Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned-d1
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned-d12
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Cheatham/xlm-roberta-large-finetuned-d12_2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned-d1r01
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned-r01
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned3
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Cheatham/xlm-roberta-large-finetuned4
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Check/vaw2tmp
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CheonggyeMountain-Sherpa/kogpt-trinity-poem
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
## Model based on [Ko-GPT-Trinity 1.2B (v0.5)](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) ## Example ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", ) model = AutoModelForCausalLM.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss pad_token_id=tokenizer.eos_token_id, ).to(device="cuda") model.eval() prompt = "์„์–‘์ด ๋ณด์ด๋Š” ๊ฒฝ์น˜" wrapped_prompt = f"@{prompt}@<usr>\n" with torch.no_grad(): tokens = tokenizer.encode(wrapped_prompt, return_tensors="pt").to(device="cuda") gen_tokens = model.generate( tokens, max_length=64, repetition_penalty=2.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, top_k=16, top_p=0.8, ) generated = tokenizer.decode(gen_tokens[0][len(tokens[0]):]) print(generated) # ํ•ด๊ฐ€ ์ง€๊ณ  ์žˆ์„ ๋ฌด๋ ต # ๋‚˜๋Š” ์„์–‘์„ ๋ณด๋Ÿฌ ๊ฐ„๋‹ค # ๋ถ‰์€ ํ•˜๋Š˜๊ณผ ํ•˜์–€ ๊ตฌ๋ฆ„์ด ๋‚˜๋ฅผ ๋ฐ˜๊ฒจ์ค„ ๊ฒƒ ๊ฐ™์•„์„œ๋ฆฌ # ํ•˜์ง€๋งŒ ๋‚ด๊ฐ€ ๋ณธ ํ•ด๋Š” ์ €๋ฌผ์–ด๋งŒ ๊ฐ€๊ณ  # ๊ตฌ๋ฆ„๋งˆ์ € ์ž์ทจ๋ฅผ ๊ฐ์ถ˜ ์–ด๋‘ ๋งŒ์ด ๋‚จ์•„์žˆ์„ ๋ฟ์ด๋„ค # ๋‚ด๊ฐ€ ํƒ„ ๋ฐฐ๋Š” ๋ณด์ด์ง€๋„ ์•Š๊ณ  ```
{"language": ["ko"], "license": "cc-by-nc-sa-4.0", "tags": ["gpt2"]}
CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper
null
[ "gpt2", "ko", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chertilasus/main
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chester/traffic-rec
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "bsd-3-clause-clear"}
Chikita1/www_stash_stock
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chinat/test-classifier
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
This question answering model was fine tuned to detect negation expressions How to use: question: negation context: That is not safe! Answer: not question: negation context: Weren't we going to go to the moon? Answer: Weren't
{}
Ching/negation_detector
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chinmay/mlindia
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Donald Trump DialoGPT Model built by following tutorial by [Ruolin Zheng](https://youtu.be/Rk8eM1p_xgM). The data used for training was 2020 presidential debate. More work is needed to optimize it. I don't have access to larger VRAM.
