llama3-8b-1m-GGUF-smashed
null
[ "gguf", "pruna-ai", "region:us" ]
null
2024-05-02T03:51:32+00:00
null
null
{}
shouhsu/meta
null
[ "region:us" ]
null
2024-05-02T03:53:12+00:00
null
transformers
# Uploaded model - **Developed by:** tl106 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
tl106/npg-llama3-8b
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:53:34+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3494 - Accuracy: 0.8484 - Recall: 0.8484 - F1: 0.8478 - Precision: 0.8513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5792 | 0.9974 | 293 | 0.5989 | 0.7969 | 0.7969 | 0.7829 | 0.7897 | | 0.42 | 1.9983 | 587 | 0.5251 | 0.8046 | 0.8046 | 0.7960 | 0.7985 | | 0.3501 | 2.9991 | 881 | 0.4299 | 0.8335 | 0.8335 | 0.8312 | 0.8363 | | 0.3187 | 4.0 | 1175 | 0.4302 | 0.8169 | 0.8169 | 0.8144 | 0.8182 | | 0.3873 | 4.9974 | 1468 | 0.4246 | 0.8250 | 0.8250 | 0.8238 | 0.8326 | | 0.3786 | 5.9983 | 1762 | 0.3881 | 0.8306 | 0.8306 | 0.8303 | 0.8394 | | 0.337 | 6.9991 | 2056 | 0.3803 | 0.8306 | 0.8306 | 0.8304 | 0.8351 | | 0.2717 | 8.0 | 2350 | 0.3785 | 0.8395 | 0.8395 | 0.8361 | 0.8482 | | 0.2753 | 8.9974 | 2643 | 0.3805 | 0.8327 | 0.8327 | 0.8314 | 0.8346 | | 0.2814 | 9.9745 | 2930 | 0.3362 | 0.8480 | 0.8480 | 0.8467 | 0.8499 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy", "recall", "f1", "precision"], "base_model": "google/vit-base-patch16-224", "model-index": [{"name": "vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.848446147296722, "name": "Accuracy"}, {"type": "recall", "value": 0.848446147296722, "name": "Recall"}, {"type": "f1", "value": 0.8477849036950597, "name": "F1"}, {"type": "precision", "value": 0.8513434130555053, "name": "Precision"}]}]}]}
Kushagra07/vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T03:53:37+00:00
null
null
{"license": "mit"}
Auart/gpt
null
[ "license:mit", "region:us" ]
null
2024-05-02T03:54:07+00:00
text-generation
transformers
# Uploaded model - **Developed by:** theGhoul21 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
theGhoul21/srl-sft-010524-4bit-v0.2
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-02T03:54:11+00:00
text-generation
transformers
{}
atheanchu/llama-2-13b-chat-neuron
null
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:54:50+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["llama-factory"]}
Moriacrafter/LLaMA2-7B_DepressionDetection
null
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:55:17+00:00
text-generation
transformers
# LancarAI-v1.0 LancarAI-v1.0 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "lancartech/LancarAI-v1.0" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B"], "base_model": ["OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B"]}
lancartech/LancarAI-v1.0
null
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T03:57:42+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "library_name": "peft"}
eswardivi/llamathon_v2
null
[ "peft", "safetensors", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
2024-05-02T03:57:44+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet18 This model is a fine-tuned version of [pretrained/resnet18](https://huggingface.co/pretrained/resnet18) on the datasets/Galaxy10 dataset. It achieves the following results on the evaluation set: - Loss: 0.5140 - Accuracy: 0.8455 - Precision: 0.7114 - Recall: 0.6703 - F1: 0.6809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 3047 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.072 | 1.0 | 273 | 1.0307 | 0.6360 | 0.1946 | 0.2432 | 0.2106 | | 0.744 | 2.0 | 546 | 0.7900 | 0.7521 | 0.3302 | 0.3748 | 0.3494 | | 0.591 | 3.0 | 819 | 0.6428 | 0.7776 | 0.3413 | 0.4052 | 0.3682 | | 0.4759 | 4.0 | 1092 | 0.6169 | 0.7767 | 0.3421 | 0.4121 | 0.3703 | | 0.3265 | 5.0 | 1365 | 0.5688 | 0.7948 | 0.4576 | 0.4642 | 0.4314 | | 0.2267 | 6.0 | 1638 | 0.5499 | 0.8185 | 0.5920 | 0.5296 | 0.5252 | | 0.1517 | 7.0 | 1911 | 0.5399 | 0.8308 | 0.6139 | 0.6033 | 0.6015 | | 0.1313 | 8.0 | 2184 | 0.5132 | 0.8405 | 0.7027 | 0.6429 | 0.6562 | | 0.0926 | 9.0 | 2457 | 0.5138 | 0.8426 | 0.7110 | 0.6517 | 0.6643 | | 0.0927 | 10.0 | 2730 | 0.5140 | 0.8455 | 0.7114 | 0.6703 | 0.6809 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["image-classification", "vision", "generated_from_trainer"], "metrics": ["accuracy", "precision", "recall", "f1"], "base_model": "pretrained/resnet18", "model-index": [{"name": "resnet18", "results": []}]}
Maxwell-Jia/resnet18-Galaxy10
null
[ "transformers", "pytorch", "resnet", "image-classification", "vision", "generated_from_trainer", "base_model:pretrained/resnet18", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:02:04+00:00
null
null
{}
kazuhasasd/kawaii-realism
null
[ "region:us" ]
null
