Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
fill-mask
transformers
{}
Contrastive-Tension/BERT-Base-NLI-CT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Contrastive-Tension/BERT-Base-Swe-CT-STSb
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Contrastive-Tension/BERT-Distil-CT-STSb
null
[ "transformers", "pytorch", "tf", "distilbert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Contrastive-Tension/BERT-Distil-CT
null
[ "transformers", "pytorch", "tf", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Contrastive-Tension/BERT-Distil-NLI-CT
null
[ "transformers", "pytorch", "tf", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Contrastive-Tension/BERT-Large-CT-STSb
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Contrastive-Tension/BERT-Large-CT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Contrastive-Tension/BERT-Large-NLI-CT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Contrastive-Tension/RoBerta-Large-CT-STSb
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Cooker/cicero-similis
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Cool/Demo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
@inproceedings{wan2020bringing, title={Bringing Old Photos Back to Life}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2747--2757}, year={2020} } @article{wan2020old, title={Old Photo Restoration via Deep Latent Space Translation}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, journal={arXiv preprint arXiv:2009.07047}, year={2020} }
{"language": ["en"], "license": "mit", "tags": ["image_restoration", "superresolution"], "thumbnail": "https://github.com/Nick-Harvey/for_my_abuela/blob/master/cuban_large.jpg"}
Coolhand/Abuela
null
[ "image_restoration", "superresolution", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Coolhand/Sentiment
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Atakan DialoGPT Model
{"tags": ["conversational"]}
CopymySkill/DialoGPT-medium-atakan
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#DiabloGPT Captain Price (Extended)
{"tags": ["conversational"]}
Corvus/DialoGPT-medium-CaptainPrice-Extended
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Captain Price DialoGPT Model
{"tags": ["conversational"]}
Corvus/DialoGPT-medium-CaptainPrice
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
### Description A Multi-label text classification model trained on a customer feedback data using DistilBert. Possible labels are: - Delivery (delivery status, time of arrival, etc.) - Return (return confirmation, return label requests, etc.) - Product (quality, complaint, etc.) - Monetary (pending transactions, refund, etc.) ### Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_mlc_v7_distil") model = AutoModelForSequenceClassification.from_pretrained("CouchCat/ma_mlc_v7_distil") ```
{"language": "en", "license": "mit", "tags": ["multi-label"], "widget": [{"text": "I would like to return these pants and shoes"}]}
CouchCat/ma_mlc_v7_distil
null
[ "transformers", "pytorch", "distilbert", "text-classification", "multi-label", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
### Description A Named Entity Recognition model trained on a customer feedback data using DistilBert. Possible labels are: - PRD: for certain products - BRND: for brands ### Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v6_distil") model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v6_distil") ```
{"language": "en", "license": "mit", "tags": ["ner"], "widget": [{"text": "These shoes from Adidas fit quite well"}]}
CouchCat/ma_ner_v6_distil
null
[ "transformers", "pytorch", "distilbert", "token-classification", "ner", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
### Description A Named Entity Recognition model trained on a customer feedback data using DistilBert. Possible labels are in BIO-notation. Performance of the PERS tag could be better because of low data samples: - PROD: for certain products - BRND: for brands - PERS: people names The following tags are simply in place to help better categorize the previous tags - MATR: relating to materials, e.g. cloth, leather, seam, etc. - TIME: time related entities - MISC: any other entity that might skew the results ### Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v7_distil") model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v7_distil") ```
{"language": "en", "license": "mit", "tags": ["ner"], "widget": [{"text": "These shoes I recently bought from Tommy Hilfiger fit quite well. The shirt, however, has got a hole"}]}
CouchCat/ma_ner_v7_distil
null
[ "transformers", "pytorch", "distilbert", "token-classification", "ner", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
### Description A Sentiment Analysis model trained on customer feedback data using DistilBert. Possible sentiments are: * negative * neutral * positive ### Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_sa_v7_distil") model = AutoModelForSequenceClassification.from_pretrained("CouchCat/ma_sa_v7_distil") ```
{"language": "en", "license": "mit", "tags": ["sentiment-analysis"], "widget": [{"text": "I am disappointed in the terrible quality of my dress"}]}
CouchCat/ma_sa_v7_distil
null
[ "transformers", "pytorch", "distilbert", "text-classification", "sentiment-analysis", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CoveJH/ConBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Coverage/sakurajimamai
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
Arthur Morgan DialoGPT Model
{"tags": ["conversational"]}
Coyotl/DialoGPT-test-last-arthurmorgan
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Arthur Morgan DialoGPT Model
{"tags": ["conversational"]}
Coyotl/DialoGPT-test2-arthurmorgan
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
# DialoGPT Arthur Morgan
{"tags": ["conversational"]}
Coyotl/DialoGPT-test3-arthurmorgan
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Craak/GJ0001
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
@Piglin Talks Harry Potter
{"tags": ["conversational"]}
CracklesCreeper/Piglin-Talks-Harry-Potter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Craftified/Bob
