sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# CORe Model - Clinical Diagnosis Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is **fine-tuned on the task of diagnosis prediction**. The model expects patient admission notes as input and outputs multi-label ICD9-code predictions. #### Model Predictions The model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the **3-digit code predictions at inference time**, because only those have been evaluated in our work. #### How to use CORe Diagnosis Prediction You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-diagnosis-prediction") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-diagnosis-prediction") ``` The following code shows an inference example: ``` input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life." tokenized_input = tokenizer(input, return_tensors="pt") output = model(**tokenized_input) import torch predictions = torch.sigmoid(output.logits) predicted_labels = [model.config.id2label[_id] for _id in (predictions > 0.3).nonzero()[:, 1].tolist()] ``` Note: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label. ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "diagnosis", "text-classification"], "thumbnail": "https://core.app.datexis.com/static/paper.png", "widget": [{"text": "Patient with hypertension presents to ICU."}]}
text-classification
DATEXIS/CORe-clinical-diagnosis-prediction
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "diagnosis", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #medical #clinical #diagnosis #en #autotrain_compatible #endpoints_compatible #has_space #region-us
# CORe Model - Clinical Diagnosis Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration. It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is fine-tuned on the task of diagnosis prediction. The model expects patient admission notes as input and outputs multi-label ICD9-code predictions. #### Model Predictions The model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the 3-digit code predictions at inference time, because only those have been evaluated in our work. #### How to use CORe Diagnosis Prediction You can load the model via the transformers library: The following code shows an inference example: Note: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label. ### More Information For all the details about CORe and contact info, please visit URL. ### Cite
[ "# CORe Model - Clinical Diagnosis Prediction", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of diagnosis prediction.\nThe model expects patient admission notes as input and outputs multi-label ICD9-code predictions.", "#### Model Predictions\nThe model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the 3-digit code predictions at inference time, because only those have been evaluated in our work.", "#### How to use CORe Diagnosis Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:\n\n\nNote: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label.", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #diagnosis #en #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# CORe Model - Clinical Diagnosis Prediction", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of diagnosis prediction.\nThe model expects patient admission notes as input and outputs multi-label ICD9-code predictions.", "#### Model Predictions\nThe model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the 3-digit code predictions at inference time, because only those have been evaluated in our work.", "#### How to use CORe Diagnosis Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:\n\n\nNote: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label.", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ 51, 13, 129, 121, 61, 19, 4 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #diagnosis #en #autotrain_compatible #endpoints_compatible #has_space #region-us \n# CORe Model - Clinical Diagnosis Prediction## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of diagnosis prediction.\nThe model expects patient admission notes as input and outputs multi-label ICD9-code predictions.#### Model Predictions\nThe model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the 3-digit code predictions at inference time, because only those have been evaluated in our work.#### How to use CORe Diagnosis Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:\n\n\nNote: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label.### More Information\n\nFor all the details about CORe and contact info, please visit URL.### Cite" ]
[ -0.03529510647058487, 0.13815838098526, -0.005476369056850672, -0.02881014160811901, 0.0440373495221138, 0.036302462220191956, 0.09213534742593765, 0.1350676566362381, 0.05718183517456055, 0.18212305009365082, -0.03929510712623596, -0.002201302442699671, 0.09283258765935898, 0.10459528118371964, -0.014165020547807217, -0.11501463502645493, 0.031006518751382828, 0.008306732401251793, 0.11530834436416626, 0.0989927127957344, 0.06440563499927521, -0.08675264567136765, 0.044524773955345154, 0.023787934333086014, -0.012874037027359009, -0.0007994910120032728, 0.009445560164749622, -0.012899113819003105, 0.028100788593292236, -0.05735021457076073, 0.11099864542484283, 0.04754777252674103, 0.053457602858543396, -0.23594535887241364, -0.017846835777163506, 0.042042363435029984, 0.013967358507215977, 0.06122121959924698, 0.057239606976509094, -0.06144702062010765, 0.07298494875431061, -0.13006335496902466, 0.14349296689033508, 0.015586413443088531, -0.12494727969169617, -0.07415545731782913, -0.10420320183038712, 0.13811083137989044, 0.14311069250106812, 0.07027868926525116, -0.018934883177280426, 0.11871007829904556, -0.0465221107006073, 0.010715179145336151, 0.047019921243190765, -0.16322775185108185, 0.019316967576742172, 0.08977457135915756, 0.06577499955892563, 0.08282515406608582, -0.06331250071525574, 0.00577582698315382, 0.02791290543973446, -0.01569095067679882, 0.036837052553892136, 0.009862585924565792, 0.038726940751075745, -0.05631905049085617, -0.11547793447971344, -0.09479475766420364, 0.17687004804611206, -0.09079425036907196, -0.07931669056415558, -0.106010802090168, 0.010498281568288803, -0.09182754158973694, 0.013378849253058434, -0.10616880655288696, 0.04176324978470802, -0.005995939020067453, 0.10408099740743637, 0.018377358093857765, -0.11148647964000702, -0.02692224271595478, 0.023580964654684067, 0.06881531327962875, 0.02105720341205597, 0.009440108202397823, 0.017318980768322945, 0.13845524191856384, -0.004809700418263674, -0.04796314984560013, -0.05081167817115784, -0.03358323872089386, -0.08058881759643555, -0.11210308969020844, -0.028152361512184143, -0.008945083245635033, 0.0036603466141968966, 0.1723412722349167, 0.01541807409375906, 0.015533678233623505, -0.014552547596395016, -0.031268902122974396, 0.07287506014108658, 0.045691415667533875, -0.0008143822778947651, 0.0019282326102256775, -0.030060356482863426, 0.02889721654355526, 0.11954476684331894, -0.011985602788627148, -0.014930330216884613, 0.04424913600087166, 0.07331071048974991, 0.09788107126951218, -0.04345478117465973, 0.008403850719332695, -0.0807846337556839, -0.03201303258538246, 0.280253529548645, -0.11956236511468887, 0.000358467543264851, 0.04957462474703789, 0.03818259388208389, -0.008905326016247272, 0.05780051276087761, 0.02313649095594883, -0.09762462228536606, 0.07395343482494354, -0.05555065721273422, 0.0520159974694252, -0.05359751358628273, -0.015383883379399776, 0.047608986496925354, -0.04301392659544945, -0.06610234826803207, -0.025333303958177567, 0.02137543261051178, -0.07551460713148117, -0.03037641942501068, -0.05446454882621765, 0.06975211203098297, 0.007590193767100573, 0.015095753595232964, 0.016956554725766182, 0.015040656551718712, -0.07075482606887817, -0.025285273790359497, 0.0012623383663594723, 0.010782788507640362, 0.03709029033780098, -0.014877037145197392, 0.011334688402712345, -0.10850167274475098, 0.03441900014877319, -0.21600410342216492, 0.04593220725655556, -0.025131098926067352, -0.05517784133553505, -0.09898105263710022, -0.013648622669279575, 0.019272712990641594, -0.012726294808089733, -0.010151002556085587, 0.10258930921554565, -0.09794957935810089, 0.003179660066962242, 0.16654911637306213, -0.1542728841304779, -0.08230823278427124, 0.07883226126432419, -0.03402748331427574, 0.02616465650498867, 0.07247649878263474, 0.11355399340391159, 0.08672730624675751, -0.16902856528759003, -0.08561588823795319, -0.09161631762981415, 0.0216055978089571, 0.03914027288556099, 0.09647338837385178, -0.08703363686800003, 0.09179365634918213, -0.0011953108478337526, -0.08302269130945206, -0.1488090306520462, 0.01472390629351139, -0.037047795951366425, 0.007834906689822674, -0.020730912685394287, -0.02956222929060459, 0.023762065917253494, -0.025501450523734093, -0.0444021075963974, -0.033280204981565475, -0.017993994057178497, 0.10750679671764374, -0.04342823475599289, 0.01385697815567255, -0.10070550441741943, 0.00014510475739371032, -0.0900786742568016, -0.062255583703517914, -0.14001844823360443, -0.05171596631407738, 0.07573128491640091, -0.058664362877607346, 0.031959813088178635, 0.00878653209656477, -0.012045485898852348, 0.03682452812790871, -0.049511950463056564, 0.014866277575492859, 0.0741196870803833, 0.009027093648910522, -0.0962582603096962, -0.11978252232074738, -0.04689622297883034, -0.08871355652809143, 0.17778684198856354, -0.17887873947620392, 0.04099705070257187, 0.06196635961532593, 0.11854073405265808, 0.041922468692064285, -0.0925559550523758, 0.07913578301668167, 0.01496225968003273, -0.01763441413640976, -0.000912122312001884, 0.01977250538766384, -0.04410945996642113, -0.048650678247213364, -0.012294833548367023, -0.21893516182899475, -0.13812370598316193, 0.033119067549705505, -0.006592538673430681, -0.0954197347164154, -0.0869501456618309, -0.010485978797078133, -0.004859659355133772, -0.08605920523405075, -0.12542086839675903, 0.19416683912277222, 0.02572271227836609, 0.03621522709727287, -0.033192865550518036, -0.08777955174446106, -0.02216309681534767, -0.02392006479203701, -0.07579436898231506, 0.018094927072525024, 0.08609384298324585, -0.08380302786827087, 0.02763662487268448, 0.06964030116796494, 0.06546203792095184, 0.014995125122368336, 0.000019619106751633808, -0.0940677672624588, 0.005565113388001919, -0.01561941858381033, 0.026900703087449074, 0.03744620457291603, -0.15436747670173645, -0.0007325648912228644, 0.04231860488653183, 0.007024500053375959, 0.0391928106546402, -0.07600785046815872, 0.07255074381828308, -0.004686351865530014, -0.002704737475141883, -0.05490797385573387, -0.07546206563711166, -0.010437076911330223, 0.11757458001375198, 0.022183705121278763, 0.05429421365261078, 0.026663577184081078, -0.05885966494679451, -0.16578777134418488, 0.11573407799005508, -0.08549527823925018, -0.2245868444442749, -0.14385958015918732, -0.00597509415820241, 0.011262794025242329, 0.03071735054254532, -0.006888512521982193, -0.05145978555083275, -0.06595587730407715, -0.16009549796581268, -0.024989651516079903, 0.013492035679519176, -0.10305560380220413, -0.02254329062998295, 0.02169855684041977, 0.02707977034151554, -0.09621766954660416, -0.013331910595297813, -0.059554293751716614, -0.03260219469666481, 0.03341875225305557, -0.0026857114862650633, 0.04084961488842964, 0.21554405987262726, 0.046096496284008026, -0.059160150587558746, 0.0036269898992031813, 0.08868202567100525, -0.09790854156017303, 0.09840459376573563, 0.13700176775455475, -0.07385631650686264, 0.0183150265365839, 0.1831846684217453, 0.04457062855362892, -0.07839041948318481, 0.03428905829787254, -0.0018262482481077313, -0.001854462781921029, -0.2704526484012604, -0.10519365221261978, -0.06263481080532074, -0.14693239331245422, 0.006850740872323513, 0.009834199212491512, 0.0781957358121872, 0.03775366023182869, -0.08371845632791519, -0.020900964736938477, 0.014456422999501228, 0.09750202298164368, 0.09886828809976578, 0.042817771434783936, 0.07444196194410324, -0.05012332275509834, -0.04909127205610275, 0.06382092088460922, 0.03275316208600998, 0.08333700895309448, 0.0006374447839334607, 0.11186912655830383, 0.07680244743824005, -0.0021987147629261017, 0.06775341182947159, 0.08157046139240265, 0.0011041694087907672, 0.031937602907419205, -0.0016181885730475187, -0.07981065660715103, -0.0796995535492897, 0.030450543388724327, 0.0019196055363863707, -0.06655729562044144, -0.0318874791264534, -0.08520247787237167, 0.031269438564777374, 0.07318469882011414, 0.18455256521701813, -0.13390745222568512, -0.035055674612522125, 0.06467346101999283, -0.027549246326088905, -0.0811069905757904, 0.015863249078392982, 0.04089602455496788, -0.10053505003452301, 0.09377302974462509, -0.004234446212649345, 0.06551112979650497, -0.15450114011764526, -0.0029611235950142145, -0.014868803322315216, -0.02517934888601303, -0.049559012055397034, 0.06733205914497375, -0.0960543230175972, 0.02018144726753235, 0.0336456261575222, 0.09439800679683685, -0.10180120915174484, 0.026852017268538475, 0.009781217202544212, 0.1658802628517151, 0.06860879808664322, 0.024452485144138336, -0.0003574822039809078, -0.11776954680681229, -0.1558571755886078, -0.008756657131016254, 0.11267130821943283, -0.1457144021987915, 0.11690953373908997, -0.0005976305110380054, 0.018996987491846085, -0.04297048598527908, -0.1618669331073761, -0.10244566202163696, -0.16553393006324768, 0.1350845992565155, -0.08612816035747528, 0.0941689983010292, -0.019334988668560982, -0.031187115237116814, -0.02388770505785942, 0.1348314732313156, -0.18611587584018707, -0.1063091829419136, -0.14466466009616852, -0.028834514319896698, 0.10951410979032516, -0.009796502068638802, -0.01217697374522686, 0.027142811566591263, 0.13046392798423767, 0.011086445301771164, -0.05063213035464287, -0.008407725021243095, -0.10182436555624008, -0.2362559735774994, -0.0720730572938919, 0.22359144687652588, 0.033374883234500885, 0.02992229536175728, 0.0490717813372612, 0.0767766535282135, 0.043994370847940445, -0.06678860634565353, 0.11455955356359482, 0.11444767564535141, 0.13432633876800537, 0.11825049668550491, -0.05484948679804802, -0.14756257832050323, -0.12469802051782608, -0.062495794147253036, 0.006249221041798592, 0.13889586925506592, -0.007917175069451332, 0.12092246115207672, 0.1543261706829071, -0.11473923176527023, -0.16446657478809357, -0.02032145857810974, -0.004441809840500355, -0.06982408463954926, 0.003847907530143857, -0.1533501297235489, 0.16984359920024872, 0.0288538821041584, -0.016728393733501434, 0.008351110853254795, -0.08980105817317963, -0.08830231428146362, 0.01786648854613304, 0.05485982075333595, -0.0542554035782814, -0.11131548881530762, -0.09618600457906723, 0.045079801231622696, -0.09695880115032196, 0.12380119413137436, 0.039261672645807266, 0.04555058106780052, -0.04286189749836922, -0.058996301144361496, 0.06829614192247391, -0.03589095175266266, 0.09196016192436218, 0.05601472035050392, 0.05549614131450653, -0.04406370967626572, -0.04108307138085365, 0.028500471264123917, -0.046643614768981934, 0.08765166997909546, 0.07928770035505295, 0.00688159791752696, -0.10998617112636566, -0.05400360748171806, -0.026502057909965515, -0.0356319360435009, -0.06840787082910538, -0.05307011678814888, -0.10670027881860733, 0.04732983186841011, 0.03417189046740532, -0.0359242744743824, 0.06007077544927597, -0.08547647297382355, 0.019284570589661598, 0.11066408455371857, 0.23885522782802582, 0.0727236345410347, 0.0075700064189732075, -0.008095602504909039, -0.07749965786933899, -0.020921606570482254, -0.0454028882086277, 0.05968158692121506, 0.08191089332103729, 0.03238466754555702, 0.1314583420753479, -0.0003417314146645367, -0.12863963842391968, -0.0010708781192079186, 0.0792776346206665, -0.11557573080062866, -0.10558648407459259, 0.024478141218423843, -0.04664101079106331, -0.13211539387702942, 0.06376966834068298, 0.11388795077800751, -0.015463137067854404, -0.04070235788822174, -0.02039875090122223, 0.12193134427070618, 0.03127092495560646, 0.13042250275611877, 0.0409158356487751, 0.014970448799431324, -0.0822550356388092, 0.05318591371178627, 0.15592332184314728, -0.13811364769935608, 0.038662612438201904, 0.03994212672114372, -0.1215696707367897, -0.06928476691246033, -0.03532622382044792, 0.16575869917869568, 0.02878199703991413, -0.10798996686935425, -0.005550190806388855, -0.08789776265621185, 0.007248540874570608, 0.17916300892829895, 0.02133587747812271, 0.03149561583995819, -0.016429422423243523, -0.002707410603761673, -0.13018938899040222, 0.1056947410106659, -0.06360997259616852, 0.08500821888446808, -0.004581938963383436, 0.11661061644554138, 0.0260436050593853, -0.042704276740550995, -0.025969529524445534, -0.01230602990835905, -0.06307076662778854, -0.05196584016084671, -0.049848731607198715, 0.03680981323122978, -0.04984206333756447, -0.016859499737620354, 0.026735229417681694, 0.01031483430415392, 0.003759819781407714, -0.006779965478926897, -0.028209850192070007, -0.01731831207871437, 0.01491559948772192, 0.1061055064201355, -0.1491430550813675, 0.018464045599102974, 0.07997188717126846, -0.11532638221979141, 0.1290987730026245, -0.028768273070454597, -0.003536286298185587, -0.0017678963486105204, -0.12026345729827881, 0.047179654240608215, 0.011545335873961449, 0.07672402262687683, -0.017782064154744148, -0.12619690597057343, -0.01974245347082615, 0.028205662965774536, -0.1055036410689354, 0.06484851986169815, 0.09888024628162384, -0.035971902310848236, 0.0350775420665741, -0.0016834858106449246, -0.048334553837776184, -0.06891646236181259, 0.055747997015714645, 0.0909179076552391, -0.03167707845568657, 0.10471466928720474, -0.05043074116110802, 0.05231567099690437, -0.10126126557588577, -0.03164106234908104, 0.006719817407429218, 0.04189697653055191, -0.08979923278093338, -0.03005245141685009, 0.08161160349845886, 0.026205020025372505, 0.2072942852973938, -0.05252665653824806, 0.007716902066022158, 0.01613546721637249, 0.021277163177728653, 0.016128597781062126, 0.007267054636031389, -0.007388744968920946, 0.025583334267139435, -0.08239835500717163, -0.044534943997859955, -0.05443960800766945, -0.007565537467598915, -0.024518810212612152, 0.17603084444999695, 0.11698951572179794, 0.04946437105536461, -0.01819770596921444, -0.08207978308200836, -0.07634676247835159, -0.07357696443796158, -0.05820174887776375, -0.0021102898754179478, -0.038419581949710846, 0.01018061675131321, 0.013593333773314953, 0.06003868207335472, -0.1197623759508133, 0.042821452021598816, -0.09171079844236374, -0.06110474467277527, -0.05024176090955734, -0.061309218406677246, 0.010218392126262188, -0.038095563650131226, -0.03939415514469147, -0.12390058487653732, 0.049906790256500244, 0.13105367124080658, 0.020384063944220543, -0.012752093374729156, 0.1421312689781189, -0.13124150037765503, 0.022690946236252785, 0.02909870818257332, 0.02186850644648075, 0.04617900401353836, 0.010886994190514088, 0.06745108962059021, 0.04634791612625122, 0.023676972836256027, 0.09355583041906357, 0.06985754519701004, 0.09667720645666122, -0.04723062738776207, -0.015752563253045082, -0.11793503165245056, 0.06569797545671463, -0.0727764219045639, 0.022728988900780678, 0.17281292378902435, 0.07922498881816864, 0.0315714068710804, 0.0016982511151582003, 0.13225093483924866, -0.037969231605529785, 0.0014599974965676665, -0.13806359469890594, 0.21636468172073364, 0.019616352394223213, -0.012403694912791252, 0.04143953323364258, -0.1692608892917633, 0.025191590189933777, 0.18634754419326782, 0.01792336069047451, 0.05317739397287369, -0.004662706051021814, 0.01427267212420702, 0.020302804186940193, 0.0872044488787651, 0.1001933366060257, -0.019698329269886017, 0.21409893035888672, -0.02734587900340557, 0.04999562352895737, 0.0021873058285564184, -0.03262481838464737, -0.01968180388212204, 0.10675477236509323, 0.020543044432997704, -0.010492066852748394, -0.04062452167272568, 0.10970985889434814, 0.013922919519245625, -0.2835376262664795, 0.0939527228474617, -0.09417785704135895, -0.05210873484611511, -0.0018480763537809253, 0.016550706699490547, -0.03251029551029205, 0.0013870852999389172, 0.06618478149175644, -0.022967597469687462, 0.18305537104606628, 0.039373110979795456, -0.07989007979631424, 0.03302754834294319, 0.08154729008674622, -0.12379949539899826, 0.18385913968086243, 0.04423770308494568, 0.14043667912483215, 0.08104770630598068, -0.030938131734728813, -0.08178410679101944, 0.116096131503582, -0.02209385670721531, 0.04579121991991997, 0.08605493605136871, 0.1814204603433609, 0.04969378933310509, 0.007261473685503006, 0.0976879820227623, -0.0872134268283844, 0.018943840637803078, 0.012765338644385338, -0.04865283891558647, -0.09635557979345322, 0.05032680183649063, -0.07377893477678299, 0.13498376309871674, 0.10798428952693939, -0.01823272928595543, 0.04556039348244667, -0.0185092706233263, 0.036369308829307556, 0.022433487698435783, 0.1201777309179306, 0.01957584358751774, -0.18731144070625305, 0.07251652330160141, -0.03369631618261337, 0.07013029605150223, -0.27841153740882874, -0.01256645005196333, 0.01987387426197529, -0.008676457218825817, -0.11148687452077866, 0.05860712379217148, 0.04734119400382042, 0.049018699675798416, -0.06394759565591812, 0.002509098732843995, 0.010877516120672226, 0.11126665025949478, -0.131632000207901, -0.011899883858859539 ]
null
null
transformers
# CORe Model - Clinical Mortality Risk Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is **fine-tuned on the task of mortality risk prediction**. The model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality. #### How to use CORe Mortality Risk Prediction You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") ``` The following code shows an inference example: ``` input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life." tokenized_input = tokenizer(input, return_tensors="pt") output = model(**tokenized_input) import torch predictions = torch.softmax(output.logits.detach(), dim=1) mortality_risk_prediction = predictions[0][1].item() ``` ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "mortality"], "thumbnail": "https://core.app.datexis.com/static/paper.png"}
text-classification
DATEXIS/CORe-clinical-mortality-prediction
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "mortality", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #medical #clinical #mortality #en #autotrain_compatible #endpoints_compatible #region-us
# CORe Model - Clinical Mortality Risk Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration. It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is fine-tuned on the task of mortality risk prediction. The model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality. #### How to use CORe Mortality Risk Prediction You can load the model via the transformers library: The following code shows an inference example: ### More Information For all the details about CORe and contact info, please visit URL. ### Cite
[ "# CORe Model - Clinical Mortality Risk Prediction", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of mortality risk prediction.\nThe model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality.", "#### How to use CORe Mortality Risk Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #mortality #en #autotrain_compatible #endpoints_compatible #region-us \n", "# CORe Model - Clinical Mortality Risk Prediction", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of mortality risk prediction.\nThe model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality.", "#### How to use CORe Mortality Risk Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ 47, 14, 129, 35, 19, 4 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #mortality #en #autotrain_compatible #endpoints_compatible #region-us \n# CORe Model - Clinical Mortality Risk Prediction## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.\n\nThis model checkpoint is fine-tuned on the task of mortality risk prediction.\nThe model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality.#### How to use CORe Mortality Risk Prediction\n\nYou can load the model via the transformers library:\n\n\nThe following code shows an inference example:### More Information\n\nFor all the details about CORe and contact info, please visit URL.### Cite" ]
[ -0.047658756375312805, 0.1195482462644577, -0.0029856711626052856, 0.012221923097968102, 0.09286560118198395, 0.036483749747276306, -0.02926037646830082, 0.13742776215076447, 0.03829588368535042, 0.18906867504119873, 0.10819648206233978, 0.1224743202328682, 0.058937519788742065, 0.08771155774593353, -0.004959780722856522, -0.17813362181186676, 0.023722996935248375, 0.01079508662223816, 0.1849783957004547, 0.11906668543815613, 0.036711473017930984, -0.08163325488567352, 0.05322930961847305, 0.01651575416326523, -0.03873414173722267, 0.03903225064277649, -0.01126071996986866, -0.023576755076646805, 0.09695450961589813, -0.024102605879306793, 0.05101852864027023, 0.003977182321250439, 0.07279496639966965, -0.17505840957164764, -0.013042843900620937, -0.009457921609282494, -0.0029074246995151043, 0.06586680561304092, -0.02290969341993332, -0.15149052441120148, 0.041046127676963806, -0.033143218606710434, 0.1159474328160286, 0.015001135878264904, -0.08160623908042908, -0.11822178214788437, -0.07745365053415298, 0.12867985665798187, 0.0377965122461319, 0.09517840296030045, -0.012232620269060135, 0.18658499419689178, -0.07195473462343216, -0.003013954497873783, 0.043374013155698776, -0.17910447716712952, 0.015652481466531754, 0.1471015214920044, 0.13454489409923553, -0.007772005163133144, -0.08361481875181198, 0.05377798527479172, 0.056993626058101654, 0.044314660131931305, 0.07136359810829163, -0.012242662720382214, -0.024352574720978737, 0.014942321926355362, -0.11693237721920013, -0.09576074779033661, 0.05518114194273949, -0.06504246592521667, 0.0029604174196720123, -0.09452901035547256, 0.01680007576942444, -0.0398888997733593, 0.007635020185261965, -0.10078339278697968, 0.002962162485346198, -0.03802110627293587, 0.05097943916916847, 0.05818450078368187, -0.07987947762012482, -0.09461244940757751, -0.02957681193947792, 0.012759155593812466, 0.0008657881990075111, 0.02942110039293766, 0.04576801136136055, 0.11095426231622696, -0.06736056506633759, -0.035923752933740616, -0.043714024126529694, -0.019688835367560387, -0.05317089334130287, -0.019414080306887627, -0.03487676754593849, 0.00755108380690217, 0.06974968314170837, 0.09590166807174683, 0.0695781335234642, -0.027319403365254402, -0.008022910915315151, 0.038930509239435196, 0.06824181228876114, -0.003955681808292866, -0.098921999335289, -0.04505696892738342, -0.03248249366879463, 0.11490209400653839, 0.0953497588634491, -0.009840477257966995, -0.06709566712379456, 0.013052109628915787, 0.08657756447792053, 0.09027526527643204, -0.04403497651219368, -0.016997909173369408, -0.06665022671222687, -0.0055619580671191216, 0.21245332062244415, -0.08361425995826721, -0.0335196778178215, 0.038614556193351746, -0.04839777946472168, -0.05765794217586517, 0.11636043339967728, 0.0019143101526424289, -0.10879223048686981, 0.0377822108566761, -0.06674592196941376, 0.003241839585825801, -0.059076715260744095, -0.07074961811304092, 0.008899485692381859, 0.008900235407054424, -0.054409027099609375, -0.05335978418588638, -0.0678192526102066, -0.051864903420209885, -0.03691176697611809, -0.03818986192345619, 0.04287410527467728, -0.08762423694133759, 0.008215061388909817, -0.012890440411865711, -0.000938632118050009, -0.05625542625784874, -0.0327749028801918, 0.00891540851444006, -0.037345100194215775, 0.07436607033014297, -0.03868419677019119, 0.02205229178071022, -0.10618620365858078, 0.026160335168242455, -0.202946737408638, 0.11444811522960663, -0.03835047781467438, -0.04330328106880188, -0.11399875581264496, -0.005469454452395439, 0.002409452572464943, -0.00600326107814908, 0.04950065165758133, 0.14535216987133026, -0.11533164232969284, -0.05434773862361908, 0.16514061391353607, -0.07506252825260162, -0.1360730528831482, 0.0722016990184784, -0.04396083950996399, 0.06346779316663742, 0.05719290301203728, 0.1541583389043808, 0.030386609956622124, -0.09487351030111313, -0.07070621103048325, -0.04117613658308983, -0.05024407058954239, 0.0027406378649175167, 0.058638088405132294, -0.08330431580543518, -0.029939871281385422, -0.004502853378653526, -0.07351292669773102, -0.06630409508943558, -0.04986288398504257, -0.008985074236989021, -0.009240604937076569, -0.0666755735874176, 0.038044147193431854, 0.004807831719517708, -0.02501440793275833, -0.0003883344179484993, -0.04622018709778786, 0.056773509830236435, 0.07405952364206314, -0.06134902685880661, -0.018166959285736084, -0.10339859127998352, 0.026504158973693848, -0.06552837789058685, -0.017753535881638527, -0.18336044251918793, -0.00561971589922905, 0.039261676371097565, 0.022942036390304565, -0.008371767587959766, -0.09906692802906036, 0.013978506438434124, 0.07851454615592957, 0.038558367639780045, 0.006939117796719074, 0.08527781814336777, -0.004668470472097397, -0.11031221598386765, -0.11617985367774963, -0.0561605729162693, -0.039670027792453766, 0.08893147855997086, -0.19604438543319702, 0.04407922551035881, -0.056571755558252335, 0.10639327764511108, -0.048169251531362534, -0.06272289901971817, 0.08781151473522186, -0.010544552467763424, -0.02894599735736847, 0.0165336225181818, 0.006166804116219282, -0.06324689090251923, -0.1000961884856224, 0.0734405443072319, -0.20156869292259216, -0.09210975468158722, 0.04936182498931885, -0.08915097266435623, -0.10836828500032425, -0.08347483724355698, -0.059875477105379105, 0.02823316492140293, -0.166749507188797, -0.10365384817123413, 0.21567338705062866, 0.02575407736003399, 0.09299471229314804, -0.025801552459597588, -0.029549261555075645, -0.002352036302909255, 0.013776915147900581, -0.0027457335963845253, 0.06010467931628227, 0.09520509839057922, -0.07792714238166809, 0.03699234127998352, 0.020071720704436302, 0.004518925212323666, -0.022747496142983437, 0.03829063102602959, -0.07529713213443756, -0.01894684135913849, -0.0016708732582628727, 0.03674069792032242, 0.08301134407520294, -0.15322232246398926, 0.007299222983419895, 0.044938936829566956, -0.06277752667665482, -0.009195545688271523, -0.07535132020711899, -0.00020083428535144776, 0.015355851501226425, -0.017350725829601288, -0.03380895033478737, -0.040847525000572205, -0.014233295805752277, 0.1170254573225975, 0.024721886962652206, -0.035647161304950714, 0.02772780880331993, -0.015780029818415642, -0.16006912291049957, 0.20442116260528564, -0.05060310661792755, -0.28575602173805237, -0.11118103563785553, 0.0727311298251152, 0.10292591154575348, 0.020393356680870056, 0.0006080217426642776, -0.04443076625466347, -0.053030963987112045, -0.16166384518146515, 0.03919409587979317, 0.05505777895450592, -0.03778662532567978, -0.049191173166036606, -0.002277639228850603, 0.011767112649977207, -0.08379177749156952, -0.0108765484765172, -0.1300341933965683, -0.04487493634223938, -0.003172891214489937, -0.0401327945291996, 0.05203910544514656, 0.21494129300117493, 0.023739060387015343, 0.0035901765804737806, -0.036372024565935135, 0.0868949219584465, -0.05084552615880966, 0.05460621416568756, 0.1621071696281433, -0.0984085276722908, 0.0254131518304348, 0.10560927540063858, 0.0551338791847229, -0.04070323333144188, 0.04183043912053108, 0.028506364673376083, -0.01541901845484972, -0.19865816831588745, -0.11159492284059525, -0.04125001281499863, -0.06669488549232483, 0.043108683079481125, -0.004863624926656485, 0.1164444237947464, 0.06654580682516098, -0.06810268014669418, 0.04805350303649902, -0.051151588559150696, 0.08795343339443207, 0.09065565466880798, 0.0018325612181797624, 0.11313162744045258, -0.02406071498990059, -0.05747639760375023, 0.047673776745796204, 0.019569337368011475, 0.10864351689815521, -0.003336386289447546, 0.09250113368034363, 0.10972151160240173, 0.06443943828344345, 0.05295037850737572, 0.00998138077557087, -0.02005673572421074, 0.004875692073255777, -0.0020560026168823242, -0.11454195529222488, -0.10605555027723312, 0.054679010063409805, -0.002424543257802725, 0.05113264173269272, -0.09654929488897324, -0.04642871767282486, 0.04299603030085564, 0.00881669856607914, 0.13919401168823242, -0.26723095774650574, -0.0788264125585556, 0.008230089209973812, -0.007651379331946373, -0.01975461281836033, 0.0552704781293869, 0.03968721255660057, -0.1125292107462883, 0.07710447162389755, -0.020830215886235237, 0.08507024496793747, -0.11682938784360886, 0.021763572469353676, -0.1177176833152771, -0.04873078316450119, -0.05196015164256096, 0.09084354341030121, -0.11300896853208542, 0.06151840090751648, 0.015937160700559616, 0.01764661818742752, -0.11409992724657059, -0.0021008981857448816, 0.036051370203495026, 0.2075796127319336, 0.1675061732530594, -0.03370072320103645, 0.1334284394979477, -0.05149538442492485, -0.09629202634096146, 0.0012537580914795399, 0.023412201553583145, -0.16595451533794403, 0.0754544585943222, -0.011926862411201, 0.019602568820118904, -0.05394339933991432, -0.14511780440807343, -0.05875156447291374, -0.12214197218418121, 0.047220755368471146, -0.06725900620222092, 0.07386092096567154, -0.011978598311543465, -0.06507289409637451, 0.06814441084861755, 0.14550921320915222, -0.21387813985347748, -0.03471488505601883, -0.143792986869812, 0.1134033352136612, 0.10270864516496658, -0.044084787368774414, 0.008798917755484581, -0.02036467008292675, 0.12091391533613205, -0.04593394696712494, -0.09092854708433151, 0.03290169686079025, -0.12951207160949707, -0.17158329486846924, -0.09793594479560852, 0.1974572390317917, 0.057262640446424484, 0.038059018552303314, 0.06313690543174744, 0.06619962304830551, -0.010039838030934334, -0.058801427483558655, 0.09995543211698532, 0.17155256867408752, 0.11378264427185059, 0.0762883871793747, -0.07300791144371033, -0.16010995209217072, -0.06483731418848038, 0.04142957553267479, 0.07956696301698685, 0.040494222193956375, -0.03297138214111328, 0.0918140560388565, 0.18675212562084198, -0.0921117514371872, -0.28410470485687256, -0.008936180733144283, 0.046725813299417496, -0.014323849231004715, 0.023899957537651062, -0.12178218364715576, 0.14792025089263916, 0.05102314427495003, -0.009700923226773739, -0.015086736530065536, -0.2586919367313385, -0.0752217248082161, 0.07775381207466125, 0.07413472980260849, 0.032300837337970734, -0.09430504590272903, -0.0796709954738617, 0.03816252201795578, -0.0559949167072773, 0.16144606471061707, 0.0003615864843595773, 0.029219742864370346, -0.02749350294470787, 0.013061972334980965, 0.07062402367591858, -0.03125373646616936, 0.04975350946187973, 0.04123071953654289, -0.005507584661245346, -0.07330556213855743, -0.12100173532962799, 0.06364023685455322, -0.06543011963367462, 0.10982178151607513, -0.0014152853982523084, 0.030380237847566605, -0.1665622442960739, -0.07863878458738327, -0.05747179687023163, 0.03883446007966995, -0.01808442734181881, -0.06964774429798126, -0.11984432488679886, 0.040658533573150635, 0.051032643765211105, 0.019022261723876, 0.0735899806022644, -0.07765481621026993, 0.025701338425278664, 0.12569543719291687, 0.20153144001960754, 0.09014543145895004, -0.07599952071905136, 0.06760185211896896, -0.07981032878160477, 0.05722711607813835, -0.14597393572330475, 0.03531746566295624, 0.11845225840806961, 0.08619853854179382, 0.08764315396547318, 0.042327236384153366, -0.1703660786151886, 0.0016619482776150107, 0.05427411198616028, -0.12507319450378418, -0.15620894730091095, 0.007272339425981045, 0.010681512765586376, -0.12755964696407318, 0.05551730841398239, 0.073051817715168, -0.08518096804618835, -0.013139368034899235, -0.018149660900235176, 0.08251037448644638, -0.0018144154455512762, 0.13407878577709198, 0.06210589036345482, 0.045157723128795624, -0.09603393077850342, 0.007889864966273308, 0.1186007484793663, -0.06029077619314194, 0.0449921190738678, 0.057699427008628845, -0.11310704052448273, -0.04775593802332878, -0.06550543755292892, 0.24348805844783783, -0.1126072108745575, -0.0890871211886406, -0.028161197900772095, -0.07147108018398285, 0.05750131979584694, 0.283698171377182, 0.05051560699939728, 0.0008991900249384344, -0.035098589956760406, -0.020447954535484314, -0.13542145490646362, 0.11848168075084686, -0.07261332124471664, 0.04649931192398071, 0.05593503266572952, 0.1205495297908783, 0.04628792032599449, 0.06434888392686844, -0.060217879712581635, -0.03097591921687126, -0.08815567195415497, -0.02259359508752823, -0.05859364941716194, 0.04103303328156471, -0.051436591893434525, -0.05140393599867821, -0.0047826748341321945, -0.012446948327124119, 0.019650982692837715, 0.026566404849290848, -0.00037742790300399065, -0.022600224241614342, 0.04186062142252922, 0.03447630628943443, -0.20634643733501434, -0.022987375035881996, 0.06067723408341408, -0.03617120161652565, 0.12384484708309174, -0.052932608872652054, 0.002039000391960144, 0.008410259149968624, -0.06919383257627487, -0.007598714902997017, 0.07700873166322708, 0.09794609248638153, 0.00916258990764618, -0.0003023745957762003, -0.0026771791744977236, -0.027586380019783974, -0.09630591422319412, 0.053532492369413376, 0.1111658364534378, -0.03716513141989708, 0.026571819558739662, 0.010708346962928772, 0.00006648197449976578, -0.03174874186515808, 0.0601644441485405, -0.007307146675884724, -0.019925938919186592, 0.04569979012012482, -0.009522906504571438, 0.05956943705677986, -0.1651146560907364, -0.03834819793701172, -0.014596882276237011, 0.019966423511505127, -0.15512187778949738, -0.02939905971288681, 0.09346847236156464, -0.0026508767623454332, 0.17752890288829803, -0.02313976362347603, 0.03516361117362976, 0.0012440071441233158, 0.10420126467943192, 0.12937034666538239, -0.01246152725070715, 0.038744326680898666, 0.07191034406423569, -0.04809606447815895, -0.07113327085971832, -0.01168563961982727, 0.06135278567671776, -0.11056039482355118, 0.15185855329036713, 0.03563494607806206, 0.06503621488809586, -0.011204717680811882, 0.03188224881887436, -0.07047057896852493, -0.06930386275053024, -0.17120994627475739, 0.012405210174620152, 0.012666079215705395, 0.060582976788282394, 0.028618093580007553, 0.10735287517309189, -0.06651515513658524, 0.06177947670221329, -0.013092467561364174, -0.07748455554246902, -0.06717059761285782, -0.10304185003042221, -0.0016453826101496816, -0.029591530561447144, -0.045773692429065704, -0.10888595879077911, 0.026106862351298332, 0.13051749765872955, 0.03210368752479553, -0.000745052529964596, 0.14557616412639618, -0.09982825070619583, 0.03049098141491413, 0.030428802594542503, -0.0028856333810836077, 0.04525051638484001, -0.028140399605035782, 0.04423956945538521, 0.07667381316423416, 0.015692466869950294, 0.04266111180186272, 0.06095468997955322, 0.11904675513505936, -0.002402795013040304, 0.001925986958667636, -0.07575025409460068, 0.06746990233659744, -0.06660187244415283, -0.011491533368825912, 0.07490745186805725, 0.09349396824836731, 0.03255666792392731, -0.012481674551963806, 0.13818544149398804, -0.013468213379383087, -0.01605323888361454, -0.09600448608398438, 0.2427753061056137, 0.032798007130622864, 0.044325392693281174, -0.01712512969970703, -0.12346754223108292, -0.007980654947459698, 0.2666676342487335, 0.04784953594207764, -0.0541095994412899, -0.028468135744333267, 0.02175682783126831, 0.015813881531357765, 0.12940628826618195, 0.107644222676754, 0.027615046128630638, 0.24576036632061005, -0.0640115886926651, -0.027383610606193542, -0.06872623413801193, -0.06671649217605591, -0.02374555543065071, 0.05024920031428337, 0.05717996507883072, -0.01289865467697382, -0.02583746612071991, 0.10339304059743881, -0.13461065292358398, -0.18329618871212006, 0.059679120779037476, -0.13013015687465668, -0.08483002334833145, -0.09129004180431366, 0.044593341648578644, -0.008225350640714169, 0.016772236675024033, 0.05008568987250328, 0.01748654991388321, 0.20500688254833221, 0.012431850656867027, -0.17789560556411743, -0.03313034772872925, -0.009936937130987644, -0.09085387736558914, 0.21285176277160645, 0.006117622368037701, 0.11854780465364456, 0.06831712275743484, -0.04014509171247482, -0.041475821286439896, 0.11026692390441895, 0.019923634827136993, 0.08987956494092941, 0.12391610443592072, 0.09617950767278671, 0.09351973235607147, 0.04468205198645592, 0.04353747516870499, -0.11091697961091995, 0.01877124421298504, -0.0829630121588707, -0.08230361342430115, -0.0994902178645134, 0.031771641224622726, -0.007248037029057741, 0.08951248973608017, 0.08388616889715195, -0.04925434663891792, 0.05745679885149002, -0.05345015227794647, 0.04700358211994171, 0.02219413034617901, 0.07052366435527802, 0.0642368420958519, -0.18874461948871613, 0.04760989174246788, -0.12385931611061096, 0.015554276295006275, -0.2564472556114197, -0.024930492043495178, -0.010949360206723213, -0.008838215842843056, -0.006308828946202993, 0.057882171124219894, 0.05107084661722183, 0.05685664340853691, -0.058201875537633896, 0.023130906745791435, 0.048126813024282455, 0.10155434161424637, -0.08486966043710709, -0.06845839321613312 ]
null
null
transformers
# CORe Model - BioBERT + Clinical Outcome Pre-Training ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. #### How to use CORe You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1") model = AutoModel.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1") ``` From there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge. ### Pre-Training Data The model is based on [BioBERT](https://huggingface.co/dmis-lab/biobert-v1.1) pre-trained on PubMed data. The _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified [here](https://github.com/bvanaken/clinical-outcome-prediction/blob/master/tasks/mimic_train.csv)), medical transcriptions from [MTSamples](https://mtsamples.com/) and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the [MedQuAd](https://github.com/abachaa/MedQuAD) dataset extracted from NIH websites. ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical"], "thumbnail": "https://core.app.datexis.com/static/paper.png"}
null
bvanaken/CORe-clinical-outcome-biobert-v1
[ "transformers", "pytorch", "jax", "bert", "medical", "clinical", "en", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #medical #clinical #en #endpoints_compatible #region-us
# CORe Model - BioBERT + Clinical Outcome Pre-Training ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration. It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. #### How to use CORe You can load the model via the transformers library: From there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge. ### Pre-Training Data The model is based on BioBERT pre-trained on PubMed data. The _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified here), medical transcriptions from MTSamples and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the MedQuAd dataset extracted from NIH websites. ### More Information For all the details about CORe and contact info, please visit URL. ### Cite
[ "# CORe Model - BioBERT + Clinical Outcome Pre-Training", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.", "#### How to use CORe\n\nYou can load the model via the transformers library:\n\nFrom there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge.", "### Pre-Training Data\n\nThe model is based on BioBERT pre-trained on PubMed data.\nThe _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified here), medical transcriptions from MTSamples and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the MedQuAd dataset extracted from NIH websites.", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ "TAGS\n#transformers #pytorch #jax #bert #medical #clinical #en #endpoints_compatible #region-us \n", "# CORe Model - BioBERT + Clinical Outcome Pre-Training", "## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.", "#### How to use CORe\n\nYou can load the model via the transformers library:\n\nFrom there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge.", "### Pre-Training Data\n\nThe model is based on BioBERT pre-trained on PubMed data.\nThe _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified here), medical transcriptions from MTSamples and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the MedQuAd dataset extracted from NIH websites.", "### More Information\n\nFor all the details about CORe and contact info, please visit URL.", "### Cite" ]
[ 34, 17, 86, 40, 113, 19, 4 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #medical #clinical #en #endpoints_compatible #region-us \n# CORe Model - BioBERT + Clinical Outcome Pre-Training## Model description\n\nThe CORe (_Clinical Outcome Representations_) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration.\nIt is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective.#### How to use CORe\n\nYou can load the model via the transformers library:\n\nFrom there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge.### Pre-Training Data\n\nThe model is based on BioBERT pre-trained on PubMed data.\nThe _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified here), medical transcriptions from MTSamples and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the MedQuAd dataset extracted from NIH websites.### More Information\n\nFor all the details about CORe and contact info, please visit URL.### Cite" ]
[ -0.02693478763103485, 0.19312237203121185, -0.0019639888778328896, -0.03450429439544678, 0.07115666568279266, 0.06800977885723114, 0.09967917948961258, 0.13158807158470154, -0.0002519005793146789, 0.08974168449640274, -0.0187400970607996, 0.05897362902760506, 0.08729871362447739, 0.14374537765979767, 0.08757980912923813, -0.2098628729581833, 0.009024525061249733, -0.02564762718975544, -0.03478120267391205, 0.0553738959133625, 0.07628418505191803, -0.08934532105922699, 0.011449374258518219, 0.023684367537498474, -0.028135351836681366, -0.002538154134526849, -0.02752765454351902, -0.021473856642842293, 0.04709605872631073, -0.04187523573637009, 0.06411456316709518, 0.01484134141355753, 0.11362779140472412, -0.22969581186771393, 0.009324470534920692, 0.03221944347023964, 0.03410912677645683, 0.07252246141433716, 0.05224887281656265, -0.049610137939453125, 0.08743257075548172, -0.09462644904851913, 0.12337514758110046, 0.04123244062066078, -0.06342550367116928, -0.16247627139091492, -0.15476243197917938, 0.11561526358127594, 0.0765598937869072, 0.13274452090263367, -0.008988634683191776, 0.12821277976036072, -0.026803607121109962, -0.008077538572251797, 0.16758990287780762, -0.12279301881790161, 0.013031791895627975, 0.04214216768741608, 0.07061628252267838, -0.003671400947496295, -0.0933193787932396, 0.006507264915853739, -0.03737148270010948, 0.0006304669077508152, 0.0908065214753151, 0.019411342218518257, -0.012033404782414436, 0.013663831166923046, -0.14012576639652252, -0.022009162232279778, 0.17688661813735962, -0.06319751590490341, -0.007579159457236528, -0.14338400959968567, 0.026661591604351997, 0.048387859016656876, 0.02985493466258049, -0.06251342594623566, 0.014023144729435444, -0.045926835387945175, -0.003253169357776642, -0.065810427069664, -0.09702052921056747, -0.03922589123249054, -0.04463431239128113, -0.0046401419676840305, 0.03343978896737099, -0.002517327666282654, 0.04020657017827034, 0.10264395922422409, 0.10039263963699341, -0.055780865252017975, -0.020793672651052475, -0.007625024300068617, -0.10418056696653366, -0.07882866263389587, 0.0024096746928989887, -0.0971030667424202, -0.03081498295068741, 0.07680778205394745, 0.020307525992393494, -0.02872372232377529, 0.018038310110569, -0.03469041362404823, 0.15339794754981995, 0.009943093173205853, -0.14309629797935486, 0.022090937942266464, -0.03766907751560211, 0.0454476997256279, -0.018299097195267677, 0.0056566414423286915, 0.021804582327604294, 0.11434643715620041, -0.027960853651165962, 0.09214992076158524, -0.030793514102697372, -0.01085724588483572, -0.04443633556365967, -0.08292683213949203, 0.20774035155773163, -0.12882542610168457, -0.030453411862254143, 0.01755204237997532, -0.022379280999302864, 0.008450229652225971, 0.08583194762468338, 0.017495915293693542, -0.07622207701206207, 0.08209998160600662, -0.06902838498353958, -0.017656998708844185, -0.03581807762384415, -0.025236234068870544, 0.05446026474237442, 0.050826530903577805, -0.07284930348396301, -0.03421316295862198, -0.0403069444000721, -0.010424756444990635, 0.019274791702628136, -0.05289456248283386, 0.07581593096256256, -0.005379730369895697, 0.09001624584197998, -0.02323429100215435, 0.014452092349529266, 0.03358342871069908, -0.02826932817697525, -0.03014310821890831, -0.09023778885602951, 0.023126807063817978, 0.03149326518177986, 0.04075569659471512, -0.03896003216505051, 0.040014129132032394, -0.12070213258266449, 0.016384270042181015, -0.06892435252666473, -0.01677645929157734, -0.15094971656799316, 0.0048374333418905735, -0.006023813039064407, -0.05999496579170227, 0.030438311398029327, 0.04272061213850975, -0.0667569488286972, -0.027694808319211006, 0.09878266602754593, -0.07068090885877609, -0.11630493402481079, 0.02912668138742447, -0.03238242119550705, 0.09407726675271988, 0.022266851738095284, 0.08877487480640411, 0.03467478230595589, -0.2115820050239563, -0.05732069909572601, -0.11406885832548141, 0.04807663708925247, 0.021299511194229126, 0.09724172204732895, -0.04884586110711098, 0.09693523496389389, -0.008151491172611713, -0.06704330444335938, -0.013331210240721703, -0.04115503653883934, -0.0407869778573513, 0.05083625391125679, -0.08404719084501266, -0.06162915751338005, 0.015851333737373352, 0.014886599965393543, 0.025352396070957184, 0.03584237024188042, 0.13507549464702606, 0.14656364917755127, -0.03287333995103836, -0.019096478819847107, -0.0592673234641552, -0.06586150825023651, -0.04532839357852936, -0.020727116614580154, -0.17681172490119934, -0.10973674058914185, 0.050725799053907394, -0.15434272587299347, 0.07138784229755402, -0.06294720619916916, -0.013152502477169037, 0.10369163751602173, -0.02794160321354866, 0.04662872850894928, -0.002489970764145255, 0.020959390327334404, -0.03892683610320091, -0.1274823695421219, -0.052601102739572525, -0.04908735677599907, 0.12770076096057892, -0.07622301578521729, 0.028462106361985207, -0.04934149980545044, 0.14636962115764618, 0.03334377706050873, -0.10360773652791977, 0.11468376219272614, -0.010273256339132786, 0.015312477946281433, -0.0000019262706700828858, -0.00025785688194446266, -0.022271115332841873, -0.006707026623189449, 0.09759218990802765, -0.1420850306749344, -0.19199122488498688, 0.023879174143075943, 0.055183302611112595, -0.03901645913720131, -0.12188766896724701, -0.061121344566345215, -0.008256999775767326, -0.13525204360485077, -0.03714413940906525, 0.11974833905696869, 0.03533582761883736, 0.07356760650873184, -0.040843043476343155, -0.11807860434055328, -0.043950654566287994, 0.03359260782599449, -0.10574489831924438, -0.001046738587319851, 0.16508661210536957, -0.2338489592075348, 0.02510037273168564, 0.11460001021623611, 0.10769171267747879, 0.09583191573619843, 0.03198235481977463, -0.1329149603843689, -0.0742146447300911, -0.08626777678728104, 0.033288028091192245, 0.09736251085996628, -0.0688859298825264, 0.05049770325422287, 0.06226997822523117, 0.015705008059740067, 0.0542818084359169, -0.02611333504319191, 0.032569050788879395, 0.019688529893755913, -0.011663353070616722, -0.06482747197151184, -0.015456889756023884, -0.00663665309548378, 0.09864745289087296, 0.06867148727178574, 0.21989011764526367, -0.08184663951396942, -0.04631022363901138, -0.13144582509994507, 0.12861765921115875, -0.15773330628871918, -0.19970670342445374, -0.11192978173494339, -0.032808490097522736, 0.022942660376429558, 0.004089361522346735, -0.026593638584017754, -0.05176220089197159, -0.06073043495416641, -0.13421036303043365, 0.008473767898976803, 0.046979282051324844, -0.07099495083093643, 0.030264858156442642, 0.04236805811524391, 0.01579047366976738, -0.11668726801872253, 0.02942604199051857, -0.06626700609922409, 0.009363410994410515, -0.03678329661488533, -0.014051944948732853, 0.0599205456674099, 0.1368219405412674, 0.06151728704571724, 0.019914569333195686, -0.007002774626016617, 0.12365898489952087, -0.06945905834436417, 0.04572426527738571, 0.1332377791404724, -0.009644324891269207, -0.014798089861869812, 0.06097204238176346, 0.03382333368062973, -0.06492018699645996, 0.07931601256132126, 0.04910419508814812, 0.028765205293893814, -0.31951671838760376, -0.09225034713745117, -0.0916338562965393, -0.13206516206264496, 0.04178747907280922, 0.023042764514684677, 0.08789469301700592, 0.021411336958408356, -0.07907849550247192, -0.047457706183195114, 0.04515125975012779, 0.06884632259607315, 0.04358460009098053, 0.03334178030490875, 0.08468335121870041, -0.04304012656211853, 0.005307882558554411, 0.0748833641409874, 0.04129263758659363, 0.24549013376235962, -0.020245548337697983, 0.1988905668258667, 0.12466634064912796, 0.07530608773231506, 0.003387270960956812, 0.08715342730283737, 0.01029425859451294, 0.028017446398735046, 0.016206661239266396, -0.08588539063930511, 0.00448724115267396, 0.02733585797250271, 0.007723118644207716, -0.0404699370265007, -0.04270070418715477, -0.09362157434225082, 0.021332386881113052, 0.1573420763015747, 0.05749758705496788, -0.09119085967540741, -0.056469716131687164, 0.038834188133478165, -0.043300170451402664, -0.01603967696428299, -0.04828403890132904, 0.05463584512472153, -0.11720353364944458, 0.06410056352615356, -0.03472638502717018, 0.09187238663434982, -0.11595285683870316, -0.04209412634372711, 0.052498240023851395, 0.018333429470658302, -0.05021354556083679, 0.09167339652776718, -0.04403292387723923, 0.11857450008392334, 0.027003930881619453, 0.06968604028224945, -0.09721311181783676, 0.01677566207945347, 0.004477343987673521, 0.051248133182525635, 0.07894763350486755, 0.0067295716144144535, -0.0829378291964531, -0.064663827419281, -0.09823139756917953, -0.03440403938293457, 0.1012742817401886, -0.16184084117412567, 0.06141345202922821, -0.0412098653614521, -0.028173930943012238, -0.018666263669729233, -0.11153478175401688, -0.19721324741840363, -0.18881553411483765, 0.1171424388885498, -0.0739414319396019, 0.02814202941954136, -0.04277990385890007, -0.08361191302537918, 0.049442727118730545, 0.13144057989120483, -0.08853435516357422, -0.022430837154388428, -0.1921822875738144, 0.0644930899143219, 0.13752032816410065, -0.054455846548080444, 0.0032177274115383625, -0.008394257165491581, 0.17378868162631989, -0.009420204907655716, -0.1312142014503479, -0.0301669929176569, -0.11686096340417862, -0.17982731759548187, -0.06996667385101318, 0.13665243983268738, 0.11457481980323792, 0.034191105514764786, -0.005477005150169134, 0.0746225044131279, 0.028230104595422745, -0.039595186710357666, 0.08263605833053589, 0.19414763152599335, 0.19790031015872955, 0.07876330614089966, -0.17464293539524078, -0.07484802603721619, -0.1237662211060524, -0.08498010039329529, 0.06550057977437973, 0.05506068095564842, -0.007921342737972736, 0.14624808728694916, 0.22575348615646362, -0.11094368994235992, -0.20285026729106903, 0.008643409237265587, 0.040476907044649124, -0.037900228053331375, 0.06498968601226807, -0.22559770941734314, 0.12465258687734604, 0.0757070854306221, -0.00196886551566422, -0.0937640368938446, -0.15252991020679474, -0.11486886441707611, -0.04026719927787781, 0.10151586681604385, -0.16405493021011353, -0.04938708245754242, -0.048070356249809265, 0.04330074042081833, -0.10735249519348145, 0.17594149708747864, 0.0014652842655777931, 0.05903901532292366, -0.0127420574426651, -0.04962768405675888, 0.007168815936893225, -0.05694449320435524, 0.038503292948007584, 0.026786649599671364, 0.024529194459319115, -0.05922301858663559, 0.0010333341779187322, 0.10052236169576645, -0.032031819224357605, 0.1046941950917244, 0.11519483476877213, 0.020207125693559647, -0.10394198447465897, -0.08239604532718658, -0.05690012127161026, -0.05507707595825195, -0.026723138988018036, -0.08821345120668411, -0.08412408083677292, 0.1194244995713234, 0.07944270223379135, -0.04460136219859123, 0.04085584357380867, -0.043954044580459595, 0.0558973029255867, 0.03913021460175514, 0.1477016657590866, 0.04360349103808403, -0.05793217197060585, -0.0029044500552117825, -0.05826544389128685, -0.014775198884308338, -0.07512108981609344, 0.027196060866117477, 0.08157575130462646, 0.06162487715482712, 0.12226828932762146, 0.0127743324264884, -0.17728181183338165, -0.019181570038199425, 0.04806847125291824, -0.09371782094240189, -0.1286783069372177, -0.0012011450016871095, 0.10623861849308014, -0.1335129290819168, 0.027960943058133125, 0.06590480357408524, -0.012951405718922615, -0.04530111700296402, -0.0009654404711909592, 0.04626033827662468, 0.021828308701515198, 0.18715457618236542, 0.022216716781258583, 0.02961469441652298, -0.07825152575969696, 0.09666115045547485, 0.1731228232383728, -0.07476028800010681, 0.006698508281260729, 0.11631721258163452, -0.11098597943782806, -0.08148060739040375, 0.011979914270341396, 0.12572436034679413, 0.03271651640534401, -0.0247958917170763, 0.005400114227086306, -0.055334459990262985, 0.050320811569690704, 0.12365604192018509, -0.016337908804416656, -0.024751802906394005, -0.0419052317738533, 0.018256962299346924, -0.11279816180467606, 0.14783962070941925, -0.04741367697715759, 0.019724391400814056, 0.05221183970570564, 0.009467966854572296, 0.03728458285331726, 0.04249977320432663, -0.03956145793199539, -0.033765241503715515, -0.008863030932843685, -0.049903564155101776, 0.015147566795349121, -0.06973381340503693, -0.09870032966136932, -0.06496754288673401, -0.01219070516526699, -0.06983399391174316, 0.028549248352646828, 0.010390859097242355, -0.0010459466138854623, -0.06783902645111084, -0.027915246784687042, 0.05874653160572052, -0.16288667917251587, -0.01928175613284111, 0.049584463238716125, -0.07312159240245819, 0.0857149064540863, -0.00639008404687047, 0.018719492480158806, 0.0012841001152992249, -0.012894240207970142, -0.04973004013299942, -0.04077094420790672, 0.12325107306241989, 0.017780551686882973, -0.18774941563606262, -0.014057970605790615, -0.005182909779250622, -0.06778021901845932, 0.030535610392689705, 0.06880603730678558, -0.04550278186798096, -0.033233895897865295, -0.03796587139368057, 0.012366442009806633, -0.05296071246266365, 0.015679864212870598, 0.08440474420785904, -0.012800593860447407, 0.06526608020067215, 0.006690578069537878, 0.08232129365205765, -0.13694798946380615, -0.04060845822095871, 0.014287244528532028, 0.005921188276261091, -0.12489481270313263, -0.03942687436938286, 0.05619354918599129, 0.03720145300030708, 0.14518597722053528, -0.12646053731441498, -0.025964684784412384, 0.08060536533594131, 0.05890295282006264, 0.0588483102619648, 0.00146292126737535, -0.017190657556056976, 0.04524121806025505, -0.04964076355099678, -0.0065827989019453526, -0.020067887380719185, -0.03063497133553028, -0.044704560190439224, 0.1833057552576065, 0.1026804968714714, 0.14147819578647614, -0.09848980605602264, 0.02525491639971733, -0.0945739597082138, -0.11464356631040573, -0.04720254987478256, -0.0226620864123106, -0.018641632050275803, -0.007078633178025484, -0.030917655676603317, 0.12611091136932373, -0.19054953753948212, 0.08438640087842941, -0.020221658051013947, -0.06295564770698547, -0.04702245444059372, -0.08050649613142014, 0.0015548804076388478, -0.001710924319922924, -0.03557402268052101, -0.11061114072799683, 0.027969293296337128, 0.05455706641077995, 0.07368580996990204, 0.05027102306485176, 0.12276101857423782, -0.06891733407974243, 0.003470389870926738, 0.006018345709890127, 0.0283354502171278, 0.008020217530429363, -0.06395018100738525, 0.07301963865756989, 0.044723037630319595, 0.01725398749113083, 0.08543828129768372, 0.053597185760736465, 0.01455735880881548, -0.006609837990254164, 0.005493121687322855, -0.10782303661108017, 0.04932089149951935, -0.05978645384311676, -0.0342910960316658, 0.15579859912395477, 0.06996140629053116, 0.03682556003332138, -0.004534820560365915, 0.13104549050331116, 0.007589506916701794, -0.03630479425191879, -0.16211256384849548, 0.12693971395492554, 0.043273210525512695, -0.012597514316439629, 0.04668144881725311, -0.07903874665498734, -0.028561703860759735, 0.2521814703941345, 0.12633413076400757, 0.00947884377092123, -0.021204419434070587, 0.0793665423989296, 0.011319894343614578, 0.015019937418401241, 0.12022382020950317, 0.08195975422859192, 0.14990559220314026, -0.01601398177444935, 0.02138395980000496, -0.06386791914701462, -0.0748666450381279, -0.029927989467978477, 0.0698108971118927, 0.030941391363739967, 0.01629934087395668, 0.016893448308110237, 0.09368804097175598, 0.007833056151866913, -0.2236548215150833, 0.013047867454588413, -0.08797775208950043, -0.11558881402015686, -0.07735992968082428, 0.04084352031350136, -0.031840525567531586, -0.02948860265314579, 0.05537978187203407, 0.04212043806910515, 0.2310406118631363, 0.07162188738584518, -0.06970162689685822, -0.05509661138057709, 0.12019117921590805, -0.06078615412116051, 0.19467301666736603, -0.004058160353451967, 0.032186973839998245, 0.04701396822929382, -0.057131823152303696, -0.1188495084643364, 0.05918256938457489, 0.03979945927858353, 0.0025674656499177217, 0.0518316850066185, 0.18927861750125885, 0.015428496524691582, 0.05923215299844742, 0.02350064553320408, -0.11849673837423325, 0.04544780030846596, -0.1279096007347107, -0.040105629712343216, -0.025890205055475235, 0.12571704387664795, -0.03891845420002937, 0.14532530307769775, 0.10356680303812027, -0.03527157008647919, 0.048334989696741104, -0.06137009710073471, 0.03161760792136192, 0.017505265772342682, 0.11655670404434204, 0.02318689599633217, -0.1823154091835022, 0.036064911633729935, -0.19062411785125732, 0.06052420660853386, -0.25198060274124146, -0.0662696585059166, 0.06812621653079987, -0.08084893971681595, -0.029006848111748695, 0.08416809886693954, 0.05730772390961647, 0.021119216457009315, -0.0655641034245491, -0.08916796743869781, 0.0009261867380701005, 0.03878788650035858, -0.1293189972639084, 0.01808265969157219 ]
null
null
transformers
# Clinical Assertion / Negation Classification BERT ## Model description The Clinical Assertion and Negation Classification BERT is introduced in the paper [Assertion Detection in Clinical Notes: Medical Language Models to the Rescue? ](https://aclanthology.org/2021.nlpmc-1.5/). The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE. The model is based on the [ClinicalBERT - Bio + Discharge Summary BERT Model](https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT) by Alsentzer et al. and fine-tuned on assertion data from the [2010 i2b2 challenge](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168320/). #### How to use the model You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert") ``` The model expects input in the form of spans/sentences with one marked entity to classify as `PRESENT(0)`, `ABSENT(1)` or `POSSIBLE(2)`. The entity in question is identified with the special token `[entity]` surrounding it. Example input and inference: ``` input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]." classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) classification = classifier(input) # [{'label': 'ABSENT', 'score': 0.9842607378959656}] ``` ### Cite When working with the model, please cite our paper as follows: ```bibtex @inproceedings{van-aken-2021-assertion, title = "Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?", author = "van Aken, Betty and Trajanovska, Ivana and Siu, Amy and Mayrdorfer, Manuel and Budde, Klemens and Loeser, Alexander", booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.nlpmc-1.5", doi = "10.18653/v1/2021.nlpmc-1.5" } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "assertion", "negation", "text-classification"], "widget": [{"text": "Patient denies [entity] SOB [entity]."}]}
text-classification
bvanaken/clinical-assertion-negation-bert
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "assertion", "negation", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #medical #clinical #assertion #negation #en #autotrain_compatible #endpoints_compatible #has_space #region-us
# Clinical Assertion / Negation Classification BERT ## Model description The Clinical Assertion and Negation Classification BERT is introduced in the paper Assertion Detection in Clinical Notes: Medical Language Models to the Rescue? . The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE. The model is based on the ClinicalBERT - Bio + Discharge Summary BERT Model by Alsentzer et al. and fine-tuned on assertion data from the 2010 i2b2 challenge. #### How to use the model You can load the model via the transformers library: The model expects input in the form of spans/sentences with one marked entity to classify as 'PRESENT(0)', 'ABSENT(1)' or 'POSSIBLE(2)'. The entity in question is identified with the special token '[entity]' surrounding it. Example input and inference: ### Cite When working with the model, please cite our paper as follows:
[ "# Clinical Assertion / Negation Classification BERT", "## Model description\n\nThe Clinical Assertion and Negation Classification BERT is introduced in the paper Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?\n. The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE.\n\nThe model is based on the ClinicalBERT - Bio + Discharge Summary BERT Model by Alsentzer et al. and fine-tuned on assertion data from the 2010 i2b2 challenge.", "#### How to use the model\n\nYou can load the model via the transformers library:\n\n\nThe model expects input in the form of spans/sentences with one marked entity to classify as 'PRESENT(0)', 'ABSENT(1)' or 'POSSIBLE(2)'. The entity in question is identified with the special token '[entity]' surrounding it.\n\nExample input and inference:", "### Cite\n\nWhen working with the model, please cite our paper as follows:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #assertion #negation #en #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Clinical Assertion / Negation Classification BERT", "## Model description\n\nThe Clinical Assertion and Negation Classification BERT is introduced in the paper Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?\n. The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE.\n\nThe model is based on the ClinicalBERT - Bio + Discharge Summary BERT Model by Alsentzer et al. and fine-tuned on assertion data from the 2010 i2b2 challenge.", "#### How to use the model\n\nYou can load the model via the transformers library:\n\n\nThe model expects input in the form of spans/sentences with one marked entity to classify as 'PRESENT(0)', 'ABSENT(1)' or 'POSSIBLE(2)'. The entity in question is identified with the special token '[entity]' surrounding it.\n\nExample input and inference:", "### Cite\n\nWhen working with the model, please cite our paper as follows:" ]
[ 55, 13, 120, 90, 18 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #medical #clinical #assertion #negation #en #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Clinical Assertion / Negation Classification BERT## Model description\n\nThe Clinical Assertion and Negation Classification BERT is introduced in the paper Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?\n. The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE.\n\nThe model is based on the ClinicalBERT - Bio + Discharge Summary BERT Model by Alsentzer et al. and fine-tuned on assertion data from the 2010 i2b2 challenge.#### How to use the model\n\nYou can load the model via the transformers library:\n\n\nThe model expects input in the form of spans/sentences with one marked entity to classify as 'PRESENT(0)', 'ABSENT(1)' or 'POSSIBLE(2)'. The entity in question is identified with the special token '[entity]' surrounding it.\n\nExample input and inference:### Cite\n\nWhen working with the model, please cite our paper as follows:" ]
[ -0.009398392401635647, 0.04820174351334572, -0.0027807450387626886, -0.014347106218338013, 0.059652652591466904, -0.012646421790122986, 0.08324512839317322, 0.08916667103767395, 0.04269871860742569, 0.12224407494068146, 0.06760229915380478, 0.020028864964842796, 0.061681389808654785, 0.05071460083127022, -0.006396925076842308, -0.23555803298950195, 0.046972744166851044, -0.012233201414346695, 0.09728438407182693, 0.10581585019826889, 0.08044202625751495, -0.09163480997085571, 0.034352321177721024, 0.06067889556288719, 0.027261558920145035, 0.006330518983304501, 0.03156682476401329, -0.018035413697361946, 0.0860450267791748, -0.004591144621372223, 0.09487857669591904, 0.03259407728910446, 0.08295084536075592, -0.17923478782176971, -0.007795074954628944, 0.019331643357872963, 0.0168894175440073, 0.06818915158510208, 0.047021135687828064, -0.059696707874536514, 0.02742902748286724, -0.1060602217912674, 0.06583888083696365, 0.018695544451475143, -0.09852056950330734, -0.1795462816953659, -0.03973689675331116, 0.19028204679489136, 0.08864686638116837, 0.05998874083161354, -0.05158885568380356, 0.16093140840530396, -0.0032999631948769093, 0.054017651826143265, 0.11094225198030472, -0.1865016669034958, 0.018223995342850685, 0.0032988758757710457, 0.14918218553066254, 0.029895998537540436, -0.041772402822971344, 0.022184571251273155, 0.003628054866567254, -0.016915563493967056, 0.0847458615899086, -0.029333550482988358, -0.005040236748754978, 0.03172607719898224, -0.15912751853466034, -0.03716450184583664, 0.2065553069114685, -0.0648079365491867, -0.032020095735788345, -0.09065978974103928, -0.00021397610544227064, 0.1440562754869461, 0.0663701668381691, -0.11211778968572617, 0.04505624994635582, -0.052705876529216766, 0.13129454851150513, -0.07651364803314209, -0.09338416904211044, -0.02841154672205448, -0.09296143800020218, 0.06602635234594345, 0.0038181571289896965, 0.06772628426551819, -0.02584487572312355, 0.1092875674366951, -0.16389131546020508, -0.06401006132364273, 0.030434852465987206, -0.05821686610579491, -0.1389351636171341, -0.055570755153894424, -0.04203600436449051, -0.07750335335731506, 0.0032334160059690475, 0.018498342484235764, 0.02226652391254902, -0.046275246888399124, -0.0103683453053236, 0.01777472347021103, 0.1527520716190338, 0.07555995881557465, -0.126756489276886, -0.001794925075955689, -0.05757361277937889, 0.07624933123588562, -0.015808219090104103, 0.011364099569618702, -0.05884704738855362, 0.016938311979174614, 0.05576262250542641, 0.009737744927406311, -0.006339306943118572, 0.05306827649474144, -0.05095624923706055, -0.061474286019802094, 0.10418664664030075, -0.10737208276987076, -0.010868691839277744, 0.018229098990559578, -0.01816575974225998, 0.0693819522857666, 0.0388161838054657, 0.043620575219392776, -0.06095047667622566, 0.02607930265367031, -0.0718575194478035, 0.027164233848452568, -0.08602418005466461, -0.16399750113487244, 0.017183974385261536, -0.05434204638004303, -0.0679263100028038, -0.054706986993551254, -0.15455666184425354, -0.035060882568359375, 0.01946333423256874, -0.017342491075396538, 0.06460405886173248, -0.02698442153632641, 0.05177726224064827, -0.010705806314945221, -0.007353082299232483, -0.07026346772909164, -0.005086393561214209, -0.00536935031414032, -0.05003957077860832, 0.054718609899282455, -0.09159768372774124, 0.019225452095270157, -0.09499462693929672, 0.04177984967827797, -0.14670763909816742, 0.045070238411426544, -0.014638716354966164, -0.04832480847835541, -0.1443760246038437, -0.024658478796482086, 0.011371543630957603, -0.01345095969736576, 0.02350057102739811, 0.07173383980989456, -0.17195895314216614, -0.0380961112678051, 0.10166356712579727, -0.07798076421022415, -0.1131814569234848, 0.09069826453924179, -0.06337542086839676, 0.10770786553621292, 0.07446041703224182, 0.16834935545921326, 0.03630517050623894, -0.19653497636318207, -0.0599333830177784, -0.0785730853676796, -0.06561155617237091, 0.0924123078584671, 0.12128446251153946, -0.049984950572252274, 0.004983005579560995, -0.02805519662797451, -0.1540675312280655, -0.05408870056271553, -0.039118003100156784, -0.004320451524108648, 0.01918448880314827, -0.033531304448843, 0.02031475491821766, -0.05215204507112503, -0.04931917041540146, 0.003932024817913771, -0.05129744112491608, 0.16449031233787537, 0.0336984246969223, -0.041499339044094086, -0.01056964322924614, -0.060956038534641266, 0.04130789265036583, -0.11102385073900223, -0.028994515538215637, -0.17440800368785858, -0.09751059114933014, 0.004904262721538544, -0.07074397057294846, 0.04619964584708214, 0.05839821323752403, -0.03077220357954502, 0.03186992183327675, -0.003576955758035183, 0.03355833515524864, 0.05546293780207634, 0.025592776015400887, -0.08132585138082504, -0.12446440011262894, -0.037698548287153244, -0.09121645241975784, 0.048296961933374405, -0.1261371225118637, 0.06652816385030746, -0.002814036561176181, 0.01707824319601059, 0.02412514016032219, -0.018688010051846504, 0.05444410815834999, -0.012201550416648388, -0.00016999324725475162, 0.03273119777441025, 0.04429402947425842, -0.04243537038564682, -0.11863580346107483, 0.09324917942285538, -0.16517750918865204, -0.16079095005989075, 0.0037262002006173134, -0.06877423822879791, -0.05988696962594986, -0.21315710246562958, -0.04513876140117645, -0.016140926629304886, -0.16002067923545837, -0.15998415648937225, 0.22887931764125824, 0.07555949687957764, 0.061844222247600555, -0.03695251792669296, -0.04803241789340973, -0.04712599143385887, -0.06021904572844505, -0.07728501409292221, 0.046422045677900314, 0.040072713047266006, -0.15058985352516174, 0.04347018525004387, 0.1163984015583992, 0.020521126687526703, 0.10284928977489471, 0.04456598684191704, -0.07638292014598846, -0.058784306049346924, -0.07639271765947342, -0.0072987619787454605, 0.0208918284624815, -0.09590815752744675, -0.0034759831614792347, 0.10108809918165207, 0.006352272350341082, 0.0023898775689303875, -0.059801992028951645, 0.06845373660326004, 0.032117921859025955, 0.0006370600312948227, -0.10594616085290909, -0.013135679066181183, 0.013142962008714676, 0.1213153600692749, 0.013574786484241486, 0.03796877712011337, -0.017960920929908752, -0.027423668652772903, -0.1506996750831604, 0.1323818415403366, -0.0815204381942749, -0.3213925063610077, -0.12885841727256775, -0.021746911108493805, 0.013422253541648388, 0.019573064520955086, -0.009692884981632233, 0.025078367441892624, -0.041553035378456116, -0.08854382485151291, 0.045984625816345215, 0.05590639263391495, -0.07352395355701447, -0.0627858117222786, 0.018367502838373184, 0.019985659047961235, -0.08011575043201447, -0.04510190710425377, -0.06966402381658554, -0.044379353523254395, 0.03521821275353432, -0.06802069395780563, 0.052398476749658585, 0.20426444709300995, -0.0022415362764149904, -0.01941523142158985, -0.039306774735450745, 0.12045972049236298, -0.023980576545000076, 0.1332763135433197, 0.17684482038021088, -0.0579371452331543, 0.05123170092701912, 0.17305858433246613, 0.038728877902030945, 0.006665532477200031, 0.06449390947818756, 0.035487279295921326, -0.00030245582456700504, -0.217118039727211, -0.1019100546836853, -0.03594250604510307, -0.11688602715730667, 0.011161869391798973, -0.04689319431781769, 0.0653216689825058, 0.07908152043819427, 0.002333637559786439, -0.004597710911184549, 0.0414123609662056, 0.12124921381473541, 0.11327896267175674, -0.0017947450978681445, 0.1790880262851715, 0.018777230754494667, -0.05005544796586037, 0.05179709568619728, 0.030394824221730232, 0.18191981315612793, 0.03614277392625809, 0.026322873309254646, 0.12856341898441315, -0.05599238723516464, 0.05078498646616936, 0.08791692554950714, -0.0017056057695299387, 0.0552314892411232, -0.048928070813417435, -0.10429143160581589, -0.04118916392326355, 0.08559190481901169, 0.05292284116148949, -0.016985002905130386, -0.04737282916903496, -0.05129005387425423, 0.09116735309362411, 0.03472953662276268, 0.13254204392433167, -0.1669430285692215, -0.007184882182627916, 0.0705362856388092, -0.049229905009269714, -0.10277307033538818, -0.01579819619655609, 0.04824691638350487, -0.12014760076999664, 0.06943494081497192, -0.035281017422676086, 0.1263846606016159, -0.036640942096710205, 0.08292300254106522, -0.07437025755643845, -0.039437245577573776, -0.07328204065561295, 0.12538276612758636, -0.11254087835550308, 0.2140108048915863, 0.03464794158935547, -0.05304140970110893, -0.09704805910587311, -0.0134435398504138, 0.013833497650921345, 0.15574179589748383, 0.17992828786373138, 0.005061794072389603, 0.06762421131134033, -0.0062777334824204445, -0.096389040350914, 0.0013589159352704883, 0.07233751565217972, -0.10828516632318497, 0.09107819944620132, -0.003842639969661832, 0.041342947632074356, -0.04630560427904129, 0.1151437759399414, -0.11546570062637329, -0.10929139703512192, 0.07540440559387207, 0.0073858206160366535, 0.05175279080867767, -0.033021047711372375, -0.04975694790482521, -0.053500398993492126, 0.09865374118089676, -0.1503479778766632, -0.05874012038111687, -0.1715986430644989, 0.07805052399635315, 0.11559367179870605, -0.06471557170152664, -0.056078020483255386, -0.029384814202785492, 0.11036792397499084, -0.069676972925663, -0.043541181832551956, 0.053456369787454605, -0.10241838544607162, -0.10970412939786911, -0.09179931879043579, 0.11686956882476807, 0.09720893949270248, 0.059102676808834076, 0.02142862044274807, 0.06363740563392639, -0.06186704710125923, -0.056034915149211884, 0.06483212113380432, 0.1515720784664154, 0.14939478039741516, 0.11467445641756058, -0.1559850573539734, -0.18158040940761566, -0.1050540953874588, 0.008313080295920372, 0.07779274135828018, 0.08968901634216309, -0.046647895127534866, 0.14939871430397034, 0.20048432052135468, -0.13172689080238342, -0.19101300835609436, 0.03802131488919258, 0.12130004912614822, -0.017741870135068893, 0.06804264336824417, -0.10671275854110718, 0.10286463052034378, 0.07267169654369354, -0.016256267204880714, -0.15314088761806488, -0.04217064008116722, -0.09315605461597443, 0.10812526941299438, -0.022363340482115746, -0.02966882660984993, -0.10827557742595673, -0.05421964079141617, -0.02468172088265419, -0.10164942592382431, 0.0970485657453537, -0.04115491732954979, 0.02854284830391407, -0.000236536463489756, 0.04031100124120712, 0.044832516461610794, -0.04967932030558586, 0.09785544127225876, 0.079632468521595, 0.04109693691134453, -0.029190851375460625, -0.1564931720495224, 0.08459331840276718, -0.060638051480054855, 0.17992673814296722, 0.07138998061418533, -0.006541248876601458, -0.14165979623794556, -0.08607584983110428, -0.055609628558158875, 0.03295484557747841, 0.008164909668266773, -0.11334814876317978, -0.05309658125042915, 0.09121930599212646, 0.06359687447547913, -0.02139875665307045, 0.02631334401667118, -0.17003463208675385, -0.0027663118671625853, 0.13747583329677582, 0.22540736198425293, 0.08389045298099518, -0.039846792817115784, 0.02139204740524292, -0.04143892973661423, 0.024634648114442825, -0.07140200585126877, 0.05077743157744408, 0.13805055618286133, -0.0016731375362724066, 0.1923103630542755, 0.03314129635691643, -0.09137154370546341, -0.026204288005828857, 0.02244560793042183, -0.12112126499414444, -0.03442370146512985, -0.04335430637001991, 0.12255729734897614, -0.17987646162509918, 0.00750340148806572, 0.1157860979437828, -0.04397181048989296, -0.009271678514778614, -0.02099250815808773, 0.0698578804731369, 0.01495896652340889, 0.10662063211202621, 0.04974091798067093, 0.06503110378980637, -0.00800057128071785, 0.0073943003080785275, 0.1523517370223999, -0.07994706183671951, 0.04119117558002472, -0.021044166758656502, -0.08367813378572464, -0.06155116483569145, -0.04087810590863228, 0.16043712198734283, -0.06692244857549667, -0.12084532529115677, 0.03445601090788841, -0.0729445144534111, 0.021904079243540764, 0.24189597368240356, 0.027452418580651283, -0.03140374273061752, -0.06848114728927612, -0.06484939903020859, -0.061885006725788116, 0.15062767267227173, 0.014973829500377178, 0.007482598535716534, 0.03188234195113182, 0.1410551816225052, 0.015463525429368019, 0.06302344053983688, -0.06941069662570953, -0.027061736211180687, -0.1084621399641037, -0.03342915326356888, -0.08100724965333939, 0.023842640221118927, -0.033557724207639694, -0.05766876041889191, 0.04231133684515953, -0.02827754057943821, 0.044007085263729095, -0.025936394929885864, -0.02133897691965103, 0.026576869189739227, 0.04268598556518555, 0.09462234377861023, -0.1658458560705185, -0.07808267325162888, 0.11123925447463989, -0.02378169260919094, 0.07911855727434158, -0.05847635120153427, -0.020266864448785782, -0.02565700188279152, -0.14002230763435364, 0.03685138747096062, -0.006993913557380438, 0.11531069129705429, 0.007839555852115154, -0.2006901055574417, -0.005354905501008034, 0.0028048227541148663, -0.06968729197978973, 0.013161751441657543, 0.025762183591723442, -0.006771705113351345, 0.06522286683320999, 0.05277390033006668, -0.060894012451171875, -0.07395251095294952, 0.024221817031502724, -0.04663883522152901, 0.039113469421863556, 0.0730285570025444, -0.03224003687500954, 0.07256574183702469, -0.09326178580522537, 0.009481210261583328, -0.002440741518512368, 0.0020224747713655233, -0.021757984533905983, -0.0794185921549797, 0.04618269205093384, 0.006972033064812422, 0.20504409074783325, 0.03637341782450676, -0.0056197685189545155, 0.023252170532941818, 0.08681777864694595, 0.07172439247369766, -0.03272828832268715, -0.029701827093958855, 0.027557238936424255, -0.04745373874902725, -0.054796911776065826, -0.004529306665062904, -0.049201324582099915, -0.034009188413619995, 0.16683678328990936, 0.031270384788513184, 0.00602990947663784, -0.03967370465397835, 0.06433453410863876, 0.01886618323624134, -0.05554945766925812, -0.1661445051431656, 0.08709760010242462, -0.03896528109908104, -0.01038328092545271, 0.13279399275779724, 0.0987047553062439, -0.1613985151052475, 0.10385562479496002, 0.00762040913105011, -0.08463238924741745, -0.09731489419937134, -0.1989886462688446, -0.0016561474185436964, 0.03495996072888374, -0.0535578727722168, -0.12818773090839386, 0.018154649063944817, 0.032678138464689255, 0.03345748782157898, 0.0437457449734211, 0.08375375717878342, -0.21975257992744446, -0.025998728349804878, 0.06312315165996552, 0.008681153878569603, 0.09053006023168564, -0.05051717534661293, 0.09558545053005219, 0.040062084794044495, 0.043353281915187836, 0.01715182140469551, 0.08046004921197891, 0.08504690229892731, -0.07823770493268967, -0.022049304097890854, -0.0961211770772934, -0.002677595242857933, -0.06062952056527138, -0.046637892723083496, 0.11489006131887436, 0.06535468995571136, -0.026614012196660042, -0.011835617013275623, 0.1467573493719101, -0.05376463755965233, -0.07480490952730179, -0.10565166175365448, 0.21710601449012756, -0.009269876405596733, 0.009341657161712646, -0.006153853610157967, -0.1188458502292633, 0.019889790564775467, 0.22240117192268372, 0.1330973356962204, -0.030127016827464104, -0.011088328436017036, 0.004410876426845789, 0.02931549958884716, 0.1226523369550705, 0.017553221434354782, -0.01039560604840517, 0.2275911420583725, -0.07103628665208817, 0.06786643713712692, -0.05883356183767319, -0.04129765182733536, -0.014271138235926628, 0.007237207144498825, 0.056767527014017105, -0.04052361100912094, -0.03169817104935646, 0.12443249672651291, 0.0013373083202168345, -0.19221752882003784, -0.03272935748100281, 0.016827646642923355, -0.015962475910782814, -0.029265256598591805, 0.028492774814367294, -0.00859957654029131, 0.012286913581192493, 0.020335229113698006, 0.004361616913229227, 0.15582101047039032, 0.03580675274133682, -0.10456312447786331, 0.022007320076227188, 0.14464496076107025, -0.02984904870390892, 0.08622413128614426, 0.022634737193584442, 0.14478100836277008, 0.0645783394575119, -0.030969517305493355, -0.018423421308398247, 0.1599399596452713, -0.028973588719964027, 0.011914646252989769, 0.07285711169242859, 0.06027692183852196, 0.07719610631465912, 0.04377839341759682, 0.03833010420203209, -0.1829996109008789, 0.036600034683942795, 0.011449910700321198, -0.0717143714427948, -0.1014338806271553, 0.13364829123020172, -0.05875867232680321, 0.12700027227401733, 0.08284404128789902, 0.003091763937845826, 0.004009051248431206, -0.08656929433345795, 0.029705263674259186, 0.02501981146633625, 0.06722955405712128, 0.006445388775318861, -0.057609450072050095, 0.056769054383039474, -0.08959777653217316, 0.029061730951070786, -0.2917638123035431, -0.07117029279470444, -0.0003078752779401839, -0.02117118425667286, 0.004790849518030882, 0.04229726642370224, 0.08949101716279984, 0.04008112847805023, -0.06660879403352737, -0.04957424849271774, 0.05127876251935959, 0.0899784117937088, -0.09527552127838135, -0.01922820694744587 ]
null
null
espnet
## Example ESPnet2 ASR model ### `Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3966501 This model was trained by Shinji Watanabe using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
automatic-speech-recognition
byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ 49, 9, 66, 11, 11 ]
[ "passage: TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n## Example ESPnet2 ASR model### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.### Demo: How to use in ESPnet2### Citing ESPnet\n\n\n\nor arXiv:" ]