{"tags": ["conversational"]}
Chiuchiyin/DialoGPT-small-Donald
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chiuchiyin/Donald
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ChoboAvenger/DialoGPT-small-DocBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ChoboAvenger/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ChrisP/xlm-roberta-base-finetuned-marc-en
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# CMJS DialoGPT Model
{"tags": ["conversational"]}
ChrisVCB/DialoGPT-medium-cmjs
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Eddie Jones DialoGPT Model
{"tags": ["conversational"]}
ChrisVCB/DialoGPT-medium-ej
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
depth-estimation
null
# MADNet Keras MADNet is a deep stereo depth estimation model. Its key defining features are: 1. It has a light-weight architecture which means it has low latency. 2. It supports self-supervised training, so it can be conveniently adapted in the field with no training data. 3. It's a stereo depth model, which means it's capable of high accuracy. The MADNet weights in this repository were trained using a Tensorflow 2 / Keras implementation of the original code. The model was created using the Keras Functional API, which enables the following features: 1. Good optimization. 2. High level Keras methods (.fit, .predict and .evaluate). 3. Little boilerplate code. 4. Decent support from external packages (like Weights and Biases). 5. Callbacks. The weights provided were either trained on the 2012 / 2015 kitti stereo dataset or flyingthings-3d dataset. The weights of the pretrained models from the original paper (tf1_conversion_kitti.h5 and tf1_conversion_synthetic.h5) are provided in tensorflow 2 format. The TF1 weights help speed up fine-tuning, but its recommended to use either synthetic.h5 (trained on flyingthings-3d) or kitti.h5 (trained on 2012 and 2015 kitti stereo datasets). **Abstract**: Deep convolutional neural networks trained end-to-end are the undisputed state-of-the-art methods to regress dense disparity maps directly from stereo pairs. However, such methods suffer from notable accuracy drops when exposed to scenarios significantly different from those seen in the training phase (e.g.real vs synthetic images, indoor vs outdoor, etc). As it is unlikely to be able to gather enough samples to achieve effective training/ tuning in any target domain, we propose to perform unsupervised and continuous online adaptation of a deep stereo network in order to preserve its accuracy independently of the sensed environment. However, such a strategy can be extremely demanding regarding computational resources and thus not enabling real-time performance. Therefore, we address this side effect by introducing a new lightweight, yet effective, deep stereo architecture Modularly ADaptive Network (MADNet) and by developing Modular ADaptation (MAD), an algorithm to train independently only sub-portions of our model. By deploying MADNet together with MAD we propose the first ever realtime self-adaptive deep stereo system. ## Usage Instructions See the accompanying codes readme for details on how to perform training and inferencing with the model: [madnet-deep-stereo-with-keras](https://github.com/ChristianOrr/madnet-deep-stereo-with-keras). ## Training ### TF1 Kitti and TF1 Synthetic Training details for the TF1 weights are available in the supplementary material (at the end) of this paper: [Real-time self-adaptive deep stereo](https://arxiv.org/abs/1810.05424) ### Synthetic The synthetic model was finetuned using the tf1 synthetic weights. It was trained on the flyingthings-3d dataset with the following parameters: - Steps: 1.5 million - Learning Rate: 0.0001 - Decay Rate: 0.999 - Minimum Learning Rate Cap: 0.000001 - Batch Size: 1 - Optimizer: Adam - Image Height: 480 - Image Width: 640 ### Kitti The kitti model was finetuned using the synthetic weights. Tensorboard events file is available in the logs directory. It was trained on the 2012 and 2015 kitti stereo dataset with the following parameters: - Steps: 0.5 million - Learning Rate: 0.0001 - Decay Rate: 0.999 - Minimum Learning Rate Cap: 0.0000001 - Batch Size: 1 - Optimizer: Adam - Image Height: 480 - Image Width: 640 ## BibTeX entry and citation info ```bibtex @InProceedings{Tonioni_2019_CVPR, author = {Tonioni, Alessio and Tosi, Fabio and Poggi, Matteo and Mattoccia, Stefano and Di Stefano, Luigi}, title = {Real-time self-adaptive deep stereo}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2019} } ``` ```bibtex @article{Poggi2021continual, author={Poggi, Matteo and Tonioni, Alessio and Tosi, Fabio and Mattoccia, Stefano and Di Stefano, Luigi}, title={Continual Adaptation for Deep Stereo}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2021} } ``` ```bibtex @InProceedings{MIFDB16, author = "N. Mayer and E. Ilg and P. Hausser and P. Fischer and D. Cremers and A. Dosovitskiy and T. Brox", title = "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation", booktitle = "IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)", year = "2016", note = "arXiv:1512.02134", url = "http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16" } ``` ```bibtex @INPROCEEDINGS{Geiger2012CVPR, author = {Andreas Geiger and Philip Lenz and Raquel Urtasun}, title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2012} } ``` ```bibtex @INPROCEEDINGS{Menze2015CVPR, author = {Moritz Menze and Andreas Geiger}, title = {Object Scene Flow for Autonomous Vehicles}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2015} } ```
{"license": "apache-2.0", "tags": ["vision", "deep-stereo", "depth-estimation", "Tensorflow2", "Keras"], "datasets": ["flyingthings-3d", "kitti"]}
ChristianOrr/madnet_keras
null
[ "tensorboard", "vision", "deep-stereo", "depth-estimation", "Tensorflow2", "Keras", "dataset:flyingthings-3d", "dataset:kitti", "arxiv:1810.05424", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# IndoBERT (Indonesian BERT Model) ## Model description ELECTRA is a new method for self-supervised language representation learning. This repository contains the pre-trained Electra Base model (tensorflow 1.15.0) trained in a Large Indonesian corpus (~16GB of raw text | ~2B indonesian words). IndoELECTRA is a pre-trained language model based on ELECTRA architecture for the Indonesian Language. This model is base version which use electra-base config. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ChristopherA08/IndoELECTRA") model = AutoModel.from_pretrained("ChristopherA08/IndoELECTRA") tokenizer.encode("hai aku mau makan.") [2, 8078, 1785, 2318, 1946, 18, 4] ``` ## Training procedure The training of the model has been performed using Google's original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models.