2024-05-02T04:03:43+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny chinese - VingeNie This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6244 - Cer Ortho: 28.9724 - Cer: 24.2287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer Ortho | Cer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.783 | 0.4796 | 600 | 0.7962 | 54.2372 | 31.6835 | | 0.6578 | 0.9592 | 1200 | 0.6968 | 32.3398 | 27.9872 | | 0.5028 | 1.4388 | 1800 | 0.6624 | 40.8123 | 27.6832 | | 0.4887 | 1.9185 | 2400 | 0.6265 | 31.8488 | 25.8712 | | 0.3368 | 2.3981 | 3000 | 0.6200 | 31.5221 | 25.3234 | | 0.3395 | 2.8777 | 3600 | 0.6106 | 38.9218 | 25.3534 | | 0.2078 | 3.3573 | 4200 | 0.6184 | 28.7037 | 24.7440 | | 0.1943 | 3.8369 | 4800 | 0.6139 | 32.2586 | 24.3287 | | 0.1206 | 4.3165 | 5400 | 0.6272 | 30.4763 | 24.2656 | | 0.102 | 4.7962 | 6000 | 0.6244 | 28.9724 | 24.2287 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.0.1+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1
{"language": ["zh"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_1"], "base_model": "openai/whisper-tiny", "model-index": [{"name": "Whisper Tiny chinese - VingeNie", "results": []}]}
VingeNie/whisper-tiny-zh_CN_lr4_b16
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_16_1", "base_model:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:04:12+00:00
null
null
{}
Silvennnn/ming-ft-test
null
[ "region:us" ]
null
2024-05-02T04:07:10+00:00
null
null
{"license": "mit"}
ByteNight/Searcher
null
[ "license:mit", "region:us" ]
null
2024-05-02T04:08:17+00:00
text2text-generation
transformers
{}
EinsZwo/bart-arapaho-baseline-20k
null
[ "transformers", "safetensors", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:08:39+00:00
text-classification
transformers
{}
KalaiselvanD/albert_test_model_3
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:09:31+00:00
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - yuffish/kettle-1.5 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks object using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers"], "inference": true, "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "a photo of sks object"}
yuffish/kettle-1.5
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-05-02T04:11:28+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Ppoyaa/LexiLumin-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LexiLumin-7B-GGUF/resolve/main/LexiLumin-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": "Ppoyaa/LexiLumin-7B", "quantized_by": "mradermacher"}
mradermacher/LexiLumin-7B-GGUF
null
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "en", "base_model:Ppoyaa/LexiLumin-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:11:40+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
IN4/fast-whisper-v3-LoRA-8bit-epochs-3_num7_ru_kz
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:12:03+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flant5_offensive_German_prompt This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0011 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Total Predictions: 3532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Total Predictions | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:-----------------:| | 0.5073 | 1.0 | 1253 | 0.0015 | 0.0 | 0.0 | 0.0 | 3532 | | 0.0014 | 2.0 | 2506 | 0.0011 | 0.0 | 0.0 | 0.0 | 3532 | | 0.0011 | 3.0 | 3759 | 0.0010 | 0.0 | 0.0 | 0.0 | 3532 | | 0.001 | 4.0 | 5012 | 0.0012 | 0.0 | 0.0 | 0.0 | 3532 | | 0.0009 | 5.0 | 6265 | 0.0011 | 0.0 | 0.0 | 0.0 | 3532 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.0+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1"], "base_model": "google/flan-t5-base", "model-index": [{"name": "flant5_offensive_German_prompt", "results": []}]}
JenniferHJF/flant5_offensive_German_prompt
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:12:40+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"}
Adipta/mistral-7b-fine-tune-enlighten
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-05-02T04:12:49+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
eswardivi/llamathon_v2_awq
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T04:14:16+00:00
text-generation
transformers
{}
eminAydin/gpt2Colab_v1
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:14:38+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
yuiseki/Mistral-7B-v0.1-ja-wikipedia-amenokaku-v0.1
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:16:58+00:00
text-classification
transformers
MFANN 3b version 0.6 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6435f27b2d0ed796668ffd8b/nccOy6fltlTFitZh9Sz-3.png) fine-tuned on the MFANN dataset as it stands on 5/2/2024 as it is an ever changing and expaning dataset. WHY IS MY 8B MODEL FAILING BENCHMARKS HUGGINGFACE!!!!!!!!!!!!!!!!!!!!!!!!! benchmark results for this 3b model: 64.34 <-- Average 62.63 <-- Arc 77.1 <-- HellaSwag 58.43 <-- MMLU 51.71 <-- TruthfulQA 74.66 <-- Winogrande 61.49 <-- GSM8K currently the worlds best 2.78B parameter model!!!!!!!!!!! as of 5/2/2024