[ -0.07238797098398209, 0.0158588457852602, -0.0014122246066108346, 0.05381916090846062, 0.10785692930221558, -0.04979432374238968, 0.21404986083507538, 0.002817432628944516, 0.10894318670034409, -0.04382561519742012, 0.09179459512233734, 0.138177290558815, 0.015531618148088455, 0.1136394515633583, 0.03779680281877518, -0.18742258846759796, 0.017677294090390205, -0.023282445967197418, 0.10395132005214691, 0.08148669451475143, 0.18095219135284424, -0.023158211261034012, 0.09726309776306152, 0.05553804710507393, -0.04175012931227684, 0.11662409454584122, -0.007076889276504517, -0.14488469064235687, 0.06293930113315582, 0.06720781326293945, 0.05272626504302025, -0.01908402144908905, 0.12743344902992249, -0.18696041405200958, -0.004655536264181137, -0.06964637339115143, -0.026437919586896896, 0.026646031066775322, 0.04652228206396103, -0.004851620178669691, -0.07162303477525711, 0.0730944275856018, -0.0009154920699074864, 0.022222137078642845, -0.04294968023896217, -0.053435638546943665, 0.053665656596422195, 0.09624844789505005, 0.08244442194700241, 0.11374721676111221, -0.03743739798665047, 0.055064260959625244, -0.11078328639268875, 0.06516677141189575, -0.012234123423695564, -0.15972557663917542, 0.039400506764650345, -0.0648554340004921, 0.003272366477176547, 0.21182166039943695, -0.000718957104254514, -0.06123426556587219, 0.11327577382326126, 0.00704602338373661, -0.041546531021595, -0.03162095323204994, -0.09249307215213776, 0.014904442243278027, -0.1362825632095337, 0.020537441596388817, 0.30189719796180725, 0.012285762466490269, -0.03984396159648895, -0.024732541292905807, -0.026578696444630623, 0.006292356178164482, 0.06710021197795868, -0.08503973484039307, 0.01406487450003624, 0.052340876311063766, 0.05228595808148384, -0.03568536415696144, -0.08380631357431412, -0.10667868703603745, -0.018675537779927254, 0.08001456409692764, 0.031326498836278915, 0.038490116596221924, -0.06015102192759514, -0.004693110939115286, 0.03974486514925957, -0.053102221339941025, 0.07406890392303467, -0.016264760866761208, 0.05175561457872391, 0.0510357990860939, 0.05790810286998749, -0.09169945120811462, 0.024560471996665, 0.05782046914100647, 0.014785362407565117, 0.013102339580655098, 0.08245917409658432, 0.11270380020141602, 0.037401583045721054, 0.07186588644981384, -0.058398641645908356, -0.0639030858874321, -0.03285660594701767, 0.06060461327433586, 0.023304739966988564, -0.023259777575731277, -0.18912293016910553, 0.02189764380455017, -0.046274662017822266, -0.0175434872508049, -0.050622668117284775, -0.04767489433288574, -0.09554751962423325, -0.028844492509961128, 0.14978843927383423, -0.15498387813568115, 0.05078410729765892, 0.011208386160433292, -0.05360649898648262, 0.09014413505792618, 0.02471783757209778, 0.045118462294340134, -0.09604469686746597, 0.027444034814834595, -0.09412675350904465, 0.04661329463124275, -0.02303166314959526, -0.058390747755765915, 0.014015646651387215, 0.011694635264575481, 0.03153156861662865, -0.2083403319120407, -0.12761658430099487, -0.042026277631521225, -0.035019535571336746, 0.02370142750442028, -0.01440995279699564, -0.15340587496757507, -0.02532067336142063, 0.023422691971063614, -0.1431148499250412, -0.12702450156211853, -0.07611973583698273, -0.017276104539632797, 0.051648445427417755, 0.05686318874359131, -0.10674367100000381, 0.0767505019903183, -0.08302473276853561, -0.07266952842473984, -0.06249331682920456, 0.16069062054157257, -0.12278961390256882, -0.06597451120615005, -0.10432230681180954, -0.04134615138173103, -0.06410792469978333, 0.0912129133939743, 0.012027858756482601, 0.09887606650590897, -0.14712178707122803, -0.0930292159318924, 0.052516497671604156, -0.14203529059886932, -0.012890280224382877, 0.20060862600803375, -0.015837976709008217, 0.03399491310119629, 0.08796095848083496, 0.28539764881134033, -0.07767272740602493, -0.1280733048915863, -0.021457483991980553, 0.07917378097772598, -0.012825480662286282, -0.024867761880159378, 0.08987151086330414, -0.023202814161777496, 0.027932971715927124, -0.031667858362197876, -0.023007038980722427, 0.0856410413980484, -0.009608705528080463, -0.0658518373966217, 0.04067787528038025, -0.10207784920930862, -0.013531581498682499, -0.052457697689533234, 0.04889403283596039, 0.04120314493775368, -0.035925596952438354, 0.17763492465019226, 0.09548386186361313, -0.07961073517799377, 0.025500360876321793, -0.13960351049900055, 0.02452998235821724, -0.08391230553388596, -0.049562882632017136, -0.07866644114255905, 0.14322052896022797, -0.0018247236730530858, -0.019915612414479256, 0.13502077758312225, 0.010367794893682003, 0.010242318734526634, 0.013213958591222763, -0.0032431206200271845, -0.07108578830957413, 0.021968407556414604, 0.019771361723542213, -0.02309272810816765, -0.18349245190620422, 0.04784005507826805, -0.03477859869599342, -0.031843505799770355, -0.12660332024097443, -0.04117727652192116, -0.0574776865541935, 0.03241649270057678, -0.030935680493712425, 0.016438478603959084, -0.03880465403199196, 0.05424991622567177, -0.060703594237565994, 0.0029090414755046368, -0.043523285537958145, -0.018947530537843704, -0.0908430889248848, 0.1662178933620453, -0.09805266559123993, 0.09179079532623291, 0.1456805318593979, -0.17419837415218353, -0.019564660266041756, 0.0962747260928154, 0.03252808004617691, -0.032741229981184006, -0.030854007229208946, -0.0533251091837883, 0.24434997141361237, -0.10313469171524048, 0.1615736186504364, -0.10152767598628998, 0.04472602158784866, -0.03840399906039238, -0.1309700459241867, 0.018121348693966866, 0.11747463792562485, -0.07596348226070404, -0.11570762097835541, 0.14955167472362518, -0.012473752722144127, -0.1583918035030365, 0.20973803102970123, 0.05781654268503189, -0.07393545657396317, -0.011578558012843132, 0.0307037141174078, -0.06805441528558731, 0.04155295714735985, -0.1136372983455658, -0.06159514561295509, 0.020025819540023804, -0.003070312784984708, 0.07601572573184967, -0.1348733901977539, -0.00016734650125727057, 0.006397245917469263, -0.08063371479511261, -0.09739837050437927, -0.06549464166164398, -0.13014641404151917, 0.020754041150212288, -0.09872616827487946, -0.18958458304405212, 0.038232143968343735, -0.021236693486571312, -0.11970622837543488, 0.09111078083515167, -0.13459745049476624, -0.2124076783657074, -0.23890149593353271, 0.013594097457826138, 0.006041827145963907, 0.09269268065690994, 0.05178513750433922, -0.157491534948349, -0.06213034316897392, -0.04877842962741852, -0.01688241958618164, -0.06114602088928223, -0.08184636384248734, 0.01747962273657322, -0.0023159924894571304, 0.041223954409360886, -0.14675062894821167, 0.0001855796726886183, -0.021461166441440582, 0.07144590467214584, 0.03056831657886505, -0.006458907853811979, 0.05983870476484299, 0.16481636464595795, 0.006918692495673895, -0.040362752974033356, 0.037872422486543655, 0.1829492151737213, -0.05201353505253792, -0.03181871771812439, 0.07402809709310532, -0.1427462100982666, 0.007403690833598375, 0.07252945750951767, 0.03232983499765396, -0.03222610056400299, 0.03134671226143837, -0.07440638542175293, -0.022556202486157417, -0.32173123955726624, -0.08813311904668808, -0.02518671378493309, -0.015463223680853844, 0.03209578990936279, 0.06457789987325668, 0.06007619947195053, 0.07551547884941101, 0.05796099826693535, 0.0838720053434372, 0.05577798932790756, 0.031835757195949554, 0.12306714057922363, -0.04046725109219551, 0.07297635078430176, -0.02789326012134552, -0.10153219103813171, 0.05731848627328873, 0.09741360694169998, -0.014289544895291328, 0.13975854218006134, 0.11100657284259796, 0.04967736452817917, 0.090256467461586, 0.08169188350439072, 0.024508260190486908, 0.06381193548440933, 0.04421129450201988, -0.026054713875055313, -0.05640397593379021, -0.042467620223760605, 0.18778029084205627, 0.10948079824447632, -0.022873589769005775, 0.06420085579156876, 0.06579092144966125, 0.03318251669406891, 0.08482754975557327, -0.025523146614432335, -0.32108914852142334, 0.0117764538154006, 0.01384066604077816, -0.08562803268432617, -0.016151046380400658, 0.07590797543525696, 0.1483253687620163, -0.005794041324406862, 0.03784647583961487, 0.10204137861728668, 0.05677620321512222, -0.1258302628993988, -0.022263523191213608, -0.031105278059840202, 0.032701753079891205, 0.013048022985458374, 0.0639757588505745, -0.25196731090545654, 0.1554253250360489, 0.023230047896504402, 0.09085609763860703, 0.06094969063997269, 0.01866806484758854, -0.014683053828775883, 0.006037290208041668, 0.16689997911453247, 0.03991173580288887, -0.05960328131914139, -0.07620556652545929, -0.11219325661659241, 0.0028700558468699455, 0.09697874635457993, 0.12425701320171356, -0.07604896277189255, 0.01687103696167469, 0.006926819682121277, 0.057027388364076614, -0.13429120182991028, -0.238962784409523, -0.08837034553289413, -0.06698045134544373, 0.2831052541732788, 0.05624314397573471, 0.03697715327143669, -0.05005689337849617, -0.08361516892910004, 0.06391674280166626, -0.2377265840768814, -0.05348588153719902, -0.024005241692066193, -0.05853346735239029, 0.1293959766626358, -0.036065615713596344, 0.049317892640829086, 0.08806866407394409, 0.018717985600233078, -0.01379399560391903, 0.015413978137075901, 0.09141650795936584, -0.0971277579665184, -0.05591234192252159, -0.0386500358581543, 0.025823932141065598, 0.17719392478466034, 0.0304403118789196, 0.024335315451025963, -0.017348745837807655, -0.05857031047344208, -0.06720686703920364, 0.06620897352695465, 0.12596134841442108, -0.11659938842058182, 0.15393270552158356, -0.10629609227180481, -0.24498161673545837, -0.12090592086315155, -0.05833622068166733, 0.09623024612665176, 0.20471028983592987, -0.007688824087381363, 0.052970997989177704, 0.36929336190223694, -0.10634441673755646, -0.12487488985061646, -0.09953238070011139, 0.056997667998075485, 0.017686476930975914, -0.018972333520650864, -0.16422055661678314, 0.11158770322799683, -0.0018480729777365923, -0.02897750400006771, -0.04092830419540405, -0.1484837830066681, -0.1385195553302765, 0.23800981044769287, -0.10620792210102081, 0.04277331009507179, -0.06648904085159302, -0.0887654721736908, -0.13045881688594818, 0.023966526612639427, 0.0665203258395195, 0.07480481266975403, 0.08174600452184677, 0.0414498895406723, 0.10625185817480087, -0.031110575422644615, 0.013901257887482643, 0.12342008203268051, 0.19100436568260193, -0.007870708592236042, -0.01348421536386013, 0.0010163241531699896, -0.025258468464016914, 0.08955002576112747, 0.18289919197559357, 0.013301965780556202, -0.027555448934435844, -0.09523830562829971, -0.0906512513756752, -0.02426774613559246, 0.0505606085062027, 0.10462145507335663, -0.06589286029338837, -0.029265692457556725, -0.056234244257211685, 0.038890622556209564, 0.05674997344613075, 0.13890573382377625, -0.05700835585594177, -0.0406634584069252, 0.15011978149414062, 0.09906817972660065, -0.02779606729745865, -0.11185754090547562, -0.0037842667661607265, -0.05597182735800743, 0.11996125429868698, -0.030326953157782555, 0.0682428851723671, 0.043693430721759796, -0.0031147166155278683, 0.1617508828639984, 0.087956003844738, -0.09910685569047928, 0.03717225044965744, 0.07288029789924622, -0.051951877772808075, 0.031318169087171555, 0.03209538757801056, 0.0017383645754307508, 0.1246006116271019, -0.007867560721933842, 0.15861205756664276, -0.1167503371834755, -0.010120207443833351, -0.02380136400461197, 0.07112318277359009, -0.15763644874095917, 0.21837091445922852, 0.15983878076076508, -0.026533760130405426, -0.10831909626722336, 0.1748773604631424, 0.04010467603802681, -0.02859901823103428, 0.06615746766328812, -0.03148677572607994, -0.03440745174884796, -0.05021064728498459, -0.13082639873027802, -0.006409167777746916, -0.20124877989292145, -0.20802481472492218, -0.05573781207203865, -0.03168986365199089, 0.00814559031277895, -0.09578416496515274, 0.04812757670879364, -0.019483070820569992, -0.04413856938481331, 0.026838911697268486, 0.0032846436370164156, 0.011423874646425247, 0.11723756045103073, 0.06512561440467834, -0.16619093716144562, -0.01316879317164421, 0.03160468488931656, -0.002883294364437461, -0.044531043618917465, 0.012891075573861599, -0.06483732908964157, 0.07076039165258408, 0.024936817586421967, 0.09170376509428024, -0.032587289810180664, 0.0036192042753100395, 0.056110791862010956, -0.06291910260915756, -0.03954600542783737, 0.08774389326572418, -0.09241031110286713, 0.027859745547175407, 0.05094030499458313, 0.07257025688886642, -0.13223324716091156, -0.017624828964471817, 0.0144362673163414, -0.016860652714967728, 0.02022237703204155, 0.13806498050689697, -0.16035984456539154, 0.0024560336023569107, -0.3189820647239685, -0.022673120722174644, 0.20535123348236084, 0.08032140135765076, 0.023617470636963844, -0.013775127939879894, 0.015735076740384102, 0.13055938482284546, 0.04562343657016754, -0.05913768336176872, 0.1662033498287201, -0.07323841005563736, 0.005050535313785076, -0.15434657037258148, -0.07366164773702621, -0.06600874662399292, 0.02309955656528473, 0.1419464349746704, 0.08519963175058365, 0.1953190416097641, -0.07840495556592941, -0.034099262207746506, -0.0011908977758139372, 0.05242599546909332, 0.03697309270501137, -0.03046356327831745, -0.030065488070249557, -0.020052378997206688, -0.010880979709327221, -0.06409137696027756, 0.2540474832057953, 0.017993174493312836, -0.07899098843336105, -0.004348208196461201, -0.02068648487329483, -0.03012809343636036, 0.01532109547406435, 0.169389545917511, -0.04075178503990173, -0.0041060419753193855, -0.1453220397233963, -0.018392695114016533, 0.10772721469402313, 0.09455940127372742, -0.15190237760543823, 0.054593779146671295, -0.10612699389457703, 0.16454270482063293, 0.09653497487306595, -0.058783795684576035, -0.08240294456481934, -0.04020825773477554, -0.05458332225680351, 0.03453287109732628, -0.0019359036814421415, 0.1326742321252823, 0.11753953993320465, -0.014087704941630363, 0.038415681570768356, 0.03459605574607849, -0.09265177696943283, -0.19511361420154572, -0.056239716708660126, -0.07987883687019348, -0.1583660989999771, 0.03875591978430748, -0.08811724185943604, 0.03471842035651207, 0.05819407477974892, 0.029737213626503944, 0.019517039880156517, 0.06582631170749664, -0.0030045285820961, -0.10314452648162842, 0.017435945570468903, -0.05204131454229355, -0.004171537235379219, -0.1269022822380066, -0.021618466824293137, 0.126119464635849, 0.01852165348827839, -0.008122030645608902, -0.020678117871284485, -0.018079059198498726, 0.05602404475212097, 0.0005908164312131703, 0.017164263874292374, -0.05309177190065384, 0.036143846809864044, -0.0048638698644936085, 0.10436558723449707, 0.07126845419406891, -0.11144645512104034, 0.0450226329267025, 0.09073232859373093, -0.06558416038751602, -0.08701878041028976, -0.05871669575572014, 0.10159168392419815, 0.02212628349661827, 0.16419462859630585, -0.07658886164426804, -0.08260168880224228, -0.037258852273225784, 0.12984757125377655, 0.1768920123577118, -0.05843301862478256, -0.037743180990219116, -0.07497614622116089, 0.016034390777349472, -0.06191325560212135, -0.0017895722994580865, 0.0799437165260315, 0.21962346136569977, 0.01742679998278618, 0.0849732980132103, -0.11544930934906006, -0.020059209316968918, 0.009421552531421185, -0.012812264263629913, -0.025299755856394768, -0.04612128064036369, -0.08965916186571121, 0.10842271149158478, -0.19021961092948914, -0.12521854043006897, -0.10249596834182739, 0.04990847781300545, 0.007287696003913879, 0.016474569216370583, 0.11124704033136368, 0.09277290105819702, 0.0446384996175766, -0.051206279546022415, -0.032351311296224594, -0.016463348641991615, 0.02054229937493801, -0.20099270343780518, 0.04254098981618881, -0.03404160588979721, -0.14106488227844238, 0.09486814588308334, 0.00997956097126007, 0.25875845551490784, -0.01005416177213192, 0.09374206513166428, 0.04571721330285072, 0.12938295304775238, -0.034371692687273026, -0.0006708332221023738, 0.06458202749490738, 0.08076377958059311, 0.00727042043581605, 0.10959464311599731, 0.013655430637300014, -0.01156768947839737, 0.0515875481069088, 0.02899513766169548, -0.10169889777898788, -0.15714220702648163, -0.026342008262872696, -0.09831105172634125, 0.08387773483991623, -0.03471524268388748, -0.044300589710474014, -0.03595414012670517, -0.028875136747956276, 0.08471629023551941, 0.03637023642659187, -0.050488539040088654, 0.03754010051488876, -0.16953998804092407, -0.055600184947252274, -0.02016744576394558, 0.08444670587778091, -0.05075328052043915, 0.011968963779509068, -0.15239056944847107, -0.08259062469005585, -0.03129515051841736, -0.002744529163464904, 0.056434717029333115, 0.056952133774757385, -0.013692132197320461, -0.11121630668640137, 0.051971323788166046, 0.039349883794784546, -0.056366272270679474, -0.11137227714061737 ]
null
null
espnet
## Example ESPnet2 ASR model ### `Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3966501 This model was trained by Shinji Watanabe using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
automatic-speech-recognition
byan/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ 49, 9, 66, 11, 11 ]
[ "passage: TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n## Example ESPnet2 ASR model### 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.### Demo: How to use in ESPnet2### Citing ESPnet\n\n\n\nor arXiv:" ]
[ -0.07238797098398209, 0.0158588457852602, -0.0014122246066108346, 0.05381916090846062, 0.10785692930221558, -0.04979432374238968, 0.21404986083507538, 0.002817432628944516, 0.10894318670034409, -0.04382561519742012, 0.09179459512233734, 0.138177290558815, 0.015531618148088455, 0.1136394515633583, 0.03779680281877518, -0.18742258846759796, 0.017677294090390205, -0.023282445967197418, 0.10395132005214691, 0.08148669451475143, 0.18095219135284424, -0.023158211261034012, 0.09726309776306152, 0.05553804710507393, -0.04175012931227684, 0.11662409454584122, -0.007076889276504517, -0.14488469064235687, 0.06293930113315582, 0.06720781326293945, 0.05272626504302025, -0.01908402144908905, 0.12743344902992249, -0.18696041405200958, -0.004655536264181137, -0.06964637339115143, -0.026437919586896896, 0.026646031066775322, 0.04652228206396103, -0.004851620178669691, -0.07162303477525711, 0.0730944275856018, -0.0009154920699074864, 0.022222137078642845, -0.04294968023896217, -0.053435638546943665, 0.053665656596422195, 0.09624844789505005, 0.08244442194700241, 0.11374721676111221, -0.03743739798665047, 0.055064260959625244, -0.11078328639268875, 0.06516677141189575, -0.012234123423695564, -0.15972557663917542, 0.039400506764650345, -0.0648554340004921, 0.003272366477176547, 0.21182166039943695, -0.000718957104254514, -0.06123426556587219, 0.11327577382326126, 0.00704602338373661, -0.041546531021595, -0.03162095323204994, -0.09249307215213776, 0.014904442243278027, -0.1362825632095337, 0.020537441596388817, 0.30189719796180725, 0.012285762466490269, -0.03984396159648895, -0.024732541292905807, -0.026578696444630623, 0.006292356178164482, 0.06710021197795868, -0.08503973484039307, 0.01406487450003624, 0.052340876311063766, 0.05228595808148384, -0.03568536415696144, -0.08380631357431412, -0.10667868703603745, -0.018675537779927254, 0.08001456409692764, 0.031326498836278915, 0.038490116596221924, -0.06015102192759514, -0.004693110939115286, 0.03974486514925957, -0.053102221339941025, 0.07406890392303467, -0.016264760866761208, 0.05175561457872391, 0.0510357990860939, 0.05790810286998749, -0.09169945120811462, 0.024560471996665, 0.05782046914100647, 0.014785362407565117, 0.013102339580655098, 0.08245917409658432, 0.11270380020141602, 0.037401583045721054, 0.07186588644981384, -0.058398641645908356, -0.0639030858874321, -0.03285660594701767, 0.06060461327433586, 0.023304739966988564, -0.023259777575731277, -0.18912293016910553, 0.02189764380455017, -0.046274662017822266, -0.0175434872508049, -0.050622668117284775, -0.04767489433288574, -0.09554751962423325, -0.028844492509961128, 0.14978843927383423, -0.15498387813568115, 0.05078410729765892, 0.011208386160433292, -0.05360649898648262, 0.09014413505792618, 0.02471783757209778, 0.045118462294340134, -0.09604469686746597, 0.027444034814834595, -0.09412675350904465, 0.04661329463124275, -0.02303166314959526, -0.058390747755765915, 0.014015646651387215, 0.011694635264575481, 0.03153156861662865, -0.2083403319120407, -0.12761658430099487, -0.042026277631521225, -0.035019535571336746, 0.02370142750442028, -0.01440995279699564, -0.15340587496757507, -0.02532067336142063, 0.023422691971063614, -0.1431148499250412, -0.12702450156211853, -0.07611973583698273, -0.017276104539632797, 0.051648445427417755, 0.05686318874359131, -0.10674367100000381, 0.0767505019903183, -0.08302473276853561, -0.07266952842473984, -0.06249331682920456, 0.16069062054157257, -0.12278961390256882, -0.06597451120615005, -0.10432230681180954, -0.04134615138173103, -0.06410792469978333, 0.0912129133939743, 0.012027858756482601, 0.09887606650590897, -0.14712178707122803, -0.0930292159318924, 0.052516497671604156, -0.14203529059886932, -0.012890280224382877, 0.20060862600803375, -0.015837976709008217, 0.03399491310119629, 0.08796095848083496, 0.28539764881134033, -0.07767272740602493, -0.1280733048915863, -0.021457483991980553, 0.07917378097772598, -0.012825480662286282, -0.024867761880159378, 0.08987151086330414, -0.023202814161777496, 0.027932971715927124, -0.031667858362197876, -0.023007038980722427, 0.0856410413980484, -0.009608705528080463, -0.0658518373966217, 0.04067787528038025, -0.10207784920930862, -0.013531581498682499, -0.052457697689533234, 0.04889403283596039, 0.04120314493775368, -0.035925596952438354, 0.17763492465019226, 0.09548386186361313, -0.07961073517799377, 0.025500360876321793, -0.13960351049900055, 0.02452998235821724, -0.08391230553388596, -0.049562882632017136, -0.07866644114255905, 0.14322052896022797, -0.0018247236730530858, -0.019915612414479256, 0.13502077758312225, 0.010367794893682003, 0.010242318734526634, 0.013213958591222763, -0.0032431206200271845, -0.07108578830957413, 0.021968407556414604, 0.019771361723542213, -0.02309272810816765, -0.18349245190620422, 0.04784005507826805, -0.03477859869599342, -0.031843505799770355, -0.12660332024097443, -0.04117727652192116, -0.0574776865541935, 0.03241649270057678, -0.030935680493712425, 0.016438478603959084, -0.03880465403199196, 0.05424991622567177, -0.060703594237565994, 0.0029090414755046368, -0.043523285537958145, -0.018947530537843704, -0.0908430889248848, 0.1662178933620453, -0.09805266559123993, 0.09179079532623291, 0.1456805318593979, -0.17419837415218353, -0.019564660266041756, 0.0962747260928154, 0.03252808004617691, -0.032741229981184006, -0.030854007229208946, -0.0533251091837883, 0.24434997141361237, -0.10313469171524048, 0.1615736186504364, -0.10152767598628998, 0.04472602158784866, -0.03840399906039238, -0.1309700459241867, 0.018121348693966866, 0.11747463792562485, -0.07596348226070404, -0.11570762097835541, 0.14955167472362518, -0.012473752722144127, -0.1583918035030365, 0.20973803102970123, 0.05781654268503189, -0.07393545657396317, -0.011578558012843132, 0.0307037141174078, -0.06805441528558731, 0.04155295714735985, -0.1136372983455658, -0.06159514561295509, 0.020025819540023804, -0.003070312784984708, 0.07601572573184967, -0.1348733901977539, -0.00016734650125727057, 0.006397245917469263, -0.08063371479511261, -0.09739837050437927, -0.06549464166164398, -0.13014641404151917, 0.020754041150212288, -0.09872616827487946, -0.18958458304405212, 0.038232143968343735, -0.021236693486571312, -0.11970622837543488, 0.09111078083515167, -0.13459745049476624, -0.2124076783657074, -0.23890149593353271, 0.013594097457826138, 0.006041827145963907, 0.09269268065690994, 0.05178513750433922, -0.157491534948349, -0.06213034316897392, -0.04877842962741852, -0.01688241958618164, -0.06114602088928223, -0.08184636384248734, 0.01747962273657322, -0.0023159924894571304, 0.041223954409360886, -0.14675062894821167, 0.0001855796726886183, -0.021461166441440582, 0.07144590467214584, 0.03056831657886505, -0.006458907853811979, 0.05983870476484299, 0.16481636464595795, 0.006918692495673895, -0.040362752974033356, 0.037872422486543655, 0.1829492151737213, -0.05201353505253792, -0.03181871771812439, 0.07402809709310532, -0.1427462100982666, 0.007403690833598375, 0.07252945750951767, 0.03232983499765396, -0.03222610056400299, 0.03134671226143837, -0.07440638542175293, -0.022556202486157417, -0.32173123955726624, -0.08813311904668808, -0.02518671378493309, -0.015463223680853844, 0.03209578990936279, 0.06457789987325668, 0.06007619947195053, 0.07551547884941101, 0.05796099826693535, 0.0838720053434372, 0.05577798932790756, 0.031835757195949554, 0.12306714057922363, -0.04046725109219551, 0.07297635078430176, -0.02789326012134552, -0.10153219103813171, 0.05731848627328873, 0.09741360694169998, -0.014289544895291328, 0.13975854218006134, 0.11100657284259796, 0.04967736452817917, 0.090256467461586, 0.08169188350439072, 0.024508260190486908, 0.06381193548440933, 0.04421129450201988, -0.026054713875055313, -0.05640397593379021, -0.042467620223760605, 0.18778029084205627, 0.10948079824447632, -0.022873589769005775, 0.06420085579156876, 0.06579092144966125, 0.03318251669406891, 0.08482754975557327, -0.025523146614432335, -0.32108914852142334, 0.0117764538154006, 0.01384066604077816, -0.08562803268432617, -0.016151046380400658, 0.07590797543525696, 0.1483253687620163, -0.005794041324406862, 0.03784647583961487, 0.10204137861728668, 0.05677620321512222, -0.1258302628993988, -0.022263523191213608, -0.031105278059840202, 0.032701753079891205, 0.013048022985458374, 0.0639757588505745, -0.25196731090545654, 0.1554253250360489, 0.023230047896504402, 0.09085609763860703, 0.06094969063997269, 0.01866806484758854, -0.014683053828775883, 0.006037290208041668, 0.16689997911453247, 0.03991173580288887, -0.05960328131914139, -0.07620556652545929, -0.11219325661659241, 0.0028700558468699455, 0.09697874635457993, 0.12425701320171356, -0.07604896277189255, 0.01687103696167469, 0.006926819682121277, 0.057027388364076614, -0.13429120182991028, -0.238962784409523, -0.08837034553289413, -0.06698045134544373, 0.2831052541732788, 0.05624314397573471, 0.03697715327143669, -0.05005689337849617, -0.08361516892910004, 0.06391674280166626, -0.2377265840768814, -0.05348588153719902, -0.024005241692066193, -0.05853346735239029, 0.1293959766626358, -0.036065615713596344, 0.049317892640829086, 0.08806866407394409, 0.018717985600233078, -0.01379399560391903, 0.015413978137075901, 0.09141650795936584, -0.0971277579665184, -0.05591234192252159, -0.0386500358581543, 0.025823932141065598, 0.17719392478466034, 0.0304403118789196, 0.024335315451025963, -0.017348745837807655, -0.05857031047344208, -0.06720686703920364, 0.06620897352695465, 0.12596134841442108, -0.11659938842058182, 0.15393270552158356, -0.10629609227180481, -0.24498161673545837, -0.12090592086315155, -0.05833622068166733, 0.09623024612665176, 0.20471028983592987, -0.007688824087381363, 0.052970997989177704, 0.36929336190223694, -0.10634441673755646, -0.12487488985061646, -0.09953238070011139, 0.056997667998075485, 0.017686476930975914, -0.018972333520650864, -0.16422055661678314, 0.11158770322799683, -0.0018480729777365923, -0.02897750400006771, -0.04092830419540405, -0.1484837830066681, -0.1385195553302765, 0.23800981044769287, -0.10620792210102081, 0.04277331009507179, -0.06648904085159302, -0.0887654721736908, -0.13045881688594818, 0.023966526612639427, 0.0665203258395195, 0.07480481266975403, 0.08174600452184677, 0.0414498895406723, 0.10625185817480087, -0.031110575422644615, 0.013901257887482643, 0.12342008203268051, 0.19100436568260193, -0.007870708592236042, -0.01348421536386013, 0.0010163241531699896, -0.025258468464016914, 0.08955002576112747, 0.18289919197559357, 0.013301965780556202, -0.027555448934435844, -0.09523830562829971, -0.0906512513756752, -0.02426774613559246, 0.0505606085062027, 0.10462145507335663, -0.06589286029338837, -0.029265692457556725, -0.056234244257211685, 0.038890622556209564, 0.05674997344613075, 0.13890573382377625, -0.05700835585594177, -0.0406634584069252, 0.15011978149414062, 0.09906817972660065, -0.02779606729745865, -0.11185754090547562, -0.0037842667661607265, -0.05597182735800743, 0.11996125429868698, -0.030326953157782555, 0.0682428851723671, 0.043693430721759796, -0.0031147166155278683, 0.1617508828639984, 0.087956003844738, -0.09910685569047928, 0.03717225044965744, 0.07288029789924622, -0.051951877772808075, 0.031318169087171555, 0.03209538757801056, 0.0017383645754307508, 0.1246006116271019, -0.007867560721933842, 0.15861205756664276, -0.1167503371834755, -0.010120207443833351, -0.02380136400461197, 0.07112318277359009, -0.15763644874095917, 0.21837091445922852, 0.15983878076076508, -0.026533760130405426, -0.10831909626722336, 0.1748773604631424, 0.04010467603802681, -0.02859901823103428, 0.06615746766328812, -0.03148677572607994, -0.03440745174884796, -0.05021064728498459, -0.13082639873027802, -0.006409167777746916, -0.20124877989292145, -0.20802481472492218, -0.05573781207203865, -0.03168986365199089, 0.00814559031277895, -0.09578416496515274, 0.04812757670879364, -0.019483070820569992, -0.04413856938481331, 0.026838911697268486, 0.0032846436370164156, 0.011423874646425247, 0.11723756045103073, 0.06512561440467834, -0.16619093716144562, -0.01316879317164421, 0.03160468488931656, -0.002883294364437461, -0.044531043618917465, 0.012891075573861599, -0.06483732908964157, 0.07076039165258408, 0.024936817586421967, 0.09170376509428024, -0.032587289810180664, 0.0036192042753100395, 0.056110791862010956, -0.06291910260915756, -0.03954600542783737, 0.08774389326572418, -0.09241031110286713, 0.027859745547175407, 0.05094030499458313, 0.07257025688886642, -0.13223324716091156, -0.017624828964471817, 0.0144362673163414, -0.016860652714967728, 0.02022237703204155, 0.13806498050689697, -0.16035984456539154, 0.0024560336023569107, -0.3189820647239685, -0.022673120722174644, 0.20535123348236084, 0.08032140135765076, 0.023617470636963844, -0.013775127939879894, 0.015735076740384102, 0.13055938482284546, 0.04562343657016754, -0.05913768336176872, 0.1662033498287201, -0.07323841005563736, 0.005050535313785076, -0.15434657037258148, -0.07366164773702621, -0.06600874662399292, 0.02309955656528473, 0.1419464349746704, 0.08519963175058365, 0.1953190416097641, -0.07840495556592941, -0.034099262207746506, -0.0011908977758139372, 0.05242599546909332, 0.03697309270501137, -0.03046356327831745, -0.030065488070249557, -0.020052378997206688, -0.010880979709327221, -0.06409137696027756, 0.2540474832057953, 0.017993174493312836, -0.07899098843336105, -0.004348208196461201, -0.02068648487329483, -0.03012809343636036, 0.01532109547406435, 0.169389545917511, -0.04075178503990173, -0.0041060419753193855, -0.1453220397233963, -0.018392695114016533, 0.10772721469402313, 0.09455940127372742, -0.15190237760543823, 0.054593779146671295, -0.10612699389457703, 0.16454270482063293, 0.09653497487306595, -0.058783795684576035, -0.08240294456481934, -0.04020825773477554, -0.05458332225680351, 0.03453287109732628, -0.0019359036814421415, 0.1326742321252823, 0.11753953993320465, -0.014087704941630363, 0.038415681570768356, 0.03459605574607849, -0.09265177696943283, -0.19511361420154572, -0.056239716708660126, -0.07987883687019348, -0.1583660989999771, 0.03875591978430748, -0.08811724185943604, 0.03471842035651207, 0.05819407477974892, 0.029737213626503944, 0.019517039880156517, 0.06582631170749664, -0.0030045285820961, -0.10314452648162842, 0.017435945570468903, -0.05204131454229355, -0.004171537235379219, -0.1269022822380066, -0.021618466824293137, 0.126119464635849, 0.01852165348827839, -0.008122030645608902, -0.020678117871284485, -0.018079059198498726, 0.05602404475212097, 0.0005908164312131703, 0.017164263874292374, -0.05309177190065384, 0.036143846809864044, -0.0048638698644936085, 0.10436558723449707, 0.07126845419406891, -0.11144645512104034, 0.0450226329267025, 0.09073232859373093, -0.06558416038751602, -0.08701878041028976, -0.05871669575572014, 0.10159168392419815, 0.02212628349661827, 0.16419462859630585, -0.07658886164426804, -0.08260168880224228, -0.037258852273225784, 0.12984757125377655, 0.1768920123577118, -0.05843301862478256, -0.037743180990219116, -0.07497614622116089, 0.016034390777349472, -0.06191325560212135, -0.0017895722994580865, 0.0799437165260315, 0.21962346136569977, 0.01742679998278618, 0.0849732980132103, -0.11544930934906006, -0.020059209316968918, 0.009421552531421185, -0.012812264263629913, -0.025299755856394768, -0.04612128064036369, -0.08965916186571121, 0.10842271149158478, -0.19021961092948914, -0.12521854043006897, -0.10249596834182739, 0.04990847781300545, 0.007287696003913879, 0.016474569216370583, 0.11124704033136368, 0.09277290105819702, 0.0446384996175766, -0.051206279546022415, -0.032351311296224594, -0.016463348641991615, 0.02054229937493801, -0.20099270343780518, 0.04254098981618881, -0.03404160588979721, -0.14106488227844238, 0.09486814588308334, 0.00997956097126007, 0.25875845551490784, -0.01005416177213192, 0.09374206513166428, 0.04571721330285072, 0.12938295304775238, -0.034371692687273026, -0.0006708332221023738, 0.06458202749490738, 0.08076377958059311, 0.00727042043581605, 0.10959464311599731, 0.013655430637300014, -0.01156768947839737, 0.0515875481069088, 0.02899513766169548, -0.10169889777898788, -0.15714220702648163, -0.026342008262872696, -0.09831105172634125, 0.08387773483991623, -0.03471524268388748, -0.044300589710474014, -0.03595414012670517, -0.028875136747956276, 0.08471629023551941, 0.03637023642659187, -0.050488539040088654, 0.03754010051488876, -0.16953998804092407, -0.055600184947252274, -0.02016744576394558, 0.08444670587778091, -0.05075328052043915, 0.011968963779509068, -0.15239056944847107, -0.08259062469005585, -0.03129515051841736, -0.002744529163464904, 0.056434717029333115, 0.056952133774757385, -0.013692132197320461, -0.11121630668640137, 0.051971323788166046, 0.039349883794784546, -0.056366272270679474, -0.11137227714061737 ]
null
null
transformers
## Ko-DialoGPT ### How to use ```python from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = PreTrainedTokenizerFast.from_pretrained('byeongal/Ko-DialoGPT') model = GPT2LMHeadModel.from_pretrained('byeongal/Ko-DialoGPT').to(device) past_user_inputs = [] generated_responses = [] while True: user_input = input(">> User:") if user_input == 'bye': break text_idx = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') for i in range(len(generated_responses)-1, len(generated_responses)-3, -1): if i < 0: break encoded_vector = tokenizer.encode(generated_responses[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break encoded_vector = tokenizer.encode(past_user_inputs[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break text_idx = text_idx.to(device) inference_output = model.generate( text_idx, max_length=1000, num_beams=5, top_k=20, no_repeat_ngram_size=4, length_penalty=0.65, repetition_penalty=2.0, ) inference_output = inference_output.tolist() bot_response = tokenizer.decode(inference_output[0][text_idx.shape[-1]:], skip_special_tokens=True) print(f"Bot: {bot_response}") past_user_inputs.append(user_input) generated_responses.append(bot_response) ``` ### Reference * [SKT-KoGPT2](https://huggingface.co/skt/kogpt2-base-v2) * [KETI R&D 데이터](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-008) * [한국어 대화 요약](https://aihub.or.kr/aidata/30714)
{"language": "ko", "license": "cc-by-nc-sa-4.0", "tags": ["gpt2", "conversational"]}
text-generation
byeongal/Ko-DialoGPT
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ko" ]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #ko #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## Ko-DialoGPT ### How to use ### Reference * SKT-KoGPT2 * KETI R&D 데이터 * 한국어 대화 요약
[ "## Ko-DialoGPT", "### How to use", "### Reference\n* SKT-KoGPT2\n* KETI R&D 데이터\n* 한국어 대화 요약" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #ko #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Ko-DialoGPT", "### How to use", "### Reference\n* SKT-KoGPT2\n* KETI R&D 데이터\n* 한국어 대화 요약" ]
[ 66, 7, 5, 22 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #ko #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Ko-DialoGPT### How to use### Reference\n* SKT-KoGPT2\n* KETI R&D 데이터\n* 한국어 대화 요약" ]
[ 0.03463178873062134, 0.0062202769331634045, -0.0027847231831401587, -0.0009886629413813353, 0.11605200171470642, -0.016066433861851692, 0.15452933311462402, 0.1159386932849884, 0.014389745891094208, -0.01743025705218315, 0.12066271156072617, 0.22286757826805115, 0.05412983521819115, 0.181974396109581, -0.06498125195503235, -0.309623122215271, 0.05108341574668884, 0.0456090122461319, 0.0900101289153099, 0.14035193622112274, 0.1349291056394577, -0.038731906563043594, 0.08534061163663864, 0.0008050627075135708, -0.14990179240703583, -0.05297175049781799, -0.0034327132161706686, -0.15141141414642334, 0.11857535690069199, 0.0148201584815979, 0.019468355923891068, 0.08806202560663223, -0.033127836883068085, -0.15956425666809082, 0.02606525644659996, -0.04054391756653786, -0.05063518509268761, 0.04209239035844803, -0.04918987676501274, 0.0027687465772032738, 0.17447838187217712, -0.02921423502266407, -0.03505804017186165, 0.02622583881020546, -0.10007762163877487, -0.011954361572861671, -0.07328451424837112, 0.13903579115867615, 0.17644809186458588, 0.07169631123542786, 0.0005925907171331346, 0.1076531782746315, -0.0622573122382164, 0.07661113888025284, 0.11828121542930603, -0.33742696046829224, -0.02059377357363701, 0.151753768324852, 0.009838251397013664, 0.04167735204100609, -0.055820282548666, 0.08042434602975845, 0.02366548217833042, -0.022213615477085114, -0.008917048573493958, -0.11527449637651443, -0.1351393610239029, 0.04105239361524582, -0.08621330559253693, -0.015224162489175797, 0.29149529337882996, -0.011895003728568554, 0.013617598451673985, -0.058981671929359436, -0.01757383532822132, -0.0455985926091671, -0.030185047537088394, -0.0383964367210865, -0.06570245325565338, -0.011633841320872307, -0.03826068341732025, -0.1028178408741951, -0.1313042938709259, -0.07466381788253784, -0.15562070906162262, 0.19206298887729645, 0.02638249099254608, 0.0034819929860532284, -0.07917679101228714, 0.11418059468269348, -0.12042541801929474, -0.08356469124555588, -0.06738416105508804, -0.07719561457633972, 0.06584998220205307, -0.009630647487938404, 0.024821875616908073, -0.014759949408471584, 0.07385601848363876, 0.15385687351226807, 0.034328892827034, 0.015691950917243958, -0.0025684840511530638, 0.07595177739858627, 0.00039873490459285676, 0.08585716784000397, -0.03639247268438339, 0.004448229447007179, 0.08792280405759811, -0.062324926257133484, 0.021710854023694992, -0.05710969120264053, -0.16006724536418915, -0.06555818021297455, -0.004465912468731403, 0.059026677161455154, 0.032593417912721634, 0.14311033487319946, -0.0021668376866728067, -0.009295761585235596, 0.12452181428670883, -0.04194846376776695, -0.03100506402552128, -0.029417887330055237, 0.0015514367260038853, 0.026732144877314568, 0.03716687485575676, 0.07191727310419083, -0.05803756043314934, 0.08628475666046143, -0.029317524284124374, 0.006372589152306318, -0.009620722383260727, -0.004015258047729731, 0.03451436012983322, -0.07110031694173813, 0.022386660799384117, -0.18307578563690186, -0.14557288587093353, 0.005573652684688568, -0.026436643674969673, -0.04174163192510605, -0.11820869147777557, -0.043884068727493286, -0.06170006841421127, 0.042047370225191116, -0.08755143731832504, -0.044582024216651917, -0.0529477559030056, 0.05958501994609833, -0.05544612929224968, 0.08032652735710144, -0.10979699343442917, 0.040116362273693085, -0.09666326642036438, -0.012188284657895565, -0.15508650243282318, 0.05157541111111641, -0.09845021367073059, 0.017482120543718338, -0.1055530309677124, -0.032301146537065506, -0.07624481618404388, -0.007496396545320749, -0.007697765715420246, 0.20782692730426788, -0.059531327337026596, -0.050019752234220505, 0.20391088724136353, -0.07326239347457886, -0.1776367872953415, 0.13225620985031128, 0.02101585827767849, 0.11999883502721786, 0.05940878018736839, 0.15471261739730835, 0.03941452130675316, -0.08265051990747452, -0.03387095779180527, 0.13444657623767853, -0.06706163287162781, -0.03744347766041756, 0.07996387034654617, -0.002695024013519287, -0.05869877710938454, 0.029553817585110664, -0.044807471334934235, 0.03222803398966789, -0.039956703782081604, -0.04529089108109474, -0.015261142514646053, -0.004345363937318325, 0.08088699728250504, -0.03603813052177429, 0.09278586506843567, -0.02414209209382534, -0.027867062017321587, 0.02952689304947853, 0.04418915510177612, 0.0027337626088410616, 0.06455451250076294, -0.07560417801141739, 0.06022733449935913, -0.011776086874306202, 0.035577885806560516, -0.04822959750890732, -0.04709818214178085, -0.02235994301736355, 0.12511156499385834, 0.07980688661336899, -0.0003637943300418556, 0.019404876977205276, -0.050637710839509964, -0.04628126695752144, 0.03732137754559517, 0.07864087074995041, 0.04965178668498993, -0.059095654636621475, -0.10614150762557983, 0.07123494893312454, 0.001342420233413577, 0.1155606359243393, -0.0418352335691452, 0.01605398580431938, 0.13552598655223846, 0.09521902352571487, -0.06712723523378372, 0.052575282752513885, 0.032326631247997284, 0.041037511080503464, -0.045286841690540314, 0.024401314556598663, 0.06320114433765411, 0.02763829007744789, -0.1278713494539261, 0.27563270926475525, -0.09475352615118027, 0.05050072446465492, 0.15663647651672363, -0.11190535873174667, -0.03284236788749695, -0.08492770791053772, -0.03692212700843811, -0.041747093200683594, 0.005851605907082558, -0.026923134922981262, 0.19624440371990204, -0.01608845219016075, 0.12016842514276505, -0.028858350589871407, -0.05192951112985611, 0.0038045961409807205, -0.10005401819944382, -0.007673574611544609, 0.08763723075389862, 0.11431022733449936, -0.18414123356342316, 0.17634685337543488, 0.10403409600257874, -0.025807451456785202, 0.18653830885887146, 0.014773023314774036, -0.010739653371274471, -0.004253227263689041, 0.026700958609580994, -0.03156325966119766, 0.009873376227915287, -0.18822547793388367, -0.02955397590994835, 0.09153328090906143, 0.012536398135125637, 0.045797545462846756, -0.12944455444812775, -0.056114308536052704, -0.026936089619994164, -0.021523786708712578, -0.012380903586745262, 0.11714201420545578, 0.0009086052887141705, 0.1140192374587059, 0.06184042617678642, -0.025423798710107803, 0.08043598383665085, 0.02469967119395733, -0.09262602776288986, 0.1917659044265747, -0.11019058525562286, -0.2254178524017334, -0.11899080127477646, -0.10359656810760498, -0.049736928194761276, -0.010256767272949219, 0.08132778108119965, -0.07319606840610504, -0.02727908082306385, -0.0074502830393612385, 0.021109528839588165, -0.04941181465983391, -0.013586669228971004, -0.03168172761797905, -0.008127807639539242, -0.15426105260849, -0.08586286008358002, -0.07627151161432266, 0.02869684062898159, -0.09149026870727539, 0.13626043498516083, -0.07522252202033997, 0.08513271808624268, 0.1710311323404312, 0.010718085803091526, 0.026130877435207367, -0.06881532073020935, 0.12281312048435211, -0.10970126837491989, 0.05274005979299545, 0.16046802699565887, -0.03936848044395447, 0.06399465352296829, 0.13222908973693848, 0.020045548677444458, -0.0013023372739553452, 0.05667462944984436, -0.03598897531628609, -0.1007770448923111, -0.23665465414524078, -0.08146844804286957, -0.10882981866598129, 0.15166111290454865, -0.025166625156998634, 0.028633814305067062, 0.19413809478282928, 0.11194866895675659, -0.029507379978895187, 0.05515008047223091, 0.07712757587432861, 0.12177780270576477, 0.24611026048660278, -0.01646256446838379, 0.1129300445318222, -0.06654320657253265, -0.070332832634449, 0.07071666419506073, 0.07783927768468857, 0.06149846315383911, 0.016039881855249405, 0.08798357099294662, 0.07723022252321243, 0.11043108999729156, 0.09990548342466354, 0.02731538936495781, -0.014497370459139347, -0.0168008990585804, -0.0035897872876375914, -0.07163449376821518, -0.020012812688946724, 0.10265291482210159, -0.015432100743055344, -0.1606350839138031, 0.04227646812796593, -0.015934841707348824, 0.09104984998703003, 0.09119550883769989, 0.08527547866106033, -0.15241187810897827, -0.06767350435256958, 0.037584174424409866, 0.013846217654645443, -0.07135741412639618, 0.06762143224477768, 0.022608360275626183, -0.19233548641204834, 0.09932117909193039, -0.02661903388798237, 0.08677976578474045, -0.07372985780239105, 0.006930229719728231, -0.042392145842313766, -0.07818318158388138, -0.018956664949655533, 0.11226623505353928, -0.29415297508239746, 0.23100604116916656, 0.0041154175996780396, -0.02521168254315853, -0.12362966686487198, -0.02725308947265148, 0.02979450859129429, 0.10585356503725052, 0.14785833656787872, 0.013375191949307919, -0.05399278551340103, -0.09083525091409683, -0.09376929700374603, 0.019576722756028175, 0.0960562452673912, -0.08672540634870529, -0.009703462943434715, -0.012918200343847275, -0.008118415251374245, -0.026286538690328598, -0.021597107872366905, -0.034647002816200256, -0.11305714398622513, 0.12296441942453384, 0.09404390305280685, 0.08541691303253174, 0.013730204664170742, -0.03676789626479149, -0.06943456828594208, 0.22991184890270233, -0.10720103979110718, -0.09717637300491333, -0.09900020807981491, -0.0712830126285553, 0.050351694226264954, -0.1114172488451004, 0.05927938595414162, -0.06100631132721901, -0.02083607204258442, -0.03914613649249077, -0.13241249322891235, 0.08735539019107819, -0.08383787423372269, -0.09147520363330841, 0.04181639477610588, 0.1725364327430725, -0.027764033526182175, 0.03788349777460098, 0.03072543628513813, 0.030901890248060226, -0.03456476330757141, -0.1424391269683838, 0.02973327971994877, 0.056108858436346054, 0.09749793261289597, 0.003745701862499118, -0.04821362346410751, 0.014230163767933846, -0.09881532192230225, -0.10313698649406433, 0.26102137565612793, 0.21633516252040863, -0.06397034972906113, 0.14147603511810303, 0.09364309161901474, -0.05159061402082443, -0.30855414271354675, -0.1014799252152443, -0.06963810324668884, -0.034718599170446396, -0.07299862056970596, -0.1339537799358368, 0.04606163129210472, 0.035006895661354065, -0.05810873582959175, 0.0391460619866848, -0.21340149641036987, -0.14994455873966217, 0.12989792227745056, -0.022219587117433548, 0.26827311515808105, -0.0835285484790802, -0.0999174416065216, -0.011034769006073475, -0.25878167152404785, 0.14942969381809235, -0.045852672308683395, 0.09146416187286377, -0.0036183262709528208, 0.1288747936487198, 0.015815332531929016, -0.034197740256786346, 0.10908927768468857, 0.018346427008509636, -0.05334533005952835, -0.13358056545257568, -0.13945455849170685, 0.009388645179569721, -0.015244127251207829, 0.11423195153474808, -0.018018804490566254, 0.02815941721200943, -0.13133566081523895, -0.02662551961839199, -0.09443970024585724, 0.059535134583711624, 0.00864856131374836, -0.11090322583913803, -0.09624913334846497, 0.0024430828634649515, -0.013666670769453049, -0.021816367283463478, 0.22935084998607635, -0.04198960214853287, 0.10066115856170654, 0.11436261236667633, 0.12627610564231873, -0.00476772291585803, 0.08193642646074295, -0.03835158422589302, -0.09866651147603989, 0.04700946435332298, -0.13122861087322235, -0.005463299807161093, 0.11924956738948822, 0.020148659124970436, 0.0840701311826706, 0.053738564252853394, -0.0591466911137104, 0.05148669332265854, 0.09214717894792557, -0.20921854674816132, -0.06335291266441345, -0.08107417821884155, 0.01721314899623394, 0.09965860098600388, 0.09647515416145325, 0.1717255860567093, -0.09983326494693756, -0.046870484948158264, 0.006853782571852207, 0.03899814933538437, -0.08634410053491592, 0.04880011826753616, 0.04369683191180229, 0.030156642198562622, -0.08238054811954498, 0.04129096865653992, 0.011279282160103321, -0.05821268633008003, 0.04697556421160698, 0.08340843766927719, -0.14573000371456146, -0.09974025189876556, -0.013774869032204151, -0.05722658708691597, -0.10970108956098557, -0.04240499809384346, -0.008058111183345318, -0.10715531557798386, 0.011516454629600048, 0.17462944984436035, 0.028771553188562393, 0.06821213662624359, 0.017025023698806763, 0.01410652231425047, -0.06588166952133179, 0.044300202280282974, -0.03835522383451462, 0.04239898547530174, -0.09520689398050308, 0.09791044890880585, -0.034439120441675186, 0.16899746656417847, -0.07385765016078949, -0.031110854819417, -0.1433100551366806, 0.010787985287606716, 0.014450447633862495, -0.06317506730556488, -0.15129120647907257, -0.05610714852809906, -0.018328959122300148, -0.07397563755512238, -0.0561944879591465, -0.00744521152228117, -0.09411723166704178, 0.03068215772509575, -0.047548260539770126, 0.059033505618572235, -0.07489801943302155, -0.018019339069724083, 0.09720472246408463, -0.015043404884636402, 0.13748526573181152, 0.13351145386695862, -0.04338131844997406, 0.07332766056060791, -0.12469896674156189, 0.06538832932710648, 0.09768728911876678, 0.02127871848642826, 0.029409337788820267, -0.01166890375316143, -0.007057575508952141, 0.026628512889146805, 0.05804413557052612, 0.06561494618654251, 0.06563486158847809, -0.10088366270065308, -0.02955665998160839, -0.07439863681793213, -0.10556759685277939, -0.054977897554636, 0.028151163831353188, 0.07773204147815704, 0.028422636911273003, 0.05986720323562622, -0.0698409378528595, 0.06566372513771057, -0.037988435477018356, 0.0224174614995718, 0.0013154431944712996, -0.15576134622097015, 0.009926285594701767, -0.10065097361803055, 0.036404311656951904, -0.021282963454723358, 0.18715862929821014, 0.008758245036005974, -0.13110993802547455, 0.05504827946424484, -0.025265388190746307, 0.049349453300237656, 0.012947948649525642, 0.16827882826328278, 0.07345160841941833, -0.04453727602958679, -0.1227329671382904, 0.06963053345680237, -0.03042377158999443, -0.08694922924041748, 0.13421204686164856, 0.010298368521034718, 0.023364996537566185, 0.05991288647055626, 0.05922792851924896, -0.029402276501059532, -0.11298078298568726, -0.15047724545001984, -0.11876417696475983, 0.06391076743602753, -0.07789868116378784, 0.07865098118782043, 0.17309772968292236, -0.11500488221645355, 0.01353529840707779, -0.025348041206598282, -0.07787410914897919, -0.18131235241889954, -0.21697023510932922, -0.0896243005990982, -0.15036393702030182, 0.03500548377633095, -0.09449714422225952, 0.04609649255871773, 0.05879037454724312, 0.06944853812456131, -0.027876591309905052, 0.16796226799488068, -0.026277560740709305, -0.07352204620838165, 0.1425047069787979, -0.03170217201113701, 0.0281507708132267, -0.10878215730190277, -0.004580717068165541, -0.025776110589504242, -0.03847011551260948, 0.023991551250219345, 0.028707338497042656, -0.026169583201408386, 0.011595817282795906, -0.06454780697822571, -0.07779103517532349, -0.029718104749917984, 0.0654095858335495, 0.06535021215677261, 0.06419200450181961, 0.013566218316555023, -0.0068550691939890385, 0.041922878473997116, 0.21772682666778564, -0.047983646392822266, -0.10278720408678055, -0.0855436772108078, 0.1698809266090393, 0.01968570239841938, 0.029022378847002983, -0.004920493345707655, -0.016019418835639954, -0.02200867235660553, 0.24764645099639893, 0.19779984652996063, 0.01359795592725277, 0.026526007801294327, -0.013805696740746498, 0.05123800411820412, 0.08007162064313889, 0.10291759669780731, 0.08781063556671143, 0.2377588003873825, -0.07028277963399887, -0.05535351112484932, -0.023330826312303543, -0.009666060097515583, -0.04898254573345184, 0.054996054619550705, 0.028195148333907127, -0.10251004248857498, -0.038483209908008575, 0.09950029104948044, -0.20109276473522186, 0.039532940834760666, -0.07847177982330322, -0.17368264496326447, -0.08899141103029251, 0.030438320711255074, 0.0480162687599659, 0.004065916407853365, 0.04725053161382675, -0.0012174065923318267, -0.03633552044630051, 0.03818829730153084, 0.07160679996013641, -0.12536746263504028, 0.051988571882247925, 0.07902847230434418, 0.04544926807284355, 0.04268810898065567, -0.02417714148759842, 0.139982208609581, 0.09105157107114792, 0.01640000194311142, -0.05490253120660782, 0.08583033084869385, 0.05573313310742378, -0.05119405686855316, 0.02175302617251873, 0.048825010657310486, 0.002752012573182583, -0.033759649842977524, 0.083908811211586, -0.10857290029525757, 0.06102803722023964, 0.05987011641263962, -0.019074145704507828, -0.1051369309425354, 0.0666961595416069, -0.1136736050248146, 0.12630058825016022, 0.09391818940639496, -0.06346790492534637, -0.01788962632417679, -0.03532060235738754, -0.013241024687886238, -0.0208558551967144, -0.05856914445757866, -0.04569978639483452, -0.11466007679700851, -0.06484801322221756, 0.001678742584772408, 0.06649316847324371, -0.13265520334243774, 0.010370228439569473, -0.07831458002328873, 0.03782008960843086, -0.13546939194202423, 0.05870896577835083, 0.0657036229968071, -0.0284345131367445, -0.006959219928830862, -0.1400582492351532, 0.01241377368569374, 0.05746302381157875, -0.1405077874660492, -0.06342325359582901 ]
null
null
transformers
# BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
{"language": "en", "license": "mit", "tags": ["bart"], "thumbnail": "https://huggingface.co/front/thumbnails/facebook.png"}
feature-extraction
byeongal/bart-base
[ "transformers", "pytorch", "bart", "feature-extraction", "en", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us
# BART base model for Teachable NLP - This model forked from bart-base for fine tune Teachable NLP. The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: URL
[ "# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ "TAGS\n#transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us \n", "# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ 36, 268 ]
[ "passage: TAGS\n#transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us \n# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ -0.06956857442855835, 0.04457465186715126, -0.004278091713786125, 0.06383232772350311, 0.04575788974761963, 0.0009689402650110424, 0.12578237056732178, 0.06111329421401024, 0.03402772173285484, 0.05971178412437439, 0.020727969706058502, 0.05642878636717796, 0.03883771970868111, 0.0903591513633728, 0.008897696621716022, -0.21284779906272888, 0.02386563830077648, -0.005453251767903566, 0.027101008221507072, 0.059840697795152664, 0.09444064646959305, -0.05067587271332741, -0.00013677930110134184, -0.003827392589300871, -0.008113514631986618, 0.0411461666226387, -0.025193123146891594, -0.05680094286799431, 0.07745182514190674, 0.08276908099651337, 0.07015152275562286, 0.07142237573862076, -0.03375015780329704, -0.08843500167131424, 0.04712808132171631, 0.013114690780639648, -0.029620544984936714, 0.03976709023118019, 0.0192802082747221, -0.1008976474404335, 0.13640128076076508, -0.038168441504240036, -0.013073354959487915, 0.045581161975860596, -0.0964486300945282, 0.017592471092939377, -0.03211461380124092, -0.04940709099173546, 0.09056473523378372, 0.027633629739284515, -0.034948743879795074, -0.004151801113039255, -0.040583766996860504, 0.11591266095638275, 0.1094534620642662, -0.33407479524612427, -0.06030594930052757, 0.10516150295734406, 0.022000499069690704, 0.058790381997823715, -0.10094871371984482, 0.022611962631344795, -0.00957450084388256, -0.012027755379676819, 0.032103631645441055, -0.059581056237220764, -0.029039915651082993, -0.014940069988369942, -0.11262763291597366, -0.024011826142668724, 0.1282896101474762, -0.01905154436826706, -0.06761341542005539, -0.1584026962518692, -0.10314656794071198, 0.06514429301023483, -0.0333925299346447, -0.025084786117076874, -0.015246236696839333, 0.05311320722103119, -0.0061501068994402885, -0.08873709291219711, -0.10404577106237411, -0.07593223452568054, -0.029916491359472275, 0.14956389367580414, 0.03619862720370293, -0.03139636293053627, -0.02345297485589981, 0.08760567009449005, -0.05163322016596794, -0.0945669487118721, -0.081351637840271, -0.006782390642911196, -0.13037846982479095, 0.05354313924908638, -0.06648851186037064, -0.1584169864654541, 0.005895504727959633, 0.15364262461662292, 0.02953210473060608, 0.11797693371772766, 0.04584050923585892, 0.02943495102226734, -0.008842808194458485, 0.137931227684021, 0.031232435256242752, -0.03996821865439415, 0.0323980487883091, -0.009137384593486786, 0.04706136882305145, -0.04885285347700119, -0.0788884311914444, -0.015038598328828812, -0.013141997158527374, 0.03894481435418129, -0.0604323111474514, 0.033195238560438156, -0.05823267996311188, -0.0052782949060201645, 0.03975065052509308, -0.12380693852901459, 0.0008571596699766815, 0.02891610749065876, -0.051212262362241745, -0.06980658322572708, -0.0056619783863425255, -0.0344022661447525, -0.1033661812543869, 0.03741113096475601, -0.04887474700808525, -0.03362174332141876, -0.06449327617883682, -0.1103443056344986, -0.016470259055495262, -0.0022687045857310295, -0.050917189568281174, -0.12876597046852112, -0.1608763039112091, -0.023359457030892372, 0.04285513982176781, -0.07128763943910599, 0.04344993457198143, -0.10207651555538177, -0.012290588580071926, 0.018525049090385437, -0.0053082616068422794, 0.02462090738117695, -0.020686756819486618, 0.05180054157972336, 0.072564497590065, 0.09146447479724884, -0.037738997489213943, 0.019785692915320396, -0.08132269978523254, -0.013581727631390095, -0.11469867080450058, 0.14007176458835602, -0.07117412984371185, -0.07509852945804596, -0.0521337166428566, -0.01534811407327652, -0.05211113020777702, 0.0203708428889513, 0.06615724414587021, 0.09699174016714096, -0.06060847267508507, -0.058441173285245895, 0.1644604355096817, -0.07885591685771942, 0.008445999585092068, 0.09424353390932083, -0.021413683891296387, 0.05670425668358803, 0.08855278789997101, 0.18922318518161774, 0.12097789347171783, -0.012855574488639832, -0.014235947281122208, 0.0403546541929245, -0.005565071944147348, 0.06518872082233429, 0.014686067588627338, 0.08348660916090012, -0.021248288452625275, 0.05805118381977081, -0.031193522736430168, 0.009271007031202316, 0.030718844383955002, -0.0437949076294899, 0.01607157103717327, 0.0056879580952227116, 0.028972502797842026, -0.013621636666357517, 0.09798802435398102, -0.04804696887731552, -0.10354898124933243, -0.10691386461257935, 0.05791569501161575, -0.09498338401317596, 0.0009401820134371519, -0.1255863755941391, 0.06342743337154388, -0.09553505480289459, 0.04090403765439987, -0.1542605310678482, -0.08622623980045319, 0.04749084264039993, 0.0310400128364563, 0.05898616090416908, 0.08347663283348083, 0.05720827355980873, 0.06322210282087326, -0.028437115252017975, -0.028165793046355247, -0.010090858675539494, -0.07282999157905579, -0.036844994872808456, -0.03418751060962677, -0.012309675104916096, -0.054691970348358154, 0.06534581631422043, -0.05324133485555649, 0.01776799000799656, 0.05284252390265465, 0.07173634320497513, 0.012025059200823307, -0.03705773130059242, 0.020367179065942764, 0.027139753103256226, -0.04465636983513832, -0.004471919033676386, 0.061853520572185516, 0.03928161412477493, -0.11713014543056488, 0.06572150439023972, -0.19628740847110748, -0.14665120840072632, 0.0510437898337841, 0.05652821436524391, -0.04824518784880638, -0.002432947512716055, -0.004476649221032858, 0.009885165840387344, -0.02087727189064026, -0.01650300994515419, 0.20397982001304626, -0.009143571369349957, 0.12954920530319214, -0.05672980099916458, -0.04732660949230194, -0.015749357640743256, 0.0268087200820446, 0.04803124815225601, 0.1301104575395584, 0.025919442996382713, -0.04112978279590607, 0.018893057480454445, 0.00239523034542799, 0.008743717335164547, 0.16947610676288605, 0.013433068990707397, -0.056186191737651825, -0.010084916837513447, 0.10733926296234131, 0.012059851549565792, 0.0416070856153965, -0.059366486966609955, -0.0021005794405937195, 0.012279232032597065, 0.05184992402791977, 0.046942099928855896, -0.14152126014232635, 0.0715276449918747, 0.005118558183312416, -0.07960277795791626, 0.003143319394439459, 0.034208085387945175, -0.05042804032564163, 0.03876591846346855, -0.025290772318840027, -0.04665381461381912, -0.019270440563559532, -0.049209531396627426, -0.051918499171733856, 0.13113084435462952, -0.03351622074842453, -0.27141401171684265, -0.13516142964363098, 0.03998831287026405, -0.06012297421693802, 0.04709272459149361, 0.08598487079143524, -0.06422203779220581, -0.07358492910861969, -0.07732965797185898, 0.043628059327602386, -0.02891184762120247, -0.06336250901222229, -0.03269914910197258, -0.04835553094744682, -0.028163067996501923, -0.18507380783557892, 0.017381887882947922, -0.024977101013064384, -0.10889522731304169, 0.08079910278320312, -0.04906028136610985, 0.058066777884960175, 0.06309998780488968, 0.028130358085036278, 0.003530134679749608, -0.05505504831671715, 0.1872972697019577, -0.05809662491083145, 0.056848861277103424, 0.07328740507364273, 0.026226848363876343, 0.056959472596645355, 0.05040648952126503, -0.041973549872636795, -0.13072755932807922, 0.06924532353878021, 0.020296374335885048, -0.09613499045372009, -0.171861469745636, -0.057749394327402115, -0.14921654760837555, 0.026264293119311333, 0.05762868747115135, 0.04703390598297119, -0.04561594873666763, 0.059233590960502625, -0.057499464601278305, 0.030172646045684814, 0.11718712747097015, 0.10001074522733688, 0.10223031044006348, -0.00021179309987928718, 0.11474216729402542, -0.06909794360399246, -0.08897178620100021, 0.051542747765779495, 0.047305554151535034, 0.1978408545255661, -0.06001010537147522, 0.23228122293949127, 0.03488508239388466, 0.06661167740821838, 0.07644622772932053, 0.10139025747776031, -0.10913727432489395, 0.030515151098370552, -0.06869079917669296, -0.029835667461156845, -0.07749500870704651, 0.06556516140699387, 0.012395227327942848, -0.07983455061912537, -0.04975872486829758, 0.01641339436173439, 0.06081704422831535, 0.14988060295581818, 0.02831512875854969, -0.12381276488304138, -0.07088080048561096, 0.05868595838546753, -0.06119293347001076, -0.02319435030221939, 0.027777621522545815, 0.15762445330619812, -0.05803249403834343, 0.005415776744484901, -0.003179955994710326, 0.10103543102741241, -0.031604643911123276, -0.022927111014723778, -0.15710362792015076, 0.04044889658689499, 0.044731009751558304, 0.0941377580165863, -0.1870444267988205, 0.05466983839869499, 0.006727706175297499, 0.11462365090847015, -0.04863179475069046, 0.02734818123281002, 0.047461703419685364, -0.12233685702085495, 0.11024297028779984, 0.0074831293895840645, -0.07811940461397171, -0.01084613986313343, -0.06546122580766678, 0.08514482527971268, 0.11858464777469635, -0.06710749119520187, 0.07078798860311508, -0.028506439179182053, -0.012363567017018795, -0.012177366763353348, -0.0005719909677281976, -0.02491600438952446, -0.1945873647928238, 0.04356438294053078, 0.059397269040346146, 0.06390698254108429, -0.024559201672673225, -0.021400777623057365, 0.004007131792604923, 0.2055586278438568, -0.13291095197200775, -0.07409399002790451, -0.07166405767202377, 0.024859709665179253, 0.02622811868786812, -0.06568756699562073, -0.018559586256742477, 0.011846104636788368, 0.07464250177145004, -0.040805887430906296, -0.07670461386442184, 0.05680602043867111, -0.031628433614969254, -0.09084643423557281, -0.024665430188179016, 0.12149161845445633, 0.0361064150929451, 0.04708762466907501, 0.040504537522792816, 0.04724808409810066, -0.036284539848566055, -0.10563584417104721, -0.019931592047214508, 0.019724233075976372, -0.021912718191742897, 0.05355474725365639, -0.0595974437892437, -0.013886569067835808, -0.04032593220472336, 0.0026281538885086775, 0.17261391878128052, 0.1634759157896042, -0.041292622685432434, 0.16018281877040863, 0.1379484385251999, -0.07109370082616806, -0.18979734182357788, -0.10621867328882217, 0.00849977508187294, 0.08677726238965988, -0.06434274464845657, -0.2072487622499466, 0.052057426422834396, 0.019636496901512146, 0.006688476540148258, 0.026273826137185097, -0.24098007380962372, -0.09313210844993591, 0.027952810749411583, 0.0694873258471489, 0.29669564962387085, -0.11421248316764832, -0.02524968609213829, -0.0031033072154968977, -0.13155043125152588, 0.08166514337062836, -0.02355835773050785, 0.16629283130168915, 0.0011412145104259253, 0.025031981989741325, -0.005518597550690174, -0.03092793934047222, 0.09293794631958008, 0.0064391023479402065, 0.01969602331519127, -0.005836784839630127, 0.09039459377527237, 0.0800749883055687, -0.024839576333761215, 0.06414385885000229, -0.1037263497710228, 0.04436236247420311, -0.05685719475150108, -0.07321026176214218, -0.0095343217253685, 0.05991910398006439, -0.013228203170001507, -0.04056345298886299, -0.043137867003679276, 0.028791578486561775, 0.05428782477974892, 0.031734202057123184, 0.06896677613258362, -0.06116528809070587, 0.059485454112291336, 0.018827369436621666, 0.07641229033470154, -0.11280100792646408, -0.07955628633499146, -0.020161589607596397, 0.03231194242835045, 0.12096887826919556, -0.09708467870950699, 0.07010567933320999, 0.1328616887331009, 0.021172385662794113, 0.1416553407907486, 0.07219181954860687, -0.04133714735507965, 0.1016048714518547, 0.07210806012153625, -0.13299216330051422, -0.17056140303611755, 0.014031365513801575, -0.06187247112393379, 0.04319417104125023, 0.02493174560368061, 0.1697562336921692, -0.021204743534326553, -0.02938900701701641, 0.030162829905748367, 0.0311395563185215, 0.03230876848101616, 0.09459852427244186, -0.036121223121881485, 0.02426198497414589, -0.08358461409807205, 0.044994987547397614, 0.07481163740158081, -0.1468217521905899, 0.01980087347328663, 0.1214769035577774, -0.11589011549949646, -0.051020264625549316, -0.17565695941448212, 0.06877070665359497, 0.025836309418082237, -0.010896263644099236, -0.11177489161491394, -0.04179662466049194, 0.015574665740132332, -0.0009708915604278445, 0.02792205475270748, 0.03665730357170105, -0.075554758310318, 0.05796797201037407, -0.034041229635477066, 0.01459613535553217, 0.07657578587532043, 0.03388078510761261, -0.022540779784321785, -0.0063127996399998665, 0.0118021285161376, 0.001984155038371682, -0.03184645250439644, -0.10560972988605499, -0.09747280180454254, -0.003799406811594963, -0.10232806205749512, 0.051293905824422836, -0.11980503797531128, -0.010724544525146484, -0.023143664002418518, -0.002302765380591154, -0.026538927108049393, 0.05356885865330696, -0.06386289745569229, -0.02302766963839531, -0.08603060990571976, 0.014777254313230515, -0.09634388983249664, 0.01790235936641693, 0.05589425563812256, -0.10756861418485641, 0.09219229966402054, 0.03787454217672348, -0.08443895727396011, 0.06189152970910072, -0.12891507148742676, -0.05914837494492531, -0.0062403567135334015, 0.06913722306489944, -0.01690772920846939, -0.05031280964612961, 0.03985156491398811, 0.04420732706785202, 0.06896892189979553, -0.02038520574569702, 0.1016465574502945, -0.12166784703731537, -0.002350796014070511, -0.08802441507577896, -0.044775672256946564, -0.09372308850288391, 0.006812157575041056, -0.018769703805446625, 0.12183580547571182, 0.1384618878364563, -0.062320444732904434, 0.017915206030011177, -0.07318291068077087, 0.012692686170339584, 0.05100269615650177, -0.08122330158948898, -0.05300510674715042, -0.10813714563846588, 0.040864430367946625, -0.04129108786582947, 0.0626632422208786, -0.03605687990784645, -0.08939217776060104, 0.012573707848787308, -0.06322774291038513, 0.027656901627779007, -0.02679586410522461, 0.129799947142601, 0.07804135233163834, -0.0189525056630373, -0.001766274101100862, 0.03264410421252251, 0.04454066976904869, 0.13296902179718018, 0.12416674941778183, 0.11588496714830399, 0.08635266125202179, 0.11323314160108566, -0.054688628762960434, 0.0034478241577744484, -0.0649196207523346, 0.08553756773471832, -0.03886959329247475, 0.06607876718044281, -0.024925261735916138, 0.008816269226372242, 0.13753019273281097, -0.05993690714240074, 0.0947289913892746, -0.011557037942111492, -0.07785888761281967, -0.06989315152168274, -0.10914605855941772, -0.08339667320251465, -0.05923505127429962, 0.02848890796303749, -0.134168803691864, -0.007522081956267357, 0.05507411062717438, 0.058335378766059875, 0.012551157735288143, 0.1241360679268837, -0.03630153089761734, -0.0655326396226883, 0.06116025522351265, -0.04439928010106087, 0.05608533322811127, 0.06672877818346024, -0.010924079455435276, -0.010155313648283482, 0.08031046390533447, 0.061128709465265274, 0.07386919111013412, 0.035555511713027954, -0.029798658564686775, -0.06207656115293503, -0.02383585087954998, -0.07013320922851562, 0.07558757066726685, 0.01857941225171089, 0.1325998604297638, 0.04183231294155121, -0.07129295915365219, 0.018421605229377747, 0.25563013553619385, -0.0487990602850914, -0.10520338267087936, -0.13323824107646942, 0.17308631539344788, 0.040880464017391205, 0.021601857617497444, 0.013150131329894066, -0.09968321770429611, -0.013826769776642323, 0.1832214742898941, 0.16161365807056427, -0.01889975555241108, 0.0074743651784956455, 0.002294134581461549, 0.022889425978064537, 0.06999467313289642, 0.07466039061546326, 0.09543580561876297, 0.36324048042297363, -0.04615781828761101, 0.0225041713565588, -0.02483311854302883, -0.026695311069488525, -0.0330369733273983, 0.1432037502527237, -0.059299662709236145, -0.004782116040587425, -0.07435471564531326, 0.018223470076918602, -0.03802519291639328, -0.1869792640209198, 0.02521132305264473, -0.04480404034256935, -0.0874072015285492, 0.022989291697740555, 0.0718517079949379, 0.009828761219978333, 0.09666340053081512, -0.020294060930609703, 0.00803415384143591, 0.020362500101327896, 0.024373171851038933, -0.04687891900539398, 0.010333196260035038, 0.06273002922534943, -0.1373261958360672, 0.08840590715408325, -0.009397045709192753, 0.06648470461368561, 0.10141247510910034, 0.06314647942781448, -0.050166353583335876, 0.1147150844335556, 0.0466764010488987, -0.0899035856127739, 0.04611532390117645, 0.12242761999368668, -0.027851374819874763, 0.10318630188703537, 0.0650048479437828, -0.12209358811378479, 0.04833224043250084, 0.10518118739128113, -0.033656198531389236, -0.091290183365345, 0.021619094535708427, -0.08518452197313309, 0.08455967158079147, 0.13911393284797668, -0.011847559362649918, -0.03331465274095535, -0.0402633436024189, 0.03751089796423912, -0.037349361926317215, 0.02653513103723526, -0.0363028310239315, -0.20093336701393127, -0.041026681661605835, 0.02891352027654648, 0.052312999963760376, -0.3173351585865021, -0.05680059641599655, -0.06621378660202026, 0.02308969758450985, -0.024996928870677948, 0.10964615643024445, 0.09555201977491379, 0.011876767501235008, -0.039001062512397766, -0.1959020495414734, -0.015290161594748497, 0.05434972047805786, -0.07553882896900177, -0.08549660444259644 ]
null
null
transformers
# BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
{"language": "en", "license": "mit", "tags": ["bart"], "thumbnail": "https://huggingface.co/front/thumbnails/facebook.png"}
feature-extraction
byeongal/bart-large
[ "transformers", "pytorch", "bart", "feature-extraction", "en", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us
# BART base model for Teachable NLP - This model forked from bart-base for fine tune Teachable NLP. The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: URL
[ "# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ "TAGS\n#transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us \n", "# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ 36, 268 ]
[ "passage: TAGS\n#transformers #pytorch #bart #feature-extraction #en #license-mit #endpoints_compatible #region-us \n# BART base model for Teachable NLP\n\n- This model forked from bart-base for fine tune Teachable NLP.\n\nThe Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract,\n\nBart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n\nThe pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n\nBART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.\n\nThe Authors’ code can be found here:\nURL" ]
[ -0.06956857442855835, 0.04457465186715126, -0.004278091713786125, 0.06383232772350311, 0.04575788974761963, 0.0009689402650110424, 0.12578237056732178, 0.06111329421401024, 0.03402772173285484, 0.05971178412437439, 0.020727969706058502, 0.05642878636717796, 0.03883771970868111, 0.0903591513633728, 0.008897696621716022, -0.21284779906272888, 0.02386563830077648, -0.005453251767903566, 0.027101008221507072, 0.059840697795152664, 0.09444064646959305, -0.05067587271332741, -0.00013677930110134184, -0.003827392589300871, -0.008113514631986618, 0.0411461666226387, -0.025193123146891594, -0.05680094286799431, 0.07745182514190674, 0.08276908099651337, 0.07015152275562286, 0.07142237573862076, -0.03375015780329704, -0.08843500167131424, 0.04712808132171631, 0.013114690780639648, -0.029620544984936714, 0.03976709023118019, 0.0192802082747221, -0.1008976474404335, 0.13640128076076508, -0.038168441504240036, -0.013073354959487915, 0.045581161975860596, -0.0964486300945282, 0.017592471092939377, -0.03211461380124092, -0.04940709099173546, 0.09056473523378372, 0.027633629739284515, -0.034948743879795074, -0.004151801113039255, -0.040583766996860504, 0.11591266095638275, 0.1094534620642662, -0.33407479524612427, -0.06030594930052757, 0.10516150295734406, 0.022000499069690704, 0.058790381997823715, -0.10094871371984482, 0.022611962631344795, -0.00957450084388256, -0.012027755379676819, 0.032103631645441055, -0.059581056237220764, -0.029039915651082993, -0.014940069988369942, -0.11262763291597366, -0.024011826142668724, 0.1282896101474762, -0.01905154436826706, -0.06761341542005539, -0.1584026962518692, -0.10314656794071198, 0.06514429301023483, -0.0333925299346447, -0.025084786117076874, -0.015246236696839333, 0.05311320722103119, -0.0061501068994402885, -0.08873709291219711, -0.10404577106237411, -0.07593223452568054, -0.029916491359472275, 0.14956389367580414, 0.03619862720370293, -0.03139636293053627, -0.02345297485589981, 0.08760567009449005, -0.05163322016596794, -0.0945669487118721, -0.081351637840271, -0.006782390642911196, -0.13037846982479095, 0.05354313924908638, -0.06648851186037064, -0.1584169864654541, 0.005895504727959633, 0.15364262461662292, 0.02953210473060608, 0.11797693371772766, 0.04584050923585892, 0.02943495102226734, -0.008842808194458485, 0.137931227684021, 0.031232435256242752, -0.03996821865439415, 0.0323980487883091, -0.009137384593486786, 0.04706136882305145, -0.04885285347700119, -0.0788884311914444, -0.015038598328828812, -0.013141997158527374, 0.03894481435418129, -0.0604323111474514, 0.033195238560438156, -0.05823267996311188, -0.0052782949060201645, 0.03975065052509308, -0.12380693852901459, 0.0008571596699766815, 0.02891610749065876, -0.051212262362241745, -0.06980658322572708, -0.0056619783863425255, -0.0344022661447525, -0.1033661812543869, 0.03741113096475601, -0.04887474700808525, -0.03362174332141876, -0.06449327617883682, -0.1103443056344986, -0.016470259055495262, -0.0022687045857310295, -0.050917189568281174, -0.12876597046852112, -0.1608763039112091, -0.023359457030892372, 0.04285513982176781, -0.07128763943910599, 0.04344993457198143, -0.10207651555538177, -0.012290588580071926, 0.018525049090385437, -0.0053082616068422794, 0.02462090738117695, -0.020686756819486618, 0.05180054157972336, 0.072564497590065, 0.09146447479724884, -0.037738997489213943, 0.019785692915320396, -0.08132269978523254, -0.013581727631390095, -0.11469867080450058, 0.14007176458835602, -0.07117412984371185, -0.07509852945804596, -0.0521337166428566, -0.01534811407327652, -0.05211113020777702, 0.0203708428889513, 0.06615724414587021, 0.09699174016714096, -0.06060847267508507, -0.058441173285245895, 0.1644604355096817, -0.07885591685771942, 0.008445999585092068, 0.09424353390932083, -0.021413683891296387, 0.05670425668358803, 0.08855278789997101, 0.18922318518161774, 0.12097789347171783, -0.012855574488639832, -0.014235947281122208, 0.0403546541929245, -0.005565071944147348, 0.06518872082233429, 0.014686067588627338, 0.08348660916090012, -0.021248288452625275, 0.05805118381977081, -0.031193522736430168, 0.009271007031202316, 0.030718844383955002, -0.0437949076294899, 0.01607157103717327, 0.0056879580952227116, 0.028972502797842026, -0.013621636666357517, 0.09798802435398102, -0.04804696887731552, -0.10354898124933243, -0.10691386461257935, 0.05791569501161575, -0.09498338401317596, 0.0009401820134371519, -0.1255863755941391, 0.06342743337154388, -0.09553505480289459, 0.04090403765439987, -0.1542605310678482, -0.08622623980045319, 0.04749084264039993, 0.0310400128364563, 0.05898616090416908, 0.08347663283348083, 0.05720827355980873, 0.06322210282087326, -0.028437115252017975, -0.028165793046355247, -0.010090858675539494, -0.07282999157905579, -0.036844994872808456, -0.03418751060962677, -0.012309675104916096, -0.054691970348358154, 0.06534581631422043, -0.05324133485555649, 0.01776799000799656, 0.05284252390265465, 0.07173634320497513, 0.012025059200823307, -0.03705773130059242, 0.020367179065942764, 0.027139753103256226, -0.04465636983513832, -0.004471919033676386, 0.061853520572185516, 0.03928161412477493, -0.11713014543056488, 0.06572150439023972, -0.19628740847110748, -0.14665120840072632, 0.0510437898337841, 0.05652821436524391, -0.04824518784880638, -0.002432947512716055, -0.004476649221032858, 0.009885165840387344, -0.02087727189064026, -0.01650300994515419, 0.20397982001304626, -0.009143571369349957, 0.12954920530319214, -0.05672980099916458, -0.04732660949230194, -0.015749357640743256, 0.0268087200820446, 0.04803124815225601, 0.1301104575395584, 0.025919442996382713, -0.04112978279590607, 0.018893057480454445, 0.00239523034542799, 0.008743717335164547, 0.16947610676288605, 0.013433068990707397, -0.056186191737651825, -0.010084916837513447, 0.10733926296234131, 0.012059851549565792, 0.0416070856153965, -0.059366486966609955, -0.0021005794405937195, 0.012279232032597065, 0.05184992402791977, 0.046942099928855896, -0.14152126014232635, 0.0715276449918747, 0.005118558183312416, -0.07960277795791626, 0.003143319394439459, 0.034208085387945175, -0.05042804032564163, 0.03876591846346855, -0.025290772318840027, -0.04665381461381912, -0.019270440563559532, -0.049209531396627426, -0.051918499171733856, 0.13113084435462952, -0.03351622074842453, -0.27141401171684265, -0.13516142964363098, 0.03998831287026405, -0.06012297421693802, 0.04709272459149361, 0.08598487079143524, -0.06422203779220581, -0.07358492910861969, -0.07732965797185898, 0.043628059327602386, -0.02891184762120247, -0.06336250901222229, -0.03269914910197258, -0.04835553094744682, -0.028163067996501923, -0.18507380783557892, 0.017381887882947922, -0.024977101013064384, -0.10889522731304169, 0.08079910278320312, -0.04906028136610985, 0.058066777884960175, 0.06309998780488968, 0.028130358085036278, 0.003530134679749608, -0.05505504831671715, 0.1872972697019577, -0.05809662491083145, 0.056848861277103424, 0.07328740507364273, 0.026226848363876343, 0.056959472596645355, 0.05040648952126503, -0.041973549872636795, -0.13072755932807922, 0.06924532353878021, 0.020296374335885048, -0.09613499045372009, -0.171861469745636, -0.057749394327402115, -0.14921654760837555, 0.026264293119311333, 0.05762868747115135, 0.04703390598297119, -0.04561594873666763, 0.059233590960502625, -0.057499464601278305, 0.030172646045684814, 0.11718712747097015, 0.10001074522733688, 0.10223031044006348, -0.00021179309987928718, 0.11474216729402542, -0.06909794360399246, -0.08897178620100021, 0.051542747765779495, 0.047305554151535034, 0.1978408545255661, -0.06001010537147522, 0.23228122293949127, 0.03488508239388466, 0.06661167740821838, 0.07644622772932053, 0.10139025747776031, -0.10913727432489395, 0.030515151098370552, -0.06869079917669296, -0.029835667461156845, -0.07749500870704651, 0.06556516140699387, 0.012395227327942848, -0.07983455061912537, -0.04975872486829758, 0.01641339436173439, 0.06081704422831535, 0.14988060295581818, 0.02831512875854969, -0.12381276488304138, -0.07088080048561096, 0.05868595838546753, -0.06119293347001076, -0.02319435030221939, 0.027777621522545815, 0.15762445330619812, -0.05803249403834343, 0.005415776744484901, -0.003179955994710326, 0.10103543102741241, -0.031604643911123276, -0.022927111014723778, -0.15710362792015076, 0.04044889658689499, 0.044731009751558304, 0.0941377580165863, -0.1870444267988205, 0.05466983839869499, 0.006727706175297499, 0.11462365090847015, -0.04863179475069046, 0.02734818123281002, 0.047461703419685364, -0.12233685702085495, 0.11024297028779984, 0.0074831293895840645, -0.07811940461397171, -0.01084613986313343, -0.06546122580766678, 0.08514482527971268, 0.11858464777469635, -0.06710749119520187, 0.07078798860311508, -0.028506439179182053, -0.012363567017018795, -0.012177366763353348, -0.0005719909677281976, -0.02491600438952446, -0.1945873647928238, 0.04356438294053078, 0.059397269040346146, 0.06390698254108429, -0.024559201672673225, -0.021400777623057365, 0.004007131792604923, 0.2055586278438568, -0.13291095197200775, -0.07409399002790451, -0.07166405767202377, 0.024859709665179253, 0.02622811868786812, -0.06568756699562073, -0.018559586256742477, 0.011846104636788368, 0.07464250177145004, -0.040805887430906296, -0.07670461386442184, 0.05680602043867111, -0.031628433614969254, -0.09084643423557281, -0.024665430188179016, 0.12149161845445633, 0.0361064150929451, 0.04708762466907501, 0.040504537522792816, 0.04724808409810066, -0.036284539848566055, -0.10563584417104721, -0.019931592047214508, 0.019724233075976372, -0.021912718191742897, 0.05355474725365639, -0.0595974437892437, -0.013886569067835808, -0.04032593220472336, 0.0026281538885086775, 0.17261391878128052, 0.1634759157896042, -0.041292622685432434, 0.16018281877040863, 0.1379484385251999, -0.07109370082616806, -0.18979734182357788, -0.10621867328882217, 0.00849977508187294, 0.08677726238965988, -0.06434274464845657, -0.2072487622499466, 0.052057426422834396, 0.019636496901512146, 0.006688476540148258, 0.026273826137185097, -0.24098007380962372, -0.09313210844993591, 0.027952810749411583, 0.0694873258471489, 0.29669564962387085, -0.11421248316764832, -0.02524968609213829, -0.0031033072154968977, -0.13155043125152588, 0.08166514337062836, -0.02355835773050785, 0.16629283130168915, 0.0011412145104259253, 0.025031981989741325, -0.005518597550690174, -0.03092793934047222, 0.09293794631958008, 0.0064391023479402065, 0.01969602331519127, -0.005836784839630127, 0.09039459377527237, 0.0800749883055687, -0.024839576333761215, 0.06414385885000229, -0.1037263497710228, 0.04436236247420311, -0.05685719475150108, -0.07321026176214218, -0.0095343217253685, 0.05991910398006439, -0.013228203170001507, -0.04056345298886299, -0.043137867003679276, 0.028791578486561775, 0.05428782477974892, 0.031734202057123184, 0.06896677613258362, -0.06116528809070587, 0.059485454112291336, 0.018827369436621666, 0.07641229033470154, -0.11280100792646408, -0.07955628633499146, -0.020161589607596397, 0.03231194242835045, 0.12096887826919556, -0.09708467870950699, 0.07010567933320999, 0.1328616887331009, 0.021172385662794113, 0.1416553407907486, 0.07219181954860687, -0.04133714735507965, 0.1016048714518547, 0.07210806012153625, -0.13299216330051422, -0.17056140303611755, 0.014031365513801575, -0.06187247112393379, 0.04319417104125023, 0.02493174560368061, 0.1697562336921692, -0.021204743534326553, -0.02938900701701641, 0.030162829905748367, 0.0311395563185215, 0.03230876848101616, 0.09459852427244186, -0.036121223121881485, 0.02426198497414589, -0.08358461409807205, 0.044994987547397614, 0.07481163740158081, -0.1468217521905899, 0.01980087347328663, 0.1214769035577774, -0.11589011549949646, -0.051020264625549316, -0.17565695941448212, 0.06877070665359497, 0.025836309418082237, -0.010896263644099236, -0.11177489161491394, -0.04179662466049194, 0.015574665740132332, -0.0009708915604278445, 0.02792205475270748, 0.03665730357170105, -0.075554758310318, 0.05796797201037407, -0.034041229635477066, 0.01459613535553217, 0.07657578587532043, 0.03388078510761261, -0.022540779784321785, -0.0063127996399998665, 0.0118021285161376, 0.001984155038371682, -0.03184645250439644, -0.10560972988605499, -0.09747280180454254, -0.003799406811594963, -0.10232806205749512, 0.051293905824422836, -0.11980503797531128, -0.010724544525146484, -0.023143664002418518, -0.002302765380591154, -0.026538927108049393, 0.05356885865330696, -0.06386289745569229, -0.02302766963839531, -0.08603060990571976, 0.014777254313230515, -0.09634388983249664, 0.01790235936641693, 0.05589425563812256, -0.10756861418485641, 0.09219229966402054, 0.03787454217672348, -0.08443895727396011, 0.06189152970910072, -0.12891507148742676, -0.05914837494492531, -0.0062403567135334015, 0.06913722306489944, -0.01690772920846939, -0.05031280964612961, 0.03985156491398811, 0.04420732706785202, 0.06896892189979553, -0.02038520574569702, 0.1016465574502945, -0.12166784703731537, -0.002350796014070511, -0.08802441507577896, -0.044775672256946564, -0.09372308850288391, 0.006812157575041056, -0.018769703805446625, 0.12183580547571182, 0.1384618878364563, -0.062320444732904434, 0.017915206030011177, -0.07318291068077087, 0.012692686170339584, 0.05100269615650177, -0.08122330158948898, -0.05300510674715042, -0.10813714563846588, 0.040864430367946625, -0.04129108786582947, 0.0626632422208786, -0.03605687990784645, -0.08939217776060104, 0.012573707848787308, -0.06322774291038513, 0.027656901627779007, -0.02679586410522461, 0.129799947142601, 0.07804135233163834, -0.0189525056630373, -0.001766274101100862, 0.03264410421252251, 0.04454066976904869, 0.13296902179718018, 0.12416674941778183, 0.11588496714830399, 0.08635266125202179, 0.11323314160108566, -0.054688628762960434, 0.0034478241577744484, -0.0649196207523346, 0.08553756773471832, -0.03886959329247475, 0.06607876718044281, -0.024925261735916138, 0.008816269226372242, 0.13753019273281097, -0.05993690714240074, 0.0947289913892746, -0.011557037942111492, -0.07785888761281967, -0.06989315152168274, -0.10914605855941772, -0.08339667320251465, -0.05923505127429962, 0.02848890796303749, -0.134168803691864, -0.007522081956267357, 0.05507411062717438, 0.058335378766059875, 0.012551157735288143, 0.1241360679268837, -0.03630153089761734, -0.0655326396226883, 0.06116025522351265, -0.04439928010106087, 0.05608533322811127, 0.06672877818346024, -0.010924079455435276, -0.010155313648283482, 0.08031046390533447, 0.061128709465265274, 0.07386919111013412, 0.035555511713027954, -0.029798658564686775, -0.06207656115293503, -0.02383585087954998, -0.07013320922851562, 0.07558757066726685, 0.01857941225171089, 0.1325998604297638, 0.04183231294155121, -0.07129295915365219, 0.018421605229377747, 0.25563013553619385, -0.0487990602850914, -0.10520338267087936, -0.13323824107646942, 0.17308631539344788, 0.040880464017391205, 0.021601857617497444, 0.013150131329894066, -0.09968321770429611, -0.013826769776642323, 0.1832214742898941, 0.16161365807056427, -0.01889975555241108, 0.0074743651784956455, 0.002294134581461549, 0.022889425978064537, 0.06999467313289642, 0.07466039061546326, 0.09543580561876297, 0.36324048042297363, -0.04615781828761101, 0.0225041713565588, -0.02483311854302883, -0.026695311069488525, -0.0330369733273983, 0.1432037502527237, -0.059299662709236145, -0.004782116040587425, -0.07435471564531326, 0.018223470076918602, -0.03802519291639328, -0.1869792640209198, 0.02521132305264473, -0.04480404034256935, -0.0874072015285492, 0.022989291697740555, 0.0718517079949379, 0.009828761219978333, 0.09666340053081512, -0.020294060930609703, 0.00803415384143591, 0.020362500101327896, 0.024373171851038933, -0.04687891900539398, 0.010333196260035038, 0.06273002922534943, -0.1373261958360672, 0.08840590715408325, -0.009397045709192753, 0.06648470461368561, 0.10141247510910034, 0.06314647942781448, -0.050166353583335876, 0.1147150844335556, 0.0466764010488987, -0.0899035856127739, 0.04611532390117645, 0.12242761999368668, -0.027851374819874763, 0.10318630188703537, 0.0650048479437828, -0.12209358811378479, 0.04833224043250084, 0.10518118739128113, -0.033656198531389236, -0.091290183365345, 0.021619094535708427, -0.08518452197313309, 0.08455967158079147, 0.13911393284797668, -0.011847559362649918, -0.03331465274095535, -0.0402633436024189, 0.03751089796423912, -0.037349361926317215, 0.02653513103723526, -0.0363028310239315, -0.20093336701393127, -0.041026681661605835, 0.02891352027654648, 0.052312999963760376, -0.3173351585865021, -0.05680059641599655, -0.06621378660202026, 0.02308969758450985, -0.024996928870677948, 0.10964615643024445, 0.09555201977491379, 0.011876767501235008, -0.039001062512397766, -0.1959020495414734, -0.015290161594748497, 0.05434972047805786, -0.07553882896900177, -0.08549660444259644 ]