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
sentence-transformers
# A model.
{"license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "feature-extraction"}
Craig/mGqFiPhu
null
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
sentence-transformers
# sentence-transformers/paraphrase-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This is a clone of the original model, with `pipeline_tag` metadata changed to `feature-extraction`, so it can just return the embedded vector. Otherwise it is unchanged. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
{"license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "feature-extraction"}
Craig/paraphrase-MiniLM-L6-v2
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Finetuned from BERT-base for - Problem type: Multi-class Classification - Model ID: 25805800 ## Validation Metrics - Loss: 0.4422711133956909 - Accuracy: 0.8615328555811976 - Macro F1: 0.8642434650461513 - Micro F1: 0.8615328555811976 - Weighted F1: 0.8617743626671308 - Macro Precision: 0.8649112225076049 - Micro Precision: 0.8615328555811976 - Weighted Precision: 0.8625407179375096 - Macro Recall: 0.8640777539828228 - Micro Recall: 0.8615328555811976 - Weighted Recall: 0.8615328555811976 ## Usage ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Crasher222/kaggle-comp-test") tokenizer = AutoTokenizer.from_pretrained("Crasher222/kaggle-comp-test") inputs = tokenizer("I am in love with you", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Crasher222/autonlp-data-kaggle-test"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 60.744727079482495}
Crasher222/kaggle-comp-test
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:Crasher222/autonlp-data-kaggle-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CrayonShinchan/bart_fine_tune_test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CrayonShinchan/fine_tune_try_1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
hello
{}
CrisLeaf/generador-de-historias-de-tolkien
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Crisblair/Wkwk
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Crispy/dialopt-small-kratos
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7814 | 1.0 | 250 | 0.3105 | 0.907 | 0.9046 | | 0.2401 | 2.0 | 500 | 0.2175 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9215, "name": "Accuracy"}, {"type": "f1", "value": 0.9215538311282218, "name": "F1"}]}]}]}
Crives/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
keras
{}
Crumped/imdb-simpleRNN
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CrypticT1tan/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#rick DialoGPT Model
{"tags": ["conversational"]}
Cryptikdw/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Crystal/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Paladin Danse DialoGPT Model
{"tags": ["conversational"]}
Cthyllax/DialoGPT-medium-PaladinDanse
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0807 - Precision: 0.8927 - Recall: 0.8632 - F1: 0.8777 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0544 | 1.0 | 2904 | 0.0774 | 0.8859 | 0.8490 | 0.8670 | 0.9833 | | 0.0284 | 2.0 | 5808 | 0.0781 | 0.8709 | 0.8590 | 0.8649 | 0.9840 | | 0.0166 | 3.0 | 8712 | 0.0807 | 0.8927 | 0.8632 | 0.8777 | 0.9850 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "gpl-3.0", "tags": ["generated_from_trainer"], "datasets": ["mim_gold_ner"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "IceBERT-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "mim_gold_ner", "type": "mim_gold_ner", "args": "mim-gold-ner"}, "metrics": [{"type": "precision", "value": 0.8927335640138409, "name": "Precision"}, {"type": "recall", "value": 0.8631855657784682, "name": "Recall"}, {"type": "f1", "value": 0.8777109531620194, "name": "F1"}, {"type": "accuracy", "value": 0.9849836396073506, "name": "Accuracy"}]}]}]}
Culmenus/IceBERT-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:mim_gold_ner", "license:gpl-3.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0891 - Precision: 0.8804 - Recall: 0.8517 - F1: 0.8658 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0573 | 1.0 | 2904 | 0.1024 | 0.8608 | 0.8003 | 0.8295 | 0.9799 | | 0.0307 | 2.0 | 5808 | 0.0899 | 0.8707 | 0.8380 | 0.8540 | 0.9825 | | 0.0198 | 3.0 | 8712 | 0.0891 | 0.8804 | 0.8517 | 0.8658 | 0.9837 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "agpl-3.0", "tags": ["generated_from_trainer"], "datasets": ["mim_gold_ner"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "XLMR-ENIS-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "mim_gold_ner", "type": "mim_gold_ner", "args": "mim-gold-ner"}, "metrics": [{"type": "precision", "value": 0.8803619696791632, "name": "Precision"}, {"type": "recall", "value": 0.8517339397384878, "name": "Recall"}, {"type": "f1", "value": 0.8658113730929264, "name": "F1"}, {"type": "accuracy", "value": 0.9837103244207861, "name": "Accuracy"}]}]}]}
Culmenus/XLMR-ENIS-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:mim_gold_ner", "license:agpl-3.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/checkpoint-168500-finetuned-de-to-is_nr2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_ancc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_ekkicc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_nr2-finetuned-de-to-is_nr2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Culmenus/opus-mt-de-is-finetuned-de-to-is_nr2