{"license": "apache-2.0", "library_name": "transformers", "datasets": ["netcat420/MFANN"], "pipeline_tag": "text-classification"}
netcat420/MFANN3bv0.6
null
[ "transformers", "safetensors", "phi", "text-generation", "text-classification", "dataset:netcat420/MFANN", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:17:23+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model38
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:18:56+00:00
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - yuffish/blackchair-1.5 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks object using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers"], "inference": true, "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "a photo of sks object"}
yuffish/blackchair-1.5
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-05-02T04:19:37+00:00
null
null
{"license": "apache-2.0"}
Rkrafi09/Eraaicodingassistant
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-02T04:20:50+00:00
null
null
{}
mazmurlo/sussyamongus
null
[ "region:us" ]
null
2024-05-02T04:21:03+00:00
null
null
{"license": "mit"}
smthem/test-model
null
[ "license:mit", "region:us" ]
null
2024-05-02T04:22:08+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-ind-17-imbalanced-aadhaarmask This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3480 - Accuracy: 0.8450 - Recall: 0.8450 - F1: 0.8442 - Precision: 0.8494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5859 | 0.9974 | 293 | 0.6117 | 0.8114 | 0.8114 | 0.7891 | 0.8139 | | 0.5281 | 1.9983 | 587 | 0.4362 | 0.8442 | 0.8442 | 0.8375 | 0.8484 | | 0.4214 | 2.9991 | 881 | 0.4228 | 0.8438 | 0.8438 | 0.8392 | 0.8529 | | 0.4221 | 4.0 | 1175 | 0.4121 | 0.8382 | 0.8382 | 0.8331 | 0.8495 | | 0.4127 | 4.9974 | 1468 | 0.3692 | 0.8476 | 0.8476 | 0.8454 | 0.8511 | | 0.3122 | 5.9983 | 1762 | 0.3741 | 0.8408 | 0.8408 | 0.8394 | 0.8462 | | 0.3079 | 6.9991 | 2056 | 0.3628 | 0.8429 | 0.8429 | 0.8403 | 0.8445 | | 0.2851 | 8.0 | 2350 | 0.3635 | 0.8412 | 0.8412 | 0.8389 | 0.8412 | | 0.297 | 8.9974 | 2643 | 0.3407 | 0.8510 | 0.8510 | 0.8497 | 0.8545 | | 0.2109 | 9.9745 | 2930 | 0.3566 | 0.8421 | 0.8421 | 0.8406 | 0.8418 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy", "recall", "f1", "precision"], "base_model": "microsoft/beit-base-patch16-224-pt22k-ft22k", "model-index": [{"name": "beit-base-patch16-224-pt22k-ft22k-finetuned-ind-17-imbalanced-aadhaarmask", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8450404427415922, "name": "Accuracy"}, {"type": "recall", "value": 0.8450404427415922, "name": "Recall"}, {"type": "f1", "value": 0.8442233792705293, "name": "F1"}, {"type": "precision", "value": 0.8494143266059094, "name": "Precision"}]}]}]}
Kushagra07/beit-base-patch16-224-pt22k-ft22k-finetuned-ind-17-imbalanced-aadhaarmask
null
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224-pt22k-ft22k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:22:58+00:00
text-to-audio
transformers
{}
mikhail-panzo/fil-ceb_b64_le5_s8000
null
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:34:18+00:00
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
rubbrband/topazXL_v10New
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-05-02T04:35:25+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0001_withdpo_4iters_bs256_5105lr_iter_4 This model is a fine-tuned version of [ShenaoZ/0.0001_withdpo_4iters_bs256_511lr_iter_3](https://huggingface.co/ShenaoZ/0.0001_withdpo_4iters_bs256_511lr_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.0001_withdpo_4iters_bs256_511lr_iter_3", "model-index": [{"name": "0.0001_withdpo_4iters_bs256_5105lr_iter_4", "results": []}]}
ShenaoZ/0.0001_withdpo_4iters_bs256_5105lr_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZ/0.0001_withdpo_4iters_bs256_511lr_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:35:50+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/fblgit/una-xaberius-34b-v1beta <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q2_K.gguf) | Q2_K | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.IQ3_XS.gguf) | IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q3_K_S.gguf) | Q3_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.IQ3_S.gguf) | IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.IQ3_M.gguf) | IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q3_K_L.gguf) | Q3_K_L | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.IQ4_XS.gguf) | IQ4_XS | 18.7 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q5_K_S.gguf) | Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q5_K_M.gguf) | Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q6_K.gguf) | Q6_K | 28.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/una-xaberius-34b-v1beta-GGUF/resolve/main/una-xaberius-34b-v1beta.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "cc-by-nc-nd-4.0", "library_name": "transformers", "tags": ["UNA", "juanako", "cybertron", "xaberius"], "datasets": ["fblgit/tree-of-knowledge", "garage-bAInd/Open-Platypus", "allenai/ultrafeedback_binarized_cleaned", "Open-Orca/OpenOrca"], "base_model": "fblgit/una-xaberius-34b-v1beta", "quantized_by": "mradermacher"}