null
null
transformers
# BERT base model (uncased) for Teachable NLP - This model forked from [bert-base-uncased](https://huggingface.co/bert-base-uncased) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta*{1} = 0.9\\) and \\(\beta*{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | | :--: | :---------: | :--: | :--: | :---: | :--: | :---: | :--: | :--: | :-----: | | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]}
fill-mask
byeongal/bert-base-uncased
[ "transformers", "pytorch", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1810.04805" ]
[ "en" ]
TAGS #transformers #pytorch #bert #fill-mask #exbert #en #dataset-bookcorpus #dataset-wikipedia #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
BERT base model (uncased) for Teachable NLP =========================================== * This model forked from bert-base-uncased for fine tune Teachable NLP. Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. Model description ----------------- BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: * Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. * Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. Intended uses & limitations --------------------------- You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in TensorFlow: ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: This bias will also affect all fine-tuned versions of this model. Training data ------------- The BERT model was pretrained on BookCorpus, a dataset consisting of 11,038 unpublished books and English Wikipedia (excluding lists, tables and headers). Training procedure ------------------ ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: * 15% of the tokens are masked. * In 80% of the cases, the masked tokens are replaced by '[MASK]'. * In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. * In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \(\beta\*{1} = 0.9\) and \(\beta\*{2} = 0.999\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. Evaluation results ------------------ When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: ### BibTeX entry and citation info <a href="URL <img width="300px" src="URL
[ "### How to use\n\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nEven if the training data used for this model could be characterized as fairly neutral, this model can have biased\npredictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe BERT model was pretrained on BookCorpus, a dataset consisting of 11,038\nunpublished books and English Wikipedia (excluding lists, tables and\nheaders).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are\nthen of the form:\n\n\nWith probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in\nthe other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a\nconsecutive span of text usually longer than a single sentence. The only constrain is that the result with the two\n\"sentences\" has a combined length of less than 512 tokens.\n\n\nThe details of the masking procedure for each sentence are the following:\n\n\n* 15% of the tokens are masked.\n* In 80% of the cases, the masked tokens are replaced by '[MASK]'.\n* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.\n* In the 10% remaining cases, the masked tokens are left as is.", "### Pretraining\n\n\nThe model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size\nof 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer\nused is Adam with a learning rate of 1e-4, \\(\\beta\\*{1} = 0.9\\) and \\(\\beta\\*{2} = 0.999\\), a weight decay of 0.01,\nlearning rate warmup for 10,000 steps and linear decay of the learning rate after.\n\n\nEvaluation results\n------------------\n\n\nWhen fine-tuned on downstream tasks, this model achieves the following results:\n\n\nGlue test results:", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #exbert #en #dataset-bookcorpus #dataset-wikipedia #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### How to use\n\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nEven if the training data used for this model could be characterized as fairly neutral, this model can have biased\npredictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe BERT model was pretrained on BookCorpus, a dataset consisting of 11,038\nunpublished books and English Wikipedia (excluding lists, tables and\nheaders).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are\nthen of the form:\n\n\nWith probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in\nthe other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a\nconsecutive span of text usually longer than a single sentence. The only constrain is that the result with the two\n\"sentences\" has a combined length of less than 512 tokens.\n\n\nThe details of the masking procedure for each sentence are the following:\n\n\n* 15% of the tokens are masked.\n* In 80% of the cases, the masked tokens are replaced by '[MASK]'.\n* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.\n* In the 10% remaining cases, the masked tokens are left as is.", "### Pretraining\n\n\nThe model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size\nof 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer\nused is Adam with a learning rate of 1e-4, \\(\\beta\\*{1} = 0.9\\) and \\(\\beta\\*{2} = 0.999\\), a weight decay of 0.01,\nlearning rate warmup for 10,000 steps and linear decay of the learning rate after.\n\n\nEvaluation results\n------------------\n\n\nWhen fine-tuned on downstream tasks, this model achieves the following results:\n\n\nGlue test results:", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ 70, 49, 101, 222, 163, 30 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #exbert #en #dataset-bookcorpus #dataset-wikipedia #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:### Limitations and bias\n\n\nEven if the training data used for this model could be characterized as fairly neutral, this model can have biased\npredictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe BERT model was pretrained on BookCorpus, a dataset consisting of 11,038\nunpublished books and English Wikipedia (excluding lists, tables and\nheaders).\n\n\nTraining procedure\n------------------### Preprocessing\n\n\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are\nthen of the form:\n\n\nWith probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in\nthe other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a\nconsecutive span of text usually longer than a single sentence. The only constrain is that the result with the two\n\"sentences\" has a combined length of less than 512 tokens.\n\n\nThe details of the masking procedure for each sentence are the following:\n\n\n* 15% of the tokens are masked.\n* In 80% of the cases, the masked tokens are replaced by '[MASK]'.\n* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.\n* In the 10% remaining cases, the masked tokens are left as is." ]
[ -0.011301523074507713, 0.0688047930598259, -0.00631343200802803, 0.03990602493286133, 0.018078582361340523, 0.018821438774466515, 0.035924796015024185, 0.021539760753512383, -0.0769810825586319, 0.07456881552934647, 0.09048422425985336, 0.04314061626791954, 0.0927879586815834, 0.08747553080320358, 0.05377921834588051, -0.30219677090644836, 0.07510688900947571, -0.043527089059352875, 0.15643496811389923, 0.09628895670175552, 0.07666277140378952, -0.08728506416082382, 0.0028158018831163645, 0.007400140166282654, 0.006152610294520855, -0.016564441844820976, 0.0041706617921590805, -0.050351426005363464, 0.08287706226110458, 0.05158465355634689, 0.07057169824838638, 0.07713452726602554, 0.03727312758564949, -0.14486317336559296, 0.02465890534222126, 0.0750674232840538, 0.012482291087508202, 0.06324028968811035, 0.09332618117332458, -0.02209245041012764, 0.08926549553871155, -0.004701681900769472, 0.02672368474304676, 0.026311105117201805, -0.12219429016113281, -0.09127802401781082, -0.06369314342737198, 0.06164230406284332, 0.0012689154827967286, 0.01993499882519245, -0.035114772617816925, 0.10170693695545197, -0.04242334142327309, 0.05762293189764023, 0.2592373192310333, -0.24201700091362, 0.00979092437773943, 0.04144832864403725, 0.02481568045914173, 0.022337663918733597, -0.05172249302268028, -0.06715742498636246, 0.0345795713365078, 0.03517106920480728, 0.04870423302054405, -0.023278646171092987, 0.07721520215272903, -0.045946113765239716, -0.14972953498363495, -0.08435475081205368, 0.04152245447039604, -0.013365239836275578, -0.12076575309038162, -0.0878448337316513, -0.017916254699230194, -0.020238179713487625, -0.013465449213981628, 0.04757491871714592, -0.0027995866257697344, 0.0097914794459939, 0.04818419739603996, 0.006294239778071642, -0.08835095167160034, -0.04883594438433647, -0.1169990822672844, 0.1473117172718048, 0.05753324180841446, 0.01605062372982502, -0.021860405802726746, 0.11864858865737915, -0.06508784741163254, -0.0702228769659996, -0.05485200509428978, -0.0725066214799881, -0.1366390883922577, -0.013440562412142754, -0.062279149889945984, -0.1421760767698288, -0.04525575414299965, 0.10557595640420914, -0.042359910905361176, 0.048397503793239594, -0.08822827786207199, 0.06511972099542618, 0.09868241846561432, 0.01670616865158081, -0.10560552775859833, 0.04723060876131058, -0.013957390561699867, 0.03867638483643532, 0.02025005780160427, -0.007997911423444748, -0.00146292126737535, -0.02718193829059601, 0.02233288250863552, 0.03590482473373413, 0.011323642916977406, 0.08309736102819443, -0.061343904584646225, -0.05174507200717926, 0.09296953678131104, -0.09981867671012878, -0.06576994061470032, 0.008053991012275219, -0.06045260280370712, -0.007887094281613827, 0.03818584978580475, -0.039946891367435455, -0.10753660649061203, 0.09708904474973679, -0.06138963624835014, -0.05545411631464958, -0.08202683180570602, -0.16820518672466278, -0.01892876997590065, 0.0015236579347401857, -0.0903090089559555, -0.053650856018066406, -0.11716384440660477, -0.03681981936097145, 0.02487362176179886, -0.0022482476197183132, -0.02922644093632698, -0.04181567579507828, -0.03993748500943184, -0.052776139229536057, -0.03356974571943283, 0.10900261998176575, -0.02401145175099373, 0.08416153490543365, -0.07901324331760406, 0.0939500629901886, 0.030229493975639343, 0.005949891172349453, -0.10755260288715363, 0.030387869104743004, -0.1648794263601303, 0.10149390995502472, -0.010675068013370037, -0.11000662297010422, -0.03989741951227188, -0.07351652532815933, -0.09548550099134445, 0.03214672952890396, -0.008593160659074783, 0.12002237886190414, -0.23816928267478943, -0.05359608307480812, 0.2804102897644043, -0.11510525643825531, 0.04607579484581947, 0.1245221495628357, -0.0846877470612526, 0.04190969094634056, 0.09080639481544495, 0.08966880291700363, -0.06899339705705643, -0.03957422822713852, -0.03271564841270447, -0.04973408207297325, -0.08195216953754425, 0.19246305525302887, 0.03271372243762016, -0.04259289801120758, -0.053912755101919174, 0.0311637744307518, -0.035310693085193634, -0.05912862345576286, -0.03551691770553589, -0.01654411107301712, 0.05346290394663811, 0.0153413787484169, 0.0515785738825798, -0.022736264392733574, -0.05373610183596611, -0.04150344058871269, -0.08720547705888748, -0.06836417317390442, 0.08215150237083435, -0.07534583657979965, 0.04507698118686676, -0.04308244213461876, -0.04948662593960762, 0.008138313889503479, 0.009873585775494576, -0.22066153585910797, 0.044372957199811935, 0.08120588213205338, -0.06334748864173889, 0.07508298009634018, 0.08358490467071533, 0.012787817977368832, 0.08121426403522491, -0.025426538661122322, 0.01480073668062687, 0.032963190227746964, -0.04217855632305145, -0.07746496796607971, -0.15896670520305634, -0.07624007761478424, -0.027184462174773216, 0.06496581435203552, -0.07027661055326462, -0.004134288989007473, -0.0512399785220623, 0.04441909119486809, 0.006786639802157879, -0.06883576512336731, 0.009420712478458881, 0.0159491878002882, -0.06062847003340721, 0.0003496623248793185, 0.0191055778414011, 0.028337670490145683, -0.02134447917342186, 0.1251005381345749, -0.20452769100666046, -0.19887052476406097, 0.08160359412431717, 0.057992372661828995, -0.11433185636997223, -0.046368326991796494, -0.0692252591252327, -0.017732981592416763, -0.0809645727276802, -0.04394693672657013, 0.22231395542621613, 0.04401390999555588, 0.10170364379882812, -0.10119679570198059, 0.002684973878785968, -0.0022312107030302286, -0.022651851177215576, -0.027806466445326805, 0.06973312795162201, -0.0007950299768708646, -0.11667732149362564, 0.014186733402311802, -0.1477144956588745, 0.003830448491498828, 0.0869489461183548, 0.04962242767214775, -0.11713282018899918, -0.0233768280595541, 0.019079118967056274, 0.06006665527820587, 0.04687390848994255, -0.04337310418486595, 0.014518171548843384, 0.068166583776474, 0.03861043602228165, 0.03414725884795189, -0.0797574445605278, 0.04698215425014496, 0.024652812629938126, -0.050985921174287796, -0.07728825509548187, -0.06164008751511574, 0.03221540525555611, 0.12092120945453644, 0.01737319491803646, 0.014307709410786629, -0.02116307243704796, -0.05988924205303192, -0.10193690657615662, 0.1715371459722519, -0.05135374516248703, -0.26448312401771545, -0.1577758491039276, -0.030820850282907486, 0.021797295659780502, 0.049241580069065094, -0.0072118183597922325, 0.01989797130227089, -0.07403761893510818, -0.1319693773984909, 0.08476763963699341, -0.03580952808260918, 0.01458723470568657, -0.07203027606010437, -0.0033558064606040716, 0.010775599628686905, -0.11474547535181046, 0.005303004290908575, -0.04941994324326515, -0.03855988383293152, 0.04035871475934982, -0.037421248853206635, 0.08969153463840485, 0.13303323090076447, 0.027965305373072624, -0.04290831461548805, -0.03750760853290558, 0.13947848975658417, -0.030094388872385025, 0.04396364465355873, 0.0034214057959616184, -0.07988370954990387, 0.05571560561656952, 0.10427753627300262, -0.016723385080695152, -0.04834991320967674, 0.07953908294439316, 0.062396105378866196, -0.04640023037791252, -0.19835209846496582, -0.03129533678293228, -0.014103522524237633, 0.018025556579232216, 0.11724455654621124, 0.025753861293196678, -0.03885810822248459, -0.0010577826760709286, -0.09483945369720459, -0.00023287588555831462, 0.04321353882551193, 0.07965303212404251, -0.07732851058244705, -0.03475874662399292, 0.09099593758583069, -0.01775394193828106, -0.04452035203576088, 0.08688808232545853, -0.05004527419805527, 0.16035079956054688, -0.10242009907960892, 0.22552940249443054, 0.10350461304187775, 0.05903177708387375, 0.04730076715350151, 0.0828925147652626, -0.03012002259492874, 0.028973832726478577, -0.07098420709371567, -0.04829028621315956, -0.04902516305446625, 0.022082865238189697, 0.061124835163354874, 0.055345531553030014, -0.06079519912600517, -0.0628919005393982, 0.030116790905594826, 0.2269793599843979, 0.043316781520843506, -0.16732192039489746, -0.06517034024000168, 0.006643463391810656, -0.07938720285892487, -0.038557298481464386, 0.010119936428964138, 0.09641348570585251, -0.11910885572433472, 0.0441906712949276, -0.02947118692100048, 0.07104559987783432, -0.12303273379802704, 0.03624908626079559, -0.11625968664884567, 0.09155479073524475, -0.04298557713627815, 0.08205217868089676, -0.24141690135002136, 0.1556577980518341, 0.016720794141292572, 0.051091719418764114, -0.1291147768497467, -0.0228557251393795, 0.0027385056018829346, -0.07435622811317444, 0.14457431435585022, -0.03131170943379402, 0.038484323769807816, -0.06575669348239899, -0.05177491158246994, 0.007691777311265469, 0.09858199954032898, 0.000955413852352649, 0.14639750123023987, 0.025239603593945503, 0.026772739365696907, -0.0050300839357078075, 0.0738312155008316, -0.07321428507566452, -0.13879503309726715, 0.057437408715486526, -0.0713861808180809, -0.03409125283360481, -0.06252535432577133, -0.07204940915107727, -0.013124214485287666, 0.18977482616901398, -0.16099992394447327, -0.03193315863609314, -0.0623573437333107, 0.040748171508312225, 0.11744667589664459, -0.0705476924777031, -0.051684003323316574, -0.017267106100916862, 0.18444736301898956, -0.10300082713365555, -0.06846220791339874, 0.042852599173784256, -0.03993973881006241, -0.11426296830177307, -0.08183468878269196, 0.10700056701898575, 0.152872234582901, 0.09925340861082077, -0.02992156893014908, 0.018247924745082855, 0.060021571815013885, -0.10271269083023071, -0.015296319499611855, 0.046123258769512177, 0.10040029138326645, 0.08910321444272995, -0.07448086142539978, -0.038541052490472794, -0.1150231808423996, 0.02543197199702263, 0.08748751133680344, 0.2785052955150604, -0.0493692122399807, 0.14922435581684113, 0.1742118000984192, -0.10622502863407135, -0.2127225399017334, -0.025313183665275574, 0.07336851209402084, 0.05550575256347656, 0.052588436752557755, -0.174625426530838, -0.04959454387426376, 0.0882348045706749, 0.000034174092434113845, -0.02742820233106613, -0.3092135488986969, -0.11095400899648666, 0.1118672713637352, 0.04734640195965767, 0.07221848517656326, -0.07423587888479233, -0.0524001307785511, -0.051831211894750595, -0.052265580743551254, 0.09816152602434158, 0.011271484196186066, 0.15065421164035797, 0.024249201640486717, -0.0775609090924263, 0.03809399902820587, -0.07298272848129272, 0.13196520507335663, 0.03324165940284729, 0.07303411513566971, -0.05736476555466652, -0.01403053943067789, 0.040677424520254135, -0.008974133990705013, 0.1323738545179367, 0.0856470987200737, 0.03612179681658745, 0.036641497164964676, -0.08602439612150192, -0.10553683340549469, 0.014092011377215385, -0.04912504553794861, -0.04780075326561928, -0.0538431815803051, 0.07606446743011475, 0.08513699471950531, 0.0009819121332839131, -0.018811168149113655, -0.08171569555997849, 0.0341816321015358, 0.17455273866653442, 0.10017654299736023, -0.003518085926771164, -0.05900018289685249, 0.019083106890320778, -0.0006258478970266879, 0.04747956246137619, 0.03279174864292145, 0.023012099787592888, 0.08079544454813004, 0.017922597005963326, 0.1508180797100067, 0.04064017906785011, -0.197422593832016, -0.016644051298499107, 0.012641740962862968, -0.15574774146080017, -0.1445082426071167, 0.04679979011416435, 0.01052993256598711, -0.15177161991596222, -0.09305319935083389, 0.06892915815114975, -0.027022039517760277, -0.016484368592500687, 0.01193747017532587, 0.035358086228370667, 0.0330224372446537, 0.1523149013519287, 0.019839944317936897, 0.03799601271748543, -0.07991969585418701, 0.10767175257205963, 0.10054638236761093, -0.08785061538219452, 0.012017062865197659, 0.05174645408987999, -0.08616184443235397, 0.007780660409480333, -0.03901362046599388, 0.03391203284263611, 0.06563591957092285, -0.005215184297412634, -0.09291776269674301, -0.06115756556391716, 0.08603981137275696, 0.09687621146440506, 0.03638765588402748, 0.08521727472543716, -0.03428210690617561, 0.0069959466345608234, -0.06466703861951828, 0.029024377465248108, 0.07137491554021835, 0.04886094480752945, 0.07320371270179749, 0.25935375690460205, 0.007601436693221331, 0.015832912176847458, -0.019650664180517197, -0.05867313966155052, -0.0671314001083374, 0.017713990062475204, -0.0801863968372345, 0.03882702812552452, -0.15937966108322144, -0.04503048211336136, 0.004831134341657162, 0.049378346651792526, 0.029682189226150513, -0.0038782067131251097, -0.03068729303777218, -0.02526090294122696, -0.04973423108458519, 0.034116461873054504, -0.09626670181751251, -0.005452768411487341, 0.06389892846345901, -0.056487128138542175, 0.07222017645835876, 0.005810162518173456, -0.04208562895655632, 0.021027766168117523, -0.10669084638357162, -0.007533052936196327, 0.019070925191044807, 0.03316880762577057, -0.025899548083543777, -0.11271654814481735, -0.010700332932174206, -0.014394297264516354, -0.009714237414300442, 0.0040385788306593895, 0.05048248544335365, -0.10720835626125336, 0.04801229014992714, 0.055784594267606735, -0.00770309055224061, -0.06872299313545227, 0.058961156755685806, 0.04059383645653725, 0.01210067979991436, 0.13040432333946228, -0.06699712574481964, 0.037380777299404144, -0.12549470365047455, 0.0027899700216948986, -0.01505725085735321, -0.013580995611846447, 0.07242192327976227, -0.02119695581495762, 0.04697289317846298, -0.0005559961427934468, 0.1590227633714676, -0.05455522611737251, -0.05958690866827965, 0.01682482473552227, -0.0340096689760685, 0.051085297018289566, 0.01183615904301405, 0.04302038252353668, 0.01677762344479561, -0.08010561019182205, -0.002339489758014679, 0.05103694647550583, -0.0023628983180969954, 0.09216746687889099, 0.23101350665092468, 0.06349914520978928, 0.22785964608192444, 0.018456559628248215, 0.012251069769263268, -0.04276229813694954, 0.019988665357232094, 0.06818023324012756, 0.02703174576163292, 0.020580952987074852, 0.048403188586235046, 0.0614674873650074, 0.13566340506076813, -0.1168435662984848, 0.13507793843746185, 0.03651080280542374, -0.08618833869695663, -0.07918871939182281, -0.26251259446144104, -0.003512630006298423, 0.08244022727012634, -0.0383121557533741, -0.12589828670024872, 0.04886416718363762, 0.10496298968791962, 0.015754742547869682, -0.0020152204670011997, 0.04461072012782097, -0.0634341910481453, -0.14211095869541168, 0.046090830117464066, -0.026465188711881638, 0.012685969471931458, 0.03647677227854729, -0.021363722160458565, 0.08779919147491455, 0.02940228208899498, 0.07306377589702606, 0.06607113778591156, 0.1082775667309761, 0.00485213752835989, -0.0412738136947155, -0.07676824182271957, 0.030431076884269714, -0.024143856018781662, 0.09736143052577972, 0.2339027225971222, 0.07582160830497742, -0.03728519380092621, 0.0028097396716475487, 0.13269178569316864, -0.005674940068274736, -0.06803008168935776, -0.15162800252437592, 0.21002070605754852, 0.047651395201683044, 0.015539778396487236, 0.044748250395059586, -0.0937856063246727, 0.00503962766379118, 0.21858423948287964, 0.14771805703639984, -0.04896271228790283, 0.0004489700950216502, 0.0385262593626976, 0.002784702694043517, 0.08303903788328171, 0.1111052855849266, -0.00022934161825105548, 0.23304228484630585, -0.04417969286441803, 0.06457389146089554, -0.03563590347766876, 0.029338078573346138, -0.011513319797813892, 0.12943358719348907, -0.008456692099571228, -0.004045892506837845, -0.09024610370397568, 0.03127520531415939, -0.08954455703496933, -0.2601487338542938, -0.08097325265407562, -0.007275596726685762, -0.10921069979667664, 0.011430181562900543, -0.0636184960603714, 0.04218679666519165, 0.10415318608283997, 0.009000826627016068, 0.050131455063819885, 0.13266877830028534, 0.012830240651965141, -0.06569287925958633, -0.08671228587627411, 0.05296224728226662, -0.001789862522855401, 0.1579737663269043, 0.028127430006861687, 0.08852937817573547, 0.060969509184360504, 0.02034325897693634, -0.0875549167394638, 0.06792418658733368, 0.00025378502323292196, 0.04456763342022896, 0.03763256594538689, 0.15932895243167877, 0.00894630141556263, 0.04833376035094261, 0.038293447345495224, -0.10317814350128174, 0.0826096385717392, -0.06796196103096008, -0.04641269892454147, -0.10635032504796982, 0.06462905555963516, -0.03860725089907646, 0.09296107292175293, 0.17010781168937683, 0.014601174741983414, 0.008173370733857155, -0.031092321500182152, -0.061311859637498856, -0.023459456861019135, 0.10646400600671768, -0.018121851608157158, -0.17654405534267426, -0.005032385233789682, -0.10453478246927261, 0.012222964316606522, -0.30265748500823975, -0.04048512503504753, 0.04957185313105583, -0.08700508624315262, 0.023967381566762924, 0.054790668189525604, -0.05423898994922638, 0.06626912206411362, -0.05230895057320595, 0.06402574479579926, 0.026715992018580437, 0.0951821431517601, -0.13653676211833954, -0.08788813650608063 ]
null
null
transformers
# GPT-2 - This model forked from [gpt2](https://huggingface.co/gpt2-large) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = GPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = TFGPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": "en", "license": "mit", "tags": ["gpt2"]}
text-generation
byeongal/gpt2-large
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GPT-2 ===== * This model forked from gpt2 for fine tune Teachable NLP. Test the whole generation capabilities here: URL Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page. Disclaimer: The team releasing GPT-2 also wrote a model card for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. Model description ----------------- GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token 'i' only uses the inputs from '1' to 'i' but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. Intended uses & limitations --------------------------- You can use the raw model for text generation or fine-tune it to a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: Here is how to use this model to get the features of a given text in PyTorch: and in TensorFlow: ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. > > > Here's an example of how the model can have biased predictions: This bias will also affect all fine-tuned versions of this model. Training data ------------- The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText here. Training procedure ------------------ ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. Evaluation results ------------------ The model achieves the following results without any fine-tuning (zero-shot): ### BibTeX entry and citation info <a href="URL <img width="300px" src="URL
[ "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ 54, 66, 393, 118, 30 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:" ]
[ -0.03103751502931118, 0.04916257783770561, -0.005577342119067907, 0.05076980963349342, 0.14803007245063782, -0.0013299599522724748, 0.11618239432573318, 0.07411403954029083, 0.02898700349032879, -0.019208012148737907, 0.21747447550296783, 0.21183842420578003, 0.011326934210956097, 0.11567114293575287, 0.005056867841631174, -0.2693724036216736, -0.013518227264285088, 0.02678930014371872, 0.03906947746872902, 0.14358215034008026, 0.05778583139181137, -0.08684011548757553, 0.07215490937232971, 0.024125026538968086, -0.147836372256279, -0.02708006277680397, -0.011595197953283787, -0.07111810147762299, 0.09968236088752747, 0.05329516902565956, 0.04515625163912773, 0.07917682081460953, 0.020944347605109215, -0.062030352652072906, 0.04578682780265808, 0.0007990454323589802, -0.023382985964417458, 0.11814413964748383, 0.12374747544527054, -0.09798453003168106, 0.17273958027362823, 0.12288068979978561, -0.10727431625127792, 0.012975229881703854, -0.09280116111040115, 0.025891292840242386, 0.013929647393524647, -0.008564583957195282, 0.019792422652244568, 0.06692380458116531, -0.03326702117919922, 0.0720549076795578, -0.044638555496931076, 0.08852867037057877, 0.22731943428516388, -0.28102102875709534, -0.02620488964021206, 0.06143556535243988, 0.05432182922959328, 0.03985295817255974, -0.00200755731202662, 0.06636884063482285, 0.04400920867919922, 0.08194129914045334, 0.1478593647480011, -0.0681961327791214, -0.07915764302015305, 0.011197506450116634, -0.14520126581192017, -0.04341327026486397, 0.16805042326450348, -0.10477836430072784, -0.004324049688875675, -0.07879055291414261, -0.09175118803977966, -0.02521500177681446, -0.023129073902964592, -0.012207002379000187, -0.05028854310512543, 0.032457176595926285, 0.02261391095817089, -0.1481461524963379, -0.13887088000774384, -0.1143544390797615, -0.09506368637084961, 0.11367874592542648, 0.06133135035634041, 0.06902047991752625, -0.17023713886737823, 0.1849036067724228, 0.06912951171398163, -0.05081627890467644, 0.052318550646305084, -0.11873834580183029, 0.056557971984148026, 0.035817619413137436, -0.07212593406438828, -0.10013554990291595, 0.09803086519241333, 0.026048067957162857, -0.009067905135452747, -0.025146523490548134, 0.02931678295135498, 0.12436160445213318, 0.038150981068611145, 0.0576973631978035, -0.12530098855495453, 0.09578657895326614, 0.032039664685726166, -0.073274165391922, -0.06839685142040253, -0.03343067690730095, -0.14228315651416779, -0.05448122322559357, 0.046036239713430405, 0.09466356784105301, 0.025554446503520012, 0.11861665546894073, 0.002674515126273036, -0.10120425373315811, -0.019330212846398354, -0.05432076007127762, -0.05786449834704399, 0.032178908586502075, -0.08807753026485443, 0.07329805940389633, 0.028406808152794838, -0.03156909719109535, -0.160769984126091, 0.01780351810157299, -0.07134979963302612, 0.010442341677844524, -0.037895940244197845, -0.07906418293714523, -0.04903505742549896, -0.10581706464290619, -0.006439251825213432, -0.14250563085079193, -0.19747304916381836, -0.0016035017324611545, 0.02158174477517605, -0.039273373782634735, -0.0605209656059742, -0.07687395811080933, -0.003038048278540373, -0.014675934799015522, -0.06130710244178772, 0.09260325878858566, -0.030745474621653557, 0.08917488902807236, -0.05120134353637695, 0.09582134336233139, -0.04310648888349533, 0.07392662018537521, -0.10078710317611694, 0.0016437233425676823, -0.014686023816466331, 0.07894756644964218, 0.02684563584625721, 0.010014505125582218, -0.06280567497015, -0.060080211609601974, -0.03425635024905205, 0.02321750856935978, 0.009249784983694553, 0.1694185435771942, -0.09895377606153488, -0.08954235166311264, 0.21812573075294495, -0.040688540786504745, -0.08118210732936859, 0.10572440922260284, -0.004730823449790478, 0.08263158053159714, 0.10082515329122543, 0.1694667637348175, 0.06288287043571472, 0.0015869626076892018, 0.14076465368270874, 0.11823337525129318, -0.1914854198694229, -0.08431392908096313, 0.044076405465602875, 0.011561454273760319, -0.13298054039478302, 0.07891730964183807, -0.025893503800034523, 0.12336701154708862, -0.08460601419210434, -0.0261653084307909, 0.0051488555036485195, -0.04371441900730133, 0.059013284742832184, -0.0007187598966993392, 0.1268010437488556, 0.05581384524703026, 0.003606890793889761, -0.05202416703104973, 0.019337935373187065, -0.10953820496797562, 0.01822485588490963, -0.015768559649586678, 0.17582334578037262, -0.007934044115245342, 0.07591291517019272, -0.19986268877983093, 0.01977579854428768, 0.032810863107442856, 0.098968505859375, 0.027181044220924377, 0.03093118406832218, 0.03037063218653202, 0.05867590382695198, 0.015478734858334064, 0.0023447165731340647, 0.19110669195652008, -0.07797916978597641, -0.08355136960744858, -0.0677366703748703, 0.007855732925236225, -0.01604323834180832, -0.024063244462013245, -0.06393474340438843, 0.0005466601578518748, -0.12548789381980896, 0.008165326900780201, -0.06348263472318649, 0.031160911545157433, 0.04106748476624489, -0.005693142302334309, -0.07102148979902267, 0.0058685243129730225, 0.13091664016246796, -0.028003379702568054, -0.09368059784173965, 0.2169853001832962, -0.050891488790512085, 0.07385633140802383, 0.12497235834598541, -0.16518479585647583, -0.0299889724701643, -0.10231444984674454, -0.07949023693799973, 0.00901647936552763, -0.0016366426134482026, 0.032565899193286896, 0.21910126507282257, 0.011898871511220932, 0.16728073358535767, -0.09412374347448349, -0.01721343956887722, 0.004327263683080673, -0.09040363878011703, 0.05937513709068298, 0.1332308053970337, 0.09114117175340652, -0.10025849938392639, 0.08962284028530121, 0.03276035189628601, 0.02060539461672306, 0.12730719149112701, 0.0036658195313066244, -0.053030502051115036, 0.006352975964546204, 0.05498173460364342, -0.030372396111488342, -0.05919154733419418, -0.07357405871152878, -0.031575147062540054, 0.0763760581612587, -0.030796999111771584, 0.09781722724437714, -0.09696488827466965, -0.02676764316856861, -0.035169392824172974, -0.05539735406637192, 0.06580137461423874, 0.0630175769329071, -0.009446550160646439, 0.12099546194076538, -0.05011674761772156, -0.07531425356864929, 0.05093477666378021, 0.008923470973968506, -0.07805746048688889, 0.22362402081489563, -0.05551636591553688, -0.2299203872680664, -0.1308758407831192, -0.0793825313448906, -0.08328492939472198, 0.0663222149014473, 0.03642282634973526, -0.020104296505451202, 0.01721647009253502, -0.025561677291989326, 0.12272283434867859, -0.05082949623465538, 0.015459577552974224, -0.11977370083332062, -0.029143918305635452, -0.06439968198537827, -0.06253275275230408, -0.039561375975608826, -0.07746082544326782, -0.015733644366264343, 0.17340601980686188, -0.07006644457578659, 0.053838446736335754, 0.14773304760456085, 0.008067538030445576, 0.0287929680198431, -0.015847155824303627, 0.20065708458423615, -0.030811406672000885, 0.032641179859638214, 0.14920750260353088, 0.015184496529400349, 0.07264987379312515, 0.02896568365395069, 0.035717181861400604, -0.051200151443481445, 0.025509553030133247, -0.04956436902284622, -0.06381090730428696, -0.21763446927070618, -0.11649222671985626, -0.06022147461771965, 0.08801332861185074, 0.09850399196147919, 0.04247479513287544, 0.06660687178373337, 0.12776121497154236, -0.013966153375804424, 0.0629543736577034, 0.0033862709533423185, 0.04975588247179985, 0.11365259438753128, -0.03123192861676216, 0.1250367909669876, 0.01190203707665205, -0.12455988675355911, 0.0672798752784729, -0.02807058021426201, 0.2578496038913727, -0.013459845446050167, 0.12795859575271606, 0.07968305796384811, 0.1312723308801651, 0.07342637330293655, 0.15707005560398102, 0.003031201893463731, 0.012446661479771137, -0.051680050790309906, -0.050206154584884644, 0.010742503218352795, 0.011064617894589901, -0.0008696202421560884, -0.07104670256376266, -0.051314789801836014, -0.02808573469519615, 0.04909297823905945, 0.12575466930866241, 0.009257459081709385, -0.2538854479789734, 0.03013523295521736, -0.010653875768184662, 0.004295154009014368, -0.05476652830839157, 0.08710265904664993, 0.0644242987036705, -0.1473548263311386, -0.055368199944496155, -0.07594641298055649, 0.14110511541366577, -0.04509733244776726, 0.06373916566371918, -0.06525147706270218, 0.05884890258312225, 0.007398317568004131, 0.15531092882156372, -0.26410025358200073, 0.17945481836795807, -0.015821117907762527, -0.033937662839889526, -0.09573043882846832, -0.03697218373417854, 0.03681642934679985, 0.03130360320210457, 0.15797026455402374, -0.026395833119750023, 0.06960684061050415, -0.09032079577445984, -0.083296038210392, 0.023041648790240288, 0.07121872156858444, -0.06324177980422974, 0.04124218970537186, 0.015063858591020107, 0.029326533898711205, -0.03460794314742088, -0.008558981120586395, -0.0376335009932518, -0.07770966738462448, 0.02936866506934166, 0.037978287786245346, -0.006461140234023333, 0.046325039118528366, -0.04967417195439339, -0.06764223426580429, 0.0963955968618393, -0.0559416227042675, -0.16330586373806, -0.06720788776874542, 0.01956016756594181, 0.06403718888759613, -0.08767083287239075, -0.031938645988702774, -0.046569593250751495, 0.035954952239990234, -0.05405202880501747, -0.20378009974956512, 0.04867143556475639, -0.07346142828464508, -0.06099637970328331, -0.01755591295659542, 0.11661329865455627, 0.057286184281110764, 0.005927986465394497, 0.0010251972125843167, -0.04060520976781845, -0.11913105100393295, -0.14831037819385529, 0.015915637835860252, 0.006935150362551212, 0.046585846692323685, 0.012391901575028896, -0.05678658187389374, -0.002065722132101655, -0.10459522157907486, 0.041089460253715515, 0.24622835218906403, 0.10512108355760574, -0.07415410131216049, 0.16820652782917023, 0.15776720643043518, -0.11716419458389282, -0.2774624228477478, -0.18450652062892914, -0.011215053498744965, 0.006156154442578554, 0.010000990703701973, -0.22892214357852936, 0.04342515394091606, 0.010483555495738983, -0.007177337538450956, 0.1410742551088333, -0.39116033911705017, -0.09452357143163681, 0.1972671002149582, 0.06844688206911087, 0.234942227602005, -0.11867967993021011, -0.09653596580028534, -0.002239842200651765, 0.022266201674938202, 0.14622430503368378, -0.01981399580836296, 0.11715111136436462, -0.09706855565309525, 0.11589165776968002, 0.034604448825120926, -0.04123546928167343, 0.07612239569425583, 0.018459377810359, 0.03151450306177139, -0.057291146367788315, 0.031881898641586304, 0.03690667077898979, 0.03390713781118393, 0.0973690003156662, -0.10091296583414078, 0.05443043261766434, -0.06913285702466965, -0.07520781457424164, -0.09269747883081436, 0.10293841361999512, 0.03347891941666603, -0.07011502981185913, -0.01243386510759592, -0.04162321984767914, -0.006300459615886211, 0.004662486258894205, -0.03251087665557861, -0.034419313073158264, 0.08157709985971451, 0.19175326824188232, 0.028568236157298088, -0.028967926278710365, -0.08840041607618332, -0.059612445533275604, -0.008669413626194, 0.09278972446918488, -0.056788478046655655, -0.05011202394962311, 0.1300935298204422, 0.0003681711677927524, 0.08319539576768875, 0.07828041911125183, -0.047250714153051376, 0.01294917892664671, 0.03332357108592987, -0.24739199876785278, -0.08141648024320602, -0.09844133257865906, -0.09631285816431046, 0.06664623320102692, 0.05385292321443558, 0.09068270027637482, -0.07007639855146408, -0.037191495299339294, 0.0016283126315101981, -0.0011446633143350482, -0.01614612713456154, 0.12787921726703644, 0.03846866637468338, 0.03384362533688545, -0.12400859594345093, 0.07486317306756973, 0.038651350885629654, 0.009913017973303795, -0.007448378950357437, 0.06824074685573578, -0.1141715869307518, -0.118283711373806, -0.002464198274537921, 0.09536328166723251, -0.09622502326965332, -0.031936850398778915, -0.03600265085697174, -0.07686572521924973, 0.05387004837393761, 0.03545534610748291, 0.07348046451807022, 0.0690801590681076, -0.07366285473108292, -0.07247652858495712, -0.031314972788095474, 0.03973864018917084, 0.08242723345756531, -0.04928947240114212, -0.069125697016716, 0.10447648912668228, -0.0007657662499696016, 0.14120976626873016, -0.09687993675470352, -0.08622246235609055, -0.10385091602802277, 0.037738535553216934, -0.1293172985315323, 0.03390819579362869, -0.10388496518135071, -0.047854356467723846, -0.014005507342517376, 0.05839083343744278, -0.012834508903324604, -0.0023952932097017765, -0.09357034415006638, 0.0006304087582975626, -0.01631253957748413, 0.05093638226389885, -0.09759966284036636, -0.027907637879252434, -0.00039172780816443264, 0.015872793272137642, 0.10745187103748322, 0.15845224261283875, -0.11174465715885162, 0.050285547971725464, -0.10330168902873993, -0.014151478186249733, 0.04351542145013809, 0.019130554050207138, -0.006567580159753561, 0.011198610067367554, 0.012015439569950104, 0.01568983495235443, -0.009929386898875237, 0.031770337373018265, -0.009079093113541603, -0.15785105526447296, 0.03244951739907265, 0.011699134483933449, -0.0007311872323043644, -0.09790576994419098, 0.010824342258274555, -0.02974119409918785, 0.0949474424123764, 0.09670817106962204, -0.09431616216897964, 0.1190800741314888, -0.0641866996884346, 0.047357529401779175, 0.004568019416183233, -0.1247066929936409, -0.0680510401725769, -0.08682005107402802, 0.014588250778615475, -0.022406715899705887, 0.19653116166591644, 0.06627485156059265, -0.022106293588876724, -0.057201776653528214, 0.10376583784818649, 0.07769621163606644, -0.012105376459658146, 0.10472813248634338, 0.026698097586631775, -0.035417914390563965, -0.09830830246210098, 0.12748552858829498, 0.03303885832428932, 0.05967753008008003, 0.1092415377497673, -0.02353360876441002, -0.018297288566827774, 0.07582686841487885, -0.015266756527125835, 0.017341434955596924, -0.07660429179668427, -0.1248631477355957, 0.020058343186974525, 0.07807300984859467, -0.0017206647899001837, 0.1015455424785614, 0.07185787707567215, -0.0055389017798006535, 0.04621260613203049, 0.03410918638110161, -0.07486601173877716, -0.13194754719734192, -0.28667235374450684, -0.00875233206897974, -0.07563842833042145, -0.03577246144413948, -0.09850365668535233, -0.01000791322439909, 0.03098599798977375, 0.06193309277296066, -0.08128365874290466, 0.06909812986850739, 0.12312635034322739, -0.1532258838415146, 0.09965365380048752, -0.041605591773986816, 0.03598518297076225, -0.08338350802659988, 0.019655195996165276, -0.0074086869135499, -0.016267258673906326, 0.0016165298875421286, 0.03521004691720009, 0.03068762645125389, 0.04033505544066429, -0.1270921677350998, -0.08525298535823822, -0.05837230384349823, 0.05254841223359108, -0.005754945334047079, 0.0744873434305191, 0.003342605195939541, -0.07840240746736526, -0.020425710827112198, 0.19384239614009857, -0.005108213052153587, -0.0012650465359911323, -0.021440057083964348, 0.3593185842037201, 0.017519399523735046, 0.02000979706645012, 0.018415650352835655, 0.01978815346956253, -0.09676704555749893, 0.3885731101036072, 0.2952762842178345, -0.09757784008979797, -0.020548885688185692, 0.01642296090722084, 0.006232334766536951, 0.10239344090223312, 0.16844071447849274, 0.029078302904963493, 0.23877833783626556, -0.07390941679477692, 0.032170992344617844, -0.07303976267576218, 0.0025566115509718657, -0.09666772186756134, 0.03231198340654373, 0.08471477776765823, -0.026476822793483734, -0.04340090602636337, 0.09289398789405823, -0.3207470178604126, 0.03923897445201874, -0.12828338146209717, 0.014073997735977173, -0.05656404048204422, -0.02566174976527691, 0.022511504590511322, 0.06218215823173523, 0.10618415474891663, -0.06498660892248154, 0.05616765096783638, 0.054322365671396255, -0.002974586095660925, -0.17783011496067047, 0.05996445193886757, 0.04951045662164688, -0.09151142090559006, 0.04027029871940613, -0.01820281893014908, 0.10199719667434692, 0.023338472470641136, 0.015413732267916203, -0.09173723310232162, 0.04677322134375572, -0.01534899789839983, -0.011510312557220459, 0.08202997595071793, 0.015629593282938004, 0.060384150594472885, -0.18694867193698883, -0.003903818316757679, -0.0151459826156497, 0.011679080314934254, -0.06148318201303482, 0.0330243818461895, -0.04290388524532318, 0.027486683800816536, -0.021720919758081436, 0.03909854218363762, 0.09579600393772125, -0.03881194815039635, -0.03131786361336708, -0.07118349522352219, -0.02095351368188858, -0.039111822843551636, -0.07965775579214096, -0.05339914932847023, -0.11352962255477905, -0.08466397970914841, 0.022617686539888382, -0.0159174595028162, -0.2553849518299103, 0.05497954040765762, -0.07196685671806335, -0.015984581783413887, -0.05199836567044258, 0.03839331120252609, 0.028514958918094635, 0.036568090319633484, 0.009364134632050991, 0.08796539902687073, -0.02941698394715786, 0.03400103747844696, -0.1147979274392128, -0.09841600805521011 ]
null
null
transformers
# GPT-2 - This model forked from [gpt2](https://huggingface.co/gpt2-medium) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-medium') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') model = GPT2Model.from_pretrained('gpt2-medium') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') model = TFGPT2Model.from_pretrained('gpt2-medium') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-medium') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": "en", "license": "mit", "tags": ["gpt2"]}
text-generation
byeongal/gpt2-medium
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GPT-2 ===== * This model forked from gpt2 for fine tune Teachable NLP. Test the whole generation capabilities here: URL Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page. Disclaimer: The team releasing GPT-2 also wrote a model card for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. Model description ----------------- GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token 'i' only uses the inputs from '1' to 'i' but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. Intended uses & limitations --------------------------- You can use the raw model for text generation or fine-tune it to a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: Here is how to use this model to get the features of a given text in PyTorch: and in TensorFlow: ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. > > > Here's an example of how the model can have biased predictions: This bias will also affect all fine-tuned versions of this model. Training data ------------- The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText here. Training procedure ------------------ ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. Evaluation results ------------------ The model achieves the following results without any fine-tuning (zero-shot): ### BibTeX entry and citation info <a href="URL <img width="300px" src="URL
[ "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ 54, 66, 393, 118, 30 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:" ]
[ -0.03103751502931118, 0.04916257783770561, -0.005577342119067907, 0.05076980963349342, 0.14803007245063782, -0.0013299599522724748, 0.11618239432573318, 0.07411403954029083, 0.02898700349032879, -0.019208012148737907, 0.21747447550296783, 0.21183842420578003, 0.011326934210956097, 0.11567114293575287, 0.005056867841631174, -0.2693724036216736, -0.013518227264285088, 0.02678930014371872, 0.03906947746872902, 0.14358215034008026, 0.05778583139181137, -0.08684011548757553, 0.07215490937232971, 0.024125026538968086, -0.147836372256279, -0.02708006277680397, -0.011595197953283787, -0.07111810147762299, 0.09968236088752747, 0.05329516902565956, 0.04515625163912773, 0.07917682081460953, 0.020944347605109215, -0.062030352652072906, 0.04578682780265808, 0.0007990454323589802, -0.023382985964417458, 0.11814413964748383, 0.12374747544527054, -0.09798453003168106, 0.17273958027362823, 0.12288068979978561, -0.10727431625127792, 0.012975229881703854, -0.09280116111040115, 0.025891292840242386, 0.013929647393524647, -0.008564583957195282, 0.019792422652244568, 0.06692380458116531, -0.03326702117919922, 0.0720549076795578, -0.044638555496931076, 0.08852867037057877, 0.22731943428516388, -0.28102102875709534, -0.02620488964021206, 0.06143556535243988, 0.05432182922959328, 0.03985295817255974, -0.00200755731202662, 0.06636884063482285, 0.04400920867919922, 0.08194129914045334, 0.1478593647480011, -0.0681961327791214, -0.07915764302015305, 0.011197506450116634, -0.14520126581192017, -0.04341327026486397, 0.16805042326450348, -0.10477836430072784, -0.004324049688875675, -0.07879055291414261, -0.09175118803977966, -0.02521500177681446, -0.023129073902964592, -0.012207002379000187, -0.05028854310512543, 0.032457176595926285, 0.02261391095817089, -0.1481461524963379, -0.13887088000774384, -0.1143544390797615, -0.09506368637084961, 0.11367874592542648, 0.06133135035634041, 0.06902047991752625, -0.17023713886737823, 0.1849036067724228, 0.06912951171398163, -0.05081627890467644, 0.052318550646305084, -0.11873834580183029, 0.056557971984148026, 0.035817619413137436, -0.07212593406438828, -0.10013554990291595, 0.09803086519241333, 0.026048067957162857, -0.009067905135452747, -0.025146523490548134, 0.02931678295135498, 0.12436160445213318, 0.038150981068611145, 0.0576973631978035, -0.12530098855495453, 0.09578657895326614, 0.032039664685726166, -0.073274165391922, -0.06839685142040253, -0.03343067690730095, -0.14228315651416779, -0.05448122322559357, 0.046036239713430405, 0.09466356784105301, 0.025554446503520012, 0.11861665546894073, 0.002674515126273036, -0.10120425373315811, -0.019330212846398354, -0.05432076007127762, -0.05786449834704399, 0.032178908586502075, -0.08807753026485443, 0.07329805940389633, 0.028406808152794838, -0.03156909719109535, -0.160769984126091, 0.01780351810157299, -0.07134979963302612, 0.010442341677844524, -0.037895940244197845, -0.07906418293714523, -0.04903505742549896, -0.10581706464290619, -0.006439251825213432, -0.14250563085079193, -0.19747304916381836, -0.0016035017324611545, 0.02158174477517605, -0.039273373782634735, -0.0605209656059742, -0.07687395811080933, -0.003038048278540373, -0.014675934799015522, -0.06130710244178772, 0.09260325878858566, -0.030745474621653557, 0.08917488902807236, -0.05120134353637695, 0.09582134336233139, -0.04310648888349533, 0.07392662018537521, -0.10078710317611694, 0.0016437233425676823, -0.014686023816466331, 0.07894756644964218, 0.02684563584625721, 0.010014505125582218, -0.06280567497015, -0.060080211609601974, -0.03425635024905205, 0.02321750856935978, 0.009249784983694553, 0.1694185435771942, -0.09895377606153488, -0.08954235166311264, 0.21812573075294495, -0.040688540786504745, -0.08118210732936859, 0.10572440922260284, -0.004730823449790478, 0.08263158053159714, 0.10082515329122543, 0.1694667637348175, 0.06288287043571472, 0.0015869626076892018, 0.14076465368270874, 0.11823337525129318, -0.1914854198694229, -0.08431392908096313, 0.044076405465602875, 0.011561454273760319, -0.13298054039478302, 0.07891730964183807, -0.025893503800034523, 0.12336701154708862, -0.08460601419210434, -0.0261653084307909, 0.0051488555036485195, -0.04371441900730133, 0.059013284742832184, -0.0007187598966993392, 0.1268010437488556, 0.05581384524703026, 0.003606890793889761, -0.05202416703104973, 0.019337935373187065, -0.10953820496797562, 0.01822485588490963, -0.015768559649586678, 0.17582334578037262, -0.007934044115245342, 0.07591291517019272, -0.19986268877983093, 0.01977579854428768, 0.032810863107442856, 0.098968505859375, 0.027181044220924377, 0.03093118406832218, 0.03037063218653202, 0.05867590382695198, 0.015478734858334064, 0.0023447165731340647, 0.19110669195652008, -0.07797916978597641, -0.08355136960744858, -0.0677366703748703, 0.007855732925236225, -0.01604323834180832, -0.024063244462013245, -0.06393474340438843, 0.0005466601578518748, -0.12548789381980896, 0.008165326900780201, -0.06348263472318649, 0.031160911545157433, 0.04106748476624489, -0.005693142302334309, -0.07102148979902267, 0.0058685243129730225, 0.13091664016246796, -0.028003379702568054, -0.09368059784173965, 0.2169853001832962, -0.050891488790512085, 0.07385633140802383, 0.12497235834598541, -0.16518479585647583, -0.0299889724701643, -0.10231444984674454, -0.07949023693799973, 0.00901647936552763, -0.0016366426134482026, 0.032565899193286896, 0.21910126507282257, 0.011898871511220932, 0.16728073358535767, -0.09412374347448349, -0.01721343956887722, 0.004327263683080673, -0.09040363878011703, 0.05937513709068298, 0.1332308053970337, 0.09114117175340652, -0.10025849938392639, 0.08962284028530121, 0.03276035189628601, 0.02060539461672306, 0.12730719149112701, 0.0036658195313066244, -0.053030502051115036, 0.006352975964546204, 0.05498173460364342, -0.030372396111488342, -0.05919154733419418, -0.07357405871152878, -0.031575147062540054, 0.0763760581612587, -0.030796999111771584, 0.09781722724437714, -0.09696488827466965, -0.02676764316856861, -0.035169392824172974, -0.05539735406637192, 0.06580137461423874, 0.0630175769329071, -0.009446550160646439, 0.12099546194076538, -0.05011674761772156, -0.07531425356864929, 0.05093477666378021, 0.008923470973968506, -0.07805746048688889, 0.22362402081489563, -0.05551636591553688, -0.2299203872680664, -0.1308758407831192, -0.0793825313448906, -0.08328492939472198, 0.0663222149014473, 0.03642282634973526, -0.020104296505451202, 0.01721647009253502, -0.025561677291989326, 0.12272283434867859, -0.05082949623465538, 0.015459577552974224, -0.11977370083332062, -0.029143918305635452, -0.06439968198537827, -0.06253275275230408, -0.039561375975608826, -0.07746082544326782, -0.015733644366264343, 0.17340601980686188, -0.07006644457578659, 0.053838446736335754, 0.14773304760456085, 0.008067538030445576, 0.0287929680198431, -0.015847155824303627, 0.20065708458423615, -0.030811406672000885, 0.032641179859638214, 0.14920750260353088, 0.015184496529400349, 0.07264987379312515, 0.02896568365395069, 0.035717181861400604, -0.051200151443481445, 0.025509553030133247, -0.04956436902284622, -0.06381090730428696, -0.21763446927070618, -0.11649222671985626, -0.06022147461771965, 0.08801332861185074, 0.09850399196147919, 0.04247479513287544, 0.06660687178373337, 0.12776121497154236, -0.013966153375804424, 0.0629543736577034, 0.0033862709533423185, 0.04975588247179985, 0.11365259438753128, -0.03123192861676216, 0.1250367909669876, 0.01190203707665205, -0.12455988675355911, 0.0672798752784729, -0.02807058021426201, 0.2578496038913727, -0.013459845446050167, 0.12795859575271606, 0.07968305796384811, 0.1312723308801651, 0.07342637330293655, 0.15707005560398102, 0.003031201893463731, 0.012446661479771137, -0.051680050790309906, -0.050206154584884644, 0.010742503218352795, 0.011064617894589901, -0.0008696202421560884, -0.07104670256376266, -0.051314789801836014, -0.02808573469519615, 0.04909297823905945, 0.12575466930866241, 0.009257459081709385, -0.2538854479789734, 0.03013523295521736, -0.010653875768184662, 0.004295154009014368, -0.05476652830839157, 0.08710265904664993, 0.0644242987036705, -0.1473548263311386, -0.055368199944496155, -0.07594641298055649, 0.14110511541366577, -0.04509733244776726, 0.06373916566371918, -0.06525147706270218, 0.05884890258312225, 0.007398317568004131, 0.15531092882156372, -0.26410025358200073, 0.17945481836795807, -0.015821117907762527, -0.033937662839889526, -0.09573043882846832, -0.03697218373417854, 0.03681642934679985, 0.03130360320210457, 0.15797026455402374, -0.026395833119750023, 0.06960684061050415, -0.09032079577445984, -0.083296038210392, 0.023041648790240288, 0.07121872156858444, -0.06324177980422974, 0.04124218970537186, 0.015063858591020107, 0.029326533898711205, -0.03460794314742088, -0.008558981120586395, -0.0376335009932518, -0.07770966738462448, 0.02936866506934166, 0.037978287786245346, -0.006461140234023333, 0.046325039118528366, -0.04967417195439339, -0.06764223426580429, 0.0963955968618393, -0.0559416227042675, -0.16330586373806, -0.06720788776874542, 0.01956016756594181, 0.06403718888759613, -0.08767083287239075, -0.031938645988702774, -0.046569593250751495, 0.035954952239990234, -0.05405202880501747, -0.20378009974956512, 0.04867143556475639, -0.07346142828464508, -0.06099637970328331, -0.01755591295659542, 0.11661329865455627, 0.057286184281110764, 0.005927986465394497, 0.0010251972125843167, -0.04060520976781845, -0.11913105100393295, -0.14831037819385529, 0.015915637835860252, 0.006935150362551212, 0.046585846692323685, 0.012391901575028896, -0.05678658187389374, -0.002065722132101655, -0.10459522157907486, 0.041089460253715515, 0.24622835218906403, 0.10512108355760574, -0.07415410131216049, 0.16820652782917023, 0.15776720643043518, -0.11716419458389282, -0.2774624228477478, -0.18450652062892914, -0.011215053498744965, 0.006156154442578554, 0.010000990703701973, -0.22892214357852936, 0.04342515394091606, 0.010483555495738983, -0.007177337538450956, 0.1410742551088333, -0.39116033911705017, -0.09452357143163681, 0.1972671002149582, 0.06844688206911087, 0.234942227602005, -0.11867967993021011, -0.09653596580028534, -0.002239842200651765, 0.022266201674938202, 0.14622430503368378, -0.01981399580836296, 0.11715111136436462, -0.09706855565309525, 0.11589165776968002, 0.034604448825120926, -0.04123546928167343, 0.07612239569425583, 0.018459377810359, 0.03151450306177139, -0.057291146367788315, 0.031881898641586304, 0.03690667077898979, 0.03390713781118393, 0.0973690003156662, -0.10091296583414078, 0.05443043261766434, -0.06913285702466965, -0.07520781457424164, -0.09269747883081436, 0.10293841361999512, 0.03347891941666603, -0.07011502981185913, -0.01243386510759592, -0.04162321984767914, -0.006300459615886211, 0.004662486258894205, -0.03251087665557861, -0.034419313073158264, 0.08157709985971451, 0.19175326824188232, 0.028568236157298088, -0.028967926278710365, -0.08840041607618332, -0.059612445533275604, -0.008669413626194, 0.09278972446918488, -0.056788478046655655, -0.05011202394962311, 0.1300935298204422, 0.0003681711677927524, 0.08319539576768875, 0.07828041911125183, -0.047250714153051376, 0.01294917892664671, 0.03332357108592987, -0.24739199876785278, -0.08141648024320602, -0.09844133257865906, -0.09631285816431046, 0.06664623320102692, 0.05385292321443558, 0.09068270027637482, -0.07007639855146408, -0.037191495299339294, 0.0016283126315101981, -0.0011446633143350482, -0.01614612713456154, 0.12787921726703644, 0.03846866637468338, 0.03384362533688545, -0.12400859594345093, 0.07486317306756973, 0.038651350885629654, 0.009913017973303795, -0.007448378950357437, 0.06824074685573578, -0.1141715869307518, -0.118283711373806, -0.002464198274537921, 0.09536328166723251, -0.09622502326965332, -0.031936850398778915, -0.03600265085697174, -0.07686572521924973, 0.05387004837393761, 0.03545534610748291, 0.07348046451807022, 0.0690801590681076, -0.07366285473108292, -0.07247652858495712, -0.031314972788095474, 0.03973864018917084, 0.08242723345756531, -0.04928947240114212, -0.069125697016716, 0.10447648912668228, -0.0007657662499696016, 0.14120976626873016, -0.09687993675470352, -0.08622246235609055, -0.10385091602802277, 0.037738535553216934, -0.1293172985315323, 0.03390819579362869, -0.10388496518135071, -0.047854356467723846, -0.014005507342517376, 0.05839083343744278, -0.012834508903324604, -0.0023952932097017765, -0.09357034415006638, 0.0006304087582975626, -0.01631253957748413, 0.05093638226389885, -0.09759966284036636, -0.027907637879252434, -0.00039172780816443264, 0.015872793272137642, 0.10745187103748322, 0.15845224261283875, -0.11174465715885162, 0.050285547971725464, -0.10330168902873993, -0.014151478186249733, 0.04351542145013809, 0.019130554050207138, -0.006567580159753561, 0.011198610067367554, 0.012015439569950104, 0.01568983495235443, -0.009929386898875237, 0.031770337373018265, -0.009079093113541603, -0.15785105526447296, 0.03244951739907265, 0.011699134483933449, -0.0007311872323043644, -0.09790576994419098, 0.010824342258274555, -0.02974119409918785, 0.0949474424123764, 0.09670817106962204, -0.09431616216897964, 0.1190800741314888, -0.0641866996884346, 0.047357529401779175, 0.004568019416183233, -0.1247066929936409, -0.0680510401725769, -0.08682005107402802, 0.014588250778615475, -0.022406715899705887, 0.19653116166591644, 0.06627485156059265, -0.022106293588876724, -0.057201776653528214, 0.10376583784818649, 0.07769621163606644, -0.012105376459658146, 0.10472813248634338, 0.026698097586631775, -0.035417914390563965, -0.09830830246210098, 0.12748552858829498, 0.03303885832428932, 0.05967753008008003, 0.1092415377497673, -0.02353360876441002, -0.018297288566827774, 0.07582686841487885, -0.015266756527125835, 0.017341434955596924, -0.07660429179668427, -0.1248631477355957, 0.020058343186974525, 0.07807300984859467, -0.0017206647899001837, 0.1015455424785614, 0.07185787707567215, -0.0055389017798006535, 0.04621260613203049, 0.03410918638110161, -0.07486601173877716, -0.13194754719734192, -0.28667235374450684, -0.00875233206897974, -0.07563842833042145, -0.03577246144413948, -0.09850365668535233, -0.01000791322439909, 0.03098599798977375, 0.06193309277296066, -0.08128365874290466, 0.06909812986850739, 0.12312635034322739, -0.1532258838415146, 0.09965365380048752, -0.041605591773986816, 0.03598518297076225, -0.08338350802659988, 0.019655195996165276, -0.0074086869135499, -0.016267258673906326, 0.0016165298875421286, 0.03521004691720009, 0.03068762645125389, 0.04033505544066429, -0.1270921677350998, -0.08525298535823822, -0.05837230384349823, 0.05254841223359108, -0.005754945334047079, 0.0744873434305191, 0.003342605195939541, -0.07840240746736526, -0.020425710827112198, 0.19384239614009857, -0.005108213052153587, -0.0012650465359911323, -0.021440057083964348, 0.3593185842037201, 0.017519399523735046, 0.02000979706645012, 0.018415650352835655, 0.01978815346956253, -0.09676704555749893, 0.3885731101036072, 0.2952762842178345, -0.09757784008979797, -0.020548885688185692, 0.01642296090722084, 0.006232334766536951, 0.10239344090223312, 0.16844071447849274, 0.029078302904963493, 0.23877833783626556, -0.07390941679477692, 0.032170992344617844, -0.07303976267576218, 0.0025566115509718657, -0.09666772186756134, 0.03231198340654373, 0.08471477776765823, -0.026476822793483734, -0.04340090602636337, 0.09289398789405823, -0.3207470178604126, 0.03923897445201874, -0.12828338146209717, 0.014073997735977173, -0.05656404048204422, -0.02566174976527691, 0.022511504590511322, 0.06218215823173523, 0.10618415474891663, -0.06498660892248154, 0.05616765096783638, 0.054322365671396255, -0.002974586095660925, -0.17783011496067047, 0.05996445193886757, 0.04951045662164688, -0.09151142090559006, 0.04027029871940613, -0.01820281893014908, 0.10199719667434692, 0.023338472470641136, 0.015413732267916203, -0.09173723310232162, 0.04677322134375572, -0.01534899789839983, -0.011510312557220459, 0.08202997595071793, 0.015629593282938004, 0.060384150594472885, -0.18694867193698883, -0.003903818316757679, -0.0151459826156497, 0.011679080314934254, -0.06148318201303482, 0.0330243818461895, -0.04290388524532318, 0.027486683800816536, -0.021720919758081436, 0.03909854218363762, 0.09579600393772125, -0.03881194815039635, -0.03131786361336708, -0.07118349522352219, -0.02095351368188858, -0.039111822843551636, -0.07965775579214096, -0.05339914932847023, -0.11352962255477905, -0.08466397970914841, 0.022617686539888382, -0.0159174595028162, -0.2553849518299103, 0.05497954040765762, -0.07196685671806335, -0.015984581783413887, -0.05199836567044258, 0.03839331120252609, 0.028514958918094635, 0.036568090319633484, 0.009364134632050991, 0.08796539902687073, -0.02941698394715786, 0.03400103747844696, -0.1147979274392128, -0.09841600805521011 ]
null
null
transformers
# GPT-2 - This model forked from [gpt2](https://huggingface.co/gpt2) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": "en", "license": "mit", "tags": ["gpt2"]}
text-generation
byeongal/gpt2
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GPT-2 ===== * This model forked from gpt2 for fine tune Teachable NLP. Test the whole generation capabilities here: URL Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page. Disclaimer: The team releasing GPT-2 also wrote a model card for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. Model description ----------------- GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token 'i' only uses the inputs from '1' to 'i' but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. Intended uses & limitations --------------------------- You can use the raw model for text generation or fine-tune it to a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: Here is how to use this model to get the features of a given text in PyTorch: and in TensorFlow: ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. > > > Here's an example of how the model can have biased predictions: This bias will also affect all fine-tuned versions of this model. Training data ------------- The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText here. Training procedure ------------------ ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. Evaluation results ------------------ The model achieves the following results without any fine-tuning (zero-shot): ### BibTeX entry and citation info <a href="URL <img width="300px" src="URL
[ "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:", "### Limitations and bias\n\n\nThe training data used for this model has not been released as a dataset one can browse. We know it contains a lot of\nunfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their\nmodel card:\n\n\n\n> \n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases\n> that require the generated text to be true.\n> \n> \n> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do\n> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a\n> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,\n> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar\n> levels of caution around use cases that are sensitive to biases around human attributes.\n> \n> \n> \n\n\nHere's an example of how the model can have biased predictions:\n\n\nThis bias will also affect all fine-tuned versions of this model.\n\n\nTraining data\n-------------\n\n\nThe OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web\npages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from\nthis dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights\n40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText\nhere.\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a\nvocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.\n\n\nThe larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact\ndetails of training.\n\n\nEvaluation results\n------------------\n\n\nThe model achieves the following results without any fine-tuning (zero-shot):", "### BibTeX entry and citation info\n\n\n<a href=\"URL\n<img width=\"300px\" src=\"URL" ]
[ 54, 66, 393, 118, 30 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### How to use\n\n\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we\nset a seed for reproducibility:\n\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\n\nand in TensorFlow:" ]
[ -0.03103751502931118, 0.04916257783770561, -0.005577342119067907, 0.05076980963349342, 0.14803007245063782, -0.0013299599522724748, 0.11618239432573318, 0.07411403954029083, 0.02898700349032879, -0.019208012148737907, 0.21747447550296783, 0.21183842420578003, 0.011326934210956097, 0.11567114293575287, 0.005056867841631174, -0.2693724036216736, -0.013518227264285088, 0.02678930014371872, 0.03906947746872902, 0.14358215034008026, 0.05778583139181137, -0.08684011548757553, 0.07215490937232971, 0.024125026538968086, -0.147836372256279, -0.02708006277680397, -0.011595197953283787, -0.07111810147762299, 0.09968236088752747, 0.05329516902565956, 0.04515625163912773, 0.07917682081460953, 0.020944347605109215, -0.062030352652072906, 0.04578682780265808, 0.0007990454323589802, -0.023382985964417458, 0.11814413964748383, 0.12374747544527054, -0.09798453003168106, 0.17273958027362823, 0.12288068979978561, -0.10727431625127792, 0.012975229881703854, -0.09280116111040115, 0.025891292840242386, 0.013929647393524647, -0.008564583957195282, 0.019792422652244568, 0.06692380458116531, -0.03326702117919922, 0.0720549076795578, -0.044638555496931076, 0.08852867037057877, 0.22731943428516388, -0.28102102875709534, -0.02620488964021206, 0.06143556535243988, 0.05432182922959328, 0.03985295817255974, -0.00200755731202662, 0.06636884063482285, 0.04400920867919922, 0.08194129914045334, 0.1478593647480011, -0.0681961327791214, -0.07915764302015305, 0.011197506450116634, -0.14520126581192017, -0.04341327026486397, 0.16805042326450348, -0.10477836430072784, -0.004324049688875675, -0.07879055291414261, -0.09175118803977966, -0.02521500177681446, -0.023129073902964592, -0.012207002379000187, -0.05028854310512543, 0.032457176595926285, 0.02261391095817089, -0.1481461524963379, -0.13887088000774384, -0.1143544390797615, -0.09506368637084961, 0.11367874592542648, 0.06133135035634041, 0.06902047991752625, -0.17023713886737823, 0.1849036067724228, 0.06912951171398163, -0.05081627890467644, 0.052318550646305084, -0.11873834580183029, 0.056557971984148026, 0.035817619413137436, -0.07212593406438828, -0.10013554990291595, 0.09803086519241333, 0.026048067957162857, -0.009067905135452747, -0.025146523490548134, 0.02931678295135498, 0.12436160445213318, 0.038150981068611145, 0.0576973631978035, -0.12530098855495453, 0.09578657895326614, 0.032039664685726166, -0.073274165391922, -0.06839685142040253, -0.03343067690730095, -0.14228315651416779, -0.05448122322559357, 0.046036239713430405, 0.09466356784105301, 0.025554446503520012, 0.11861665546894073, 0.002674515126273036, -0.10120425373315811, -0.019330212846398354, -0.05432076007127762, -0.05786449834704399, 0.032178908586502075, -0.08807753026485443, 0.07329805940389633, 0.028406808152794838, -0.03156909719109535, -0.160769984126091, 0.01780351810157299, -0.07134979963302612, 0.010442341677844524, -0.037895940244197845, -0.07906418293714523, -0.04903505742549896, -0.10581706464290619, -0.006439251825213432, -0.14250563085079193, -0.19747304916381836, -0.0016035017324611545, 0.02158174477517605, -0.039273373782634735, -0.0605209656059742, -0.07687395811080933, -0.003038048278540373, -0.014675934799015522, -0.06130710244178772, 0.09260325878858566, -0.030745474621653557, 0.08917488902807236, -0.05120134353637695, 0.09582134336233139, -0.04310648888349533, 0.07392662018537521, -0.10078710317611694, 0.0016437233425676823, -0.014686023816466331, 0.07894756644964218, 0.02684563584625721, 0.010014505125582218, -0.06280567497015, -0.060080211609601974, -0.03425635024905205, 0.02321750856935978, 0.009249784983694553, 0.1694185435771942, -0.09895377606153488, -0.08954235166311264, 0.21812573075294495, -0.040688540786504745, -0.08118210732936859, 0.10572440922260284, -0.004730823449790478, 0.08263158053159714, 0.10082515329122543, 0.1694667637348175, 0.06288287043571472, 0.0015869626076892018, 0.14076465368270874, 0.11823337525129318, -0.1914854198694229, -0.08431392908096313, 0.044076405465602875, 0.011561454273760319, -0.13298054039478302, 0.07891730964183807, -0.025893503800034523, 0.12336701154708862, -0.08460601419210434, -0.0261653084307909, 0.0051488555036485195, -0.04371441900730133, 0.059013284742832184, -0.0007187598966993392, 0.1268010437488556, 0.05581384524703026, 0.003606890793889761, -0.05202416703104973, 0.019337935373187065, -0.10953820496797562, 0.01822485588490963, -0.015768559649586678, 0.17582334578037262, -0.007934044115245342, 0.07591291517019272, -0.19986268877983093, 0.01977579854428768, 0.032810863107442856, 0.098968505859375, 0.027181044220924377, 0.03093118406832218, 0.03037063218653202, 0.05867590382695198, 0.015478734858334064, 0.0023447165731340647, 0.19110669195652008, -0.07797916978597641, -0.08355136960744858, -0.0677366703748703, 0.007855732925236225, -0.01604323834180832, -0.024063244462013245, -0.06393474340438843, 0.0005466601578518748, -0.12548789381980896, 0.008165326900780201, -0.06348263472318649, 0.031160911545157433, 0.04106748476624489, -0.005693142302334309, -0.07102148979902267, 0.0058685243129730225, 0.13091664016246796, -0.028003379702568054, -0.09368059784173965, 0.2169853001832962, -0.050891488790512085, 0.07385633140802383, 0.12497235834598541, -0.16518479585647583, -0.0299889724701643, -0.10231444984674454, -0.07949023693799973, 0.00901647936552763, -0.0016366426134482026, 0.032565899193286896, 0.21910126507282257, 0.011898871511220932, 0.16728073358535767, -0.09412374347448349, -0.01721343956887722, 0.004327263683080673, -0.09040363878011703, 0.05937513709068298, 0.1332308053970337, 0.09114117175340652, -0.10025849938392639, 0.08962284028530121, 0.03276035189628601, 0.02060539461672306, 0.12730719149112701, 0.0036658195313066244, -0.053030502051115036, 0.006352975964546204, 0.05498173460364342, -0.030372396111488342, -0.05919154733419418, -0.07357405871152878, -0.031575147062540054, 0.0763760581612587, -0.030796999111771584, 0.09781722724437714, -0.09696488827466965, -0.02676764316856861, -0.035169392824172974, -0.05539735406637192, 0.06580137461423874, 0.0630175769329071, -0.009446550160646439, 0.12099546194076538, -0.05011674761772156, -0.07531425356864929, 0.05093477666378021, 0.008923470973968506, -0.07805746048688889, 0.22362402081489563, -0.05551636591553688, -0.2299203872680664, -0.1308758407831192, -0.0793825313448906, -0.08328492939472198, 0.0663222149014473, 0.03642282634973526, -0.020104296505451202, 0.01721647009253502, -0.025561677291989326, 0.12272283434867859, -0.05082949623465538, 0.015459577552974224, -0.11977370083332062, -0.029143918305635452, -0.06439968198537827, -0.06253275275230408, -0.039561375975608826, -0.07746082544326782, -0.015733644366264343, 0.17340601980686188, -0.07006644457578659, 0.053838446736335754, 0.14773304760456085, 0.008067538030445576, 0.0287929680198431, -0.015847155824303627, 0.20065708458423615, -0.030811406672000885, 0.032641179859638214, 0.14920750260353088, 0.015184496529400349, 0.07264987379312515, 0.02896568365395069, 0.035717181861400604, -0.051200151443481445, 0.025509553030133247, -0.04956436902284622, -0.06381090730428696, -0.21763446927070618, -0.11649222671985626, -0.06022147461771965, 0.08801332861185074, 0.09850399196147919, 0.04247479513287544, 0.06660687178373337, 0.12776121497154236, -0.013966153375804424, 0.0629543736577034, 0.0033862709533423185, 0.04975588247179985, 0.11365259438753128, -0.03123192861676216, 0.1250367909669876, 0.01190203707665205, -0.12455988675355911, 0.0672798752784729, -0.02807058021426201, 0.2578496038913727, -0.013459845446050167, 0.12795859575271606, 0.07968305796384811, 0.1312723308801651, 0.07342637330293655, 0.15707005560398102, 0.003031201893463731, 0.012446661479771137, -0.051680050790309906, -0.050206154584884644, 0.010742503218352795, 0.011064617894589901, -0.0008696202421560884, -0.07104670256376266, -0.051314789801836014, -0.02808573469519615, 0.04909297823905945, 0.12575466930866241, 0.009257459081709385, -0.2538854479789734, 0.03013523295521736, -0.010653875768184662, 0.004295154009014368, -0.05476652830839157, 0.08710265904664993, 0.0644242987036705, -0.1473548263311386, -0.055368199944496155, -0.07594641298055649, 0.14110511541366577, -0.04509733244776726, 0.06373916566371918, -0.06525147706270218, 0.05884890258312225, 0.007398317568004131, 0.15531092882156372, -0.26410025358200073, 0.17945481836795807, -0.015821117907762527, -0.033937662839889526, -0.09573043882846832, -0.03697218373417854, 0.03681642934679985, 0.03130360320210457, 0.15797026455402374, -0.026395833119750023, 0.06960684061050415, -0.09032079577445984, -0.083296038210392, 0.023041648790240288, 0.07121872156858444, -0.06324177980422974, 0.04124218970537186, 0.015063858591020107, 0.029326533898711205, -0.03460794314742088, -0.008558981120586395, -0.0376335009932518, -0.07770966738462448, 0.02936866506934166, 0.037978287786245346, -0.006461140234023333, 0.046325039118528366, -0.04967417195439339, -0.06764223426580429, 0.0963955968618393, -0.0559416227042675, -0.16330586373806, -0.06720788776874542, 0.01956016756594181, 0.06403718888759613, -0.08767083287239075, -0.031938645988702774, -0.046569593250751495, 0.035954952239990234, -0.05405202880501747, -0.20378009974956512, 0.04867143556475639, -0.07346142828464508, -0.06099637970328331, -0.01755591295659542, 0.11661329865455627, 0.057286184281110764, 0.005927986465394497, 0.0010251972125843167, -0.04060520976781845, -0.11913105100393295, -0.14831037819385529, 0.015915637835860252, 0.006935150362551212, 0.046585846692323685, 0.012391901575028896, -0.05678658187389374, -0.002065722132101655, -0.10459522157907486, 0.041089460253715515, 0.24622835218906403, 0.10512108355760574, -0.07415410131216049, 0.16820652782917023, 0.15776720643043518, -0.11716419458389282, -0.2774624228477478, -0.18450652062892914, -0.011215053498744965, 0.006156154442578554, 0.010000990703701973, -0.22892214357852936, 0.04342515394091606, 0.010483555495738983, -0.007177337538450956, 0.1410742551088333, -0.39116033911705017, -0.09452357143163681, 0.1972671002149582, 0.06844688206911087, 0.234942227602005, -0.11867967993021011, -0.09653596580028534, -0.002239842200651765, 0.022266201674938202, 0.14622430503368378, -0.01981399580836296, 0.11715111136436462, -0.09706855565309525, 0.11589165776968002, 0.034604448825120926, -0.04123546928167343, 0.07612239569425583, 0.018459377810359, 0.03151450306177139, -0.057291146367788315, 0.031881898641586304, 0.03690667077898979, 0.03390713781118393, 0.0973690003156662, -0.10091296583414078, 0.05443043261766434, -0.06913285702466965, -0.07520781457424164, -0.09269747883081436, 0.10293841361999512, 0.03347891941666603, -0.07011502981185913, -0.01243386510759592, -0.04162321984767914, -0.006300459615886211, 0.004662486258894205, -0.03251087665557861, -0.034419313073158264, 0.08157709985971451, 0.19175326824188232, 0.028568236157298088, -0.028967926278710365, -0.08840041607618332, -0.059612445533275604, -0.008669413626194, 0.09278972446918488, -0.056788478046655655, -0.05011202394962311, 0.1300935298204422, 0.0003681711677927524, 0.08319539576768875, 0.07828041911125183, -0.047250714153051376, 0.01294917892664671, 0.03332357108592987, -0.24739199876785278, -0.08141648024320602, -0.09844133257865906, -0.09631285816431046, 0.06664623320102692, 0.05385292321443558, 0.09068270027637482, -0.07007639855146408, -0.037191495299339294, 0.0016283126315101981, -0.0011446633143350482, -0.01614612713456154, 0.12787921726703644, 0.03846866637468338, 0.03384362533688545, -0.12400859594345093, 0.07486317306756973, 0.038651350885629654, 0.009913017973303795, -0.007448378950357437, 0.06824074685573578, -0.1141715869307518, -0.118283711373806, -0.002464198274537921, 0.09536328166723251, -0.09622502326965332, -0.031936850398778915, -0.03600265085697174, -0.07686572521924973, 0.05387004837393761, 0.03545534610748291, 0.07348046451807022, 0.0690801590681076, -0.07366285473108292, -0.07247652858495712, -0.031314972788095474, 0.03973864018917084, 0.08242723345756531, -0.04928947240114212, -0.069125697016716, 0.10447648912668228, -0.0007657662499696016, 0.14120976626873016, -0.09687993675470352, -0.08622246235609055, -0.10385091602802277, 0.037738535553216934, -0.1293172985315323, 0.03390819579362869, -0.10388496518135071, -0.047854356467723846, -0.014005507342517376, 0.05839083343744278, -0.012834508903324604, -0.0023952932097017765, -0.09357034415006638, 0.0006304087582975626, -0.01631253957748413, 0.05093638226389885, -0.09759966284036636, -0.027907637879252434, -0.00039172780816443264, 0.015872793272137642, 0.10745187103748322, 0.15845224261283875, -0.11174465715885162, 0.050285547971725464, -0.10330168902873993, -0.014151478186249733, 0.04351542145013809, 0.019130554050207138, -0.006567580159753561, 0.011198610067367554, 0.012015439569950104, 0.01568983495235443, -0.009929386898875237, 0.031770337373018265, -0.009079093113541603, -0.15785105526447296, 0.03244951739907265, 0.011699134483933449, -0.0007311872323043644, -0.09790576994419098, 0.010824342258274555, -0.02974119409918785, 0.0949474424123764, 0.09670817106962204, -0.09431616216897964, 0.1190800741314888, -0.0641866996884346, 0.047357529401779175, 0.004568019416183233, -0.1247066929936409, -0.0680510401725769, -0.08682005107402802, 0.014588250778615475, -0.022406715899705887, 0.19653116166591644, 0.06627485156059265, -0.022106293588876724, -0.057201776653528214, 0.10376583784818649, 0.07769621163606644, -0.012105376459658146, 0.10472813248634338, 0.026698097586631775, -0.035417914390563965, -0.09830830246210098, 0.12748552858829498, 0.03303885832428932, 0.05967753008008003, 0.1092415377497673, -0.02353360876441002, -0.018297288566827774, 0.07582686841487885, -0.015266756527125835, 0.017341434955596924, -0.07660429179668427, -0.1248631477355957, 0.020058343186974525, 0.07807300984859467, -0.0017206647899001837, 0.1015455424785614, 0.07185787707567215, -0.0055389017798006535, 0.04621260613203049, 0.03410918638110161, -0.07486601173877716, -0.13194754719734192, -0.28667235374450684, -0.00875233206897974, -0.07563842833042145, -0.03577246144413948, -0.09850365668535233, -0.01000791322439909, 0.03098599798977375, 0.06193309277296066, -0.08128365874290466, 0.06909812986850739, 0.12312635034322739, -0.1532258838415146, 0.09965365380048752, -0.041605591773986816, 0.03598518297076225, -0.08338350802659988, 0.019655195996165276, -0.0074086869135499, -0.016267258673906326, 0.0016165298875421286, 0.03521004691720009, 0.03068762645125389, 0.04033505544066429, -0.1270921677350998, -0.08525298535823822, -0.05837230384349823, 0.05254841223359108, -0.005754945334047079, 0.0744873434305191, 0.003342605195939541, -0.07840240746736526, -0.020425710827112198, 0.19384239614009857, -0.005108213052153587, -0.0012650465359911323, -0.021440057083964348, 0.3593185842037201, 0.017519399523735046, 0.02000979706645012, 0.018415650352835655, 0.01978815346956253, -0.09676704555749893, 0.3885731101036072, 0.2952762842178345, -0.09757784008979797, -0.020548885688185692, 0.01642296090722084, 0.006232334766536951, 0.10239344090223312, 0.16844071447849274, 0.029078302904963493, 0.23877833783626556, -0.07390941679477692, 0.032170992344617844, -0.07303976267576218, 0.0025566115509718657, -0.09666772186756134, 0.03231198340654373, 0.08471477776765823, -0.026476822793483734, -0.04340090602636337, 0.09289398789405823, -0.3207470178604126, 0.03923897445201874, -0.12828338146209717, 0.014073997735977173, -0.05656404048204422, -0.02566174976527691, 0.022511504590511322, 0.06218215823173523, 0.10618415474891663, -0.06498660892248154, 0.05616765096783638, 0.054322365671396255, -0.002974586095660925, -0.17783011496067047, 0.05996445193886757, 0.04951045662164688, -0.09151142090559006, 0.04027029871940613, -0.01820281893014908, 0.10199719667434692, 0.023338472470641136, 0.015413732267916203, -0.09173723310232162, 0.04677322134375572, -0.01534899789839983, -0.011510312557220459, 0.08202997595071793, 0.015629593282938004, 0.060384150594472885, -0.18694867193698883, -0.003903818316757679, -0.0151459826156497, 0.011679080314934254, -0.06148318201303482, 0.0330243818461895, -0.04290388524532318, 0.027486683800816536, -0.021720919758081436, 0.03909854218363762, 0.09579600393772125, -0.03881194815039635, -0.03131786361336708, -0.07118349522352219, -0.02095351368188858, -0.039111822843551636, -0.07965775579214096, -0.05339914932847023, -0.11352962255477905, -0.08466397970914841, 0.022617686539888382, -0.0159174595028162, -0.2553849518299103, 0.05497954040765762, -0.07196685671806335, -0.015984581783413887, -0.05199836567044258, 0.03839331120252609, 0.028514958918094635, 0.036568090319633484, 0.009364134632050991, 0.08796539902687073, -0.02941698394715786, 0.03400103747844696, -0.1147979274392128, -0.09841600805521011 ]
null
null
transformers
# kobart model for Teachable NLP - This model forked from [kobart](https://huggingface.co/hyunwoongko/kobart) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp).
{"language": "ko", "license": "mit", "tags": ["bart"]}
feature-extraction
byeongal/kobart
[ "transformers", "pytorch", "bart", "feature-extraction", "ko", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ko" ]
TAGS #transformers #pytorch #bart #feature-extraction #ko #license-mit #endpoints_compatible #region-us