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [Infore_25h dataset](https://files.huylenguyen.com/25hours.zip) (Password: BroughtToYouByInfoRe) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.63 % ## Training The Common Voice `train`, `validation`, and `Infore_25h` datasets were used for training The script used for training can be found [here](https://drive.google.com/file/d/1AW9R8IlsapiSGh9n3aECf23t-zhk3wUh/view?usp=sharing) =======================To here===============================> Your model in then available under *huggingface.co/CuongLD/wav2vec2-large-xlsr-vietnamese* for everybody to use 🎉. ## How to evaluate my trained checkpoint Having uploaded your model, you should now evaluate your model in a final step. This should be as simple as copying the evaluation code of your model card into a python script and running it. Make sure to note the final result on the model card **both** under the YAML tags at the very top **and** below your evaluation code under "Test Results". ## Rules of training and evaluation In this section, we will quickly go over what data is allowed to be used as training data, what kind of data preprocessing is allowed be used, and how the model should be evaluated. To make it very simple regarding the first point: **All data except the official common voice `test` data set can be used as training data**. For models trained in a language that is not included in Common Voice, the author of the model is responsible to leave a reasonable amount of data for evaluation. Second, the rules regarding the preprocessing are not that as straight-forward. It is allowed (and recommended) to normalize the data to only have lower-case characters. It is also allowed (and recommended) to remove typographical symbols and punctuation marks. A list of such symbols can *e.g.* be fonud [here](https://en.wikipedia.org/wiki/List_of_typographical_symbols_and_punctuation_marks) - however here we already must be careful. We should **not** remove a symbol that would change the meaning of the words, *e.g.* in English, we should not remove the single quotation mark `'` since it would change the meaning of the word `"it's"` to `"its"` which would then be incorrect. So the golden rule here is to not remove any characters that could change the meaning of a word into another word. This is not always obvious and should be given some consideration. As another example, it is fine to remove the "Hypen-minus" sign "`-`" since it doesn't change the meaninng of a word to another one. *E.g.* "`fine-tuning`" would be changed to "`finetuning`" which has still the same meaning. Since those choices are not always obvious when in doubt feel free to ask on Slack or even better post on the forum, as was done, *e.g.* [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586). ## Tips and tricks This section summarizes a couple of tips and tricks across various topics. It will continously be updated during the week. ### How to combine multiple datasets into one Check out [this](https://discuss.huggingface.co/t/how-to-combine-local-data-files-with-an-official-dataset/4685) post. ### How to effectively preprocess the data ### How to do efficiently load datasets with limited ram and hard drive space Check out [this](https://discuss.huggingface.co/t/german-asr-fine-tuning-wav2vec2/4558/8?u=patrickvonplaten) post. ### How to do hyperparameter tuning ### How to preprocess and evaluate character based languages ## Further reading material It is recommended that take some time to read up on how Wav2vec2 works in theory. Getting a better understanding of the theory and the inner mechanisms of the model often helps when fine-tuning the model. **However**, if you don't like reading blog posts/papers, don't worry - it is by no means necessary to go through the theory to fine-tune Wav2Vec2 on your language of choice. If you are interested in learning more about the model though, here are a couple of resources that are important to better understand Wav2Vec2: - [Facebook's Wav2Vec2 blog post](https://ai.facebook.com/blog/wav2vec-state-of-the-art-speech-recognition-through-self-supervision/) - [Official Wav2Vec2 paper](https://arxiv.org/abs/2006.11477) - [Official XLSR Wav2vec2 paper](https://arxiv.org/pdf/2006.13979.pdf) - [Hugging Face Blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) - [How does CTC (Connectionist Temporal Classification) work](https://distill.pub/2017/ctc/) It helps to have a good understanding of the following points: - How was XLSR-Wav2Vec2 pretrained? -> Feature vectors were masked and had to be predicted by the model; very similar in spirit to masked language model of BERT. - What parts of XLSR-Wav2Vec2 are responsible for what? What is the feature extractor part used for? -> extract feature vectors from the 1D raw audio waveform; What is the transformer part doing? -> mapping feature vectors to contextualized feature vectors; ... - What part of the model needs to be fine-tuned? -> The pretrained model **does not** include a language head to classify the contextualized features to letters. This is randomly initialized when loading the pretrained checkpoint and has to be fine-tuned. Also, note that the authors recommend to **not** further fine-tune the feature extractor. - What data was used to XLSR-Wav2Vec2? The checkpoint we will use for further fine-tuning was pretrained on **53** languages. - What languages are considered to be similar by XLSR-Wav2Vec2? In the official [XLSR Wav2Vec2 paper](https://arxiv.org/pdf/2006.13979.pdf), the authors show nicely which languages share a common contextualized latent space. It might be useful for you to extend your training data with data of other languages that are considered to be very similar by the model (or you). ## FAQ - Can a participant fine-tune models for more than one language? Yes! A participant can fine-tune models in as many languages she/he likes - Can a participant use extra data (apart from the common voice data)? Yes! All data except the official common voice `test data` can be used for training. If a participant wants to train a model on a language that is not part of Common Voice (which is very much encouraged!), the participant should make sure that some test data is held out to make sure the model is not overfitting. - Can we fine-tune for high-resource languages? Yes! While we do not really recommend people to fine-tune models in English since there are already so many fine-tuned speech recognition models in English. However, it is very much appreciated if participants want to fine-tune models in other "high-resource" languages, such as French, Spanish, or German. For such cases, one probably needs to train locally and apply might have to apply tricks such as lazy data loading (check the ["Lazy data loading"](#how-to-do-lazy-data-loading) section for more details).