mradermacher/una-xaberius-34b-v1beta-GGUF
null
[ "transformers", "gguf", "UNA", "juanako", "cybertron", "xaberius", "en", "dataset:fblgit/tree-of-knowledge", "dataset:garage-bAInd/Open-Platypus", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:Open-Orca/OpenOrca", "base_model:fblgit/una-xaberius-34b-v1beta", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:36:37+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/CAWD111
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:36:55+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
davidkim205/Mistral-7B-Instruct-v0.2-stockname_103k-sft-lora
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:37:14+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) bloomz-560m - bnb 4bits - Model creator: https://huggingface.co/bigscience/ - Original model: https://huggingface.co/bigscience/bloomz-560m/ Original model description: --- datasets: - bigscience/xP3 license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" model-index: - name: bloomz-560m results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 52.41 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.01 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.81 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 52.03 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.99 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.97 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.76 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.5 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 53.57 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 67.15 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.46 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.76 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.36 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.96 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.43 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.98 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 45.54 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.81 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.64 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.35 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 35.5 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.31 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.96 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.74 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.66 - task: type: Program synthesis dataset: type: openai_humaneval name: HumanEval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 2.18 - type: Pass@10 value: 4.11 - type: Pass@100 value: 9.00 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: "2016" split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 60.29 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 49.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 57.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 55.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.4 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.45 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 50.56 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.79 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 57.84 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 47.05 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 53.14 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 51.36 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.86 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.52 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? - Suggest at least five related search terms to "Mạng neural nhân tạo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [bloom-560m](https://huggingface.co/bigscience/bloom-560m), also refer to the `config.json` file - **Finetuning steps:** 1750 - **Finetuning tokens:** 3.67 billion - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 1x data parallel - **Precision:** float16 ## Hardware - **CPUs:** AMD CPUs with 512GB memory per node - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links - **Communication:** NCCL-communications network with a fully dedicated subnet ## Software - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```
{}
RichardErkhov/bigscience_-_bloomz-560m-4bits
null
[ "transformers", "safetensors", "bloom", "text-generation", "arxiv:2211.01786", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T04:37:23+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "library_name": "transformers"}