{"language": "id", "datasets": ["oscar"]}
ChristopherA08/IndoELECTRA
null
[ "transformers", "pytorch", "electra", "pretraining", "id", "dataset:oscar", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT MOdel
{"tags": ["conversational"]}
Chuah/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Dr. Fauci DialoGPT Model
{"tags": ["conversational"]}
ChukSamuels/DialoGPT-small-Dr.FauciBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Chun/DialoGPT-large-dailydialog
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Chun/DialoGPT-medium-dailydialog
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Chun/DialoGPT-small-dailydialog
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-en2zh-hsk
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-en2zh-mtm
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-en2zh-otm
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-zh2en-hsk
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-zh2en-mtm
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Chun/w-zh2en-mto
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chungu424/DATA
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chungu424/qazwsx
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chungu424/repo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chungu424/repodata
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Chuu/Chumar
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ci/Pai
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
copied from boris
{}
Cilan/dalle-knockoff
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ## How to use the discriminator in `transformers` ``` from transformers import BertJapaneseTokenizer, ElectraForPreTraining tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator') ```
{"language": "ja", "license": "apache-2.0"}
Cinnamon/electra-small-japanese-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "ja", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
{"language": "ja"}
Cinnamon/electra-small-japanese-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ciruzzo/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Ciruzzo/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ciruzzo/DialoGPT-small-hattypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Clarianliz30/Caitlyn
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
{"tags": ["conversational"]}
ClaudeCOULOMBE/RickBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
zero-shot-classification
transformers
ETH Zeroshot
{"datasets": ["multi_nli"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "ETH", "candidate_labels": "Location & Address, Employment, Organizational, Name, Service, Studies, Science", "hypothesis_template": "This is {}."}]}
ClaudeYang/awesome_fb_model
null
[ "transformers", "pytorch", "bart", "text-classification", "zero-shot-classification", "dataset:multi_nli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/FieldClassifier
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/FieldClassifier_v2
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/FieldClassifier_v2_gpt
null
[ "transformers", "pytorch", "gpt2", "text-classification", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/JobClassifier
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/JobClassifier_v2
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CleveGreen/JobClassifier_v2_gpt
null
[ "transformers", "pytorch", "gpt2", "text-classification", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Clint/clinton
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{"tags": ["conversational"]}
Cloudy/DialoGPT-CJ-large
null
[ "transformers", "pytorch", "conversational", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
# My Awesome Model
{"tags": ["conversational"]}
ClydeWasTaken/DialoGPT-small-joshua
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CoShin/XLM-roberta-large_ko_en_nil_sts
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CoachCarter/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CoachCarter/distilbert-base-uncased
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Cartman DialoGPT Model
{"tags": ["conversational"]}
CodeDanCode/CartmenBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# SouthPark Kyle Bot
{"tags": ["conversational"]}
CodeDanCode/SP-KyleBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CodeMonkey98/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
CodeNinja1126/bert-p-encoder
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