{"language": "vi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice, infore_25h"], "metrics": ["wer"], "model-index": [{"name": "Cuong-Cong XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice vi", "type": "common_voice", "args": "vi"}, "metrics": [{"type": "wer", "value": 58.63, "name": "Test WER"}]}]}]}
CuongLD/wav2vec2-large-xlsr-vietnamese
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "vi", "arxiv:2006.11477", "arxiv:2006.13979", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CurtisASmith/GPT-JRT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CurtisBowser/DialoGPT-medium-sora-three
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
# Sora DialoGPT Model
{"tags": ["conversational"]}
CurtisBowser/DialoGPT-medium-sora-two
null
[ "pytorch", "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Sora DialoGPT Model
{"tags": ["conversational"]}
CurtisBowser/DialoGPT-medium-sora
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Sora DialoGPT Model
{"tags": ["conversational"]}
CurtisBowser/DialoGPT-small-sora
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Chandler Bot DialoGPT model
{"tags": ["conversational"]}
CyberMuffin/DialoGPT-small-ChandlerBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Cyrell/Cyrell
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Czapla/Rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D-Keqi/espnet_asr_train_asr_streaming_transformer_raw_en_bpe500_sp_valid.acc.ave
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D3vil/DialoGPT-smaall-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D3vil/DialoGPT-smaall-harrypottery
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D3xter1922/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-cola This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6367 - Matthews Correlation: 0.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4139 | 1.0 | 535 | 0.4137 | 0.6381 | | 0.2452 | 2.0 | 1070 | 0.4887 | 0.6504 | | 0.17 | 3.0 | 1605 | 0.5335 | 0.6757 | | 0.1135 | 4.0 | 2140 | 0.6367 | 0.6824 | | 0.0817 | 5.0 | 2675 | 0.6742 | 0.6755 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "electra-base-discriminator-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.6824089073723449, "name": "Matthews Correlation"}]}]}]}
D3xter1922/electra-base-discriminator-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D3xter1922/electra-base-discriminator-finetuned-mnli
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
D4RL1NG/yes
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Anakin Skywalker DialoGPT Model
{"tags": ["conversational"]}
DARKVIP3R/DialoGPT-medium-Anakin
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# bert-base-irish-cased-v1 [gaBERT](https://aclanthology.org/2022.lrec-1.511/) is a BERT-base model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. ## Model description Encoder-based Transformer to be used to obtain features for finetuning for downstream tasks in Irish. ## Intended uses & limitations Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1 ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @inproceedings{barry-etal-2022-gabert, title = "ga{BERT} {---} an {I}rish Language Model", author = "Barry, James and Wagner, Joachim and Cassidy, Lauren and Cowap, Alan and Lynn, Teresa and Walsh, Abigail and {\'O} Meachair, M{\'\i}che{\'a}l J. and Foster, Jennifer", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.511", pages = "4774--4788", abstract = "The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many NLP tasks. We introduce gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and the monolingual Irish WikiBERT, and we show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We compare the results of fine-tuning a gaBERT model with an mBERT model for the task of identifying verbal multiword expressions, and show that the fine-tuned gaBERT model also performs better at this task. We release gaBERT and related code to the community.", } ```
{"tags": ["generated_from_keras_callback"], "widget": [{"text": "Ceolt\u00f3ir [MASK] ab ea Johnny Cash."}], "model-index": [{"name": "bert-base-irish-cased-v1", "results": []}]}
DCU-NLP/bert-base-irish-cased-v1
null
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# gaELECTRA [gaELECTRA](https://aclanthology.org/2022.lrec-1.511/) is an ELECTRA model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. For fine-tuning this model on a token classification task, e.g. Named Entity Recognition, use the discriminator model. ### Limitations and bias Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @inproceedings{barry-etal-2022-gabert, title = "ga{BERT} {---} an {I}rish Language Model", author = "Barry, James and Wagner, Joachim and Cassidy, Lauren and Cowap, Alan and Lynn, Teresa and Walsh, Abigail and {\'O} Meachair, M{\'\i}che{\'a}l J. and Foster, Jennifer", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.511", pages = "4774--4788", abstract = "The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many NLP tasks. We introduce gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and the monolingual Irish WikiBERT, and we show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We compare the results of fine-tuning a gaBERT model with an mBERT model for the task of identifying verbal multiword expressions, and show that the fine-tuned gaBERT model also performs better at this task. We release gaBERT and related code to the community.", } ```