skumar9/Llama-medx_v3.1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:38:23+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) bloomz-560m - bnb 8bits - Model creator: https://huggingface.co/bigscience/ - Original model: https://huggingface.co/bigscience/bloomz-560m/ Original model description: --- datasets: - bigscience/xP3 license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" model-index: - name: bloomz-560m results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 52.41 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.01 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.81 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 52.03 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.99 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.97 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.76 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.5 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 53.57 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 67.15 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.46 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.76 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.36 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.96 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.43 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.98 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 45.54 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.81 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.64 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.35 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 35.5 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.31 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.96 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.74 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.66 - task: type: Program synthesis dataset: type: openai_humaneval name: HumanEval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 2.18 - type: Pass@10 value: 4.11 - type: Pass@100 value: 9.00 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: "2016" split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 60.29 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 49.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 57.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 55.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.4 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.45 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 50.56 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.79 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 57.84 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 47.05 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 53.14 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 51.36 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.86 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.52 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? - Suggest at least five related search terms to "Mạng neural nhân tạo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [bloom-560m](https://huggingface.co/bigscience/bloom-560m), also refer to the `config.json` file - **Finetuning steps:** 1750 - **Finetuning tokens:** 3.67 billion - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 1x data parallel - **Precision:** float16 ## Hardware - **CPUs:** AMD CPUs with 512GB memory per node - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links - **Communication:** NCCL-communications network with a fully dedicated subnet ## Software - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```
{}
RichardErkhov/bigscience_-_bloomz-560m-8bits
null
[ "transformers", "safetensors", "bloom", "text-generation", "arxiv:2211.01786", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-02T04:38:31+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
harshraj/phi-1_5_openhermes_hinglish_finetuned
null
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:39:55+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/soundofai/huggingface/runs/bj5cq9ye) # whisper-small-af-ZA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 5 - training_steps: 2000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["google/fleurs"], "base_model": "openai/whisper-small", "model-index": [{"name": "whisper-small-af-ZA", "results": []}]}
Abhinay45/whisper-small-af-ZA