# kobart model for Teachable NLP - This model forked from kobart for fine tune Teachable NLP.
[ "# kobart model for Teachable NLP\n\n- This model forked from kobart for fine tune Teachable NLP." ]
[ "TAGS\n#transformers #pytorch #bart #feature-extraction #ko #license-mit #endpoints_compatible #region-us \n", "# kobart model for Teachable NLP\n\n- This model forked from kobart for fine tune Teachable NLP." ]
[ 36, 25 ]
[ "passage: TAGS\n#transformers #pytorch #bart #feature-extraction #ko #license-mit #endpoints_compatible #region-us \n# kobart model for Teachable NLP\n\n- This model forked from kobart for fine tune Teachable NLP." ]
[ 0.008345995098352432, 0.03153210133314133, -0.004872822668403387, 0.024641919881105423, 0.04459095373749733, -0.01487885881215334, 0.15124408900737762, 0.06936101615428925, 0.06374944001436234, -0.05843082442879677, 0.12688083946704865, 0.20533724129199982, -0.06569043546915054, 0.11078236997127533, 0.02901621349155903, -0.37533923983573914, 0.02502707578241825, 0.06120489537715912, 0.08780092746019363, 0.10797873884439468, 0.08304417133331299, -0.05591271445155144, 0.03292600065469742, 0.054813630878925323, -0.09412895143032074, -0.0012041524751111865, -0.04528774693608284, -0.07718290388584137, 0.11782833188772202, 0.03747687488794327, 0.1539236158132553, 0.05310264229774475, -0.03539341688156128, -0.196577250957489, 0.04169568791985512, -0.056828856468200684, -0.07326223701238632, 0.026258157566189766, -0.06061306595802307, -0.01673031784594059, 0.16471783816814423, 0.044808875769376755, 0.01959351636469364, -0.02904430404305458, -0.1378023624420166, -0.009497875347733498, -0.07141256332397461, 0.16118299961090088, 0.10086952149868011, 0.011522285640239716, 0.02011892944574356, 0.04062958061695099, -0.18002189695835114, 0.04819204658269882, 0.10310305655002594, -0.28748050332069397, -0.0462631992995739, 0.19382108747959137, 0.07226714491844177, -0.046637438237667084, -0.07945246249437332, 0.06890520453453064, 0.02302144467830658, -0.003320774296298623, 0.004152033012360334, -0.10261821746826172, -0.007797718979418278, 0.05539681017398834, -0.1029180958867073, -0.058745935559272766, 0.1581355482339859, -0.02198491245508194, 0.03380364552140236, -0.11288709193468094, 0.03738255053758621, 0.04676825553178787, -0.050045765936374664, -0.03678259626030922, -0.06034115329384804, 0.05374082550406456, -0.1443352848291397, -0.09980961680412292, -0.06522662192583084, -0.01905168779194355, -0.06435608863830566, 0.15359030663967133, 0.007815022021532059, 0.027392802760004997, -0.1336890608072281, 0.18470941483974457, -0.11109869182109833, -0.03905206918716431, -0.0019372999668121338, -0.0689951702952385, 0.14912989735603333, -0.002078772522509098, -0.04456010088324547, 0.10041851550340652, 0.03385697305202484, 0.27399498224258423, 0.11747097969055176, -0.04486474394798279, 0.07134537398815155, 0.08333341032266617, -0.025584599003195763, 0.12241584807634354, 0.04879968240857124, -0.030606620013713837, 0.04352623224258423, 0.010820848867297173, -0.026124969124794006, -0.02496294677257538, -0.10701342672109604, -0.023959703743457794, -0.009618502110242844, 0.0782112181186676, 0.02707337774336338, 0.06025169789791107, -0.001883107703179121, -0.029149910435080528, 0.11611641943454742, -0.025618789717555046, 0.019463451579213142, -0.061531148850917816, 0.01830904558300972, 0.06496076285839081, 0.04807170480489731, 0.025824911892414093, -0.0047909473069012165, 0.039899569004774094, -0.03711153194308281, -0.0018574054120108485, -0.06700674444437027, 0.030448084697127342, 0.0047103650867938995, -0.01447204314172268, 0.08343305438756943, -0.1748443841934204, -0.2566736042499542, 0.01449381560087204, 0.03282104805111885, 0.05221434310078621, -0.046809665858745575, -0.090688057243824, -0.03236360475420952, -0.009150741621851921, -0.05885666608810425, -0.09210041910409927, -0.03190965577960014, 0.0659649446606636, -0.0314171202480793, -0.029043545946478844, -0.052236199378967285, 0.029422489926218987, -0.07476162910461426, 0.05545990541577339, -0.07285691052675247, 0.023616638034582138, -0.07663532346487045, 0.06738144159317017, -0.022812016308307648, -0.06464717537164688, -0.08963516354560852, 0.06574738025665283, 0.028538290411233902, 0.10717283934354782, -0.13232018053531647, -0.08396705985069275, 0.1634775698184967, -0.07624626904726028, -0.13322250545024872, 0.05093681812286377, -0.0673893541097641, 0.12417858093976974, 0.09464976191520691, 0.13639242947101593, 0.21554559469223022, -0.10242486000061035, 0.028471551835536957, 0.08931425958871841, -0.0349571593105793, -0.10665401816368103, -0.007261189632117748, 0.07664193958044052, -0.16364987194538116, 0.061072126030921936, -0.07324539124965668, 0.11451006680727005, -0.07073807716369629, -0.08236657828092575, -0.016852470114827156, -0.012338966131210327, 0.09528879076242447, 0.005229090806096792, 0.09586986154317856, -0.014147656969726086, -0.06305742263793945, 0.19511860609054565, 0.08483989536762238, -0.018084987998008728, 0.049476269632577896, -0.11263071000576019, 0.12217164039611816, -0.00401642918586731, -0.025420406833291054, -0.09045451879501343, -0.016577893868088722, -0.04681120440363884, 0.02585119940340519, 0.040142059326171875, 0.13496963679790497, 0.035619135946035385, -0.062399204820394516, -0.03239208832383156, 0.004069551359862089, -0.027594534680247307, 0.025125589221715927, -0.058980345726013184, 0.012662210501730442, 0.0032477006316184998, -0.04093563184142113, -0.09159447252750397, -0.12036002427339554, 0.02416589856147766, -0.01672539860010147, 0.0859823077917099, -0.031043702736496925, 0.07531644403934479, -0.016255393624305725, 0.09631454199552536, 0.02035943977534771, 0.0024221318308264017, 0.09869466722011566, 0.022021068260073662, -0.06445349752902985, 0.047617726027965546, -0.06712812185287476, 0.03214035928249359, 0.12017851322889328, -0.10988565534353256, 0.018724475055933, -0.1573268175125122, -0.06534808874130249, 0.023195737972855568, -0.014616517350077629, 0.050369616597890854, 0.19076791405677795, -0.007448960095643997, 0.05729753524065018, -0.004353668540716171, -0.058004651218652725, -0.059419646859169006, -0.046886835247278214, -0.025569111108779907, 0.04358493164181709, 0.056277062743902206, -0.023827850818634033, 0.061431705951690674, 0.20960335433483124, -0.02207428403198719, 0.12715107202529907, -0.0486316904425621, 0.02765440009534359, -0.05696922913193703, -0.01972062513232231, -0.030855443328619003, 0.05341556295752525, -0.0807933658361435, -0.04438677057623863, 0.03609630838036537, -0.039191242307424545, 0.055629581212997437, -0.16952331364154816, -0.08157245069742203, -0.01806342601776123, 0.0029811186250299215, -0.008699268102645874, 0.09927238523960114, -0.03683468699455261, 0.005521702114492655, -0.058283694088459015, -0.10144069045782089, 0.060612116008996964, 0.016789954155683517, 0.02539532072842121, 0.15848281979560852, -0.038910094648599625, -0.1578291356563568, -0.10621856153011322, -0.016317185014486313, 0.01986396498978138, -0.03954822197556496, 0.08635013550519943, 0.01639254204928875, 0.0018864610465243459, -0.004454694222658873, 0.007766993250697851, 0.031132562085986137, -0.05331020429730415, -0.020838603377342224, -0.002586560556665063, -0.11346905678510666, -0.14321669936180115, -0.06322258710861206, -0.02947046607732773, -0.07608641684055328, 0.06547268480062485, -0.10266757011413574, 0.013132299296557903, 0.1289771944284439, 0.03368879854679108, 0.029882511124014854, -0.040634095668792725, 0.1928723305463791, -0.04580603912472725, -0.017808951437473297, 0.14184869825839996, -0.003476324724033475, 0.06662378460168839, 0.04255710169672966, 0.07265418767929077, -0.06933307647705078, 0.02759934589266777, -0.006418514531105757, -0.0978643074631691, -0.10836672782897949, -0.07590828090906143, -0.06754249334335327, 0.05335971713066101, 0.03974049538373947, 0.009400477632880211, 0.11755571514368057, 0.08158104121685028, 0.030925912782549858, 0.0679519772529602, 0.04137689992785454, 0.0430261492729187, 0.21824640035629272, -0.04094505310058594, 0.08489640802145004, -0.03913554549217224, -0.1255822628736496, -0.005848256405442953, 0.04129798710346222, 0.12160032242536545, 0.07103214412927628, -0.03428107127547264, 0.11650151014328003, 0.1271732598543167, 0.1363030970096588, 0.04127473011612892, -0.05192200839519501, -0.033205628395080566, -0.009443776682019234, -0.040546346455812454, -0.049962256103754044, 0.04778115451335907, 0.08385160565376282, -0.08185173571109772, -0.0577072948217392, -0.12269282341003418, 0.062277089804410934, 0.0721474289894104, 0.016132354736328125, -0.11728541553020477, -0.03570009768009186, 0.06853912770748138, -0.013303391635417938, -0.03719132021069527, 0.09761831909418106, -0.029942678287625313, -0.1594199538230896, -0.02480228804051876, -0.031130291521549225, 0.10698994994163513, -0.017423411831259727, 0.004393604584038258, -0.057430464774370193, -0.03738895803689957, -0.0026465768460184336, 0.10016512125730515, -0.22126202285289764, 0.19089534878730774, -0.020517412573099136, 0.06338700652122498, -0.04664983972907066, -0.04189752787351608, 0.07287662476301193, 0.11138012260198593, 0.1133551150560379, 0.04009872302412987, -0.12054900825023651, -0.1057303175330162, -0.08782145380973816, 0.037429943680763245, 0.023308943957090378, -0.10557637363672256, -0.037411291152238846, -0.027987919747829437, 0.02816065400838852, 0.020897988229990005, 0.07264450192451477, -0.029851919040083885, -0.09738422185182571, 0.04342713952064514, 0.019352687522768974, 0.03968115150928497, -0.05831744894385338, -0.07710426300764084, 0.0357472226023674, 0.0858578234910965, -0.014482966624200344, -0.04224090650677681, -0.07177020609378815, -0.0801851898431778, 0.09225866943597794, -0.10763243585824966, 0.023485368117690086, 0.03877633810043335, -0.005745985545217991, -0.0792546272277832, -0.10814763605594635, 0.04410678148269653, -0.056500811129808426, -0.026344727724790573, 0.0004309969372116029, 0.12869304418563843, 0.015048987232148647, 0.027016770094633102, 0.06228942051529884, -0.001305065001361072, -0.005024502985179424, -0.10082755982875824, -0.13840943574905396, 0.11356104165315628, -0.059104349464178085, -0.08473879098892212, -0.0416470430791378, 0.16775034368038177, -0.05033070966601372, 0.025873370468616486, 0.15825851261615753, 0.18003994226455688, -0.04228287562727928, 0.09765942394733429, 0.11153031885623932, -0.06172223389148712, -0.22173920273780823, -0.12425848096609116, -0.10748100280761719, -0.03788554295897484, -0.047288138419389725, -0.09787779301404953, 0.13674584031105042, -0.0027617765590548515, -0.04135924205183983, -0.0010971871670335531, -0.23554658889770508, -0.1507064253091812, 0.22541826963424683, 0.02242998033761978, 0.2698037624359131, -0.054494328796863556, -0.058245476335287094, 0.06851478666067123, -0.12909375131130219, 0.1691950559616089, 0.04621899127960205, 0.0930628776550293, -0.020104561001062393, 0.11952629685401917, 0.034384507685899734, -0.01728944666683674, 0.09782323986291885, 0.05775347352027893, 0.07521401345729828, -0.07699841260910034, -0.13614505529403687, -0.08092859387397766, -0.0715286061167717, 0.03195260092616081, -0.008605193346738815, 0.04909054934978485, -0.23314592242240906, -0.03231808543205261, -0.06537039577960968, 0.11034379154443741, -0.010341402143239975, -0.10499780625104904, -0.029743026942014694, 0.08060197532176971, 0.015058127231895924, 0.03647684305906296, 0.2167506217956543, 0.03734486550092697, 0.07791715115308762, -0.04477424547076225, 0.04382464289665222, -0.04330766201019287, -0.06762698292732239, -0.07043416798114777, -0.04675687476992607, 0.06921686232089996, -0.0785590410232544, -0.03891337290406227, 0.1043052077293396, 0.048804424703121185, 0.08648279309272766, 0.06464105099439621, 0.0052170478738844395, 0.005581263452768326, 0.08585700392723083, -0.12628111243247986, 0.012311995960772038, -0.09523161500692368, 0.09867571294307709, 0.06563610583543777, -0.016114966943860054, 0.13005433976650238, -0.09278015792369843, -0.03542862832546234, -0.014831067062914371, -0.0233783982694149, -0.08861886709928513, -0.015620979480445385, 0.10368756204843521, 0.02582029066979885, -0.02763761766254902, -0.009548363275825977, -0.01848669722676277, -0.06557188928127289, -0.01647219993174076, -0.018472403287887573, -0.035285960882902145, -0.08230473101139069, -0.022111831232905388, 0.09117748588323593, -0.18088841438293457, 0.0004600777174346149, 0.016374090686440468, -0.05318824574351311, 0.02593667060136795, 0.14546090364456177, 0.07431081682443619, 0.046610694378614426, -0.059557389467954636, 0.021484265103936195, -0.012226040475070477, 0.01054964680224657, 0.0228413138538599, 0.009794473648071289, -0.033818237483501434, 0.07580475509166718, 0.007710905279964209, 0.1227140948176384, -0.07073060423135757, -0.08392535150051117, -0.15945716202259064, 0.04112327843904495, -0.042107608169317245, -0.01735660806298256, -0.18669602274894714, 0.019757725298404694, -0.025370152667164803, -0.0750877633690834, -0.03351384401321411, -0.002001433167606592, -0.10490301251411438, 0.06841807067394257, -0.002813971135765314, 0.07370012253522873, -0.06719018518924713, -0.03206956386566162, 0.10936331748962402, -0.028659822419285774, 0.024505170062184334, 0.06020253524184227, 0.005565222352743149, 0.13460011780261993, -0.16790030896663666, 0.01286920253187418, 0.014870046637952328, 0.025864025577902794, 0.007653434760868549, -0.05688177049160004, 0.02464999258518219, 0.01647835783660412, 0.06652120500802994, 0.019956309348344803, -0.07439208775758743, -0.11457348614931107, -0.12062154710292816, 0.050067026168107986, -0.1183585524559021, -0.04194241762161255, -0.020061669871211052, 0.06569042801856995, 0.0333656445145607, 0.11505057662725449, -0.043020445853471756, 0.05489644408226013, -0.06934917718172073, -0.021290956065058708, -0.006350799463689327, -0.11453644186258316, 0.08765724301338196, -0.13653409481048584, -0.03915143013000488, -0.02739967778325081, 0.22491207718849182, 0.05373546481132507, -0.11804214864969254, -0.005879577714949846, -0.05782366544008255, 0.059306550770998, 0.00978961493819952, 0.2701251804828644, 0.0724797248840332, 0.03550267964601517, -0.10330212861299515, 0.047850292176008224, -0.0098353186622262, -0.036222174763679504, 0.06365599483251572, 0.1138514056801796, -0.047834448516368866, 0.07236802577972412, 0.07973886281251907, 0.09808644652366638, -0.0569801926612854, -0.23575367033481598, 0.006546990480273962, 0.04785371944308281, -0.0755678340792656, 0.06115511804819107, 0.07974414527416229, -0.16229069232940674, 0.05350461229681969, 0.033353935927152634, -0.07034551352262497, -0.1445503830909729, -0.27579164505004883, -0.023773083463311195, -0.08212544769048691, 0.0718977153301239, -0.07894691079854965, -0.043502792716026306, 0.08425506949424744, 0.017800047993659973, -0.02742587774991989, 0.0745098888874054, -0.025699356570839882, 0.03984125703573227, 0.11344851553440094, -0.03391146659851074, 0.0071934862062335014, -0.14523085951805115, 0.016526786610484123, -0.07416556775569916, -0.07048291712999344, -0.06795865297317505, -0.01733805052936077, -0.023424699902534485, -0.028587937355041504, -0.030918844044208527, -0.0505463108420372, -0.06124948337674141, -0.007664497010409832, 0.0798741951584816, 0.055112529546022415, 0.04737367853522301, -0.022440245375037193, 0.02531912922859192, 0.21599075198173523, 0.02548590861260891, -0.13510318100452423, -0.054546814411878586, 0.16679126024246216, 0.05510278418660164, 0.019181590527296066, -0.00487203523516655, 0.06968558579683304, 0.04313419759273529, 0.2225733995437622, 0.16770444810390472, -0.008686411194503307, 0.04609310254454613, 0.005804235581308603, 0.033534761518239975, 0.038974858820438385, 0.13769841194152832, 0.03480548784136772, 0.15103240311145782, -0.057193417102098465, -0.09596361219882965, -0.04919116199016571, -0.08269395679235458, -0.0021306253038346767, 0.032473474740982056, 0.03002382069826126, -0.09749735891819, -0.04297342151403427, 0.08311779797077179, -0.2270110696554184, 0.13164770603179932, 0.03157674893736839, -0.12384866923093796, -0.06353858858346939, -0.02737533487379551, 0.10593818128108978, 0.013862881809473038, 0.11413977295160294, -0.059436947107315063, -0.028014427050948143, 0.04675094410777092, 0.0111053716391325, -0.11320582032203674, -0.023994285613298416, 0.0985041931271553, 0.16303235292434692, 0.07630675286054611, 0.001082568895071745, 0.05543286353349686, 0.07191404700279236, 0.04414929449558258, 0.004785195458680391, 0.08924827724695206, 0.07265296578407288, -0.033695247024297714, -0.05442647263407707, 0.0034454267006367445, -0.006321463268250227, 0.011895832605659962, 0.08366872370243073, -0.04417482390999794, 0.11542961001396179, 0.10821032524108887, -0.03643552213907242, -0.10278763622045517, 0.04051237553358078, -0.0619044303894043, 0.1302080899477005, 0.05114399269223213, -0.02806387096643448, -0.04799451306462288, -0.022471586242318153, 0.05936773121356964, 0.009787040762603283, -0.07580135017633438, -0.0868559256196022, -0.0000806058815214783, -0.0785873755812645, 0.01732526905834675, -0.039615098387002945, -0.11856088787317276, -0.09743039309978485, -0.07883477956056595, -0.027808742597699165, -0.06089552119374275, 0.14029334485530853, 0.048525940626859665, -0.0039008879102766514, 0.025007618591189384, -0.09837168455123901, -0.04209461808204651, -0.0054735359735786915, -0.12887467443943024, -0.07077506184577942 ]
null
null
transformers
# Michael Scott dialog model
{"tags": ["conversational"]}
text-generation
bypequeno/DialoGPT-small-michaelscott
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Michael Scott dialog model
[ "# Michael Scott dialog model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Michael Scott dialog model" ]
[ 51, 5 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Michael Scott dialog model" ]
[ -0.04239726439118385, 0.08922180533409119, -0.00540155777707696, 0.021162698045372963, 0.15036582946777344, -0.023930279538035393, 0.1681358367204666, 0.12029276043176651, 0.024768972769379616, -0.05447285249829292, 0.14212875068187714, 0.16902847588062286, -0.0101301409304142, 0.07233086973428726, -0.08661510050296783, -0.2627367377281189, 0.03337203338742256, 0.019686980172991753, -0.004596426151692867, 0.12455262988805771, 0.0981077328324318, -0.0587187223136425, 0.08087555319070816, 0.010743388906121254, -0.1349191516637802, 0.009416037239134312, 0.017103411257267, -0.10004325956106186, 0.12488901615142822, 0.06559201329946518, -0.0013709969352930784, 0.07238416373729706, -0.06595901399850845, -0.13769099116325378, 0.04909045994281769, -0.03124820999801159, -0.030538227409124374, 0.042400624603033066, 0.02392478846013546, -0.09981385618448257, 0.0834939256310463, 0.1492009311914444, 0.02089669369161129, 0.07557889819145203, -0.17989963293075562, 0.03612213581800461, -0.012243451550602913, 0.010888990014791489, 0.1210019513964653, 0.12303368747234344, -0.05130131542682648, 0.10618625581264496, -0.07239997386932373, 0.11515771597623825, 0.04108630493283272, -0.3039136230945587, -0.02297263965010643, 0.1119680106639862, 0.01448304858058691, 0.08997619897127151, -0.038165826350450516, 0.07124459743499756, -0.002245136070996523, 0.005739938002079725, -0.007313490379601717, -0.0801728218793869, -0.10427236557006836, 0.05143211781978607, -0.08092455565929413, -0.009600806050002575, 0.29533663392066956, -0.018971014767885208, 0.07680237293243408, -0.08654310554265976, -0.07757764309644699, -0.011871818453073502, -0.023374084383249283, -0.030454738065600395, -0.0781315490603447, 0.07413305342197418, -0.05632771551609039, -0.10073361545801163, -0.12156446278095245, -0.012448717840015888, -0.1687699854373932, 0.13531190156936646, 0.014288953505456448, 0.0548466220498085, -0.22766302525997162, 0.09087684005498886, 0.023866210132837296, -0.08840982615947723, 0.012454784475266933, -0.09072921425104141, 0.021945519372820854, 0.012872202321887016, -0.047435831278562546, -0.040942080318927765, 0.055945057421922684, 0.1254671961069107, 0.04633263126015663, 0.0032733813859522343, 0.011590231209993362, 0.04100579395890236, 0.0693814605474472, 0.10602819919586182, 0.012640194967389107, -0.08781863749027252, 0.01810254529118538, -0.06916192919015884, -0.008978107012808323, -0.07268036901950836, -0.1982199102640152, 0.009566755034029484, 0.031135879456996918, 0.0561506412923336, 0.04850808158516884, 0.13302651047706604, -0.025607047602534294, -0.036914706230163574, 0.019459111616015434, 0.004776811692863703, -0.037982430309057236, 0.024097224697470665, -0.02379504032433033, 0.1265098750591278, 0.025049084797501564, 0.04234839603304863, -0.09867118299007416, 0.04173721373081207, -0.04506460949778557, -0.019523704424500465, -0.020785009488463402, -0.03281891718506813, -0.0028490321710705757, 0.02459622174501419, 0.014267227612435818, -0.13825812935829163, -0.1269388198852539, -0.013902220875024796, -0.03154421225190163, -0.03085414506494999, -0.11360688507556915, -0.11096550524234772, -0.009152363985776901, 0.008840261958539486, -0.06403844058513641, -0.01963265798985958, -0.06612447649240494, 0.08901573717594147, -0.01655065082013607, 0.08978169411420822, -0.10656501352787018, 0.10067722946405411, -0.08051488548517227, -0.03865295648574829, -0.059441275894641876, 0.11830602586269379, 0.0181268397718668, 0.08645226806402206, 0.01625349000096321, -0.00454444857314229, -0.09522232413291931, 0.05486631020903587, -0.05187983810901642, 0.2966402769088745, -0.0350615531206131, -0.11136098206043243, 0.2251475304365158, -0.014864847995340824, -0.16212400794029236, 0.12680818140506744, -0.0212989691644907, 0.10443902015686035, 0.156049907207489, 0.198643296957016, -0.03272520750761032, -0.020136913284659386, 0.09809160977602005, 0.13970355689525604, -0.08412633836269379, 0.0027769645676016808, 0.03608393296599388, -0.020412364974617958, -0.08479601889848709, 0.04621194675564766, 0.08814919739961624, 0.05113988369703293, -0.06025952845811844, -0.0212958175688982, 0.0174845103174448, -0.01993747614324093, 0.09593652188777924, -0.03669268265366554, 0.09666837006807327, -0.03667152300477028, -0.039337076246738434, 0.0015186757082119584, -0.006413766648620367, -0.018146971240639687, 0.010563957504928112, -0.08298041671514511, 0.07293405383825302, -0.031670961529016495, 0.05162108689546585, -0.15530110895633698, -0.0865313857793808, -0.06811987608671188, 0.20042665302753448, 0.07260705530643463, 0.17251770198345184, 0.041914504021406174, -0.057837486267089844, -0.011480351909995079, 0.028369983658194542, 0.15967515110969543, -0.007951880805194378, -0.09105893969535828, -0.09244250506162643, 0.09025712311267853, -0.055199384689331055, 0.15741556882858276, -0.023954741656780243, 0.02785571664571762, 0.042876578867435455, 0.07531193643808365, -0.0012457291595637798, 0.03213119879364967, 0.032901983708143234, -0.030099529772996902, -0.020782312378287315, 0.001300131087191403, 0.09953882545232773, 0.0209012720733881, -0.10968824476003647, 0.20394986867904663, -0.19991938769817352, 0.17349053919315338, 0.19492632150650024, -0.25903934240341187, 0.0015536003047600389, -0.09682679176330566, -0.04552483558654785, 0.012198412790894508, 0.0534181110560894, -0.041668131947517395, 0.21299037337303162, -0.009437289088964462, 0.17681850492954254, -0.02694556675851345, -0.059501755982637405, -0.05934268236160278, -0.02488759160041809, 0.009272301569581032, 0.10768164694309235, 0.12186083942651749, -0.13392217457294464, 0.17428813874721527, 0.13568086922168732, 0.10406093299388885, 0.16948585212230682, 0.05633724853396416, 0.006938639096915722, 0.050803158432245255, -0.019044093787670135, -0.08027084171772003, -0.04045072942972183, -0.28200051188468933, -0.014763928018510342, 0.05662994831800461, 0.023535359650850296, 0.11439334601163864, -0.1183595135807991, -0.035672057420015335, 0.015239914879202843, -0.00897181499749422, -0.03156019002199173, 0.11266695708036423, 0.03356799855828285, 0.11923586577177048, 0.003734252881258726, -0.015712633728981018, 0.08408786356449127, 0.008964012376964092, -0.10079913586378098, 0.16152998805046082, -0.13493897020816803, -0.3285195529460907, -0.11785990744829178, -0.16860052943229675, -0.07483571022748947, 0.043668232858181, 0.10920066386461258, -0.0931529849767685, -0.01140014547854662, -0.0023047507274895906, 0.12725462019443512, -0.12642934918403625, -0.022421622648835182, -0.019798312336206436, -0.0014694035053253174, -0.1332460641860962, -0.10742640495300293, -0.0554201640188694, -0.0276488084346056, -0.057252731174230576, 0.10240615159273148, -0.14191342890262604, 0.03300036862492561, 0.202077254652977, 0.07583127915859222, 0.05822204798460007, -0.04850681126117706, 0.31326520442962646, -0.10934709012508392, 0.012265006080269814, 0.18742607533931732, -0.07780104130506516, 0.061134692281484604, 0.13962297141551971, -0.01567261666059494, -0.06124716252088547, 0.030435509979724884, -0.025085680186748505, -0.06445520371198654, -0.21750405430793762, -0.10564334690570831, -0.1076129823923111, 0.12833599746227264, -0.025422608479857445, 0.03526219353079796, 0.14487740397453308, 0.05975055694580078, -0.04721389710903168, -0.06344690918922424, 0.06868370622396469, 0.09048037230968475, 0.3140912652015686, -0.10802240669727325, 0.1437380611896515, -0.01921960525214672, -0.1425151526927948, 0.07967875152826309, 0.05038376525044441, 0.029144583269953728, 0.09025527536869049, 0.07573104649782181, 0.004789440426975489, 0.0640580877661705, 0.10926858335733414, 0.05434441193938255, 0.03850434347987175, -0.04030459746718407, -0.04589463025331497, -0.04126627370715141, -0.026680059731006622, 0.05232695862650871, 0.07895580679178238, -0.13910804688930511, -0.031247766688466072, -0.03662789240479469, 0.07185482978820801, 0.06522909551858902, 0.08467867225408554, -0.15907375514507294, -0.06832624226808548, 0.0681709572672844, -0.042262814939022064, -0.10432479530572891, 0.09053576737642288, 0.034947436302900314, -0.1487424373626709, 0.026355786249041557, -0.015451737679541111, 0.13721325993537903, -0.060127999633550644, 0.09541185945272446, -0.12742970883846283, -0.10975170880556107, -0.002153232228010893, 0.09300477057695389, -0.2716018557548523, 0.19374790787696838, 0.0046590352430939674, -0.08593519032001495, -0.11904163658618927, -0.02701854333281517, 0.023520570248365402, 0.14122562110424042, 0.09514198452234268, -0.019724862650036812, -0.0038526167627424, -0.01980077102780342, -0.044209953397512436, 0.0358731672167778, 0.10763893276453018, -0.0665924921631813, -0.009177980944514275, -0.045383863151073456, 0.0009327667648904026, -0.022350702434778214, -0.04467392712831497, 0.03930586203932762, -0.2077936828136444, 0.10064096003770828, 0.05206071212887764, 0.1174328401684761, 0.055632349103689194, -0.007808123715221882, -0.1037747859954834, 0.1958407759666443, -0.05053246393799782, -0.09999130666255951, -0.09851820021867752, -0.017012322321534157, 0.0120661910623312, -0.05243440717458725, -0.011198068037629128, -0.05623345077037811, 0.03962067514657974, -0.06532619148492813, -0.18305346369743347, 0.11135058104991913, -0.09855024516582489, -0.03885294869542122, -0.013564467430114746, 0.23788128793239594, -0.034322306513786316, 0.024793272837996483, 0.03291819244623184, -0.005140771623700857, -0.1469920575618744, -0.08563249558210373, 0.021265558898448944, -0.028295371681451797, 0.002419636119157076, 0.02240140363574028, 0.00608867360278964, -0.036680106073617935, -0.07214709371328354, -0.005560082383453846, 0.3035276532173157, 0.14007121324539185, -0.048283353447914124, 0.17704597115516663, 0.11215319484472275, -0.039112307131290436, -0.26021242141723633, -0.04330890253186226, -0.1253986954689026, -0.04883672669529915, 0.02360699139535427, -0.15449848771095276, 0.07607380300760269, -0.054467059671878815, -0.008684668689966202, 0.12198178470134735, -0.2628866136074066, -0.09303629398345947, 0.13759057223796844, -0.02095615677535534, 0.462520956993103, -0.09785106033086777, -0.06735576689243317, -0.029066257178783417, -0.2312222272157669, 0.11503089219331741, 0.014658594503998756, 0.10179944336414337, 0.012097418308258057, 0.23279878497123718, 0.05012954771518707, 0.007413302082568407, 0.09291162341833115, -0.011049026623368263, -0.05571858957409859, -0.10155334323644638, -0.13406826555728912, -0.0005278507596813142, 0.018421292304992676, -0.0026789784897118807, -0.09564953297376633, 0.03639210760593414, -0.11920802295207977, -0.0700874775648117, -0.08933696150779724, 0.003889359999448061, -0.002232516650110483, -0.06571093201637268, 0.012064153328537941, -0.055476609617471695, -0.012780320830643177, -0.0025005191564559937, 0.10358647257089615, -0.14272671937942505, 0.17173561453819275, 0.07019924372434616, 0.1484043449163437, -0.14837121963500977, -0.04711766168475151, -0.04843466356396675, -0.07405495643615723, 0.06852991878986359, -0.10302691906690598, 0.03231499344110489, 0.10915158689022064, -0.02763434313237667, 0.10568805038928986, 0.10288997739553452, 0.011134868487715721, 0.009925799444317818, 0.0718458816409111, -0.26452767848968506, -0.1496739387512207, -0.08573882281780243, 0.023689936846494675, 0.07334358245134354, 0.08949191868305206, 0.2205560952425003, -0.002385087078437209, -0.03784722462296486, 0.018369873985648155, 0.026064639911055565, -0.01356204692274332, 0.0036550958175212145, -0.010480443015694618, 0.02430715598165989, -0.1437361240386963, 0.04049338400363922, -0.01794609986245632, -0.1553172767162323, -0.011439142748713493, 0.1292978972196579, -0.10197430104017258, -0.12329523265361786, -0.10970588773488998, 0.12814465165138245, -0.082709401845932, 0.0176148172467947, -0.050262585282325745, -0.1454392373561859, 0.06375321745872498, 0.142156183719635, 0.049120981246232986, 0.06098177284002304, -0.09158910810947418, -0.014269417151808739, 0.006793223321437836, 0.02249407395720482, 0.009301233105361462, -0.061052702367305756, -0.021586565300822258, 0.08490923047065735, -0.042674534022808075, 0.12613779306411743, -0.07863584905862808, -0.12439315766096115, -0.1425076425075531, 0.034800805151462555, -0.0934804156422615, -0.11853692680597305, -0.10368483513593674, -0.037720195949077606, -0.010997924953699112, -0.03663621097803116, -0.05370131507515907, -0.05047759786248207, -0.12561465799808502, 0.051514673978090286, -0.031524840742349625, 0.007750025484710932, -0.06914232671260834, 0.0455806665122509, 0.0768527165055275, -0.03365416079759598, 0.1758718192577362, 0.15310035645961761, -0.15170307457447052, 0.06767725944519043, -0.1129298061132431, -0.09148509055376053, 0.06979300081729889, 0.016856778413057327, 0.052139028906822205, 0.06985554099082947, -0.01947789266705513, 0.045236531645059586, 0.07228324562311172, 0.058051805943250656, 0.04280814900994301, -0.08763492107391357, 0.05445677787065506, 0.0010898093460127711, -0.1127132922410965, -0.05231296643614769, -0.06060559302568436, 0.01836412400007248, 0.031945716589689255, 0.12209244072437286, -0.03833671659231186, 0.10601165890693665, -0.06341531872749329, 0.04905026778578758, 0.041106708347797394, -0.17362810671329498, -0.0687166079878807, -0.11935067176818848, 0.06770411878824234, 0.004008041694760323, 0.21703015267848969, -0.003294346621260047, 0.01193047221750021, 0.06607162207365036, 0.1023496463894844, 0.03529824689030647, -0.012289444915950298, 0.13452884554862976, 0.09794145077466965, -0.05931622162461281, -0.08037932217121124, 0.08029840886592865, 0.005608411971479654, 0.030561331659555435, 0.18569518625736237, 0.014193808659911156, 0.006660270970314741, 0.08044790476560593, -0.00669433455914259, 0.06978348642587662, -0.09286300092935562, -0.1994098275899887, -0.021345846354961395, 0.06232704967260361, -0.08197785168886185, 0.1258682906627655, 0.1269153356552124, -0.026838047429919243, 0.03385002911090851, -0.03899401053786278, -0.04898549243807793, -0.1911688596010208, -0.14566774666309357, -0.06932671368122101, -0.13560213148593903, 0.0032192477956414223, -0.12348499894142151, 0.047072213143110275, 0.05648452043533325, 0.08730252832174301, -0.0890052542090416, 0.08607066422700882, 0.005631221458315849, -0.11230776458978653, 0.07259514182806015, -0.04185174033045769, 0.09324678033590317, -0.08181476593017578, 0.006812557112425566, -0.07889380306005478, 0.04570430517196655, 0.011251447722315788, 0.0434163473546505, -0.07484371960163116, -0.027223525568842888, -0.14896135032176971, -0.08824212104082108, -0.07382973283529282, 0.0867464542388916, -0.016009315848350525, 0.17737048864364624, -0.013948943465948105, -0.0018937011482194066, 0.03152501583099365, 0.2850232720375061, -0.09060689806938171, -0.09391352534294128, -0.09127828478813171, 0.11343029141426086, -0.03157932311296463, 0.08494219183921814, -0.01961609721183777, 0.0016213249182328582, -0.08266790956258774, 0.3588183522224426, 0.3107050359249115, -0.13484309613704681, 0.007016426417976618, -0.015020002610981464, 0.05417235568165779, 0.13165293633937836, 0.05924505740404129, 0.08591786026954651, 0.26807498931884766, -0.06968056410551071, -0.018104225397109985, -0.003114688443019986, -0.025400789454579353, -0.01214519515633583, 0.0586121566593647, 0.052632905542850494, -0.0743437260389328, -0.03701300546526909, 0.12212025374174118, -0.24845361709594727, 0.056959088891744614, -0.1721510887145996, -0.20999611914157867, -0.0819476842880249, -0.006798786111176014, 0.12328001856803894, 0.016722172498703003, 0.09231414645910263, 0.0006732185720466077, -0.06783442199230194, 0.08024588972330093, 0.01922195591032505, -0.19014333188533783, -0.030193468555808067, 0.12004204839468002, -0.05669047310948372, -0.08768445998430252, -0.013526258990168571, 0.07022086530923843, 0.07204507291316986, 0.05698956549167633, -0.023236583918333054, 0.049287065863609314, 0.027381300926208496, -0.0983409732580185, -0.01712668687105179, 0.039523642510175705, 0.02135387435555458, -0.031541042029857635, 0.06850672513246536, -0.1821851134300232, 0.06085463985800743, -0.008923693560063839, -0.06669951975345612, -0.01732521504163742, 0.03527149185538292, -0.05341161787509918, 0.07166066020727158, 0.11278960108757019, -0.02716813050210476, -0.02453145757317543, 0.010004103183746338, -0.044346507638692856, -0.032183725386857986, -0.08833232522010803, -0.11601037532091141, -0.14882151782512665, -0.10344362258911133, 0.029489697888493538, -0.011418533511459827, -0.23467634618282318, -0.006666863802820444, -0.11286703497171402, 0.06462517380714417, -0.10433898866176605, 0.11596918106079102, 0.09221535176038742, 0.0071930368430912495, 0.012110731564462185, 0.016367893666028976, 0.04656404256820679, 0.1058378517627716, -0.11801517009735107, -0.06704048812389374 ]
null
null
transformers
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from [Urban Dictionary Words And Definitions on Kaggle](https://www.kaggle.com/therohk/urban-dictionary-words-dataset). Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
{}
text-generation
cactode/gpt2_urbandict_textgen
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
[ "# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.", "## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".", "## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.", "## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ "TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.", "## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".", "## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.", "## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ 50, 25, 42, 37, 65 ]
[ "passage: TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ -0.011996841989457607, 0.03745445981621742, -0.005692310631275177, 0.0635078102350235, 0.10205452889204025, 0.01357785239815712, 0.120745450258255, 0.0694032534956932, -0.008168029598891735, -0.07914620637893677, 0.07803639024496078, 0.10419521480798721, -0.0268936175853014, 0.20919708907604218, -0.08712861686944962, -0.1589728146791458, 0.04324788972735405, 0.071248359978199, 0.008423012681305408, 0.11181901395320892, 0.16154102981090546, -0.026969406753778458, 0.03472524508833885, 0.06197779253125191, -0.11412933468818665, -0.04095678776502609, 0.07430490851402283, -0.09519344568252563, 0.07455596327781677, 0.10341828316450119, 0.12803280353546143, 0.05353200435638428, -0.09695929288864136, -0.1306532919406891, 0.04294867068529129, 0.0354381799697876, -0.06327880918979645, -0.017360927537083626, 0.014147104695439339, -0.06808997690677643, 0.12040749937295914, -0.006923762150108814, 0.020305102691054344, 0.018300743773579597, -0.10565882921218872, -0.16118906438350677, 0.015171673148870468, -0.014760955236852169, 0.03774573653936386, 0.05748544633388519, -0.04946870729327202, 0.1234184056520462, -0.14094178378582, 0.10887113958597183, 0.08960704505443573, -0.08435097336769104, -0.00892261415719986, -0.006667889188975096, -0.059701625257730484, 0.0636138767004013, -0.10087037086486816, 0.0239237193018198, 0.05059880018234253, 0.04393567144870758, 0.07759135961532593, -0.04423043876886368, -0.07408414036035538, -0.029469603672623634, -0.09294293075799942, -0.036063164472579956, 0.15737949311733246, -0.01791669800877571, -0.0318571999669075, -0.1301070898771286, -0.08287244290113449, 0.058273233473300934, 0.03889293596148491, -0.09894566982984543, -0.04505935683846474, 0.008765831589698792, -0.04880310595035553, -0.12264351546764374, -0.08996424823999405, 0.003511779010295868, -0.1745908260345459, 0.3071017563343048, 0.0802687332034111, 0.011121115647256374, -0.12399700284004211, 0.022270502522587776, -0.046541132032871246, -0.09060412645339966, -0.027565522119402885, -0.07814447581768036, 0.02810630202293396, 0.045433178544044495, -0.061677128076553345, -0.05532488599419594, 0.0894351601600647, 0.07885856926441193, 0.0031321225687861443, 0.009861839935183525, -0.029551129788160324, 0.05514209717512131, 0.11713780462741852, 0.03994815796613693, 0.014396055601537228, 0.05050276592373848, 0.1042124330997467, -0.09407802671194077, 0.04804244637489319, -0.07209078967571259, -0.025903211906552315, -0.05042916536331177, 0.06453844904899597, 0.0689585953950882, 0.03800410404801369, 0.13768021762371063, -0.1156211718916893, -0.03318154066801071, -0.07718905061483383, -0.048431359231472015, -0.02970772050321102, -0.04005943611264229, 0.029350951313972473, 0.05463171750307083, 0.02364705689251423, 0.03278038278222084, -0.07606582343578339, -0.011449220590293407, -0.06087838485836983, -0.01301511749625206, -0.006562904454767704, -0.10810410976409912, -0.007155450526624918, -0.12096904963254929, 0.010386835783720016, -0.22396016120910645, -0.19261346757411957, -0.0008807769627310336, -0.047000255435705185, 0.0625818520784378, 0.0038873315788805485, -0.10547633469104767, -0.014285378158092499, -0.04317484050989151, -0.06364044547080994, -0.11064191162586212, -0.059591569006443024, 0.10338277369737625, -0.06093085929751396, 0.04628633335232735, -0.10314993560314178, 0.04124559834599495, -0.12275604158639908, -0.02421829290688038, -0.07037243247032166, 0.13445322215557098, -0.028277438133955002, -0.0655846819281578, 0.022943224757909775, -0.035541098564863205, -0.0741790160536766, 0.08642521500587463, 0.01673142798244953, 0.15988944470882416, -0.15262043476104736, -0.04578670114278793, 0.15748515725135803, -0.1736532747745514, -0.01223628968000412, 0.21706891059875488, -0.07964634150266647, 0.12942194938659668, 0.13561685383319855, 0.22876906394958496, -0.05260781943798065, -0.039379578083753586, 0.04419561102986336, 0.0119358254596591, -0.11252283304929733, 0.1136540099978447, -0.03653748333454132, -0.04241010919213295, -0.10073190927505493, 0.02845446951687336, -0.030385255813598633, 0.07944048941135406, -0.08287469297647476, -0.02931745909154415, -0.012892122380435467, -0.03230046108365059, 0.26477348804473877, -0.03657080605626106, 0.02996009588241577, -0.030559321865439415, -0.1100197359919548, -0.05956801772117615, 0.055536627769470215, -0.0717681497335434, 0.05737747624516487, -0.17957785725593567, 0.13728947937488556, 0.006173749454319477, 0.011357901617884636, -0.14452369511127472, -0.1487462818622589, -0.03841841593384743, 0.07523529976606369, 0.03696731477975845, 0.08559563010931015, -0.03311018645763397, -0.04651873931288719, -0.0851898342370987, 0.017117232084274292, 0.05229514092206955, -0.006630015559494495, -0.08782614022493362, -0.0033714319579303265, 0.0901409387588501, 0.006821935996413231, 0.016961488872766495, -0.14550897479057312, 0.0449528731405735, 0.10007727146148682, 0.08877033740282059, 0.007220609113574028, 0.03605172038078308, 0.0016746869077906013, 0.04601984843611717, -0.07391022145748138, -0.03991448134183884, 0.025760555639863014, -0.0068616135977208614, -0.13372007012367249, 0.10482306778430939, -0.04078686609864235, 0.10649222880601883, 0.12376482039690018, -0.08202754706144333, -0.03395988047122955, 0.05022410303354263, -0.0013310762587934732, 0.02084602788090706, -0.04018675908446312, -0.02079431153833866, 0.19571541249752045, -0.056881487369537354, 0.04495972394943237, -0.08942843228578568, -0.01180957444012165, 0.017196612432599068, -0.09659208357334137, -0.03737598657608032, 0.029302332550287247, -0.042284369468688965, -0.12686613202095032, 0.10913891345262527, 0.05579138547182083, -0.06982958316802979, 0.21181638538837433, 0.04696131497621536, 0.021801305934786797, -0.01585092395544052, -0.004897316452115774, -0.03657029569149017, 0.012433753348886967, -0.08767412602901459, -0.015853026881814003, 0.05271828547120094, 0.03506234288215637, 0.08907110244035721, -0.09749449789524078, -0.04220621660351753, -0.0350528359413147, -0.03733133152127266, -0.0593348890542984, 0.10967446863651276, 0.01424435619264841, 0.11905540525913239, -0.10278375446796417, 0.026161639019846916, 0.139031320810318, 0.005154083948582411, -0.09451185911893845, 0.1679258942604065, -0.10983267426490784, -0.2686392366886139, -0.0023003388196229935, -0.0760471299290657, -0.10627856850624084, 0.045497044920921326, 0.09607177972793579, -0.06275727599859238, -0.025090083479881287, -0.014787347055971622, 0.12167663872241974, -0.026161620393395424, 0.01817517913877964, -0.0525541715323925, -0.05183233693242073, -0.029218360781669617, -0.08879883587360382, -0.026956919580698013, -0.04538217559456825, -0.09553710371255875, 0.19406895339488983, -0.14432507753372192, 0.10269693285226822, 0.09566354006528854, -0.049905240535736084, -0.04151405021548271, -0.1090993732213974, 0.16995887458324432, -0.08008342981338501, -0.05409513786435127, 0.11032991856336594, -0.08238109946250916, 0.05625224485993385, 0.027216600254178047, -0.08860393613576889, -0.08598949760198593, 0.045466531068086624, 0.05950477346777916, -0.07371500879526138, -0.18723733723163605, -0.07359562069177628, -0.02601739764213562, -0.06652912497520447, -0.04160777106881142, 0.06516413390636444, 0.09517578035593033, 0.12197431921958923, -0.022395338863134384, 0.051180627197027206, 0.05087693780660629, 0.017051590606570244, 0.30210867524147034, 0.004717027302831411, 0.09088458120822906, 0.0038027267437428236, -0.07401403039693832, 0.10702655464410782, -0.05292651429772377, 0.24481303989887238, -0.07498545199632645, 0.012197001837193966, 0.14532524347305298, 0.13694214820861816, 0.09116601198911667, -0.01106515247374773, 0.05315646901726723, 0.020145656540989876, -0.054751861840486526, 0.011577896773815155, -0.09334494173526764, 0.04960266873240471, 0.11412069201469421, -0.13284845650196075, 0.00774834118783474, -0.03676607832312584, 0.1705539971590042, 0.0586463026702404, -0.07949648797512054, -0.17126739025115967, -0.03837094083428383, 0.05370946228504181, -0.03522774204611778, -0.06964299827814102, 0.08440405130386353, 0.11627738922834396, -0.13709454238414764, 0.11480259895324707, 0.009846816770732403, 0.046174198389053345, -0.05408698320388794, 0.050869494676589966, -0.10674427449703217, -0.02409336157143116, -0.020168263465166092, 0.09055431932210922, -0.41436901688575745, 0.1309652179479599, -0.005656859837472439, 0.07998602092266083, -0.1563878059387207, -0.09486978501081467, 0.0654328465461731, -0.0019832400139421225, 0.15204770863056183, 0.016939768567681313, 0.04627291485667229, -0.11855936795473099, -0.07875851541757584, 0.09607280790805817, 0.07986178249120712, -0.03389650210738182, 0.024641310796141624, 0.040741752833127975, 0.07699853926897049, 0.012245828285813332, -0.019152160733938217, -0.13604915142059326, -0.10261186957359314, 0.03063085488975048, 0.1062392145395279, -0.02953801304101944, -0.04827876761555672, -0.09652577340602875, -0.011416151188313961, 0.18216291069984436, -0.04202772676944733, -0.17807637155056, -0.1447208821773529, -0.007859858684241772, 0.0006417190306819975, -0.07706063985824585, 0.047624386847019196, 0.04195377975702286, 0.12450199574232101, -0.07791551202535629, -0.07533278316259384, 0.08854129165410995, -0.02294994331896305, -0.15722085535526276, -0.0513124093413353, 0.0198449045419693, 0.17429153621196747, 0.023028017953038216, 0.05738413706421852, -0.026258407160639763, 0.01649758405983448, -0.13273833692073822, -0.05054472014307976, 0.16461876034736633, -0.03461989760398865, 0.08373408764600754, -0.013454538770020008, -0.12293117493391037, -0.11039047688245773, -0.1092769056558609, 0.17543275654315948, 0.2715015709400177, -0.025279521942138672, 0.08438858389854431, 0.15315662324428558, -0.11724817007780075, -0.27274468541145325, -0.053618401288986206, -0.0011309972032904625, 0.05137765407562256, 0.11426268517971039, -0.1234915629029274, -0.061476193368434906, 0.06503339111804962, 0.006497519090771675, 0.0716310441493988, -0.08282307535409927, -0.13826049864292145, 0.19656331837177277, 0.09272617846727371, 0.3006065785884857, -0.06306152790784836, -0.02404017560184002, -0.03214334324002266, -0.027990447357296944, 0.1874055415391922, -0.03671526536345482, 0.08536966145038605, 0.01897326484322548, 0.17348217964172363, 0.03458563983440399, 0.018969690427184105, 0.09703273326158524, 0.07926404476165771, 0.11417831480503082, -0.08420751243829727, -0.11315815895795822, 0.1309555172920227, 0.007544397842139006, 0.027190780267119408, 0.08000970631837845, 0.01407470740377903, -0.010510588064789772, -0.10813248157501221, -0.12711401283740997, 0.05918096750974655, 0.0022800599690526724, -0.0940689668059349, -0.11004286259412766, 0.030444974079728127, 0.08241960406303406, -0.04373842105269432, 0.10706689208745956, -0.07731735706329346, 0.0742640420794487, -0.06698961555957794, 0.1357690989971161, 0.014378858730196953, -0.00798424705862999, -0.07105731219053268, -0.0858149603009224, 0.07974124699831009, -0.0761524960398674, 0.051252298057079315, 0.06362299621105194, -0.01076087448745966, 0.10606596618890762, 0.06578154116868973, -0.016265181824564934, 0.09869612753391266, 0.05014006420969963, -0.11190702021121979, -0.030008267611265182, -0.025306250900030136, -0.07225686311721802, 0.000795279978774488, 0.007345303427428007, 0.17125579714775085, -0.01159773487597704, -0.03959549590945244, -0.06469009816646576, 0.04493974521756172, 0.023099392652511597, 0.04398788511753082, 0.06401985883712769, -0.006711955647915602, -0.052949998527765274, 0.0779779851436615, 0.0072436523623764515, -0.04601471871137619, 0.0985490158200264, -0.13321907818317413, -0.11697565764188766, -0.0668690875172615, -0.10661102086305618, 0.061307862401008606, -0.006034268531948328, -0.07857750356197357, -0.011446110904216766, -0.08845454454421997, -0.02194049581885338, 0.14296655356884003, 0.05956348776817322, 0.14270174503326416, -0.06967149674892426, -0.010882488451898098, -0.03890788182616234, 0.01005287654697895, 0.07470754534006119, -0.04496271163225174, -0.05813954398036003, 0.1324523240327835, 0.03639440983533859, 0.08082853257656097, -0.0907745435833931, -0.036620788276195526, -0.09398546814918518, 0.00016407355724368244, -0.1031416654586792, 0.05243803560733795, -0.054346565157175064, 0.008060410618782043, -0.0030570614617317915, -0.09037628024816513, -0.07813508808612823, 0.06366650015115738, -0.07806724309921265, 0.05753061920404434, 0.05323132500052452, 0.006379345897585154, -0.025355782359838486, -0.07129107415676117, 0.038687240332365036, -0.038879748433828354, 0.14385147392749786, 0.04894111305475235, -0.12981460988521576, 0.0790976881980896, -0.23717500269412994, 0.012247142381966114, 0.07013631612062454, 0.003261107485741377, -0.028835533186793327, -0.03894053399562836, 0.02224038355052471, 0.07073096930980682, 0.05440857633948326, 0.085164375603199, 0.10032366961240768, -0.06427133083343506, 0.051362164318561554, 0.014586751349270344, -0.05385064333677292, -0.052577532827854156, -0.03045744262635708, 0.05983751267194748, 0.04881121963262558, 0.1628832370042801, -0.026743900030851364, -0.00861609261482954, -0.04801110923290253, 0.03160649538040161, -0.00020130947814323008, -0.04864862561225891, 0.0023100662510842085, -0.06842999905347824, 0.022080732509493828, -0.021530335769057274, 0.28787583112716675, -0.022774256765842438, -0.08698400855064392, 0.02055312693119049, 0.051207251846790314, -0.056416917592287064, -0.043533600866794586, 0.07719972729682922, -0.06054204702377319, -0.0012723522959277034, 0.0026501643005758524, 0.003834508592262864, -0.00046079850289970636, 0.031140252947807312, 0.13244855403900146, -0.03809841722249985, 0.018898583948612213, 0.09865259379148483, -0.1322167068719864, 0.0015202609356492758, -0.026854410767555237, -0.024839989840984344, -0.0547102726995945, 0.010933821089565754, -0.04129689931869507, -0.023586327210068703, 0.12052127718925476, -0.07379502803087234, 0.010908962227404118, 0.010230611078441143, -0.09271538257598877, -0.14326581358909607, -0.299357146024704, -0.06195951625704765, -0.004823755472898483, 0.0542951263487339, -0.11020529270172119, -0.006580913905054331, 0.16914010047912598, 0.03610088676214218, -0.08082898706197739, 0.08913843333721161, -0.08984271436929703, -0.16458643972873688, 0.10551498085260391, -0.07784222066402435, 0.003944351803511381, -0.06410679221153259, -0.08635684847831726, 0.013447962701320648, 0.0688331127166748, 0.034840598702430725, 0.037855930626392365, -0.0005388148711062968, 0.03878997266292572, -0.15103794634342194, -0.0203521940857172, -0.029288053512573242, 0.07831064611673355, 0.052272383123636246, 0.10382524877786636, 0.10283944755792618, -0.054127875715494156, 0.07116145640611649, 0.12346698343753815, 0.07932601869106293, -0.0931013748049736, -0.09191552549600601, 0.11026772111654282, 0.03821980953216553, -0.003999693784862757, 0.01811126060783863, -0.06764715909957886, 0.06506742537021637, 0.18942713737487793, 0.13804662227630615, -0.06324309855699539, 0.0051226685754954815, -0.08666388690471649, 0.02546999603509903, 0.05512550473213196, 0.07607779651880264, 0.00351666659116745, 0.2665245532989502, -0.06807146221399307, -0.04196298494935036, -0.011320242658257484, 0.05925654247403145, -0.0063559021800756454, 0.0863899439573288, -0.03337710350751877, -0.005903842393308878, -0.11548613756895065, 0.06269247829914093, -0.1569158136844635, -0.0039028096944093704, -0.041046399623155594, -0.032052040100097656, -0.0926222950220108, 0.07181830704212189, -0.05944987013936043, -0.012948567047715187, 0.07251778244972229, -0.016392474994063377, -0.02435876987874508, 0.09818314760923386, 0.014561329036951065, -0.09118983894586563, 0.11149902641773224, 0.1173437163233757, 0.13129104673862457, 0.0892719179391861, 0.01288299635052681, 0.2041967511177063, 0.05894308537244797, 0.02606753632426262, 0.018949972465634346, 0.19766265153884888, -0.03570328652858734, 0.06830449402332306, 0.01424920279532671, 0.008914738893508911, -0.010702354833483696, -0.02612902782857418, 0.1319766342639923, 0.03190477937459946, 0.11514817923307419, 0.02611437253654003, -0.11085594445466995, -0.03598855808377266, 0.03167960047721863, -0.1437809318304062, 0.04227941483259201, 0.024332262575626373, -0.027632420882582664, -0.027654318138957024, -0.03956439718604088, 0.032353051006793976, -0.056932736188173294, 0.00489151431247592, 0.0031212116591632366, -0.17974404990673065, -0.006012651603668928, 0.09834993630647659, 0.011749060824513435, -0.12319227308034897, 0.030728576704859734, -0.07526809722185135, -0.01606811210513115, -0.0554632805287838, 0.08296043425798416, -0.05042079836130142, -0.006172908004373312, -0.04381934180855751, -0.07758919894695282, -0.010454471223056316, 0.06580229103565216, -0.06744173169136047, -0.075436070561409 ]
null
null
transformers
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from [Urban Dictionary Words And Definitions on Kaggle](https://www.kaggle.com/therohk/urban-dictionary-words-dataset). Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
{}
text-generation
cactode/gpt2_urbandict_textgen_torch
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
[ "# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.", "## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".", "## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.", "## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.", "## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".", "## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.", "## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ 47, 25, 42, 37, 65 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 Fine Tuned on UrbanDictionary\nHonestly a little horrifying, but still funny.## Usage\nUse with GPT2Tokenizer. Pad token should be set to the EOS token.\nInputs should be of the form \"define <your word>: \".## Training Data\nAll training data was obtained from Urban Dictionary Words And Definitions on Kaggle. Data was additionally filtered, normalized, and spell-checked.## Bias\nThis model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions." ]
[ -0.018847186118364334, 0.03771518915891647, -0.005630244966596365, 0.059390559792518616, 0.09352021664381027, 0.020780649036169052, 0.10924305766820908, 0.06976229697465897, -0.008035886101424694, -0.07506466656923294, 0.08634292334318161, 0.08418098837137222, -0.03082704357802868, 0.17656509578227997, -0.08427758514881134, -0.17932511866092682, 0.04984338581562042, 0.0784132331609726, 0.0037071534898132086, 0.10675112158060074, 0.1639987826347351, -0.02250686101615429, 0.03383727744221687, 0.06464148312807083, -0.11052748560905457, -0.035863813012838364, 0.08013499528169632, -0.09683617204427719, 0.07595895975828171, 0.1044929251074791, 0.13428567349910736, 0.04333413019776344, -0.09654424339532852, -0.1232755035161972, 0.0417315810918808, 0.03682849928736687, -0.06251350045204163, -0.010887342505156994, 0.01474376767873764, -0.0658702403306961, 0.13846828043460846, 0.006240892689675093, 0.033226221799850464, 0.009687598794698715, -0.10713104903697968, -0.15585768222808838, 0.01927911303937435, -0.017286809161305428, 0.029520029202103615, 0.06770799309015274, -0.04947208613157272, 0.11497144401073456, -0.1672423779964447, 0.10029258579015732, 0.09681808203458786, -0.0724271908402443, 0.003653413150459528, -0.01101837307214737, -0.05989395081996918, 0.04422811046242714, -0.0967649593949318, 0.00750344805419445, 0.05124843865633011, 0.05889853835105896, 0.06490905582904816, -0.0415162518620491, -0.06783965975046158, -0.03252721205353737, -0.09518426656723022, -0.04145077243447304, 0.15123705565929413, -0.011381956748664379, -0.03337831050157547, -0.1236976906657219, -0.08313191682100296, 0.05477962642908096, 0.04649852588772774, -0.08676639944314957, -0.051219504326581955, 0.02053096331655979, -0.045089367777109146, -0.11050444841384888, -0.08890780806541443, 0.00617312453687191, -0.19233377277851105, 0.298414021730423, 0.07329293340444565, 0.016577769070863724, -0.1245359554886818, 0.03463427349925041, -0.06625624001026154, -0.08781780302524567, -0.022386519238352776, -0.07378853857517242, 0.0519389882683754, 0.047198329120874405, -0.07384634763002396, -0.047177061438560486, 0.07807282358407974, 0.07133190333843231, -0.007838456891477108, 0.00166127213742584, -0.02903715707361698, 0.06570715457201004, 0.12334053963422775, 0.04523748159408569, 0.015852387994527817, 0.06151420995593071, 0.10242094099521637, -0.07724373787641525, 0.0599215067923069, -0.07397588342428207, -0.03325099125504494, -0.0508316308259964, 0.07426595687866211, 0.05565981939435005, 0.04739009216427803, 0.12087113410234451, -0.12352356314659119, -0.039556290954351425, -0.08254708349704742, -0.04299528896808624, -0.011120500043034554, -0.03598117455840111, 0.005634181667119265, 0.05064414069056511, 0.02149525284767151, 0.039115533232688904, -0.08292315900325775, 0.004660505801439285, -0.06349695473909378, -0.010488821193575859, -0.030588600784540176, -0.12253991514444351, -0.0033114315010607243, -0.11866267770528793, 0.011863425374031067, -0.20649802684783936, -0.19930681586265564, -0.010957807302474976, -0.053881365805864334, 0.056721754372119904, -0.0156501866877079, -0.10841545462608337, -0.023341400548815727, -0.03467758372426033, -0.06609805673360825, -0.09587397426366806, -0.06036558374762535, 0.09560028463602066, -0.06377695500850677, 0.03912081941962242, -0.11060317605733871, 0.0404796302318573, -0.13523690402507782, -0.015527945011854172, -0.06852057576179504, 0.1373365968465805, -0.021826911717653275, -0.06752167642116547, 0.023595986887812614, -0.041508760303258896, -0.0775986984372139, 0.10140864551067352, 0.011462882161140442, 0.16901081800460815, -0.1730213463306427, -0.05559135973453522, 0.14393508434295654, -0.18750108778476715, -0.002968410961329937, 0.20912502706050873, -0.09210728853940964, 0.1237693578004837, 0.13315579295158386, 0.22213615477085114, -0.07510057836771011, -0.025584274902939796, 0.02630103938281536, 0.013819078914821148, -0.10755182802677155, 0.13069187104701996, -0.0297048632055521, -0.0536164827644825, -0.08040403574705124, 0.015180238522589207, -0.034564655274152756, 0.07980063557624817, -0.07578441500663757, -0.03344723954796791, -0.01403855811804533, -0.013216735795140266, 0.2537926137447357, -0.026424217969179153, 0.030551861971616745, -0.0239767637103796, -0.11455147713422775, -0.03546808287501335, 0.06161102280020714, -0.07371164858341217, 0.055244214832782745, -0.17543348670005798, 0.13085311651229858, 0.015617108903825283, 0.006581304129213095, -0.14963547885417938, -0.1302306056022644, -0.036718033254146576, 0.06588215380907059, 0.026613693684339523, 0.08543218672275543, -0.02415839582681656, -0.04456900432705879, -0.08330760151147842, 0.011279722675681114, 0.03225041180849075, -0.0033565170597285032, -0.0839519128203392, -0.02318609319627285, 0.087808758020401, 0.005546590778976679, 0.016377359628677368, -0.16451768577098846, 0.04449887573719025, 0.11660216003656387, 0.08936279267072678, 0.0030982547905296087, 0.041299208998680115, -0.011473330669105053, 0.04952997341752052, -0.07439324259757996, -0.0395481213927269, 0.0245952270925045, -0.008737403899431229, -0.14794735610485077, 0.0972306877374649, -0.045122481882572174, 0.11943171918392181, 0.12477025389671326, -0.1033729538321495, -0.027279207482933998, 0.027603942900896072, -0.002644176594913006, 0.020796794444322586, -0.05319184809923172, -0.025919664651155472, 0.20552568137645721, -0.05607040598988533, 0.037929512560367584, -0.09208814054727554, 0.004896908067166805, 0.006479018367826939, -0.09567894041538239, -0.04069335758686066, 0.04172564297914505, -0.01897248812019825, -0.12441733479499817, 0.11979659646749496, 0.059736695140600204, -0.09419148415327072, 0.18367351591587067, 0.04334520176053047, 0.01532487478107214, -0.016353480517864227, -0.02384740673005581, -0.040658943355083466, 0.013454942032694817, -0.0949728786945343, -0.00721195712685585, 0.05195891484618187, 0.05571374297142029, 0.09756136685609818, -0.10618124902248383, -0.04633915796875954, -0.03235495090484619, -0.02500307373702526, -0.08104865252971649, 0.08780211210250854, 0.0210560355335474, 0.11645442992448807, -0.10185904055833817, 0.01627122052013874, 0.14434263110160828, 0.0031192516908049583, -0.1053309366106987, 0.17670774459838867, -0.11155915260314941, -0.28153616189956665, -0.004463362041860819, -0.06457855552434921, -0.09245362132787704, 0.04197007790207863, 0.08692850917577744, -0.05889040604233742, -0.02142103761434555, -0.028035422787070274, 0.12244600802659988, -0.02409322001039982, 0.016142429783940315, -0.058104246854782104, -0.04931411147117615, -0.03281555324792862, -0.08439072221517563, -0.03515619784593582, -0.05428387597203255, -0.08155066519975662, 0.1835974007844925, -0.13719438016414642, 0.0927124097943306, 0.10935378074645996, -0.03523106873035431, -0.04440448805689812, -0.10939736664295197, 0.1846579611301422, -0.08518234640359879, -0.0651189386844635, 0.11652576923370361, -0.09205067902803421, 0.05373401567339897, 0.04277104139328003, -0.08039036393165588, -0.08038228005170822, 0.03211790695786476, 0.05557415634393692, -0.06597956269979477, -0.17902615666389465, -0.08026302605867386, -0.01561735663563013, -0.06836375594139099, -0.02222953736782074, 0.06799536943435669, 0.10615123808383942, 0.10764733701944351, -0.02514985390007496, 0.039328478276729584, 0.04779890924692154, 0.014257185161113739, 0.3050612509250641, 0.000036835670471191406, 0.09379085898399353, 0.013081161305308342, -0.07335933297872543, 0.10351235419511795, -0.06369931250810623, 0.2574955224990845, -0.08507262915372849, 0.009947704151272774, 0.1359838992357254, 0.12333057075738907, 0.10052327066659927, -0.033957935869693756, 0.04447308927774429, 0.007168345618993044, -0.06289596110582352, 0.01799209788441658, -0.09422110766172409, 0.05340755358338356, 0.11039067059755325, -0.10992427170276642, -0.00656704418361187, -0.03613372519612312, 0.16383178532123566, 0.04441015049815178, -0.07538123428821564, -0.1800365000963211, -0.04328303411602974, 0.05197282135486603, -0.03622167184948921, -0.06871747225522995, 0.08671142905950546, 0.11974853277206421, -0.1435222029685974, 0.10154908150434494, 0.012303495779633522, 0.055421214550733566, -0.07795737683773041, 0.05895567312836647, -0.12382131069898605, -0.02321256510913372, -0.0180796030908823, 0.09546712785959244, -0.4360770881175995, 0.12832148373126984, -0.007829382084310055, 0.08135148882865906, -0.14839453995227814, -0.09817533940076828, 0.06138616055250168, 0.015591837465763092, 0.13157081604003906, 0.018868787214159966, 0.049826331436634064, -0.10142938047647476, -0.07737284898757935, 0.09239431470632553, 0.05159618705511093, -0.007546639069914818, 0.01988622173666954, 0.04261494427919388, 0.08838152140378952, 0.028496967628598213, -0.04491237550973892, -0.1282774806022644, -0.10319580137729645, 0.032533928751945496, 0.09436418116092682, -0.013796023093163967, -0.05903717130422592, -0.10642203688621521, 0.020537827163934708, 0.18261323869228363, -0.06528494507074356, -0.16807657480239868, -0.1368287056684494, 0.03385613113641739, -0.0017900869715958834, -0.07912441343069077, 0.0343480184674263, 0.04406628757715225, 0.12159416824579239, -0.07181596010923386, -0.06558181345462799, 0.10033351182937622, -0.02860340103507042, -0.1534910947084427, -0.05539558827877045, 0.0121207470074296, 0.17356356978416443, 0.038402531296014786, 0.04873092472553253, -0.023610951378941536, 0.004495466593652964, -0.13842129707336426, -0.03643322363495827, 0.18341019749641418, -0.03626862168312073, 0.09417258203029633, 0.002440487267449498, -0.10922851413488388, -0.10349820554256439, -0.1049666777253151, 0.1831272691488266, 0.25624775886535645, -0.021869417279958725, 0.07941196113824844, 0.1436043232679367, -0.12688244879245758, -0.2690126299858093, -0.032097917050123215, 0.004722445737570524, 0.05487043410539627, 0.1052885353565216, -0.13120833039283752, -0.050363678485155106, 0.07984588295221329, 0.012070671655237675, 0.06193559616804123, -0.11575725674629211, -0.13107532262802124, 0.2133651077747345, 0.0783698707818985, 0.30679020285606384, -0.05688733607530594, -0.02825784683227539, -0.03604380041360855, -0.0392928346991539, 0.1871412694454193, -0.03005368821322918, 0.07597184926271439, 0.01977488584816456, 0.1714896261692047, 0.0269966721534729, 0.014654366299510002, 0.11281751096248627, 0.0725722461938858, 0.11391212791204453, -0.081431545317173, -0.14462105929851532, 0.1060931608080864, 0.017456110566854477, 0.016294624656438828, 0.08187863975763321, 0.00535987876355648, -0.019618526101112366, -0.10264673084020615, -0.13077791035175323, 0.07210832089185715, -0.0020915113855153322, -0.0834590345621109, -0.1004280373454094, 0.037143707275390625, 0.0775424987077713, -0.032868627458810806, 0.10830985009670258, -0.07718363404273987, 0.053419191390275955, -0.06535124778747559, 0.1446838229894638, 0.0048788548447191715, -0.0211713258177042, -0.05157729983329773, -0.08149299770593643, 0.08245394378900528, -0.06723303347826004, 0.04389416426420212, 0.07249628007411957, -0.012936663813889027, 0.12411396205425262, 0.07308392226696014, -0.01339037623256445, 0.1039402112364769, 0.050671856850385666, -0.10714611411094666, -0.02873140200972557, -0.02152755670249462, -0.05321880802512169, -0.013983755372464657, -0.011799698695540428, 0.16560447216033936, -0.013378975912928581, -0.032495174556970596, -0.05534985288977623, 0.04672035202383995, 0.020048407837748528, 0.051761798560619354, 0.05915205180644989, -0.011460267007350922, -0.05579850450158119, 0.0837768092751503, 0.011831962503492832, -0.07763464003801346, 0.10905560851097107, -0.12706448137760162, -0.11064048856496811, -0.05667863413691521, -0.11383330076932907, 0.07732536643743515, -0.02391701564192772, -0.09127620607614517, -0.02859715186059475, -0.0887087732553482, -0.013285939581692219, 0.13564211130142212, 0.0698566883802414, 0.14056116342544556, -0.08128536492586136, -0.010267057456076145, -0.03414153680205345, 0.004171401262283325, 0.07340942323207855, -0.04061717167496681, -0.049804579466581345, 0.13426081836223602, 0.055684495717287064, 0.061593979597091675, -0.08740916103124619, -0.04182051867246628, -0.10762191563844681, -0.002649514237418771, -0.1052434891462326, 0.04909636080265045, -0.055019598454236984, 0.01128415111452341, 0.009598972275853157, -0.09366901963949203, -0.07955915480852127, 0.058894239366054535, -0.07180915027856827, 0.059752289205789566, 0.05662744864821434, 0.009476774372160435, -0.038695160299539566, -0.061352528631687164, 0.055931057780981064, -0.032489318400621414, 0.13879677653312683, 0.06174033507704735, -0.11619831621646881, 0.06681449711322784, -0.2348906546831131, 0.00841409619897604, 0.07811222225427628, -0.0029582870192825794, -0.029358936473727226, -0.05225754529237747, 0.027424750849604607, 0.07937278598546982, 0.04668035730719566, 0.08542712032794952, 0.10497710853815079, -0.060601502656936646, 0.060488261282444, 0.02655116468667984, -0.06476617604494095, -0.0722053200006485, -0.010145820677280426, 0.06651096045970917, 0.04573486000299454, 0.1773218810558319, -0.01632295362651348, -0.008394614793360233, -0.04926800727844238, 0.03494400531053543, 0.00003928453952539712, -0.041834019124507904, 0.008876518346369267, -0.06413090229034424, 0.023665210232138634, -0.016706490889191628, 0.2965315282344818, -0.016425857320427895, -0.09220211952924728, 0.019512232393026352, 0.058718595653772354, -0.0443815253674984, -0.04069717600941658, 0.07473021000623703, -0.054842136800289154, -0.011324549093842506, 0.008066012524068356, 0.010936707258224487, 0.010562126524746418, 0.0657074823975563, 0.13426949083805084, -0.0449182391166687, 0.03483946621417999, 0.10578829795122147, -0.12951786816120148, -0.006015151739120483, -0.03800636902451515, -0.0058814543299376965, -0.022436989471316338, 0.01710895635187626, -0.03343203291296959, 0.01229880377650261, 0.11968377232551575, -0.07091861218214035, 0.008160967379808426, 0.012486545369029045, -0.09892556816339493, -0.14940571784973145, -0.29833731055259705, -0.06089721620082855, -0.019226763397455215, 0.05677318572998047, -0.11980417370796204, -0.002970355562865734, 0.16690105199813843, 0.02668716013431549, -0.08651795983314514, 0.07167241722345352, -0.08894724398851395, -0.16862116754055023, 0.08162424713373184, -0.08780382573604584, 0.019794892519712448, -0.07136661559343338, -0.08239879459142685, 0.02178361639380455, 0.06571559607982635, 0.03737339749932289, 0.03606516495347023, 0.010329989716410637, 0.029540028423070908, -0.14703842997550964, -0.017043210566043854, -0.021538442000746727, 0.07625160366296768, 0.04655557870864868, 0.13847966492176056, 0.10498861968517303, -0.04466661065816879, 0.06848619133234024, 0.14353761076927185, 0.07384061813354492, -0.08331500738859177, -0.09695218503475189, 0.1126851737499237, 0.0356670580804348, 0.002482224954292178, 0.014001875184476376, -0.07005901634693146, 0.054271150380373, 0.17813406884670258, 0.13443931937217712, -0.08246489614248276, 0.0008837888017296791, -0.07646698504686356, 0.024357303977012634, 0.06603147834539413, 0.0681271180510521, 0.008057458326220512, 0.27485817670822144, -0.08419302105903625, -0.039537642151117325, -0.014427139423787594, 0.05164474621415138, -0.008004388771951199, 0.08325321972370148, -0.02242683619260788, -0.0017490071477368474, -0.12463392317295074, 0.06354071944952011, -0.14203837513923645, 0.013492843136191368, -0.05557267367839813, -0.032991304993629456, -0.08540681004524231, 0.07861574739217758, -0.04664865508675575, -0.005415244027972221, 0.06787370890378952, -0.01788986474275589, -0.02853967435657978, 0.09009160101413727, 0.013254029676318169, -0.09715301543474197, 0.10174524784088135, 0.12618188560009003, 0.12349043786525726, 0.08555004000663757, 0.006587529554963112, 0.22335749864578247, 0.0651339441537857, 0.03999156132340431, 0.022394416853785515, 0.17041602730751038, -0.04082673043012619, 0.06604612618684769, 0.004831068683415651, 0.0025532867293804884, -0.003288016887381673, -0.01560163777321577, 0.13718652725219727, 0.021068094298243523, 0.11471959948539734, 0.005185428541153669, -0.12057841569185257, -0.035891830921173096, 0.026157958433032036, -0.1337578296661377, 0.04497969523072243, 0.0331437774002552, -0.023154567927122116, -0.036889441311359406, -0.04116353020071983, 0.025011898949742317, -0.055811017751693726, 0.010819158516824245, 0.008076978847384453, -0.16973868012428284, 0.0032388013787567616, 0.12566988170146942, 0.002569075906649232, -0.11407534033060074, 0.019674716517329216, -0.07171560823917389, -0.02970324456691742, -0.040662601590156555, 0.06825383752584457, -0.05613299831748009, -0.0005696620210073888, -0.0541548877954483, -0.08388446271419525, -0.0020498258527368307, 0.07206881046295166, -0.05974603816866875, -0.08311046659946442 ]
null
null
transformers
# Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-1.5G') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of [indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018). The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
{"language": "id", "license": "mit", "datasets": ["wikipedia", "id_newspapers_2018"], "widget": [{"text": "Ibu ku sedang bekerja [MASK] sawah."}]}
fill-mask
cahya/bert-base-indonesian-1.5G
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "dataset:id_newspapers_2018", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in Tensorflow: ## Training data This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of indonesian newspapers. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:
[ "# Indonesian BERT base model (uncased)", "## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This \nmodel is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Indonesian BERT base model (uncased)", "## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This \nmodel is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ 65, 12, 96, 9, 48, 63 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Indonesian BERT base model (uncased)## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This \nmodel is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models## Intended uses & limitations### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ -0.05913427099585533, 0.03369271755218506, -0.0014440801460295916, 0.04524623230099678, 0.11013462394475937, -0.051366690546274185, 0.08817626535892487, 0.11289850622415543, -0.09701318293809891, 0.03355342149734497, 0.006431868765503168, -0.0513569600880146, 0.1208895817399025, 0.11565924435853958, 0.0607738234102726, -0.38691166043281555, 0.03894110769033432, -0.012524404563009739, 0.10330783575773239, 0.15039993822574615, 0.08304799348115921, -0.07442118227481842, 0.03731350973248482, 0.038773808628320694, -0.06278394162654877, -0.03390732407569885, -0.10751385241746902, -0.13718511164188385, 0.04862930625677109, -0.01738959178328514, 0.06850404292345047, 0.008249549195170403, 0.08413495123386383, -0.07853948324918747, 0.03609181568026543, 0.04561822861433029, 0.021162856370210648, 0.06214328110218048, 0.07100442796945572, 0.05419619008898735, 0.21459753811359406, -0.04771730676293373, -0.0025932174175977707, -0.03249472752213478, -0.08435032516717911, -0.20052123069763184, -0.08744928240776062, 0.14299394190311432, 0.11713477224111557, 0.11913520097732544, -0.04875803738832474, 0.07485069334506989, -0.06281793117523193, 0.04691789299249649, 0.11389357596635818, -0.16206228733062744, -0.03153074532747269, -0.005470308940857649, 0.0511765256524086, 0.06423477828502655, -0.05404212698340416, -0.0167295690625906, -0.012226634658873081, 0.04252293333411217, 0.09237831830978394, -0.027573423460125923, -0.0017662526806816459, -0.06703702360391617, -0.0889190211892128, -0.06396762281656265, 0.08898129314184189, 0.006921212188899517, -0.05367621034383774, -0.19073975086212158, -0.022757409140467644, 0.0329630970954895, -0.015549357049167156, -0.04958976060152054, -0.018512506037950516, 0.002590446500107646, 0.11963482946157455, -0.0758121907711029, -0.10896115005016327, 0.02673862688243389, -0.08141107112169266, 0.0960584282875061, 0.02408575266599655, 0.04974367842078209, -0.1330636590719223, 0.07348762452602386, -0.03123585134744644, -0.17349687218666077, -0.021177975460886955, -0.0039154947735369205, -0.01685648411512375, 0.055599894374608994, 0.024693479761481285, -0.16119138896465302, -0.06696116179227829, -0.06357061862945557, -0.11289612948894501, -0.03334038704633713, 0.03995519503951073, 0.05239379405975342, 0.07652465999126434, 0.14218555390834808, -0.14431525766849518, 0.030379286035895348, -0.010994276031851768, -0.008697131648659706, 0.0004156693466939032, -0.07525914162397385, -0.017863158136606216, 0.015322405844926834, 0.03588494658470154, 0.032390810549259186, 0.0014908770099282265, 0.048946719616651535, 0.034467943012714386, -0.09054519236087799, 0.16597864031791687, -0.14911998808383942, -0.05356614664196968, -0.027499821037054062, -0.09533537179231644, 0.12195722758769989, 0.06902403384447098, -0.01930156536400318, -0.11650122702121735, 0.11599606275558472, -0.012410745024681091, -0.012849405407905579, -0.06131703406572342, -0.10019613802433014, 0.012171002104878426, -0.10458932816982269, -0.06666862219572067, -0.10286541283130646, -0.21307174861431122, -0.04835781455039978, 0.013764748349785805, -0.05823735520243645, 0.0241076797246933, -0.0238167904317379, 0.009689764119684696, -0.0022488043177872896, -0.035303451120853424, 0.05589912086725235, -0.02748042158782482, 0.07775808125734329, -0.029184380546212196, 0.1354176253080368, 0.03878917917609215, 0.059224698692560196, -0.11381112039089203, 0.030916938558220863, -0.09492737054824829, 0.09702406823635101, 0.017684802412986755, -0.0069785332307219505, -0.09313695877790451, -0.10618207603693008, -0.07494761049747467, -0.022681869566440582, 0.009416352026164532, 0.11088916659355164, -0.1708955615758896, -0.07372801750898361, 0.21700967848300934, -0.1240803524851799, -0.03350512683391571, 0.042024631053209305, -0.024851595982909203, 0.1823931187391281, 0.04475758224725723, 0.1596928983926773, 0.10822677612304688, -0.026095140725374222, -0.016606925055384636, 0.0237246286123991, 0.022279733791947365, 0.033656250685453415, 0.08581505715847015, 0.0013281588908284903, 0.1262182593345642, 0.06683175265789032, -0.033384233713150024, 0.05842529237270355, -0.015895377844572067, -0.04911787062883377, 0.029390214011073112, -0.02910473756492138, 0.055035434663295746, 0.026751767843961716, 0.0871645137667656, 0.02415601909160614, -0.037640344351530075, 0.09135843813419342, 0.08104376494884491, -0.08972077816724777, 0.01712648756802082, -0.05684622377157211, 0.07924481481313705, -0.07603684067726135, 0.030353514477610588, -0.221067875623703, 0.0023479177616536617, 0.04554957523941994, -0.0939793512225151, 0.03804558515548706, -0.008515299297869205, 0.05799933895468712, 0.05463403835892677, -0.01953786611557007, 0.0041595324873924255, 0.009677301160991192, -0.03004923090338707, -0.010646379552781582, -0.034457772970199585, -0.027954911813139915, -0.013737537898123264, 0.08137679100036621, -0.06956574320793152, 0.013516228646039963, -0.056857965886592865, 0.07842531055212021, -0.04143713787198067, -0.01941387914121151, 0.09084450453519821, 0.03555341064929962, 0.02014997787773609, -0.00576646625995636, 0.02010292001068592, 0.0382695235311985, -0.054371755570173264, 0.15010501444339752, -0.12383164465427399, -0.10805801302194595, 0.08580562472343445, 0.0734081044793129, -0.0386691652238369, 0.025684351101517677, -0.04827488586306572, -0.057882264256477356, -0.10232862830162048, 0.02696436271071434, 0.21110953390598297, 0.01709221489727497, 0.1402370184659958, -0.13222521543502808, -0.047950081527233124, 0.036845862865448, -0.048165541142225266, -0.02005215361714363, 0.05133580416440964, -0.023342376574873924, -0.09200861304998398, 0.062247708439826965, 0.03603632003068924, 0.02998041734099388, 0.18797746300697327, 0.009094038978219032, -0.1262557953596115, -0.019247954711318016, 0.021580049768090248, -0.02652275189757347, 0.01539327297359705, -0.10738477110862732, 0.009949341416358948, 0.1017385870218277, 0.03756798431277275, 0.034037601202726364, -0.07236092537641525, -0.01625005528330803, 0.045262064784765244, -0.034610748291015625, -0.04603888466954231, 0.054356347769498825, -0.000006936365934961941, 0.09466417133808136, 0.025050081312656403, 0.05108749121427536, -0.03878752887248993, -0.046167053282260895, -0.10742242634296417, 0.16136695444583893, -0.041475702077150345, -0.41447076201438904, -0.11127660423517227, 0.013527413830161095, -0.022208740934729576, -0.043001629412174225, 0.03422616422176361, -0.12094271928071976, -0.04367531090974808, -0.09518381208181381, -0.05520259216427803, 0.04892333969473839, 0.00979593489319086, 0.014362550340592861, -0.007623341400176287, -0.023895015940070152, -0.10822999477386475, 0.007043277844786644, -0.030922818928956985, 0.017836423590779305, 0.06523549556732178, -0.015169573947787285, 0.10521163046360016, 0.18259736895561218, -0.063217893242836, 0.023535162210464478, 0.028887363150715828, 0.15641307830810547, -0.11863861232995987, 0.09599264711141586, 0.2344145029783249, -0.03570399805903435, 0.04987867549061775, 0.09359350800514221, 0.0333254411816597, -0.0030688096303492785, 0.05980014428496361, -0.0012163209030404687, -0.06654153019189835, -0.2044031023979187, -0.049108345061540604, -0.05094388499855995, -0.07961468398571014, 0.03496650233864784, 0.03279929235577583, 0.0766606479883194, 0.027998629957437515, -0.02170976996421814, 0.002094066236168146, 0.007569305133074522, 0.02314864844083786, 0.010251582600176334, -0.008100509643554688, 0.0873517319560051, -0.05999802425503731, -0.032814688980579376, 0.09204970300197601, -0.05704271048307419, 0.23115457594394684, -0.0662011057138443, 0.1340654045343399, 0.09040796011686325, 0.1314450353384018, 0.09022337198257446, 0.12165767699480057, -0.10436958819627762, 0.04050164669752121, -0.01738296076655388, -0.10991974920034409, 0.033262595534324646, -0.015642452985048294, -0.058820780366659164, 0.04261310026049614, -0.03412027284502983, -0.05056951567530632, 0.03340710699558258, 0.17207494378089905, -0.03065579943358898, -0.14531877636909485, -0.10827570408582687, 0.001728640403598547, -0.033847711980342865, -0.04318346083164215, -0.058235302567481995, 0.11909464746713638, -0.19358927011489868, 0.021072136238217354, 0.005261982791125774, 0.11199618130922318, -0.09776958078145981, -0.021132847294211388, 0.026712244376540184, -0.015002792701125145, -0.00415683863684535, 0.14063870906829834, -0.1120600476861, 0.21239769458770752, -0.008129906840622425, 0.034944191575050354, -0.13877691328525543, 0.015625163912773132, -0.009491794742643833, -0.036515023559331894, 0.11752240359783173, 0.027366705238819122, -0.004691536538302898, -0.07112319022417068, -0.1326879858970642, -0.01314997673034668, 0.05777188763022423, -0.0119935916736722, 0.04127977788448334, 0.03195474296808243, -0.01126139983534813, -0.028564147651195526, 0.00009443808085052297, -0.008292804472148418, -0.10250107198953629, 0.0749947652220726, -0.032845329493284225, -0.028671152889728546, -0.028898146003484726, -0.11404168605804443, 0.03318556770682335, 0.1539730280637741, 0.035807639360427856, -0.12259579449892044, -0.11215605586767197, -0.008788743987679482, 0.08826037496328354, -0.11652218550443649, -0.028175268322229385, -0.02989971451461315, 0.13320563733577728, -0.03285997360944748, -0.07639709115028381, 0.00828179344534874, -0.01774200238287449, -0.12132367491722107, -0.019573450088500977, 0.08827884495258331, 0.10261321067810059, 0.017246484756469727, 0.018015263602137566, -0.007405526470392942, 0.0012349794851616025, -0.14325951039791107, -0.07197565585374832, 0.12775510549545288, 0.022589867934584618, 0.025225559249520302, -0.055798985064029694, -0.0652027353644371, -0.06859318166971207, -0.07494707405567169, 0.10505718737840652, 0.04172792658209801, -0.04490455612540245, 0.14219462871551514, 0.2720145881175995, -0.06691105663776398, -0.1797628253698349, -0.07588683068752289, 0.08273233473300934, 0.04091552272439003, -0.01982560195028782, -0.13004937767982483, 0.06304880976676941, 0.08404269069433212, -0.004395132418721914, -0.09161724150180817, -0.3517499566078186, -0.13012884557247162, 0.06694130599498749, 0.044291771948337555, 0.0137628810480237, -0.08656881749629974, -0.05774753913283348, 0.01426134817302227, -0.01895935833454132, 0.10224904865026474, -0.08984115719795227, 0.06194327026605606, -0.024480363354086876, 0.03958700969815254, 0.02858067862689495, -0.027605528011918068, 0.16355735063552856, 0.014582117088139057, -0.020942240953445435, -0.13091906905174255, 0.043500397354364395, 0.11456230282783508, 0.0024238957557827234, 0.18334440886974335, 0.025918511673808098, 0.041426680982112885, -0.17375308275222778, -0.07810891419649124, -0.11777666956186295, 0.00019540176435839385, -0.028426725417375565, -0.08932414650917053, -0.02235531434416771, 0.09500584751367569, 0.09237977117300034, 0.003932280465960503, -0.024130674079060555, -0.0353829599916935, 0.045068979263305664, 0.06282833218574524, 0.09283695369958878, 0.011699790135025978, -0.10739894956350327, -0.07591143995523453, 0.02479994110763073, 0.030924981459975243, -0.16975809633731842, -0.06186147779226303, 0.07378347963094711, 0.04485912248492241, 0.11084410548210144, -0.009083281271159649, -0.15778961777687073, 0.04771234095096588, 0.07870327681303024, -0.09444797784090042, -0.10491793602705002, -0.03627525642514229, -0.01708245649933815, -0.10937652736902237, -0.11331266164779663, 0.025904731824994087, -0.11321864277124405, -0.023669686168432236, 0.0015611208509653807, 0.032300833612680435, -0.02804969623684883, 0.12250782549381256, 0.04706194996833801, 0.06973859667778015, -0.060719262808561325, 0.13196639716625214, 0.19484728574752808, -0.06377346813678741, 0.009359211660921574, 0.23045216500759125, -0.11680620908737183, -0.023336756974458694, -0.013613360933959484, 0.04603741317987442, 0.02429358847439289, -0.09430862963199615, -0.003764993278309703, -0.042426303029060364, 0.008618511259555817, 0.02668125182390213, 0.00005380649963626638, -0.029546191915869713, -0.06977137178182602, -0.03891284018754959, -0.0686219334602356, 0.07759103178977966, 0.11773570626974106, -0.04500461369752884, 0.034704554826021194, 0.04600078612565994, 0.10793545842170715, 0.17404396831989288, -0.04743001237511635, -0.11293710768222809, -0.015514383092522621, 0.02328616939485073, -0.06806708872318268, 0.04280344769358635, -0.12338633090257645, -0.05168181657791138, -0.08976002782583237, -0.038221798837184906, 0.026019440963864326, -0.013964314945042133, -0.013903027400374413, -0.0014964278088882565, -0.03349946439266205, -0.005289212800562382, -0.11248559504747391, -0.03239390254020691, 0.03369440138339996, -0.014762137085199356, 0.07589710503816605, 0.05570318549871445, -0.06616894155740738, 0.08978584408760071, -0.029179416596889496, 0.010912700556218624, 0.03661872819066048, 0.04256060719490051, 0.05256527289748192, -0.06597580015659332, 0.04191391170024872, 0.04040960967540741, -0.039945393800735474, 0.023495495319366455, -0.016662048175930977, -0.11377366632223129, 0.019889315590262413, -0.008249047212302685, 0.01429359707981348, -0.11281435191631317, 0.10231084376573563, 0.04957692697644234, 0.05111406743526459, 0.041513923555612564, -0.06088795140385628, 0.12092681229114532, -0.159662663936615, -0.02986224740743637, -0.027200760319828987, -0.0775725394487381, 0.03830885887145996, -0.08174226433038712, 0.04355497658252716, -0.04230223223567009, 0.09505489468574524, 0.09515070915222168, 0.05863470956683159, -0.005672781262546778, -0.03890557214617729, -0.019836265593767166, -0.028133535757660866, 0.15310698747634888, 0.07234254479408264, -0.0242199394851923, 0.04552077129483223, 0.035745229572057724, -0.08633207529783249, 0.038478631526231766, 0.1178373247385025, 0.09880591183900833, 0.16309043765068054, 0.05081053078174591, 0.054633285850286484, -0.048726730048656464, -0.1550564467906952, -0.08702117949724197, -0.046578045934438705, 0.048706889152526855, -0.04858102276921272, 0.05280836671590805, 0.16842541098594666, -0.16780565679073334, 0.11958666145801544, 0.04375315457582474, -0.10362190753221512, -0.07581043243408203, -0.26775485277175903, 0.005470759700983763, 0.017581524327397346, -0.042388610541820526, -0.12827995419502258, 0.005913100205361843, -0.0050807613879442215, 0.03302904590964317, -0.0764605775475502, 0.14040148258209229, -0.014059141278266907, -0.09259313344955444, 0.0965450182557106, -0.0034335192758589983, 0.08910592645406723, -0.05778069049119949, 0.054604366421699524, -0.0010303482413291931, 0.07848762720823288, 0.05962524935603142, 0.053710032254457474, 0.021839790046215057, 0.007836642675101757, -0.014233802445232868, -0.09657471626996994, -0.01495310291647911, -0.03213244676589966, 0.04922628775238991, 0.1482156217098236, 0.09131190180778503, -0.023371558636426926, -0.03183760866522789, 0.18365485966205597, -0.003234913107007742, -0.14679421484470367, -0.09453991055488586, 0.1407816857099533, 0.026420654729008675, -0.08678720146417618, 0.04095647856593132, -0.11261953413486481, -0.1065964624285698, 0.27614864706993103, 0.1959167718887329, 0.015961460769176483, 0.03349071741104126, -0.0018047704361379147, 0.019324736669659615, -0.000025208977604052052, 0.11339336633682251, 0.13032789528369904, 0.3066788613796234, -0.06890565156936646, 0.12815634906291962, -0.06112317368388176, -0.060809094458818436, -0.07996182143688202, 0.08979187160730362, 0.029411302879452705, -0.013941480778157711, -0.0633322149515152, 0.1257936954498291, -0.1455153077840805, -0.20597578585147858, -0.04735580086708069, -0.08867992460727692, -0.14574703574180603, -0.03205433115363121, -0.07857143133878708, 0.07416532188653946, 0.030459534376859665, 0.03962770849466324, 0.07114767283201218, 0.13800527155399323, 0.07846734672784805, -0.021247491240501404, -0.0746375322341919, 0.10110987722873688, -0.07998297363519669, 0.10685534030199051, 0.029744232073426247, 0.034836240112781525, 0.03697681799530983, 0.07466018199920654, -0.08941812068223953, 0.08685143291950226, 0.043382592499256134, 0.04574732482433319, 0.005759093910455704, 0.15635836124420166, 0.007769398856908083, -0.10582597553730011, 0.04475202038884163, -0.04921707883477211, 0.026891211047768593, -0.08458045870065689, 0.06857246160507202, -0.10858643054962158, 0.05560988560318947, -0.013002087362110615, 0.13791565597057343, 0.2122306078672409, -0.029492894187569618, -0.019563646987080574, -0.08775371313095093, 0.0471639409661293, -0.04014688730239868, -0.0197602529078722, -0.031497713178396225, -0.11811675876379013, -0.03224172443151474, -0.039534978568553925, 0.08962249755859375, -0.2133616805076599, -0.013593011535704136, 0.03946636617183685, -0.09312734007835388, 0.012731806375086308, 0.05818740651011467, 0.013559920713305473, 0.04559134691953659, 0.0015381599077954888, 0.0018036066321656108, -0.004074532072991133, 0.08945045620203018, -0.17299455404281616, -0.022308802232146263 ]
null
null
transformers
# Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
{"language": "id", "license": "mit", "datasets": ["wikipedia"], "widget": [{"text": "Ibu ku sedang bekerja [MASK] sawah."}]}
fill-mask
cahya/bert-base-indonesian-522M
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in Tensorflow: ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:
[ "# Indonesian BERT base model (uncased)", "## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Indonesian BERT base model (uncased)", "## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ 58, 12, 102, 9, 48, 55 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #id #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Indonesian BERT base model (uncased)## Model description\nIt is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models## Intended uses & limitations### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ -0.04822519049048424, -0.0027013104408979416, -0.0013276082463562489, 0.0545937679708004, 0.08989465981721878, -0.0305820032954216, 0.07757224142551422, 0.11274707317352295, -0.06912513077259064, 0.026611771434545517, -0.004958813078701496, -0.04635924845933914, 0.1398203819990158, 0.10234673321247101, 0.07563808560371399, -0.37751007080078125, 0.0450882613658905, -0.019568275660276413, 0.06048265099525452, 0.14649921655654907, 0.08920890837907791, -0.08685249090194702, 0.06150329113006592, 0.037010397762060165, -0.06296396255493164, -0.023139020428061485, -0.0807361900806427, -0.14052870869636536, 0.07003091275691986, -0.01611679419875145, 0.09060918539762497, -0.006143676117062569, 0.08418097347021103, -0.052479639649391174, 0.025317592546343803, 0.03542511537671089, 0.045865267515182495, 0.06299082189798355, 0.06743211299180984, 0.09501629322767258, 0.22423501312732697, -0.03185686096549034, 0.011660261079668999, -0.017384953796863556, -0.0385139174759388, -0.21793904900550842, -0.08497234433889389, 0.16039389371871948, 0.07473505288362503, 0.10155446827411652, -0.03878745436668396, 0.07647896558046341, -0.09719761461019516, 0.03504838049411774, 0.12157399207353592, -0.14088676869869232, -0.02081473357975483, 0.007851806469261646, 0.02446908876299858, 0.07185263931751251, -0.06937284767627716, -0.042479999363422394, -0.013861692510545254, 0.05085650086402893, 0.1313587874174118, -0.06442218273878098, -0.06747657060623169, -0.07698298990726471, -0.04485344886779785, -0.053405407816171646, 0.1225537434220314, 0.006393854506313801, -0.05424370989203453, -0.18835699558258057, -0.03257261589169502, 0.005532936193048954, -0.022327996790409088, -0.03831594064831734, -0.0001323903416050598, -0.008681164123117924, 0.10516330599784851, -0.046527065336704254, -0.12319455295801163, 0.030152590945363045, -0.08389167487621307, 0.05351246893405914, 0.04004824906587601, 0.06501621007919312, -0.11468478292226791, 0.07219883054494858, -0.06269919127225876, -0.17743366956710815, -0.0036623256746679544, -0.012475486844778061, -0.01370165590196848, 0.08755610138177872, 0.049880318343639374, -0.13576801121234894, -0.03771118074655533, -0.1015564575791359, -0.12227930873632431, -0.014025747776031494, 0.06328542530536652, 0.043851014226675034, 0.06488262861967087, 0.1835549920797348, -0.16552451252937317, 0.005941292271018028, 0.012846297584474087, -0.028961392119526863, 0.014789946377277374, -0.07141623646020889, -0.04469751566648483, -0.013759461231529713, 0.05632678046822548, 0.03087567538022995, -0.014801927842199802, 0.04857425391674042, 0.020781803876161575, -0.1018090471625328, 0.16048447787761688, -0.14779482781887054, -0.029679445549845695, -0.007940203882753849, -0.0990205854177475, 0.17637042701244354, 0.05743244290351868, -0.038268156349658966, -0.11929388344287872, 0.08845945447683334, -0.028595129027962685, -0.007866915315389633, -0.06320276111364365, -0.11488314718008041, 0.013010903261601925, -0.0714057981967926, -0.04982663691043854, -0.12178467214107513, -0.18260227143764496, -0.02065350115299225, 0.023557618260383606, -0.06403127312660217, 0.022639170289039612, 0.015707971528172493, 0.0020268054213374853, 0.0013356622075662017, -0.04920332506299019, 0.06375040113925934, -0.015642601996660233, 0.07988405972719193, -0.022289207205176353, 0.1231025978922844, 0.021237937733530998, 0.060940761119127274, -0.11015243828296661, 0.041914504021406174, -0.11238392442464828, 0.07445981353521347, 0.02433057315647602, -0.023771656677126884, -0.07978711277246475, -0.1447836309671402, -0.06790343672037125, -0.0377536416053772, -0.002438026014715433, 0.11274725943803787, -0.1492663025856018, -0.06757690012454987, 0.21411201357841492, -0.11524556577205658, -0.04406715929508209, 0.07832738757133484, -0.008610357530415058, 0.12318591773509979, 0.05444951727986336, 0.14581505954265594, 0.09097867459058762, -0.028533510863780975, -0.009930736385285854, 0.05244316905736923, 0.027062933892011642, -0.009939603507518768, 0.092777781188488, 0.011452097445726395, 0.12368916720151901, 0.08207142353057861, 0.0012207570252940059, 0.07465581595897675, -0.012739121913909912, -0.0431692898273468, 0.006282872520387173, -0.032387297600507736, 0.07215267419815063, 0.041237592697143555, 0.08818978816270828, -0.007272497750818729, -0.03228693827986717, 0.07045558094978333, 0.09892917424440384, -0.09547382593154907, -0.007800585590302944, -0.032272402197122574, 0.07023453712463379, -0.07975940406322479, 0.023060785606503487, -0.19614966213703156, 0.0007412409177049994, 0.050654735416173935, -0.06691613048315048, 0.02122451364994049, 0.023487521335482597, 0.06002374738454819, 0.039844077080488205, -0.018450472503900528, -0.0014223121106624603, -0.009072067216038704, -0.03573612496256828, 0.006028183735907078, 0.01066521741449833, -0.04486297443509102, 0.018816830590367317, 0.06587611883878708, -0.04528038576245308, 0.004205987323075533, -0.09940554201602936, 0.04234420508146286, -0.03290640935301781, -0.025969916954636574, 0.08400008827447891, 0.021878700703382492, 0.01558218989521265, -0.011538691818714142, -0.0015581612242385745, 0.007639640010893345, -0.039354775100946426, 0.13706737756729126, -0.1192711666226387, 0.01129264384508133, 0.10926846414804459, 0.10388468950986862, -0.03139766678214073, 0.051373742520809174, -0.03910470008850098, -0.05618523433804512, -0.0873592346906662, 0.014101137407124043, 0.1969323307275772, 0.025166478008031845, 0.14167170226573944, -0.12197419255971909, -0.02558944933116436, 0.05048646777868271, -0.07109218835830688, 0.0053554559126496315, 0.04256918653845787, -0.012840949930250645, -0.07698232680559158, 0.09499392658472061, 0.043123241513967514, 0.036492835730314255, 0.1692798137664795, -0.0030121339950710535, -0.12536261975765228, -0.035327643156051636, -0.003317346563562751, -0.035897817462682724, 0.043912459164857864, -0.1023033931851387, 0.003865641076117754, 0.12202127277851105, 0.0521293580532074, 0.024576781317591667, -0.07205341011285782, -0.016300329938530922, 0.04529703035950661, -0.038045335561037064, -0.04062889143824577, 0.03517547622323036, 0.03662673011422157, 0.10193923860788345, 0.017748530954122543, 0.05696278437972069, -0.05358155444264412, -0.0390402153134346, -0.09132034331560135, 0.17121656239032745, -0.056622885167598724, -0.42100343108177185, -0.10779539495706558, 0.014026865363121033, -0.040481045842170715, -0.04933147504925728, 0.01683858223259449, -0.09969235956668854, -0.05848047882318497, -0.07161900401115417, 0.007635371293872595, 0.053870297968387604, 0.0058691115118563175, -0.031730491667985916, -0.0022361623123288155, -0.0196012482047081, -0.12392964959144592, -0.016062619164586067, -0.009887333028018475, -0.004384798929095268, 0.08406228572130203, -0.018971038982272148, 0.07673456519842148, 0.18974868953227997, -0.08171539008617401, 0.0016863718628883362, 0.03763141855597496, 0.10770094394683838, -0.10057070106267929, 0.1097961887717247, 0.24587494134902954, 0.001030996791087091, 0.030518751591444016, 0.07023629546165466, 0.03319580480456352, 0.008423101156949997, 0.03772701323032379, -0.00957330223172903, -0.07661733031272888, -0.1959708333015442, -0.05540382117033005, -0.07517803460359573, -0.04477911815047264, 0.020878871902823448, 0.011179097928106785, 0.07861706614494324, 0.05285927653312683, -0.015263741835951805, 0.05051494017243385, 0.00026008218992501497, -0.0011871870374307036, 0.014069090597331524, -0.0049164691008627415, 0.06805908679962158, -0.0896260142326355, -0.02258446253836155, 0.10528867691755295, -0.03140179067850113, 0.21957829594612122, -0.0753198117017746, 0.13227945566177368, 0.0704493522644043, 0.18265122175216675, 0.0634152963757515, 0.1433732956647873, -0.11212065815925598, 0.014838160946965218, -0.007798675913363695, -0.09352876991033554, -0.02809033915400505, -0.02558061107993126, -0.02558455802500248, 0.07653255015611649, -0.05509436875581741, -0.04812541976571083, 0.014778231270611286, 0.16263535618782043, -0.0284529197961092, -0.1445242017507553, -0.13932301104068756, 0.006565792020410299, -0.02966991253197193, -0.03433186560869217, -0.030536605045199394, 0.2075367271900177, -0.19886237382888794, -0.013965381309390068, -0.009755438193678856, 0.0979962944984436, -0.10272709280252457, -0.008139073848724365, -0.023189622908830643, 0.04518219828605652, 0.02903292514383793, 0.14647863805294037, -0.08367986232042313, 0.183243528008461, -0.010965365916490555, 0.012585118412971497, -0.1518421471118927, 0.008257408626377583, -0.005763591267168522, -0.024261482059955597, 0.10821682214736938, 0.03168194368481636, 0.030265485867857933, -0.11676856875419617, -0.14699918031692505, 0.004603439476341009, 0.043863534927368164, 0.025283655151724815, 0.023807916790246964, 0.003850240958854556, -0.0029805288650095463, -0.01638713665306568, 0.021747475489974022, 0.007384349592030048, -0.11486763507127762, 0.0598965622484684, -0.02787581831216812, -0.09438242018222809, -0.0399906300008297, -0.10069648176431656, 0.04351814463734627, 0.20603477954864502, 0.05866125226020813, -0.14384685456752777, -0.10306310653686523, -0.024445120245218277, 0.1404212862253189, -0.13684289157390594, -0.026487361639738083, -0.05207660421729088, 0.12317903339862823, -0.03220140561461449, -0.10166855156421661, 0.03245002031326294, -0.01701158471405506, -0.10268352925777435, -0.004755860194563866, 0.08563253283500671, 0.07580600678920746, 0.051430996507406235, 0.0286400206387043, -0.035495154559612274, -0.005876854527741671, -0.1582186073064804, -0.10664673894643784, 0.15631608664989471, 0.027118850499391556, 0.03160623461008072, -0.026109419763088226, -0.08470140397548676, -0.0361688956618309, -0.03412467986345291, 0.1412830352783203, -0.019444843754172325, -0.05549359321594238, 0.13692985475063324, 0.22617006301879883, -0.02325616404414177, -0.19075380265712738, -0.08282486349344254, 0.07691802084445953, 0.0728803500533104, -0.010579858906567097, -0.11127064377069473, 0.04155769199132919, 0.10842324793338776, -0.007397370412945747, -0.049251262098550797, -0.36623841524124146, -0.11044441908597946, 0.07073716074228287, 0.08308350294828415, 0.022431258112192154, -0.10442090779542923, -0.05318053811788559, 0.020446060225367546, -0.06791578978300095, 0.1000690758228302, -0.08216457813978195, 0.06888961791992188, -0.04759776219725609, 0.076089046895504, 0.04609379544854164, -0.043901119381189346, 0.15695235133171082, -0.02637467160820961, 0.0004937200574204326, -0.12779521942138672, 0.04025062546133995, 0.11295377463102341, -0.005893724970519543, 0.23990105092525482, 0.0005842504906468093, 0.035406216979026794, -0.14862708747386932, -0.07078569382429123, -0.13677126169204712, 0.020490353927016258, -0.015460073947906494, -0.09722130000591278, -0.04416279122233391, 0.09391763806343079, 0.06317180395126343, 0.002207734389230609, -0.007854598574340343, -0.004021685104817152, 0.01444677822291851, 0.09226232767105103, 0.08083969354629517, 0.01866377517580986, -0.11481320858001709, -0.08986098319292068, 0.03215746581554413, 0.016441812738776207, -0.205986887216568, -0.043816521763801575, 0.058575958013534546, 0.026074528694152832, 0.10592888295650482, -0.025072753429412842, -0.15070992708206177, 0.06649547815322876, 0.08307249844074249, -0.058307018131017685, -0.12661468982696533, -0.03504260629415512, -0.02345847338438034, -0.1210169568657875, -0.09029603749513626, 0.002202315954491496, -0.13290932774543762, -0.026464931666851044, -0.023489931598305702, 0.03160156309604645, -0.041709933429956436, 0.13866084814071655, 0.06785862147808075, 0.0741775706410408, -0.0745709016919136, 0.12473691999912262, 0.1669490486383438, -0.05832219123840332, 0.02221694402396679, 0.20646777749061584, -0.10409756004810333, -0.016910577192902565, 0.014891241677105427, 0.010067353025078773, 0.05877798795700073, -0.08061355352401733, -0.010918683372437954, -0.08329949527978897, -0.018572814762592316, -0.07717927545309067, 0.0047044106759130955, -0.005579979158937931, -0.07452667504549026, -0.04992961511015892, -0.09700502455234528, 0.08120977133512497, 0.09742620587348938, -0.04375998675823212, -0.0037565305829048157, 0.03650421276688576, 0.12119131535291672, 0.16437053680419922, -0.04042434319853783, -0.10400489717721939, -0.014429817907512188, -0.005008835345506668, -0.10823847353458405, 0.011946067214012146, -0.12431034445762634, -0.05234327167272568, -0.08404351025819778, -0.042013488709926605, 0.022540898993611336, -0.0032309372909367085, -0.01754775643348694, -0.007712563965469599, -0.06097346916794777, 0.019775595515966415, -0.11061616986989975, -0.034769847989082336, 0.04042862728238106, -0.021019287407398224, 0.07954768091440201, 0.07328098267316818, -0.05563614144921303, 0.10628955811262131, -0.045327965170145035, 0.002971781650558114, 0.040697064250707626, 0.059168070554733276, 0.08174610882997513, -0.06392170488834381, 0.04058435559272766, 0.04077339172363281, -0.010581201873719692, 0.007730329409241676, -0.02069268189370632, -0.13043878972530365, -0.006684611551463604, -0.04650021344423294, -0.01342626754194498, -0.10721758008003235, 0.10464214533567429, 0.04017287492752075, 0.02555188722908497, 0.04836592078208923, -0.051074061542749405, 0.1399843841791153, -0.18526457250118256, -0.040742047131061554, -0.03279973194003105, -0.059314969927072525, 0.043703313916921616, -0.08076141029596329, 0.03822331503033638, -0.025894753634929657, 0.07768869400024414, 0.08227378129959106, 0.05883258953690529, -0.018542038276791573, -0.03300095349550247, 0.01766059175133705, -0.022495627403259277, 0.17576491832733154, 0.04257774353027344, -0.045358773320913315, 0.054782986640930176, 0.029866741970181465, -0.06200398504734039, 0.026353411376476288, 0.1343950480222702, 0.11453463137149811, 0.10038793087005615, 0.04016088321805, 0.07769370079040527, -0.013356390409171581, -0.16493774950504303, -0.1173989400267601, -0.052822425961494446, 0.04487847164273262, -0.029402239248156548, 0.05909477919340134, 0.15762779116630554, -0.18738986551761627, 0.11824846267700195, 0.028557701036334038, -0.11563253402709961, -0.05204988643527031, -0.2679412066936493, -0.008506509475409985, 0.005035632289946079, -0.042111728340387344, -0.13344521820545197, 0.002127542160451412, 0.031644776463508606, 0.03922618180513382, -0.10036217421293259, 0.16408593952655792, -0.03242014721035957, -0.08662737160921097, 0.09178683161735535, 0.042526889592409134, 0.03869765251874924, -0.028676290065050125, 0.05669548362493515, -0.022103464230895042, 0.07919200509786606, 0.08827172219753265, 0.05968174710869789, -0.0031568158883601427, 0.009490717202425003, -0.021674906834959984, -0.10014121234416962, -0.023464428260922432, -0.04819481074810028, 0.05430012568831444, 0.1353612244129181, 0.06196550279855728, -0.034630052745342255, -0.047445718199014664, 0.18270640075206757, -0.02539350464940071, -0.12165474891662598, -0.09474580734968185, 0.1619763970375061, 0.0025211223401129246, -0.09783374518156052, 0.06361206620931625, -0.09579741954803467, -0.11483872681856155, 0.3120243549346924, 0.2213021069765091, 0.016430728137493134, 0.02681230567395687, -0.02201765961945057, 0.00820339098572731, -0.04924503341317177, 0.17289376258850098, 0.1341157704591751, 0.29316315054893494, -0.0425565205514431, 0.16298937797546387, -0.04994191974401474, -0.06069395691156387, -0.08718781173229218, 0.08428090065717697, 0.012490647844970226, -0.0041662403382360935, -0.07321873307228088, 0.09464162588119507, -0.11338143050670624, -0.19642969965934753, -0.013303087092936039, -0.09953740239143372, -0.15390625596046448, -0.02555985189974308, -0.06694716215133667, 0.09151678532361984, 0.045660171657800674, 0.03285498917102814, 0.09139576554298401, 0.15786448121070862, 0.07696350663900375, -0.08872395008802414, -0.04584720358252525, 0.10882560163736343, -0.019755853340029716, 0.09982532262802124, 0.04940120503306389, 0.035407960414886475, 0.038445811718702316, 0.07042844593524933, -0.08989664912223816, 0.09478594362735748, 0.043628983199596405, 0.06480378657579422, -0.019816754385828972, 0.13959994912147522, 0.011588058434426785, -0.13067865371704102, 0.02969890460371971, -0.057659149169921875, -0.0029189838096499443, -0.08909787237644196, 0.07862866669893265, -0.10746922343969345, 0.053346723318099976, 0.0007333015673793852, 0.12246362119913101, 0.2312508374452591, -0.033866558223962784, -0.04915772005915642, -0.0903518870472908, 0.047248415648937225, -0.023009784519672394, -0.020415423437952995, -0.05807829275727272, -0.08431486040353775, -0.05661151558160782, -0.08308101445436478, 0.07276345789432526, -0.21613401174545288, -0.004348615650087595, 0.03590870648622513, -0.09563235938549042, 0.0007943977834656835, 0.0652230829000473, -0.03231044486165047, 0.054162051528692245, 0.0004016105376649648, 0.0060829175636172295, -0.013955414295196533, 0.0808383971452713, -0.15191921591758728, -0.03663920611143112 ]
null
null
transformers
# Indonesian BERT2BERT Summarization Model Finetuned BERT-base summarization model for Indonesian. ## Finetuning Corpus `bert2bert-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") ``` ## Code Sample ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
{"language": "id", "license": "apache-2.0", "tags": ["pipeline:summarization", "summarization", "bert2bert"], "datasets": ["id_liputan6"]}
summarization
cahya/bert2bert-indonesian-summarization
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "pipeline:summarization", "summarization", "bert2bert", "id", "dataset:id_liputan6", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2bert #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Indonesian BERT2BERT Summarization Model Finetuned BERT-base summarization model for Indonesian. ## Finetuning Corpus 'bert2bert-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' by cahya, finetuned using id_liputan6 dataset. ## Load Finetuned Model ## Code Sample Output:
[ "# Indonesian BERT2BERT Summarization Model\n\nFinetuned BERT-base summarization model for Indonesian.", "## Finetuning Corpus\n\n'bert2bert-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' by cahya, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2bert #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Indonesian BERT2BERT Summarization Model\n\nFinetuned BERT-base summarization model for Indonesian.", "## Finetuning Corpus\n\n'bert2bert-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' by cahya, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ 77, 27, 53, 7, 7 ]
[ "passage: TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2bert #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Indonesian BERT2BERT Summarization Model\n\nFinetuned BERT-base summarization model for Indonesian.## Finetuning Corpus\n\n'bert2bert-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' by cahya, finetuned using id_liputan6 dataset.## Load Finetuned Model## Code Sample\n\n\n\nOutput:" ]
[ -0.050160616636276245, 0.0673496350646019, -0.005069548264145851, 0.035691868513822556, 0.0658717080950737, -0.02289319783449173, 0.08575485646724701, 0.0832425206899643, -0.05241302400827408, -0.032599076628685, 0.07969154417514801, 0.03029109165072441, 0.08634330332279205, 0.09904854744672775, -0.055721770972013474, -0.2871896028518677, 0.11453520506620407, 0.04181709885597229, 0.12740494310855865, 0.14490483701229095, 0.12033591419458389, -0.048145174980163574, 0.12657330930233002, 0.023488687351346016, -0.034102994948625565, 0.009010798297822475, -0.04737624526023865, -0.11229671537876129, 0.053890764713287354, 0.03153863549232483, 0.12191642075777054, 0.04671793431043625, 0.02546553686261177, -0.10415055602788925, 0.025947578251361847, -0.05006762966513634, -0.007719047833234072, 0.059953656047582626, 0.05068962275981903, 0.05292470380663872, 0.14451301097869873, 0.03885785862803459, -0.008820143528282642, -0.028893010690808296, -0.0808541476726532, -0.10194255411624908, -0.06912034004926682, 0.04476037994027138, 0.15723596513271332, 0.04301479086279869, -0.033554863184690475, 0.0314093641936779, -0.1362975537776947, 0.02750958688557148, 0.022650983184576035, -0.2612287104129791, -0.0299754086881876, 0.08408570289611816, 0.06943175196647644, 0.00015588992391712964, -0.03145049512386322, -0.03935632482171059, 0.020121799781918526, -0.008925647474825382, 0.08817441016435623, -0.14136603474617004, -0.1598636955022812, -0.05427934229373932, -0.04644940420985222, -0.004442714620381594, 0.2547723352909088, 0.010090784169733524, -0.06580627709627151, -0.0926494374871254, -0.044844165444374084, -0.002029609866440296, -0.05479894578456879, -0.036868978291749954, 0.004738903604447842, 0.05389300733804703, 0.09322640299797058, 0.004758988507091999, -0.10453126579523087, -0.022307980805635452, -0.12351309508085251, 0.005361918359994888, 0.02810642682015896, 0.019738614559173584, -0.09432107210159302, 0.05405889451503754, -0.1060355082154274, -0.18078602850437164, -0.01508024800568819, -0.017443818971514702, 0.023869588971138, 0.04703840613365173, 0.0037316307425498962, -0.07234583795070648, 0.07785268127918243, 0.10277482122182846, -0.0004894603625871241, 0.05982397496700287, 0.025096716359257698, 0.03176311030983925, 0.029890120029449463, 0.1533113718032837, -0.1283581703901291, -0.007980622351169586, 0.03489316999912262, -0.01877928338944912, 0.08514965325593948, -0.041849225759506226, -0.08541254699230194, 0.017408467829227448, 0.06484593451023102, 0.0692395269870758, -0.08064139634370804, 0.07869888097047806, -0.09132363647222519, -0.05826927721500397, 0.19508881866931915, -0.1037190780043602, -0.025961941108107567, -0.026825562119483948, -0.0065452903509140015, 0.0713493749499321, 0.00656401040032506, 0.05205367133021355, -0.05595450475811958, 0.1324862539768219, -0.052682045847177505, -0.010018965229392052, -0.0340411551296711, -0.045696187764406204, 0.03219534084200859, -0.10563458502292633, 0.01723635382950306, -0.11040277034044266, -0.16310766339302063, 0.028953172266483307, 0.05315078794956207, -0.07605040818452835, 0.02105354703962803, -0.047828976064920425, -0.004257471766322851, 0.04824109002947807, -0.07543948292732239, 0.07212511450052261, -0.07433953136205673, 0.060375358909368515, -0.009839853271842003, 0.07685784250497818, -0.13497784733772278, 0.05304969474673271, -0.16193179786205292, 0.07893048226833344, -0.10538052022457123, 0.06440619379281998, -0.017262423411011696, -0.020156705752015114, -0.12419375032186508, -0.056954871863126755, -0.030068153515458107, -0.020390620455145836, 0.04415876045823097, 0.13105887174606323, -0.18069878220558167, -0.017880475148558617, 0.1363552212715149, -0.1329302340745926, -0.12266510725021362, 0.10516777634620667, -0.012889529578387737, 0.1316549926996231, 0.009270617738366127, 0.2057824730873108, -0.031667064875364304, -0.060268744826316833, 0.0014615239342674613, 0.09612372517585754, 0.053603317588567734, -0.04994753375649452, 0.1283053755760193, 0.026022881269454956, 0.00874019879847765, 0.08122073113918304, -0.027027064934372902, 0.033600181341171265, -0.013546236790716648, -0.06274378299713135, 0.017287209630012512, -0.03647853061556816, 0.02103259786963463, -0.03020622208714485, 0.0811820849776268, -0.03332476690411568, -0.0033251396380364895, 0.053017910569906235, 0.09307007491588593, -0.06336510926485062, 0.020663810893893242, -0.0960412323474884, 0.10645301640033722, -0.1261359006166458, 0.044782064855098724, -0.12906767427921295, 0.04489169642329216, 0.042502932250499725, 0.028266483917832375, -0.01201960165053606, -0.04390973597764969, -0.0005900294636376202, -0.017661701887845993, -0.04996877908706665, -0.04010341316461563, 0.09829328209161758, 0.008944431319832802, -0.01404049526900053, -0.039797354489564896, -0.03543001785874367, -0.014268890023231506, 0.08454163372516632, -0.06192918121814728, -0.00965132750570774, 0.0423056036233902, 0.0791444405913353, -0.010873309336602688, 0.02341156080365181, 0.07066304236650467, 0.056938041001558304, -0.011890615336596966, -0.0015657527837902308, 0.0654120147228241, 0.04677669703960419, -0.14299780130386353, 0.18672850728034973, -0.08294706046581268, 0.19209617376327515, 0.14541639387607574, -0.028060398995876312, 0.028706826269626617, 0.0009262830717489123, 0.013933972455561161, -0.05333084985613823, -0.035923488438129425, 0.04177214577794075, 0.10139000415802002, 0.014252704568207264, 0.16733096539974213, -0.12358824908733368, 0.009498202241957188, 0.022723324596881866, -0.08836789429187775, -0.02184492163360119, 0.10227532684803009, 0.021582607179880142, -0.1486557573080063, 0.11387506872415543, 0.2252248227596283, -0.020832622423768044, 0.10631266236305237, -0.028508175164461136, -0.056339725852012634, -0.046301234513521194, 0.02407684735953808, -0.010916211642324924, 0.0017828766722232103, -0.20687289535999298, -0.010139886289834976, 0.10230843722820282, 0.044047340750694275, 0.01293200720101595, -0.07026197761297226, -0.014611834660172462, 0.012535475194454193, -0.024931808933615685, -0.050403203815221786, 0.07656536996364594, -0.023872828111052513, 0.07998619973659515, -0.037811364978551865, -0.0504620298743248, 0.011460416950285435, -0.010731012560427189, -0.04337463900446892, 0.1986371874809265, -0.059256259351968765, -0.34818601608276367, -0.15322473645210266, -0.13748084008693695, -0.0748337060213089, -0.010023999959230423, 0.07979914546012878, -0.07596128433942795, -0.06891418248414993, -0.08609861880540848, -0.08255857229232788, 0.0011349387932568789, -0.000714953348506242, -0.08644911646842957, -0.024682877585291862, 0.019089458510279655, -0.12146353721618652, -0.027265585958957672, 0.015923921018838882, -0.054172586649656296, 0.12333276122808456, -0.0884963721036911, 0.08966600149869919, 0.09768544882535934, -0.032924752682447433, -0.003576535964384675, 0.0011723617790266871, 0.15461286902427673, -0.040980562567710876, 0.025558723136782646, 0.20902273058891296, -0.09551280736923218, 0.0249794889241457, 0.12693756818771362, 0.017532669007778168, -0.08208681643009186, 0.04096487537026405, -0.03692189231514931, -0.0723850429058075, -0.18918251991271973, -0.05624599754810333, -0.07816235721111298, 0.027101462706923485, 0.011656404472887516, 0.010056368075311184, 0.007325881160795689, 0.10537844151258469, 0.019607599824666977, 0.05110457167029381, -0.006958897691220045, 0.05169600993394852, 0.14624932408332825, -0.009193282574415207, 0.11915233731269836, -0.057094756513834, -0.04551639407873154, 0.10319794714450836, 0.03638817369937897, 0.09069348126649857, 0.03405879810452461, 0.13953475654125214, 0.07510451227426529, 0.18823134899139404, 0.09278011322021484, 0.09842278808355331, -0.1366986632347107, 0.006726372055709362, -0.07024186104536057, -0.08781269192695618, -0.07580055296421051, -0.006019672844558954, -0.0796993225812912, 0.005965983495116234, -0.03107094019651413, -0.002286729170009494, 0.04251403361558914, 0.13197728991508484, 0.05149022117257118, -0.18529675900936127, -0.0638376995921135, 0.04390234500169754, -0.013353713788092136, -0.03474302589893341, 0.016956891864538193, 0.07636202126741409, -0.09554048627614975, 0.036602310836315155, 0.012028202414512634, 0.1328956037759781, -0.10842215269804001, 0.020841138437390327, -0.07619461417198181, -0.01917264610528946, 0.043416012078523636, 0.12033030390739441, -0.21466587483882904, 0.21379558742046356, 0.01567564718425274, 0.0011099700350314379, -0.05907745659351349, 0.013663167133927345, 0.0065360721200704575, 0.0329381600022316, 0.13399651646614075, 0.004817800596356392, 0.04900972545146942, -0.12338494509458542, -0.15906155109405518, 0.07738137245178223, 0.034917112439870834, 0.03521951287984848, -0.01633703149855137, -0.012093869037926197, 0.007496921345591545, -0.016832707449793816, 0.10236334055662155, -0.040425777435302734, -0.11672686785459518, 0.06139993295073509, 0.10656620562076569, 0.07771460711956024, -0.05801979452371597, -0.05048268660902977, 0.05304786562919617, 0.20916566252708435, 0.018699491396546364, -0.10770014673471451, -0.08868464082479477, -0.049848444759845734, 0.15114609897136688, -0.09263338893651962, 0.015007817186415195, -0.07876081764698029, 0.026651322841644287, 0.021757526323199272, -0.07054547965526581, 0.11532685160636902, -0.03747625648975372, -0.0527486689388752, -0.04463601112365723, 0.1093033105134964, -0.01136132050305605, 0.018780719488859177, 0.04618426784873009, -0.01216547004878521, -0.019212186336517334, -0.1382153034210205, -0.1361163854598999, 0.017494576051831245, 0.058414481580257416, 0.03401704132556915, -0.05703076347708702, -0.08620835095643997, 0.017423884943127632, -0.08681866526603699, 0.11740025877952576, 0.07956675440073013, -0.008281691931188107, 0.12218935787677765, 0.26845255494117737, -0.04594998434185982, -0.24056287109851837, -0.17993535101413727, -0.008646282367408276, 0.014701949432492256, -0.07872764021158218, -0.11749205738306046, 0.15938197076320648, 0.16733519732952118, -0.023592587560415268, -0.08984694629907608, -0.20933093130588531, -0.12977565824985504, 0.12393208593130112, 0.052935145795345306, 0.21755357086658478, -0.11261221021413803, -0.1105789989233017, -0.04442574083805084, -0.28060653805732727, 0.08434417098760605, -0.06773853302001953, 0.09029129147529602, -0.03357996046543121, 0.0025037650484591722, -0.009924601763486862, -0.0021854510996490717, 0.16794165968894958, 0.04193297401070595, 0.022444454953074455, -0.05572870373725891, -0.03260646387934685, 0.0742684155702591, 0.0009430415229871869, 0.15649648010730743, -0.15728284418582916, 0.045402880758047104, -0.15311111509799957, -0.032117072492837906, -0.036307550966739655, 0.0011162817245349288, -0.0034839205909520388, -0.07404381781816483, -0.02610798366367817, 0.04734330624341965, 0.004835202358663082, 0.02140621468424797, 0.18881210684776306, -0.018561722710728645, -0.058774176985025406, 0.12166629731655121, 0.10636433959007263, -0.23905529081821442, 0.059862811118364334, -0.09607918560504913, -0.039383817464113235, 0.078721784055233, -0.1339464783668518, 0.027317989617586136, 0.08100739121437073, -0.02254386991262436, 0.12771447002887726, 0.01557841058820486, 0.014118808321654797, 0.08822481334209442, 0.09583383053541183, -0.08445685356855392, -0.04936666786670685, 0.01087667141109705, 0.06728530675172806, -0.02424255572259426, -0.01259954459965229, 0.11664901673793793, -0.05445433780550957, -0.04608635604381561, 0.0033992393873631954, 0.03622791916131973, -0.055341288447380066, 0.15455995500087738, -0.03031994216144085, 0.04763033613562584, -0.12664452195167542, 0.15359270572662354, 0.12061583995819092, -0.14740385115146637, 0.006754001136869192, 0.055147185921669006, -0.1589866429567337, -0.05178122594952583, -0.06374441087245941, 0.1334175318479538, -0.05078628659248352, -0.10005701333284378, -0.033627428114414215, -0.10389157384634018, 0.011767096817493439, 0.013232387602329254, 0.10656219720840454, 0.04977339133620262, -0.08080249279737473, -0.07838396728038788, -0.002098226686939597, 0.06674881279468536, 0.14797750115394592, 0.03784490004181862, -0.05022597685456276, -0.12111242860555649, 0.05000467598438263, 0.07601188123226166, -0.04908999428153038, -0.07343503832817078, -0.07443789392709732, -0.006287289317697287, -0.16717390716075897, 0.08210748434066772, -0.15132570266723633, -0.024573761969804764, -0.05255414545536041, -0.0499415397644043, -0.020276430994272232, -0.010221672244369984, -0.02672985941171646, 0.010557662695646286, -0.060738760977983475, 0.08033223450183868, -0.09798208624124527, -0.03298609331250191, 0.07524367421865463, -0.04760667309165001, 0.08624701201915741, 0.06645594537258148, -0.04882879555225372, 0.0712171420454979, -0.15477780997753143, -0.022452395409345627, 0.08768478780984879, 0.04491962119936943, 0.05391963571310043, -0.09053454548120499, 0.01069339644163847, 0.11506714671850204, -0.001779626589268446, -0.008799022063612938, 0.13630276918411255, -0.10916423052549362, -0.07734903693199158, -0.08899831026792526, -0.0529598742723465, -0.05923239514231682, 0.054123032838106155, 0.16255135834217072, 0.0797635167837143, 0.15125806629657745, -0.051540080457925797, 0.012460369616746902, -0.0998404249548912, 0.016791103407740593, -0.03483406454324722, -0.15462350845336914, -0.11665593087673187, -0.11741247028112411, -0.01977253518998623, -0.04495862498879433, 0.16084551811218262, 0.003437357721850276, 0.015801914036273956, -0.005758121609687805, 0.04023120552301407, 0.0727030485868454, 0.02488933876156807, 0.32932010293006897, 0.10173679888248444, -0.027891648933291435, -0.03568252921104431, 0.031173130497336388, 0.017792189493775368, 0.16563965380191803, -0.011502176523208618, 0.16443496942520142, 0.05713631957769394, 0.11806030571460724, -0.010540935210883617, 0.052156854420900345, -0.11603236198425293, -0.053529031574726105, -0.06260598450899124, 0.07912949472665787, 0.04204728454351425, 0.14616182446479797, 0.10066540539264679, -0.1264808624982834, 0.030322983860969543, 0.015538746491074562, -0.09588794410228729, -0.07833956927061081, -0.22263845801353455, -0.0969625785946846, -0.04352148249745369, -0.03812827542424202, -0.14554788172245026, -0.00278789852745831, 0.06390376389026642, 0.04169602319598198, -0.04748350754380226, 0.14082187414169312, -0.07750113308429718, -0.04862363636493683, 0.09833445399999619, -0.007481907960027456, -0.01022961363196373, 0.0015945648774504662, 0.020259199663996696, -0.0201311893761158, 0.0783396065235138, 0.009358059614896774, 0.05229700729250908, 0.06367768347263336, -0.00956080760806799, -0.03333531692624092, -0.08949402719736099, -0.038482122123241425, 0.00973182450979948, 0.007699434645473957, 0.1009884923696518, 0.024565916508436203, 0.0034202418755739927, 0.0243030097335577, 0.17447686195373535, -0.011137633584439754, -0.07680745422840118, -0.1061541810631752, 0.1528811901807785, -0.008788544684648514, 0.009614433161914349, 0.06539978086948395, -0.03211620822548866, -0.04829321429133415, 0.29047706723213196, 0.16881348192691803, -0.053241610527038574, 0.0013085915707051754, 0.0046456353738904, 0.018698865547776222, -0.0013043396174907684, 0.08903414756059647, 0.11489487439393997, 0.16908332705497742, -0.058760225772857666, 0.04714002460241318, -0.07085738331079483, -0.07527106255292892, -0.05926871672272682, 0.05292367935180664, 0.011752152815461159, -0.07702671736478806, -0.06699196994304657, 0.05319404602050781, -0.10733481496572495, -0.0698271095752716, -0.02711951918900013, -0.07746050506830215, -0.1088908314704895, -0.03941207379102707, -0.013808680698275566, 0.09445755183696747, 0.006939366925507784, -0.0212123803794384, 0.06010884419083595, 0.08400461822748184, 0.05455400049686432, -0.08659032732248306, -0.08278945833444595, 0.08586098253726959, 0.005718450993299484, 0.11081842333078384, 0.030366407707333565, 0.009781016036868095, 0.06190352886915207, 0.09884385019540787, -0.08976687490940094, 0.1330149620771408, 0.01838451810181141, 0.08081057667732239, 0.026343833655118942, 0.014255193062126637, -0.004183680284768343, 0.04304042458534241, 0.019822970032691956, -0.09638676792383194, 0.024094050750136375, 0.007857179269194603, -0.024808265268802643, -0.06747764348983765, 0.0032879910431802273, -0.06055191159248352, 0.09764712303876877, 0.15072844922542572, -0.034278564155101776, -0.053384166210889816, -0.06061618775129318, 0.09243655204772949, 0.015233430080115795, -0.087540403008461, -0.02819965034723282, -0.11142250895500183, -0.03404892608523369, 0.023482250049710274, 0.05845730006694794, -0.19585688412189484, 0.025317303836345673, -0.1122303456068039, 0.020511925220489502, -0.06044602766633034, 0.06207035481929779, -0.006561086978763342, 0.061041709035634995, -0.010010112076997757, -0.09269064664840698, 0.0300421305000782, 0.0531635656952858, -0.07832576334476471, -0.08568567037582397 ]
null
null
transformers
# Indonesian BERT2BERT Summarization Model Finetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization. ## Finetuning Corpus `bert2gpt-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` and `cahya/gpt2-small-indonesian-522M`by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization") ``` ## Code Sample ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
{"language": "id", "license": "apache-2.0", "tags": ["pipeline:summarization", "summarization", "bert2gpt"], "datasets": ["id_liputan6"]}
summarization
cahya/bert2gpt-indonesian-summarization
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "pipeline:summarization", "summarization", "bert2gpt", "id", "dataset:id_liputan6", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2gpt #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Indonesian BERT2BERT Summarization Model Finetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization. ## Finetuning Corpus 'bert2gpt-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' and 'cahya/gpt2-small-indonesian-522M'by cahya, finetuned using id_liputan6 dataset. ## Load Finetuned Model ## Code Sample Output:
[ "# Indonesian BERT2BERT Summarization Model\n\nFinetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization.", "## Finetuning Corpus\n\n'bert2gpt-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' and 'cahya/gpt2-small-indonesian-522M'by cahya, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2gpt #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Indonesian BERT2BERT Summarization Model\n\nFinetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization.", "## Finetuning Corpus\n\n'bert2gpt-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' and 'cahya/gpt2-small-indonesian-522M'by cahya, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ 78, 40, 72, 7, 7 ]
[ "passage: TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #pipeline-summarization #summarization #bert2gpt #id #dataset-id_liputan6 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Indonesian BERT2BERT Summarization Model\n\nFinetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization.## Finetuning Corpus\n\n'bert2gpt-indonesian-summarization' model is based on 'cahya/bert-base-indonesian-1.5G' and 'cahya/gpt2-small-indonesian-522M'by cahya, finetuned using id_liputan6 dataset.## Load Finetuned Model## Code Sample\n\n\n\nOutput:" ]
[ -0.03414904698729515, 0.05452294275164604, -0.003054835135117173, 0.03331049159169197, 0.053835224360227585, -0.011508132331073284, 0.09228957444429398, 0.08031943440437317, -0.10108745098114014, -0.04057403653860092, 0.06535075604915619, -0.0007981662056408823, 0.1093040481209755, 0.13773053884506226, -0.018667971715331078, -0.36194494366645813, 0.09425421804189682, 0.014514997601509094, 0.09882299602031708, 0.14001528918743134, 0.13401906192302704, -0.012088124640285969, 0.12399730086326599, 0.05146819353103638, -0.018765971064567566, 0.003732275450602174, -0.07121285051107407, -0.10708662122488022, 0.023454060778021812, 0.044853776693344116, 0.07444842904806137, 0.01804749295115471, 0.02730356901884079, -0.10918011516332626, 0.018710507079958916, -0.04343007504940033, -0.003384688636288047, 0.0449814535677433, 0.07503747195005417, 0.07449231296777725, 0.23877476155757904, 0.043911997228860855, -0.018570013344287872, -0.037891171872615814, -0.06695396453142166, -0.0790787935256958, -0.050457555800676346, 0.03971877694129944, 0.1703488528728485, 0.028042975813150406, -0.04802357032895088, 0.007237808778882027, -0.12642353773117065, 0.02792624570429325, -0.02098679170012474, -0.2134232074022293, -0.035583239048719406, 0.09768187999725342, 0.04869590327143669, 0.014036931097507477, 0.016024792566895485, -0.032437700778245926, 0.022928103804588318, 0.004647492431104183, 0.06045224890112877, -0.12011022120714188, -0.14681248366832733, -0.07188785076141357, -0.05985373631119728, -0.0016395511338487267, 0.2379002720117569, -0.011081780306994915, -0.05530291795730591, -0.12381675839424133, -0.03730295971035957, 0.021411554887890816, -0.06311284750699997, -0.03510516136884689, -0.002127070212736726, 0.06996689736843109, 0.1213633194565773, -0.01954198069870472, -0.08733104914426804, -0.03325294330716133, -0.11959932744503021, 0.03091634251177311, 0.03460269048810005, 0.02575872838497162, -0.11474595218896866, 0.053834788501262665, -0.15129368007183075, -0.1939922720193863, 0.0062169479206204414, -0.04339415580034256, 0.027933446690440178, 0.07096444815397263, 0.0015902230516076088, -0.0503128319978714, 0.06482010334730148, 0.0901375263929367, 0.00687560997903347, 0.06376403570175171, 0.06682418286800385, 0.02706126868724823, 0.02252182364463806, 0.13593049347400665, -0.13985297083854675, -0.0027914633974432945, 0.02365323156118393, -0.015531799755990505, 0.09676999598741531, -0.03548473119735718, -0.09689029306173325, 0.0457213893532753, 0.029367968440055847, 0.04771289974451065, -0.0889715701341629, 0.08116345852613449, -0.08045835793018341, -0.07169672101736069, 0.21200990676879883, -0.11184605956077576, -0.0353066585958004, -0.04763967543840408, -0.022878868505358696, 0.08910415321588516, -0.01135172974318266, 0.06430260837078094, -0.06371258199214935, 0.09649739414453506, -0.03796963021159172, -0.018114132806658745, -0.057611990720033646, -0.041074588894844055, 0.02576233446598053, -0.09950335323810577, 0.02488204836845398, -0.09700857102870941, -0.21468305587768555, 0.01470998115837574, 0.07036387920379639, -0.09419909119606018, 0.010146242566406727, -0.06330389529466629, -0.01825515739619732, 0.0431026816368103, -0.059704434126615524, 0.09756834805011749, -0.05730407312512398, 0.03114328160881996, -0.00844651460647583, 0.09464392066001892, -0.09277927875518799, 0.057458989322185516, -0.15885213017463684, 0.07831785082817078, -0.12697890400886536, 0.0882103443145752, -0.017885643988847733, -0.016642950475215912, -0.10978727787733078, -0.05314749851822853, -0.047666098922491074, 0.008168729022145271, 0.025995932519435883, 0.1378576159477234, -0.20074760913848877, -0.03360829874873161, 0.16952592134475708, -0.15996332466602325, -0.12104031443595886, 0.10646019130945206, 0.009121345356106758, 0.17443375289440155, 0.014714103192090988, 0.21275846660137177, 0.008184196427464485, -0.026783490553498268, 0.04076423868536949, 0.10477641969919205, 0.06715700030326843, -0.03686164692044258, 0.13120891153812408, 0.018596701323986053, 0.016046589240431786, 0.0971938967704773, -0.036716051399707794, 0.055480919778347015, 0.005793094169348478, -0.06217360869050026, 0.028385374695062637, -0.038754653185606, -0.004436112008988857, -0.0393335185945034, 0.09067904949188232, -0.02991318516433239, -0.02526957355439663, 0.015489702112972736, 0.10459665954113007, -0.07406003773212433, 0.0010809717932716012, -0.10081198811531067, 0.06670529395341873, -0.10123375803232193, 0.05522375553846359, -0.11608472466468811, 0.04711327329277992, 0.04354194924235344, -0.038291871547698975, -0.018398908898234367, -0.05058702081441879, 0.004139619879424572, -0.018170464783906937, -0.04384661093354225, -0.017960047349333763, 0.11101062595844269, -0.01078888401389122, 0.025343438610434532, -0.03863981366157532, -0.03143875673413277, -0.021312320604920387, 0.11853086203336716, -0.06256856769323349, 0.006728286389261484, 0.03092900477349758, 0.09932903200387955, -0.024985389783978462, 0.019918452948331833, 0.0907590389251709, 0.06214587390422821, 0.007512060459703207, -0.012182267382740974, 0.03983040153980255, 0.04250823333859444, -0.14396557211875916, 0.1928212195634842, -0.09274697303771973, 0.17270807921886444, 0.13618433475494385, 0.006529632955789566, 0.0406411774456501, -0.0024470132775604725, 0.02545487880706787, -0.04847109690308571, -0.0327397845685482, 0.04937385395169258, 0.10591207444667816, 0.007699107751250267, 0.15868708491325378, -0.12957510352134705, -0.0037620216608047485, 0.0168784037232399, -0.09019813686609268, -0.016536038368940353, 0.10422521829605103, 0.05550792068243027, -0.1468532383441925, 0.1211981326341629, 0.16604913771152496, -0.03498745709657669, 0.11282327026128769, -0.04817355051636696, -0.04740511253476143, -0.04162773862481117, -0.002104259328916669, -0.025156019255518913, -0.02348184585571289, -0.19318623840808868, -0.0093534579500556, 0.09967128932476044, 0.05582455173134804, 0.04892878234386444, -0.08004791289567947, -0.022950714454054832, 0.014670017175376415, -0.026860063895583153, -0.04505343362689018, 0.07362053543329239, -0.050940047949552536, 0.06504522264003754, -0.05767742544412613, -0.03349956497550011, 0.013437822461128235, -0.0188513845205307, -0.0662415400147438, 0.19304868578910828, -0.07523521780967712, -0.3568865954875946, -0.16263271868228912, -0.07721120864152908, -0.07652467489242554, -0.020778246223926544, 0.061200547963380814, -0.09941834211349487, -0.07011439651250839, -0.10693918168544769, -0.059824034571647644, -0.013887608423829079, -0.018227877095341682, -0.09055336564779282, -0.012915872037410736, -0.014912741258740425, -0.11380215734243393, -0.02576983906328678, 0.025396501645445824, -0.03674164041876793, 0.12067468464374542, -0.12077020853757858, 0.059897568076848984, 0.13457436859607697, -0.005196745973080397, 0.0004775765701197088, 0.0028036765288561583, 0.16588467359542847, -0.06333424150943756, 0.04675017669796944, 0.21415074169635773, -0.06385532766580582, 0.027958648279309273, 0.12200465798377991, 0.01789531297981739, -0.08024071902036667, 0.054924484342336655, -0.06107042729854584, -0.07342579215765, -0.1823582649230957, -0.07415327429771423, -0.07429587841033936, -0.007213099393993616, -0.002102046739310026, 0.0007132989703677595, 0.016289275139570236, 0.12118183076381683, 0.008336447179317474, 0.05768417939543724, 0.010255502536892891, 0.04558455944061279, 0.1476210355758667, -0.003095361404120922, 0.10446248948574066, -0.0505438856780529, -0.043702397495508194, 0.09626177698373795, 0.02114832028746605, 0.10048510879278183, 0.02708950825035572, 0.11995226889848709, 0.07835996896028519, 0.14660532772541046, 0.10950526595115662, 0.1081119254231453, -0.1404018998146057, 0.020695514976978302, -0.0786658376455307, -0.09745229780673981, -0.07671588659286499, 0.021928571164608, -0.1124686449766159, -0.026903823018074036, -0.0057272110134363174, 0.039634305983781815, 0.03713076561689377, 0.0765022337436676, 0.061895474791526794, -0.18903538584709167, -0.05169214308261871, 0.06526238471269608, -0.015830377116799355, -0.017979159951210022, 0.025717725977301598, 0.11074518412351608, -0.09734505414962769, 0.08123820275068283, 0.037679847329854965, 0.12898094952106476, -0.09783322364091873, -0.0027314466424286366, -0.050601448863744736, 0.019301312044262886, 0.05715636909008026, 0.1254080832004547, -0.2000129371881485, 0.20671071112155914, 0.010879975743591785, 0.015521511435508728, -0.08124541491270065, 0.04118451103568077, 0.01967415027320385, 0.01526663452386856, 0.1039140596985817, 0.003726567607372999, -0.03965926170349121, -0.07817201316356659, -0.15132847428321838, 0.0874892920255661, 0.04425114765763283, 0.019755272194743156, -0.023480700328946114, -0.002338673919439316, 0.015370520763099194, -0.02623520791530609, 0.049222711473703384, -0.050684213638305664, -0.13899080455303192, 0.07146215438842773, 0.0637829601764679, 0.058238524943590164, -0.06148376315832138, -0.05930347368121147, 0.06265540421009064, 0.152723491191864, 0.011960893869400024, -0.14400945603847504, -0.08681745082139969, -0.04956122487783432, 0.17615558207035065, -0.08552898466587067, 0.021439023315906525, -0.05008186772465706, 0.04860944300889969, 0.023169754073023796, -0.060739666223526, 0.09674245119094849, -0.06558849662542343, -0.056534357368946075, -0.019780946895480156, 0.09605803340673447, -0.006027374416589737, 0.022344155237078667, 0.04393314942717552, -0.011636440642178059, -0.010841970331966877, -0.1592642366886139, -0.14202536642551422, 0.07649175822734833, 0.02589648962020874, 0.035777077078819275, -0.047786079347133636, -0.025990573689341545, 0.024524137377738953, -0.10069126635789871, 0.08254052698612213, 0.05063533037900925, 0.020401669666171074, 0.1126263216137886, 0.25278425216674805, -0.04892263188958168, -0.2199113368988037, -0.18512681126594543, 0.025203365832567215, 0.02775680460035801, -0.061103567481040955, -0.14548659324645996, 0.1388232409954071, 0.16766418516635895, -0.02703220397233963, -0.10476913303136826, -0.24078808724880219, -0.1251676231622696, 0.10894450545310974, 0.026849938556551933, 0.11674424260854721, -0.12651190161705017, -0.11265920102596283, -0.05381171032786369, -0.2264421284198761, 0.06892281025648117, -0.04535359889268875, 0.06841222196817398, -0.01515444740653038, 0.02243652194738388, -0.011923194862902164, 0.0055060661397874355, 0.1900990754365921, 0.0614333301782608, -0.004085512366145849, -0.06208700314164162, 0.0129542276263237, 0.09222303330898285, 0.013963503763079643, 0.17723658680915833, -0.17137198150157928, 0.03630121797323227, -0.1819850504398346, -0.052030131220817566, -0.019792744889855385, -0.029290899634361267, -0.000808355922345072, -0.07335954159498215, -0.01914723590016365, 0.06754963099956512, 0.02075347490608692, 0.022120408713817596, 0.11606194078922272, -0.007890930399298668, -0.07980311661958694, 0.09473512321710587, 0.12885425984859467, -0.224430114030838, 0.07306941598653793, -0.08516585826873779, -0.01722092181444168, 0.06421347707509995, -0.161794975399971, -0.015849340707063675, 0.0695575401186943, -0.025984808802604675, 0.13656270503997803, -0.00030874344520270824, -0.015497907064855099, 0.07818976789712906, 0.11695254594087601, -0.04076923057436943, -0.08538387715816498, -0.01916738972067833, 0.09053832292556763, -0.020841358229517937, -0.028523707762360573, 0.0965552106499672, -0.06231299415230751, -0.039867646992206573, -0.014377905987203121, 0.06613348424434662, -0.056790292263031006, 0.16639964282512665, -0.008492720313370228, 0.04500865191221237, -0.1328698992729187, 0.15240614116191864, 0.11655589938163757, -0.131117582321167, 0.0074108256958425045, 0.08149269223213196, -0.15706254541873932, -0.047142840921878815, -0.04769045114517212, 0.11332020163536072, -0.016426073387265205, -0.12442038953304291, -0.007738415151834488, -0.11300607770681381, -0.0035818396136164665, -0.025985684245824814, 0.09781203418970108, 0.030512629076838493, -0.09119430929422379, -0.07274304330348969, 0.006656469311565161, 0.056499939411878586, 0.1785912960767746, 0.019982075318694115, -0.051967013627290726, -0.1127271056175232, 0.07526934891939163, 0.06615372747182846, -0.05464224889874458, -0.0611916221678257, -0.0736212208867073, -0.017721999436616898, -0.13206544518470764, 0.08603648096323013, -0.17651355266571045, -0.020506294444203377, -0.042620375752449036, -0.04335460439324379, -0.02903120219707489, -0.02228221669793129, -0.02799845114350319, 0.013364920392632484, -0.08898918330669403, 0.07356543093919754, -0.0705486536026001, -0.017749056220054626, 0.08145204931497574, -0.05707654356956482, 0.06338042765855789, 0.048246197402477264, -0.03636661171913147, 0.07859976589679718, -0.13126926124095917, -0.0028568629641085863, 0.08274441957473755, 0.06563989073038101, 0.036877818405628204, -0.10246431082487106, 0.020582323893904686, 0.10888833552598953, -0.00895069632679224, -0.00660080648958683, 0.06918331980705261, -0.10017555207014084, -0.0387306772172451, -0.074642114341259, -0.040700480341911316, -0.0665779560804367, 0.05220258980989456, 0.15181395411491394, 0.0531863234937191, 0.13955526053905487, -0.04740467667579651, 0.014028877951204777, -0.10422639548778534, 0.01849467307329178, -0.039091192185878754, -0.14578400552272797, -0.0750962421298027, -0.10860146582126617, -0.006921275518834591, -0.021659016609191895, 0.1926378607749939, 0.062238942831754684, -0.02742198295891285, -0.017873596400022507, 0.042838938534259796, 0.11953277140855789, 0.02530946023762226, 0.31147292256355286, 0.13874396681785583, -0.00824523065239191, -0.05714724212884903, 0.01032206416130066, 0.00723666325211525, 0.09825140237808228, -0.014939039014279842, 0.13922451436519623, 0.02346138469874859, 0.12291380017995834, 0.0046746511943638325, 0.056142065674066544, -0.08351161330938339, -0.02685086615383625, -0.0514991395175457, 0.08288717269897461, 0.03338706120848656, 0.14853057265281677, 0.09157445281744003, -0.13155007362365723, 0.032388053834438324, 0.04184513911604881, -0.10092625021934509, -0.09957986325025558, -0.28575873374938965, -0.10196448117494583, -0.07310260832309723, -0.04282794147729874, -0.16017217934131622, -0.021841760724782944, 0.11678551882505417, 0.03501604497432709, -0.05631973221898079, 0.12466942518949509, -0.07725992053747177, -0.057126548141241074, 0.10308992117643356, -0.014550388790667057, -0.011372682638466358, -0.007596129085868597, 0.007294276263564825, -0.018005583435297012, 0.09037783741950989, 0.018919533118605614, 0.04291749745607376, 0.028323063626885414, -0.012149641290307045, -0.02851729653775692, -0.0646553635597229, -0.044766079634428024, -0.007082910742610693, 0.0013315510004758835, 0.06391490250825882, 0.031788911670446396, -0.021555522456765175, 0.031378086656332016, 0.14158447086811066, 0.00769605441018939, -0.12381283193826675, -0.11965344101190567, 0.13697688281536102, -0.025118814781308174, 0.019415205344557762, 0.08517887443304062, -0.04735560715198517, -0.08851185441017151, 0.2964377999305725, 0.1959669440984726, -0.044964659959077835, -0.02087707258760929, 0.011704766191542149, 0.017465192824602127, -0.017205385491251945, 0.10166767239570618, 0.11282256245613098, 0.1918138563632965, -0.046991437673568726, 0.053405020385980606, -0.05804628133773804, -0.10554566234350204, -0.0554906390607357, 0.025560662150382996, 0.028752539306879044, -0.08491544425487518, -0.03575762361288071, 0.09223292022943497, -0.1399378478527069, -0.033017948269844055, -0.0552854910492897, -0.05559935420751572, -0.12313801050186157, -0.03229284659028053, -0.016635917127132416, 0.13161228597164154, 0.019578842446208, -0.012871221639215946, 0.04590216279029846, 0.08213218301534653, 0.054616909474134445, -0.08934236317873001, -0.08865957707166672, 0.09724906086921692, -0.028315069153904915, 0.091136634349823, 0.027150560170412064, 0.034647636115550995, 0.06373108923435211, 0.07369713485240936, -0.07873529940843582, 0.13279128074645996, 0.027735192328691483, 0.1114412397146225, 0.04125077277421951, 0.01902686059474945, -0.010806094855070114, 0.004701335448771715, 0.04147731140255928, -0.09727931767702103, 0.0307527557015419, 0.0529782772064209, 0.01101903896778822, -0.06739379465579987, -0.007854773662984371, -0.08608284592628479, 0.09533552825450897, 0.1670224517583847, -0.04573271796107292, -0.0393875353038311, -0.04781358316540718, 0.11413908004760742, -0.00378416501916945, -0.05399787425994873, -0.00197484134696424, -0.1299864649772644, -0.07431448996067047, 0.003485447959974408, 0.05361279100179672, -0.20001474022865295, 0.04404532164335251, -0.1210257038474083, 0.029767142608761787, -0.0604759082198143, 0.0544927753508091, 0.018828365951776505, 0.05229160189628601, -0.016981687396764755, -0.09135845303535461, 0.012106631882488728, 0.0339478999376297, -0.08541348576545715, -0.06733187288045883 ]
null
null
transformers
# Indonesian DistilBERT base model (uncased) ## Model description This model is a distilled version of the [Indonesian BERT base model](https://huggingface.co/cahya/bert-base-indonesian-1.5G). This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/distilbert-base-indonesian') >>> unmasker("Ayahku sedang bekerja di sawah untuk [MASK] padi") [ { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk menanam padi [SEP]", "score": 0.6853187084197998, "token": 12712, "token_str": "menanam" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk bertani padi [SEP]", "score": 0.03739545866847038, "token": 15484, "token_str": "bertani" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk memetik padi [SEP]", "score": 0.02742469497025013, "token": 30338, "token_str": "memetik" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk penggilingan padi [SEP]", "score": 0.02214187942445278, "token": 28252, "token_str": "penggilingan" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk tanam padi [SEP]", "score": 0.0185895636677742, "token": 11308, "token_str": "tanam" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel model_name='cahya/distilbert-base-indonesian' tokenizer = DistilBertTokenizer.from_pretrained(model_name) model = DistilBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel model_name='cahya/distilbert-base-indonesian' tokenizer = DistilBertTokenizer.from_pretrained(model_name) model = TFDistilBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was distiled with 522MB of indonesian Wikipedia and 1GB of [indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018). The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
{"language": "id", "license": "mit", "datasets": ["wikipedia", "id_newspapers_2018"], "widget": [{"text": "ayahku sedang bekerja di sawah untuk [MASK] padi."}]}
fill-mask
cahya/distilbert-base-indonesian
[ "transformers", "pytorch", "distilbert", "fill-mask", "id", "dataset:wikipedia", "dataset:id_newspapers_2018", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #distilbert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Indonesian DistilBERT base model (uncased) ## Model description This model is a distilled version of the Indonesian BERT base model. This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in Tensorflow: ## Training data This model was distiled with 522MB of indonesian Wikipedia and 1GB of indonesian newspapers. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:
[ "# Indonesian DistilBERT base model (uncased)", "## Model description\nThis model is a distilled version of the Indonesian BERT base model.\nThis model is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was distiled with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ "TAGS\n#transformers #pytorch #distilbert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Indonesian DistilBERT base model (uncased)", "## Model description\nThis model is a distilled version of the Indonesian BERT base model.\nThis model is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was distiled with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ 61, 14, 80, 9, 48, 62 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #fill-mask #id #dataset-wikipedia #dataset-id_newspapers_2018 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Indonesian DistilBERT base model (uncased)## Model description\nThis model is a distilled version of the Indonesian BERT base model.\nThis model is uncased.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models## Intended uses & limitations### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:## Training data\n\nThis model was distiled with 522MB of indonesian Wikipedia and 1GB of\nindonesian newspapers.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ -0.0590384416282177, 0.04011964797973633, -0.00023383958614431322, 0.016686121001839638, 0.10903443396091461, -0.007386229932308197, 0.15210486948490143, 0.10432406514883041, -0.08398169279098511, -0.025335397571325302, 0.011890373192727566, -0.04981958493590355, 0.10694326460361481, 0.12301405519247055, 0.021121736615896225, -0.3889755308628082, 0.05243202671408653, -0.028155598789453506, 0.08470650762319565, 0.13226376473903656, 0.10678582638502121, -0.04915709048509598, 0.05191421881318092, 0.029676685109734535, -0.09242275357246399, -0.015381221659481525, -0.09576629102230072, -0.12283246219158173, 0.03908522054553032, -0.00007821938925189897, 0.13143184781074524, 0.014454674907028675, 0.1352761834859848, -0.05807939171791077, 0.023730939254164696, 0.01634889654815197, 0.0190755482763052, 0.050692006945610046, 0.007715079467743635, 0.05459964647889137, 0.24093982577323914, -0.03413248062133789, -0.00481032207608223, -0.020303135737776756, -0.07319104671478271, -0.15570200979709625, -0.06696954369544983, 0.1357649862766266, 0.18123839795589447, 0.127009317278862, -0.03308665379881859, 0.017557110637426376, -0.09933187067508698, 0.017156438902020454, 0.02508562244474888, -0.10604146122932434, -0.036880139261484146, 0.04655243828892708, 0.017049197107553482, 0.051630955189466476, -0.02923736535012722, -0.02464895322918892, 0.002437559189274907, 0.04256303235888481, 0.05992930382490158, -0.05616755411028862, 0.023743070662021637, -0.09434475004673004, -0.04626712203025818, -0.03213626518845558, 0.17101192474365234, -0.008661847561597824, -0.07107190042734146, -0.16090144217014313, 0.005540752783417702, 0.07130204886198044, -0.024593839421868324, -0.025821508839726448, -0.025711579248309135, 0.025813911110162735, 0.13883426785469055, -0.06482012569904327, -0.1163313016295433, 0.00015822415298316628, -0.07267987728118896, 0.07901111990213394, 0.01848343200981617, 0.04992641881108284, -0.11969657987356186, 0.08939067274332047, -0.09111537784337997, -0.16592521965503693, -0.002945095067843795, -0.04677080735564232, 0.001352388528175652, 0.05815465748310089, -0.003200132865458727, -0.14432495832443237, -0.04423723742365837, -0.034586258232593536, -0.08265671133995056, -0.018291529268026352, 0.0834513008594513, 0.05469169840216637, 0.07759641110897064, 0.11765778064727783, -0.13546065986156464, 0.017564553767442703, 0.004167585633695126, 0.015216788277029991, 0.023423364385962486, -0.03244246914982796, -0.07419909536838531, 0.009635115042328835, 0.005740799941122532, 0.019717376679182053, -0.02595420926809311, 0.034500084817409515, 0.007191109471023083, -0.0835777074098587, 0.208281472325325, -0.12987399101257324, -0.04954589530825615, -0.046567145735025406, -0.0996474176645279, 0.15883031487464905, 0.0711691752076149, -0.002953793853521347, -0.07669954746961594, 0.08054395765066147, 0.0005643354961648583, -0.003268009051680565, -0.09587641805410385, -0.12042047083377838, -0.0008645675261504948, -0.1476225107908249, -0.02675100415945053, -0.09375561028718948, -0.29150065779685974, -0.037324488162994385, 0.05012418329715729, -0.09035123884677887, 0.03963322937488556, -0.05662202090024948, -0.012483473867177963, 0.025524809956550598, -0.01847737841308117, 0.03573935478925705, -0.012188942171633244, 0.048127949237823486, -0.038834575563669205, 0.1308984011411667, -0.052265044301748276, 0.04717906564474106, -0.0798514261841774, 0.05733538419008255, -0.13578377664089203, 0.1157468631863594, 0.014807481318712234, 0.011327502317726612, -0.09817135334014893, -0.09343588352203369, -0.055010825395584106, 0.0006941039464436471, 0.022969327867031097, 0.15988807380199432, -0.2545328736305237, -0.03437316417694092, 0.13561958074569702, -0.12411155551671982, -0.013521240092813969, 0.05649569258093834, -0.026918454095721245, 0.241097092628479, 0.038922641426324844, 0.11508170515298843, 0.07342442870140076, -0.003254098119214177, -0.02577958069741726, 0.04340650513768196, 0.012547505088150501, 0.010353394784033298, 0.0691629946231842, 0.008538087829947472, 0.10425347089767456, 0.06569023430347443, -0.01822604052722454, 0.06236434727907181, -0.005638065282255411, -0.056026652455329895, 0.021627172827720642, -0.06435047835111618, 0.08061490952968597, 0.034887831658124924, 0.11585501581430435, 0.016063103452324867, -0.03618837893009186, 0.13596834242343903, 0.10840553790330887, -0.07700778543949127, -0.01545659638941288, -0.06717932969331741, 0.026607438921928406, -0.1001402959227562, 0.024764826521277428, -0.19579942524433136, 0.05221264064311981, 0.01856827922165394, 0.0004926983965560794, 0.03704315796494484, -0.0318860188126564, 0.07258132845163345, 0.007249842397868633, -0.04489525780081749, -0.023487163707613945, 0.01683245599269867, -0.007644554600119591, -0.010321840643882751, -0.03560890629887581, -0.03282282501459122, -0.017908532172441483, 0.09206937998533249, -0.13586871325969696, 0.02508080005645752, -0.12396179139614105, 0.06432762742042542, -0.04854576662182808, 0.005701390560716391, 0.08611643314361572, 0.039429012686014175, -0.0005936066154390574, -0.02847626619040966, 0.010412171483039856, 0.01763203926384449, -0.10044252872467041, 0.09744074940681458, -0.07791785895824432, -0.09037553519010544, 0.0812147781252861, 0.04981738701462746, -0.045903388410806656, 0.05696214362978935, -0.02060951478779316, -0.06532875448465347, -0.08306330442428589, 0.022533800452947617, 0.16484855115413666, 0.007853462360799313, 0.1173718050122261, -0.10211633145809174, 0.0009642948280088603, 0.020726367831230164, -0.07517103105783463, -0.010999803431332111, 0.04359881952404976, 0.01571178250014782, -0.12596730887889862, 0.059302378445863724, 0.06956113129854202, -0.012125162407755852, 0.16326643526554108, 0.005197164136916399, -0.10382197052240372, -0.0343099981546402, -0.02575625665485859, -0.005686346907168627, 0.03680172562599182, -0.08833028376102448, 0.008087868802249432, 0.07763686776161194, 0.0591156892478466, 0.032102666795253754, -0.06286634504795074, -0.03049413114786148, 0.03669806569814682, -0.021669218316674232, -0.06223587319254875, 0.038569413125514984, -0.026245763525366783, 0.07704907655715942, -0.005039256997406483, 0.03875429183244705, -0.0096101900562644, -0.032822612673044205, -0.10300784558057785, 0.1727665811777115, -0.07751970738172531, -0.359625905752182, -0.1229495033621788, 0.032091833651065826, 0.002688200445845723, -0.017416203394532204, 0.00660107983276248, -0.12898191809654236, -0.07111603021621704, -0.07764700800180435, -0.08561030775308609, 0.04603884741663933, 0.0026729891542345285, 0.00891389325261116, 0.015163218602538109, -0.01826583594083786, -0.0946016013622284, 0.0007446242379955947, 0.0062634325586259365, -0.0021834878716617823, 0.07434555888175964, -0.08410820364952087, 0.06141282618045807, 0.16706331074237823, -0.03664885461330414, 0.014147590845823288, 0.04943785071372986, 0.16498073935508728, -0.11518452316522598, 0.13618886470794678, 0.21094182133674622, -0.06256420910358429, 0.013873714953660965, 0.10885455459356308, 0.03244578838348389, -0.026591293513774872, 0.051153115928173065, -0.021913733333349228, -0.07793666422367096, -0.1868799924850464, -0.06043316423892975, -0.037852466106414795, -0.10637128353118896, 0.002686069579795003, 0.011440976522862911, 0.1006854698061943, 0.0645764172077179, -0.010042971931397915, 0.0733511820435524, 0.016312450170516968, 0.006015496794134378, -0.021175183355808258, 0.0011202736059203744, 0.07394181936979294, -0.09305672347545624, 0.008953931741416454, 0.09722273051738739, -0.05268033593893051, 0.2813529372215271, -0.01650063320994377, 0.10690248757600784, 0.0990968644618988, 0.07490266114473343, 0.0972602590918541, 0.1361216902732849, -0.10024579614400864, 0.007522882893681526, -0.007556515745818615, -0.08558788895606995, 0.023384708911180496, 0.03065170906484127, -0.09360916167497635, 0.046236518770456314, -0.03357113525271416, -0.0022070095874369144, 0.018820010125637054, 0.10494963079690933, 0.045791737735271454, -0.14828789234161377, -0.12171822786331177, 0.042295727878808975, -0.015208303928375244, -0.03900787979364395, -0.06640616059303284, 0.15749910473823547, -0.1523420810699463, 0.011527718976140022, 0.02544543333351612, 0.11394676566123962, -0.1017979308962822, -0.021817738190293312, -0.027339039370417595, -0.0015914762625470757, 0.0019345696782693267, 0.13242483139038086, -0.15839526057243347, 0.2167467474937439, 0.012215107679367065, 0.09038843214511871, -0.1293753683567047, 0.0030095025431364775, 0.03157666698098183, 0.03738996386528015, 0.10798666626214981, 0.03191860020160675, -0.010466529056429863, -0.0536760613322258, -0.16056109964847565, -0.0055158669129014015, 0.025526655837893486, 0.030658738687634468, 0.046244941651821136, 0.03741661459207535, 0.005989374127238989, 0.006186185870319605, 0.00587109662592411, -0.09592606127262115, -0.12190046161413193, 0.05047537758946419, -0.009875364601612091, -0.03456656634807587, -0.03339582681655884, -0.08788181096315384, 0.10715579986572266, 0.14471445977687836, 0.0020628732163459063, -0.14654356241226196, -0.11537119746208191, -0.011935723014175892, 0.11448116600513458, -0.08932828903198242, -0.025660423561930656, 0.00755061861127615, 0.10382788628339767, -0.017940586432814598, -0.07592768967151642, 0.009207319468259811, -0.04718850180506706, -0.09527524560689926, -0.012470466084778309, 0.019883807748556137, 0.1484152376651764, 0.03597310185432434, 0.05180622264742851, -0.029713651165366173, 0.019278785213828087, -0.1454925537109375, -0.07424933463335037, 0.18087492883205414, 0.055170413106679916, 0.04533397778868675, -0.06078336760401726, -0.06239064782857895, -0.03962518274784088, -0.07835403829813004, 0.08950483798980713, 0.026519307866692543, -0.03434767201542854, 0.0994972512125969, 0.20980043709278107, -0.09539692103862762, -0.19301722943782806, -0.07852590829133987, 0.08047223836183548, 0.07802879810333252, -0.04554072394967079, -0.15065452456474304, 0.03549327701330185, 0.10078474879264832, -0.011646218597888947, -0.0626889318227768, -0.33126506209373474, -0.13115353882312775, 0.08489380031824112, 0.04289166256785393, 0.09183725714683533, -0.10282200574874878, -0.05428275465965271, -0.04660038277506828, -0.04548429697751999, 0.08285453915596008, -0.07337716966867447, 0.05767921730875969, -0.03312331810593605, 0.060120485723018646, 0.010090296156704426, -0.024336855858564377, 0.18457390367984772, 0.019689900800585747, 0.007921110838651657, -0.1291460245847702, 0.03038654662668705, 0.1332990527153015, -0.0293685644865036, 0.20609308779239655, -0.017719684168696404, 0.024778379127383232, -0.21623611450195312, -0.07212010771036148, -0.09569133073091507, -0.013418438844382763, -0.03227188065648079, -0.08610886335372925, -0.012826803140342236, 0.11898680776357651, 0.0471997894346714, 0.020080020651221275, -0.017459137365221977, -0.020646460354328156, -0.010321658104658127, 0.041854728013277054, 0.14516930282115936, 0.03575707972049713, 0.0015065142652019858, -0.0498415008187294, 0.022663773968815804, 0.022254016250371933, -0.23698373138904572, -0.07194503396749496, 0.05592392385005951, 0.010829868726432323, 0.1449466198682785, -0.0049842908047139645, -0.12283933162689209, 0.07291724532842636, 0.08826013654470444, -0.04578344523906708, -0.11742711812257767, -0.02556505613029003, 0.0222794059664011, -0.0973411425948143, -0.08353531360626221, 0.02530815452337265, -0.12771455943584442, -0.016682155430316925, -0.023935889825224876, 0.04198455065488815, -0.05955538898706436, 0.1386164128780365, 0.04671706631779671, 0.057923536747694016, -0.05337855592370033, 0.1551797240972519, 0.1537717580795288, -0.025005584582686424, 0.05142759904265404, 0.17558084428310394, -0.11944898962974548, -0.02942529320716858, 0.02737855538725853, 0.09946755319833755, 0.014782702550292015, -0.11060816049575806, -0.03061290830373764, -0.06053197756409645, 0.0006101671606302261, -0.005227301735430956, 0.024012751877307892, -0.03893767297267914, -0.0736348032951355, -0.06103452295064926, -0.10162106901407242, 0.06461445242166519, 0.13142076134681702, -0.03459196537733078, -0.0018809448229148984, 0.0014592905063182116, 0.10076718777418137, 0.10874395817518234, -0.0523490309715271, -0.08254685252904892, -0.04837068170309067, 0.01207391731441021, -0.1920759677886963, 0.029718739911913872, -0.137240931391716, -0.06599417328834534, -0.06541645526885986, -0.03644179180264473, 0.014825156889855862, -0.01740681566298008, -0.0059079453349113464, 0.005509788170456886, -0.03617602586746216, 0.004044154193252325, -0.07161799818277359, -0.0460221990942955, 0.010023116134107113, -0.028403306379914284, 0.04352229833602905, 0.07415654510259628, -0.04726480692625046, 0.08143707364797592, -0.032412029802799225, 0.02504602074623108, 0.03748412802815437, 0.022140081971883774, 0.07042388617992401, -0.0725521668791771, 0.026294847950339317, 0.05983803793787956, -0.007860916666686535, 0.014692464843392372, -0.010493552312254906, -0.05407215654850006, 0.04696652293205261, -0.022760452702641487, 0.03182601556181908, -0.10828250646591187, 0.11532951146364212, 0.12399128824472427, 0.05724088102579117, 0.09702606499195099, -0.06267299503087997, 0.10199859738349915, -0.13557785749435425, -0.030628804117441177, -0.04026775062084198, -0.05530834570527077, 0.06613171100616455, -0.0919768214225769, 0.025950049981474876, -0.030751651152968407, 0.08848210424184799, 0.037218883633613586, 0.055586013942956924, -0.010751396417617798, -0.02513774484395981, -0.00724223954603076, -0.009780037216842175, 0.19934852421283722, 0.08265775442123413, -0.017736107110977173, -0.013043507002294064, 0.04285305365920067, -0.04458320513367653, 0.04056842625141144, 0.10248406231403351, 0.09776215255260468, 0.058027613908052444, 0.0970952957868576, 0.05132272094488144, -0.027050990611314774, -0.13233795762062073, -0.05603017285466194, -0.04439500346779823, 0.048993069678545, -0.03366102650761604, 0.047095995396375656, 0.1583920270204544, -0.16850249469280243, 0.08389656990766525, 0.024706942960619926, -0.1372775286436081, -0.06263937801122665, -0.2967037856578827, -0.01969127357006073, -0.006353629287332296, -0.037363167852163315, -0.12836380302906036, -0.004903026856482029, 0.029730357229709625, 0.03853052854537964, -0.08852523565292358, 0.1346115916967392, -0.02140773832798004, -0.03773726895451546, 0.10683709383010864, -0.026670226827263832, 0.039487842470407486, -0.05135316774249077, 0.05733472853899002, -0.009702828712761402, 0.0657714232802391, 0.04794837534427643, 0.05185195431113243, 0.0022140094079077244, -0.007460457738488913, 0.009619135409593582, -0.09496603906154633, -0.016363296657800674, -0.016813816502690315, 0.03163837268948555, 0.1486850529909134, 0.08086399734020233, -0.044023413211107254, -0.014751422218978405, 0.15997065603733063, -0.009053623303771019, -0.15996773540973663, -0.1332901269197464, 0.1223306953907013, -0.003045598976314068, -0.08316251635551453, 0.0343504324555397, -0.10726828128099442, -0.06489735841751099, 0.26350662112236023, 0.20176002383232117, 0.007724697235971689, 0.002044239081442356, -0.04373560845851898, 0.007230461575090885, -0.03686542063951492, 0.13946059346199036, 0.1001531183719635, 0.2511662542819977, -0.07144805043935776, 0.10254395008087158, -0.0677776113152504, -0.09451387822628021, -0.0985594391822815, 0.04784644767642021, 0.034970883280038834, -0.0341525562107563, -0.03822258114814758, 0.1409406214952469, -0.1552298665046692, -0.12299593538045883, -0.018590034916996956, -0.04167574271559715, -0.13691678643226624, -0.043408770114183426, -0.0562264509499073, 0.05502808466553688, 0.023815447464585304, 0.010991815477609634, 0.0845542773604393, 0.17558810114860535, 0.04537798464298248, -0.01691155508160591, -0.06097337231040001, 0.08589557558298111, -0.029204130172729492, 0.07346172630786896, 0.04612981900572777, 0.019288890063762665, 0.03804049268364906, 0.06385084241628647, -0.10843924432992935, 0.11255283653736115, 0.010400990024209023, 0.11972785741090775, 0.02325296588242054, 0.16392318904399872, -0.026562524959445, -0.08273272961378098, 0.04294634610414505, -0.07879675179719925, 0.034811053425073624, -0.06552404165267944, 0.005165126174688339, -0.09635771811008453, 0.048957355320453644, -0.02682499587535858, 0.15075793862342834, 0.20919108390808105, -0.04318498075008392, -0.0020871267188340425, -0.05147964134812355, 0.08646713197231293, -0.020025664940476418, -0.006212461739778519, -0.04641900211572647, -0.1165388822555542, -0.04798044264316559, -0.02641102857887745, 0.07497351616621017, -0.22492225468158722, 0.009198581799864769, -0.030907930806279182, -0.09529776126146317, 0.012018173933029175, 0.06040782853960991, 0.05200904980301857, 0.06338047981262207, -0.025487931445240974, -0.008310343138873577, -0.017298266291618347, 0.07662434130907059, -0.14346837997436523, -0.05556994676589966 ]
null
null
transformers
# Indonesian GPT2 small model ## Model description It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M') >>> set_seed(42) >>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10) [{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'}, {'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'}, {'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'}, {'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'}, {'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model model_name='cahya/gpt2-small-indonesian-522M' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2Model.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import GPT2Tokenizer, TFGPT2Model model_name='cahya/gpt2-small-indonesian-522M' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = TFGPT2Model.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.
{"language": "id", "license": "mit", "datasets": ["Indonesian Wikipedia"], "widget": [{"text": "Pulau Dewata sering dikunjungi"}]}
text-generation
cahya/gpt2-small-indonesian-522M
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #jax #gpt2 #text-generation #id #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Indonesian GPT2 small model ## Model description It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: Here is how to use this model to get the features of a given text in PyTorch: and in Tensorflow: ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.
[ "# Indonesian GPT2 small model", "## Model description\nIt is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, \nwe set a seed for reproducibility:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and \na vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens." ]
[ "TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #id #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Indonesian GPT2 small model", "## Model description\nIt is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, \nwe set a seed for reproducibility:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and \na vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens." ]
[ 64, 8, 103, 9, 65, 74 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #id #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Indonesian GPT2 small model## Model description\nIt is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models## Intended uses & limitations### How to use\nYou can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, \nwe set a seed for reproducibility:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and \na vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens." ]
[ 0.027653058990836143, 0.0004911893629468977, -0.006317459512501955, 0.03171021491289139, 0.05756890028715134, -0.02071330137550831, 0.03763880208134651, 0.11568961292505264, -0.13989770412445068, 0.029996147379279137, 0.05728619173169136, -0.01828841306269169, 0.14589056372642517, 0.10161778330802917, 0.05903530493378639, -0.30866193771362305, 0.06828486919403076, -0.037439558655023575, 0.20807357132434845, 0.12210334837436676, 0.0743960365653038, -0.06377715617418289, 0.0841158926486969, 0.00991350132972002, -0.049552060663700104, 0.003562045283615589, -0.087783582508564, -0.09664410352706909, 0.05283389985561371, -0.0051959604024887085, 0.09740633517503738, 0.03285104036331177, 0.023750079795718193, -0.16570891439914703, 0.010943189263343811, 0.051617491990327835, 0.0017783130751922727, 0.016258416697382927, 0.055973321199417114, 0.06989744305610657, 0.07099021971225739, 0.03668134659528732, -0.021948857232928276, -0.0004809449892491102, -0.08915071934461594, -0.17192983627319336, -0.058267585933208466, 0.026203446090221405, 0.037960804998874664, 0.03843759000301361, -0.031231233850121498, 0.028951670974493027, -0.02517792023718357, 0.024087177589535713, 0.19844701886177063, -0.13876579701900482, -0.026664547622203827, -0.016103006899356842, 0.06355372071266174, 0.20673878490924835, -0.05012211203575134, -0.07633478939533234, 0.03529432415962219, 0.057857781648635864, 0.13392332196235657, -0.0726529136300087, -0.01391273457556963, -0.0777907595038414, -0.08132889121770859, -0.07831671088933945, 0.17060577869415283, -0.05509823560714722, -0.09504207223653793, -0.07738783955574036, -0.0411827452480793, -0.02077324129641056, 0.03624710813164711, -0.013792878948152065, 0.0014901180984452367, 0.05342007428407669, 0.05689125135540962, -0.073676697909832, -0.08999311178922653, -0.048769693821668625, -0.026819083839654922, 0.04386793449521065, 0.10576967149972916, 0.05275162681937218, -0.07390429824590683, 0.11195623874664307, -0.04630642384290695, -0.11667164415121078, -0.09790187329053879, -0.06743630766868591, 0.0402265228331089, 0.0744224339723587, 0.018036257475614548, -0.08443999290466309, 0.02446363866329193, 0.0789092406630516, -0.1486595720052719, 0.04257766902446747, 0.03026575967669487, 0.061161626130342484, 0.039455804973840714, 0.14098383486270905, -0.06272654980421066, 0.0966620072722435, 0.01905226893723011, -0.04845951497554779, -0.0037488811649382114, -0.02443895861506462, -0.02894599549472332, -0.008745013736188412, 0.10911671072244644, 0.08579012751579285, -0.05956641584634781, 0.03206947445869446, -0.010053398087620735, -0.040855564177036285, 0.13342835009098053, -0.1279269903898239, -0.05143547058105469, -0.043870922178030014, -0.05716083198785782, 0.0655810609459877, 0.008006387390196323, -0.06051664799451828, -0.12362528592348099, 0.03805331885814667, -0.011377805843949318, -0.00962940976023674, -0.08659325540065765, -0.09404218941926956, -0.009567511267960072, -0.06878772377967834, -0.02923465147614479, -0.1356966644525528, -0.1795220673084259, -0.01543476339429617, -0.013044818304479122, -0.0577201321721077, 0.060879044234752655, -0.015711097046732903, -0.010855433531105518, -0.012344873510301113, -0.045907117426395416, -0.0417911559343338, -0.03818124532699585, 0.07116543501615524, -0.037208281457424164, 0.15703117847442627, 0.026061205193400383, 0.03490059822797775, -0.11365769058465958, 0.0473613403737545, -0.17332713305950165, 0.07645813375711441, 0.009171795099973679, 0.0070512983947992325, -0.0725870206952095, -0.080632783472538, -0.08104109764099121, -0.062210697680711746, 0.001869388041086495, 0.06922905892133713, -0.12882256507873535, -0.024421030655503273, 0.33012598752975464, -0.1310928612947464, -0.04255669191479683, 0.11053214222192764, 0.009476138278841972, 0.12145314365625381, 0.05415450409054756, 0.12866297364234924, 0.03408781439065933, 0.028417086228728294, -0.02036660723388195, 0.05382741987705231, -0.027092693373560905, 0.019988324493169785, 0.05863239988684654, -0.02899254485964775, 0.07414888590574265, 0.0510944128036499, 0.022223446518182755, 0.021138930693268776, -0.014160782098770142, -0.012798572890460491, 0.023527173325419426, -0.018234269693493843, 0.005118658300489187, -0.05080769211053848, 0.03681563213467598, -0.027670469135046005, -0.03246847540140152, -0.003478498198091984, 0.08305723965167999, -0.11397986114025116, 0.06151416152715683, -0.034107815474271774, 0.040768448263406754, -0.0531131885945797, 0.048008497804403305, -0.13280180096626282, 0.057376664131879807, 0.10934719443321228, -0.07966578751802444, 0.034812912344932556, -0.1357560157775879, 0.02423645555973053, 0.02713809534907341, -0.015916699543595314, -0.04398417845368385, 0.020481090992689133, -0.06145573407411575, 0.005393449682742357, 0.009908831678330898, 0.021388759836554527, 0.008983884938061237, -0.07499539107084274, 0.042862534523010254, 0.0045771184377372265, -0.02261575311422348, 0.02643803507089615, -0.029475875198841095, -0.03488556295633316, 0.04970516264438629, 0.01785322092473507, -0.03296775743365288, -0.029261957854032516, -0.03818593546748161, 0.0217116791754961, -0.015594085678458214, 0.1493651121854782, -0.06252376735210419, -0.09817308932542801, 0.06128547713160515, 0.010967351496219635, -0.05047706142067909, 0.06917589902877808, -0.002957135671749711, -0.04927791655063629, -0.11593717336654663, -0.025433648377656937, 0.18125540018081665, -0.008570614270865917, 0.1378495842218399, -0.17884819209575653, -0.024096336215734482, 0.01697283238172531, -0.10144518315792084, 0.023118311539292336, 0.023092983290553093, -0.014247764833271503, -0.08841671049594879, 0.0754832774400711, 0.023159664124250412, 0.01105877012014389, 0.14920391142368317, 0.004075214732438326, -0.09035639464855194, -0.005297133233398199, 0.0989120602607727, -0.02287042699754238, -0.020534683018922806, -0.057101767510175705, 0.01535756140947342, 0.05618218332529068, 0.06865280866622925, 0.024140268564224243, -0.09223994612693787, 0.035228002816438675, 0.02986602671444416, -0.07842807471752167, 0.012819578871130943, -0.04175906628370285, -0.01654263213276863, 0.06180303543806076, -0.01158207468688488, 0.029123343527317047, -0.019313203170895576, -0.028503168374300003, -0.06699315458536148, 0.16755704581737518, -0.12475786358118057, -0.2886483669281006, -0.15601806342601776, -0.010319866240024567, -0.031628452241420746, -0.016211839392781258, 0.09383921325206757, -0.0890074074268341, -0.04119451344013214, -0.09893669188022614, -0.010648023337125778, -0.031262997537851334, 0.01746542938053608, -0.04074380174279213, -0.005539770238101482, -0.016669616103172302, -0.11773333698511124, -0.006994374096393585, 0.007924509234726429, -0.05334789678454399, 0.13579808175563812, -0.07781130820512772, 0.06563574075698853, 0.0894230529665947, -0.05001381039619446, -0.00772741436958313, 0.012630075216293335, 0.19597534835338593, -0.05124995857477188, 0.12704527378082275, 0.12447622418403625, -0.045558590441942215, 0.11926638334989548, 0.057350076735019684, -0.00755326310172677, -0.04317214712500572, 0.06628093123435974, -0.038312822580337524, -0.05993574485182762, -0.24293719232082367, 0.03426346927881241, -0.032157931476831436, -0.016902655363082886, 0.007169660646468401, 0.042678724974393845, 0.08859764039516449, 0.06464248895645142, -0.055286675691604614, 0.08991272747516632, 0.03776393085718155, 0.06601082533597946, 0.004784011747688055, 0.00632534408941865, 0.051173098385334015, -0.05924587696790695, -0.014032287523150444, 0.09021443873643875, 0.014037665911018848, 0.3088878095149994, -0.02486223727464676, 0.20163263380527496, 0.0836077556014061, 0.1610192507505417, 0.0734376385807991, 0.08748510479927063, -0.14369240403175354, 0.07011830806732178, -0.027244020253419876, -0.06195669621229172, 0.008227129466831684, 0.017981212586164474, -0.09401430189609528, 0.010487275198101997, 0.03674561530351639, -0.045793645083904266, 0.04596136137843132, 0.12255875766277313, -0.025496503338217735, -0.10516555607318878, -0.012691706418991089, 0.004849403630942106, -0.049977973103523254, -0.0697765201330185, 0.028641633689403534, 0.19029656052589417, -0.12477865815162659, -0.029323656111955643, 0.02689172513782978, 0.11552251875400543, -0.1648290753364563, -0.013970262371003628, -0.06761392951011658, 0.1045684963464737, -0.0399148128926754, 0.11642345041036606, -0.1463424265384674, 0.07687981426715851, 0.0011555677046999335, 0.05508279800415039, -0.07669663429260254, 0.03772387281060219, -0.009602092206478119, -0.026108404621481895, 0.08947611600160599, 0.021474666893482208, -0.10447174310684204, -0.10240229219198227, -0.10106692463159561, 0.007859943434596062, 0.136508047580719, 0.05135520547628403, 0.031052323058247566, 0.014384566806256771, 0.04824189469218254, -0.028563760221004486, -0.02086407132446766, -0.0553000271320343, -0.07067053765058517, 0.01602311059832573, 0.010655120946466923, 0.019116561859846115, -0.028970956802368164, -0.008618736639618874, 0.07200443744659424, 0.050158169120550156, -0.09094396233558655, -0.17458149790763855, -0.06093961372971535, -0.11496305465698242, 0.11901279538869858, -0.12009086459875107, 0.0004398208693601191, -0.025515008717775345, 0.06722507625818253, -0.021769480779767036, -0.05395990237593651, 0.014150913804769516, -0.024617627263069153, -0.10388043522834778, -0.025636538863182068, 0.037054188549518585, 0.0938502848148346, 0.017480317503213882, 0.0011811029398813844, -0.03348545357584953, -0.030777743086218834, -0.16593416035175323, -0.08285322040319443, 0.13475006818771362, 0.030881084501743317, 0.029006483033299446, -0.05171637237071991, 0.036905113607645035, -0.11209850758314133, -0.0827169418334961, 0.09607639908790588, 0.11818872392177582, -0.03269893676042557, 0.07829732447862625, 0.24809223413467407, -0.09608954936265945, -0.18286415934562683, -0.16305582225322723, 0.03700164705514908, -0.00418699998408556, -0.06866081058979034, -0.18823501467704773, -0.01779116503894329, 0.15175500512123108, 0.022631926462054253, -0.05704403296113014, -0.2885410785675049, -0.11220730096101761, 0.04589362442493439, 0.05793043226003647, 0.10610663890838623, -0.10510721057653427, -0.08356186002492905, -0.011931518092751503, -0.018982520326972008, -0.030657924711704254, 0.046272870153188705, 0.09805689752101898, -0.04241681843996048, 0.004468380007892847, -0.015687700361013412, 0.005043934099376202, 0.13498350977897644, 0.0214577354490757, 0.04492466524243355, -0.07841430604457855, 0.12742990255355835, 0.043494146317243576, -0.009785262867808342, 0.16220994293689728, -0.07465742528438568, 0.02434171736240387, -0.10197225213050842, -0.04920559376478195, -0.08262582123279572, -0.023703254759311676, 0.014048219658434391, -0.08792128413915634, -0.1101682037115097, 0.043790414929389954, 0.0676378682255745, 0.036461614072322845, 0.007858136668801308, -0.005641398020088673, -0.036907728761434555, 0.18800951540470123, 0.048265475779771805, -0.10627183318138123, -0.061445727944374084, -0.057623542845249176, 0.02052057534456253, 0.06373993307352066, -0.14551030099391937, -0.007704045623540878, 0.03987854719161987, -0.013251802884042263, 0.14300274848937988, 0.02430793270468712, -0.1962706446647644, 0.07438119500875473, 0.07007338851690292, -0.07701044529676437, -0.162266805768013, -0.02673525922000408, -0.023008543998003006, -0.037914831191301346, -0.014812883920967579, 0.01154917012900114, -0.10228933393955231, -0.032200586050748825, -0.0589282363653183, 0.07258483022451401, -0.016000935807824135, 0.15981635451316833, 0.07248309254646301, 0.018426669761538506, -0.06537554413080215, 0.18357647955417633, 0.1542612910270691, 0.023528194054961205, 0.03296360373497009, 0.13581594824790955, -0.0870039314031601, -0.006081420462578535, 0.03654942288994789, -0.006006657611578703, 0.001607326790690422, -0.08732925355434418, -0.0338565818965435, -0.04231409355998039, 0.017422934994101524, 0.04152531176805496, 0.01501506194472313, 0.046337734907865524, 0.005063180811703205, -0.009267538785934448, -0.06723504513502121, 0.07297028601169586, 0.04708101972937584, 0.03367266431450844, 0.0056151640601456165, -0.04439855366945267, 0.10912827402353287, 0.08384250104427338, -0.01239665038883686, -0.10266584903001785, -0.0605301670730114, 0.01876031793653965, -0.07987464964389801, 0.06512388586997986, -0.09505537152290344, -0.046751491725444794, -0.0018700670916587114, -0.00989071000367403, 0.023604627698659897, 0.04528740793466568, -0.006064851768314838, -0.016100890934467316, -0.0660024881362915, 0.0738767459988594, -0.1289985626935959, -0.021654225885868073, 0.05517672747373581, -0.05328945815563202, 0.06631263345479965, 0.040484167635440826, -0.06950720399618149, 0.06443055719137192, 0.043521370738744736, 0.0377267524600029, 0.05800366774201393, 0.032635025680065155, -0.00289352610707283, -0.028750311583280563, 0.010319090448319912, 0.02951367013156414, -0.06370560079813004, 0.006081443279981613, 0.00342413573525846, -0.12001750618219376, 0.06544806808233261, -0.049093566834926605, 0.002448277547955513, -0.09862054884433746, 0.05666020140051842, 0.0589568056166172, 0.020180601626634598, 0.03898091986775398, -0.03667400777339935, 0.05460423231124878, -0.10541490465402603, -0.024973399937152863, 0.03441080078482628, -0.10355610400438309, 0.08481136709451675, -0.08404979109764099, 0.015464672818779945, -0.010472001507878304, 0.1385979950428009, 0.017603009939193726, -0.030934473499655724, -0.03345022350549698, 0.01805960200726986, -0.0540633462369442, 0.0028084823861718178, 0.11044550687074661, 0.027114346623420715, -0.08904772251844406, -0.05005977302789688, -0.015892231836915016, 0.015532467514276505, -0.0326479896903038, 0.08467425405979156, 0.1159244030714035, 0.11040038615465164, 0.054074738174676895, 0.02373281493782997, 0.04816213995218277, -0.09870733320713043, -0.06825942546129227, 0.03656734153628349, 0.04369628056883812, 0.05695676803588867, 0.1005355715751648, 0.1678277850151062, -0.11264121532440186, 0.07793094962835312, 0.06808110326528549, -0.11510437726974487, -0.0996236577630043, -0.2216881811618805, -0.02374539151787758, -0.09931591153144836, -0.040657948702573776, -0.15295687317848206, 0.03374875709414482, 0.10874035954475403, 0.02604677528142929, -0.07369496673345566, 0.1329890489578247, 0.08751969039440155, -0.13647429645061493, 0.07246742397546768, -0.004489166662096977, 0.04945804923772812, -0.00547719607129693, -0.00874022115021944, 0.04351453110575676, 0.05815322324633598, 0.07048521935939789, 0.0894167572259903, 0.05858047306537628, -0.008752736262977123, -0.04837571084499359, -0.07180378586053848, -0.016350023448467255, -0.009578925557434559, -0.06278509646654129, 0.06626797467470169, 0.056160084903240204, -0.049309536814689636, 0.025457289069890976, 0.1542445868253708, -0.01631622202694416, -0.04859670251607895, -0.07239972054958344, 0.14036941528320312, 0.06816880404949188, -0.01908048242330551, 0.06683646142482758, -0.10839013755321503, -0.09171801060438156, 0.2635517716407776, 0.07451856881380081, 0.03301969915628433, -0.002862724242731929, -0.02669217810034752, 0.011100150644779205, 0.011398130096495152, 0.16106165945529938, 0.09632356464862823, 0.16271920502185822, -0.010309872217476368, 0.17058612406253815, -0.024480490013957024, -0.01623607985675335, -0.1287699192762375, 0.036123860627412796, -0.01842457987368107, -0.0007138364599086344, -0.10926645249128342, 0.06401616334915161, -0.13411852717399597, -0.10994645953178406, -0.007809903472661972, 0.04983408749103546, -0.059928156435489655, 0.00552717037498951, 0.062207404524087906, 0.03991226106882095, 0.012246163561940193, 0.03330708295106888, 0.0730879083275795, 0.16916967928409576, 0.059639740735292435, -0.07721389830112457, -0.10310632735490799, 0.06643743067979813, -0.11703001707792282, 0.11475838720798492, 0.055185381323099136, 0.044143322855234146, 0.02664562314748764, 0.04345656931400299, -0.09117564558982849, 0.13742700219154358, 0.010383284650743008, 0.08626516163349152, -0.013623356819152832, 0.12600462138652802, 0.016386982053518295, -0.024856172502040863, 0.03717342019081116, 0.040845759212970734, -0.0024403634015470743, 0.01945817470550537, 0.07582647353410721, -0.08454836159944534, -0.034898046404123306, -0.04226982966065407, 0.06919491291046143, 0.1336822807788849, -0.037472207099199295, 0.009004979394376278, -0.047812528908252716, 0.006514295469969511, -0.009241431020200253, 0.005343930795788765, -0.028904447332024574, -0.10043806582689285, -0.07020440697669983, 0.0016309823840856552, 0.08866292983293533, -0.1440388709306717, 0.012421242892742157, 0.004975381772965193, -0.020711451768875122, -0.04104112461209297, 0.07988444715738297, -0.031906429678201675, 0.052371423691511154, -0.013771804980933666, -0.012667374685406685, -0.029147876426577568, 0.05586804449558258, -0.09996431320905685, -0.03995697572827339 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.1822 - Wer: 0.1423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "output", "results": []}]}
automatic-speech-recognition
cahya/output
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# output This model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial-cv on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.1822 - Wer: 0.1423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
[ "# output\n\nThis model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial-cv on the COMMON_VOICE - TR dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1822\n- Wer: 0.1423", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-07\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# output\n\nThis model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial-cv on the COMMON_VOICE - TR dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1822\n- Wer: 0.1423", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-07\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2\n- Tokenizers 0.10.3" ]
[ 69, 67, 6, 12, 8, 3, 129, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n# output\n\nThis model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial-cv on the COMMON_VOICE - TR dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1822\n- Wer: 0.1423## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-07\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 1.0### Training results### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2\n- Tokenizers 0.10.3" ]