{"language": ["ga"], "license": "apache-2.0", "tags": ["irish", "electra"], "widget": [{"text": "Ceolt\u00f3ir [MASK] ab ea Johnny Cash."}]}
DCU-NLP/electra-base-irish-cased-discriminator-v1
null
[ "transformers", "pytorch", "electra", "pretraining", "irish", "ga", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# gaELECTRA [gaELECTRA](https://aclanthology.org/2022.lrec-1.511/) is an ELECTRA model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. For fine-tuning this model on a token classification task, e.g. Named Entity Recognition, use the discriminator model. ### Limitations and bias Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @inproceedings{barry-etal-2022-gabert, title = "ga{BERT} {---} an {I}rish Language Model", author = "Barry, James and Wagner, Joachim and Cassidy, Lauren and Cowap, Alan and Lynn, Teresa and Walsh, Abigail and {\'O} Meachair, M{\'\i}che{\'a}l J. and Foster, Jennifer", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.511", pages = "4774--4788", abstract = "The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many NLP tasks. We introduce gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and the monolingual Irish WikiBERT, and we show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We compare the results of fine-tuning a gaBERT model with an mBERT model for the task of identifying verbal multiword expressions, and show that the fine-tuned gaBERT model also performs better at this task. We release gaBERT and related code to the community.", } ```
{"language": ["ga"], "license": "apache-2.0", "tags": ["irish", "electra"], "widget": [{"text": "Ceolt\u00f3ir [MASK] ab ea Johnny Cash."}]}
DCU-NLP/electra-base-irish-cased-generator-v1
null
[ "transformers", "pytorch", "electra", "fill-mask", "irish", "ga", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
DHBaek/gpt2-stackoverflow-question-contents-generator
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
DHBaek/xlm-roberta-large-korquad-mask
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Danish BERT (uncased) model [BotXO.ai](https://www.botxo.ai/) developed this model. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert). The original model was trained in TensorFlow then I converted it to Pytorch using [transformers-cli](https://huggingface.co/transformers/converting_tensorflow_models.html?highlight=cli). For TensorFlow version download here: https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1 ## Architecture ```python from transformers import AutoModelForPreTraining model = AutoModelForPreTraining.from_pretrained("DJSammy/bert-base-danish-uncased_BotXO,ai") params = list(model.named_parameters()) print('danish_bert_uncased_v2 has {:} different named parameters.\n'.format(len(params))) print('==== Embedding Layer ====\n') for p in params[0:5]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== First Transformer ====\n') for p in params[5:21]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Last Transformer ====\n') for p in params[181:197]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Output Layer ====\n') for p in params[197:]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) # danish_bert_uncased_v2 has 206 different named parameters. # ==== Embedding Layer ==== # bert.embeddings.word_embeddings.weight (32000, 768) # bert.embeddings.position_embeddings.weight (512, 768) # bert.embeddings.token_type_embeddings.weight (2, 768) # bert.embeddings.LayerNorm.weight (768,) # bert.embeddings.LayerNorm.bias (768,) # ==== First Transformer ==== # bert.encoder.layer.0.attention.self.query.weight (768, 768) # bert.encoder.layer.0.attention.self.query.bias (768,) # bert.encoder.layer.0.attention.self.key.weight (768, 768) # bert.encoder.layer.0.attention.self.key.bias (768,) # bert.encoder.layer.0.attention.self.value.weight (768, 768) # bert.encoder.layer.0.attention.self.value.bias (768,) # bert.encoder.layer.0.attention.output.dense.weight (768, 768) # bert.encoder.layer.0.attention.output.dense.bias (768,) # bert.encoder.layer.0.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.0.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.0.intermediate.dense.weight (3072, 768) # bert.encoder.layer.0.intermediate.dense.bias (3072,) # bert.encoder.layer.0.output.dense.weight (768, 3072) # bert.encoder.layer.0.output.dense.bias (768,) # bert.encoder.layer.0.output.LayerNorm.weight (768,) # bert.encoder.layer.0.output.LayerNorm.bias (768,) # ==== Last Transformer ==== # bert.encoder.layer.11.attention.self.query.weight (768, 768) # bert.encoder.layer.11.attention.self.query.bias (768,) # bert.encoder.layer.11.attention.self.key.weight (768, 768) # bert.encoder.layer.11.attention.self.key.bias (768,) # bert.encoder.layer.11.attention.self.value.weight (768, 768) # bert.encoder.layer.11.attention.self.value.bias (768,) # bert.encoder.layer.11.attention.output.dense.weight (768, 768) # bert.encoder.layer.11.attention.output.dense.bias (768,) # bert.encoder.layer.11.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.11.