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:google/fleurs", "base_model:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:43:33+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2b-it - bnb 4bits - Model creator: https://huggingface.co/google/ - Original model: https://huggingface.co/google/gemma-2b-it/ Original model description: --- library_name: transformers widget: - messages: - role: user content: How does the brain work? inference: parameters: max_new_tokens: 200 extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma --- # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B instruct version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B base model](https://huggingface.co/google/gemma-7b), and [7B instruct model](https://huggingface.co/google/gemma-7b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-it-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a CPU As explained below, we recommend `torch.bfloat16` as the default dtype. You can use [a different precision](#precisions) if necessary. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "gg-hf/gemma-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Fine-tuning You can find some fine-tuning scripts under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt them to this model, simply change the model-id to `google/gemma-2b-it`. We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on the English quotes dataset ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **45.0** | **56.9** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{}
RichardErkhov/google_-_gemma-2b-it-4bits
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T04:44:25+00:00
null
null
{"license": "mit"}
martefrain10/META-RAG
null
[ "license:mit", "region:us" ]
null
2024-05-02T04:44:39+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/0_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:46:16+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2b-it - bnb 8bits - Model creator: https://huggingface.co/google/ - Original model: https://huggingface.co/google/gemma-2b-it/ Original model description: --- library_name: transformers widget: - messages: - role: user content: How does the brain work? inference: parameters: max_new_tokens: 200 extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma --- # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B instruct version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B base model](https://huggingface.co/google/gemma-7b), and [7B instruct model](https://huggingface.co/google/gemma-7b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-it-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a CPU As explained below, we recommend `torch.bfloat16` as the default dtype. You can use [a different precision](#precisions) if necessary. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "gg-hf/gemma-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Fine-tuning You can find some fine-tuning scripts under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt them to this model, simply change the model-id to `google/gemma-2b-it`. We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on the English quotes dataset ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **45.0** | **56.9** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{}
RichardErkhov/google_-_gemma-2b-it-8bits
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-02T04:46:26+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/1_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:46:41+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/2_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:47:08+00:00
null
null
{"license": "openrail"}
Coolwowsocoolwow/Shahra
null
[ "license:openrail", "region:us" ]
null
2024-05-02T04:47:28+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/3_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:47:33+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.6.2.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.6.2.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.6.2.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.6.2.dev0
{"library_name": "peft", "base_model": "mistralai/Mistral-7B-v0.1"}
huchiahsi/viggo-peft-model
null
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-05-02T04:47:52+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/4_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:47:58+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/5_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:48:22+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/6_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:48:49+00:00
null
null
{}
BeenaSamuel/flan-t5-cnn-dm-abstractive-summarizer
null
[ "region:us" ]
null
2024-05-02T04:49:06+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xu1998hz/7_sft_lora_256
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:49:13+00:00