[ -0.08771223574876785, 0.18022599816322327, -0.003938404377549887, 0.030912797898054123, 0.12302491068840027, 0.025502033531665802, 0.08444516360759735, 0.13049502670764923, -0.06280672550201416, 0.12354854494333267, 0.08745450526475906, 0.023952942341566086, 0.09523149579763412, 0.10129279643297195, 0.012843589298427105, -0.2581595182418823, 0.02490687556564808, -0.0659276470541954, -0.04619056358933449, 0.09793642163276672, 0.11204950511455536, -0.07325541228055954, 0.044692087918519974, 0.02490980364382267, -0.1239221841096878, 0.0005963286384940147, -0.054259490221738815, -0.059454869478940964, 0.08417537063360214, 0.0024947088677436113, 0.034428734332323074, 0.00838820543140173, 0.09815042465925217, -0.27446842193603516, -0.0009998595342040062, 0.05715201422572136, 0.044882263988256454, 0.07373998314142227, 0.08484236896038055, -0.017322640866041183, 0.1110992431640625, -0.1366516798734665, 0.06081470847129822, 0.045676518231630325, -0.05859636515378952, -0.11169838905334473, -0.08586957305669785, 0.07592964917421341, 0.11456424742937088, 0.0850525051355362, -0.018570713698863983, 0.08751583099365234, -0.05786827206611633, 0.056998081505298615, 0.1772492676973343, -0.26701322197914124, -0.0436016209423542, 0.01657106913626194, 0.032082803547382355, 0.06591381132602692, -0.09248180687427521, 0.020126141607761383, 0.04111505672335625, -0.018332118168473244, 0.044406458735466, 0.013907523825764656, 0.005628517363220453, -0.015583876520395279, -0.11260520666837692, -0.055248554795980453, 0.1990785449743271, 0.07721535861492157, -0.022034576162695885, -0.12041858583688736, -0.013649273663759232, -0.15538780391216278, -0.01578396186232567, -0.012817795388400555, -0.0027163634076714516, -0.03645121678709984, -0.030058221891522408, -0.012593495659530163, -0.06408223509788513, -0.05800319090485573, 0.051373764872550964, 0.10104729980230331, 0.04951949790120125, -0.021268198266625404, 0.02143184468150139, 0.09781084209680557, 0.009642605669796467, -0.12582390010356903, -0.024135584011673927, 0.016950683668255806, -0.13660655915737152, -0.020884724333882332, -0.02477397210896015, -0.004776577930897474, 0.03785146400332451, 0.0986705869436264, 0.08011092990636826, 0.0851314589381218, 0.037200845777988434, 0.0057871234603226185, 0.011960472911596298, 0.16393254697322845, -0.03893979266285896, -0.11453387886285782, -0.029650280252099037, 0.09012540429830551, 0.014971889555454254, -0.03206755593419075, -0.08540040254592896, -0.001185953849926591, 0.11576101928949356, 0.0983387902379036, -0.01178419217467308, 0.009482288733124733, -0.06285293400287628, -0.021182334050536156, 0.000658552919048816, -0.1411992311477661, 0.029449423775076866, 0.010586008429527283, -0.05322383716702461, 0.019165033474564552, -0.011441845446825027, 0.011150111444294453, -0.06269167363643646, 0.051778651773929596, -0.055348046123981476, -0.02406899631023407, -0.022751102223992348, -0.022219102829694748, 0.010703274980187416, -0.07047437131404877, -0.015795299783349037, -0.05615535378456116, -0.10743919014930725, -0.06000358611345291, 0.03882170096039772, -0.0955667644739151, -0.08312223106622696, -0.054133340716362, -0.03847673162817955, 0.03486928716301918, -0.008438775315880775, 0.07409873604774475, -0.03952448070049286, 0.05840526521205902, -0.010149696841835976, 0.025319568812847137, 0.10642944276332855, 0.057023514062166214, -0.04197923094034195, 0.04396723955869675, -0.09221634268760681, 0.13306137919425964, -0.10145854949951172, 0.026781395077705383, -0.16426709294319153, -0.0769428238272667, -0.005592511501163244, -0.03662710264325142, 0.06133536249399185, 0.12755753099918365, -0.17644889652729034, -0.04460502043366432, 0.11848530918359756, -0.04869510605931282, -0.06091383844614029, 0.11921894550323486, -0.007841896265745163, -0.008936245925724506, 0.05450856313109398, 0.19338415563106537, 0.11475056409835815, -0.11110449582338333, -0.008098917081952095, 0.0016371250385418534, 0.09338834136724472, 0.06317070871591568, 0.08850414305925369, -0.07749629765748978, -0.016446897760033607, 0.019220342859625816, -0.07917752116918564, 0.0023321150802075863, -0.06090450659394264, -0.08558454364538193, -0.017322126775979996, -0.07464174181222916, 0.030315041542053223, -0.012030750513076782, 0.010118411853909492, -0.054671335965394974, -0.11766493320465088, -0.0026867121923714876, 0.14253301918506622, -0.07992133498191833, 0.016853731125593185, -0.06622066348791122, 0.07242842763662338, -0.04107942432165146, -0.012181933037936687, -0.15965789556503296, -0.0447799488902092, 0.06601081043481827, -0.09751562029123306, 0.06251364201307297, -0.012472255155444145, 0.027937624603509903, 0.03940080851316452, -0.005135970655828714, -0.025079499930143356, -0.04234624281525612, 0.004033886361867189, -0.057788554579019547, -0.18358533084392548, -0.04166056960821152, -0.01365587953478098, 0.22284600138664246, -0.20471186935901642, -0.028589127585291862, 0.0046980734914541245, 0.12118322402238846, -0.009465212002396584, -0.07905461639165878, 0.021994365379214287, 0.016909198835492134, 0.0009903035825118423, -0.09189899265766144, 0.002498607849702239, 0.002308293478563428, -0.12963983416557312, -0.004675018601119518, -0.161968395113945, -0.011194763705134392, 0.053301673382520676, 0.10195709019899368, -0.08651478588581085, -0.04906490072607994, -0.038395956158638, -0.05186920985579491, -0.04771581292152405, -0.026494638994336128, 0.20932556688785553, 0.025959322229027748, 0.10133712738752365, -0.06132499501109123, -0.05670952424407005, 0.022180698812007904, 0.000948660948779434, -0.03536636754870415, 0.08594624698162079, 0.04430656135082245, -0.09292880445718765, 0.04263705760240555, 0.06302564591169357, -0.017588797956705093, 0.11293003708124161, -0.03992752358317375, -0.09518729895353317, -0.04375121369957924, 0.01781051978468895, 0.0006506388308480382, 0.10823742300271988, -0.13788065314292908, -0.020153848454356194, 0.043941743671894073, 0.022025711834430695, 0.029275596141815186, -0.1270255446434021, 0.0189707912504673, 0.045116499066352844, -0.05850541964173317, -0.016059907153248787, -0.007793371565639973, -0.01760029047727585, 0.0715261697769165, 0.021885300055146217, -0.03108144737780094, -0.013045867905020714, -0.039143156260252, -0.08748050779104233, 0.14516179263591766, -0.12801901996135712, -0.16555185616016388, -0.1369417905807495, 0.04422701895236969, -0.0494794137775898, -0.014900975860655308, 0.008044964633882046, -0.10022909194231033, -0.06899138540029526, -0.0795581042766571, 0.0022866721265017986, -0.09674641489982605, 0.014908229000866413, 0.08077125996351242, -0.0078072212636470795, 0.07636023312807083, -0.11011303961277008, 0.012971040792763233, -0.0022206194698810577, -0.048897407948970795, -0.03218716382980347, 0.024268783628940582, 0.0946192592382431, 0.15451686084270477, 0.025159219279885292, 0.03389839082956314, -0.02905774675309658, 0.19601519405841827, -0.11587410420179367, 0.01270686648786068, 0.07821959257125854, -0.01507373433560133, 0.05391480401158333, 0.13571372628211975, 0.017175976186990738, -0.08129353076219559, 0.022332878783345222, 0.02161579392850399, -0.02096264809370041, -0.2683809697628021, -0.06935405731201172, -0.053105808794498444, -0.0799969956278801, 0.09585608541965485, 0.0661780908703804, 0.022382045164704323, 0.034359805285930634, -0.030570819973945618, 0.013645034283399582, -0.003983073867857456, 0.07492882013320923, 0.10666394233703613, 0.04124174267053604, 0.06358720362186432, -0.02659480832517147, 0.0006890532677061856, 0.0506291501224041, 0.02248038910329342, 0.2410481721162796, 0.02900942787528038, 0.18418100476264954, 0.023708973079919815, 0.14377965033054352, -0.009746449999511242, 0.011265291832387447, 0.0281426589936018, 0.020364658907055855, 0.017474230378866196, -0.06953137367963791, -0.054087698459625244, 0.027325386181473732, 0.10819806903600693, -0.008487066254019737, -0.0683196410536766, 0.06314494460821152, 0.027726130560040474, 0.24494551122188568, 0.07532711327075958, -0.25538888573646545, -0.056129828095436096, 0.006690735463052988, -0.04516909271478653, -0.06348840892314911, 0.013681023381650448, 0.07121826708316803, -0.14134296774864197, 0.06890968978404999, -0.03194471076130867, 0.0808987021446228, -0.11604692041873932, -0.007706005591899157, 0.034730784595012665, 0.10469496250152588, 0.008035319857299328, 0.09690467268228531, -0.14110572636127472, 0.2301817536354065, 0.00791983213275671, 0.07296091318130493, -0.06123306602239609, 0.047682106494903564, -0.007661056239157915, 0.006250443868339062, 0.1246647909283638, 0.02087259665131569, -0.049050312489271164, -0.13115116953849792, -0.13519860804080963, 0.01865522563457489, 0.1436067670583725, -0.09867488592863083, 0.06318987160921097, -0.06458916515111923, -0.019743533805012703, 0.01086935680359602, -0.10446981340646744, -0.158704474568367, -0.17014455795288086, 0.05477144569158554, 0.02078927494585514, 0.04936789348721504, -0.05535861849784851, -0.07944285869598389, -0.07670673727989197, 0.19205012917518616, -0.06852211803197861, -0.03645872324705124, -0.13049380481243134, 0.031879935413599014, 0.16849103569984436, -0.06748208403587341, 0.02453228086233139, 0.004171550273895264, 0.13193199038505554, 0.03202197700738907, -0.04453248158097267, 0.03905978798866272, -0.07239936292171478, -0.1513390690088272, -0.05988513305783272, 0.19976750016212463, 0.04165680333971977, 0.05955825001001358, 0.016823889687657356, 0.01201220415532589, 0.01265361811965704, -0.08813731372356415, 0.031360745429992676, 0.11005892604589462, 0.011330186389386654, 0.06586535274982452, -0.005871258210390806, 0.03432575613260269, -0.10049925744533539, -0.050432346761226654, 0.14361341297626495, 0.22416679561138153, -0.0822003036737442, 0.11900167912244797, 0.07819413393735886, -0.07941408455371857, -0.13825233280658722, -0.013811425305902958, 0.1392873376607895, 0.04050926864147186, 0.024577924981713295, -0.1727248579263687, 0.07358338683843613, 0.08362661302089691, -0.025955334305763245, -0.02336747571825981, -0.33332064747810364, -0.12494619190692902, 0.08565034717321396, 0.022349849343299866, -0.022754352539777756, -0.12052351236343384, -0.07916310429573059, -0.05073951184749603, -0.0840023010969162, 0.00894904974848032, 0.04448103532195091, 0.10818810015916824, 0.015578904189169407, 0.07528755068778992, 0.037143416702747345, -0.021023856475949287, 0.17779625952243805, 0.08348292857408524, 0.001852050656452775, -0.0414954237639904, 0.041954055428504944, 0.01357340905815363, -0.07245372980833054, 0.06025329977273941, -0.055850837379693985, 0.0656157061457634, -0.15297654271125793, -0.01842081919312477, -0.026501677930355072, 0.04392772167921066, -0.039728038012981415, -0.027849728241562843, -0.0462150014936924, 0.024910083040595055, 0.08459632098674774, -0.012648557312786579, 0.05118521302938461, -0.0006595214363187551, 0.02247675694525242, 0.0801992416381836, 0.08918996155261993, 0.03831714391708374, -0.15401148796081543, -0.019264541566371918, -0.008202641271054745, 0.03638409450650215, -0.09273458272218704, 0.016417551785707474, 0.10917661339044571, 0.04086470603942871, 0.13859796524047852, -0.003207869129255414, -0.09797947853803635, 0.009219608269631863, 0.047827232629060745, -0.07216623425483704, -0.1858268678188324, -0.018915286287665367, -0.001034248503856361, -0.1240207627415657, -0.0004367650835774839, 0.09913906455039978, -0.04080094024538994, -0.010332259349524975, -0.008706525899469852, 0.029119430109858513, -0.017771610990166664, 0.18073387444019318, 0.0175564493983984, 0.08358661085367203, -0.08489592373371124, 0.13243187963962555, 0.09761887043714523, -0.06614508479833603, 0.07868801802396774, 0.017133546993136406, -0.07424314320087433, -0.004924335982650518, 0.036427680402994156, 0.0566868782043457, 0.00762929767370224, -0.04543720930814743, -0.024393033236265182, -0.0921538844704628, 0.0344461090862751, 0.01049236860126257, 0.03121134079992771, 0.014350409619510174, -0.05019383132457733, 0.011140702292323112, -0.13071224093437195, 0.08506224304437637, 0.09096100926399231, 0.05400620028376579, -0.15400131046772003, 0.030159419402480125, 0.017398446798324585, 0.040934085845947266, -0.002163289813324809, -0.037153732031583786, -0.06346796452999115, -0.007803584914654493, -0.06839213520288467, 0.0023524619173258543, -0.053677335381507874, 0.004660636652261019, 0.011891849339008331, -0.04507200047373772, -0.03411773964762688, 0.049064021557569504, -0.06672048568725586, -0.07980653643608093, -0.011093470267951488, 0.08455199003219604, -0.11259250342845917, 0.0246235691010952, 0.05181705206632614, -0.11928778141736984, 0.10516326874494553, 0.07079721242189407, 0.024248739704489708, 0.033678870648145676, -0.07041957229375839, -0.006135691422969103, 0.030439529567956924, 0.030603302642703056, 0.043725159019231796, -0.13139711320400238, -0.01249067485332489, -0.019856298342347145, 0.009931506589055061, -0.0016389695229008794, 0.04074016958475113, -0.1134144589304924, -0.045706674456596375, -0.09840939939022064, -0.02376113086938858, -0.05266590043902397, 0.048895854502916336, 0.07528632879257202, 0.023990921676158905, 0.1261749267578125, -0.06439527124166489, 0.05930265411734581, -0.16861745715141296, -0.018791696056723595, -0.02457711473107338, -0.004886919632554054, -0.06688309460878372, -0.03782493621110916, 0.08231543004512787, -0.049868106842041016, 0.11224709451198578, -0.029175113886594772, 0.09327032417058945, 0.01521317008882761, -0.003980104811489582, -0.014236070215702057, 0.005934236105531454, 0.16157391667366028, 0.09619265794754028, -0.011616585776209831, 0.06114491447806358, -0.05548335239291191, 0.05340065434575081, 0.049064572900533676, 0.10065389424562454, 0.11628536134958267, 0.0033703723456710577, 0.060440175235271454, 0.06891318410634995, -0.1293768286705017, -0.15805137157440186, 0.12433820962905884, -0.06993839889764786, 0.12961268424987793, -0.01306499820202589, 0.1565583199262619, 0.12315158545970917, -0.16693934798240662, 0.03295142948627472, -0.03516976907849312, -0.12097097933292389, -0.10491471737623215, -0.13558650016784668, -0.08186978101730347, -0.1358105093240738, 0.03447099030017853, -0.08966860175132751, 0.05096430331468582, 0.07272650301456451, 0.025241095572710037, 0.02487374283373356, 0.13104741275310516, -0.03545217216014862, -0.025160258635878563, 0.09076157212257385, 0.00932360626757145, -0.014875750988721848, -0.03199738636612892, -0.04453520104289055, 0.05487699806690216, 0.01594793051481247, 0.10772533714771271, -0.009593476541340351, 0.004456737544387579, 0.061217524111270905, -0.023225955665111542, -0.0909096822142601, 0.02156519889831543, -0.015128504484891891, 0.01365967933088541, 0.06492707133293152, 0.06648274511098862, -0.024471154436469078, -0.04428768903017044, 0.23832543194293976, -0.06275667250156403, -0.03706013038754463, -0.13242237269878387, 0.15335577726364136, 0.03094666451215744, 0.004146282095462084, 0.05420701578259468, -0.11194778233766556, -0.014229146763682365, 0.15055912733078003, 0.16455525159835815, -0.011895634233951569, -0.02309083193540573, -0.021382490172982216, -0.009784765541553497, -0.06180982291698456, 0.1028580442070961, 0.07313837856054306, 0.028175123035907745, -0.01275292132049799, 0.042155031114816666, -0.026100577786564827, -0.06620094180107117, -0.08665809780359268, 0.08211235702037811, 0.0015395436203107238, -0.02249162830412388, -0.010974566452205181, 0.12838159501552582, -0.04354189336299896, -0.218733549118042, -0.012721666134893894, -0.12948544323444366, -0.1946018636226654, -0.010002649389207363, 0.09058015793561935, 0.032801609486341476, 0.03949180990457535, -0.008707907050848007, -0.02882547490298748, 0.16547855734825134, 0.01917344518005848, -0.06234278902411461, -0.07957197725772858, 0.06140057370066643, -0.04820150136947632, 0.19651129841804504, 0.02372259832918644, 0.07159852236509323, 0.07909569144248962, 0.04470973089337349, -0.13837209343910217, 0.03389748930931091, 0.0931442454457283, -0.0595533661544323, 0.07737624645233154, 0.20343966782093048, -0.029071703553199768, 0.09561228007078171, 0.07593248039484024, -0.0343034453690052, -0.017209002748131752, -0.104087233543396, 0.039314791560173035, -0.07276485115289688, 0.005366098135709763, -0.051983412355184555, 0.16055524349212646, 0.1613125205039978, -0.06154976412653923, -0.017375098541378975, -0.04815182089805603, -0.0010045678354799747, 0.029036344960331917, 0.12247730046510696, -0.003953751176595688, -0.1970779299736023, 0.00490904925391078, -0.04484585300087929, 0.052498139441013336, -0.1650184839963913, -0.08911255747079849, 0.02441476285457611, -0.033530689775943756, -0.035215113312006, 0.13105642795562744, 0.03834278881549835, 0.001419270527549088, -0.045420464128255844, -0.09613587707281113, -0.019155418500304222, 0.13999632000923157, -0.18236061930656433, -0.04553790017962456 ]
null
null
transformers
# Indonesian RoBERTa base model (uncased) ## Model description It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja <mask> supermarket") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel model_name='cahya/roberta-base-indonesian-522M' tokenizer = RobertaTokenizer.from_pretrained(model_name) model = RobertaModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import RobertaTokenizer, TFRobertaModel model_name='cahya/roberta-base-indonesian-522M' tokenizer = RobertaTokenizer.from_pretrained(model_name) model = TFRobertaModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```<s> Sentence A </s> Sentence B </s>```
{"language": "id", "license": "mit", "datasets": ["Indonesian Wikipedia"], "widget": [{"text": "Ibu ku sedang bekerja <mask> supermarket."}]}
fill-mask
cahya/roberta-base-indonesian-522M
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #jax #roberta #fill-mask #id #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Indonesian RoBERTa base model (uncased) ## Model description It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: Here is how to use this model to get the features of a given text in PyTorch: and in Tensorflow: ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:
[ "# Indonesian RoBERTa base model (uncased)", "## Model description\nIt is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #id #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Indonesian RoBERTa base model (uncased)", "## Model description\nIt is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models", "## Intended uses & limitations", "### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:", "## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ 50, 13, 103, 9, 48, 55 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #id #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Indonesian RoBERTa base model (uncased)## Model description\nIt is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This \nmodel is uncased: it does not make a difference between indonesia and Indonesia.\n\nThis is one of several other language models that have been pre-trained with indonesian datasets. More detail about \nits usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models## Intended uses & limitations### How to use\nYou can use this model directly with a pipeline for masked language modeling:\n\nHere is how to use this model to get the features of a given text in PyTorch:\n\nand in Tensorflow:## Training data\n\nThis model was pre-trained with 522MB of indonesian Wikipedia.\nThe texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are \nthen of the form:" ]
[ -0.052520591765642166, -0.018685001879930496, -0.0013858990278095007, 0.02877713553607464, 0.09514670073986053, -0.022794464603066444, 0.13287366926670074, 0.09904425591230392, -0.08057379722595215, -0.026047613471746445, 0.010778927244246006, -0.011313877999782562, 0.127602681517601, 0.116886205971241, 0.055429473519325256, -0.36384132504463196, 0.050402697175741196, -0.0537094809114933, 0.07918315380811691, 0.14467832446098328, 0.11347159743309021, -0.05409673601388931, 0.05035446584224701, 0.049225639551877975, -0.06680358946323395, -0.036931946873664856, -0.0692053958773613, -0.13502004742622375, 0.05851151421666145, -0.00505287479609251, 0.12012327462434769, -0.002901242347434163, 0.08582929521799088, -0.06094338372349739, 0.03447939082980156, 0.048486288636922836, 0.03089083731174469, 0.05715608596801758, 0.024978967383503914, 0.01920807547867298, 0.18960440158843994, -0.0035938238725066185, 0.018305769190192223, -0.018872439861297607, -0.06951208412647247, -0.2046031653881073, -0.09017831087112427, 0.15352050960063934, 0.14076820015907288, 0.10329733043909073, -0.02707105688750744, 0.09957582503557205, -0.08484868705272675, 0.040656253695487976, 0.06882749497890472, -0.13883614540100098, -0.023857681080698967, 0.017318997532129288, 0.03034106083214283, 0.05228966847062111, -0.06330670416355133, -0.029396558180451393, -0.025316281244158745, 0.030845876783132553, 0.11717933416366577, -0.06700467318296432, -0.045149002224206924, -0.0966026782989502, -0.04615413025021553, -0.038178663700819016, 0.11895652860403061, -0.0034757989924401045, -0.08438894897699356, -0.1765524297952652, -0.013492122292518616, -0.011941169388592243, -0.007264649495482445, -0.0548764206469059, -0.02157968282699585, 0.016136618331074715, 0.1403636783361435, -0.06995640695095062, -0.1218683049082756, 0.026084430515766144, -0.07466751337051392, 0.0686573013663292, 0.041250959038734436, 0.05591708421707153, -0.14047378301620483, 0.10178806632757187, -0.03190144523978233, -0.16367660462856293, -0.007738907355815172, -0.03078857995569706, -0.04438501596450806, 0.06641864776611328, 0.04290364682674408, -0.16067826747894287, -0.059422869235277176, -0.029348313808441162, -0.047109801322221756, 0.00218595820479095, 0.07500186562538147, 0.062254954129457474, 0.06721746921539307, 0.14594915509223938, -0.13156114518642426, 0.010146388784050941, 0.04152531176805496, -0.04703637957572937, -0.007168641313910484, -0.07373078167438507, -0.030177973210811615, -0.020327463746070862, 0.04233979806303978, 0.045784033834934235, -0.015234269201755524, 0.04859292879700661, 0.01574944332242012, -0.10720889270305634, 0.12338375300168991, -0.14809098839759827, -0.04210764914751053, -0.030321434140205383, -0.08607278764247894, 0.1764415204524994, 0.09122029691934586, -0.002544220071285963, -0.0988842025399208, 0.06638845801353455, 0.00505101028829813, -0.0066684396006166935, -0.08851484209299088, -0.09440846741199493, -0.004757925868034363, -0.11309856176376343, -0.04422697052359581, -0.1161893904209137, -0.24022728204727173, -0.026861099526286125, 0.06719629466533661, -0.05719238519668579, 0.06345366686582565, -0.00870086532086134, -0.005397546570748091, 0.015052199363708496, -0.034499168395996094, 0.029276525601744652, -0.017781605944037437, 0.04493041709065437, -0.05861181765794754, 0.1160406842827797, -0.00405150419101119, 0.045411452651023865, -0.0974491611123085, 0.040405549108982086, -0.11095505207777023, 0.07852210104465485, 0.008162135258316994, -0.02236863784492016, -0.08757763355970383, -0.10859294980764389, -0.037216782569885254, -0.03147214651107788, -0.011332159861922264, 0.12333448231220245, -0.19262798130512238, -0.03493561968207359, 0.18121862411499023, -0.1239931583404541, -0.03107483871281147, 0.08262515068054199, -0.040866732597351074, 0.20606328547000885, 0.04045749828219414, 0.13743846118450165, 0.13140103220939636, -0.04832063615322113, 0.04004168137907982, 0.036277227103710175, -0.022904405370354652, 0.0253914687782526, 0.0806298479437828, 0.0295502170920372, 0.1086714044213295, 0.07046148180961609, -0.006921171210706234, 0.0839407816529274, -0.012916571460664272, -0.0573275052011013, 0.021089186891913414, -0.02688630484044552, 0.05116352066397667, 0.02316524274647236, 0.09657319635152817, 0.01372741162776947, -0.02982920967042446, 0.04631436988711357, 0.09534777700901031, -0.10524674504995346, -0.015194140374660492, -0.06734207272529602, 0.046071793884038925, -0.05822761356830597, 0.010651002638041973, -0.18685394525527954, -0.005137146450579166, 0.02777946926653385, -0.05858464166522026, 0.030057301744818687, 0.029971063137054443, 0.06081721559166908, 0.03588982671499252, -0.005029052961617708, -0.010426266118884087, 0.016070116311311722, -0.020554805174469948, 0.025008192285895348, -0.04489467665553093, -0.03169571980834007, -0.001077429042197764, 0.11373968422412872, -0.10992162674665451, 0.018066653981804848, -0.12563370168209076, 0.06344029307365417, -0.021692782640457153, -0.019160117954015732, 0.07519979774951935, 0.00969995278865099, 0.0010984527179971337, -0.028475431725382805, -0.0017054560594260693, 0.026937970891594887, -0.06864886730909348, 0.14069505035877228, -0.10014370083808899, 0.003129608929157257, 0.08656288683414459, 0.08743531256914139, -0.0814671590924263, 0.0628165751695633, -0.033126771450042725, -0.06784500926733017, -0.0689077228307724, 0.05587493255734444, 0.22143808007240295, 0.02530389279127121, 0.13743068277835846, -0.09285930544137955, -0.01768375188112259, 0.040861137211322784, -0.11500636488199234, 0.026617005467414856, 0.041308484971523285, -0.05911457538604736, -0.09903323650360107, 0.07897863537073135, 0.023996206000447273, 0.015668068081140518, 0.18247270584106445, 0.0053484165109694, -0.09583690762519836, -0.06268880516290665, -0.0006514533888548613, -0.01132649090141058, 0.05927340313792229, -0.06660255044698715, 0.0029490962624549866, 0.10358548909425735, 0.06540820002555847, 0.0311429463326931, -0.09017295390367508, -0.028407754376530647, 0.0384814627468586, -0.03042435273528099, -0.03269745782017708, 0.05734361708164215, 0.00684850849211216, 0.08636116981506348, -0.01772727631032467, 0.07131408154964447, -0.029757976531982422, -0.042392127215862274, -0.1151508167386055, 0.17552630603313446, -0.07111120969057083, -0.3970295786857605, -0.12433863431215286, 0.01665450632572174, -0.012293292209506035, -0.04969308525323868, 0.010165460407733917, -0.09279130399227142, -0.060732197016477585, -0.0662970170378685, -0.021679291501641273, 0.03855771943926811, -0.004388925153762102, -0.047905333340168, 0.005914020352065563, -0.04360516369342804, -0.10879821330308914, -0.015099000185728073, 0.014818987809121609, -0.00938323512673378, 0.08627713471651077, -0.02898823283612728, 0.07319968193769455, 0.16608992218971252, -0.08062722533941269, 0.006175643764436245, 0.04182714223861694, 0.12834511697292328, -0.10422290861606598, 0.11202781647443771, 0.22561006247997284, -0.052325498312711716, 0.012534183450043201, 0.05765023082494736, 0.022745242342352867, -0.018292242661118507, 0.04081838205456734, -0.026029357686638832, -0.08674903959035873, -0.21863779425621033, -0.04019133746623993, -0.06250891089439392, -0.09192769229412079, -0.019709408283233643, 0.003990769851952791, 0.13897830247879028, 0.056827545166015625, -0.0037882192991673946, 0.07038409262895584, 0.020898595452308655, 0.024523261934518814, -0.020092299208045006, 0.004796158522367477, 0.06360673159360886, -0.10360974073410034, 0.007585311308503151, 0.09051719307899475, -0.020757373422384262, 0.27492159605026245, -0.029997406527400017, 0.11391350626945496, 0.10354909300804138, 0.1957249790430069, 0.09247083216905594, 0.11823046952486038, -0.09032309055328369, 0.017471253871917725, -0.013356181792914867, -0.08393225818872452, -0.02489130198955536, -0.019055549055337906, -0.06796812266111374, 0.05873848870396614, -0.03644886240363121, 0.006655471865087748, 0.02865336276590824, 0.16815561056137085, -0.05753451958298683, -0.15220381319522858, -0.15261760354042053, 0.016774998977780342, -0.015355156734585762, -0.024076169356703758, -0.04043982923030853, 0.13164971768856049, -0.21531222760677338, -0.020664595067501068, -0.02673540636897087, 0.10168271511793137, -0.1411523073911667, -0.02105269953608513, -0.03423229232430458, 0.03266005590558052, 0.02552718110382557, 0.12964998185634613, -0.10922848433256149, 0.20836830139160156, -0.00251309247687459, 0.058630358427762985, -0.15198996663093567, -0.0006723103579133749, -0.0016673712525516748, 0.014444828033447266, 0.12391873449087143, 0.035090602934360504, -0.046981893479824066, -0.08860938251018524, -0.12560056149959564, 0.006749517284333706, 0.057144422084093094, 0.028972528874874115, 0.024549294263124466, -0.007618433330208063, 0.012171659618616104, 0.0016073284205049276, -0.009264664724469185, -0.0728336051106453, -0.10300278663635254, 0.07373757660388947, -0.027536332607269287, -0.05333411693572998, -0.037410520017147064, -0.08654627203941345, 0.10635161399841309, 0.22027826309204102, -0.023013155907392502, -0.12061741203069687, -0.11393791437149048, -0.05143504589796066, 0.11189068853855133, -0.12399172782897949, -0.0216253399848938, -0.04367982596158981, 0.10156769305467606, -0.015077469870448112, -0.09451783448457718, 0.0401751808822155, -0.0502280555665493, -0.10084322839975357, -0.021900083869695663, 0.039180003106594086, 0.13412447273731232, 0.027887215837836266, 0.046549513936042786, -0.04833994805812836, -0.001461114501580596, -0.17615021765232086, -0.08139854669570923, 0.19290006160736084, -0.004874571692198515, 0.03125473111867905, -0.03636589273810387, -0.0979682058095932, -0.041255321353673935, -0.05940355360507965, 0.12261521071195602, 0.02455848827958107, -0.04760855436325073, 0.15006090700626373, 0.22165760397911072, -0.06796669960021973, -0.1572059541940689, -0.053686078637838364, 0.07244021445512772, 0.06894953548908234, -0.028563734143972397, -0.12478744983673096, 0.022245310246944427, 0.10579802840948105, 0.000027332192985340953, -0.04044831171631813, -0.35178661346435547, -0.12301559001207352, 0.09029179811477661, 0.08135424554347992, 0.05833667516708374, -0.09997137635946274, -0.044706203043460846, 0.011066473089158535, -0.10769662261009216, 0.11318601667881012, -0.10233445465564728, 0.07294225692749023, -0.02090463601052761, 0.07035867869853973, 0.015120754949748516, -0.05273323878645897, 0.16722236573696136, -0.013905223459005356, 0.03873152285814285, -0.12297553569078445, 0.05835602805018425, 0.17226389050483704, -0.0032624625600874424, 0.21411071717739105, 0.05265762284398079, 0.03832044079899788, -0.16396626830101013, -0.07036826014518738, -0.11160791665315628, 0.02644801139831543, -0.02813367359340191, -0.11066646128892899, -0.03255026042461395, 0.1273704171180725, 0.08057983219623566, 0.0008902484551072121, -0.006836083251982927, 0.002635712269693613, 0.02571221813559532, 0.04680943861603737, 0.08316347748041153, 0.05697698891162872, -0.0666697770357132, -0.08474709093570709, 0.03794276714324951, 0.01708080992102623, -0.2031215876340866, -0.04528213292360306, 0.046697210520505905, 0.00748794199898839, 0.14395783841609955, -0.016090385615825653, -0.14925609529018402, 0.09242218732833862, 0.07694507390260696, -0.08128050714731216, -0.1057451069355011, -0.005851494614034891, -0.03551623970270157, -0.04703401401638985, -0.07673908025026321, 0.0468636155128479, -0.15631414949893951, -0.01504211314022541, -0.031453728675842285, 0.02158908173441887, -0.05236656218767166, 0.11359897255897522, 0.0508962906897068, 0.05971423164010048, -0.04931149631738663, 0.14908316731452942, 0.14215944707393646, -0.03661112114787102, 0.03942878171801567, 0.16258029639720917, -0.12169621884822845, -0.027003323659300804, -0.0030741284135729074, 0.06463242322206497, 0.03186884894967079, -0.08973076939582825, -0.017459208145737648, -0.050427671521902084, -0.02784256637096405, -0.054813288152217865, -0.006791925523430109, -0.010480562224984169, -0.08183332532644272, -0.040624432265758514, -0.08270785212516785, 0.04658607020974159, 0.1296600103378296, -0.059553783386945724, 0.0004515300679486245, 0.054693832993507385, 0.13200221955776215, 0.12367768585681915, -0.04610743001103401, -0.11835819482803345, -0.03840409219264984, 0.009966602548956871, -0.10447376221418381, 0.015675978735089302, -0.12646251916885376, -0.04245968908071518, -0.06446017324924469, -0.0510314479470253, 0.012147088535130024, 0.010958406142890453, -0.01325616892427206, 0.0041421097703278065, -0.044650934636592865, 0.01641056314110756, -0.10040199756622314, -0.04841145500540733, 0.046209171414375305, -0.014352106489241123, 0.06838592886924744, 0.10556873679161072, -0.06199958920478821, 0.09913793951272964, -0.09623607993125916, 0.040165405720472336, 0.01649363711476326, 0.03272963687777519, 0.06990347057580948, -0.0981842651963234, 0.030378462746739388, 0.045018307864665985, -0.0033938444685190916, 0.013827698305249214, 0.0045901574194431305, -0.10856961458921432, -0.021494291722774506, -0.00547616183757782, 0.013789758086204529, -0.12647731602191925, 0.09291282296180725, 0.06091034412384033, 0.05037987232208252, 0.05927850678563118, -0.05415409430861473, 0.1453152745962143, -0.15084277093410492, -0.0506596565246582, -0.015235323458909988, -0.052680015563964844, 0.06030338630080223, -0.10192972421646118, 0.028161555528640747, -0.052275363355875015, 0.09096352010965347, 0.06622378528118134, 0.08088904619216919, -0.021478958427906036, -0.06843460351228714, -0.035531748086214066, -0.00553761376067996, 0.14881631731987, 0.05298997834324837, -0.023670155555009842, 0.020524170249700546, 0.039974331855773926, -0.08248820900917053, -0.02527734637260437, 0.11723394691944122, 0.09619181603193283, 0.09822466969490051, 0.05785512179136276, 0.04239894822239876, -0.009720285423099995, -0.14549881219863892, -0.0802428349852562, -0.033365823328495026, 0.050490472465753555, -0.03497447445988655, 0.015894584357738495, 0.18899774551391602, -0.1789730042219162, 0.11231701076030731, 0.03489266708493233, -0.12882573902606964, -0.06934402137994766, -0.33428284525871277, 0.00605333037674427, 0.025035157799720764, -0.031822774559259415, -0.12981882691383362, 0.02231968566775322, -0.0012483325554057956, 0.060494471341371536, -0.08559500426054001, 0.14676788449287415, -0.041722893714904785, -0.07543174177408218, 0.0826408863067627, 0.021942541003227234, 0.03690149262547493, -0.06710232049226761, 0.05504215136170387, -0.023611538112163544, 0.04896823316812515, 0.0629090890288353, 0.05701184645295143, 0.009237860329449177, 0.00722027150914073, -0.02626253105700016, -0.10646579414606094, -0.010810893028974533, -0.037255946546792984, 0.030544374138116837, 0.120694600045681, 0.07556378841400146, -0.039870381355285645, -0.024222223088145256, 0.22009679675102234, -0.01259995810687542, -0.13317573070526123, -0.12826666235923767, 0.12867248058319092, 0.008806814439594746, -0.09079766273498535, 0.040064506232738495, -0.0795319527387619, -0.07576686888933182, 0.30093914270401, 0.2340238392353058, 0.01095651090145111, 0.028319157660007477, -0.024617714807391167, 0.007654997520148754, -0.0412459671497345, 0.1791006177663803, 0.1290939748287201, 0.25564154982566833, -0.05023480951786041, 0.15134400129318237, -0.07325147837400436, -0.09182995557785034, -0.07096777856349945, 0.09422969818115234, -0.011779923923313618, -0.008970488794147968, -0.044617533683776855, 0.13671213388442993, -0.15315455198287964, -0.23715828359127045, -0.01425433810800314, -0.06045699492096901, -0.14675140380859375, -0.03268331289291382, -0.0553925558924675, 0.06832539290189743, 0.042833246290683746, 0.029667029157280922, 0.06479915231466293, 0.19425921142101288, 0.07923340052366257, -0.04418470337986946, -0.0377141572535038, 0.10631128400564194, -0.012792946770787239, 0.08252354711294174, 0.045603808015584946, 0.04031490162014961, 0.046047717332839966, 0.075424425303936, -0.09351890534162521, 0.09032188355922699, 0.03340993821620941, 0.07824231684207916, -0.018807120621204376, 0.16026201844215393, 0.0007147564319893718, -0.10806728899478912, 0.03736624866724014, -0.06564939022064209, 0.03424462676048279, -0.11573666334152222, 0.06170838326215744, -0.08514690399169922, 0.05528392270207405, -0.001769059570506215, 0.130886048078537, 0.21015214920043945, -0.03320828080177307, -0.013119163922965527, -0.08588554710149765, 0.06303934007883072, -0.014153300784528255, -0.03990088030695915, -0.059534501284360886, -0.09347625821828842, -0.047197114676237106, -0.020435577258467674, 0.08644699305295944, -0.16869743168354034, -0.023837337270379066, 0.021342670544981956, -0.10477844625711441, 0.019990017637610435, 0.07880260795354843, 0.0005322986398823559, 0.07242600619792938, -0.008723007515072823, -0.029392987489700317, -0.008697855286300182, 0.077809639275074, -0.1376354992389679, -0.051115795969963074 ]
null
null
transformers
# Indonesian T5 Summarization Base Model Finetuned T5 base summarization model for Indonesian. ## Finetuning Corpus `t5-base-indonesian-summarization-cased` model is based on `t5-base-bahasa-summarization-cased` by [huseinzol05](https://huggingface.co/huseinzol05), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") ``` ## Code Sample ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
{"language": "id", "tags": ["pipeline:summarization", "summarization", "t5"], "datasets": ["id_liputan6"]}
summarization
cahya/t5-base-indonesian-summarization-cased
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "pipeline:summarization", "summarization", "id", "dataset:id_liputan6", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #tf #jax #t5 #text2text-generation #pipeline-summarization #summarization #id #dataset-id_liputan6 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Indonesian T5 Summarization Base Model Finetuned T5 base summarization model for Indonesian. ## Finetuning Corpus 't5-base-indonesian-summarization-cased' model is based on 't5-base-bahasa-summarization-cased' by huseinzol05, finetuned using id_liputan6 dataset. ## Load Finetuned Model ## Code Sample Output:
[ "# Indonesian T5 Summarization Base Model\n\nFinetuned T5 base summarization model for Indonesian.", "## Finetuning Corpus\n\n't5-base-indonesian-summarization-cased' model is based on 't5-base-bahasa-summarization-cased' by huseinzol05, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #pipeline-summarization #summarization #id #dataset-id_liputan6 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Indonesian T5 Summarization Base Model\n\nFinetuned T5 base summarization model for Indonesian.", "## Finetuning Corpus\n\n't5-base-indonesian-summarization-cased' model is based on 't5-base-bahasa-summarization-cased' by huseinzol05, finetuned using id_liputan6 dataset.", "## Load Finetuned Model", "## Code Sample\n\n\n\nOutput:" ]
[ 77, 24, 57, 7, 7 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #pipeline-summarization #summarization #id #dataset-id_liputan6 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Indonesian T5 Summarization Base Model\n\nFinetuned T5 base summarization model for Indonesian.## Finetuning Corpus\n\n't5-base-indonesian-summarization-cased' model is based on 't5-base-bahasa-summarization-cased' by huseinzol05, finetuned using id_liputan6 dataset.## Load Finetuned Model## Code Sample\n\n\n\nOutput:" ]
[ -0.03651471808552742, -0.03181806579232216, -0.004687088541686535, 0.030646249651908875, 0.08309971541166306, 0.02563178539276123, 0.07078605890274048, 0.08675412088632584, -0.17026817798614502, -0.04540427029132843, 0.045584991574287415, 0.0687490850687027, 0.09978534281253815, 0.13575230538845062, -0.061604589223861694, -0.345430850982666, 0.052372757345438004, 0.012777483090758324, 0.11683084815740585, 0.17864243686199188, 0.14698658883571625, 0.013578764162957668, 0.12425682693719864, -0.0013597718207165599, -0.08129183948040009, 0.026399923488497734, -0.020887896418571472, -0.13102319836616516, 0.07779379189014435, 0.06864818185567856, 0.09520149976015091, 0.05049831420183182, -0.0054917288944125175, -0.044452130794525146, 0.03809627518057823, -0.01951095648109913, -0.06193745508790016, 0.035160742700099945, 0.05303514376282692, 0.041414324194192886, 0.2983531951904297, -0.04392586648464203, -0.020835787057876587, 0.007357429713010788, -0.10937745869159698, -0.04215940833091736, -0.03415079787373543, 0.07905357331037521, 0.14407311379909515, 0.04209967702627182, -0.0436229333281517, 0.09418514370918274, -0.11664439737796783, 0.08883053809404373, -0.04330914095044136, -0.2542456388473511, -0.0733281597495079, 0.08629559725522995, 0.03499455004930496, 0.04544069617986679, -0.017794713377952576, -0.02655617520213127, 0.032525792717933655, 0.010387754067778587, 0.03386690095067024, -0.13578622043132782, -0.19220708310604095, -0.04280123487114906, -0.04411881044507027, 0.03290648013353348, 0.31624531745910645, 0.030015278607606888, -0.04832373186945915, -0.08418053388595581, -0.09408792108297348, -0.03292374312877655, -0.033786047250032425, -0.0913962870836258, -0.04110398143529892, 0.03651896491646767, 0.12788012623786926, 0.03202218934893608, -0.08306819200515747, 0.008673077449202538, -0.14284321665763855, -0.003444498172029853, 0.018484964966773987, 0.009875595569610596, -0.1556290239095688, 0.06841406971216202, -0.0678563117980957, -0.1732724905014038, 0.02354881912469864, -0.057376813143491745, -0.0532977357506752, 0.007741530425846577, 0.020560188218951225, -0.13919858634471893, 0.06948387622833252, 0.07169660925865173, 0.037947069853544235, 0.0534525029361248, 0.03769547492265701, 0.01896052062511444, 0.05497315898537636, 0.05606211721897125, -0.16055437922477722, -0.08891195803880692, 0.06439285725355148, -0.0486704558134079, 0.061180997639894485, -0.03773932531476021, -0.03813234344124794, -0.014100358821451664, 0.08669620007276535, 0.06574682146310806, -0.04222568869590759, 0.13386376202106476, -0.0336364284157753, -0.11254674941301346, 0.08390437066555023, -0.12424840033054352, -0.11010739207267761, -0.0703771561384201, -0.02212258242070675, 0.13331066071987152, 0.027055129408836365, 0.016019411385059357, -0.09920238703489304, 0.08342265337705612, -0.07177850604057312, -0.033140089362859726, -0.002990948036313057, -0.04651687666773796, 0.011742337606847286, -0.07331718504428864, 0.01645883172750473, -0.14539094269275665, -0.16045229136943817, 0.005632305983453989, 0.036306750029325485, -0.07527032494544983, -0.011268396861851215, -0.06484992057085037, -0.02006331831216812, 0.042760416865348816, -0.0396842360496521, 0.09683492034673691, -0.06981126964092255, 0.0773705467581749, 0.004827041644603014, 0.08483675867319107, -0.12961585819721222, 0.03082563541829586, -0.1495397686958313, 0.03730052709579468, -0.11110688000917435, 0.09085366129875183, 0.03910225257277489, 0.04956809803843498, -0.10269007086753845, -0.07667605578899384, -0.09934920817613602, -0.03043849766254425, 0.014694861136376858, 0.1493467539548874, -0.23587115108966827, -0.004322150722146034, 0.12552621960639954, -0.14937914907932281, -0.15413013100624084, 0.12071089446544647, 0.002341517014428973, 0.23798607289791107, 0.010478658601641655, 0.19236893951892853, 0.042717307806015015, -0.0607597678899765, 0.05743316188454628, 0.08754435926675797, -0.0545046441257, 0.024165987968444824, 0.08885976672172546, 0.08086907118558884, -0.05093905329704285, 0.08929083496332169, 0.05646998807787895, 0.058339402079582214, -0.017666110768914223, -0.0641566589474678, -0.0005941182607784867, -0.012576947920024395, 0.009790888987481594, -0.029392575845122337, 0.10094176232814789, -0.04957173392176628, -0.0019827219657599926, -0.006756719201803207, 0.08134421706199646, 0.001713970908895135, 0.011545567773282528, -0.08413180708885193, 0.03890847787261009, -0.03419338911771774, 0.05457547679543495, -0.13399352133274078, -0.003818922908976674, -0.007472363766282797, 0.12192633748054504, 0.027181707322597504, -0.018195783719420433, -0.02155608870089054, -0.03593292087316513, -0.07172047346830368, -0.01551186665892601, 0.10906598716974258, 0.010513671673834324, 0.02302185446023941, -0.06615278869867325, 0.005235468037426472, 0.006189075764268637, 0.11952148377895355, -0.08376501500606537, -0.0021749369334429502, 0.00535627780482173, 0.11021079868078232, -0.012707068584859371, 0.040993280708789825, 0.09148213267326355, 0.032657694071531296, -0.02930074743926525, -0.018803725019097328, 0.05032911151647568, 0.05948610603809357, -0.13993817567825317, 0.16386395692825317, -0.11298976838588715, 0.20535719394683838, 0.13619667291641235, -0.0715334340929985, -0.07145261019468307, 0.021556535735726357, -0.018932513892650604, -0.07681480795145035, 0.005998214706778526, 0.021504387259483337, 0.028316281735897064, -0.03955204784870148, 0.14193008840084076, -0.12400923669338226, -0.006725692190229893, 0.020538941025733948, -0.05459105595946312, 0.0038349847309291363, 0.10586439073085785, -0.020740564912557602, -0.3101254999637604, 0.08587578684091568, 0.12390709668397903, 0.01871488429605961, 0.16693320870399475, -0.019870460033416748, -0.040565285831689835, -0.059945132583379745, 0.062370698899030685, -0.018003426492214203, 0.009994388557970524, -0.22332395613193512, 0.0017679226584732533, 0.09797871857881546, 0.042553361505270004, 0.04189889505505562, -0.02800663560628891, -0.04198075458407402, 0.004403055179864168, 0.014627116732299328, -0.08374785631895065, 0.132315993309021, 0.0050010476261377335, 0.14120711386203766, -0.05753304064273834, -0.002033195225521922, 0.023724636062979698, -0.019687118008732796, -0.09453161060810089, 0.17381231486797333, -0.07432841509580612, -0.37907329201698303, -0.07768063247203827, -0.03266005963087082, -0.07869964838027954, -0.0533638633787632, 0.07468826323747635, -0.06750869005918503, -0.03998050093650818, -0.06737854331731796, -0.038424085825681686, -0.01862049289047718, 0.019458981230854988, -0.13995662331581116, 0.03369881212711334, -0.0004735211841762066, -0.10862710326910019, -0.009070009924471378, 0.0018188534304499626, -0.004822187125682831, 0.1486203819513321, -0.14718137681484222, 0.09739216417074203, 0.13584403693675995, -0.04383603110909462, 0.01733047142624855, -0.022003117948770523, 0.1827796846628189, -0.06786520034074783, 0.0871511921286583, 0.1906781792640686, -0.05088384076952934, 0.009847285225987434, 0.12825120985507965, -0.013353182934224606, -0.092917799949646, 0.09962493181228638, -0.012966868467628956, -0.07182761281728745, -0.20089568197727203, -0.05855076014995575, -0.13280096650123596, 0.01418257411569357, -0.023755552247166634, 0.013908603228628635, 0.0555497445166111, 0.08979972451925278, 0.007120726630091667, 0.07841648161411285, 0.014036444947123528, 0.0414324589073658, 0.13456189632415771, -0.00772069999948144, 0.09273705631494522, -0.08020509779453278, -0.052165351808071136, 0.11488775908946991, -0.01259002648293972, 0.09317777305841446, 0.009510088711977005, 0.08506713062524796, 0.08469859510660172, 0.20103579759597778, 0.08978673070669174, 0.12401154637336731, -0.08466596156358719, -0.0012560628820210695, -0.05400407686829567, -0.0991237610578537, -0.05925422161817551, 0.006754218600690365, -0.13098818063735962, 0.04289839789271355, -0.038246799260377884, 0.07757892459630966, 0.08122778683900833, 0.08895348012447357, 0.02692217007279396, -0.16698850691318512, -0.07462795823812485, 0.007457070983946323, -0.02329307608306408, -0.03453041985630989, 0.026939546689391136, 0.07699418812990189, -0.09205366671085358, 0.07132910937070847, 0.006072094198316336, 0.12599389255046844, -0.010783233679831028, 0.011156695894896984, -0.02769210934638977, -0.005425183568149805, 0.004683314822614193, 0.11590921133756638, -0.23151014745235443, 0.2199588567018509, 0.01182322483509779, -0.015565420500934124, -0.07465421408414841, -0.008037792518734932, 0.02296167053282261, 0.054985884577035904, 0.15092943608760834, 0.029909295961260796, -0.05419081076979637, -0.027688130736351013, -0.09250006079673767, 0.07524128258228302, 0.07847756892442703, 0.05883404240012169, -0.013190558180212975, -0.03841511160135269, 0.023576298728585243, 0.008568624965846539, 0.13388587534427643, -0.11598625034093857, -0.1022656187415123, 0.0770953968167305, 0.025407399982213974, 0.010242166928946972, -0.026499921455979347, -0.057121288031339645, 0.10663684457540512, 0.20510174334049225, 0.05379002168774605, -0.1236303299665451, -0.13057243824005127, -0.020844334736466408, 0.14029990136623383, -0.09287812560796738, -0.014113676734268665, -0.0518464520573616, -0.022060241550207138, 0.04316001757979393, -0.13490641117095947, 0.12618549168109894, -0.03968355804681778, -0.01819540560245514, -0.03499239310622215, 0.13489064574241638, -0.034153327345848083, 0.009636151604354382, 0.016422338783740997, -0.058703891932964325, 0.010560589842498302, -0.13415174186229706, -0.14884546399116516, -0.024416137486696243, 0.0117366136983037, 0.031632740050554276, -0.06850508600473404, -0.08714442700147629, -0.016358036547899246, -0.07935081422328949, 0.11837439239025116, 0.004352038260549307, 0.0027533157262951136, 0.09262201189994812, 0.13925360143184662, -0.04910491779446602, -0.19003404676914215, -0.13840517401695251, -0.014444167725741863, 0.03251953423023224, -0.06218346953392029, -0.04398948699235916, 0.10600731521844864, 0.13079094886779785, 0.04520627111196518, -0.02927182987332344, -0.24979858100414276, -0.1512911319732666, 0.08519158512353897, 0.03511926904320717, 0.20116329193115234, -0.11537973582744598, -0.09210564941167831, -0.004396970383822918, -0.23765914142131805, 0.1085025742650032, -0.11975523829460144, 0.0771094262599945, -0.02368173561990261, 0.004542158450931311, 0.004171107895672321, 0.018847450613975525, 0.11619380116462708, 0.06363867968320847, 0.025612950325012207, -0.09570349007844925, -0.04493566229939461, 0.09374849498271942, 0.02208949811756611, 0.1581137776374817, -0.08159783482551575, 0.07269950211048126, -0.17907054722309113, -0.01710469461977482, -0.06739402562379837, 0.01102119404822588, -0.020568683743476868, -0.10057228058576584, -0.026572687551379204, 0.06430673599243164, 0.050218090415000916, -0.023932935670018196, 0.13896897435188293, -0.02867332100868225, 0.01671747863292694, 0.07605699449777603, 0.10756034404039383, -0.22811584174633026, 0.08341667801141739, -0.0876036286354065, -0.004393391776829958, 0.05752335488796234, -0.1484525203704834, -0.0012157927267253399, 0.09125924855470657, 0.018382079899311066, 0.12493059784173965, 0.02613922953605652, 0.02940153144299984, 0.05116964504122734, 0.12082552909851074, -0.13522614538669586, -0.057997606694698334, -0.07653725892305374, -0.04487640783190727, 0.002721927361562848, -0.02756551466882229, 0.10585745424032211, -0.06706629693508148, -0.022260410711169243, -0.0038441303186118603, 0.024708595126867294, -0.07710665464401245, 0.1434078812599182, -0.000644873536657542, 0.04294053092598915, -0.10085734724998474, 0.14969117939472198, 0.11976106464862823, -0.1426973193883896, -0.011710602790117264, 0.14829407632350922, -0.17889195680618286, -0.04495358094573021, -0.05336726829409599, 0.07043924182653427, -0.03095918521285057, -0.05712592229247093, -0.05105382949113846, -0.10414537787437439, -0.00885866116732359, 0.07514433562755585, 0.07235215604305267, 0.07358972728252411, -0.07286325097084045, -0.07644204795360565, -0.014823904260993004, 0.061367690563201904, 0.18558421730995178, 0.02292472869157791, -0.06628011167049408, -0.012114593759179115, 0.05877777561545372, 0.10898777842521667, -0.07057707756757736, -0.07112427055835724, -0.08910368382930756, -0.011374477297067642, -0.09710576385259628, 0.07327265292406082, -0.14509379863739014, -0.009619832038879395, -0.04336951673030853, -0.04044276103377342, -0.05740220099687576, -0.013391156680881977, -0.0005786484689451754, 0.014645233750343323, -0.03330635651946068, 0.07424118369817734, -0.019207844510674477, -0.027174219489097595, 0.04543974623084068, -0.043790124356746674, 0.09476971626281738, 0.10124783962965012, -0.10922315716743469, 0.09787532687187195, -0.15699855983257294, 0.0016388429794460535, 0.07610241323709488, 0.03632883355021477, 0.059700384736061096, -0.09924021363258362, 0.031764883548021317, 0.08885838836431503, 0.0023466567508876324, 0.015021993778645992, 0.04506782442331314, -0.11561532318592072, -0.07106194645166397, -0.10046393424272537, -0.042595233768224716, -0.08558958023786545, 0.00793335773050785, 0.11128772050142288, 0.031344056129455566, 0.09738943725824356, -0.07184815406799316, 0.02570384368300438, -0.16463445127010345, -0.005481657572090626, -0.022163130342960358, -0.12256429344415665, -0.03998595476150513, -0.0962153822183609, 0.017568524926900864, -0.05228053405880928, 0.11518165469169617, 0.004966947715729475, 0.030857767909765244, 0.005657739471644163, 0.054536785930395126, 0.03230244666337967, 0.008401465602219105, 0.30119016766548157, 0.05254827439785004, -0.01846199296414852, -0.07456272095441818, 0.014596521854400635, -0.009269536472856998, 0.08099120855331421, 0.08342613279819489, 0.12714777886867523, 0.00985910464078188, 0.09599891304969788, -0.021320579573512077, 0.04530181735754013, -0.04522532969713211, -0.024419134482741356, -0.021191660314798355, 0.06114315986633301, 0.032986629754304886, 0.015652330592274666, 0.189146026968956, -0.09412802010774612, 0.03227290138602257, -0.00962812453508377, -0.10114922374486923, -0.07148115336894989, -0.26554936170578003, -0.0690704882144928, -0.06894088536500931, -0.05156431347131729, -0.1634271889925003, -0.003564790589734912, 0.03505570814013481, 0.06608269363641739, -0.06838180124759674, 0.14260412752628326, -0.04751311615109444, -0.10857506096363068, 0.13077840209007263, 0.014663646928966045, 0.003217674558982253, -0.037508197128772736, 0.048052288591861725, -0.027535585686564445, 0.06488297879695892, -0.03094213642179966, 0.006532098166644573, 0.0661313608288765, -0.021529555320739746, -0.0663653090596199, -0.0703662559390068, -0.03176914155483246, 0.019053054973483086, -0.002577896462753415, 0.06621971726417542, 0.05721137672662735, -0.028218617662787437, 0.008313381113111973, 0.208851158618927, 0.011400630697607994, -0.14074845612049103, -0.14282110333442688, 0.16027015447616577, -0.02831776812672615, -0.014110813848674297, 0.08008354157209396, -0.044925443828105927, -0.012039246968925, 0.28208285570144653, 0.23492658138275146, -0.03018726408481598, -0.006538088899105787, -0.011238853447139263, 0.02736463025212288, 0.010097834281623363, 0.11013755947351456, 0.13724170625209808, 0.1853393018245697, -0.015113160945475101, 0.06444660574197769, -0.09095261245965958, -0.04810246825218201, -0.000763960531912744, 0.10799558460712433, 0.07799826562404633, -0.05456450209021568, -0.015536380000412464, 0.12428565323352814, -0.18178601562976837, -0.039523378014564514, -0.04524717852473259, -0.08459401875734329, -0.12836435437202454, -0.08053123950958252, -0.047161880880594254, 0.0867856964468956, 0.02254713885486126, -0.020842280238866806, 0.039508089423179626, 0.06842727959156036, 0.09140953421592712, -0.10534019023180008, -0.10975327342748642, 0.09286686778068542, -0.038648106157779694, 0.04386378824710846, -0.001800026511773467, -0.0010245749726891518, 0.07319071888923645, 0.09655246883630753, -0.06636141240596771, 0.13061833381652832, 0.015820570290088654, 0.14128811657428741, 0.051121100783348083, 0.04080110415816307, 0.031117035076022148, 0.025385484099388123, 0.04326840862631798, -0.11061853915452957, -0.0020172582007944584, 0.03924214094877243, 0.043721940368413925, -0.09329155087471008, 0.06169800087809563, -0.05013606697320938, 0.11745663732290268, 0.20631687343120575, -0.060263488441705704, 0.02488797716796398, -0.11056102067232132, 0.0628143846988678, 0.020287660881876945, -0.061176687479019165, -0.0048002698458731174, -0.11691418290138245, -0.04584300145506859, -0.00690178107470274, 0.024449756368994713, -0.16334648430347443, 0.006533822510391474, -0.11407560110092163, 0.0030726203694939613, -0.0762273445725441, 0.1146899089217186, 0.016466272994875908, 0.0679941177368164, 0.007851381786167622, -0.08196315169334412, 0.03452793508768082, 0.07233527302742004, -0.08960253745317459, -0.0720876082777977 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned [cahya/wav2vec2-base-turkish-artificial](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial) model on [Turkish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 13.70 % ## Training The Common Voice `train`, `validation`, other and invalidated The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Base Turkish by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 13.7, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-base-turkish-artificial-cv
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned cahya/wav2vec2-base-turkish-artificial model on Turkish Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 13.70 % ## Training The Common Voice 'train', 'validation', other and invalidated The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-base-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 13.70 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-base-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 13.70 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ 77, 89, 20, 28, 29 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-base-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 13.70 %## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ -0.13205493986606598, -0.05549916252493858, -0.00355919124558568, -0.07767990231513977, 0.0682019591331482, -0.015028462745249271, 0.19639074802398682, 0.0903448536992073, -0.06512677669525146, 0.01965278573334217, 0.011163709685206413, -0.03633769601583481, 0.09144406765699387, 0.01598954200744629, 0.029783569276332855, -0.14680223166942596, 0.02784472145140171, -0.032485298812389374, 0.1498177945613861, 0.11578609049320221, 0.10971292108297348, -0.02642340213060379, -0.03822673484683037, 0.09016114473342896, -0.11998816579580307, 0.04019831866025925, 0.05121344327926636, -0.14685003459453583, 0.14850367605686188, 0.021968066692352295, 0.06666991114616394, -0.0205489881336689, 0.03716275840997696, -0.17588810622692108, 0.025890136137604713, 0.024934539571404457, 0.027339430525898933, 0.005281026940792799, 0.128341943025589, -0.07729076594114304, 0.14983969926834106, 0.033455248922109604, -0.04821420833468437, 0.06724197417497635, -0.04396471381187439, -0.1349867582321167, -0.08769245445728302, 0.07723475992679596, 0.14295199513435364, 0.10811157524585724, -0.0786529928445816, 0.08489684015512466, -0.09971185773611069, 0.12304079532623291, 0.04288298636674881, -0.2391822785139084, -0.016739560291171074, 0.028342552483081818, -0.01869850978255272, 0.03894742578268051, 0.0027062278240919113, 0.08423664420843124, 0.027925148606300354, 0.014737289398908615, -0.10826006531715393, -0.01217434462159872, -0.2057039737701416, -0.10796491801738739, -0.07615048438310623, -0.04596593976020813, 0.2412671446800232, -0.016071686521172523, -0.04783759266138077, -0.10814551264047623, 0.016121312975883484, -0.03223126381635666, 0.012574936263263226, -0.0043018050491809845, -0.046019844710826874, 0.01949380896985531, 0.023849811404943466, 0.011755729094147682, -0.10153061151504517, -0.11275077611207962, -0.05985181778669357, 0.11334838718175888, 0.06501676887273788, 0.0005226914654485881, -0.06467925757169724, 0.11152294278144836, -0.13194607198238373, -0.04765285924077034, 0.021982014179229736, 0.08705934137105942, -0.10983554273843765, -0.008178796619176865, -0.07911556214094162, -0.23472708463668823, 0.06895292550325394, -0.0325935035943985, 0.12107167392969131, 0.02685115486383438, -0.08273762464523315, 0.07829061150550842, -0.026381684467196465, 0.09245403110980988, -0.06191820651292801, -0.02030627429485321, 0.006913196761161089, -0.02215227670967579, -0.0009315480128861964, -0.02355831116437912, -0.06346692144870758, -0.07489434629678726, 0.11696784943342209, 0.11451521515846252, -0.032403528690338135, -0.006872773636132479, 0.0009324468555860221, 0.018650181591510773, 0.007651099935173988, -0.12399105727672577, -0.018449779599905014, 0.04579710215330124, -0.021137544885277748, 0.07503380626440048, 0.011097325943410397, 0.05044861137866974, -0.11386700719594955, 0.04171965643763542, 0.07711762189865112, 0.09000944346189499, 0.012482906691730022, -0.06435135751962662, 0.01929740607738495, -0.05514455586671829, -0.021823065355420113, -0.09684936702251434, -0.07845182716846466, -0.0644148513674736, -0.05133374407887459, -0.0047969454899430275, 0.025745615363121033, -0.06840065121650696, -0.040412358939647675, 0.0014570944476872683, -0.03389744088053703, 0.11947309225797653, -0.04989795759320259, 0.08174102753400803, 0.022420167922973633, 0.00876332726329565, 0.08653570711612701, 0.06641533225774765, -0.05687178298830986, -0.026386840268969536, 0.038226425647735596, 0.16556698083877563, 0.012626326642930508, -0.06406795978546143, -0.1185292899608612, -0.03662353754043579, -0.060346927493810654, 0.029689522460103035, 0.06025698781013489, 0.048960842192173004, -0.26888307929039, -0.058067336678504944, 0.18214856088161469, -0.10375984013080597, -0.002663976978510618, 0.22160600125789642, 0.0012449190253391862, 0.033905137330293655, 0.14288192987442017, 0.26552510261535645, 0.05622091516852379, -0.12283632159233093, -0.04253225028514862, -0.014640177600085735, -0.015085273422300816, 0.0658557116985321, 0.06211332976818085, -0.09982611984014511, 0.016360579058527946, 0.015407481230795383, -0.0482303723692894, 0.06390029191970825, -0.009465940296649933, -0.054804328829050064, -0.0014640918234363198, -0.06026200205087662, 0.05963606759905815, -0.03383105993270874, 0.023964455351233482, -0.08683151006698608, -0.09470462054014206, -0.016700098291039467, 0.12761789560317993, -0.07644005864858627, 0.044193994253873825, -0.10673139989376068, 0.15941369533538818, -0.15405532717704773, -0.011776436120271683, -0.13906224071979523, 0.18163400888442993, -0.009712539613246918, 0.06750556081533432, 0.08668786287307739, 0.07469099760055542, 0.005468524992465973, 0.018179161474108696, -0.04635816067457199, 0.0007692908984608948, 0.047668538987636566, -0.005684714764356613, -0.04294867813587189, -0.11183974146842957, 0.02473965287208557, -0.02133283019065857, 0.1582854837179184, -0.09583944082260132, -0.0064119757153093815, 0.06448201090097427, 0.07930846512317657, -0.05617919936776161, -0.005840658210217953, 0.04014263302087784, 0.08606236428022385, 0.006376506295055151, 0.007467653136700392, -0.008640437386929989, -0.009962824173271656, -0.11206987500190735, 0.15656040608882904, -0.24389871954917908, -0.05916944146156311, 0.11394309252500534, -0.026945674791932106, -0.07259317487478256, 0.07762860506772995, 0.001089011668227613, -0.05514451861381531, -0.01666393131017685, -0.03472917526960373, 0.3119569420814514, 0.01572253368794918, 0.11997834593057632, -0.0839296355843544, -0.011373401619493961, 0.024376194924116135, -0.10320631414651871, 0.031094932928681374, 0.05418774485588074, -0.09100513160228729, -0.0038513632025569677, 0.018848102539777756, -0.04547811672091484, -0.07633364200592041, 0.21883927285671234, -0.014523440971970558, -0.10611890256404877, -0.006605290807783604, 0.025192376226186752, 0.0005334371235221624, 0.0443633608520031, -0.17135773599147797, -0.06422887742519379, 0.04209652915596962, 0.06883446872234344, 0.06844685226678848, -0.14760088920593262, 0.04432004690170288, 0.008002893067896366, -0.12201208621263504, -0.10892917960882187, 0.08652520179748535, -0.036200329661369324, 0.094425268471241, -0.12337106466293335, -0.013373225927352905, -0.0002987372863572091, -0.04942399635910988, -0.15431441366672516, 0.07548453658819199, -0.08956503868103027, -0.1708908975124359, -0.1662103831768036, 0.021318305283784866, -0.014529420994222164, -0.0011114449007436633, 0.07615866512060165, -0.10314785689115524, 0.03852573782205582, -0.01584184728562832, 0.04593557119369507, -0.06621672958135605, -0.01924523524940014, -0.0758015438914299, 0.0033682927023619413, 0.06872159987688065, -0.12995392084121704, -0.011261063627898693, -0.01766122318804264, -0.10390966385602951, 0.03080236166715622, 0.017650537192821503, 0.0012505623744800687, 0.17542211711406708, -0.035485152155160904, -0.011487436480820179, -0.047248724848032, 0.06256254017353058, -0.1343553364276886, 0.0011282366467639804, 0.12245059013366699, -0.031009847298264503, -0.03756512328982353, 0.12552188336849213, 0.024969615042209625, -0.012958858162164688, -0.04306997358798981, -0.016054796054959297, -0.04040652886033058, -0.2853347659111023, -0.10491729527711868, -0.050584904849529266, -0.11237803846597672, -0.0776342824101448, 0.033843643963336945, 0.11872084438800812, 0.006543122231960297, -0.089353047311306, -0.05752156674861908, 0.07489519566297531, -0.011844164691865444, 0.1667078733444214, 0.013025731779634953, 0.07353606820106506, -0.06970974057912827, -0.004086265340447426, 0.027012769132852554, 0.03911476209759712, 0.14601537585258484, 0.036906421184539795, 0.07491765916347504, 0.07089082151651382, 0.09860239923000336, 0.06293236464262009, -0.0006118793389759958, -0.019717171788215637, 0.021591685712337494, 0.03628198057413101, -0.08915892988443375, -0.01541625801473856, 0.0108866635710001, 0.13513976335525513, -0.02771846204996109, -0.01073154341429472, 0.013129440136253834, 0.12733538448810577, 0.13408724963665009, 0.05829077959060669, -0.17310450971126556, -0.0940224826335907, -0.05649683624505997, -0.11050216853618622, -0.0028685692232102156, -0.01310708187520504, 0.09266511350870132, -0.14018049836158752, 0.07364270091056824, 0.008100496605038643, 0.0733359307050705, -0.017307912930846214, 0.030716853216290474, -0.08628619462251663, 0.016721518710255623, 0.007561691105365753, 0.12798680365085602, -0.24837376177310944, 0.2169819474220276, 0.028062105178833008, 0.16467437148094177, -0.06520401686429977, 0.02173139527440071, 0.05323798581957817, 0.02833898924291134, 0.08121974021196365, 0.014912093058228493, 0.01525549404323101, -0.08615610003471375, -0.14942854642868042, 0.02275252342224121, 0.01714366488158703, 0.03343654423952103, 0.024844815954566002, 0.017840104177594185, 0.0071094525046646595, -0.03214045986533165, -0.112315833568573, -0.17219220101833344, -0.09351451694965363, 0.04540568217635155, 0.15493927896022797, 0.08659923821687698, -0.030883610248565674, -0.08146705478429794, -0.14503780007362366, 0.0716090053319931, -0.12868276238441467, -0.05680004879832268, -0.008841271512210369, -0.05830472707748413, 0.11369707435369492, -0.05696003511548042, -0.060073062777519226, 0.0540425106883049, 0.05264090746641159, -0.06728493422269821, 0.009663351811468601, 0.027963580563664436, -0.07977356016635895, -0.12547262012958527, -0.02689290978014469, 0.26334139704704285, 0.05279871076345444, 0.11140288412570953, 0.05468131601810455, 0.009110404178500175, 0.02325388789176941, -0.026320751756429672, -0.0142805902287364, 0.0646551251411438, -0.1034911498427391, 0.06415289640426636, 0.04960586503148079, -0.18446271121501923, -0.1838834285736084, -0.06224947050213814, 0.1443251222372055, 0.11173749715089798, -0.04550466313958168, 0.16549678146839142, 0.14373435080051422, -0.11389324814081192, -0.11285491287708282, -0.044426001608371735, 0.08928921073675156, 0.10449397563934326, -0.037482645362615585, -0.1088554710149765, 0.03304422274231911, 0.04373258352279663, -0.030497124418616295, -0.07418981194496155, -0.35791975259780884, -0.1637154221534729, 0.12932056188583374, -0.06986001133918762, 0.03962976858019829, -0.03427935019135475, -0.03743063658475876, -0.015613064169883728, 0.06842692196369171, -0.14920850098133087, -0.1250414401292801, 0.09522567689418793, 0.03337458521127701, 0.12998351454734802, 0.0521123893558979, -0.0180496945977211, 0.15872642397880554, 0.07407272607088089, -0.008535061031579971, -0.05716168135404587, 0.04904163256287575, 0.08831358700990677, 0.024341082200407982, 0.12926119565963745, -0.12393922358751297, 0.00987391546368599, -0.07852386683225632, -0.07327994704246521, -0.04677623510360718, 0.11035305261611938, -0.013973682187497616, 0.015207488089799881, 0.048720259219408035, -0.07064034789800644, -0.011824516579508781, -0.005141537636518478, -0.1140124648809433, -0.10188501328229904, 0.04048488661646843, 0.06170356273651123, 0.17523568868637085, -0.014289516024291515, -0.055967699736356735, -0.0028700304683297873, -0.02708420157432556, 0.07452380657196045, 0.030782906338572502, -0.02364557608962059, 0.07162854820489883, 0.013571512885391712, 0.12197469174861908, -0.03764577582478523, -0.1457037329673767, 0.1239168718457222, 0.04409826546907425, -0.028827402740716934, -0.13666613399982452, -0.0022536676842719316, 0.0142819257453084, -0.00297156791202724, -0.014924946241080761, 0.11932723224163055, -0.11014924943447113, 0.0004822120536118746, -0.012641713954508305, 0.012981422245502472, -0.12881521880626678, 0.2242259532213211, -0.025721067562699318, 0.05658514425158501, -0.0844801813364029, 0.06128151714801788, 0.05247047170996666, -0.03078543394804001, 0.09308881312608719, -0.06383077800273895, -0.07471387088298798, -0.04483222961425781, -0.05987659469246864, 0.11015184223651886, 0.11676150560379028, -0.18930882215499878, -0.042632490396499634, -0.10329466313123703, -0.02517547830939293, 0.020838579162955284, 0.04358755424618721, 0.028824053704738617, -0.0995786190032959, -0.06697773933410645, -0.08933021128177643, 0.07422858476638794, 0.14017179608345032, 0.005094814579933882, -0.09937877207994461, 0.23231275379657745, 0.0804077610373497, 0.0068180919624865055, -0.02273322455585003, -0.07384461164474487, 0.0799599140882492, 0.07723214477300644, -0.15543949604034424, 0.014788543805480003, -0.0927327424287796, 0.012718521058559418, 0.043581414967775345, -0.03106059320271015, -0.009843307547271252, 0.061403192579746246, -0.06145639345049858, 0.04574793577194214, -0.03202938660979271, 0.07336543500423431, -0.10188610106706619, 0.048814598470926285, 0.008183608762919903, -0.04586806893348694, 0.08817793428897858, 0.17171669006347656, -0.08650282770395279, 0.12679366767406464, -0.22341148555278778, -0.027306439355015755, 0.05163779482245445, 0.057690054178237915, -0.05257940664887428, -0.13097229599952698, 0.04005298763513565, 0.11658915877342224, 0.031605035066604614, 0.024324998259544373, 0.08039605617523193, -0.06304078549146652, -0.017955534160137177, -0.07757959514856339, 0.016901150345802307, -0.05506618320941925, 0.07785112410783768, 0.07383314520120621, 0.10344260185956955, 0.13677559792995453, -0.13341136276721954, 0.07907217741012573, -0.08008363842964172, 0.027937322854995728, -0.08974149823188782, -0.025228524580597878, -0.1308443397283554, -0.07930213212966919, 0.07794398814439774, -0.05502013489603996, 0.1432570368051529, 0.016611922532320023, 0.05049048736691475, -0.019942058250308037, -0.03366013988852501, -0.033394455909729004, -0.013283969834446907, 0.17604130506515503, 0.02820301428437233, 0.016977963969111443, -0.08232173323631287, -0.06037667393684387, 0.007314801216125488, 0.005184753332287073, -0.04331836849451065, 0.10987520962953568, 0.022168178111314774, 0.06170888617634773, 0.10097859799861908, -0.11702433973550797, -0.05764197185635567, -0.034103430807590485, -0.1642712503671646, 0.041234806180000305, -0.03514638915657997, 0.15939131379127502, 0.20816542208194733, -0.10420909523963928, 0.04220309108495712, 0.02246275544166565, -0.10166782140731812, -0.08207127451896667, -0.16440701484680176, -0.03550812974572182, -0.05543700233101845, 0.021563833579421043, -0.04359956458210945, 0.02496478334069252, 0.06082901358604431, 0.05738876760005951, -0.04670802503824234, 0.238585963845253, -0.07476133853197098, -0.07556580752134323, 0.08765565603971481, -0.09422073513269424, 0.04137326776981354, -0.06970395147800446, -0.015056607313454151, 0.13437385857105255, -0.019188400357961655, 0.09289534389972687, 0.05174769088625908, 0.003968772944062948, 0.01595175825059414, -0.10373719781637192, -0.047512758523225784, 0.03367502987384796, -0.043083637952804565, 0.11306335777044296, 0.16584330797195435, 0.13850457966327667, -0.08509393036365509, -0.025025028735399246, 0.10145165026187897, -0.012903036549687386, -0.1733941286802292, -0.1120094582438469, 0.05956752598285675, 0.0063072978518903255, -0.0322677344083786, 0.016807490959763527, -0.06297646462917328, 0.022138308733701706, 0.14692170917987823, 0.2737647593021393, 0.11187726259231567, 0.04451492428779602, -0.04625608026981354, -0.00659135589376092, -0.027454175055027008, 0.003790930612012744, 0.02289847657084465, 0.10522530972957611, 0.015476752072572708, 0.10520900040864944, -0.0829942598938942, -0.05026997998356819, -0.0388253778219223, 0.0456133633852005, -0.09514138847589493, -0.13508115708827972, 0.03383864462375641, 0.17916518449783325, -0.012065761722624302, -0.1994580626487732, -0.11509894579648972, -0.041485704481601715, -0.0974135771393776, 0.051171910017728806, 0.07565028965473175, 0.12906071543693542, -0.0039369286969304085, -0.043800171464681625, -0.0001829390530474484, 0.10446103662252426, 0.007855945266783237, -0.0397881418466568, -0.032230962067842484, 0.033423759043216705, -0.06339752674102783, 0.042473435401916504, 0.028765210881829262, 0.18415230512619019, 0.019390681758522987, 0.11929884552955627, 0.00915569718927145, 0.17610663175582886, 0.018758682534098625, 0.001051919418387115, 0.09561173617839813, 0.15957416594028473, 0.0028363512828946114, 0.049145810306072235, 0.06723310053348541, -0.03588887304067612, 0.07161473482847214, -0.2211018055677414, 0.03317120671272278, -0.1042589321732521, 0.0848696306347847, -0.0035784870851784945, 0.08127808570861816, 0.13531048595905304, -0.04555446654558182, -0.005991585552692413, -0.04329102486371994, -0.040912967175245285, 0.05384248495101929, -0.044097259640693665, -0.021258702501654625, -0.25241050124168396, 0.022745225578546524, -0.06818489730358124, 0.03392514958977699, -0.14333584904670715, -0.04281468316912651, -0.021585017442703247, -0.09471407532691956, 0.005026848055422306, 0.06494961678981781, 0.09572985768318176, 0.019665567204356194, -0.011954005807638168, -0.009423796087503433, 0.05822508782148361, 0.11136708408594131, -0.14667445421218872, -0.08216901868581772 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Turkish Fine-tuned [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760) on the [Turkish Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.60 % ## Training The Artificial Common Voice `train`, `validation` is used to fine tune the model The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Base Turkish with Artificial Voices by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 57.6, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-base-turkish-artificial
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Turkish Fine-tuned ceyda/wav2vec2-base-760 on the Turkish Artificial Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 57.60 % ## Training The Artificial Common Voice 'train', 'validation' is used to fine tune the model The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned ceyda/wav2vec2-base-760\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 57.60 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned ceyda/wav2vec2-base-760\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 57.60 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ 77, 60, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned ceyda/wav2vec2-base-760\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 57.60 %## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ -0.1319875717163086, -0.08127938210964203, -0.0015229614218696952, -0.044171322137117386, 0.11930146813392639, -0.009846116416156292, 0.23998579382896423, 0.07769453525543213, -0.0037394766695797443, -0.03790799900889397, 0.025546139106154442, 0.03473956510424614, 0.06977024674415588, 0.07818164676427841, 0.07449707388877869, -0.23967064917087555, 0.0008759886841289699, -0.022486358880996704, 0.08668069541454315, 0.12859666347503662, 0.10833407938480377, -0.032414525747299194, -0.031226078048348427, 0.10352294892072678, -0.16440589725971222, 0.043565187603235245, 0.030147725716233253, -0.1447383016347885, 0.16004294157028198, 0.036737110465765, 0.09544919431209564, -0.010655843652784824, 0.0721709281206131, -0.16387997567653656, 0.034556321799755096, 0.00731987738981843, 0.016102734953165054, 0.024350034072995186, 0.07285269349813461, -0.09301269799470901, 0.19147464632987976, 0.07710011303424835, -0.029123250395059586, 0.05214197188615799, -0.06256633251905441, -0.1337231993675232, -0.015403791330754757, 0.043898098170757294, 0.11607502400875092, 0.1444612592458725, -0.05858490243554115, 0.03982875868678093, -0.12174390256404877, 0.09072915464639664, 0.09086227416992188, -0.22592851519584656, -0.013126981444656849, 0.013036208227276802, -0.01728701777756214, 0.07343803346157074, -0.0037427758798003197, 0.06670410931110382, -0.023304494097828865, 0.0026226823683828115, 0.003455734346061945, -0.027114560827612877, -0.20697245001792908, -0.07852959632873535, -0.08878283947706223, -0.016896206885576248, 0.21320170164108276, -0.04579538479447365, -0.03767742961645126, -0.12072538584470749, 0.017454389482736588, 0.0035215963143855333, -0.02291128784418106, -0.036799702793359756, -0.028749361634254456, 0.03310832008719444, 0.02904682606458664, -0.056951068341732025, -0.10369080305099487, -0.15589475631713867, -0.03186855837702751, 0.16305652260780334, 0.04371529072523117, -0.00134332908783108, -0.12336871027946472, 0.11016733944416046, -0.0848667249083519, -0.03782982379198074, 0.0039836871437728405, 0.05505378171801567, -0.09377080947160721, 0.02471725270152092, -0.09094835817813873, -0.20348571240901947, 0.012353227473795414, -0.014324558898806572, 0.16471606492996216, 0.04638257250189781, -0.0012291439343243837, 0.09545374661684036, -0.04821636900305748, 0.11389215290546417, -0.008904000744223595, -0.028587713837623596, 0.016412993893027306, 0.007848733104765415, -0.03309287130832672, -0.040388286113739014, -0.10799124836921692, -0.07350217550992966, 0.02204984612762928, 0.086858831346035, -0.05770593136548996, 0.01990111544728279, -0.009184119291603565, -0.010851149447262287, 0.03034408763051033, -0.11704248934984207, -0.051061734557151794, 0.061779603362083435, -0.02706734463572502, 0.08188991248607635, 0.06311766058206558, 0.02624417282640934, -0.10787149518728256, 0.005001732613891363, 0.048990651965141296, 0.0917397141456604, -0.016406161710619926, -0.052393339574337006, -0.01886230893433094, -0.025547154247760773, -0.013803305104374886, -0.15462040901184082, -0.10052349418401718, -0.046913135796785355, -0.008946174755692482, 0.026418743655085564, 0.05818655714392662, -0.08859995752573013, 0.008710619993507862, -0.0350070521235466, -0.03776358813047409, 0.054390039294958115, -0.04461180046200752, 0.06528093665838242, 0.033401697874069214, 0.03592491149902344, 0.04266481101512909, 0.0774277001619339, -0.08069935441017151, -0.08395102620124817, 0.02915659360587597, 0.12897221744060516, 0.025672834366559982, -0.026638589799404144, -0.1038331538438797, -0.04192514345049858, -0.0973714217543602, 0.06182786822319031, 0.05719059705734253, 0.0836748480796814, -0.22305133938789368, -0.08194117993116379, 0.22923243045806885, -0.10492336750030518, -0.037557896226644516, 0.16136565804481506, 0.011915316805243492, 0.12232204526662827, 0.1484861969947815, 0.2510680556297302, 0.11926428228616714, -0.13215093314647675, 0.04336179047822952, 0.004747539758682251, -0.014562660828232765, -0.04291815683245659, 0.07760516554117203, -0.05036273971199989, 0.0026793121360242367, 0.03912011533975601, -0.11546479165554047, 0.10279089957475662, 0.0035835227463394403, -0.07163237780332565, 0.007905211299657822, -0.08067139238119125, 0.04842604324221611, -0.016695598140358925, 0.06517653167247772, -0.031805895268917084, -0.08136270195245743, 0.016880083829164505, 0.12827877700328827, -0.10582079738378525, 0.04173702374100685, -0.12890589237213135, 0.09437654912471771, -0.07187192142009735, 0.012319579720497131, -0.1673952043056488, 0.17445701360702515, -0.04766304790973663, 0.0563313290476799, 0.12444885820150375, 0.07747920602560043, 0.009283176623284817, 0.01836235821247101, -0.019555119797587395, 0.01123129017651081, 0.016455022618174553, -0.014190593734383583, -0.04069427028298378, -0.0724029541015625, 0.016141805797815323, -0.04239613935351372, 0.13348060846328735, -0.11714070290327072, 0.01653219386935234, 0.0053068287670612335, 0.012782152742147446, -0.024811318144202232, -0.008701766841113567, 0.03586791828274727, 0.09152837097644806, 0.009879178367555141, -0.0008651300449855626, 0.05275696888566017, 0.009023084305226803, -0.09359117597341537, 0.10509611666202545, -0.22113358974456787, -0.0004234634106978774, 0.1128314733505249, -0.08028994500637054, -0.05196138843894005, 0.029569366946816444, 0.003688105382025242, -0.012697134166955948, -0.039297062903642654, -0.02872883714735508, 0.34428900480270386, 0.01587478071451187, 0.13617289066314697, -0.05980303883552551, 0.021104831248521805, 0.012289408594369888, -0.10454919934272766, 0.06868931651115417, 0.023740703240036964, -0.014106686227023602, 0.03826378658413887, -0.004369968082755804, 0.004447022918611765, -0.08123066276311874, 0.2277316153049469, 0.006517503410577774, -0.08273683488368988, 0.010325886309146881, -0.009627321735024452, -0.004072043113410473, 0.03112994320690632, -0.19927673041820526, -0.10847773402929306, 0.03500479832291603, 0.048068754374980927, 0.06950459629297256, -0.1514952927827835, 0.01231304183602333, 0.04538210108876228, -0.12136268615722656, -0.15218201279640198, 0.0715874657034874, -0.08869823813438416, 0.06861379742622375, -0.09539150446653366, -0.02509641833603382, -0.0021835342049598694, -0.03720254823565483, -0.15768739581108093, 0.12112055718898773, -0.07747741043567657, -0.19376036524772644, -0.1525585800409317, 0.048611272126436234, 0.052343592047691345, 0.017318112775683403, 0.08446574211120605, -0.13490065932273865, 0.035554345697164536, -0.000013400382158579305, 0.09898639470338821, 0.008865831419825554, -0.026620205491781235, -0.07616055756807327, 0.0004654114891309291, 0.027299970388412476, -0.13654926419258118, -0.019820446148514748, -0.027644068002700806, -0.10260704159736633, 0.0020172991789877415, -0.024866489693522453, 0.0006067727226763964, 0.19300416111946106, -0.018438275903463364, 0.021556824445724487, -0.033975038677453995, 0.09345792233943939, -0.1264972984790802, -0.011115658096969128, 0.18418480455875397, -0.013416118919849396, -0.028472300618886948, 0.07374783605337143, 0.04651786386966705, -0.041975729167461395, -0.02450379729270935, -0.047352321445941925, -0.09758378565311432, -0.23915813863277435, -0.10185897350311279, -0.05645984783768654, -0.11830364912748337, -0.05243827775120735, 0.015218382701277733, 0.10005340725183487, 0.041857197880744934, -0.02629280276596546, -0.08122233301401138, 0.06223582848906517, -0.005549915600568056, 0.1295921355485916, 0.021852582693099976, 0.09104111045598984, -0.08152316510677338, -0.012136291712522507, 0.007883387617766857, 0.021544519811868668, 0.1887299120426178, 0.07053526490926743, 0.13268664479255676, 0.07375434041023254, 0.06626355648040771, 0.08345293998718262, 0.07391493022441864, -0.01895454339683056, 0.008779662661254406, 0.021231146529316902, -0.06924965977668762, -0.04818233102560043, 0.03348561003804207, 0.05858044698834419, -0.08212408423423767, -0.030697032809257507, -0.0019359771395102143, 0.094306580722332, 0.08229416608810425, 0.0025539144407957792, -0.21222037076950073, -0.09069646894931793, -0.05935731530189514, -0.08166427910327911, 0.03285864740610123, 0.023873835802078247, 0.08340997993946075, -0.14644812047481537, 0.03085380420088768, -0.0035599484108388424, 0.0875464677810669, -0.04096519574522972, 0.023013383150100708, -0.0775095596909523, 0.025212138891220093, 0.024067705497145653, 0.11803656071424484, -0.229646697640419, 0.22207137942314148, 0.01325275655835867, 0.15895387530326843, -0.07526066899299622, 0.0030000710394233465, 0.08800527453422546, 0.05611665919423103, 0.09320973604917526, 0.011263763532042503, -0.005999652668833733, -0.10860300809144974, -0.09467187523841858, 0.05219094082713127, 0.023140031844377518, -0.021622857078909874, 0.01219345536082983, -0.014081618748605251, 0.003947841003537178, -0.012356427498161793, -0.11844778060913086, -0.14375294744968414, -0.10262900590896606, 0.027871349826455116, 0.13970284163951874, 0.10796856135129929, -0.01671270839869976, -0.06768640130758286, -0.04111503064632416, 0.030354894697666168, -0.09975822269916534, -0.06160018593072891, -0.03825732693076134, -0.0402202233672142, 0.04146061837673187, -0.09019624441862106, -0.02604692429304123, 0.06867734342813492, 0.05341259017586708, -0.03302190452814102, -0.03731828182935715, 0.017659952864050865, -0.09931590408086777, -0.06740790605545044, -0.0074643963016569614, 0.18612869083881378, 0.09403424710035324, 0.08178237825632095, 0.06491788476705551, -0.007422883063554764, 0.011549641378223896, -0.04010633006691933, -0.03546810522675514, 0.10279576480388641, -0.13879358768463135, 0.00810469500720501, 0.012791580520570278, -0.1283503621816635, -0.15601934492588043, -0.04705407842993736, 0.16510747373104095, 0.029587198048830032, -0.04032491147518158, 0.14510700106620789, 0.18915431201457977, -0.09117741137742996, -0.1593615561723709, -0.04424937814474106, 0.07537757605314255, 0.11550972610712051, -0.004118849989026785, -0.21481896936893463, 0.08840921521186829, 0.012589032761752605, -0.02544652298092842, -0.04017353802919388, -0.35185423493385315, -0.1511489748954773, 0.1760455220937729, -0.002183599630370736, 0.08266806602478027, -0.02720116637647152, -0.014967200346291065, -0.005712002515792847, 0.04077515751123428, -0.0639340952038765, -0.1755015254020691, 0.12373879551887512, 0.0337655209004879, 0.12059066444635391, 0.03755192086100578, -0.005330617539584637, 0.10804592072963715, 0.08176519721746445, -0.015493297949433327, -0.04768236726522446, 0.01885336823761463, 0.06608852744102478, 0.023301560431718826, 0.12612122297286987, -0.1549408733844757, 0.022916948422789574, -0.07130203396081924, -0.1025930717587471, -0.046900954097509384, 0.08230584114789963, 0.020474987104535103, -0.016441192477941513, 0.029521532356739044, -0.06433342397212982, -0.007162617053836584, 0.008393716998398304, -0.10029403865337372, -0.13047486543655396, -0.014445971697568893, 0.05025896802544594, 0.1721971184015274, -0.014748405665159225, -0.10336209833621979, -0.03089352697134018, -0.011614587157964706, 0.10620369017124176, -0.07814157009124756, -0.026081057265400887, 0.06739452481269836, 0.025639759376645088, 0.11967496573925018, -0.0026350717525929213, -0.11328911036252975, 0.11030874401330948, 0.08825528621673584, -0.011248827911913395, -0.12226104736328125, -0.015984607860445976, 0.028102045878767967, 0.019763372838497162, 0.0006346100126393139, 0.10626450926065445, -0.10536546260118484, -0.012748243287205696, -0.02387266606092453, -0.02197398990392685, -0.15039515495300293, 0.21277213096618652, -0.005935654975473881, 0.04326589033007622, -0.07647281885147095, 0.034487783908843994, 0.005130756180733442, -0.01517201866954565, 0.05460154637694359, -0.008197401650249958, -0.09439042955636978, -0.07654799520969391, -0.045556508004665375, 0.11746327579021454, 0.039330121129751205, -0.16316314041614532, -0.050483398139476776, -0.07952598482370377, -0.04543997347354889, 0.01804511435329914, 0.05676327645778656, -0.008224536664783955, -0.15335160493850708, -0.024333009496331215, -0.061406105756759644, 0.0408344566822052, 0.10931238532066345, -0.03357391431927681, -0.09616515040397644, 0.22407542169094086, 0.09858093410730362, 0.013098129071295261, -0.04076308757066727, -0.09212959557771683, 0.04996727034449577, 0.08223754912614822, -0.09342170506715775, -0.016100812703371048, -0.09591762721538544, 0.006402932573109865, 0.028398284688591957, -0.04124891385436058, 0.006989061366766691, 0.04929285869002342, -0.07790348678827286, 0.034914396703243256, -0.034711383283138275, 0.055994462221860886, -0.097630575299263, 0.04380252584815025, 0.010494768619537354, -0.0379786379635334, 0.08213137090206146, 0.17681464552879333, -0.10574684292078018, 0.15729360282421112, -0.1997727006673813, 0.004091549199074507, 0.044778987765312195, 0.06428412348031998, -0.03657304495573044, -0.06762167811393738, 0.04591092839837074, 0.07535403221845627, 0.06695588678121567, 0.010152285918593407, 0.11747352033853531, -0.07170508801937103, 0.010217123664915562, -0.06705496460199356, 0.025431720539927483, -0.05548249930143356, 0.0744161456823349, 0.06728343665599823, 0.11333238333463669, 0.12717679142951965, -0.11449846625328064, 0.10177647322416306, -0.07773444056510925, 0.044505391269922256, -0.06631336361169815, -0.03540702536702156, -0.10261940211057663, -0.12829604744911194, 0.05398295074701309, -0.05848614126443863, 0.12538252770900726, 0.030088996514678, 0.057017579674720764, -0.02874995954334736, -0.018373902887105942, 0.024181120097637177, -0.03617347031831741, 0.20088933408260345, 0.06601501256227493, 0.016045961529016495, -0.08793032169342041, 0.002287566661834717, 0.014674147590994835, 0.03255404159426689, 0.024342413991689682, 0.14116421341896057, -0.0026454401668161154, 0.09499432891607285, 0.0826016291975975, -0.05376342684030533, -0.11232229322195053, -0.11103326827287674, -0.10487210750579834, 0.01290176622569561, -0.07182387262582779, 0.17231430113315582, 0.20282790064811707, -0.05299007520079613, 0.05594271793961525, 0.05371803045272827, -0.0933091789484024, -0.10231289267539978, -0.17382852733135223, -0.007771266624331474, -0.12127099186182022, -0.0037469586823135614, -0.03471093997359276, -0.00601214449852705, 0.0720558911561966, 0.04833114892244339, -0.04395127668976784, 0.29438215494155884, -0.04142715409398079, -0.07866150140762329, 0.08084198832511902, -0.10636097937822342, 0.00737703125923872, -0.08878574520349503, -0.007308626547455788, 0.10724091529846191, -0.011049233376979828, 0.09086086601018906, 0.03851761296391487, -0.07694816589355469, 0.010015617124736309, -0.10206378996372223, -0.0513371080160141, -0.02024867944419384, -0.017557434737682343, 0.06946779042482376, 0.15041400492191315, 0.10741160809993744, -0.09971746802330017, -0.017606308683753014, 0.13951866328716278, -0.011383095756173134, -0.1600886732339859, -0.10395512729883194, 0.09476996213197708, 0.03776239976286888, -0.023294838145375252, -0.02155597321689129, -0.0241511519998312, -0.018720734864473343, 0.25450512766838074, 0.27884164452552795, 0.08634936809539795, 0.041151609271764755, -0.021188735961914062, 0.008244900032877922, -0.0351676382124424, 0.06296603381633759, 0.032560598105192184, 0.17549215257167816, 0.016098974272608757, 0.04936249181628227, -0.08109775185585022, -0.07715576887130737, -0.008279433473944664, 0.017916643992066383, -0.05288982391357422, -0.10107055306434631, 0.00978914275765419, 0.15417812764644623, -0.054661016911268234, -0.14314062893390656, -0.0832061618566513, -0.016277611255645752, -0.07560527324676514, 0.01250533852726221, 0.023732060566544533, 0.1225932314991951, 0.03634442389011383, -0.04577541723847389, -0.015611978247761726, 0.1126929223537445, 0.015086110681295395, -0.07943478971719742, -0.06850612908601761, 0.04357732832431793, -0.09873955696821213, 0.03978550061583519, -0.015184535644948483, 0.15937648713588715, 0.010016540996730328, 0.130035862326622, 0.020350253209471703, 0.18566332757472992, -0.0018587749218568206, 0.024833405390381813, 0.08413407951593399, 0.10308346152305603, -0.045513227581977844, 0.01345775742083788, 0.038707517087459564, -0.12030650675296783, 0.0723877102136612, -0.1561429351568222, -0.00850426685065031, -0.08724034577608109, 0.04591826722025871, -0.026268916204571724, 0.07671452313661575, 0.1320916712284088, -0.049360886216163635, -0.038534633815288544, -0.022870413959026337, 0.00917674321681261, 0.069240041077137, -0.07601726055145264, -0.05643387511372566, -0.2292778044939041, -0.04635310173034668, -0.07735510915517807, -0.0027629518881440163, -0.14620435237884521, -0.04631340503692627, -0.02028445154428482, -0.08300238847732544, 0.022556016221642494, 0.05307241901755333, 0.11292015016078949, 0.023749940097332, -0.0015521722380071878, -0.014225919730961323, 0.05779454857110977, 0.13507293164730072, -0.19996069371700287, -0.11589948832988739 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2893 - Wer: 0.2713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8647 | 14.28 | 200 | 0.2758 | 0.2568 | | 1.3376 | 28.56 | 400 | 0.2754 | 0.2722 | | 1.1975 | 42.84 | 600 | 0.2929 | 0.2901 | | 1.1024 | 57.14 | 800 | 0.2904 | 0.2928 | | 1.0257 | 71.42 | 1000 | 0.2915 | 0.2823 | | 0.9628 | 85.7 | 1200 | 0.2936 | 0.2749 | | 0.9109 | 99.98 | 1400 | 0.2893 | 0.2713 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
cahya/wav2vec2-base-turkish-cv7