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.11.intermediate.dense.weight (3072, 768) # bert.encoder.layer.11.intermediate.dense.bias (3072,) # bert.encoder.layer.11.output.dense.weight (768, 3072) # bert.encoder.layer.11.output.dense.bias (768,) # bert.encoder.layer.11.output.LayerNorm.weight (768,) # bert.encoder.layer.11.output.LayerNorm.bias (768,) # ==== Output Layer ==== # bert.pooler.dense.weight (768, 768) # bert.pooler.dense.bias (768,) # cls.predictions.bias (32000,) # cls.predictions.transform.dense.weight (768, 768) # cls.predictions.transform.dense.bias (768,) # cls.predictions.transform.LayerNorm.weight (768,) # cls.predictions.transform.LayerNorm.bias (768,) # cls.seq_relationship.weight (2, 768) # cls.seq_relationship.bias (2,) ``` ## Example Pipeline ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='DJSammy/bert-base-danish-uncased_BotXO,ai') unmasker('København er [MASK] i Danmark.') # Copenhagen is the [MASK] of Denmark. # => # [{'score': 0.788068950176239, # 'sequence': '[CLS] københavn er hovedstad i danmark. [SEP]', # 'token': 12610, # 'token_str': 'hovedstad'}, # {'score': 0.07606703042984009, # 'sequence': '[CLS] københavn er hovedstaden i danmark. [SEP]', # 'token': 8108, # 'token_str': 'hovedstaden'}, # {'score': 0.04299738258123398, # 'sequence': '[CLS] københavn er metropol i danmark. [SEP]', # 'token': 23305, # 'token_str': 'metropol'}, # {'score': 0.008163209073245525, # 'sequence': '[CLS] københavn er ikke i danmark. [SEP]', # 'token': 89, # 'token_str': 'ikke'}, # {'score': 0.006238455418497324, # 'sequence': '[CLS] københavn er ogsa i danmark. [SEP]', # 'token': 25253, # 'token_str': 'ogsa'}] ```
{"language": "da", "license": "cc-by-4.0", "tags": ["bert", "masked-lm"], "datasets": ["common_crawl", "wikipedia"], "pipeline_tag": "fill-mask", "widget": [{"text": "K\u00f8benhavn er [MASK] i Danmark."}]}
DJSammy/bert-base-danish-uncased_BotXO-ai
null
[ "transformers", "pytorch", "jax", "bert", "masked-lm", "fill-mask", "da", "dataset:common_crawl", "dataset:wikipedia", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
DJSammy/bert-base-swedish-uncased_BotXO-ai
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
DJStomp/TestingSalvoNET
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DKpro000/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DKpro000/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DLNLP/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DSI/TweetBasedSA
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
DSI/ar_emotion_6
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
** Human-Directed Sentiment Analysis in Arabic A supervised training procedure to classify human-directed-sentiment in a text. We define the human-directed-sentiment as the polarity of one user towards a second person who is involved with him in a discussion.
{}
DSI/human-directed-sentiment
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DSI/personal_sentiment
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT [Blog post »](https://people.cs.kuleuven.be/~pieter.delobelle/attitudes-towards-covid-19-measures/?utm_source=huggingface&utm_medium=social&utm_campaign=corona_tweets) · [paper »](http://arxiv.org/abs/2104.09947) This model can be used to determine if a tweet expresses support or not for a curfew. The model was trained on manually labeled tweets from Belgium in Dutch, French and English. We categorized several months worth of these Tweets by topic (government COVID measure) and opinion expressed. Below is a timeline of the relative number of Tweets on the curfew topic (middle) and the fraction of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the number of daily cases in Belgium to give context on the pandemic situation (top). ![chart.png](https://github.com/iPieter/bert-corona-tweets/raw/master/chart.png) Models used in this paper are on HuggingFace: - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
{"language": ["multilingual", "nl", "fr", "en"], "tags": ["Tweets", "Sentiment analysis"], "widget": [{"text": "I really wish I could leave my house after midnight, this makes no sense!"}]}
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "Tweets", "Sentiment analysis", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT [Blog post »](https://people.cs.kuleuven.be/~pieter.delobelle/attitudes-towards-covid-19-measures/?utm_source=huggingface&utm_medium=social&utm_campaign=corona_tweets) · [paper »](http://arxiv.org/abs/2104.09947) We categorized several months worth of these Tweets by topic (government COVID measure) and opinion expressed. Below is a timeline of the relative number of Tweets on the curfew topic (middle) and the fraction of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the number of daily cases in Belgium to give context on the pandemic situation (top). ![chart.png](https://github.com/iPieter/bert-corona-tweets/raw/master/chart.png) Models used in this paper are on HuggingFace: - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
{"language": ["multilingual", "nl", "fr", "en"], "tags": ["Dutch", "French", "English", "Tweets", "Topic classification"], "widget": [{"text": "I really can't wait for this lockdown to be over and go back to waking up early."}]}
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "Dutch", "French", "English", "Tweets", "Topic classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | this model | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
{"language": "nl", "license": "mit", "tags": ["Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje"], "datasets": ["oscar", "dbrd", "lassy-ud", "europarl-mono", "conll2002"], "thumbnail": "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png", "widget": [{"text": "Hallo, ik ben RobBERTje, een gedistilleerd <mask> taalmodel van de KU Leuven."}]}