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2b-it - GGUF - Model creator: https://huggingface.co/google/ - Original model: https://huggingface.co/google/gemma-2b-it/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gemma-2b-it.Q2_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q2_K.gguf) | Q2_K | 1.08GB | | [gemma-2b-it.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.IQ3_XS.gguf) | IQ3_XS | 1.16GB | | [gemma-2b-it.IQ3_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.IQ3_S.gguf) | IQ3_S | 1.2GB | | [gemma-2b-it.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q3_K_S.gguf) | Q3_K_S | 1.2GB | | [gemma-2b-it.IQ3_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.IQ3_M.gguf) | IQ3_M | 1.22GB | | [gemma-2b-it.Q3_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q3_K.gguf) | Q3_K | 1.29GB | | [gemma-2b-it.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q3_K_M.gguf) | Q3_K_M | 1.29GB | | [gemma-2b-it.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q3_K_L.gguf) | Q3_K_L | 1.36GB | | [gemma-2b-it.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.IQ4_XS.gguf) | IQ4_XS | 1.4GB | | [gemma-2b-it.Q4_0.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q4_0.gguf) | Q4_0 | 1.44GB | | [gemma-2b-it.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.IQ4_NL.gguf) | IQ4_NL | 1.45GB | | [gemma-2b-it.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q4_K_S.gguf) | Q4_K_S | 1.45GB | | [gemma-2b-it.Q4_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q4_K.gguf) | Q4_K | 1.52GB | | [gemma-2b-it.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q4_K_M.gguf) | Q4_K_M | 1.52GB | | [gemma-2b-it.Q4_1.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q4_1.gguf) | Q4_1 | 1.56GB | | [gemma-2b-it.Q5_0.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q5_0.gguf) | Q5_0 | 1.68GB | | [gemma-2b-it.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q5_K_S.gguf) | Q5_K_S | 1.68GB | | [gemma-2b-it.Q5_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q5_K.gguf) | Q5_K | 1.71GB | | [gemma-2b-it.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q5_K_M.gguf) | Q5_K_M | 1.71GB | | [gemma-2b-it.Q5_1.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q5_1.gguf) | Q5_1 | 1.79GB | | [gemma-2b-it.Q6_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-it-gguf/blob/main/gemma-2b-it.Q6_K.gguf) | Q6_K | 1.92GB | Original model description: --- library_name: transformers widget: - messages: - role: user content: How does the brain work? inference: parameters: max_new_tokens: 200 extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma --- # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B instruct version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B base model](https://huggingface.co/google/gemma-7b), and [7B instruct model](https://huggingface.co/google/gemma-7b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-it-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a CPU As explained below, we recommend `torch.bfloat16` as the default dtype. You can use [a different precision](#precisions) if necessary. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "gg-hf/gemma-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Fine-tuning You can find some fine-tuning scripts under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt them to this model, simply change the model-id to `google/gemma-2b-it`. We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on the English quotes dataset ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **45.0** | **56.9** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{}
RichardErkhov/google_-_gemma-2b-it-gguf
null
[ "gguf", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "region:us" ]
null
2024-05-02T04:49:40+00:00
null
null
{}
Miamiahong/jpmodel_remote-work_distilbert-base-uncased_202405020050
null
[ "region:us" ]
null
2024-05-02T04:50:11+00:00
null
null
{"license": "openrail"}
Homiebear/KillerCrocTITAN
null
[ "license:openrail", "region:us" ]
null
2024-05-02T04:51:25+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/JUQ987
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:52:22+00:00
null
null
{}
UnitedShoes/BallinVocals
null
[ "region:us" ]
null
2024-05-02T04:52:26+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2Kaggle_v2 This model is a fine-tuned version of [ytu-ce-cosmos/turkish-gpt2](https://huggingface.co/ytu-ce-cosmos/turkish-gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.3082 | 0.99 | 39 | 8.3464 | | 8.005 | 1.98 | 78 | 7.8311 | | 7.3738 | 2.99 | 118 | 7.4780 | | 7.21 | 3.98 | 157 | 7.1821 | | 6.7504 | 4.99 | 197 | 6.9618 | | 6.9037 | 5.98 | 236 | 6.8182 | | 6.5975 | 6.99 | 276 | 6.7208 | | 6.5246 | 7.98 | 315 | 6.6663 | | 6.3202 | 8.99 | 355 | 6.6420 | | 6.3742 | 9.88 | 390 | 6.6387 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "ytu-ce-cosmos/turkish-gpt2", "model-index": [{"name": "gpt2Kaggle_v2", "results": []}]}
eminAydin/gpt2Kaggle_v2
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:ytu-ce-cosmos/turkish-gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:52:49+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/SSNI652
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:52:55+00:00
null
transformers
{}
Rasi1610/Deathce502_series1_n4
null