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.2893 * Wer: 0.2713 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 128 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 512 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 100.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 512\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 512\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 79, 159, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 512\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11459879577159882, 0.12865512073040009, -0.003819869365543127, 0.035603806376457214, 0.10277888923883438, 0.0063041215762495995, 0.09693069756031036, 0.15749554336071014, -0.08009153604507446, 0.11755233258008957, 0.09108708798885345, 0.09994317591190338, 0.0909595862030983, 0.15686453878879547, -0.02176424115896225, -0.2819637656211853, 0.038904979825019836, -0.026943791657686234, -0.06644555181264877, 0.10567072778940201, 0.08842335641384125, -0.10032864660024643, 0.030993880704045296, 0.00797016266733408, -0.0900474339723587, -0.016285063698887825, -0.03998655453324318, -0.06816720962524414, 0.0972178652882576, 0.042413461953401566, 0.03022199682891369, 0.034765444695949554, 0.06938290596008301, -0.276398241519928, 0.00780082494020462, 0.05496596544981003, 0.03358529508113861, 0.0539151094853878, 0.1009715348482132, -0.010486921295523643, 0.09670530259609222, -0.07535696774721146, 0.04298858717083931, 0.05459151417016983, -0.08213303983211517, -0.28283455967903137, -0.10328204929828644, 0.024711184203624725, 0.1251363456249237, 0.08678501099348068, -0.0405423603951931, 0.05969712510704994, -0.045243777334690094, 0.08793869614601135, 0.2553213834762573, -0.25115251541137695, -0.06105603650212288, -0.018505331128835678, 0.04830455780029297, 0.030201381072402, -0.09939997643232346, 0.007333001121878624, 0.025325778871774673, 0.021757759153842926, 0.09273646771907806, 0.007235993631184101, 0.04992300271987915, -0.010678169317543507, -0.13812631368637085, -0.05364511162042618, 0.13946834206581116, 0.09258492290973663, -0.02955765463411808, -0.11757916957139969, -0.026878444477915764, -0.1822819858789444, -0.04999551922082901, -0.0005953394575044513, 0.028106583282351494, -0.025165457278490067, -0.08471560478210449, 0.014237608760595322, -0.043088287115097046, -0.05674723535776138, 0.01728212833404541, 0.13827742636203766, 0.045502979308366776, -0.04401415213942528, 0.032869912683963776, 0.07321945577859879, 0.04574597254395485, -0.1541738212108612, -0.02020026370882988, 0.04170440509915352, -0.08738230913877487, -0.007277941796928644, -0.02472243458032608, 0.01562899351119995, 0.05486546456813812, 0.1444675624370575, 0.007053515873849392, 0.09549535065889359, 0.002998518291860819, 0.012339873239398003, -0.06918448209762573, 0.14437587559223175, -0.07171391695737839, -0.10606872290372849, -0.03407125547528267, 0.10114078223705292, 0.02740761823952198, -0.02528977580368519, -0.08886781334877014, 0.03508001193404198, 0.12092713266611099, 0.05342767760157585, 0.004629956092685461, 0.01656332053244114, -0.07133086770772934, -0.02724466286599636, -0.01694650575518608, -0.11488571017980576, 0.05271578207612038, 0.03787759318947792, -0.05537663400173187, 0.01971915364265442, -0.0283245537430048, 0.0318833589553833, -0.03017236478626728, 0.0907769650220871, -0.04639197885990143, -0.005697970278561115, -0.05627460777759552, -0.09550876915454865, 0.043128401041030884, -0.05626251548528671, -0.00923856906592846, -0.0838283970952034, -0.07681484520435333, -0.06311488896608353, 0.050464432686567307, -0.06621004641056061, -0.060989320278167725, -0.09510152041912079, -0.0781744197010994, 0.06254126131534576, -0.0297874566167593, 0.14691266417503357, -0.06410235911607742, 0.09592661261558533, 0.014259837567806244, 0.05963794142007828, 0.0662330761551857, 0.07130244374275208, -0.021968504413962364, 0.04262648895382881, -0.14648522436618805, 0.09852839261293411, -0.09156215935945511, 0.044188350439071655, -0.15317939221858978, -0.09029435366392136, -0.015547260642051697, -0.004754136316478252, 0.10625523328781128, 0.12750744819641113, -0.1745849996805191, -0.0991964340209961, 0.1539423167705536, -0.058168236166238785, -0.09140599519014359, 0.14880703389644623, -0.008218340575695038, -0.03786030411720276, 0.04021070525050163, 0.20182712376117706, 0.09050881862640381, -0.09642568230628967, -0.025667112320661545, -0.07725729048252106, 0.11939070373773575, 0.03744445741176605, 0.10364855825901031, -0.06127891317009926, 0.02911311946809292, -0.00305508216843009, 0.004209835547953844, 0.0701027438044548, -0.07960165292024612, -0.06864522397518158, -0.013921246863901615, -0.0686596930027008, 0.01155166421085596, 0.03796350583434105, 0.013567679561674595, -0.10069142282009125, -0.12429536134004593, -0.020959150046110153, 0.10520269721746445, -0.10738949477672577, 0.038601428270339966, -0.08767327666282654, 0.0958172008395195, -0.02865334041416645, 0.0011251295218244195, -0.1436595618724823, 0.028306040912866592, 0.05009203776717186, -0.046057991683483124, 0.010194067843258381, -0.06027546152472496, 0.05996531620621681, 0.033721890300512314, -0.04097814857959747, -0.05991387367248535, -0.03175392374396324, 0.0012270123697817326, -0.0634148120880127, -0.22903859615325928, -0.06435133516788483, -0.026451224461197853, 0.1592390239238739, -0.15440873801708221, -0.003705055685713887, 0.04193905368447304, 0.14662635326385498, 0.021541690453886986, -0.05426901951432228, 0.01301010511815548, 0.06886463612318039, -0.028133785352110863, -0.07392770797014236, 0.029670901596546173, 0.007326632738113403, -0.11341719329357147, 0.012214371003210545, -0.13096211850643158, 0.06949629634618759, 0.10720378160476685, 0.017226818948984146, -0.05883089825510979, -0.060156457126140594, -0.04545819014310837, -0.04716550186276436, -0.03423274680972099, -0.012705141678452492, 0.1589583307504654, 0.015328770503401756, 0.09804122149944305, -0.07701759785413742, -0.034234676510095596, 0.04687662795186043, 0.020258251577615738, -0.037918031215667725, 0.1259932965040207, 0.07180600613355637, -0.061812881380319595, 0.10428784787654877, 0.08011297881603241, -0.031154990196228027, 0.1372646540403366, -0.06237620487809181, -0.08578451722860336, -0.0432455912232399, 0.016458170488476753, 0.021230755373835564, 0.08827532082796097, -0.1727239191532135, -0.024423032999038696, 0.02752380259335041, 0.03538212180137634, 0.014736143872141838, -0.16579879820346832, 0.013921092264354229, 0.04295271262526512, -0.08451282978057861, 0.012225567363202572, 0.0007506472757086158, -0.022431310266256332, 0.08133571594953537, 0.024713817983865738, -0.08933855593204498, -0.021010739728808403, -0.03266943246126175, -0.0960862785577774, 0.1460082083940506, -0.11799175292253494, -0.15270109474658966, -0.10060808062553406, -0.052455268800258636, -0.030796486884355545, -0.008067109622061253, 0.06767868995666504, -0.08625876903533936, -0.03511130064725876, -0.07820390909910202, 0.006269713398069143, -0.06844253093004227, 0.04654515162110329, 0.04162198677659035, -0.005291650537401438, 0.02947014570236206, -0.08520042151212692, 0.00225244602188468, -0.010464570485055447, 0.0030075893737375736, -0.0009461248409934342, -0.0007826044457033277, 0.10211985558271408, 0.16136594116687775, 0.0616413876414299, 0.04512086883187294, -0.05329151079058647, 0.16279315948486328, -0.12324938923120499, 0.0014915434876456857, 0.11194806545972824, 0.035843245685100555, 0.04669139161705971, 0.16233305633068085, 0.030590929090976715, -0.09013640880584717, 0.019135508686304092, 0.022237475961446762, -0.018106501549482346, -0.21384260058403015, -0.03904317691922188, -0.07850968092679977, -0.017186051234602928, 0.0971066951751709, 0.0320548452436924, 0.009976182132959366, 0.019092075526714325, -0.025848163291811943, -0.007407297380268574, 0.03478869050741196, 0.06534117460250854, 0.08963249623775482, 0.0465732179582119, 0.12014374136924744, -0.012656726874411106, -0.016298646107316017, 0.03920536860823631, -0.013765029609203339, 0.24384288489818573, 0.030559435486793518, 0.1836775690317154, 0.041986580938100815, 0.1602059006690979, -0.0008068293682299554, 0.03764762356877327, 0.02313748560845852, 0.009036551229655743, 0.002535752020776272, -0.06067294254899025, -0.04411117732524872, 0.040372394025325775, 0.14349006116390228, 0.015487832948565483, -0.11887077242136002, 0.0010132004972547293, 0.029911991208791733, 0.3626934885978699, 0.08770526945590973, -0.2781713604927063, -0.06661394983530045, 0.01540791429579258, -0.0758141428232193, -0.027881521731615067, 0.03216249495744705, 0.1067371815443039, -0.07506246119737625, 0.0937713235616684, -0.04817816615104675, 0.08315273374319077, -0.07420853525400162, -0.002316887490451336, 0.054549477994441986, 0.08323146402835846, 0.0039574746042490005, 0.0508875772356987, -0.2708224952220917, 0.2660367488861084, -0.00480329804122448, 0.08090969175100327, -0.05503172054886818, 0.04227941855788231, 0.038344401866197586, -0.037536732852458954, 0.07811491191387177, -0.011772330850362778, -0.1345236450433731, -0.1417037844657898, -0.11368776112794876, 0.006527152378112078, 0.12855616211891174, -0.06502173095941544, 0.11185257881879807, -0.038927704095840454, -0.03832211345434189, 0.03400186076760292, -0.020781084895133972, -0.11670270562171936, -0.10689513385295868, 0.03305818513035774, 0.061160121113061905, 0.08343985676765442, -0.07666505873203278, -0.10604957491159439, -0.07984813302755356, 0.15911808609962463, -0.08691494166851044, -0.0133822588250041, -0.1275032013654709, 0.05666928365826607, 0.1425815373659134, -0.06595302373170853, 0.05054418742656708, 0.011906743049621582, 0.1189848855137825, 0.01110343262553215, -0.021020736545324326, 0.11906789988279343, -0.07573144882917404, -0.192690908908844, -0.06450899690389633, 0.17860040068626404, 0.020900467410683632, 0.06720183789730072, -0.014648493379354477, 0.03615282103419304, -0.00010366219794377685, -0.06472622603178024, 0.08692207932472229, 0.07572522014379501, 0.030174968764185905, 0.058528367429971695, -0.015127131715416908, -0.02262415736913681, -0.09201156347990036, -0.08359847217798233, 0.13717161118984222, 0.27533823251724243, -0.08092356473207474, 0.056427616626024246, 0.055088214576244354, -0.05044003203511238, -0.13831348717212677, -0.02533295936882496, 0.11315057426691055, 0.039444658905267715, -0.016361625865101814, -0.19947770237922668, -0.01484814751893282, 0.07348063588142395, -0.02530955709517002, 0.06644533574581146, -0.34152090549468994, -0.1316187083721161, 0.08119815587997437, 0.0714324563741684, 0.0009902132442221045, -0.16353556513786316, -0.07284209877252579, -0.029457176104187965, -0.08277610689401627, 0.03648251295089722, -0.012736189179122448, 0.13990835845470428, 0.01602446660399437, 0.014807944186031818, 0.010218987241387367, -0.04186392202973366, 0.14523595571517944, 0.008045697584748268, 0.019958844408392906, -0.02126576378941536, 0.02575848065316677, -0.03140302002429962, -0.06510283052921295, 0.004723348189145327, -0.0749436616897583, 0.02065650001168251, -0.12645277380943298, -0.034969862550497055, -0.06757655739784241, 0.02409978210926056, -0.025453422218561172, -0.028933661058545113, -0.045770466327667236, 0.038734398782253265, 0.09408111125230789, 0.009499802254140377, 0.12382818758487701, -0.05517986789345741, 0.12567369639873505, 0.12381737679243088, 0.09686160087585449, -0.034468166530132294, -0.08518444746732712, -0.015227747149765491, -0.028278185054659843, 0.030124062672257423, -0.08978697657585144, 0.02930302359163761, 0.13724234700202942, 0.032254017889499664, 0.14780578017234802, 0.05121739208698273, -0.09275293350219727, 0.026181694120168686, 0.056644026190042496, -0.07243034243583679, -0.15448889136314392, -0.016804777085781097, 0.02780027873814106, -0.11594792455434799, 0.009228216484189034, 0.11901800334453583, -0.02925637736916542, -0.007816262543201447, 0.010462407022714615, 0.043506067246198654, -0.030287137255072594, 0.21866630017757416, 0.004253326915204525, 0.07121080905199051, -0.09950221329927444, 0.08931566774845123, 0.05051141604781151, -0.12901142239570618, 0.06018733233213425, 0.07838337868452072, -0.0608101449906826, -0.014017218723893166, 0.014346804469823837, 0.08409814536571503, 0.044315140694379807, -0.054185256361961365, -0.1093265563249588, -0.14547592401504517, 0.10422519594430923, 0.06944575160741806, 0.023629823699593544, 0.02373817004263401, -0.027249565348029137, 0.021742139011621475, -0.08691967278718948, 0.09265214949846268, 0.09141497313976288, 0.05165804177522659, -0.13079003989696503, 0.09688782691955566, 0.011828376911580563, 0.004908705595880747, -0.004421461373567581, -0.016603685915470123, -0.09464238584041595, 0.024290939792990685, -0.10444145649671555, -0.013794248923659325, -0.0873483344912529, -0.012595869600772858, 0.016381599009037018, -0.06464244425296783, -0.06514880061149597, 0.014842079021036625, -0.10886172205209732, -0.05579442158341408, -0.03015792742371559, 0.06774813681840897, -0.09568438678979874, -0.02082935720682144, 0.021842435002326965, -0.12296364456415176, 0.1019962728023529, 0.053870148956775665, 0.01930110901594162, -0.0005430089076980948, -0.07991104573011398, -0.01701110228896141, 0.03798142448067665, -0.0023722767364233732, 0.023354239761829376, -0.20779836177825928, -0.01119174249470234, -0.008205559104681015, 0.009910748340189457, -0.003077084431424737, 0.040993597358465195, -0.11793416738510132, -0.02830073982477188, -0.05953466147184372, -0.039261654019355774, -0.04382198676466942, 0.05905649811029434, 0.09025867283344269, 0.01804676093161106, 0.15702566504478455, -0.08396877348423004, 0.05487179383635521, -0.20472396910190582, 0.012994050979614258, -0.03636806458234787, -0.07144482433795929, -0.04976669326424599, -0.032986219972372055, 0.0935443714261055, -0.04773808270692825, 0.07170321047306061, -0.049143459647893906, 0.05106136202812195, 0.025846807286143303, -0.12048426270484924, 0.027864834293723106, 0.044428665190935135, 0.18913878500461578, 0.059312429279088974, -0.028160855174064636, 0.08094101399183273, 0.000029550164981628768, 0.08007840812206268, 0.15446370840072632, 0.13173270225524902, 0.1489371657371521, 0.08880142122507095, 0.11034321039915085, 0.07036586850881577, -0.1292898803949356, -0.1412958949804306, 0.13938818871974945, -0.0458882600069046, 0.14796143770217896, -0.008691104128956795, 0.20454439520835876, 0.10221990942955017, -0.19725553691387177, 0.05370563268661499, -0.0264526829123497, -0.07004138082265854, -0.10188250243663788, -0.08539984375238419, -0.09373007714748383, -0.19163009524345398, 0.007309895008802414, -0.09736520797014236, 0.059808142483234406, 0.037170276045799255, 0.048877399414777756, 0.04081371799111366, 0.0666235014796257, 0.023064732551574707, -0.014993016608059406, 0.12770439684391022, 0.0005076043889857829, -0.03685096651315689, -0.05282730236649513, -0.12558335065841675, 0.04769420623779297, -0.033950526267290115, 0.07801984250545502, -0.014979721046984196, -0.09743351489305496, 0.06831280142068863, 0.009702778421342373, -0.10986295342445374, 0.02268245257437229, -0.019355949014425278, 0.06424166262149811, 0.10920888185501099, 0.046926651149988174, -0.026906320825219154, 0.005372187588363886, 0.2018594741821289, -0.0966329500079155, -0.04414250701665878, -0.1295049488544464, 0.17977198958396912, 0.005821384489536285, 0.006299646571278572, 0.016737962141633034, -0.08090265840291977, -0.02180969901382923, 0.16676177084445953, 0.1412772387266159, -0.003195146331563592, -0.026620663702487946, 0.025402188301086426, -0.011365819722414017, -0.02710384875535965, 0.06259632855653763, 0.12130080908536911, 0.04489720240235329, -0.04305268079042435, -0.013513190671801567, -0.041650500148534775, -0.05933791399002075, -0.03677753731608391, 0.0714857205748558, 0.002439736155793071, -0.020233653485774994, -0.00833884160965681, 0.12031406164169312, -0.05174872279167175, -0.1406109780073166, 0.0382515974342823, -0.18471600115299225, -0.17949748039245605, -0.017324348911643028, 0.052711620926856995, 0.05608465522527695, 0.054744940251111984, 0.0008002392714843154, -0.017688199877738953, 0.117409847676754, 0.009284354746341705, -0.05603277310729027, -0.10732858628034592, 0.0674608051776886, -0.11145606637001038, 0.16447074711322784, -0.042681124061346054, 0.026289477944374084, 0.13221563398838043, 0.08388074487447739, -0.08226682245731354, 0.04609362781047821, 0.08351600915193558, -0.10183242708444595, 0.07131630182266235, 0.17176492512226105, -0.045471854507923126, 0.1533319354057312, 0.05576145648956299, -0.07015077769756317, 0.027153681963682175, -0.08546238392591476, -0.027183545753359795, -0.06102140620350838, 0.006089735310524702, -0.05430985614657402, 0.14308789372444153, 0.160233274102211, -0.07525311410427094, -0.019903503358364105, -0.032919324934482574, 0.01095748133957386, 0.030837880447506905, 0.11553346365690231, -0.03799737989902496, -0.28304529190063477, 0.014729706570506096, -0.0003243190294597298, 0.030217187479138374, -0.2083691954612732, -0.08927315473556519, 0.01753571443259716, -0.05587368458509445, -0.07530708611011505, 0.11560461670160294, 0.04993750900030136, 0.02976810559630394, -0.07059764862060547, -0.1258949637413025, -0.021115461364388466, 0.18775056302547455, -0.17973168194293976, -0.05521538853645325 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-1000](https://huggingface.co/./checkpoint-1000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3282 - Wer: 0.2836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0671 | 2.04 | 200 | 0.3079 | 0.2752 | | 0.6433 | 4.08 | 400 | 0.2728 | 0.2848 | | 0.5687 | 6.12 | 600 | 0.2882 | 0.3036 | | 0.5355 | 8.16 | 800 | 0.2778 | 0.2920 | | 0.5116 | 10.2 | 1000 | 0.2906 | 0.3014 | | 0.5313 | 9.16 | 1200 | 0.2984 | 0.3273 | | 0.4996 | 10.69 | 1400 | 0.3170 | 0.3344 | | 0.4845 | 12.21 | 1600 | 0.3202 | 0.3634 | | 0.5092 | 13.74 | 1800 | 0.3167 | 0.3373 | | 0.4777 | 15.27 | 2000 | 0.3292 | 0.3386 | | 0.4651 | 16.79 | 2200 | 0.3070 | 0.3427 | | 0.461 | 18.32 | 2400 | 0.3149 | 0.3561 | | 0.4481 | 19.85 | 2600 | 0.3292 | 0.3441 | | 0.4479 | 21.37 | 2800 | 0.3142 | 0.3209 | | 0.4305 | 22.9 | 3000 | 0.3525 | 0.3547 | | 0.4254 | 24.43 | 3200 | 0.3414 | 0.3400 | | 0.4066 | 25.95 | 3400 | 0.3118 | 0.3207 | | 0.4043 | 27.48 | 3600 | 0.3418 | 0.3483 | | 0.3985 | 29.01 | 3800 | 0.3254 | 0.3166 | | 0.3982 | 30.53 | 4000 | 0.3306 | 0.3453 | | 0.3929 | 32.06 | 4200 | 0.3262 | 0.3229 | | 0.378 | 33.59 | 4400 | 0.3546 | 0.3336 | | 0.4062 | 35.11 | 4600 | 0.3174 | 0.3457 | | 0.3648 | 36.64 | 4800 | 0.3377 | 0.3357 | | 0.3609 | 38.17 | 5000 | 0.3346 | 0.3520 | | 0.3483 | 39.69 | 5200 | 0.3350 | 0.3526 | | 0.3548 | 41.22 | 5400 | 0.3330 | 0.3406 | | 0.3446 | 42.75 | 5600 | 0.3398 | 0.3372 | | 0.3346 | 44.27 | 5800 | 0.3449 | 0.3288 | | 0.3309 | 45.8 | 6000 | 0.3320 | 0.3144 | | 0.326 | 47.33 | 6200 | 0.3400 | 0.3279 | | 0.3189 | 48.85 | 6400 | 0.3400 | 0.3150 | | 0.3165 | 50.38 | 6600 | 0.3359 | 0.2995 | | 0.3132 | 51.91 | 6800 | 0.3343 | 0.3096 | | 0.3092 | 53.44 | 7000 | 0.3224 | 0.3029 | | 0.2995 | 54.96 | 7200 | 0.3205 | 0.2985 | | 0.304 | 56.49 | 7400 | 0.3523 | 0.3034 | | 0.2952 | 58.02 | 7600 | 0.3289 | 0.2934 | | 0.2875 | 59.54 | 7800 | 0.3350 | 0.3008 | | 0.2868 | 61.07 | 8000 | 0.3537 | 0.3227 | | 0.2875 | 62.6 | 8200 | 0.3389 | 0.2970 | | 0.2778 | 64.12 | 8400 | 0.3370 | 0.2960 | | 0.2706 | 65.65 | 8600 | 0.3250 | 0.2802 | | 0.2669 | 67.18 | 8800 | 0.3351 | 0.2903 | | 0.2615 | 68.7 | 9000 | 0.3382 | 0.2989 | | 0.2563 | 70.23 | 9200 | 0.3312 | 0.2975 | | 0.2546 | 71.76 | 9400 | 0.3212 | 0.3003 | | 0.2482 | 73.28 | 9600 | 0.3337 | 0.3091 | | 0.2504 | 74.81 | 9800 | 0.3308 | 0.3110 | | 0.2456 | 76.34 | 10000 | 0.3157 | 0.3118 | | 0.2363 | 77.86 | 10200 | 0.3251 | 0.3144 | | 0.2319 | 79.39 | 10400 | 0.3253 | 0.3038 | | 0.2266 | 80.92 | 10600 | 0.3374 | 0.3038 | | 0.2279 | 82.44 | 10800 | 0.3268 | 0.2964 | | 0.2231 | 83.97 | 11000 | 0.3278 | 0.2950 | | 0.2185 | 85.5 | 11200 | 0.3462 | 0.2981 | | 0.2245 | 87.02 | 11400 | 0.3311 | 0.2895 | | 0.223 | 88.55 | 11600 | 0.3325 | 0.2877 | | 0.2121 | 90.08 | 11800 | 0.3337 | 0.2828 | | 0.2126 | 91.6 | 12000 | 0.3325 | 0.2808 | | 0.2027 | 93.13 | 12200 | 0.3277 | 0.2820 | | 0.2058 | 94.66 | 12400 | 0.3308 | 0.2827 | | 0.1991 | 96.18 | 12600 | 0.3279 | 0.2820 | | 0.1991 | 97.71 | 12800 | 0.3300 | 0.2822 | | 0.1986 | 99.24 | 13000 | 0.3285 | 0.2835 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["tr"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
cahya/wav2vec2-base-turkish-cv8
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "tr", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #tr #dataset-common_voice #endpoints_compatible #region-us
This model is a fine-tuned version of ./checkpoint-1000 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.3282 * Wer: 0.2836 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 96 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 192 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 100.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 96\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #tr #dataset-common_voice #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 96\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 71, 159, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #tr #dataset-common_voice #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 96\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 192\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10774721950292587, 0.07871823757886887, -0.0039486391469836235, 0.03576551005244255, 0.11579416692256927, 0.015485307201743126, 0.08163179457187653, 0.15296438336372375, -0.11130855232477188, 0.086178719997406, 0.0854717418551445, 0.07375513762235641, 0.07246360927820206, 0.1148681715130806, -0.02525465004146099, -0.29882779717445374, 0.02146610990166664, -0.009191375225782394, -0.08724454790353775, 0.11074203997850418, 0.0998140424489975, -0.09715435653924942, 0.02114323154091835, 0.01400784496217966, -0.10787883400917053, 0.004237694200128317, -0.01985293999314308, -0.045775335282087326, 0.11605718731880188, 0.0584588423371315, 0.0699552670121193, 0.030904000625014305, 0.07616396993398666, -0.27732259035110474, 0.015474982559680939, 0.061673469841480255, 0.038512926548719406, 0.06108829751610756, 0.1002994179725647, -0.018500206992030144, 0.13845856487751007, -0.07335054129362106, 0.04373794421553612, 0.051698341965675354, -0.09985452145338058, -0.2974582612514496, -0.0917891338467598, 0.012401765212416649, 0.12532185018062592, 0.08484295010566711, -0.042726438492536545, 0.06249980628490448, -0.07856383174657822, 0.10021576285362244, 0.24101580679416656, -0.23737412691116333, -0.07191510498523712, -0.013551364652812481, 0.05587128549814224, 0.035162605345249176, -0.1067202165722847, -0.005344202276319265, 0.028657251968979836, 0.03504524752497673, 0.07647880166769028, 0.002708024810999632, -0.01232844963669777, -0.0036670605186372995, -0.13629800081253052, -0.03519375994801521, 0.10693863034248352, 0.07998418807983398, -0.022700052708387375, -0.09882120043039322, -0.025978684425354004, -0.19381873309612274, -0.04584433138370514, -0.0033933455124497414, 0.02415849082171917, -0.019964173436164856, -0.09409943968057632, 0.007558460813015699, -0.06801077723503113, -0.08334971964359283, 0.005333833396434784, 0.1454865038394928, 0.0415731780230999, -0.0427178218960762, 0.010933163575828075, 0.09692998230457306, 0.04180772230029106, -0.13588033616542816, -0.0000072674160946917254, 0.047365568578243256, -0.10488113760948181, -0.02144772559404373, -0.04828112944960594, -0.04944268614053726, 0.023438835516572, 0.11018805205821991, -0.021445253863930702, 0.09100046008825302, -0.00786108709871769, 0.01910671591758728, -0.07310399413108826, 0.1490205079317093, -0.06948241591453552, -0.08310117572546005, -0.04142896831035614, 0.08717864006757736, 0.0013179960660636425, -0.011643685400485992, -0.07716585695743561, 0.0063684796914458275, 0.11074654757976532, 0.0506768599152565, -0.017394432798027992, 0.020828692242503166, -0.0733879804611206, -0.02267889492213726, -0.026421163231134415, -0.1072249561548233, 0.043745722621679306, 0.03750404343008995, -0.05467887222766876, 0.022122081369161606, -0.003966278396546841, 0.026964755728840828, -0.017793061211705208, 0.10489675402641296, -0.04745903238654137, 0.012062357738614082, -0.0634981244802475, -0.11226828396320343, 0.03482423350214958, -0.02444831281900406, -0.008683293126523495, -0.06769631057977676, -0.08193022012710571, -0.0641082152724266, 0.05125509575009346, -0.05985095724463463, -0.051406651735305786, -0.08958696573972702, -0.06376595050096512, 0.052379053086042404, -0.022538073360919952, 0.18500614166259766, -0.061373572796583176, 0.10506250709295273, 0.012703428976237774, 0.04613269492983818, 0.053678106516599655, 0.0771804079413414, -0.026382626965641975, 0.03933221846818924, -0.13051234185695648, 0.10964172333478928, -0.07938801497220993, 0.021860109642148018, -0.14850573241710663, -0.10846823453903198, -0.024845005944371223, 0.0032180561684072018, 0.10800880193710327, 0.11505401879549026, -0.1966891586780548, -0.10052457451820374, 0.17639024555683136, -0.07092060893774033, -0.06296892464160919, 0.15891827642917633, -0.027127988636493683, -0.013540000654757023, 0.05480080097913742, 0.1757526993751526, 0.10682082176208496, -0.09090041369199753, 0.018466470763087273, -0.07057846337556839, 0.11245926469564438, 0.06059480831027031, 0.08867621421813965, -0.04679674282670021, 0.017078405246138573, -0.00758006889373064, 0.00599270686507225, 0.08461514115333557, -0.09270957112312317, -0.07444827258586884, -0.013126125559210777, -0.074283666908741, 0.037642646580934525, 0.04689710959792137, 0.02522170916199684, -0.10285720974206924, -0.11849350482225418, 0.010508066043257713, 0.10996534675359726, -0.10594145208597183, 0.048500966280698776, -0.07902900129556656, 0.040631599724292755, -0.026189059019088745, -0.0073771364986896515, -0.16332687437534332, 0.028950149193406105, 0.03463275358080864, -0.04170732572674751, 0.03211929649114609, 0.0022406321950256824, 0.08069654554128647, 0.038950029760599136, -0.07003624737262726, -0.05310932546854019, -0.03576323017477989, -0.0005361863877624273, -0.07823783159255981, -0.23499326407909393, -0.05777222663164139, -0.032972823828458786, 0.16183577477931976, -0.19831706583499908, -0.003962995484471321, 0.03984200581908226, 0.13781574368476868, 0.0380830243229866, -0.04720047116279602, 0.010887104086577892, 0.08622655272483826, -0.017983952537178993, -0.06162983924150467, 0.03362711891531944, -0.002110387198626995, -0.14293272793293, 0.020101482048630714, -0.12717248499393463, 0.055931758135557175, 0.08972802758216858, -0.010828707367181778, -0.09675155580043793, -0.06379863619804382, -0.05255920812487602, -0.057245295494794846, -0.027951985597610474, -0.006683748681098223, 0.2016855627298355, 0.025599392130970955, 0.10487771034240723, -0.06422890722751617, -0.03093603625893593, 0.03073122911155224, 0.01562844216823578, -0.01771317422389984, 0.13449978828430176, 0.04440956190228462, -0.08434503525495529, 0.08221563696861267, 0.07405173033475876, -0.06289489567279816, 0.16046033799648285, -0.061334025114774704, -0.09891336411237717, -0.04233218729496002, 0.022367289289832115, 0.016222845762968063, 0.08153282850980759, -0.165656179189682, -0.013479150831699371, 0.01757626235485077, 0.03653189539909363, 0.023945573717355728, -0.19295668601989746, 0.002063568914309144, 0.049077387899160385, -0.07835032790899277, -0.00116458791308105, 0.005814081523567438, -0.002285583643242717, 0.0884796753525734, 0.011908654123544693, -0.0672268271446228, -0.015046236105263233, -0.03821885958313942, -0.08610894531011581, 0.16399972140789032, -0.11181928217411041, -0.13774247467517853, -0.11131144315004349, -0.05060229077935219, -0.013071628287434578, -0.00877206027507782, 0.061010465025901794, -0.10991005599498749, -0.022970721125602722, -0.06256955862045288, 0.05280517041683197, -0.06836538016796112, 0.03340736776590347, -0.005728684365749359, 0.0008521821000613272, 0.05634760856628418, -0.1028929352760315, 0.017598547041416168, -0.01726941205561161, -0.025707870721817017, 0.011169006116688251, 0.0117027023807168, 0.0793820321559906, 0.17230257391929626, 0.04734021797776222, 0.020873894914984703, -0.056913260370492935, 0.1587766855955124, -0.11961434036493301, -0.012609775178134441, 0.10677081346511841, 0.00374883902259171, 0.03478454798460007, 0.15417726337909698, 0.041463032364845276, -0.08574963361024857, 0.01947057992219925, 0.03145268186926842, -0.014646418392658234, -0.240013986825943, -0.04316486418247223, -0.07444609701633453, -0.029688483104109764, 0.0845770463347435, 0.024031449109315872, -0.0135833490639925, 0.013825877569615841, -0.03036564774811268, -0.0029488569125533104, 0.02093941532075405, 0.053420789539813995, 0.09528691321611404, 0.03159382566809654, 0.11608085036277771, -0.013276807963848114, -0.025897834450006485, 0.03881901875138283, -0.015478909015655518, 0.2342180460691452, 0.01728130877017975, 0.1675221174955368, 0.04544658586382866, 0.1512233018875122, 0.0030988457147032022, 0.03367650881409645, 0.017951099202036858, -0.013027969747781754, 0.005680958740413189, -0.05120730772614479, -0.04576534777879715, 0.036140721291303635, 0.14208592474460602, 0.020771896466612816, -0.11694533377885818, -0.02853524126112461, 0.021557608619332314, 0.34838348627090454, 0.08615115284919739, -0.2551073133945465, -0.0857958197593689, 0.013766184449195862, -0.08310673385858536, -0.029972344636917114, 0.02651561051607132, 0.12928162515163422, -0.09379465132951736, 0.07414253056049347, -0.05500391498208046, 0.09058094024658203, -0.07053021341562271, 0.004474250134080648, 0.04117417335510254, 0.08330236375331879, -0.004065802786499262, 0.05442772060632706, -0.25756022334098816, 0.2927680015563965, -0.0032654115930199623, 0.07392559200525284, -0.04018795117735863, 0.032512735575437546, 0.03938772529363632, -0.03077966533601284, 0.05930718034505844, -0.007861337624490261, -0.13137926161289215, -0.1600341945886612, -0.07797860354185104, 0.012131704948842525, 0.13548974692821503, -0.0525863915681839, 0.10796944797039032, -0.033850084990262985, -0.01980387233197689, 0.05063746124505997, -0.030508967116475105, -0.11395524442195892, -0.09625912457704544, 0.020085832104086876, 0.06312473863363266, 0.09026727825403214, -0.08433527499437332, -0.10808028280735016, -0.07606064528226852, 0.18281488120555878, -0.06890498101711273, -0.004117412958294153, -0.11908632516860962, 0.08711327612400055, 0.15966029465198517, -0.0737885907292366, 0.03976082801818848, 0.02325129695236683, 0.10970751941204071, 0.013752293772995472, -0.012948993593454361, 0.12105725705623627, -0.06699353456497192, -0.19499239325523376, -0.06612895429134369, 0.19202545285224915, 0.04504642263054848, 0.08232700079679489, -0.022545669227838516, 0.02849968895316124, -0.00028154993196949363, -0.05854196101427078, 0.06981814652681351, 0.056082528084516525, 0.007355202920734882, 0.08472847938537598, -0.03380262851715088, -0.03775712475180626, -0.08295188844203949, -0.09084143489599228, 0.16373547911643982, 0.29737961292266846, -0.08297998458147049, 0.059702977538108826, 0.04948846623301506, -0.05277871713042259, -0.13783273100852966, 0.010027267970144749, 0.1320415437221527, 0.04939887300133705, 0.01835666224360466, -0.20905466377735138, -0.009144838899374008, 0.07858260720968246, -0.017826922237873077, 0.07258637994527817, -0.3408665657043457, -0.1353878676891327, 0.09261550009250641, 0.07401351630687714, 0.00753403827548027, -0.14515575766563416, -0.05796878784894943, -0.022476593032479286, -0.09198800474405289, 0.03127759322524071, -0.017836233600974083, 0.14623695611953735, 0.015411118045449257, 0.050287310034036636, 0.027728376910090446, -0.036601971834897995, 0.13871930539608002, -0.017451757565140724, 0.040339112281799316, -0.015081807971000671, 0.024729717522859573, -0.03318743035197258, -0.04699935391545296, -0.015064926818013191, -0.07351551949977875, 0.016687529161572456, -0.11461721360683441, -0.03229397162795067, -0.08541393280029297, 0.01266812440007925, -0.028528401628136635, -0.043925683945417404, -0.03988717123866081, 0.04330521449446678, 0.08052573353052139, 0.004913264885544777, 0.10813892632722855, -0.0804857686161995, 0.16208761930465698, 0.10500118136405945, 0.10482454299926758, -0.0037106205709278584, -0.06624401360750198, -0.012758064083755016, -0.021145353093743324, 0.0449569970369339, -0.09768112748861313, 0.03698556497693062, 0.1349238008260727, 0.03777811676263809, 0.1620132327079773, 0.04650712013244629, -0.08349405974149704, 0.03475680947303772, 0.057427264750003815, -0.06609795987606049, -0.15121251344680786, -0.01721685379743576, 0.0284512210637331, -0.12819822132587433, 0.0015764629933983088, 0.1312103420495987, -0.03556593134999275, -0.015677329152822495, 0.013442284427583218, 0.030533798038959503, -0.0583072230219841, 0.22939099371433258, -0.002177896210923791, 0.06632459163665771, -0.09361052513122559, 0.06799627840518951, 0.05213714390993118, -0.15653060376644135, 0.0417073518037796, 0.07719425112009048, -0.037237498909235, -0.01882915385067463, 0.031529750674963, 0.08868034929037094, 0.03971172869205475, -0.04121116176247597, -0.09413794428110123, -0.14391390979290009, 0.08544550836086273, 0.08617902547121048, 0.029430633410811424, 0.03803481534123421, -0.03954586759209633, 0.031797513365745544, -0.09023483097553253, 0.0842413604259491, 0.10530129075050354, 0.05154610425233841, -0.11658215522766113, 0.16482913494110107, 0.006180880591273308, 0.003760148072615266, -0.002648852998390794, -0.017260083928704262, -0.08347855508327484, 0.030591316521167755, -0.13560575246810913, -0.029211141169071198, -0.058975882828235626, -0.002246054820716381, 0.016201859340071678, -0.06394374370574951, -0.057306744158267975, 0.01710190437734127, -0.1204669252038002, -0.04250306636095047, -0.02881915681064129, 0.06686004251241684, -0.08485372364521027, -0.029324278235435486, 0.032886385917663574, -0.10448268055915833, 0.09168399125337601, 0.06127714738249779, 0.013560964725911617, 0.027033165097236633, -0.12646552920341492, -0.012817300856113434, 0.03903645649552345, -0.010460982099175453, 0.013761941343545914, -0.18939314782619476, -0.016604436561465263, -0.017310524359345436, 0.030314678326249123, -0.003591987071558833, 0.027959827333688736, -0.11531858891248703, -0.034360211342573166, -0.05135790631175041, -0.06120884418487549, -0.051091600209474564, 0.042261820286512375, 0.06650490313768387, 0.04451816529035568, 0.1537438929080963, -0.09842050820589066, 0.07314131408929825, -0.2132302224636078, 0.007755626924335957, -0.041103191673755646, -0.06428966671228409, -0.06493411213159561, -0.04182099550962448, 0.09145711362361908, -0.05154992640018463, 0.06992035359144211, -0.0601046197116375, 0.05048000440001488, 0.026244433596730232, -0.13038206100463867, 0.012889954261481762, 0.0353543646633625, 0.19472520053386688, 0.05857270583510399, -0.035909175872802734, 0.06311335414648056, -0.0003461661690380424, 0.06804868578910828, 0.18935510516166687, 0.13449405133724213, 0.14759908616542816, 0.067938894033432, 0.09888589382171631, 0.05610712990164757, -0.11619074642658234, -0.12193455547094345, 0.12268560379743576, -0.035420529544353485, 0.12895403802394867, -0.020476220175623894, 0.23247119784355164, 0.09513580054044724, -0.19602303206920624, 0.06894580274820328, -0.03625449910759926, -0.07387813925743103, -0.09870538115501404, -0.06533382087945938, -0.08951735496520996, -0.18500953912734985, 0.006098008248955011, -0.09787660837173462, 0.06704093515872955, 0.02481924183666706, 0.049336988478899, 0.03008161298930645, 0.10434851050376892, 0.018452735617756844, -0.02283855713903904, 0.12214198708534241, 0.007505401037633419, -0.010472102090716362, -0.05119314044713974, -0.10753624886274338, 0.07049378007650375, -0.036602504551410675, 0.06323505938053131, -0.027776900678873062, -0.10206849128007889, 0.05197550356388092, -0.0009434078237973154, -0.1178654134273529, 0.020137935876846313, -0.005294384900480509, 0.08065662533044815, 0.11676031351089478, 0.045833464711904526, -0.008311442099511623, -0.011262821033596992, 0.2220899760723114, -0.09908144921064377, -0.05878596752882004, -0.13313381373882294, 0.23831000924110413, 0.014165292493999004, 0.0021539677400141954, 0.011868199333548546, -0.07328521460294724, -0.0057511888444423676, 0.15147480368614197, 0.155647411942482, -0.01583714596927166, -0.014135460369288921, 0.02795298583805561, -0.011481836438179016, -0.03211433067917824, 0.06225226819515228, 0.10996363312005997, 0.034828562289476395, -0.052595168352127075, -0.012321623973548412, -0.041582655161619186, -0.05263400077819824, -0.011098659597337246, 0.07323974370956421, 0.011983152478933334, -0.011547863483428955, -0.013804757036268711, 0.12511038780212402, -0.04980313777923584, -0.16152051091194153, 0.02629074826836586, -0.19470271468162537, -0.17563509941101074, -0.02424529753625393, 0.06621397286653519, 0.06293794512748718, 0.058263301849365234, -0.017210138961672783, -0.015506177209317684, 0.11057799309492111, -0.0004358446167316288, -0.03663812205195427, -0.12497112154960632, 0.08276714384555817, -0.09701976925134659, 0.14528952538967133, -0.03580460697412491, 0.03227792680263519, 0.11772941052913666, 0.08388984948396683, -0.0618402399122715, 0.05586392804980278, 0.07203177362680435, -0.1324937343597412, 0.05474352464079857, 0.20624957978725433, -0.05128021538257599, 0.15254361927509308, 0.05479948967695236, -0.09933942556381226, 0.0433354489505291, -0.09445030987262726, -0.0554993711411953, -0.05041904374957085, 0.0072775608859956264, -0.04712173715233803, 0.13931913673877716, 0.2021082639694214, -0.06146061420440674, -0.014341361820697784, -0.05347485840320587, -0.005181395914405584, 0.04348178952932358, 0.13036824762821198, -0.05369368940591812, -0.2791549563407898, 0.017855267971754074, 0.025328386574983597, 0.02909773401916027, -0.21720944344997406, -0.10075332969427109, 0.03265034407377243, -0.05771595239639282, -0.06550472974777222, 0.126010462641716, 0.046558886766433716, 0.03411106765270233, -0.04829097166657448, -0.1573939025402069, -0.011601640842854977, 0.17801503837108612, -0.17548125982284546, -0.05856319144368172 ]
null
null
transformers
# This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: | | Dataset | WER | CER | |---|-------------------------------|---------|----------| | 1 | Common Voice 6.1 | 9.437 | 3.325 | | 2 | Common Voice 7.0 | 8.147 | 2.802 | | 3 | Common Voice 8.0 | 8.335 | 2.336 | | 4 | Speech Recognition Community | 28.011 | 10.66 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) 'train', 'validation' and 'other' split were used for training. - [Media Speech](https://www.openslr.org/108/) - [Magic Hub](https://magichub.com/) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1224 | 3.45 | 500 | 0.1641 | 0.1396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "Wav2Vec2 Base Turkish by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 6.1", "type": "mozilla-foundation/common_voice_7_0", "args": "tr"}, "metrics": [{"type": "wer", "value": 9.437, "name": "Test WER"}, {"type": "cer", "value": 3.325, "name": "Test CER"}, {"type": "wer", "value": 8.147, "name": "Test WER"}, {"type": "cer", "value": 2.802, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "tr"}, "metrics": [{"type": "wer", "value": 28.011, "name": "Test WER"}, {"type": "cer", "value": 10.66, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "tr"}, "metrics": [{"type": "wer", "value": 33.62, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-base-turkish
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tr #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of cahya/wav2vec2-base-turkish-artificial-cv on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- The following datasets were used for finetuning: * Common Voice 7.0 TR 'train', 'validation' and 'other' split were used for training. * Media Speech * Magic Hub Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-06 * train\_batch\_size: 6 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 24 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-06\n* train\\_batch\\_size: 6\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 24\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tr #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-06\n* train\\_batch\\_size: 6\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 24\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ 101, 144, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tr #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-06\n* train\\_batch\\_size: 6\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 24\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 5.0### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ -0.12223571538925171, 0.1534237265586853, -0.004996147938072681, 0.08511029183864594, 0.10509425401687622, 0.014746026135981083, 0.10743909329175949, 0.15111586451530457, -0.05805167928338051, 0.10742277652025223, 0.09004516899585724, 0.07603563368320465, 0.06631854176521301, 0.13496387004852295, -0.020185470581054688, -0.2779293656349182, 0.006313979625701904, -0.03325380012392998, -0.08654558658599854, 0.10631418228149414, 0.08002503216266632, -0.10054825246334076, 0.04229746013879776, -0.008549487218260765, -0.08233372867107391, -0.009865916334092617, -0.039953187108039856, -0.04269753396511078, 0.10574996471405029, 0.018806014209985733, 0.0402565598487854, 0.02078974060714245, 0.09942962974309921, -0.245408833026886, 0.005301086697727442, 0.049262430518865585, 0.0362723283469677, 0.06012382730841637, 0.0867524966597557, -0.015912966802716255, 0.07551109790802002, -0.07173525542020798, 0.0478837676346302, 0.043863896280527115, -0.10248836874961853, -0.21451400220394135, -0.0739353746175766, 0.05358376353979111, 0.12299080938100815, 0.08362308144569397, -0.03133012354373932, 0.03944922238588333, -0.07986131310462952, 0.10134372115135193, 0.21553228795528412, -0.22730177640914917, -0.05463225021958351, -0.019278615713119507, 0.01397712528705597, 0.06006857007741928, -0.11237836629152298, -0.03025948815047741, 0.0017524994909763336, 0.02243153750896454, 0.09247846156358719, -0.010919089429080486, -0.03145834431052208, 0.004828361794352531, -0.1415281593799591, -0.038135744631290436, 0.14198040962219238, 0.06654909253120422, -0.002663340652361512, -0.10652123391628265, -0.0478527657687664, -0.183346688747406, -0.04559437930583954, 0.030833125114440918, 0.02829170972108841, -0.03736496344208717, -0.04985300824046135, 0.030033035203814507, -0.05187319219112396, -0.07556411623954773, 0.03986964002251625, 0.09333878755569458, 0.032700467854738235, -0.02743682451546192, 0.004753254819661379, 0.09564479440450668, 0.04826205223798752, -0.16261206567287445, -0.004305548965930939, 0.04340256378054619, -0.10026605427265167, 0.00304397358559072, -0.0015346321742981672, 0.0435103178024292, 0.04763906076550484, 0.125880628824234, 0.010277179069817066, 0.08386165648698807, 0.02502213977277279, 0.0024027088657021523, -0.0763339251279831, 0.17622794210910797, -0.06539221107959747, -0.10657905787229538, -0.03322451189160347, 0.13325075805187225, 0.015373921021819115, -0.015536547638475895, -0.09028277546167374, 0.03541833534836769, 0.10158896446228027, 0.054857853800058365, -0.007356834597885609, 0.024265188723802567, -0.05170418694615364, -0.02732841484248638, 0.017501330003142357, -0.13014312088489532, 0.044250380247831345, 0.0630282312631607, -0.06969568878412247, -0.011474939994513988, -0.009798211976885796, 0.0021406158339232206, -0.0502031035721302, 0.08686186373233795, -0.05956611782312393, 0.0035789150279015303, -0.04506131261587143, -0.08482044190168381, 0.030485419556498528, -0.08188346028327942, -0.008409162983298302, -0.0382353700697422, -0.10922310501337051, -0.06256598234176636, 0.03781609237194061, -0.06809879839420319, -0.07784828543663025, -0.09612815082073212, -0.10106447339057922, 0.04708390310406685, -0.014452491886913776, 0.11771923303604126, -0.06074824184179306, 0.08801349252462387, 0.02110356278717518, 0.05184271186590195, 0.08681026101112366, 0.07172714918851852, -0.03527655825018883, 0.043148234486579895, -0.13960188627243042, 0.10961616039276123, -0.10156869143247604, 0.04313184320926666, -0.12244655936956406, -0.09560561180114746, 0.013198673725128174, -0.0015425049932673573, 0.07980064302682877, 0.13638661801815033, -0.1997225284576416, -0.08816036581993103, 0.17331190407276154, -0.04429455101490021, -0.07352673262357712, 0.1385219395160675, -0.020667748525738716, -0.05121331661939621, 0.03235111013054848, 0.21665510535240173, 0.10776230692863464, -0.0929252877831459, 0.002667785622179508, -0.03913016617298126, 0.11689687520265579, 0.02520996704697609, 0.07495381683111191, -0.052654191851615906, 0.08359399437904358, 0.0037738673854619265, -0.045881833881139755, 0.05181695148348808, -0.06280888617038727, -0.08138447999954224, -0.009874186478555202, -0.08046402037143707, 0.014091295190155506, 0.05790111795067787, 0.007110827602446079, -0.06534868478775024, -0.11826594173908234, -0.021988987922668457, 0.09818576276302338, -0.11075723171234131, 0.018459688872098923, -0.06558310240507126, 0.06980852782726288, -0.006925505585968494, -0.008837571367621422, -0.14648552238941193, -0.008166997693479061, 0.040084000676870346, -0.03554047271609306, 0.031069254502654076, -0.01196951512247324, 0.06964660435914993, 0.046404775232076645, -0.03806819021701813, -0.06033821031451225, -0.005657005589455366, -0.007613986264914274, -0.059059988707304, -0.24082553386688232, -0.06253384053707123, -0.01773691736161709, 0.19529157876968384, -0.1981734037399292, 0.004037824459373951, 0.03848143666982651, 0.12021492421627045, 0.021200129762291908, -0.05133466795086861, 0.029838861897587776, 0.05319279059767723, -0.015735769644379616, -0.08213149756193161, 0.022087931632995605, -0.0030387237202376127, -0.09400591999292374, -0.0022319727577269077, -0.16188488900661469, 0.07407581061124802, 0.08736419677734375, 0.03682607039809227, -0.06635962426662445, -0.014709504321217537, -0.048066966235637665, -0.05266477167606354, -0.015400208532810211, -0.006363683380186558, 0.1765274852514267, 0.023869428783655167, 0.1106090247631073, -0.07111608982086182, -0.054149333387613297, 0.03163618966937065, 0.016399821266531944, 0.014614643529057503, 0.1541314572095871, 0.066477470099926, -0.03890758007764816, 0.09966540336608887, 0.01360661443322897, -0.057099174708127975, 0.15110452473163605, -0.07103922963142395, -0.07856030762195587, -0.03236529231071472, 0.013090962544083595, 0.014758114702999592, 0.12729410827159882, -0.17004899680614471, -0.028927473351359367, 0.0283278189599514, 0.014471781440079212, 0.007004585117101669, -0.1777653694152832, -0.00379040464758873, 0.026403892785310745, -0.09985058009624481, -0.01971273124217987, 0.0033758145291358232, -0.002540519228205085, 0.09042774140834808, -0.0042639984749257565, -0.11671561002731323, -0.032822106033563614, -0.03922940790653229, -0.08895673602819443, 0.16258729994297028, -0.09428014606237411, -0.14467854797840118, -0.11341048777103424, -0.03496826812624931, -0.037473615258932114, -0.006010483484715223, 0.03412913531064987, -0.09506217390298843, -0.03773822635412216, -0.07306496798992157, 0.020709993317723274, -0.009593821130692959, 0.014995113015174866, 0.026432691141963005, -0.013579390943050385, 0.05538766831159592, -0.10325539857149124, 0.008679565042257309, -0.02736993506550789, -0.011462563648819923, -0.0010079349158331752, 0.031958870589733124, 0.09943230450153351, 0.18204158544540405, 0.0655398815870285, 0.04336707293987274, -0.024864252656698227, 0.19427886605262756, -0.129502534866333, 0.023401940241456032, 0.08969263732433319, -0.010085105895996094, 0.04787068068981171, 0.17859110236167908, 0.04160149767994881, -0.07095976918935776, -0.007795716170221567, 0.0372539684176445, -0.019385138526558876, -0.2145334929227829, -0.04629072546958923, -0.07486891746520996, 0.0008185727056115866, 0.09049009531736374, 0.03631308674812317, 0.0023614957462996244, 0.002438402036204934, -0.009238728322088718, -0.011637994088232517, 0.04316386952996254, 0.04316895455121994, 0.0969499945640564, 0.03779999539256096, 0.10853634774684906, -0.012009875848889351, -0.04926684871315956, 0.024922700598835945, -0.00413869135081768, 0.20809873938560486, -0.014704475179314613, 0.1883346289396286, 0.023778557777404785, 0.1397419273853302, -0.013519082218408585, 0.05791671946644783, 0.008218844421207905, 0.010082725435495377, 0.026615625247359276, -0.05140657350420952, -0.022594058886170387, 0.019247708842158318, 0.09854350239038467, 0.012313969433307648, -0.0804077759385109, 0.038090456277132034, 0.03743477910757065, 0.3276368975639343, 0.09511549025774002, -0.28282615542411804, -0.0705019161105156, 0.013748588971793652, -0.06182026490569115, -0.029276996850967407, 0.03100990317761898, 0.11991407722234726, -0.0741477757692337, 0.07720285654067993, -0.045432429760694504, 0.07473733276128769, -0.09017549455165863, 0.019123392179608345, 0.07867828011512756, 0.08448946475982666, 0.010195882059633732, 0.04933891445398331, -0.21769313514232635, 0.2699378430843353, -0.0003879020514432341, 0.05789712071418762, -0.05603640899062157, 0.03357689455151558, 0.024646980687975883, -0.023957306519150734, 0.09202837198972702, -0.0003797146200668067, -0.05187826603651047, -0.1549307405948639, -0.11559011042118073, 0.010153044015169144, 0.11817988008260727, -0.061449602246284485, 0.11316972225904465, -0.03252694010734558, -0.06234240159392357, 0.03629159554839134, -0.1000976413488388, -0.06290382891893387, -0.10594432801008224, 0.048471592366695404, 0.03405488654971123, 0.031180372461676598, -0.05224902555346489, -0.09092598408460617, -0.07251951843500137, 0.12363553792238235, -0.12650522589683533, -0.0334225557744503, -0.1178891509771347, 0.028679577633738518, 0.1752462387084961, -0.0759996622800827, 0.02792743779718876, 0.021657820791006088, 0.10894827544689178, 0.03560798242688179, -0.02482680045068264, 0.09827358275651932, -0.07495800405740738, -0.20275261998176575, -0.049134474247694016, 0.19141016900539398, 0.02915191277861595, 0.0753575786948204, -0.027733702212572098, 0.03202930837869644, -0.010503427125513554, -0.07646259665489197, 0.07162453979253769, 0.04098478704690933, -0.015219648368656635, 0.04454857483506203, -0.016381120309233665, 0.002660750411450863, -0.08711732178926468, -0.028272654861211777, 0.1248629093170166, 0.24438877403736115, -0.08914577215909958, 0.07483788579702377, 0.03653017431497574, -0.058777280151844025, -0.15477266907691956, -0.032051101326942444, 0.10234937816858292, 0.038337625563144684, -0.026040369644761086, -0.18567949533462524, 0.03975863754749298, 0.046157106757164, -0.018769359216094017, 0.08482822775840759, -0.32949817180633545, -0.13338248431682587, 0.10130299627780914, 0.031038181856274605, -0.0294569730758667, -0.1548696756362915, -0.05481152981519699, -0.006843808572739363, -0.07461975514888763, 0.03157045692205429, -0.005700907204300165, 0.12847433984279633, -0.008469865657389164, 0.06546183675527573, 0.01912696659564972, -0.0414796806871891, 0.12348688393831253, 0.052564676851034164, 0.03165339305996895, -0.014416029676795006, -0.018848292529582977, 0.0005897129885852337, -0.06389877200126648, 0.03704226016998291, -0.07555273175239563, 0.02308528870344162, -0.13788877427577972, -0.017224319279193878, -0.09025631099939346, -0.001633182866498828, -0.038137808442115784, -0.01789330132305622, -0.008479569107294083, 0.031493961811065674, 0.09512680768966675, 0.013983591459691525, 0.09835945069789886, -0.049211468547582626, 0.10051330178976059, 0.12622922658920288, 0.11091388016939163, -0.009404914453625679, -0.11500683426856995, -0.01202769298106432, 0.007869378663599491, 0.0124568035826087, -0.10093814134597778, 0.04718346521258354, 0.14767688512802124, 0.05435490980744362, 0.14372946321964264, 0.05102546140551567, -0.07184600830078125, -0.0060318512842059135, 0.04734275862574577, -0.11766689270734787, -0.14261344075202942, -0.0096264174208045, -0.04414600506424904, -0.13447725772857666, 0.00196194089949131, 0.11650370061397552, -0.028465326875448227, -0.003993120510131121, 0.012254470959305763, 0.059225838631391525, -0.021817995235323906, 0.22435244917869568, 0.04327107593417168, 0.08837790042161942, -0.11883370578289032, 0.0684608444571495, 0.05022820457816124, -0.07586856186389923, 0.04663005471229553, 0.11353739351034164, -0.05937842279672623, -0.0186497550457716, 0.041347138583660126, 0.1082226112484932, 0.03329377621412277, -0.034858185797929764, -0.12807999551296234, -0.14310896396636963, 0.08840043842792511, 0.10423912853002548, 0.03008415549993515, 0.028405193239450455, -0.04973788559436798, 0.018819523975253105, -0.1023058369755745, 0.11824455857276917, 0.10740552842617035, 0.05285900458693504, -0.1392066776752472, 0.10438986122608185, -0.008742762729525566, 0.007940069772303104, -0.0021315731573849916, -0.0005563179729506373, -0.10717146098613739, 0.016256149858236313, -0.09316191077232361, -0.0033592127729207277, -0.04273657873272896, 0.010941382497549057, 0.004753142595291138, -0.06453434377908707, -0.049068957567214966, 0.017696049064397812, -0.10961401462554932, -0.04011237621307373, -0.027272531762719154, 0.055854830890893936, -0.12048826366662979, -0.020946230739355087, 0.02407228946685791, -0.11917171627283096, 0.10781180113554001, 0.05467212200164795, -0.007335591595619917, 0.0223893690854311, -0.0806293934583664, -0.014976006001234055, 0.03383580967783928, 0.014042987488210201, 0.05286792293190956, -0.15322890877723694, -0.01741640642285347, -0.029952045530080795, 0.01530140358954668, 0.0008834828622639179, 0.032396163791418076, -0.10962564498186111, 0.020935432985424995, -0.05116083845496178, -0.05341017618775368, -0.0512169748544693, 0.06914173811674118, 0.08276993036270142, 0.024193549528717995, 0.14776156842708588, -0.07448560744524002, 0.07299887388944626, -0.22376258671283722, -0.0017944200662896037, -0.0062485067173838615, -0.07294949144124985, -0.06634777039289474, -0.02033216319978237, 0.10568739473819733, -0.05740348994731903, 0.07991842925548553, -0.009870137088000774, 0.051843609660863876, 0.009050970897078514, -0.06170628219842911, 0.016902318224310875, 0.049642838537693024, 0.11392895132303238, 0.030792050063610077, -0.03989318385720253, 0.08789198100566864, -0.024496018886566162, 0.07064206898212433, 0.1344737410545349, 0.1574619859457016, 0.10536389797925949, 0.062221985310316086, 0.07106447964906693, 0.1015235185623169, -0.1392403244972229, -0.13935159146785736, 0.12273915857076645, -0.07089001685380936, 0.14219723641872406, -0.039071157574653625, 0.2149781733751297, 0.07248246669769287, -0.19156818091869354, 0.06675572693347931, -0.04556481912732124, -0.10287714749574661, -0.11027389764785767, -0.08218114078044891, -0.08125242590904236, -0.15264572203159332, 0.011969977989792824, -0.11037036776542664, 0.06615975499153137, 0.058732300996780396, 0.03874482214450836, 0.03131936490535736, 0.09603961557149887, 0.05129043012857437, 0.013856040313839912, 0.10363572090864182, 0.024120092391967773, -0.021312374621629715, -0.03796274587512016, -0.06507890671491623, 0.041166551411151886, -0.022470412775874138, 0.06137748062610626, -0.038308486342430115, -0.08140627294778824, 0.058015789836645126, -0.020078858360648155, -0.09850775450468063, 0.02516121417284012, -0.01902877911925316, 0.05296413600444794, 0.08613968640565872, 0.04515489935874939, -0.018512649461627007, -0.009976482018828392, 0.2092013657093048, -0.09770599007606506, -0.06566672027111053, -0.11648049205541611, 0.18742205202579498, -0.000920764054171741, -0.009155151434242725, 0.026672061532735825, -0.07495968043804169, -0.01398108433932066, 0.18747062981128693, 0.1799725592136383, -0.040634628385305405, -0.013772256672382355, 0.01215299777686596, 0.0007892024586908519, -0.01370957214385271, 0.05895114690065384, 0.12621931731700897, 0.09593111276626587, -0.0412101224064827, -0.023423949256539345, -0.022746656090021133, -0.07135266065597534, -0.03379860520362854, 0.07739123702049255, 0.02126365713775158, -0.004679123871028423, -0.027488181367516518, 0.09567341953516006, -0.10106980800628662, -0.1464514434337616, 0.005587599240243435, -0.21870864927768707, -0.18756729364395142, -0.026916425675153732, 0.07167196273803711, 0.05115912854671478, 0.04668803513050079, -0.0015646211104467511, -0.04135365039110184, 0.12496483325958252, 0.0028744663577526808, -0.06543193012475967, -0.0773518905043602, 0.06154191121459007, -0.14959701895713806, 0.16229450702667236, -0.03718943893909454, 0.04431144520640373, 0.11256517469882965, 0.062457699328660965, -0.08240421116352081, 0.030670806765556335, 0.08469032496213913, -0.11918463557958603, 0.03331214189529419, 0.19901438057422638, -0.04093577712774277, 0.11963331699371338, 0.04363475367426872, -0.06581519544124603, 0.008630286902189255, -0.056151945143938065, -0.04109226539731026, -0.0525883324444294, -0.019226834177970886, -0.03646688908338547, 0.14061065018177032, 0.20386281609535217, -0.06822368502616882, -0.0068855262361466885, -0.04587985575199127, -0.009172528050839901, 0.020804008468985558, 0.0912201851606369, -0.0482485257089138, -0.25144076347351074, 0.016000602394342422, -0.022793270647525787, 0.020567653700709343, -0.18363909423351288, -0.08645923435688019, 0.02058284543454647, -0.04911443591117859, -0.07787232100963593, 0.1269061267375946, 0.04662115126848221, 0.045717593282461166, -0.0543285608291626, -0.04170028492808342, -0.023227524012327194, 0.17683736979961395, -0.19028696417808533, -0.06066334992647171 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Basque This is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Basque Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model.to("cuda") chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 12.44 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "eu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Basque by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice eu", "type": "common_voice", "args": "eu"}, "metrics": [{"type": "wer", "value": 12.44, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-basque
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "eu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "eu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-Basque This is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned facebook/wav2vec2-large-xlsr-53 model on the Basque Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. Test Result: 12.44 % ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Basque\n\nThis is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Basque Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Basque test data of Common Voice.\n\n\n\nTest Result: 12.44 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-Basque\n\nThis is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Basque Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Basque test data of Common Voice.\n\n\n\nTest Result: 12.44 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ 84, 84, 20, 28, 43 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-Basque\n\nThis is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Basque Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Basque test data of Common Voice.\n\n\n\nTest Result: 12.44 %## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ -0.17690107226371765, 0.08115392178297043, -0.0027629975229501724, 0.006274456158280373, 0.08184140175580978, -0.05688249319791794, 0.09819965809583664, 0.11212289333343506, -0.03932153061032295, 0.10403702408075333, 0.025153495371341705, 0.018965881317853928, 0.053328968584537506, 0.0873091071844101, -0.03712382912635803, -0.120041124522686, 0.001632222905755043, -0.006993995979428291, 0.03213782608509064, 0.1013481616973877, 0.09787782281637192, -0.049372997134923935, -0.01271784771233797, 0.053152818232774734, -0.12829165160655975, 0.060490887612104416, 0.07719802856445312, -0.1274470090866089, 0.14581649005413055, 0.08849675953388214, 0.07495655864477158, -0.002155883004888892, 0.04901372641324997, -0.18602965772151947, 0.017555618658661842, 0.036190565675497055, 0.017591938376426697, 0.04525797814130783, 0.11233733594417572, -0.04473508521914482, 0.008006785996258259, 0.007526271510869265, -0.01637948863208294, 0.0570867657661438, -0.06319911032915115, -0.14173103868961334, -0.058213453739881516, -0.030367396771907806, 0.12491773813962936, 0.08530911058187485, -0.062017906457185745, 0.08030006289482117, -0.08138369768857956, 0.057361774146556854, 0.07492521405220032, -0.12659965455532074, -0.03394932672381401, 0.03361745923757553, 0.003348711645230651, 0.052760496735572815, -0.04445556178689003, 0.05184388905763626, 0.1089034229516983, 0.04131783917546272, -0.09535491466522217, -0.010528584010899067, -0.13883347809314728, -0.027591347694396973, -0.09655460715293884, -0.07588938623666763, 0.25345009565353394, 0.01957779936492443, -0.07092422246932983, -0.10581572353839874, -0.025237638503313065, 0.022795524448156357, 0.013150676153600216, -0.06046397611498833, -0.012290981598198414, 0.018913177773356438, 0.0020979351829737425, 0.030369088053703308, -0.11716151237487793, -0.13056692481040955, -0.02142460271716118, 0.01795467734336853, 0.025254499167203903, -0.02966640517115593, -0.05720801278948784, 0.09214060008525848, -0.1067068874835968, -0.07638682425022125, 0.018653785809874535, 0.05641555041074753, -0.05057629942893982, -0.018027976155281067, -0.05152695253491402, -0.18732470273971558, 0.09506236016750336, -0.025720123201608658, -0.016270391643047333, -0.00036572542740032077, -0.11673100292682648, 0.04843182489275932, 0.030393747612833977, 0.10828103125095367, -0.030371515080332756, -0.0533963106572628, 0.02033201791346073, 0.03643812984228134, -0.054690174758434296, -0.0018541865283623338, -0.08604609221220016, -0.08060188591480255, 0.10440325736999512, 0.08868901431560516, 0.03552363067865372, -0.032157912850379944, -0.048913028091192245, -0.033378854393959045, 0.05655645206570625, -0.13941891491413116, 0.004364935215562582, 0.07131855934858322, -0.0024101051967591047, 0.048451535403728485, 0.04139123857021332, -0.003107052529230714, -0.07175714522600174, -0.054039403796195984, 0.03943431004881859, 0.017028924077749252, -0.03903091326355934, -0.06528237462043762, 0.039281848818063736, 0.012342183850705624, -0.01934210956096649, -0.07934129983186722, -0.034801091998815536, -0.13547515869140625, -0.04714753106236458, -0.019681202247738838, -0.05403010919690132, -0.12473917752504349, -0.03890882804989815, 0.010710077360272408, -0.07481102645397186, 0.08000064641237259, -0.029546570032835007, 0.09927926957607269, 0.05400693044066429, 0.009175487793982029, 0.10448972135782242, 0.07129720598459244, -0.06300981342792511, -0.016750555485486984, -0.06855349987745285, 0.1738315373659134, -0.042442817240953445, -0.07830646634101868, -0.1577967256307602, -0.032974664121866226, -0.04131622612476349, 0.07251051068305969, 0.08620423078536987, 0.14984099566936493, -0.276117742061615, -0.06617319583892822, 0.15638256072998047, -0.0789007842540741, 0.008724587969481945, 0.239222452044487, -0.01970571279525757, 0.07991363853216171, 0.12333285063505173, 0.24016711115837097, 0.08179205656051636, -0.15802828967571259, -0.027165958657860756, -0.005317844916135073, 0.01446844357997179, 0.02086584083735943, 0.08769246935844421, -0.13587352633476257, -0.01187489926815033, -0.004832003265619278, -0.022426152601838112, 0.022489476948976517, -0.01761636510491371, -0.050002146512269974, 0.004089895635843277, -0.006061971187591553, 0.06623105704784393, 0.049141790717840195, -0.018431028351187706, -0.03328287601470947, -0.10946423560380936, 0.056060273200273514, 0.10190848261117935, -0.07973741739988327, 0.04763207957148552, -0.09543295204639435, 0.17609627544879913, -0.2321920394897461, -0.0336737334728241, -0.13479448854923248, 0.12955820560455322, -0.01081572100520134, 0.05588388442993164, 0.08317457139492035, 0.14655965566635132, 0.014502556063234806, 0.024361662566661835, -0.058146536350250244, -0.02571270428597927, -0.009025204926729202, -0.030213534832000732, -0.06889977306127548, -0.15092363953590393, -0.005160407163202763, -0.07949135452508926, 0.05590235814452171, -0.1759868562221527, -0.00931207649409771, 0.09977191686630249, 0.0056486912071704865, -0.0355626679956913, 0.0019753663800656796, 0.026453416794538498, 0.06087556853890419, -0.015776414424180984, -0.00034761609276756644, 0.036008287221193314, -0.010609387420117855, -0.022168170660734177, 0.13717761635780334, -0.15105082094669342, -0.062343891710042953, 0.11871197074651718, 0.005317046772688627, -0.09748769551515579, 0.031533122062683105, -0.0272884052246809, 0.01252040546387434, -0.08517809212207794, -0.01973874121904373, 0.2792089879512787, -0.012380950152873993, 0.11722283065319061, -0.13226193189620972, 0.010331224650144577, 0.024171538650989532, -0.06684475392103195, 0.007463434245437384, 0.09499111026525497, 0.006207149010151625, 0.016276225447654724, 0.06569623947143555, -0.09672490507364273, -0.06607929617166519, 0.24518685042858124, -0.03909921646118164, -0.10242092609405518, 0.01480157021433115, 0.024101799353957176, 0.011227445676922798, 0.0716572105884552, -0.12655071914196014, -0.02032267302274704, 0.012437154538929462, 0.09500227123498917, 0.08107557147741318, -0.18330639600753784, 0.03454030677676201, -0.004063387401401997, -0.12610474228858948, -0.052005425095558167, 0.09829993546009064, -0.02921971306204796, 0.05915994197130203, -0.05388280004262924, -0.03429824858903885, 0.010862686671316624, -0.05056821554899216, -0.1770509034395218, 0.11915330588817596, -0.05647280067205429, -0.1393730640411377, -0.1667957752943039, 0.04764234274625778, -0.0036948821507394314, 0.046707697212696075, 0.1045466884970665, -0.11620551347732544, 0.019694576039910316, -0.0002278874599142, 0.11513478308916092, -0.007411492522805929, -0.012512244284152985, -0.07492522150278091, -0.005733683705329895, 0.07166630029678345, -0.11694427579641342, 0.028238559141755104, -0.02888297289609909, -0.08577774465084076, -0.07135242968797684, -0.02869740128517151, 0.05932455509901047, 0.16404294967651367, 0.02491920255124569, -0.03118397854268551, -0.021664369851350784, 0.17238955199718475, -0.13564778864383698, -0.02090909518301487, 0.14992669224739075, 0.04129956290125847, -0.036366626620292664, 0.13937564194202423, 0.01967085525393486, -0.05358951911330223, -0.03640766814351082, 0.002398395910859108, -0.04877009987831116, -0.2832709550857544, -0.13264474272727966, -0.060797009617090225, -0.01923103630542755, 0.002189967781305313, 0.04248734191060066, 0.02980652078986168, 0.027627073228359222, -0.044548749923706055, -0.07653015106916428, 0.016279637813568115, 0.02030252106487751, 0.12777531147003174, -0.003926188684999943, 0.04111054912209511, -0.03676464036107063, -0.022430045530200005, 0.05373143404722214, 0.09715380519628525, 0.048926327377557755, 0.014837251976132393, 0.008968248963356018, 0.08029641956090927, 0.11468697339296341, 0.057303547859191895, 0.01290978491306305, -0.028386950492858887, 0.02743217907845974, -0.021641042083501816, -0.0629098117351532, -0.03102785162627697, 0.01635323278605938, 0.17365814745426178, -0.02825343608856201, -0.0993799939751625, -0.10256195813417435, 0.05189435929059982, 0.13224025070667267, 0.11289234459400177, -0.20006242394447327, -0.08215918391942978, -0.02525973692536354, -0.11315056681632996, -0.019701695069670677, 0.03075941652059555, 0.14584983885288239, -0.13906645774841309, 0.0345345064997673, -0.011867049150168896, 0.062065668404102325, 0.036850009113550186, 0.011270753107964993, -0.0723077803850174, 0.06535785645246506, -0.013889177702367306, 0.1097409650683403, -0.2540948688983917, 0.23917792737483978, 0.026469547301530838, 0.1334916055202484, -0.00288410228677094, 0.02833772450685501, -0.0005782327498309314, 0.037683065980672836, 0.14414328336715698, -0.04138442873954773, 0.0006096031283959746, -0.0673302412033081, -0.08313900232315063, 0.03687551990151405, -0.06831257045269012, 0.010869424790143967, 0.05964541807770729, 0.03338341787457466, -0.0047986614517867565, -0.0021345182321965694, -0.033972129225730896, -0.06954042613506317, -0.09489795565605164, -0.04831341654062271, 0.09403449296951294, 0.12121498584747314, -0.01388518512248993, -0.088968925178051, -0.15927617251873016, 0.033530231565237045, -0.09665092080831528, -0.01766878552734852, -0.0498429499566555, -0.056462015956640244, 0.12980380654335022, -0.05475222319364548, -0.04752087965607643, 0.05199211835861206, 0.10247613489627838, -0.047590579837560654, 0.02549910731613636, 0.06833536922931671, -0.10455596446990967, -0.11358817666769028, -0.0398753359913826, 0.24530258774757385, 0.05010343715548515, 0.08897057175636292, 0.035785626620054245, 0.02788693644106388, 0.015367775224149227, -0.0343472994863987, 0.017861930653452873, 0.058987364172935486, -0.05829649791121483, 0.05619189888238907, -0.013502913527190685, -0.24069397151470184, -0.14524029195308685, -0.04464827850461006, 0.1334710419178009, 0.10484327375888824, -0.06619527190923691, 0.14924003183841705, 0.15514981746673584, -0.13063517212867737, -0.20384159684181213, 0.01160901878029108, 0.13476718962192535, 0.08827623724937439, -0.04572434350848198, -0.14524881541728973, 0.0009546374203637242, -0.015245160087943077, -0.027823301032185555, -0.08040209114551544, -0.2997516989707947, -0.1417793333530426, 0.056302156299352646, -0.07773101329803467, 0.06032274663448334, -0.032128941267728806, -0.04492335021495819, -0.030249111354351044, 0.09362048655748367, 0.005564028397202492, -0.08047313988208771, 0.10016671568155289, 0.04035813361406326, 0.10180026292800903, 0.05049572139978409, -0.010953844524919987, 0.1302209198474884, 0.06406653672456741, -0.0063438815996050835, 0.029783209785819054, 0.027961207553744316, -0.04464699327945709, 0.011121840216219425, 0.09418180584907532, -0.050559692084789276, 0.0011248193914070725, -0.12340615689754486, -0.09717808663845062, -0.08604511618614197, 0.10146002471446991, 0.0070980689488351345, -0.0008672566036693752, 0.030747797340154648, -0.03465515747666359, 0.04317301884293556, -0.006927798967808485, -0.0736355260014534, -0.13111671805381775, 0.09928414225578308, 0.1590898036956787, 0.1978505551815033, 0.07511240243911743, -0.10280375182628632, 0.028057945892214775, -0.011363818310201168, 0.12187620997428894, -0.10061012953519821, 0.023674681782722473, 0.058530040085315704, 0.03513913229107857, 0.11765775829553604, -0.015746701508760452, -0.1488162875175476, 0.07757850736379623, 0.02860475890338421, -0.022978464141488075, -0.17524303495883942, -0.0032633403316140175, -0.03674341365695, -0.07215441018342972, -0.0066765728406608105, 0.09617505967617035, -0.07295288145542145, -0.04072563722729683, -0.012310825288295746, 0.023781513795256615, -0.1348409652709961, 0.25041764974594116, 0.015800202265381813, 0.053072523325681686, -0.07519271224737167, 0.015038366429507732, -0.007720228284597397, -0.11940661817789078, 0.08593638986349106, 0.003834908129647374, -0.013761444948613644, -0.04059207811951637, 0.040518201887607574, 0.14530862867832184, -0.003520477097481489, -0.1603630781173706, -0.07108404487371445, -0.05567460134625435, 0.015166829340159893, 0.1164436936378479, 0.05948130041360855, -0.0017878561047837138, -0.053158678114414215, -0.0529465489089489, -0.13486064970493317, 0.08074585348367691, 0.09147495031356812, -0.014328492805361748, -0.06952938437461853, 0.16455692052841187, 0.05317067354917526, 0.005664506461471319, -0.019058071076869965, -0.03175841271877289, 0.006438201293349266, 0.08223144710063934, -0.07269928604364395, 0.06284048408269882, -0.019986925646662712, 0.010654349811375141, -0.012175841256976128, -0.04331838712096214, -0.012436436489224434, 0.0507669635117054, -0.08023696392774582, 0.06447116285562515, -0.044908326119184494, 0.09421008080244064, -0.055247243493795395, 0.06914785504341125, 0.024350395426154137, -0.05680708587169647, 0.04101487249135971, 0.03508100286126137, -0.07903892546892166, 0.10682741552591324, -0.22773754596710205, -0.04319305717945099, 0.033358968794345856, 0.06302467733621597, -0.012455021031200886, -0.1485745757818222, 0.04509339854121208, 0.09772266447544098, 0.05090921372175217, -0.01804267428815365, 0.07387546449899673, -0.07756857573986053, 0.025099951773881912, -0.010330838151276112, -0.044232528656721115, -0.0334993451833725, 0.08005161583423615, 0.03281274810433388, 0.0842122957110405, 0.14580373466014862, -0.15844331681728363, 0.09855247288942337, -0.11744502186775208, 0.008897402323782444, -0.061438173055648804, 0.02579936385154724, -0.128266841173172, -0.005798482336103916, 0.09406715631484985, -0.044070761650800705, 0.05575153976678848, 0.09024457633495331, 0.049004632979631424, 0.012039626017212868, -0.12168075144290924, -0.03802502527832985, 0.009304181672632694, 0.1313270628452301, 0.010704576037824154, 0.06784483790397644, -0.031131887808442116, 0.036200761795043945, 0.027116654440760612, 0.18412533402442932, -0.018194833770394325, 0.14540329575538635, 0.08554940670728683, 0.0649000033736229, 0.08699136972427368, -0.10157958418130875, -0.04501986503601074, 0.05581238120794296, -0.12337303161621094, 0.018890254199504852, -0.040414951741695404, 0.11078977584838867, 0.10760373622179031, -0.13222284615039825, 0.1045050248503685, -0.0011798485647886992, -0.06533089280128479, -0.15947026014328003, -0.08046659827232361, -0.06961492449045181, -0.13206496834754944, 0.044782448559999466, -0.055930547416210175, 0.05352381616830826, 0.0724639743566513, 0.03768590837717056, -0.04469970613718033, 0.15524744987487793, -0.02808135189116001, -0.09083052724599838, 0.047170888632535934, -0.06321520358324051, 0.08185280114412308, -0.044243451207876205, 0.034994855523109436, 0.13470296561717987, -0.008415537886321545, 0.07835105806589127, 0.0265310388058424, 0.009503636509180069, 0.050898779183626175, -0.07609224319458008, -0.023389596492052078, 0.019189028069376945, -0.007470676675438881, 0.12394630908966064, 0.22847968339920044, 0.11028659343719482, -0.08351584523916245, 0.02276201732456684, 0.10836243629455566, -0.030266843736171722, -0.12621556222438812, -0.1819097399711609, 0.1770552098751068, -0.0009183857473544776, 0.03430075943470001, -0.023006562143564224, -0.07697390019893646, 0.03683244064450264, 0.1684630960226059, 0.15842044353485107, 0.06989464163780212, -0.0006037611165083945, -0.014501822181046009, -0.009388809092342854, -0.001417662249878049, 0.0131175946444273, 0.0644192323088646, 0.21582858264446259, -0.031368572264909744, 0.015240698121488094, -0.0604080967605114, -0.013451136648654938, 0.01298961229622364, 0.09812639653682709, -0.1211337074637413, -0.10423679649829865, 0.011629307642579079, 0.13468092679977417, 0.010405506938695908, -0.2705879211425781, -0.04814792424440384, -0.09714563935995102, -0.10583462566137314, -0.008040539920330048, 0.07083189487457275, 0.09729933738708496, 0.01727931760251522, -0.05960506945848465, 0.00350766209885478, 0.08809385448694229, -0.020142121240496635, -0.03132312372326851, -0.011004597879946232, 0.041359785944223404, -0.11847294867038727, 0.1206526905298233, -0.003467578673735261, 0.14606329798698425, 0.06026950478553772, 0.062073469161987305, -0.012585104443132877, 0.11075834929943085, 0.027904797345399857, -0.052354760468006134, 0.09563738852739334, 0.0988272875547409, -0.008747944608330727, 0.1204228401184082, 0.005278361961245537, -0.11010386049747467, 0.03887801244854927, -0.15545764565467834, -0.04432511329650879, -0.14961835741996765, 0.08802036195993423, -0.08539903908967972, 0.09156626462936401, 0.08038966357707977, -0.053537871688604355, -0.01579161360859871, -0.06160452961921692, 0.046023882925510406, -0.0043155476450920105, 0.060612987726926804, -0.04629562422633171, -0.24695415794849396, 0.026444068178534508, -0.053964730352163315, -0.011891419999301434, -0.24025219678878784, -0.020083490759134293, 0.058498866856098175, -0.07695279270410538, -0.037600088864564896, 0.05939384177327156, 0.08254794776439667, 0.03267151862382889, -0.02459927834570408, -0.01513042114675045, 0.006174515932798386, 0.1154262125492096, -0.1141907274723053, -0.09405788779258728 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Breton Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Breton Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = batch["sentence"].replace("ʼ", "'") batch["sentence"] = batch["sentence"].replace("’", "'") batch["sentence"] = batch["sentence"].replace('‘', "'") speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` The above code leads to the following prediction for the first two samples: ``` Prediction: ["ne' ler ket don a-benn us netra pa vez zer nic'hed evel-si", 'an eil hag egile'] Reference: ['"n\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se." ', 'an eil hag egile. '] ``` ## Evaluation The model can be evaluated as follows on the Breton test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model.to("cuda") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = batch["sentence"].replace("ʼ", "'") batch["sentence"] = batch["sentence"].replace("’", "'") batch["sentence"] = batch["sentence"].replace('‘', "'") speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.71 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) (will be available soon)
{"language": "br", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Breton by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice br", "type": "common_voice", "args": "br"}, "metrics": [{"type": "wer", "value": 41.71, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-breton
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "br" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Breton Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Breton Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: The above code leads to the following prediction for the first two samples: ## Evaluation The model can be evaluated as follows on the Breton test data of Common Voice. Test Result: 41.71 % ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found here (will be available soon)
[ "# Wav2Vec2-Large-XLSR-Breton\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Breton Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nThe above code leads to the following prediction for the first two samples:", "## Evaluation\n\nThe model can be evaluated as follows on the Breton test data of Common Voice.\n\n\n\nTest Result: 41.71 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Breton\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Breton Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nThe above code leads to the following prediction for the first two samples:", "## Evaluation\n\nThe model can be evaluated as follows on the Breton test data of Common Voice.\n\n\n\nTest Result: 41.71 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ 80, 63, 37, 29, 49 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Breton\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Breton Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nThe above code leads to the following prediction for the first two samples:## Evaluation\n\nThe model can be evaluated as follows on the Breton test data of Common Voice.\n\n\n\nTest Result: 41.71 %## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ -0.13300901651382446, 0.07449877262115479, -0.0031436446588486433, -0.007158502470701933, 0.08213700354099274, -0.0381646528840065, 0.12428495287895203, 0.08753330260515213, -0.0360751636326313, 0.0308638047426939, 0.029896339401602745, -0.03751217946410179, 0.02388196811079979, 0.10830765217542648, 0.02799977920949459, -0.18778096139431, -0.006531344261020422, -0.030210480093955994, -0.003962833900004625, 0.11843691766262054, 0.12585322558879852, -0.042684148997068405, -0.03217459097504616, 0.08523517102003098, -0.07724276930093765, 0.052717797458171844, 0.03689945861697197, -0.10451711714267731, 0.14847879111766815, 0.06764086335897446, 0.0872674286365509, 0.04943845793604851, 0.06687760353088379, -0.23290516436100006, 0.026982583105564117, 0.04093834012746811, 0.01668716035783291, 0.040466733276844025, 0.07875331491231918, -0.0764935240149498, -0.05358240380883217, 0.10026074200868607, -0.00784895196557045, 0.07203327119350433, -0.053292032331228256, -0.17305098474025726, -0.038308609277009964, -0.03135182335972786, 0.06097299978137016, 0.1068316400051117, -0.0640411525964737, 0.07953377813100815, -0.1031096801161766, 0.05765191465616226, 0.11641253530979156, -0.1728942096233368, -0.008333122357726097, 0.02740672416985035, 0.04656314477324486, 0.06376593559980392, -0.044299859553575516, 0.02963462471961975, 0.032557446509599686, 0.03752502053976059, -0.011672771535813808, -0.0035847118124365807, -0.10449302941560745, -0.014023053459823132, -0.12495138496160507, -0.036746546626091, 0.2031843364238739, -0.00017311988631263375, -0.07836569845676422, -0.12232090532779694, -0.005134849809110165, -0.046074677258729935, -0.02510496787726879, -0.07333403080701828, 0.015674393624067307, 0.04715363681316376, -0.009577278047800064, -0.0432676263153553, -0.12526154518127441, -0.11390675604343414, 0.025652417913079262, 0.011808752082288265, 0.02703349106013775, -0.007308276370167732, -0.11550510674715042, 0.10162041336297989, -0.0838041603565216, -0.05057433247566223, -0.009063875302672386, 0.024053677916526794, -0.0716160237789154, -0.0005097450339235365, -0.06568154692649841, -0.11989326775074005, 0.08072992414236069, 0.053335320204496384, 0.057261157780885696, 0.010091738775372505, -0.11258523166179657, 0.06956125050783157, 0.02722301334142685, 0.07714022696018219, -0.06569249927997589, -0.0484638474881649, 0.049461089074611664, 0.048008471727371216, -0.054599884897470474, -0.0012370382901281118, -0.09294938296079636, -0.03525221347808838, 0.08565149456262589, 0.08059111982584, 0.004492574837058783, -0.04034728929400444, -0.05095730721950531, -0.05496905371546745, 0.08328444510698318, -0.1294444054365158, -0.026111150160431862, 0.07120196521282196, 0.00020582204160746187, -0.005661890842020512, 0.08770539611577988, 0.05606349930167198, -0.08304421603679657, -0.021223438903689384, 0.021821320056915283, 0.0220328476279974, -0.023777611553668976, -0.07422332465648651, -0.018344681710004807, 0.00015200601774267852, -0.05374326929450035, -0.06786192953586578, -0.04734806716442108, -0.08792325109243393, -0.012398384511470795, -0.0005768339615315199, -0.018597044050693512, -0.10493382811546326, -0.04300382733345032, -0.006383092608302832, -0.05915434658527374, 0.05901802331209183, -0.03568967804312706, 0.06106830760836601, 0.03414888679981232, 0.02865399792790413, 0.07875774800777435, 0.08265744894742966, -0.09764277935028076, -0.03529447317123413, -0.029813090339303017, 0.15006163716316223, -0.04431530088186264, -0.10256975889205933, -0.13076579570770264, -0.06776030361652374, -0.0641564428806305, 0.06663671880960464, 0.0829237848520279, 0.12111373245716095, -0.27519920468330383, -0.07836103439331055, 0.2337033897638321, -0.09691998362541199, -0.014859187416732311, 0.24972741305828094, -0.016691304743289948, 0.08435260504484177, 0.0818733423948288, 0.20855577290058136, 0.12264486402273178, -0.15473031997680664, 0.06501451879739761, -0.018703162670135498, 0.010895349085330963, 0.03465571627020836, 0.0802125558257103, -0.09726828336715698, 0.0018366184085607529, 0.011601048521697521, -0.045303504914045334, 0.060231443494558334, -0.02223774418234825, -0.05594102293252945, 0.007167536299675703, -0.03144720941781998, 0.056506283581256866, 0.01539633423089981, -0.008883731439709663, -0.020782500505447388, -0.11927074193954468, 0.035370707511901855, 0.09385040402412415, -0.10458268970251083, 0.07193009555339813, -0.12210910767316818, 0.11655664443969727, -0.11339158564805984, -0.024827376008033752, -0.14974187314510345, 0.13203856348991394, 0.0037995344027876854, -0.00476258946582675, 0.09195394814014435, 0.1607288122177124, 0.010143239051103592, 0.051668137311935425, -0.04150402545928955, -0.013703386299312115, -0.006873090285807848, -0.03887997940182686, -0.03549272194504738, -0.13756993412971497, -0.016795873641967773, -0.08395721018314362, 0.15233267843723297, -0.15448658168315887, -0.005531497299671173, 0.06745769083499908, 0.028846731409430504, -0.008435958065092564, -0.0044255624525249004, 0.017925815656781197, 0.04783095419406891, -0.02453119121491909, 0.01412172056734562, 0.047324903309345245, 0.0018885207828134298, -0.04803316667675972, 0.15161438286304474, -0.15109938383102417, -0.08287455141544342, 0.1246085986495018, -0.01940051093697548, -0.043627191334962845, 0.016027936711907387, -0.056705866008996964, 0.006101483013480902, -0.05788354575634003, 0.003379842033609748, 0.30074575543403625, 0.03144853189587593, 0.15032704174518585, -0.10072170943021774, -0.01882070302963257, 0.01714734174311161, -0.04434892162680626, 0.0022687031887471676, 0.046038273721933365, 0.022352052852511406, 0.024927953258156776, 0.0156471598893404, -0.07793593406677246, -0.06329946219921112, 0.22163499891757965, -0.012857530266046524, -0.10509474575519562, -0.0040114205330610275, -0.03448598086833954, -0.005427167750895023, 0.053159188479185104, -0.14262895286083221, -0.041254475712776184, 0.02162153646349907, 0.07835287600755692, 0.08314269036054611, -0.17188721895217896, 0.02452230080962181, 0.0008218701113946736, -0.12778790295124054, -0.07690402120351791, 0.07969792932271957, -0.031054608523845673, 0.04662663862109184, -0.06133701279759407, -0.041227955371141434, 0.009009878151118755, -0.06517282873392105, -0.18073688447475433, 0.10922717303037643, -0.10246285051107407, -0.2327885925769806, -0.14673763513565063, 0.06812945753335953, 0.01659110002219677, 0.02870027907192707, 0.11726746708154678, -0.08454631268978119, -0.009903603233397007, -0.05399640277028084, 0.04501059278845787, -0.031651850789785385, -0.01962803117930889, -0.08276625722646713, 0.006184047553688288, 0.07860289514064789, -0.15232177078723907, 0.0356442965567112, -0.02697206474840641, -0.08514338731765747, -0.04438323900103569, 0.02778599224984646, 0.02641482464969158, 0.1606263965368271, 0.0332111231982708, -0.009913856163620949, -0.019321691244840622, 0.18685950338840485, -0.09893229603767395, -0.024383246898651123, 0.12097303569316864, -0.0013421245384961367, -0.004944676533341408, 0.09361598640680313, 0.028258424252271652, -0.055999334901571274, 0.0005590298678725958, 0.0209488607943058, -0.049176961183547974, -0.24545322358608246, -0.14325836300849915, -0.046393875032663345, -0.03443576768040657, -0.0034603832755237818, 0.04457452520728111, 0.08159022033214569, -0.026576677337288857, -0.036264900118112564, -0.11084345728158951, 0.08002859354019165, 0.03499692305922508, 0.12545204162597656, -0.01567779667675495, 0.06636348366737366, -0.015629006549715996, -0.03178796544671059, 0.037531401962041855, 0.07031454145908356, 0.09097082912921906, 0.03784357011318207, 0.09756281226873398, 0.1128983199596405, 0.11099881678819656, 0.0914975255727768, 0.02099599689245224, -0.059062764048576355, 0.030506886541843414, -0.013785997405648232, -0.05482657253742218, 0.0052250404842197895, 0.023812364786863327, 0.1596219390630722, -0.08074342459440231, -0.01604376547038555, -0.05092877522110939, 0.02411336824297905, 0.2004118114709854, 0.10617366433143616, -0.15968714654445648, -0.07277753949165344, -0.023467663675546646, -0.09140094369649887, -0.008441874757409096, 0.06981924176216125, 0.13881459832191467, -0.09652947634458542, 0.016996081918478012, -0.017514171078801155, 0.06479854136705399, 0.04229836165904999, 0.01669314131140709, 0.008713065646588802, 0.03937917947769165, 0.00760304881259799, 0.09579639881849289, -0.251896470785141, 0.22858397662639618, 0.003491970244795084, 0.09319008141756058, -0.011506299488246441, 0.016840610653162003, -0.010675678960978985, 0.018052130937576294, 0.14739643037319183, -0.019057147204875946, 0.07634907215833664, -0.05987142398953438, -0.08405105769634247, 0.031023897230625153, -0.0055652521550655365, -0.04018910601735115, 0.04534274339675903, -0.021728113293647766, -0.03565337508916855, 0.011282902210950851, -0.08878002315759659, -0.14242413640022278, -0.1088174507021904, 0.023537449538707733, 0.11273648589849472, 0.12224943190813065, -0.03188519552350044, -0.08666553348302841, -0.09028583765029907, 0.05337369441986084, -0.1467151641845703, -0.005530630704015493, -0.05916367471218109, -0.032827939838171005, 0.14896760880947113, -0.03063379041850567, -0.03326951339840889, 0.07490812987089157, 0.1546144336462021, -0.04868912324309349, 0.002007190603762865, 0.07798556983470917, -0.1126042976975441, -0.13651762902736664, -0.05263983830809593, 0.2475494146347046, 0.11873263120651245, 0.08450213819742203, 0.027093347162008286, 0.03597500920295715, 0.012935579754412174, -0.04088456556200981, 0.002729409374296665, 0.06763450801372528, -0.09396637976169586, 0.03979124873876572, -0.026248468086123466, -0.16382087767124176, -0.142854243516922, -0.03962427377700806, 0.155269056558609, 0.1285126805305481, -0.09162277728319168, 0.21174558997154236, 0.17361748218536377, -0.11422064900398254, -0.19905610382556915, -0.0193322766572237, 0.12606672942638397, 0.05950294807553291, -0.05547941103577614, -0.17266015708446503, 0.047525256872177124, -0.018168266862630844, -0.03307829052209854, -0.0323655940592289, -0.2642192244529724, -0.17178958654403687, 0.09714365750551224, -0.07061304152011871, 0.05486606806516647, -0.04189624264836311, -0.009814918972551823, -0.02818327397108078, 0.03972189500927925, 0.05326319858431816, -0.08566173911094666, 0.07826939970254898, 0.03900899738073349, 0.07562439888715744, 0.020336177200078964, -0.024881968274712563, 0.0672985315322876, 0.09281713515520096, -0.005734838545322418, 0.03766763210296631, 0.041428688913583755, 0.028051624074578285, 0.022159116342663765, 0.10119964927434921, 0.0006567588425241411, 0.018040355294942856, -0.0570717453956604, -0.08639317750930786, -0.07868369668722153, 0.09163902699947357, 0.002361879451200366, -0.015940431505441666, 0.041936036199331284, -0.0034833874087780714, 0.032050590962171555, -0.009906570427119732, -0.07575427740812302, -0.1334722489118576, 0.044210147112607956, 0.13568294048309326, 0.19522015750408173, 0.03167184814810753, -0.09353037923574448, 0.03070523962378502, -0.019370052963495255, 0.08728441596031189, -0.033113978803157806, 0.0593547485768795, 0.05655619129538536, 0.039485733956098557, 0.14439983665943146, 0.00950588844716549, -0.1075606420636177, 0.05486726760864258, 0.014804373495280743, -0.08498167246580124, -0.1761733442544937, -0.03450733795762062, -0.006553743500262499, -0.053152862936258316, -0.030033668503165245, 0.10216978937387466, -0.06739353388547897, -0.04640413075685501, -0.005439001601189375, 0.04700920358300209, -0.12363018095493317, 0.1854592114686966, 0.0038835182785987854, 0.05451231449842453, -0.08817640691995621, 0.0263480544090271, -0.001983020454645157, -0.1219029575586319, 0.047373998910188675, 0.02138684317469597, -0.051592789590358734, -0.058327317237854004, -0.02564605139195919, 0.13509050011634827, 0.03572196513414383, -0.11656708270311356, -0.055666081607341766, -0.010091530159115791, 0.018691714853048325, 0.1170368492603302, 0.04057297110557556, 0.0054923733696341515, -0.09194938838481903, -0.047578681260347366, -0.14087213575839996, 0.0949997678399086, 0.08298799395561218, -0.020764222368597984, -0.05025084689259529, 0.16574575006961823, 0.07135740667581558, -0.00036379919038154185, -0.031324565410614014, -0.0870681032538414, 0.04127137362957001, 0.06233688071370125, -0.08087246119976044, 0.0476963073015213, -0.01715926080942154, 0.021084032952785492, 0.01695755124092102, -0.0776551365852356, -0.003266919869929552, 0.046182919293642044, -0.08611176908016205, 0.03313170000910759, -0.027685338631272316, 0.06984704732894897, -0.1003260463476181, 0.03214891999959946, 0.02403843402862549, -0.0648251622915268, 0.08721567690372467, 0.08672529458999634, -0.08034093677997589, 0.09557140618562698, -0.19399839639663696, -0.0778081864118576, 0.012406863272190094, 0.06627584993839264, -0.02501112036406994, -0.16397538781166077, 0.02859489619731903, 0.07424532622098923, 0.05078093707561493, -0.029502537101507187, 0.1012224555015564, -0.0828578919172287, -0.015549526549875736, -0.018610674887895584, -0.016224903985857964, -0.03400122746825218, 0.01910286210477352, 0.050456613302230835, 0.11627104878425598, 0.1606503427028656, -0.1392378956079483, 0.1148325726389885, -0.13437829911708832, 0.013657793402671814, -0.053846634924411774, 0.03074522875249386, -0.15961626172065735, -0.030984601005911827, 0.06422024965286255, -0.0750870406627655, 0.08906550705432892, 0.04014069214463234, 0.10414700210094452, 0.026902571320533752, -0.16362285614013672, -0.0667908564209938, 0.035090088844299316, 0.12510794401168823, 0.05404862388968468, 0.03616620972752571, -0.03266119584441185, 0.006321133114397526, 0.02357841283082962, 0.11388897895812988, -0.008663380518555641, 0.1303408145904541, 0.09025833755731583, 0.05774341896176338, 0.0983826294541359, -0.12046121805906296, -0.08514174818992615, 0.04263691231608391, -0.10194014757871628, 0.03832254931330681, -0.06388668715953827, 0.20047643780708313, 0.09736105054616928, -0.11185126006603241, 0.10043612867593765, -0.0016537931514903903, -0.07178082317113876, -0.16496481001377106, -0.08106984943151474, -0.055967800319194794, -0.12513570487499237, 0.02366427145898342, -0.08228935301303864, 0.05141338333487511, 0.023985622450709343, 0.07335157692432404, -0.013103860430419445, 0.11248207092285156, -0.031570933759212494, -0.07686426490545273, 0.028442585840821266, -0.07729730010032654, 0.07447053492069244, -0.021675581112504005, 0.030691495165228844, 0.13640983402729034, 0.008291440084576607, 0.06799178570508957, 0.025662122294306755, 0.0023735284339636564, 0.04603280872106552, -0.10325809568166733, -0.06745303422212601, 0.021978145465254784, -0.00647543603554368, 0.0958789736032486, 0.16786083579063416, 0.12039894610643387, -0.09271106123924255, 0.0344841293990612, 0.148493230342865, -0.03199825435876846, -0.13199853897094727, -0.1760731041431427, 0.17178000509738922, 0.042329974472522736, 0.03599641099572182, -0.024637024849653244, -0.060842543840408325, -0.01202173437923193, 0.18619470298290253, 0.23069021105766296, 0.0561940036714077, 0.005030984990298748, 0.03742615878582001, -0.010022370144724846, 0.018525224179029465, -0.011826302856206894, 0.10121703892946243, 0.23027168214321136, -0.02445663884282112, -0.001775796408765018, -0.04196447879076004, -0.03831544145941734, 0.02581203728914261, 0.0918421596288681, -0.10900571942329407, -0.0765819102525711, -0.00007129547884687781, 0.10528787225484848, -0.018871819600462914, -0.23272213339805603, -0.07804153859615326, -0.08168519288301468, -0.09734128415584564, -0.006283761467784643, 0.024339256808161736, 0.07710208743810654, 0.017945490777492523, -0.025002554059028625, -0.022609615698456764, 0.15780672430992126, -0.03690049424767494, -0.057841382920742035, -0.016750166192650795, 0.042381107807159424, -0.1292906105518341, 0.11457017809152603, -0.0223759263753891, 0.1404290795326233, 0.043000150471925735, 0.09072849154472351, -0.0165418554097414, 0.07090958207845688, 0.0051470594480633736, -0.03280046954751015, 0.03525162860751152, 0.1411067694425583, -0.02338302507996559, 0.10356941819190979, 0.006649921182543039, -0.16721364855766296, 0.05034678056836128, -0.20287276804447174, -0.07620533555746078, -0.10667657107114792, 0.07421059161424637, -0.06429662555456161, 0.09365850687026978, 0.06495498865842819, -0.05412978678941727, -0.037746887654066086, -0.05813417211174965, 0.0152721693739295, -0.005171958357095718, 0.05664115771651268, -0.03697352483868599, -0.22876980900764465, 0.015245815739035606, -0.06947873532772064, -0.018533797934651375, -0.2779451012611389, -0.021650997921824455, 0.08464653789997101, -0.056850168853998184, -0.014212274923920631, 0.08128567039966583, 0.08375886082649231, 0.05826377868652344, -0.03865526616573334, 0.018282847478985786, 0.028284069150686264, 0.10616705566644669, -0.17053087055683136, -0.09688492119312286 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Indonesian Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 51.69 % ## Training The Artificial Common Voice `train`, `validation`, and ... datasets were used for training. The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) (will be available soon)