DTAI-KULeuven/robbertje-1-gb-bort
null
[ "transformers", "pytorch", "roberta", "fill-mask", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | this model | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
{"language": "nl", "license": "mit", "tags": ["Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje"], "datasets": ["oscar", "oscar (NL)", "dbrd", "lassy-ud", "europarl-mono", "conll2002"], "thumbnail": "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png", "widget": [{"text": "Hallo, ik ben RobBERTje, een gedistilleerd <mask> taalmodel van de KU Leuven."}]}
DTAI-KULeuven/robbertje-1-gb-merged
null
[ "transformers", "pytorch", "roberta", "fill-mask", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "nl", "arxiv:2101.05716", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | this model | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
{"language": "nl", "license": "mit", "tags": ["Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje"], "datasets": ["oscar", "dbrd", "lassy-ud", "europarl-mono", "conll2002"], "thumbnail": "https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png", "widget": [{"text": "Hallo, ik ben RobBERTje, een gedistilleerd <mask> taalmodel van de KU Leuven."}]}
DTAI-KULeuven/robbertje-1-gb-non-shuffled
null
[ "transformers", "pytorch", "roberta", "fill-mask", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | this model | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
{"language": "nl", "license": "mit", "tags": ["Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje"], "datasets": ["oscar", "oscar (NL)", "dbrd", "lassy-ud", "europarl-mono", "conll2002"], "thumbnail": "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png", "widget": [{"text": "Hallo, ik ben RobBERTje, een gedistilleerd <mask> taalmodel van de KU Leuven."}]}
DTAI-KULeuven/robbertje-1-gb-shuffled
null
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "nl", "arxiv:2101.05716", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish BERT for emotion detection The BERT Emotion model detects whether a Danish text is emotional or not. It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-emotion) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-binary-emotion-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-binary-emotion-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Der er et tr\u00e6 i haven."}]}
alexandrainst/da-binary-emotion-classification-base
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish BERT for emotion classification The BERT Emotion model classifies a Danish text in one of the following class: * Glæde/Sindsro * Tillid/Accept * Forventning/Interrese * Overasket/Målløs * Vrede/Irritation * Foragt/Modvilje * Sorg/trist * Frygt/Bekymret It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. This model should be used after detecting whether the text contains emotion or not, using the binary [BERT Emotion model](https://huggingface.co/alexandrainst/da-binary-emotion-classification-base). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-emotion) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-emotion-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-emotion-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Jeg ejer en r\u00f8d bil og det er en god bil."}]}
alexandrainst/da-emotion-classification-base
null
[ "transformers", "pytorch", "tf", "bert", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish BERT for hate speech classification The BERT HateSpeech model classifies offensive Danish text into 4 categories: * `Særlig opmærksomhed` (special attention, e.g. threat) * `Personangreb` (personal attack) * `Sprogbrug` (offensive language) * `Spam & indhold` (spam) This model is intended to be used after the [BERT HateSpeech detection model](https://huggingface.co/alexandrainst/da-hatespeech-detection-base). It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#bertdr) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-hatespeech-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Senile gamle idiot"}]}
alexandrainst/da-hatespeech-classification-base
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish BERT for hate speech (offensive language) detection The BERT HateSpeech model detects whether a Danish text is offensive or not. It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#bertdr) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-detection-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-hatespeech-detection-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Senile gamle idiot"}]}
alexandrainst/da-hatespeech-detection-base
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# BERT fine-tuned for Named Entity Recognition in Danish The model tags tokens (in Danish sentences) with named entity tags (BIO format) [PER, ORG, LOC, MISC]. The pretrained language model used for fine-tuning is the [Danish BERT](https://github.com/certainlyio/nordic_bert) by BotXO. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/ner.html#bert) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForTokenClassification model = BertForTokenClassification.from_pretrained("alexandrainst/da-ner-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-ner-base") ``` ## Training Data The model has been trained on the [DaNE](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#dane).