[ "transformers", "pytorch", "vision-encoder-decoder", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:53:40+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["trl", "sft"]}
MilaNguyen/sft_bart
null
[ "transformers", "safetensors", "bart", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:53:52+00:00
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Juniplayground/juniper-mxbai-embed-large-v1-more-data-3point4l
null
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:54:43+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/IPX996
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:55:34+00:00
text-generation
transformers
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644a78de7c5c68c7762886eb/DRSBp2HJj6r4dz0Yp5bXC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644a78de7c5c68c7762886eb/0Wmlms4zyFOUQ2TeYxQBS.png)
{"license": "apache-2.0"}
BoyangZ/llava_llama2_chat_ft_chinese_english
null
[ "transformers", "safetensors", "llava_llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:55:37+00:00
null
null
{}
letgoofthepizza/ko-pokemon-sd
null
[ "region:us" ]
null
2024-05-02T04:56:44+00:00
text-generation
transformers
# D_AU-Tiefighter-Expanded-13B-pass2 D_AU-Tiefighter-Expanded-13B-pass2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) ## 🧩 Configuration ```yaml slices: - sources: - model: KoboldAI/LLaMA2-13B-Tiefighter layer_range: [0, 24] - sources: - model: KoboldAI/LLaMA2-13B-Tiefighter layer_range: [16, 40] merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DavidAU/D_AU-Tiefighter-Expanded-13B-pass2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "KoboldAI/LLaMA2-13B-Tiefighter"], "base_model": ["KoboldAI/LLaMA2-13B-Tiefighter", "KoboldAI/LLaMA2-13B-Tiefighter"]}
DavidAU/D_AU-Tiefighter-Expanded-13B-pass2
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "KoboldAI/LLaMA2-13B-Tiefighter", "base_model:KoboldAI/LLaMA2-13B-Tiefighter", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T04:58:07+00:00
text-generation
transformers
Quantizations of https://huggingface.co/raincandy-u/phillama-3.8b-v1 # From original readme Phillama is a model based on Phi-3-mini and trained on Llama-generated datasets to make it more "llama-like". Also, this model is converted into Llama format, so it will work with any Llama-2/3 workflow. ## Dataset | Source | Task | Number of examples(k) | | :-----------: | :------: | :--------------: | | lmsys-1m | Chat | 50 | | dolphin-coder | Code | 10 | | slimorca | Reasoning | 10 | <h3>For more information include training details, see <a href="https://angelkawaii.xyz/2024/04/26/llama-3-finetune-1/">this blog post</a></h3> ## System prompt `You are a humanoid AI assistant. You think step by step and give detailed long response.` ## Prompt template ``` <|system|> You are a humanoid AI assistant. You think step by step and give detailed long response.<|end|> <|user|> Why people like llama?<|end|> <|assistant|> ```
{"language": ["en"], "license": "other", "tags": ["transformers", "gguf", "imatrix", "phillama-3.8b-v1"], "pipeline_tag": "text-generation", "inference": false}
duyntnet/phillama-3.8b-v1-imatrix-GGUF
null
[ "transformers", "gguf", "imatrix", "phillama-3.8b-v1", "text-generation", "en", "license:other", "region:us" ]
null
2024-05-02T04:59:25+00:00
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shtapm/whisper-large_0502_all_200steps
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T04:59:58+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Sao10K/NyakuraV2-34B-Yi-Llama <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q2_K.gguf) | Q2_K | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.IQ3_XS.gguf) | IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q3_K_S.gguf) | Q3_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.IQ3_S.gguf) | IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.IQ3_M.gguf) | IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q3_K_L.gguf) | Q3_K_L | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.IQ4_XS.gguf) | IQ4_XS | 18.7 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q5_K_S.gguf) | Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q5_K_M.gguf) | Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q6_K.gguf) | Q6_K | 28.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NyakuraV2-34B-Yi-Llama-GGUF/resolve/main/NyakuraV2-34B-Yi-Llama.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "base_model": "Sao10K/NyakuraV2-34B-Yi-Llama", "quantized_by": "mradermacher"}
mradermacher/NyakuraV2-34B-Yi-Llama-GGUF
null
[ "transformers", "gguf", "en", "base_model:Sao10K/NyakuraV2-34B-Yi-Llama", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T05:00:50+00:00
null
null
{}
Simonk97/MATNGOC
null
[ "region:us" ]
null
2024-05-02T05:02:28+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
xp0tat0/farmer_5
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T05:03:15+00:00