CodeNinja1126/bert-q-encoder
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CodeNinja1126/koelectra-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
CodeNinja1126/test-model
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
CodeNinja1126/xlm-roberta-large-kor-mrc
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
CoderBoy432/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-marxbot") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-marxbot") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("MarxBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"tags": ["conversational"]}
CoderEFE/DialoGPT-marxbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoderEFE/DialoGPT-medium-marx
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Venkatakrishnan-Ramesh/Text_gen
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt1-call-of-the-wild
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt1-modest-proposal
null
[ "transformers", "pytorch", "openai-gpt", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt2-call-of-the-wild
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt2-medium-call-of-the-wild
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt2-medium-modest-proposal
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
CoffeeAddict93/gpt2-modest-proposal
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# bart-faithful-summary-detector ## Model description A BART (base) model trained to classify whether a summary is *faithful* to the original article. See our [paper in NAACL'21](https://www.seas.upenn.edu/~sihaoc/static/pdf/CZSR21.pdf) for details. ## Usage Concatenate a summary and a source document as input (note that the summary needs to be the **first** sentence). Here's an example usage (with PyTorch) ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CogComp/bart-faithful-summary-detector") model = AutoModelForSequenceClassification.from_pretrained("CogComp/bart-faithful-summary-detector") article = "Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011." bad_summary = "Ban Ki-moon was elected for a second term in 2007." good_summary = "Ban Ki-moon was elected for a second term in 2011." bad_pair = tokenizer(text=bad_summary, text_pair=article, return_tensors='pt') good_pair = tokenizer(text=good_summary, text_pair=article, return_tensors='pt') bad_score = model(**bad_pair) good_score = model(**good_pair) print(good_score[0][:, 1] > bad_score[0][:, 1]) # True, label mapping: "0" -> "Hallucinated" "1" -> "Faithful" ``` ### BibTeX entry and citation info ```bibtex @inproceedings{CZSR21, author = {Sihao Chen and Fan Zhang and Kazoo Sone and Dan Roth}, title = {{Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection}}, booktitle = {NAACL}, year = {2021} } ```
{"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["text-classification", "bart", "xsum"], "datasets": ["xsum"], "thumbnail": "https://cogcomp.seas.upenn.edu/images/logo.png", "widget": [{"text": "<s> Ban Ki-moon was elected for a second term in 2007. </s></s> Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011."}, {"text": "<s> Ban Ki-moon was elected for a second term in 2011. </s></s> Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011."}]}
CogComp/bart-faithful-summary-detector
null
[ "transformers", "pytorch", "jax", "bart", "text-classification", "xsum", "en", "dataset:xsum", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-temporal-predictor A RoBERTa-base model that is fine-tuned on the [The New York Times Annotated Corpus](https://catalog.ldc.upenn.edu/LDC2008T19) to predict temporal precedence of two events. This is used as the ``temporality prediction'' component in our ROCK framework for reasoning about commonsense causality. See our [paper](https://arxiv.org/abs/2202.00436) for more details. # Usage You can directly use this model for filling-mask tasks, as shown in the example widget. However, for better temporal inference, it is recommended to symmetrize the outputs as $$ P(E_1 \prec E_2) = \frac{1}{2} (f(E_1,E_2) + f(E_2,E_1)) $$ where ``f(E_1,E_2)`` denotes the predicted probability for ``E_1`` to occur preceding ``E_2``. For simplicity, we implement the following TempPredictor class that incorporate this symmetrization automatically. Below is an example usage for the ``TempPredictor`` class: ```python from transformers import (RobertaForMaskedLM, RobertaTokenizer) from src.temp_predictor import TempPredictor TORCH_DEV = "cuda:0" # change as needed