{"language": ["da"], "license": "apache-2.0", "datasets": ["dane"], "widget": [{"text": "Jens Peter Hansen kommer fra Danmark"}]}
alexandrainst/da-ner-base
null
[ "transformers", "pytorch", "tf", "bert", "token-classification", "da", "dataset:dane", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Card for Danish BERT Danish BERT Tone for sentiment polarity detection # Model Details ## Model Description The BERT Tone model detects sentiment polarity (positive, neutral or negative) in Danish texts. It has been finetuned on the pretrained Danish BERT model by BotXO. - **Developed by:** DaNLP - **Shared by [Optional]:** Hugging Face - **Model type:** Text Classification - **Language(s) (NLP):** Danish (da) - **License:** cc-by-sa-4.0 - **Related Models:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/certainlyio/nordic_bert) - [Associated Documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) # Uses ## Direct Use This model can be used for text classification ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets. ## Training Procedure ### Preprocessing It has been finetuned on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO. ### Speeds, Sizes, Times More information needed. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed. ### Factors ### Metrics F1 ## Results More information needed. # Model Examination More information needed. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed. - **Hours used:** More information needed. - **Cloud Provider:** More information needed. - **Compute Region:** More information needed. - **Carbon Emitted:** More information needed. # Technical Specifications [optional] ## Model Architecture and Objective More information needed. ## Compute Infrastructure More information needed. ### Hardware More information needed. ### Software More information needed. # Citation **BibTeX:** More information needed. **APA:** More information needed. # Glossary [optional] More information needed. # More Information [optional] More information needed. # Model Card Authors [optional] DaNLP in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed. # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-sentiment-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-sentiment-base") ``` </details>
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Det er super godt"}]}
alexandrainst/da-sentiment-base
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish BERT Tone for the detection of subjectivity/objectivity The BERT Tone model detects whether a text (in Danish) is subjective or objective. The model is based on the finetuning of the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-subjectivivity-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-subjectivivity-classification-base") ``` ## Training data The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets.
{"language": ["da"], "license": "apache-2.0", "datasets": ["DDSC/twitter-sent", "DDSC/europarl"], "widget": [{"text": "Jeg tror alligvel, det bliver godt"}]}
alexandrainst/da-subjectivivity-classification-base
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "dataset:DDSC/twitter-sent", "dataset:DDSC/europarl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Danish ELECTRA for hate speech (offensive language) detection The ELECTRA Offensive model detects whether a Danish text is offensive or not. It is based on the pretrained [Danish Ælæctra](Maltehb/aelaectra-danish-electra-small-cased) model. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#electra) for more details. Here is how to use the model: ```python from transformers import ElectraTokenizer, ElectraForSequenceClassification model = ElectraForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-detection-small") tokenizer = ElectraTokenizer.from_pretrained("alexandrainst/da-hatespeech-detection-small") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
{"language": ["da"], "license": "apache-2.0", "widget": [{"text": "Senile gamle idiot"}]}
alexandrainst/da-hatespeech-detection-small
null
[ "transformers", "pytorch", "electra", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# XLM-Roberta fine-tuned for Named Entity Disambiguation Given a sentence and a knowledge graph context, the model detects whether a specific entity (represented by the knowledge graph context) is mentioned in the sentence (binary classification). The base language model used is the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Here is how to use the model: ```python from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification model = XLMRobertaForSequenceClassification.from_pretrained("alexandrainst/da-ned-base") tokenizer = XLMRobertaTokenizer.from_pretrained("alexandrainst/da-ned-base") ``` The tokenizer takes 2 strings has input: the sentence and the knowledge graph (KG) context. Here is an example: ```python sentence = "Karen Blixen vendte tilbage til Danmark, hvor hun boede resten af sit liv på Rungstedlund, som hun arvede efter sin mor i 1939" kg_context = "udmærkelser modtaget Kritikerprisen udmærkelser modtaget Tagea Brandts Rejselegat udmærkelser modtaget Ingenio et arti udmærkelser modtaget Holbergmedaljen udmærkelser modtaget De Gyldne Laurbær mor Ingeborg Dinesen ægtefælle Bror von Blixen-Finecke køn kvinde Commons-kategori Karen Blixen LCAuth no95003722 VIAF 90663542 VIAF 121643918 GND-identifikator 118637878 ISNI 0000 0001 2096 6265 ISNI 0000 0003 6863 4408 ISNI 0000 0001 1891 0457 fødested Rungstedlund fødested Rungsted dødssted Rungstedlund dødssted København statsborgerskab Danmark NDL-nummer 00433530 dødsdato +1962-09-07T00:00:00Z dødsdato +1962-01-01T00:00:00Z fødselsdato +1885-04-17T00:00:00Z fødselsdato +1885-01-01T00:00:00Z AUT NKC jn20000600905 AUT NKC jo2015880827 AUT NKC xx0196181 emnets hovedkategori Kategori:Karen Blixen tilfælde af menneske billede Karen Blixen cropped from larger original.jpg IMDb-identifikationsnummer nm0227598 Freebase-ID /m/04ymd8w BNF 118857710 beskæftigelse skribent beskæftigelse selvbiograf beskæftigelse novelleforfatter ..." ``` A KG context, for a specific entity, can be generated from its Wikidata page. In the previous example, the KG context is a string representation of the Wikidata page of [Karen Blixen (QID=Q182804)](https://www.wikidata.org/wiki/Q182804). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/ned.html#xlmr) for more details about how to generate a KG context. ## Training Data The model has been trained on the [DaNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#daned) and [DaWikiNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#dawikined) datasets.
{"language": ["da"], "license": "apache-2.0"}
alexandrainst/da-ned-base
null
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "text-classification", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00