tp_roberta_ft = src.TempPredictor( model=RobertaForMaskedLM.from_pretrained("CogComp/roberta-temporal-predictor"), tokenizer=RobertaTokenizer.from_pretrained("CogComp/roberta-temporal-predictor"), device=TORCH_DEV ) E1 = "The man turned on the faucet." E2 = "Water flows out." t12 = tp_roberta_ft(E1, E2, top_k=5) print(f"P('{E1}' before '{E2}'): {t12}") ``` # BibTeX entry and citation info ```bib @misc{zhang2022causal, title={Causal Inference Principles for Reasoning about Commonsense Causality}, author={Jiayao Zhang and Hongming Zhang and Dan Roth and Weijie J. Su}, year={2022}, eprint={2202.00436}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"license": "mit", "widget": [{"text": "The man turned on the faucet <mask> water flows out."}, {"text": "The woman received her pension <mask> she retired."}]}
CogComp/roberta-temporal-predictor
null
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2202.00436", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CohleM/bert-nepali-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
CohleM/mbert-nepali-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Coldestadam/Breakout_Mentors_SpongeBob_Model
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
ํ•ด๋‹น ๋ชจ๋ธ์€ [ํ•ด๋‹น ์‚ฌ์ดํŠธ](https://huggingface.co/gpt2-medium)์—์„œ ๊ฐ€์ ธ์˜จ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ์€ [Teachable NLP](https://ainize.ai/teachable-nlp) ์„œ๋น„์Šค์—์„œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
{}
ComCom/gpt2-large
null
[ "transformers", "pytorch", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
ํ•ด๋‹น ๋ชจ๋ธ์€ [ํ•ด๋‹น ์‚ฌ์ดํŠธ](https://huggingface.co/gpt2-medium)์—์„œ ๊ฐ€์ ธ์˜จ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ์€ [Teachable NLP](https://ainize.ai/teachable-nlp) ์„œ๋น„์Šค์—์„œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
{}
ComCom/gpt2-medium
null
[ "transformers", "pytorch", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
ํ•ด๋‹น ๋ชจ๋ธ์€ [ํ•ด๋‹น ์‚ฌ์ดํŠธ](https://huggingface.co/gpt2)์—์„œ ๊ฐ€์ ธ์˜จ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ์€ [Teachable NLP](https://ainize.ai/teachable-nlp) ์„œ๋น„์Šค์—์„œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
{}
ComCom/gpt2
null
[ "transformers", "pytorch", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ComCom-Dev/gpt2-bible-test
null
[ "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Cometasonmi451/Mine
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# neurotitle-rugpt3-small Model based on [ruGPT-3](https://huggingface.co/sberbank-ai) for generating scientific paper titles. Trained on [All NeurIPS (NIPS) Papers](https://www.kaggle.com/rowhitswami/nips-papers-1987-2019-updated) dataset. Use exclusively as a crazier alternative to SCIgen. ## Made with Cometrain AlphaML & AutoCode This model was automatically fine-tuned using the Cometrain AlphaML framework and tested with CI/CD pipeline made by Cometrain AutoCode ## Cometrain AlphaML command ```shell $ cometrain create --name neurotitle --model auto --task task_0x2231.txt --output transformers ``` ## Use with Transformers ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model="CometrainResearch/neurotitle-rugpt3-small") generator("BERT:", max_length=50) ```
{"language": ["ru", "en"], "license": "mit", "tags": ["Cometrain AutoCode", "Cometrain AlphaML"], "datasets": ["All-NeurIPS-Papers-Scraper"], "widget": [{"text": "NIPSE:", "example_title": "NIPS"}, {"text": "Learning CNN", "example_title": "Learning CNN"}, {"text": "ONNX:", "example_title": "ONNX"}, {"text": "BERT:", "example_title": "BERT"}], "inference": {"parameters": {"temperature": 0.9}}}
cometrain/neurotitle-rugpt3-small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "Cometrain AutoCode", "Cometrain AlphaML", "ru", "en", "dataset:All-NeurIPS-Papers-Scraper", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
Connor/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Connor-tech/bert_cn_finetuning
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#enlightened GPT model
{"tags": ["conversational"]}
Connorvr/BrightBot-small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "model", "results": []}]}
Connorvr/TeachingGen
null
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ConstellationBoi/Oop
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Contrastive-Tension/BERT-Base-CT-STSb
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Contrastive-Tension/BERT-Base-CT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00