{"language": "id", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Indonesian with Artificial Voice by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice id", "type": "common_voice", "args": "id"}, "metrics": [{"type": "wer", "value": 51.69, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-indonesian-artificial
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "id", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Indonesian Artificial Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. Test Result: 51.69 % ## Training The Artificial Common Voice 'train', 'validation', and ... datasets were used for training. The script used for training can be found here (will be available soon)
[ "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Artificial Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 51.69 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation', and ... datasets were used for training.\n\nThe script used for training can be found here \n(will be available soon)" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Artificial Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 51.69 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation', and ... datasets were used for training.\n\nThe script used for training can be found here \n(will be available soon)" ]
[ 80, 63, 20, 29, 42 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Artificial Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 51.69 %## Training\n\nThe Artificial Common Voice 'train', 'validation', and ... datasets were used for training.\n\nThe script used for training can be found here \n(will be available soon)" ]
[ -0.11303738504648209, -0.003575508948415518, -0.0006493715336546302, -0.03864513337612152, 0.10263621062040329, -0.05520417541265488, 0.1657017469406128, 0.10713484138250351, -0.026768019422888756, -0.028422730043530464, 0.029866622760891914, -0.014889251440763474, 0.07716002315282822, 0.1251491904258728, 0.05126035585999489, -0.2841734290122986, 0.0075118765234947205, 0.008677557110786438, 0.09877688437700272, 0.15180665254592896, 0.10575459897518158, -0.03537154197692871, -0.005590778775513172, 0.08777730911970139, -0.15061016380786896, -0.00019918431644327939, -0.027001138776540756, -0.13997715711593628, 0.12594462931156158, 0.012744156643748283, 0.13036760687828064, 0.03983050957322121, 0.09589213877916336, -0.1831182837486267, 0.029402701184153557, 0.02812068723142147, 0.04422706365585327, 0.028648223727941513, 0.013048206456005573, 0.004711334127932787, 0.108726367354393, 0.1182650476694107, -0.008438791148364544, 0.03899862617254257, -0.07489936053752899, -0.1960287094116211, -0.003953987266868353, -0.0031463317573070526, 0.09868086874485016, 0.1474400758743286, -0.05455741286277771, 0.08450326323509216, -0.1534924954175949, 0.05233525112271309, 0.0767504945397377, -0.11351431906223297, -0.0030179289169609547, 0.05320730432868004, 0.07578246295452118, 0.06169428676366806, -0.06577514857053757, -0.004738393239676952, 0.01969851180911064, 0.03076907992362976, 0.06652022898197174, -0.058558013290166855, -0.2253158688545227, -0.06661585718393326, -0.09003503620624542, -0.03037232719361782, 0.23198936879634857, -0.014892005361616611, -0.08695784211158752, -0.12336339056491852, 0.032189857214689255, -0.0019301724387332797, -0.01867685653269291, -0.06517399102449417, -0.01634219102561474, 0.047182317823171616, 0.017110535874962807, -0.039078570902347565, -0.10921351611614227, -0.1442633420228958, 0.048303768038749695, 0.05063866823911667, 0.019947780296206474, 0.004117321223020554, -0.1661238670349121, 0.08894425630569458, -0.03800491243600845, -0.119678795337677, -0.029126305133104324, 0.029982198029756546, -0.011684657074511051, 0.048402026295661926, -0.05046040564775467, -0.13719682395458221, 0.01917443610727787, -0.02933974377810955, 0.1080801710486412, 0.025180401280522346, -0.0015401830896735191, 0.08867119252681732, -0.0035783741623163223, 0.1035810336470604, -0.0571444109082222, -0.0033174811396747828, 0.055696822702884674, 0.06259122490882874, -0.03433803468942642, -0.03543960303068161, -0.08807781338691711, -0.006861213594675064, 0.06002376601099968, 0.0863524004817009, -0.045963842421770096, 0.026096176356077194, -0.02717600017786026, -0.05995569005608559, 0.09468851238489151, -0.13031263649463654, -0.09861624985933304, 0.024755537509918213, -0.046137116849422455, 0.0656207948923111, 0.11425548791885376, 0.04790257662534714, -0.07785792648792267, 0.001001024735160172, 0.037710219621658325, 0.05765620619058609, -0.06276746094226837, -0.0438489094376564, -0.012239431031048298, 0.016879821196198463, -0.01879437454044819, -0.11466933786869049, -0.14272268116474152, -0.06464273482561111, -0.009092448279261589, 0.03514083847403526, 0.022138968110084534, -0.0901811271905899, -0.0035789262037724257, -0.03711704537272453, -0.09082738310098648, 0.09022872895002365, -0.03674265742301941, 0.0785866528749466, 0.05307959392666817, 0.07486030459403992, 0.07605984061956406, 0.08615780621767044, -0.11873184889554977, -0.04194480925798416, -0.022553322836756706, 0.12311849743127823, -0.0029549465980380774, -0.043648265302181244, -0.1015053391456604, -0.10111579298973083, -0.08823728561401367, 0.05731106922030449, 0.048818040639162064, 0.11997906118631363, -0.247090145945549, -0.0806189551949501, 0.24046027660369873, -0.12025681883096695, -0.08470864593982697, 0.17796723544597626, 0.008542757481336594, 0.18991026282310486, 0.07010362297296524, 0.21476416289806366, 0.0870307981967926, -0.14160625636577606, 0.08999878913164139, 0.00943088810890913, 0.003383842995390296, -0.05199490115046501, 0.09673906117677689, -0.02138909138739109, 0.04401278495788574, 0.061863455921411514, -0.10320281982421875, 0.10514186322689056, -0.01926795206964016, -0.06617578864097595, 0.004174167290329933, -0.07719437032938004, 0.014955335296690464, 0.03169781342148781, 0.06810127198696136, 0.007582954131066799, -0.08051848411560059, 0.05781122297048569, 0.1266103833913803, -0.1099582314491272, 0.041766539216041565, -0.1057993471622467, 0.05287487804889679, -0.053923167288303375, 0.0001961837406270206, -0.1516331136226654, 0.15923304855823517, -0.0073177265003323555, -0.0015995329013094306, 0.07614710927009583, 0.0895143672823906, -0.008999492041766644, 0.032657694071531296, -0.03571099787950516, -0.019104650244116783, -0.013431689701974392, -0.0306509118527174, -0.0027722970116883516, -0.03189530223608017, -0.03848806396126747, -0.04739174246788025, 0.09327186644077301, -0.1294383555650711, 0.0038722946774214506, -0.059520505368709564, -0.0033886716701090336, -0.035867512226104736, -0.012403680011630058, 0.1013205423951149, 0.09146305918693542, 0.0015595256118103862, -0.005508802365511656, 0.05578428879380226, 0.0324086919426918, -0.07667133957147598, 0.13885854184627533, -0.15935011208057404, -0.0019418526208028197, 0.10387233644723892, -0.09523238986730576, -0.03382471948862076, 0.047064706683158875, -0.03094778209924698, -0.032630715519189835, -0.08035314828157425, 0.036713968962430954, 0.28991010785102844, -0.020257724449038506, 0.15374569594860077, -0.09929712116718292, 0.025086212903261185, 0.00907148327678442, -0.09558308124542236, 0.06843235343694687, -0.0027267008554190397, -0.007758443243801594, 0.014779729768633842, 0.0366644486784935, -0.04427018016576767, -0.08474855124950409, 0.22724303603172302, -0.013983838260173798, -0.07438588887453079, -0.005193564109504223, -0.007689634803682566, -0.02743559516966343, 0.012957747094333172, -0.19784538447856903, -0.0701182410120964, 0.04913837090134621, 0.07042602449655533, 0.0628385990858078, -0.15969036519527435, -0.04044608399271965, 0.01388918049633503, -0.0958603024482727, -0.14969691634178162, 0.07277156412601471, -0.06886925548315048, 0.04708646610379219, -0.09621945768594742, -0.01808329112827778, -0.006887789815664291, -0.058247607201337814, -0.1718096137046814, 0.1591700166463852, -0.04019695520401001, -0.28129541873931885, -0.11710520833730698, 0.08164434880018234, 0.07781092822551727, -0.004350558388978243, 0.09016334265470505, -0.11511307209730148, 0.004346505738794804, -0.022415779531002045, 0.014279409311711788, 0.030074741691350937, -0.024441560730338097, -0.0764748752117157, 0.0306076742708683, 0.04894165322184563, -0.13185152411460876, 0.014589919708669186, -0.01785428822040558, -0.05661826580762863, 0.006223313044756651, -0.017159296199679375, 0.023994553834199905, 0.16418907046318054, 0.036764200776815414, -0.0019014724530279636, -0.000651915033813566, 0.11233315616846085, -0.1172943264245987, -0.01567043550312519, 0.24595218896865845, -0.03723147138953209, -0.03277219459414482, 0.034678056836128235, 0.0220499187707901, -0.07608748972415924, 0.03324095159769058, -0.048137374222278595, -0.09954540431499481, -0.21143501996994019, -0.08153478056192398, -0.06315790116786957, -0.07531332224607468, -0.04829661548137665, -0.007025472354143858, 0.12961092591285706, 0.031019730493426323, -0.01673342101275921, -0.07135769724845886, 0.02618245594203472, 0.0021752468310296535, 0.016223721206188202, 0.0028720039408653975, 0.09389851987361908, -0.057265304028987885, -0.019637612625956535, -0.017956729978322983, 0.015112951397895813, 0.17361244559288025, 0.04383636265993118, 0.0962139368057251, 0.1184871718287468, 0.1516791731119156, 0.13058286905288696, 0.04705465957522392, -0.07930528372526169, -0.01207264605909586, -0.006576478015631437, -0.05577012896537781, -0.059150706976652145, 0.02560209482908249, 0.04604173079133034, -0.04340056702494621, -0.028727838769555092, -0.024667920544743538, 0.008182806894183159, 0.12442085891962051, 0.03385147452354431, -0.19544735550880432, -0.09981666505336761, -0.03352629393339157, -0.04443398863077164, 0.041502755135297775, 0.045946333557367325, 0.15338130295276642, -0.17116065323352814, 0.0010022536152973771, -0.012759906239807606, 0.09527506679296494, -0.049313485622406006, 0.01073688268661499, -0.04767207056283951, 0.02428390085697174, 0.01631242036819458, 0.1258859783411026, -0.29392939805984497, 0.2631358802318573, -0.011013702489435673, 0.13224594295024872, -0.07850880920886993, -0.004586465656757355, 0.031190088018774986, -0.013140613213181496, 0.14247378706932068, -0.0024144980125129223, -0.03355032578110695, -0.12919297814369202, -0.0798276737332344, 0.05689762905240059, 0.016460945829749107, 0.03631117567420006, 0.01912704110145569, 0.0057749575935304165, 0.004596901126205921, 0.02491007186472416, -0.06390034407377243, -0.13161295652389526, -0.049550313502550125, 0.04040370136499405, 0.11628621071577072, 0.10138674080371857, -0.03513791784644127, -0.07523985207080841, 0.01763589307665825, 0.05890899896621704, -0.05574693903326988, -0.05572281405329704, -0.050344549119472504, -0.024914458394050598, 0.09190791100263596, -0.08555663377046585, -0.03051663190126419, 0.07707426697015762, 0.07062332332134247, 0.0026552979834377766, -0.01726253144443035, 0.05471162497997284, -0.1032881960272789, -0.09406730532646179, -0.02390589565038681, 0.16591089963912964, 0.11800669878721237, 0.06784596294164658, 0.03350435569882393, -0.028214070945978165, 0.025481121614575386, -0.08401259034872055, -0.027381135150790215, 0.09464963525533676, -0.08457203954458237, -0.00685485266149044, -0.032475825399160385, -0.07219241559505463, -0.12063496559858322, -0.09193132072687149, 0.1532393991947174, 0.021380754187703133, -0.030169328674674034, 0.134566992521286, 0.22431211173534393, -0.07819147408008575, -0.20177392661571503, -0.07220526784658432, 0.11403083056211472, 0.07023801654577255, -0.050219856202602386, -0.21103626489639282, 0.0589362271130085, 0.04548732191324234, -0.010035086423158646, -0.0703667402267456, -0.3262293338775635, -0.16824813187122345, 0.12779203057289124, -0.0034497191663831472, 0.08463336527347565, -0.061649762094020844, -0.026114046573638916, -0.0019214082276448607, -0.035985156893730164, 0.027757877483963966, -0.08912954479455948, 0.11635178327560425, 0.010228574275970459, 0.07262430340051651, 0.011591542512178421, -0.03283841535449028, 0.09984783828258514, 0.07725678384304047, -0.00379838515073061, -0.037565186619758606, 0.03359068185091019, 0.051268093287944794, 0.029652193188667297, 0.17751993238925934, -0.10260669142007828, 0.013095670379698277, -0.09241652488708496, -0.09190740436315536, -0.10744968801736832, 0.05686269327998161, 0.03763002157211304, -0.05863144248723984, 0.021457701921463013, 0.01569008082151413, 0.005968810990452766, 0.012596135959029198, -0.022622227668762207, -0.09977582097053528, 0.04159051924943924, 0.09724757075309753, 0.16962206363677979, 0.006087170448154211, -0.061722319573163986, -0.046609219163656235, 0.008494659326970577, 0.10392556339502335, -0.1370590180158615, -0.02137717604637146, 0.05286477506160736, 0.05316377431154251, 0.16212774813175201, 0.009648936800658703, -0.10466019064188004, 0.12067627161741257, 0.04728010296821594, 0.0022967634722590446, -0.14531932771205902, -0.027713367715477943, 0.033597562462091446, -0.039465341717004776, -0.03745248541235924, 0.018183687701821327, -0.13260005414485931, -0.03551734611392021, -0.03992956876754761, 0.0338255800306797, -0.14758986234664917, 0.22100280225276947, 0.02460557222366333, 0.0839749127626419, -0.0806325301527977, 0.10484202951192856, 0.022093456238508224, -0.05109403282403946, 0.03767034783959389, 0.03221478685736656, -0.09827959537506104, -0.0540168397128582, 0.002798254368826747, 0.0961017832159996, 0.026461396366357803, -0.1306825876235962, -0.07030948996543884, -0.043107595294713974, -0.03018232434988022, 0.020795747637748718, 0.04985099658370018, -0.012103683315217495, -0.11525586992502213, -0.023511841893196106, -0.11111058294773102, 0.0488603450357914, 0.08635231852531433, -0.025046180933713913, -0.035265807062387466, 0.17082767188549042, 0.16942240297794342, 0.05362723022699356, -0.04368212819099426, -0.11731524020433426, 0.012269760482013226, 0.09037715196609497, -0.0502166710793972, 0.009179363027215004, -0.08524362742900848, -0.017917614430189133, -0.03255987539887428, -0.09536677598953247, 0.0003321328549645841, 0.05907555669546127, -0.06423089653253555, 0.029583189636468887, -0.031555041670799255, 0.05674084275960922, -0.07125426828861237, 0.003508733119815588, 0.0340336449444294, -0.050006404519081116, 0.046926550567150116, 0.13565117120742798, -0.09326957166194916, 0.1414579153060913, -0.17421819269657135, -0.03426716849207878, 0.07232462614774704, 0.0627523809671402, -0.02913261577486992, -0.1177525743842125, 0.029460974037647247, 0.08097688853740692, 0.06420234590768814, -0.018508749082684517, 0.09059491753578186, -0.08305627852678299, -0.04499252513051033, -0.031443770974874496, 0.032375991344451904, -0.05085006728768349, 0.05925588309764862, 0.06970848143100739, 0.11059179902076721, 0.12191098183393478, -0.09815174341201782, 0.13404148817062378, -0.15794585645198822, -0.004122382495552301, -0.06153509020805359, -0.055304668843746185, -0.08550607413053513, -0.06752488762140274, 0.0515274778008461, -0.0735885351896286, 0.08486539870500565, 0.0017613547388464212, 0.0828973576426506, -0.014857913367450237, -0.059246327728033066, 0.03452598303556442, -0.0014784174272790551, 0.22219178080558777, 0.0878460481762886, 0.028910035267472267, -0.005893617402762175, 0.022320711985230446, -0.0008495846414007246, 0.10710635036230087, 0.06428193300962448, 0.1860152930021286, 0.05106981471180916, 0.0932079628109932, 0.07134118676185608, -0.05799340456724167, -0.12176050990819931, -0.08332730829715729, -0.08616463094949722, 0.037245508283376694, -0.037264320999383926, 0.14818482100963593, 0.15225772559642792, -0.09530136734247208, 0.10320839285850525, 0.04206019639968872, -0.11114733666181564, -0.11956427246332169, -0.17298652231693268, -0.01778826303780079, -0.10143376141786575, -0.00012373020581435412, -0.07629506289958954, 0.01669452339410782, 0.07325924932956696, 0.03665400296449661, -0.0646456852555275, 0.2350364327430725, 0.03624293953180313, -0.0847979187965393, 0.06996186077594757, -0.10037446022033691, 0.0013946645194664598, -0.07949290424585342, 0.03606201335787773, 0.12116771191358566, 0.022063078358769417, 0.08295724540948868, -0.004132907837629318, -0.06868885457515717, 0.03699737787246704, -0.08207959681749344, -0.08259610086679459, -0.011195803061127663, -0.01600528508424759, 0.08393123745918274, 0.11491447687149048, 0.10310246050357819, -0.05259554460644722, 0.027390753850340843, 0.16475896537303925, 0.0011725175427272916, -0.1333761215209961, -0.14928795397281647, 0.16310827434062958, 0.03203169256448746, -0.05133051052689552, -0.023074839264154434, -0.011811134405434132, -0.03122875653207302, 0.30354946851730347, 0.18933886289596558, 0.04097405821084976, 0.021421127021312714, -0.011929145082831383, -0.005303304176777601, -0.04359593987464905, 0.0950281098484993, 0.13514846563339233, 0.1683986783027649, -0.02206169068813324, 0.0360746905207634, -0.06721741706132889, -0.10755032300949097, 0.005573525093495846, 0.03344692662358284, -0.043050069361925125, -0.06942319124937057, -0.01585962250828743, 0.11443926393985748, -0.11664339900016785, -0.09027845412492752, -0.10256200283765793, -0.05602821707725525, -0.11432462930679321, -0.024616261944174767, -0.016549067571759224, 0.13333198428153992, -0.004715852905064821, -0.02985764481127262, 0.04380086436867714, 0.13099421560764313, 0.02208946831524372, -0.03635876625776291, -0.10271760076284409, 0.046792514622211456, -0.07922608405351639, 0.04933613911271095, -0.02360019087791443, 0.1368200033903122, 0.0015141315525397658, 0.11858978122472763, -0.01770314760506153, 0.1763908863067627, 0.014670897275209427, 0.01875567063689232, 0.028262343257665634, 0.15130335092544556, -0.05072365328669548, 0.06665150076150894, 0.007443961221724749, -0.14012552797794342, 0.044101838022470474, -0.1409316509962082, -0.0222523994743824, -0.09343159198760986, 0.024833491072058678, -0.02900821529328823, 0.10430502146482468, 0.11420025676488876, -0.08838843554258347, -0.060673292726278305, -0.05347639322280884, 0.06855086982250214, 0.011937110684812069, -0.019657842814922333, -0.08305586129426956, -0.21752475202083588, -0.03567112237215042, -0.0979255884885788, -0.010359220206737518, -0.18371184170246124, -0.004995960276573896, 0.03174607455730438, -0.11559764295816422, 0.03572690486907959, 0.03642675280570984, 0.06473565101623535, 0.07359249889850616, -0.014943603426218033, -0.04982598125934601, 0.05281854793429375, 0.12572048604488373, -0.2083892673254013, -0.11937228590250015 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice) and synthetic voices generated using [Artificial Common Voicer](https://github.com/cahya-wirawan/artificial-commonvoice), which again based on Google Text To Speech. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian-mix") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian-mix") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian-mix") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian-mix") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.36 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "id", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Indonesian Mix by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice id", "type": "common_voice", "args": "id"}, "metrics": [{"type": "wer", "value": 19.36, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-indonesian-mix
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "id", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Indonesian Common Voice dataset and synthetic voices generated using Artificial Common Voicer, which again based on Google Text To Speech. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. Test Result: 19.36 % ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset and synthetic voices\ngenerated using Artificial Common Voicer, which\nagain based on Google Text To Speech.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 19.36 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset and synthetic voices\ngenerated using Artificial Common Voicer, which\nagain based on Google Text To Speech.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 19.36 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ 80, 84, 20, 28, 43 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset and synthetic voices\ngenerated using Artificial Common Voicer, which\nagain based on Google Text To Speech.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 19.36 %## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ -0.08740026503801346, 0.008339566178619862, -0.0022189365699887276, -0.04948040097951889, 0.06600543856620789, -0.059605423361063004, 0.1360204666852951, 0.09644455462694168, -0.062001679092645645, 0.00465216301381588, -0.0020307847298681736, -0.05025273934006691, 0.08311282843351364, 0.08846329897642136, -0.006697223521769047, -0.25436264276504517, 0.030034678056836128, -0.031953971832990646, 0.16240058839321136, 0.13721340894699097, 0.11602137237787247, -0.03851829841732979, -0.009950816631317139, 0.08229082077741623, -0.09841673076152802, 0.0032564883586019278, 0.0068216160871088505, -0.1449516862630844, 0.12974393367767334, 0.03406503424048424, 0.0927453488111496, 0.030534980818629265, 0.05697124823927879, -0.20467090606689453, 0.02597375214099884, 0.01545793004333973, 0.04672684893012047, 0.008618347346782684, 0.060605552047491074, 0.008973789401352406, 0.09132567048072815, 0.10747285932302475, -0.017602970823645592, 0.04451076313853264, -0.08606744557619095, -0.18206244707107544, -0.044151671230793, 0.00806197989732027, 0.13702426850795746, 0.11047358810901642, -0.08376435190439224, 0.10400106012821198, -0.13085809350013733, 0.06733712553977966, 0.04271251708269119, -0.143678680062294, -0.018481213599443436, 0.0575423538684845, 0.05166571959853172, 0.06443328410387039, -0.06642352044582367, 0.012781362049281597, 0.04607032984495163, 0.02718941494822502, -0.029150523245334625, -0.07598336040973663, -0.19310052692890167, -0.07006871700286865, -0.07523699104785919, -0.025768762454390526, 0.25551077723503113, 0.021262211725115776, -0.08719518780708313, -0.14716476202011108, 0.02383425459265709, 0.00696344580501318, -0.000032089479645946994, -0.07816196978092194, -0.015688031911849976, 0.05833122134208679, 0.04379124194383621, -0.008615528233349323, -0.12125445157289505, -0.10366066545248032, 0.040524087846279144, -0.0016950806602835655, 0.016435589641332626, -0.017984913662075996, -0.11450169235467911, 0.0749586746096611, -0.09282279014587402, -0.12782762944698334, 0.0030088042840361595, 0.04648391529917717, -0.042140569537878036, 0.012844959273934364, -0.055202510207891464, -0.1518741399049759, 0.08243563771247864, -0.03176368027925491, 0.07669835537672043, 0.03170527517795563, -0.0707276239991188, 0.06259893625974655, 0.035973820835351944, 0.11537281423807144, -0.07384230941534042, 0.0028164302930235863, 0.05130492523312569, 0.022980622947216034, -0.019027339294552803, -0.01703956164419651, -0.05469266325235367, 0.0050831139087677, 0.10653318464756012, 0.09350483119487762, -0.05979830026626587, -0.002709798514842987, -0.04565076529979706, -0.03670826926827431, 0.042710889130830765, -0.14338423311710358, -0.058087632060050964, 0.0247080959379673, 0.0015788867603987455, 0.050306472927331924, 0.07454394549131393, 0.0703364908695221, -0.06745532900094986, 0.02884528413414955, 0.05094614624977112, 0.04245038330554962, -0.0295514315366745, -0.02270263247191906, -0.0011279528262093663, -0.04747502878308296, -0.004208236932754517, -0.0830584168434143, -0.08967852592468262, -0.10144919157028198, -0.03454306349158287, -0.013169814832508564, -0.02077976055443287, -0.09760698676109314, -0.03550603985786438, -0.016508596017956734, -0.08316105604171753, 0.09766572713851929, -0.034779470413923264, 0.08115130662918091, 0.06970307230949402, 0.04177621006965637, 0.10106779634952545, 0.07891372591257095, -0.100577212870121, -0.001815423951484263, -0.03309042751789093, 0.15104082226753235, -0.01790221594274044, -0.05765032023191452, -0.11756526678800583, -0.0581381618976593, -0.04990554228425026, 0.03610611706972122, 0.055861037224531174, 0.1124582439661026, -0.2651914954185486, -0.05112668126821518, 0.17108698189258575, -0.12085697799921036, -0.039266277104616165, 0.23295709490776062, -0.001142260036431253, 0.17004384100437164, 0.06996319442987442, 0.24255433678627014, 0.030669594183564186, -0.09834199398756027, 0.055857401341199875, -0.022885916754603386, 0.015342697501182556, 0.06813021749258041, 0.05321558937430382, -0.04962228983640671, 0.061512541025877, 0.04067889228463173, -0.008599736727774143, 0.060535840690135956, -0.012878457084298134, -0.06664186716079712, -0.0050477986223995686, -0.04774098843336105, 0.020748725160956383, 0.00760788144543767, 0.022870613262057304, -0.025579987093806267, -0.0737014189362526, 0.00894854310899973, 0.114366315305233, -0.09342185407876968, 0.03501579910516739, -0.11581068485975266, 0.10812626034021378, -0.1256057173013687, -0.0038561811670660973, -0.12161288410425186, 0.15748946368694305, 0.012847373262047768, 0.01847710832953453, 0.10349009186029434, 0.1159970760345459, -0.010930241085588932, 0.007999187335371971, -0.05673254281282425, -0.04148808866739273, 0.00425540329888463, -0.020287958905100822, -0.004731479566544294, -0.08127209544181824, 0.009909369051456451, -0.04567217454314232, 0.12371746450662613, -0.1406194418668747, -0.023927664384245872, 0.03309926018118858, 0.05408947914838791, -0.03555906191468239, 0.000008836502274789382, 0.09613177925348282, 0.06276458501815796, 0.017739232629537582, 0.005622498691082001, 0.005625263322144747, 0.024013424292206764, -0.10509055852890015, 0.17120131850242615, -0.15566647052764893, -0.06613115966320038, 0.11222075670957565, -0.07538849115371704, -0.06328386813402176, 0.09618807584047318, -0.02207428775727749, -0.045765362679958344, -0.08489128947257996, 0.05424170568585396, 0.30051282048225403, -0.012720221653580666, 0.12197455018758774, -0.11479148268699646, 0.009554238989949226, 0.018006563186645508, -0.10680525004863739, 0.02448156103491783, 0.026319827884435654, -0.046119555830955505, -0.004621169529855251, 0.0367412231862545, -0.0784260705113411, -0.08319773524999619, 0.18595382571220398, -0.030994655564427376, -0.07634050399065018, -0.020667055621743202, 0.01745157316327095, -0.03287648782134056, 0.005868793930858374, -0.2069922834634781, -0.04113883897662163, 0.047334931790828705, 0.08897428214550018, 0.07353475689888, -0.15231812000274658, 0.0008389383438043296, -0.013376770541071892, -0.09741152077913284, -0.0807720273733139, 0.08678945899009705, -0.04078392684459686, 0.05253700911998749, -0.10702935606241226, -0.022050706669688225, 0.002046391600742936, -0.07555374503135681, -0.1693144291639328, 0.09420770406723022, -0.032525770366191864, -0.28228166699409485, -0.13581007719039917, 0.035628143697977066, -0.00018421791901346296, 0.0025936828460544348, 0.09810714423656464, -0.09325601905584335, -0.0197263453155756, -0.017185285687446594, -0.000049688576837070286, 0.02391221933066845, 0.0010016446467489004, -0.10561320930719376, 0.017672166228294373, 0.06961619853973389, -0.10629415512084961, 0.019486118108034134, -0.008763127960264683, -0.06304667890071869, 0.03046964295208454, 0.019022872671484947, 0.02709295228123665, 0.1380375325679779, 0.03093893826007843, -0.024738894775509834, 0.005623300094157457, 0.15285710990428925, -0.14230656623840332, -0.021668581292033195, 0.18942296504974365, -0.05759408697485924, -0.0427824929356575, 0.09496475756168365, 0.008391291834414005, -0.08678586781024933, 0.024928724393248558, -0.010287370532751083, -0.03488696366548538, -0.24527886509895325, -0.0812939777970314, -0.06261129677295685, -0.09463881701231003, -0.08812377601861954, 0.02263009548187256, 0.12181636691093445, 0.007196096703410149, -0.03595568239688873, -0.051984500139951706, 0.042076222598552704, 0.003022751770913601, 0.09760849177837372, -0.0033117986749857664, 0.060485802590847015, -0.04532269760966301, -0.03977419063448906, 0.006930321920663118, 0.04232707619667053, 0.12911950051784515, 0.0795736238360405, 0.05540461838245392, 0.10594917088747025, 0.14909271895885468, 0.1261235475540161, 0.010659846477210522, -0.09602797031402588, 0.0013486287789419293, -0.017375774681568146, -0.06362584233283997, -0.045762382447719574, 0.03455738350749016, 0.11115583032369614, -0.029760632663965225, 0.0027313006576150656, -0.02542460896074772, 0.048730626702308655, 0.20294418931007385, 0.07053495198488235, -0.1351461410522461, -0.06488288193941116, -0.007741075474768877, -0.10276921838521957, 0.015428277663886547, 0.02744380384683609, 0.16731834411621094, -0.1637374609708786, 0.02973238006234169, 0.025400672107934952, 0.07401354610919952, -0.05585312470793724, 0.015796033665537834, -0.08937405794858932, 0.015292747877538204, 0.009040743112564087, 0.13063988089561462, -0.3003707528114319, 0.25080952048301697, -0.0012439755955711007, 0.1149270161986351, -0.062225401401519775, 0.009185443632304668, 0.00366625445894897, -0.017254265025258064, 0.1470087766647339, -0.017305878922343254, -0.008933656848967075, -0.0882413238286972, -0.10407489538192749, 0.04913196340203285, 0.027473563328385353, 0.07627063244581223, 0.03238493576645851, 0.010526085272431374, -0.0028220454696565866, 0.00927604828029871, -0.056183088570833206, -0.12461408972740173, -0.046640630811452866, 0.02755041792988777, 0.13689588010311127, 0.14287859201431274, -0.02313721738755703, -0.05039885640144348, -0.07224603742361069, 0.08433491736650467, -0.0720602497458458, -0.03502887487411499, -0.04475243017077446, -0.07223997265100479, 0.13715019822120667, -0.05068425461649895, -0.06611279398202896, 0.0727786049246788, 0.09021784365177155, -0.007933726534247398, 0.056827645748853683, 0.0790332704782486, -0.078959621489048, -0.14100463688373566, -0.027285175397992134, 0.21638000011444092, 0.0811716839671135, 0.08945958316326141, 0.02605474554002285, 0.007062302436679602, 0.021821338683366776, -0.08769074082374573, -0.013279430568218231, 0.07261455804109573, -0.11673803627490997, 0.04316631332039833, -0.019847456365823746, -0.11088364571332932, -0.163819819688797, -0.11681251972913742, 0.1316264420747757, 0.07705036550760269, -0.019853856414556503, 0.1605672836303711, 0.19505129754543304, -0.08796617388725281, -0.15261290967464447, -0.08327130973339081, 0.09261135756969452, 0.06687314063310623, -0.07196235656738281, -0.1277589201927185, 0.04432250186800957, 0.049372557550668716, -0.019406557083129883, -0.11360099166631699, -0.2431178241968155, -0.17202231287956238, 0.10418910533189774, -0.053331006318330765, 0.029222892597317696, -0.06137912720441818, -0.06588125973939896, -0.022751709446310997, 0.04737609997391701, -0.04163230583071709, -0.07853621244430542, 0.09771694242954254, 0.03452252969145775, 0.08956385403871536, 0.018304379656910896, -0.009392177686095238, 0.1343970000743866, 0.07890361547470093, 0.02029772661626339, -0.020469075068831444, 0.046079620718955994, -0.014112173579633236, 0.06204377859830856, 0.17301231622695923, -0.04857836663722992, 0.002911885268986225, -0.07693124562501907, -0.09111238270998001, -0.08829370886087418, 0.06686172634363174, 0.028510214760899544, -0.0341963991522789, 0.054287467151880264, 0.006423188839107752, 0.005437348037958145, 0.0030546674970537424, -0.031115954741835594, -0.13797807693481445, 0.035454001277685165, 0.11488130688667297, 0.1976316273212433, -0.023790061473846436, -0.004302849993109703, -0.036162953823804855, -0.00023191916989162564, 0.07818127423524857, -0.04391619563102722, 0.009037750773131847, 0.03421605005860329, 0.01963699795305729, 0.1951330602169037, -0.019063739106059074, -0.12369668483734131, 0.1147271990776062, 0.0344361886382103, -0.04817803576588631, -0.18530721962451935, -0.03242262080311775, -0.005396811757236719, -0.023349303752183914, -0.04972751811146736, 0.05980457365512848, -0.1187174916267395, -0.030760185793042183, -0.03443760797381401, 0.06184755638241768, -0.1418953388929367, 0.21544863283634186, -0.012144649401307106, 0.06805264949798584, -0.10581053793430328, 0.09884599596261978, 0.06202637404203415, -0.06804247945547104, 0.046764858067035675, 0.034294191747903824, -0.06238739937543869, -0.03187670558691025, -0.02054244838654995, 0.110085628926754, 0.08950355648994446, -0.16105258464813232, -0.06362468004226685, -0.06308650970458984, -0.03684055805206299, 0.02347736433148384, 0.04467695578932762, 0.018574772402644157, -0.07974530011415482, -0.05246517434716225, -0.12577062845230103, 0.05444313585758209, 0.110433429479599, -0.007374337408691645, -0.06980859488248825, 0.13679592311382294, 0.13939888775348663, 0.035252392292022705, -0.03611455485224724, -0.10444501042366028, 0.021030224859714508, 0.08165363222360611, -0.044294364750385284, 0.05783620849251747, -0.08037851005792618, 0.00407067034393549, -0.004642642103135586, -0.09438806772232056, -0.0158920306712389, 0.04702944681048393, -0.06253747642040253, 0.040578942745923996, -0.03135928511619568, 0.0819956585764885, -0.07644269615411758, 0.014493238180875778, 0.04047122225165367, -0.0663372054696083, 0.07967325299978256, 0.11101735383272171, -0.10404390841722488, 0.12413360923528671, -0.1916099339723587, -0.05201755091547966, 0.07760125398635864, 0.0681658685207367, -0.021398689597845078, -0.1794043481349945, 0.02383190579712391, 0.10542983561754227, 0.03888395056128502, -0.024078741669654846, 0.0625881627202034, -0.09706312417984009, -0.05397365614771843, -0.05276898294687271, -0.017561936751008034, -0.048671308904886246, 0.015443115495145321, 0.07902935892343521, 0.07551364600658417, 0.15768055617809296, -0.12354771792888641, 0.11377400904893875, -0.1384209543466568, 0.008299272507429123, -0.07554152607917786, -0.02959938906133175, -0.14071010053157806, -0.06561078131198883, 0.06830946356058121, -0.08796653896570206, 0.09459638595581055, 0.008525121957063675, 0.07515853643417358, -0.0016916417516767979, -0.08412002772092819, -0.01576453074812889, 0.01876770704984665, 0.16481071710586548, 0.08816119283437729, 0.023101724684238434, -0.01350268442183733, -0.016851108521223068, -0.016922956332564354, 0.08250000327825546, -0.011423369869589806, 0.14204339683055878, 0.09107529371976852, 0.08139142394065857, 0.1261056810617447, -0.08142496645450592, -0.0442093089222908, 0.029914116486907005, -0.1280374526977539, 0.01491427980363369, -0.03147703409194946, 0.11897970736026764, 0.14357250928878784, -0.13592201471328735, 0.10437797009944916, 0.014162898063659668, -0.09690576791763306, -0.11610861122608185, -0.15794089436531067, -0.07300566881895065, -0.09410108625888824, 0.027474384754896164, -0.08503437042236328, 0.030873076990246773, 0.028124283999204636, 0.045686833560466766, -0.0772729367017746, 0.1813853532075882, -0.028135403990745544, -0.07061450928449631, 0.07769946753978729, -0.09065509587526321, 0.040905650705099106, -0.06136868894100189, 0.02329075336456299, 0.11226477473974228, 0.03510908782482147, 0.059575505554676056, 0.011633693240582943, -0.016342703253030777, 0.013244117610156536, -0.09615625441074371, -0.06328035145998001, 0.03219560906291008, -0.04267605021595955, 0.08158461004495621, 0.10400941222906113, 0.11994310468435287, -0.06657181680202484, 0.024837888777256012, 0.14637106657028198, -0.024026967585086823, -0.14678914844989777, -0.17691625654697418, 0.15271338820457458, 0.006021186243742704, -0.016440240666270256, -0.012732640840113163, -0.05798729136586189, 0.0016086670802906156, 0.2309628576040268, 0.16461403667926788, 0.038264382630586624, 0.03248543664813042, -0.012104084715247154, -0.0021082311868667603, -0.04052957892417908, 0.02892240323126316, 0.14087185263633728, 0.1366993635892868, -0.01814301311969757, 0.07066445797681808, -0.0725322887301445, -0.09052003175020218, 0.016987154260277748, 0.06750380247831345, -0.06985361129045486, -0.09298426657915115, 0.0043983859941363335, 0.1462375968694687, -0.10071129351854324, -0.15370027720928192, -0.11663543432950974, -0.05948320031166077, -0.1295509934425354, 0.0016492141876369715, -0.023223472759127617, 0.13519923388957977, -0.025206804275512695, -0.020483380183577538, 0.024028021842241287, 0.12884950637817383, 0.024513084441423416, -0.0030121970921754837, -0.046501122415065765, 0.054344695061445236, -0.09263348579406738, 0.041755229234695435, 0.017057890072464943, 0.13155023753643036, 0.02211989089846611, 0.11599211394786835, 0.004543574992567301, 0.20728710293769836, 0.03412901610136032, -0.0449470654129982, 0.055653300136327744, 0.18950052559375763, -0.0075415512546896935, 0.08999872952699661, 0.02535492181777954, -0.10281118750572205, 0.03797374293208122, -0.17222626507282257, -0.00013038596080150455, -0.10712318867444992, 0.060965828597545624, -0.04991224780678749, 0.10524832457304001, 0.1210731491446495, -0.08450671285390854, -0.024915875867009163, -0.048307571560144424, 0.05686132609844208, -0.007803306449204683, 0.002507348544895649, -0.07100367546081543, -0.23486995697021484, 0.004500269889831543, -0.050137512385845184, 0.0060704052448272705, -0.1761486679315567, -0.013559223152697086, 0.04789193719625473, -0.0967981368303299, -0.006654096767306328, 0.0479615181684494, 0.07225066423416138, 0.06555773317813873, -0.021679503843188286, -0.07957049459218979, 0.048296090215444565, 0.1179179772734642, -0.1710388958454132, -0.08846112340688705 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.86 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) (will be available soon)
{"language": "id", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Indonesian by cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice id", "type": "common_voice", "args": "id"}, "metrics": [{"type": "wer", "value": 25.86, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-indonesian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "id", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Indonesian Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. Test Result: 25.86 % ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found here (will be available soon)
[ "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 25.86 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 25.86 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ 80, 62, 20, 28, 49 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #id #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Indonesian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Indonesian Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nTest Result: 25.86 %## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here \n(will be available soon)" ]
[ -0.0990125983953476, 0.0008987038163468242, -0.0010851762490347028, -0.03846610710024834, 0.09493611007928848, -0.03363873437047005, 0.14211630821228027, 0.11445121467113495, -0.028994722291827202, -0.0237391646951437, 0.0077681452967226505, -0.040362581610679626, 0.0802711546421051, 0.12568679451942444, 0.016849162057042122, -0.3012596070766449, 0.0025893624406307936, -0.027698611840605736, 0.07945090532302856, 0.14349783957004547, 0.10094477236270905, -0.026710154488682747, -0.002119307406246662, 0.08661513775587082, -0.09528154879808426, 0.00019860891916323453, -0.03237876296043396, -0.15476562082767487, 0.1169654056429863, 0.019834190607070923, 0.1311662495136261, 0.03829216584563255, 0.07640331983566284, -0.1948128044605255, 0.029544679448008537, 0.019780198112130165, 0.03393757715821266, 0.014924583025276661, 0.03363548964262009, -0.0065134684555232525, 0.11447785794734955, 0.09956284612417221, -0.008057820610702038, -0.000718377239536494, -0.06930243968963623, -0.17053303122520447, 0.006094789132475853, -0.004581419751048088, 0.10226333141326904, 0.12301324307918549, -0.041095029562711716, 0.10877644270658493, -0.13040034472942352, 0.04855860024690628, 0.08280070126056671, -0.08424295485019684, -0.022937078028917313, 0.06658031791448593, 0.08689381927251816, 0.09826868772506714, -0.08046632260084152, -0.029687324538826942, 0.025434453040361404, 0.033768460154533386, 0.008774517104029655, -0.09984444081783295, -0.1689620167016983, -0.04850827157497406, -0.07574101537466049, -0.035153891891241074, 0.2453491985797882, -0.003590635024011135, -0.08104563504457474, -0.11542919278144836, 0.020644763484597206, 0.01716913841664791, -0.03202064707875252, -0.08765359222888947, -0.009939244017004967, 0.06986364722251892, 0.0317775122821331, -0.02257530391216278, -0.12267131358385086, -0.13820327818393707, 0.0649830773472786, 0.03273332491517067, 0.008691180497407913, 0.0025777986738830805, -0.18084020912647247, 0.07893422991037369, -0.026981402188539505, -0.14164364337921143, -0.035700906068086624, 0.018380530178546906, -0.007789663039147854, 0.032643284648656845, -0.03358129411935806, -0.11786798387765884, 0.07054774463176727, -0.07716424763202667, 0.10035350918769836, 0.032788053154945374, -0.05516752973198891, 0.07457562536001205, 0.024676527827978134, 0.06895556300878525, -0.06305159628391266, -0.018984686583280563, 0.050650909543037415, 0.036645665764808655, -0.050727806985378265, -0.02235439047217369, -0.06992635130882263, 0.011094699613749981, 0.08500039577484131, 0.08064894378185272, -0.04611936956644058, 0.023700052872300148, -0.02156941406428814, -0.08055589348077774, 0.09790681302547455, -0.14327630400657654, -0.08221886307001114, 0.014964740723371506, -0.000882535707205534, 0.049778930842876434, 0.10944899171590805, 0.047832656651735306, -0.04973357915878296, 0.03529573976993561, 0.03917882964015007, 0.036882434040308, -0.05432950332760811, -0.018058616667985916, -0.013158181682229042, 0.027039937674999237, -0.007008632179349661, -0.10379236936569214, -0.11831876635551453, -0.06348756700754166, -0.013060878030955791, 0.022984236478805542, 0.03512389957904816, -0.08393765985965729, -0.022166164591908455, -0.02084306627511978, -0.0856146290898323, 0.09380069375038147, -0.0434211902320385, 0.08762975037097931, 0.0605936199426651, 0.06593140214681625, 0.11386028677225113, 0.06714510172605515, -0.1312626153230667, -0.01316883135586977, -0.020094214007258415, 0.09871124476194382, -0.008338711224496365, -0.061473190784454346, -0.10547377169132233, -0.08247701078653336, -0.11258438229560852, 0.04698575288057327, 0.050521109253168106, 0.14037680625915527, -0.21491418778896332, -0.06334943324327469, 0.25382646918296814, -0.13276496529579163, -0.07397949695587158, 0.18420469760894775, 0.010397317819297314, 0.21939091384410858, 0.048700567334890366, 0.20665842294692993, 0.08607423305511475, -0.14744430780410767, 0.10983933508396149, 0.003408377757295966, 0.017189394682645798, 0.019019221886992455, 0.08517887443304062, -0.022095896303653717, 0.07536747306585312, 0.05130854994058609, -0.05975719541311264, 0.08632905781269073, -0.014493400231003761, -0.062295690178871155, -0.01236057560890913, -0.032335568219423294, 0.006345009431242943, 0.025927046313881874, 0.04972776025533676, 0.015673914924263954, -0.05967990309000015, 0.05071612447500229, 0.12832047045230865, -0.10077939182519913, 0.04486168175935745, -0.10934832692146301, 0.05132593587040901, -0.11692896485328674, 0.002275075763463974, -0.14079652726650238, 0.18051199615001678, -0.008342459797859192, 0.023204682394862175, 0.07832079380750656, 0.1663089543581009, -0.0010460939956828952, 0.027789179235696793, -0.0360623262822628, -0.02452821470797062, -0.027360204607248306, -0.01755555160343647, 0.008241276256740093, -0.05309101194143295, -0.011875733733177185, -0.0598188154399395, 0.04201710596680641, -0.12955759465694427, -0.012802168726921082, -0.002672163536772132, 0.006067149806767702, -0.020139306783676147, 0.00808415375649929, 0.08555164933204651, 0.0704270452260971, 0.011863762512803078, -0.009388767182826996, 0.030858753249049187, 0.03617382049560547, -0.07285522669553757, 0.14653438329696655, -0.1370854526758194, 0.000798126682639122, 0.12148547172546387, -0.09018503129482269, -0.042811229825019836, 0.07164249569177628, -0.03711777552962303, -0.035959187895059586, -0.08041399717330933, 0.0597001314163208, 0.2518521249294281, 0.0024205585941672325, 0.14111220836639404, -0.11076726019382477, 0.06473936885595322, 0.03774596005678177, -0.10220276564359665, 0.04880230501294136, -0.01869736984372139, 0.006612135097384453, -0.008367007598280907, 0.039614032953977585, -0.04405077174305916, -0.06320933252573013, 0.22115303575992584, -0.005582516547292471, -0.09576895087957382, -0.027919171378016472, 0.009504864923655987, -0.0329684317111969, 0.0033194231800734997, -0.2308393120765686, -0.04368524253368378, 0.04302935302257538, 0.11422386020421982, 0.06853200495243073, -0.15712477266788483, -0.036918867379426956, 0.004330531693994999, -0.0925818607211113, -0.10823935270309448, 0.10952415317296982, -0.0608440525829792, 0.037764232605695724, -0.09581685811281204, -0.016712747514247894, 0.005450161173939705, -0.07604388147592545, -0.1662486046552658, 0.12628959119319916, -0.02657981961965561, -0.29348379373550415, -0.1012967973947525, 0.05193306505680084, 0.051855266094207764, -0.0005208792281337082, 0.10707096755504608, -0.06494547426700592, 0.0017597052501514554, 0.005513970740139484, 0.005523988977074623, 0.022935092449188232, 0.004355590790510178, -0.09275183826684952, 0.0338471382856369, 0.02404581569135189, -0.09942281246185303, 0.017666103318333626, 0.002525107469409704, -0.07501603662967682, 0.001796235330402851, -0.011897429823875427, 0.029701994732022285, 0.09980156272649765, 0.05173768848180771, -0.024106010794639587, 0.018240030854940414, 0.1057121753692627, -0.12555968761444092, -0.027282103896141052, 0.23020783066749573, -0.053902823477983475, -0.028255285695195198, 0.050689101219177246, 0.02066015638411045, -0.07320544123649597, 0.02599441632628441, -0.03967560827732086, -0.07194827497005463, -0.1837812066078186, -0.08377060294151306, -0.09904807806015015, -0.0443948395550251, -0.06629276275634766, 0.013457183726131916, 0.1148550733923912, 0.019925344735383987, -0.025956222787499428, -0.07481762766838074, 0.011926188133656979, 0.024382049217820168, 0.027330944314599037, 0.006118140649050474, 0.05039098858833313, -0.04185851290822029, -0.037484992295503616, -0.0023362268693745136, 0.07006863504648209, 0.18106724321842194, 0.0956641435623169, 0.05736471712589264, 0.12605136632919312, 0.14815427362918854, 0.12548570334911346, 0.02983582392334938, -0.0934825986623764, -0.0020526391454041004, -0.02852582558989525, -0.05342071130871773, -0.04549691081047058, 0.048144590109586716, 0.02793036587536335, -0.05908128619194031, -0.011426789686083794, -0.03190802037715912, 0.011858132667839527, 0.13222725689411163, 0.009689290076494217, -0.13348506391048431, -0.06724782288074493, -0.023756349459290504, -0.08480791747570038, 0.028983207419514656, 0.038278207182884216, 0.17237195372581482, -0.17734023928642273, 0.003017856040969491, -0.0203341506421566, 0.07044849544763565, -0.04073689877986908, 0.005255667958408594, -0.07177145034074783, 0.0004690331988967955, 0.014274707064032555, 0.14068803191184998, -0.2857576310634613, 0.2955012023448944, -0.004996891599148512, 0.11876646429300308, -0.08406751602888107, -0.0014262580079957843, 0.016168013215065002, 0.0027344212867319584, 0.16388919949531555, -0.02885349653661251, -0.026562543585896492, -0.10066485404968262, -0.08157835900783539, 0.06840972602367401, 0.01643456518650055, 0.043928977102041245, 0.017342202365398407, -0.002813182305544615, 0.003614061279222369, 0.02993399277329445, -0.046641986817121506, -0.1068597361445427, -0.03331410884857178, 0.05513663962483406, 0.10746661573648453, 0.11024709045886993, -0.03197890520095825, -0.052811525762081146, 0.01623818650841713, 0.07756886631250381, -0.045763906091451645, -0.040046557784080505, -0.045255184173583984, -0.05693870782852173, 0.1174514964222908, -0.07558488100767136, -0.08041728287935257, 0.08943305164575577, 0.07794756442308426, 0.010945458896458149, 0.0104214521124959, 0.07084435224533081, -0.10017542541027069, -0.10880037397146225, -0.02742631547152996, 0.15871857106685638, 0.11181270331144333, 0.05724366754293442, 0.014600256457924843, -0.02478981390595436, 0.01890629529953003, -0.10707404464483261, -0.0684255063533783, 0.09682706743478775, -0.07335079461336136, -0.013458251953125, -0.025852294638752937, -0.08600415289402008, -0.11592903733253479, -0.10373523831367493, 0.10838554054498672, 0.02812471240758896, -0.008740941993892193, 0.16550739109516144, 0.18206317722797394, -0.07991655170917511, -0.1708284616470337, -0.09149215370416641, 0.1156669557094574, 0.05634608864784241, -0.05253414437174797, -0.15517966449260712, 0.043386153876781464, 0.034636884927749634, -0.005141636822372675, -0.07115960121154785, -0.30056652426719666, -0.15728110074996948, 0.09363305568695068, -0.034001197665929794, 0.07116078585386276, -0.0886102169752121, -0.02360934019088745, -0.002776264911517501, -0.011057631112635136, 0.04064715653657913, -0.11270427703857422, 0.10415687412023544, 0.006745714694261551, 0.0866549089550972, 0.005571412853896618, -0.0259107556194067, 0.09808259457349777, 0.059723928570747375, 0.006900625303387642, -0.02960849367082119, 0.03124871291220188, 0.029862647876143456, 0.0625302642583847, 0.1421908438205719, -0.08018004894256592, 0.0067475405521690845, -0.09357648342847824, -0.09609771519899368, -0.09780555218458176, 0.06540621817111969, 0.039084017276763916, -0.06772848218679428, 0.05128271132707596, 0.02229551039636135, 0.010374696925282478, 0.004422178491950035, -0.014449341222643852, -0.12356262654066086, -0.00423901854082942, 0.10048259794712067, 0.1655176430940628, 0.0038707335479557514, -0.03730743005871773, -0.04666005074977875, 0.021369410678744316, 0.10472284257411957, -0.12444570660591125, 0.0017502648988738656, 0.02332226000726223, 0.042686253786087036, 0.17892950773239136, -0.0050010886043310165, -0.09247685223817825, 0.12278400361537933, 0.053051359951496124, -0.02932504564523697, -0.14176665246486664, -0.03059299662709236, 0.023109272122383118, -0.04774085432291031, -0.05670316889882088, 0.027221085503697395, -0.123793825507164, -0.026414139196276665, -0.03862367197871208, 0.04929785430431366, -0.16685114800930023, 0.20714232325553894, -0.0034881453029811382, 0.0523916520178318, -0.07476118206977844, 0.07417365908622742, 0.0015352516202256083, -0.07187149673700333, 0.01317756436765194, 0.041694797575473785, -0.08551186323165894, -0.03188035637140274, -0.006479683797806501, 0.12797173857688904, 0.05656256154179573, -0.14733603596687317, -0.05883551761507988, 0.013609417714178562, -0.05638701468706131, -0.007141320500522852, 0.04586805775761604, -0.007152227219194174, -0.11120864748954773, -0.0252450592815876, -0.12076608091592789, 0.04256477579474449, 0.09211219847202301, -0.022480018436908722, -0.03939097374677658, 0.138608917593956, 0.15720221400260925, 0.04797967150807381, -0.04204881191253662, -0.11887181550264359, 0.04165126010775566, 0.07861741632223129, -0.016848355531692505, 0.057544250041246414, -0.10428107529878616, -0.013593927025794983, -0.018786653876304626, -0.11925625056028366, -0.009739257395267487, 0.030670396983623505, -0.06368590146303177, 0.0383138582110405, -0.049801766872406006, 0.07184331119060516, -0.06311670690774918, 0.004324147943407297, 0.04102049767971039, -0.06349470466375351, 0.03719101846218109, 0.1319100260734558, -0.09176651388406754, 0.12563996016979218, -0.15785734355449677, -0.014529840089380741, 0.07488883286714554, 0.07625239342451096, -0.02069799229502678, -0.11869341135025024, 0.025110658258199692, 0.09893156588077545, 0.05350831151008606, -0.03308798000216484, 0.0887204259634018, -0.1170920804142952, -0.06347844004631042, -0.05782180279493332, 0.0101938396692276, -0.021810872480273247, 0.02246633730828762, 0.08265937864780426, 0.09020671993494034, 0.12399314343929291, -0.09534652531147003, 0.14541976153850555, -0.16388805210590363, -0.004822377115488052, -0.05371886491775513, -0.02097058854997158, -0.07168964296579361, -0.07012398540973663, 0.05729234963655472, -0.10062064230442047, 0.06890496611595154, 0.0023689542431384325, 0.1136336401104927, -0.009217419661581516, -0.12670548260211945, 0.02554606832563877, -0.000952655915170908, 0.21794207394123077, 0.11425435543060303, 0.04624498263001442, -0.019730739295482635, 0.020271506160497665, -0.010801354423165321, 0.07010059803724289, 0.04545571282505989, 0.18805991113185883, 0.06202777847647667, 0.08217770606279373, 0.09843399375677109, -0.06281989812850952, -0.10687851160764694, -0.04882487654685974, -0.08849082887172699, 0.020656580105423927, -0.026690345257520676, 0.10180813819169998, 0.15242968499660492, -0.12961086630821228, 0.08890920877456665, 0.04636844992637634, -0.08972054719924927, -0.10976965725421906, -0.137827068567276, -0.043406691402196884, -0.13439467549324036, 0.024113062769174576, -0.08768683671951294, 0.051199186593294144, 0.020464438945055008, 0.0382707305252552, -0.07903701812028885, 0.20835357904434204, 0.029540810734033585, -0.09557780623435974, 0.032650385051965714, -0.09204407036304474, 0.034804441034793854, -0.05363919958472252, 0.01155802421271801, 0.078837551176548, 0.03614841029047966, 0.05923064798116684, -0.009972692467272282, -0.028717994689941406, 0.028667505830526352, -0.12185954302549362, -0.05861396715044975, 0.00038904204848222435, -0.007546926848590374, 0.07931710034608841, 0.13663341104984283, 0.1091054230928421, -0.05761156976222992, 0.03476233780384064, 0.16083955764770508, -0.011459339410066605, -0.14747804403305054, -0.17420700192451477, 0.13710345327854156, 0.033063653856515884, -0.039268843829631805, -0.027455003932118416, -0.026778418570756912, -0.03472229093313217, 0.3047270178794861, 0.14716042578220367, 0.04038205370306969, 0.03332154080271721, 0.014454558491706848, -0.002275410108268261, -0.03678188472986221, 0.07321783900260925, 0.1319335252046585, 0.18275544047355652, -0.024896496906876564, 0.0045012119226157665, -0.06301084905862808, -0.08174584060907364, 0.02234024554491043, 0.046016570180654526, -0.0728558823466301, -0.09793885052204132, 0.009090441279113293, 0.12429523468017578, -0.09756647795438766, -0.13519950211048126, -0.07641124725341797, -0.04804019257426262, -0.11240925639867783, -0.008092029951512814, -0.025678208097815514, 0.12395020574331284, -0.01002624724060297, -0.025640089064836502, 0.023024652153253555, 0.13255877792835236, 0.03308038040995598, -0.023399993777275085, -0.08539185672998428, 0.05651603266596794, -0.09413351863622665, 0.02893107756972313, -0.009596575982868671, 0.13126015663146973, -0.0017479342641308904, 0.13718412816524506, 0.006878457497805357, 0.16055478155612946, 0.04093155264854431, -0.018559619784355164, 0.024377113208174706, 0.12792670726776123, -0.056238025426864624, 0.022725669667124748, 0.014524811878800392, -0.14450548589229584, 0.011355231516063213, -0.16114142537117004, -0.0034408054780215025, -0.10924011468887329, 0.04119786620140076, -0.04701836034655571, 0.10930047929286957, 0.10552001744508743, -0.08289243280887604, -0.04738301411271095, -0.04268360510468483, 0.10295224189758301, -0.005210676230490208, -0.022787155583500862, -0.09523405879735947, -0.21773971617221832, -0.05910836532711983, -0.043211858719587326, 0.0010547753190621734, -0.141808420419693, -0.007945585064589977, 0.10517896711826324, -0.10974156856536865, 0.02472560666501522, 0.025498179718852043, 0.03013782761991024, 0.06418025493621826, -0.02054331824183464, -0.0625598281621933, 0.05831998586654663, 0.11505916714668274, -0.21105387806892395, -0.1137452945113182 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Javanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [OpenSLR High quality TTS data for Javanese](https://openslr.org/41/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets.utils.download_manager import DownloadManager from pathlib import Path import pandas as pd def load_dataset_javanese(): urls = [ "https://www.openslr.org/resources/41/jv_id_female.zip", "https://www.openslr.org/resources/41/jv_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"jv_id_female/wavs", Path(download_dirs[1])/"jv_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"jv_id_female/line_index.tsv", Path(download_dirs[1])/"jv_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"])) dfs[1] = dfs[1].drop(["client_id"], axis=1) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_javanese() test_dataset = dataset['test'] processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows or using this [notebook](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb) ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets.utils.download_manager import DownloadManager from pathlib import Path import pandas as pd def load_dataset_javanese(): urls = [ "https://www.openslr.org/resources/41/jv_id_female.zip", "https://www.openslr.org/resources/41/jv_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"jv_id_female/wavs", Path(download_dirs[1])/"jv_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"jv_id_female/line_index.tsv", Path(download_dirs[1])/"jv_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"])) dfs[1] = dfs[1].drop(["client_id"], axis=1) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_javanese() test_dataset = dataset['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.61 % ## Training [OpenSLR High quality TTS data for Javanese](https://openslr.org/41/) was used for training. The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb) and to [evaluate it](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb)
{"language": "jv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Javanese by cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR High quality TTS data for Javanese", "type": "OpenSLR", "args": "jv"}, "metrics": [{"type": "wer", "value": 17.61, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-javanese
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "jv", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "jv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #jv #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-Javanese Fine-tuned facebook/wav2vec2-large-xlsr-53 on the OpenSLR High quality TTS data for Javanese. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows or using this notebook Test Result: 17.61 % ## Training OpenSLR High quality TTS data for Javanese was used for training. The script used for training can be found here and to evaluate it
[ "# Wav2Vec2-Large-XLSR-Javanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Javanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows or using this\nnotebook\n\n\n\nTest Result: 17.61 %", "## Training\n\nOpenSLR High quality TTS data for Javanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #jv #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-Javanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Javanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows or using this\nnotebook\n\n\n\nTest Result: 17.61 %", "## Training\n\nOpenSLR High quality TTS data for Javanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ 83, 67, 20, 22, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #jv #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-Javanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Javanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows or using this\nnotebook\n\n\n\nTest Result: 17.61 %## Training\n\nOpenSLR High quality TTS data for Javanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ -0.1357920616865158, 0.007207988295704126, -0.00041972583858296275, 0.003288193140178919, 0.061410561203956604, -0.08040521293878555, 0.12815237045288086, 0.13009218871593475, 0.031072430312633514, -0.02484140545129776, 0.030962513759732246, 0.030413780361413956, 0.057169828563928604, 0.15057668089866638, 0.011477367952466011, -0.22293145954608917, -0.0005586390034295619, 0.004893616773188114, 0.06510654836893082, 0.1287253201007843, 0.1191508024930954, -0.06007888913154602, 0.007758022751659155, 0.06976838409900665, -0.1413152813911438, 0.04504021257162094, -0.00728576397523284, -0.1447565257549286, 0.11456265300512314, 0.05687979981303215, 0.0485013872385025, 0.06808842718601227, 0.0786866620182991, -0.174666166305542, 0.039769429713487625, 0.03986624628305435, 0.04711046814918518, 0.03476767614483833, 0.09356767684221268, 0.027912158519029617, 0.1492908000946045, 0.06859521567821503, -0.03301197290420532, 0.08893675357103348, -0.058076996356248856, -0.23385393619537354, 0.028315825387835503, -0.033086780458688736, 0.10591995716094971, 0.1244676485657692, -0.05434324964880943, 0.10711558163166046, -0.15161027014255524, 0.10237130522727966, 0.09399726986885071, -0.1310429871082306, -0.003566813888028264, 0.042746081948280334, 0.07888203114271164, 0.06405357271432877, -0.10600804537534714, -0.014125281013548374, 0.0434851348400116, -0.00016621271788608283, 0.08150731027126312, -0.04647939279675484, -0.26223260164260864, -0.011193634010851383, -0.11369945108890533, -0.0005396279157139361, 0.2737821340560913, -0.008400068618357182, -0.0728302001953125, -0.1157209575176239, -0.009980077855288982, 0.07317916303873062, -0.0013777882559224963, -0.041249390691518784, -0.011845444329082966, 0.05470145493745804, 0.021136516705155373, -0.0647093877196312, -0.1352982521057129, -0.13579127192497253, 0.03372985124588013, 0.06358956545591354, 0.011216942220926285, 0.013642358593642712, -0.1739242821931839, 0.08633903414011002, -0.07007002085447311, -0.10391011089086533, -0.039960525929927826, 0.0007263753795996308, -0.05138774961233139, -0.004796336404979229, -0.042810145765542984, -0.16457250714302063, 0.004295972175896168, -0.03510517254471779, 0.07568948715925217, 0.023149363696575165, -0.02301921509206295, 0.07479602098464966, 0.04213273152709007, 0.07319860905408859, -0.026202356442809105, -0.013795951381325722, 0.03771555796265602, 0.05113573744893074, -0.0788736417889595, 0.0022434191778302193, -0.03542652353644371, -0.09094180166721344, -0.006344967521727085, 0.055676646530628204, -0.002805209718644619, 0.02081083506345749, 0.00028571602888405323, -0.018307732418179512, 0.0887833833694458, -0.11250847578048706, -0.021732809022068977, 0.06939707696437836, -0.0719515010714531, 0.11893676966428757, 0.07439006119966507, 0.03145718201994896, -0.09795542806386948, -0.06322024017572403, 0.0006267697899602354, 0.09281579405069351, -0.08016502112150192, -0.08155831694602966, 0.01557623129338026, 0.07903417944908142, -0.02216722071170807, -0.11812329292297363, -0.16801175475120544, -0.07160115987062454, -0.022124480456113815, 0.012940742075443268, 0.05768163129687309, -0.10303029417991638, -0.01799183338880539, -0.020317470654845238, -0.05651373416185379, 0.11084597557783127, -0.04269431531429291, 0.07496655732393265, 0.06897825747728348, 0.08730016648769379, 0.04363919422030449, 0.06485117971897125, -0.11091084033250809, -0.08490035682916641, 0.03742706775665283, 0.1209174245595932, -0.03775263577699661, -0.006859415210783482, -0.12451005727052689, -0.07262308895587921, -0.13245496153831482, 0.06946035474538803, 0.029217639937996864, 0.11934638768434525, -0.3011291027069092, -0.030077310279011726, 0.25460606813430786, -0.11273802071809769, -0.03445881977677345, 0.17341485619544983, -0.00036166782956570387, 0.1632014662027359, 0.09571105986833572, 0.18706479668617249, 0.1311120092868805, -0.18108221888542175, 0.061595890671014786, 0.09796512126922607, -0.014627893455326557, -0.09118808060884476, 0.11275814473628998, -0.0027442786376923323, 0.015864279121160507, 0.04171011969447136, -0.10285965353250504, 0.09300290048122406, -0.005205999594181776, -0.0525665245950222, -0.03624436631798744, -0.04507333040237427, 0.0006517285364679992, 0.020212721079587936, 0.06512391567230225, -0.02823539823293686, -0.07325869798660278, 0.05774390697479248, 0.1538432389497757, -0.10713185369968414, 0.02767644077539444, -0.10775157064199448, 0.008364039473235607, -0.01222190447151661, 0.0162667203694582, -0.13798420131206512, 0.2160751074552536, -0.0016796779818832874, 0.02517435885965824, 0.010159115307033062, 0.18807892501354218, 0.022316187620162964, 0.01699075475335121, 0.00401137163862586, 0.005273046903312206, 0.027782555669546127, -0.0330360047519207, -0.012408732436597347, -0.07179424911737442, -0.014891506172716618, -0.07803376019001007, 0.03494224324822426, -0.21013416349887848, 0.010286984965205193, 0.041264280676841736, -0.02360755391418934, 0.017692163586616516, -0.002885394264012575, 0.10634179413318634, 0.05215783044695854, -0.0063254269771277905, -0.014589524827897549, 0.03069891221821308, 0.03541634976863861, -0.01067302469164133, 0.13906830549240112, -0.13232889771461487, -0.015304747968912125, 0.08965476602315903, -0.07585614174604416, -0.025149233639240265, 0.03477657958865166, -0.019182154908776283, -0.024820666760206223, -0.10340384393930435, -0.012837019748985767, 0.2176039069890976, -0.02628365345299244, 0.12960563600063324, -0.12343084067106247, -0.025594249367713928, -0.01107773371040821, -0.098614402115345, 0.054867617785930634, 0.03837214782834053, 0.019220681861042976, -0.024433674290776253, -0.007386293262243271, -0.007866970263421535, -0.11744295805692673, 0.23590829968452454, -0.0067460425198078156, -0.1016017347574234, 0.022697776556015015, 0.05903681367635727, -0.030219791457057, -0.015396804548799992, -0.17031046748161316, -0.053284965455532074, 0.04113738238811493, 0.03960518538951874, 0.0624937005341053, -0.1527915894985199, 0.01730121485888958, 0.02229309268295765, -0.09607534110546112, -0.1242065578699112, 0.08059246838092804, -0.06275659799575806, 0.04749235510826111, -0.09615615755319595, 0.003246696898713708, -0.0440206304192543, -0.039995770901441574, -0.16057324409484863, 0.15518158674240112, -0.06680283695459366, -0.20231479406356812, -0.13906779885292053, 0.09885289520025253, 0.11319206655025482, 0.012772745452821255, 0.10005617141723633, -0.0997997298836708, -0.01978752762079239, -0.06144430488348007, 0.05071783810853958, 0.019648535177111626, -0.05101204663515091, 0.012172085233032703, 0.06212841719388962, 0.03770320862531662, -0.1408592015504837, 0.014199845492839813, 0.01456989161670208, -0.05542808398604393, 0.016097983345389366, -0.028215860947966576, -0.012716619297862053, 0.13310174643993378, 0.01579313352704048, 0.008638296276330948, -0.02156352810561657, 0.1428045630455017, -0.05980223789811134, 0.01941615343093872, 0.2579493522644043, 0.016547031700611115, -0.027219127863645554, 0.009656072594225407, 0.011695900931954384, -0.06442025303840637, 0.036355357617139816, -0.0541711151599884, -0.08059526979923248, -0.21666061878204346, -0.03891686350107193, -0.08560109883546829, -0.02631949633359909, 0.007339388597756624, 0.001676905550993979, 0.032289452850818634, 0.016749024391174316, -0.002819423098117113, -0.006879269145429134, 0.05545951798558235, 0.021804234012961388, 0.02418454922735691, 0.01042912807315588, 0.08446454256772995, -0.07594412565231323, 0.02527610771358013, 0.038795098662376404, 0.039810359477996826, 0.10976789146661758, -0.007633810397237539, 0.13315992057323456, 0.09626740962266922, 0.0884966030716896, 0.08357354253530502, 0.04679913446307182, -0.06531058251857758, -0.02099294401705265, -0.007174186408519745, -0.0945303812623024, -0.05614728108048439, 0.046039119362831116, 0.035140957683324814, -0.04325177147984505, -0.026549743488430977, 0.010468928143382072, 0.028657952323555946, 0.10438430309295654, 0.03621431812644005, -0.2369260936975479, -0.07131882011890411, -0.003574470989406109, -0.07594602555036545, 0.014285695739090443, 0.05225837975740433, 0.20085084438323975, -0.12943290174007416, -0.02626248076558113, 0.03287990391254425, 0.10202993452548981, -0.016731420531868935, 0.0027714755851775408, -0.0721907913684845, 0.04135825112462044, 0.0031919132452458143, 0.10869087278842926, -0.25831592082977295, 0.17014707624912262, -0.0015271350275725126, 0.14932306110858917, -0.0531524233520031, -0.0012842119904235005, 0.0340949147939682, 0.029713960364460945, 0.1170177161693573, -0.004792288411408663, -0.03646199405193329, -0.05410020053386688, -0.049815088510513306, 0.03239060938358307, -0.018489625304937363, 0.07137008756399155, 0.020205020904541016, -0.02158147096633911, 0.00003068503792746924, 0.001926792087033391, -0.04316047206521034, -0.16229282319545746, -0.023341141641139984, 0.011525352485477924, 0.15977130830287933, 0.05053706094622612, -0.03925751894712448, -0.058386269956827164, -0.0037488313391804695, 0.06136811152100563, -0.12149820476770401, -0.029193604364991188, -0.07507593929767609, 0.013144271448254585, 0.07042902708053589, -0.07718949764966965, -0.04005229473114014, 0.0642172321677208, 0.11272382736206055, 0.0018550078384578228, -0.044452693313360214, 0.042268089950084686, -0.13960278034210205, -0.05283820256590843, -0.016616998240351677, 0.12694807350635529, 0.049490734934806824, 0.040196701884269714, 0.06115211546421051, -0.03393326699733734, -0.03353971242904663, -0.06663893163204193, -0.03661124035716057, 0.11544181406497955, -0.06855285167694092, -0.06663347780704498, -0.015001924708485603, -0.17137691378593445, -0.06984194368124008, -0.07043920457363129, 0.1397963911294937, 0.05358777195215225, -0.043052446097135544, 0.11051008105278015, 0.22014561295509338, -0.09068158268928528, -0.1897800713777542, 0.015448207966983318, 0.09877141565084457, 0.09531073272228241, -0.008083505555987358, -0.19068658351898193, 0.07451029121875763, 0.014901331625878811, -0.02992001175880432, -0.034340716898441315, -0.30223166942596436, -0.13491520285606384, 0.10737094283103943, -0.0005450581666082144, 0.10577573627233505, -0.036598701030015945, -0.03433329612016678, -0.0016602521063759923, -0.08917853981256485, 0.012231246568262577, -0.14300474524497986, 0.10195822268724442, 0.006639527156949043, 0.040319159626960754, 0.035010114312171936, -0.05105070397257805, 0.07361932098865509, 0.060393646359443665, -0.00143178622238338, -0.035266801714897156, 0.06819668412208557, -0.012462901882827282, -0.010750481858849525, 0.1887916922569275, -0.10975693166255951, 0.04375297576189041, -0.12891992926597595, -0.09410257637500763, -0.08794868737459183, 0.052793651819229126, 0.03211236000061035, -0.039262156933546066, 0.03870419040322304, -0.016302278265357018, 0.004196434747427702, 0.004194986540824175, -0.05447664484381676, -0.11926289647817612, 0.020977016538381577, 0.17992179095745087, 0.18502920866012573, 0.023284338414669037, -0.024256587028503418, -0.013937617652118206, 0.012368266470730305, 0.1273910403251648, -0.1861938238143921, 0.012593092396855354, 0.019763099029660225, 0.04740722477436066, 0.12659117579460144, 0.004628879018127918, -0.08326894789934158, 0.07751763612031937, 0.06802508234977722, -0.03442135825753212, -0.06034286320209503, -0.04392893239855766, 0.07382799685001373, -0.021769315004348755, -0.024246107786893845, 0.08096243441104889, -0.1091955304145813, -0.00930508691817522, -0.016174960881471634, 0.02454398013651371, -0.11109903454780579, 0.1798400729894638, 0.03296107426285744, 0.07210520654916763, -0.06138523668050766, 0.03784650191664696, 0.012315645813941956, -0.011249191127717495, 0.026670215651392937, 0.07367013394832611, -0.1050456091761589, -0.0894492045044899, 0.014217841438949108, 0.039618685841560364, 0.07457926869392395, -0.11894041299819946, -0.04417243227362633, -0.023695163428783417, -0.0018439710838720202, 0.05434257909655571, 0.045764725655317307, 0.0007550278678536415, -0.0882238820195198, -0.02173539064824581, -0.08896508812904358, 0.04188930243253708, 0.051941290497779846, -0.03204403817653656, -0.05157628655433655, 0.21447376906871796, 0.06152225285768509, 0.024182068184018135, -0.032250095158815384, -0.08254440873861313, -0.029469452798366547, 0.07501842081546783, -0.0260691586881876, 0.028383104130625725, -0.08698595315217972, -0.012452985160052776, -0.002369960304349661, -0.07468908280134201, 0.001443097135052085, 0.09653732925653458, -0.08044707030057907, 0.045624375343322754, -0.022849973291158676, 0.10707207024097443, -0.09383039176464081, 0.0168144591152668, 0.033370491117239, -0.04286959022283554, 0.03582300990819931, 0.1027979925274849, -0.11781935393810272, 0.12104302644729614, -0.21512220799922943, -0.02319694496691227, 0.07246550917625427, 0.05230472981929779, -0.01570163480937481, -0.04246218502521515, 0.055666208267211914, 0.06677652895450592, 0.10500048846006393, -0.0505712516605854, 0.07820305228233337, -0.07158775627613068, 0.011862714774906635, -0.0483667254447937, -0.009534095413982868, -0.06013491377234459, 0.08524772524833679, 0.055600885301828384, 0.10397273302078247, 0.11681953817605972, -0.09646521508693695, 0.06309878081083298, -0.1299656480550766, 0.013151228427886963, -0.020845526829361916, -0.031738001853227615, -0.09549662470817566, -0.06865919381380081, 0.0681397020816803, -0.05877081677317619, 0.06592202186584473, 0.035334132611751556, 0.02965547703206539, -0.0074731833301484585, -0.14682787656784058, 0.03356783837080002, -0.016157427802681923, 0.21441712975502014, 0.018410861492156982, 0.025966892018914223, -0.05085166171193123, 0.01615927182137966, 0.026621049270033836, 0.03835383057594299, 0.02809535153210163, 0.19776272773742676, -0.04141005873680115, 0.10021430253982544, 0.030871165916323662, -0.05336644873023033, -0.0967632383108139, -0.05216585472226143, -0.11565903574228287, 0.03910820931196213, -0.10763748735189438, 0.12063629180192947, 0.1986158788204193, -0.07167252898216248, 0.04895978420972824, 0.027040895074605942, -0.08659988641738892, -0.15585795044898987, -0.1759731024503708, -0.045809097588062286, -0.1245596781373024, 0.01871081069111824, -0.07977557182312012, 0.06851546466350555, -0.03644949197769165, 0.06760841608047485, -0.04473872855305672, 0.19523847103118896, 0.0786895677447319, -0.12490613013505936, 0.09264344722032547, -0.09703721106052399, 0.0025402477476745844, -0.10644391924142838, 0.05155559629201889, 0.12575940787792206, -0.005868043750524521, 0.07126341760158539, 0.013563537038862705, -0.08250206708908081, 0.003628278151154518, -0.08847101777791977, -0.04630766436457634, -0.021589890122413635, 0.0012763917911797762, 0.03035895526409149, 0.11000428348779678, 0.13019031286239624, -0.09531038999557495, 0.03055475279688835, 0.2076936960220337, -0.04366496950387955, -0.14426153898239136, -0.1403779238462448, 0.07656463980674744, 0.07363556325435638, 0.006970321759581566, -0.02488984540104866, -0.0183885395526886, -0.012961875647306442, 0.2189091593027115, 0.14197276532649994, 0.04705876111984253, 0.026300666853785515, -0.027944793924689293, 0.0016467543318867683, -0.039618559181690216, 0.10945693403482437, 0.073960080742836, 0.1914617419242859, -0.005725082475692034, 0.03664965182542801, -0.039326250553131104, -0.0725059062242508, -0.020100941881537437, 0.014322380535304546, -0.08760854601860046, -0.0717606246471405, -0.011784671805799007, 0.11847066879272461, -0.02849053591489792, -0.10492049157619476, -0.1429254710674286, 0.009275197982788086, -0.06015067920088768, -0.006433940026909113, 0.01600237935781479, 0.08979768306016922, 0.008332470431923866, -0.06432873010635376, 0.031431734561920166, 0.10817307233810425, 0.005363134667277336, -0.03299510106444359, -0.05669143423438072, 0.016808029264211655, -0.12642249464988708, 0.011311769485473633, -0.020980851724743843, 0.15507742762565613, 0.009614979848265648, 0.06327816098928452, -0.04689982160925865, 0.167901411652565, -0.02363382652401924, 0.006974727846682072, 0.043023910373449326, 0.1265183389186859, -0.03793331980705261, 0.12353546917438507, 0.020181529223918915, -0.12159629166126251, 0.03212612867355347, -0.0960688516497612, -0.006272755563259125, -0.12842164933681488, 0.05728188529610634, -0.017874648794531822, 0.09338951110839844, 0.10407992452383041, -0.0947718545794487, -0.06241544336080551, -0.04399658367037773, 0.07972922176122665, 0.0025852269027382135, -0.052741166204214096, -0.0752970352768898, -0.17703214287757874, -0.02663310617208481, -0.06761427223682404, 0.05035131052136421, -0.17924010753631592, -0.012326948344707489, -0.037299882620573044, -0.0889386311173439, 0.010829223319888115, 0.04879087954759598, 0.09802158921957016, 0.04201919212937355, 0.010378257371485233, -0.11922239512205124, 0.06561493128538132, 0.11141390353441238, -0.18159697949886322, -0.12036491930484772 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Sundanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from datasets.utils.download_manager import DownloadManager from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from pathlib import Path import pandas as pd def load_dataset_sundanese(): urls = [ "https://www.openslr.org/resources/44/su_id_female.zip", "https://www.openslr.org/resources/44/su_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"su_id_female/wavs", Path(download_dirs[1])/"su_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"su_id_female/line_index.tsv", Path(download_dirs[1])/"su_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_sundanese() test_dataset = dataset['test'] processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows or using the [notebook](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb). ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets.utils.download_manager import DownloadManager import re from pathlib import Path import pandas as pd def load_dataset_sundanese(): urls = [ "https://www.openslr.org/resources/44/su_id_female.zip", "https://www.openslr.org/resources/44/su_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"su_id_female/wavs", Path(download_dirs[1])/"su_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"su_id_female/line_index.tsv", Path(download_dirs[1])/"su_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_sundanese() test_dataset = dataset['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 6.19 % ## Training [OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/) was used for training. The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb) and to [evaluate it](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb)
{"language": "su", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Sundanese by cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR High quality TTS data for Sundanese", "type": "OpenSLR", "args": "su"}, "metrics": [{"type": "wer", "value": 6.19, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-sundanese
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "su", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "su" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #su #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Sundanese Fine-tuned facebook/wav2vec2-large-xlsr-53 on the OpenSLR High quality TTS data for Sundanese. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows or using the notebook. Test Result: 6.19 % ## Training OpenSLR High quality TTS data for Sundanese was used for training. The script used for training can be found here and to evaluate it
[ "# Wav2Vec2-Large-XLSR-Sundanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Sundanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows or using the notebook.\n\n\n\nTest Result: 6.19 %", "## Training\n\nOpenSLR High quality TTS data for Sundanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #su #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Sundanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Sundanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows or using the notebook.\n\n\n\nTest Result: 6.19 %", "## Training\n\nOpenSLR High quality TTS data for Sundanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ 78, 68, 20, 23, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #su #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Sundanese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the OpenSLR High quality TTS data for Sundanese.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows or using the notebook.\n\n\n\nTest Result: 6.19 %## Training\n\nOpenSLR High quality TTS data for Sundanese was used for training.\nThe script used for training can be found here \nand to evaluate it" ]
[ -0.1728910356760025, 0.0038965672720223665, -0.0003709846641868353, 0.013589230366051197, 0.09147901833057404, -0.05727921798825264, 0.15078043937683105, 0.09487151354551315, 0.0422973558306694, -0.025036578997969627, 0.039391472935676575, 0.02547161653637886, 0.0695081576704979, 0.1322796791791916, 0.04033954441547394, -0.22587630152702332, -0.009544306434690952, -0.008499004878103733, 0.03910576552152634, 0.12924352288246155, 0.09913773089647293, -0.053965602070093155, 0.001483165891841054, 0.07264408469200134, -0.11226332187652588, 0.04153803735971451, -0.002254033461213112, -0.1189296618103981, 0.14095431566238403, 0.06726529449224472, 0.03510131314396858, 0.07516862452030182, 0.084716796875, -0.14489911496639252, 0.041927650570869446, 0.03931962698698044, 0.02758127823472023, 0.02175181731581688, 0.08554061502218246, 0.049368660897016525, 0.18458962440490723, 0.08376915752887726, -0.03579316288232803, 0.07972786575555801, -0.042109545320272446, -0.2250015288591385, 0.014827310107648373, -0.03863207995891571, 0.1034880131483078, 0.15179480612277985, -0.06292051821947098, 0.10946166515350342, -0.11815165728330612, 0.10192389041185379, 0.05954917147755623, -0.1474837064743042, -0.007319842930883169, 0.02087949588894844, 0.03933664411306381, 0.1007491797208786, -0.08501908928155899, 0.01062068808823824, 0.03403778374195099, 0.005895223468542099, 0.05225589498877525, -0.03214869648218155, -0.22766149044036865, -0.013479630462825298, -0.1332142949104309, -0.011065301485359669, 0.25474441051483154, -0.015378810465335846, -0.09473550319671631, -0.12068001925945282, -0.020031824707984924, 0.0773131474852562, -0.006006155163049698, -0.03814273700118065, -0.018815670162439346, 0.062580406665802, 0.01369230356067419, -0.07772606611251831, -0.13894283771514893, -0.14721135795116425, 0.027357321232557297, 0.06693162024021149, 0.013592544011771679, 0.03609966114163399, -0.14833560585975647, 0.07976813614368439, -0.011838555335998535, -0.07753827422857285, -0.03663083165884018, -0.005556474439799786, -0.07388648390769958, 0.017673257738351822, -0.049914974719285965, -0.14364156126976013, -0.0014497159281745553, -0.01797877438366413, 0.09717411547899246, 0.031189242377877235, -0.00555072259157896, 0.06143859028816223, 0.029209617525339127, 0.07702434062957764, -0.03361119329929352, -0.004415982868522406, 0.045829836279153824, 0.03179951012134552, -0.038081876933574677, -0.01596764288842678, -0.03911864385008812, -0.08952844887971878, -0.017412729561328888, 0.049489136785268784, 0.000498992158100009, 0.0041571808978915215, -0.007556778844445944, -0.027312416583299637, 0.0930003672838211, -0.09473799169063568, -0.03592897579073906, 0.0754639059305191, -0.03635190427303314, 0.13697288930416107, 0.08634019643068314, 0.025620711967349052, -0.08930855244398117, -0.03997945785522461, 0.006651753094047308, 0.06807450205087662, -0.05143839493393898, -0.06859416514635086, 0.006148527376353741, 0.017981041222810745, -0.019717717543244362, -0.12177164852619171, -0.14518694579601288, -0.06391797214746475, -0.024656521156430244, 0.022691408172249794, 0.01961367018520832, -0.09551309049129486, -0.001310265390202403, -0.01601569727063179, -0.045872487127780914, 0.09105660766363144, -0.043313611298799515, 0.06228791922330856, 0.058103591203689575, 0.07215292751789093, 0.010015378706157207, 0.05745008960366249, -0.09449011087417603, -0.08097561448812485, 0.09882143139839172, 0.11678751558065414, -0.06489607691764832, -0.006391123868525028, -0.11181668192148209, -0.0764048621058464, -0.13656191527843475, 0.06545004993677139, 0.057230256497859955, 0.14824055135250092, -0.28163260221481323, -0.05354355648159981, 0.24630206823349, -0.1378929316997528, -0.06477222591638565, 0.19893397390842438, 0.02340097352862358, 0.11826937645673752, 0.09233245253562927, 0.13734197616577148, 0.11535251885652542, -0.2165852189064026, 0.07123022526502609, 0.11791154742240906, -0.0030633623246103525, -0.10849691927433014, 0.12721867859363556, -0.025468500331044197, -0.03291754424571991, 0.03797492757439613, -0.09430361539125443, 0.09884834289550781, -0.005694767460227013, -0.06498566269874573, -0.03484247624874115, -0.05459330230951309, -0.01364913024008274, 0.04829743504524231, 0.05664721131324768, -0.019203657284379005, -0.0738849863409996, 0.020121581852436066, 0.15313535928726196, -0.10427875816822052, 0.02635086700320244, -0.11067479848861694, 0.038806091994047165, -0.020983660593628883, 0.0066540660336613655, -0.13454505801200867, 0.16887931525707245, -0.00943814031779766, 0.06337670236825943, 0.02461540699005127, 0.1880301833152771, 0.020029081031680107, 0.023393308743834496, 0.0014782847138121724, 0.013440974056720734, 0.028875166550278664, -0.03822354972362518, -0.01346897054463625, -0.08284123986959457, -0.006421015132218599, -0.06650757789611816, 0.10697383433580399, -0.19511491060256958, -0.005935383029282093, 0.04714410379528999, -0.055197883397340775, -0.00450805202126503, -0.018078023567795753, 0.08898851275444031, 0.06199131906032562, 0.008226263336837292, -0.011948205530643463, 0.04984075203537941, 0.0520230270922184, -0.0379541739821434, 0.12559935450553894, -0.11809912323951721, -0.039440229535102844, 0.08765920251607895, -0.06521415710449219, -0.020909495651721954, 0.03691134601831436, -0.021670518442988396, -0.020311720669269562, -0.10003914684057236, -0.003113643964752555, 0.2225312739610672, -0.021884499117732048, 0.11991096287965775, -0.10595835000276566, -0.0028895577415823936, 0.005683694034814835, -0.06996569782495499, 0.05354494974017143, 0.053856655955314636, 0.0542171448469162, -0.007549899630248547, -0.013903549872338772, -0.02798645757138729, -0.11306065320968628, 0.1937178522348404, -0.022047480568289757, -0.11093311756849289, 0.03988790139555931, 0.03180321305990219, -0.013335812836885452, 0.021949592977762222, -0.17568084597587585, -0.040542878210544586, 0.0353999137878418, 0.03282473236322403, 0.06018165871500969, -0.1515202671289444, 0.013639857061207294, 0.03226105496287346, -0.0901501327753067, -0.17053355276584625, 0.10029458999633789, -0.0919400006532669, 0.03976273536682129, -0.10452824831008911, 0.015871062874794006, -0.04020312428474426, -0.04103517159819603, -0.18586169183254242, 0.167737677693367, -0.06936381012201309, -0.183127760887146, -0.14746113121509552, 0.09022486954927444, 0.09386926144361496, 0.016552915796637535, 0.09824158996343613, -0.10500446707010269, -0.015436634421348572, -0.05533139407634735, 0.05234602466225624, -0.0011146346805617213, -0.027909444645047188, 0.012605464085936546, 0.03269089385867119, 0.03503503277897835, -0.12191177159547806, 0.025735920295119286, -0.004641233943402767, -0.05864541977643967, 0.00637047179043293, -0.041300300508737564, -0.00143150775693357, 0.1374887079000473, 0.04787035658955574, 0.00738330464810133, -0.02446940541267395, 0.20104950666427612, -0.05857420340180397, -0.003732074983417988, 0.23836231231689453, 0.002085817977786064, -0.01983802393078804, 0.003975453786551952, 0.015338239260017872, -0.06927540153265, 0.020933011546730995, -0.04533737152814865, -0.09900344908237457, -0.2267768234014511, -0.0599541999399662, -0.09343940019607544, -0.01977807842195034, -0.003982671536505222, 0.010793384164571762, 0.014746527187526226, 0.04539573937654495, 0.0009653697488829494, -0.03493307903409004, 0.037672627717256546, 0.0032890979200601578, 0.05402953922748566, 0.013867917470633984, 0.08787976950407028, -0.09125274419784546, 0.03323274478316307, 0.06117422506213188, 0.01806512661278248, 0.13101664185523987, -0.0048659746535122395, 0.15105582773685455, 0.09619071334600449, 0.09001573920249939, 0.07229938358068466, 0.057314082980155945, -0.05566319823265076, -0.01935037225484848, -0.0025057827588170767, -0.08061132580041885, -0.06764141470193863, 0.040743425488471985, 0.04545130953192711, -0.06108294427394867, -0.038086310029029846, 0.03814947232604027, 0.0033902155701071024, 0.12276948243379593, 0.04045621678233147, -0.21907490491867065, -0.08419498801231384, -0.02029992826282978, -0.045542243868112564, 0.021805165335536003, 0.04732157289981842, 0.1853277087211609, -0.1225619912147522, -0.0020040494855493307, 0.013840381056070328, 0.11063848435878754, -0.0016710036434233189, -0.013398874551057816, -0.0661679059267044, 0.03469238057732582, 0.0009584645158611238, 0.10437826812267303, -0.22722040116786957, 0.19037628173828125, -0.013720765709877014, 0.1420866698026657, -0.05882672592997551, -0.003968166187405586, 0.04417034611105919, 0.07738493382930756, 0.14152933657169342, 0.0075302403420209885, -0.07353038340806961, -0.03618709370493889, -0.06017659604549408, 0.04723315313458443, -0.014386029914021492, 0.07675111293792725, 0.010102068074047565, -0.022856054827570915, 0.018934709951281548, 0.0015920891892164946, -0.034721508622169495, -0.14931295812129974, -0.04925573244690895, 0.012432443909347057, 0.1358598917722702, 0.011888357810676098, -0.03106902912259102, -0.07628487795591354, -0.052725307643413544, 0.033697642385959625, -0.1254483461380005, -0.05036913976073265, -0.08391202986240387, 0.008748131804168224, 0.06524000316858292, -0.08356586843729019, -0.01203983835875988, 0.05859099328517914, 0.10316186398267746, 0.006042958237230778, -0.05628390610218048, 0.037749484181404114, -0.15796369314193726, -0.06039804592728615, -0.004555420484393835, 0.12381894141435623, 0.06976943463087082, 0.033819615840911865, 0.047770850360393524, -0.021399497985839844, -0.038913071155548096, -0.07157593965530396, -0.0006064150366000831, 0.09429477900266647, -0.11426470428705215, -0.052681922912597656, 0.017287489026784897, -0.1194186881184578, -0.06502143293619156, -0.07800094783306122, 0.14821146428585052, 0.08596336096525192, -0.052499864250421524, 0.13105672597885132, 0.20903486013412476, -0.09459248185157776, -0.2161000669002533, 0.00260145659558475, 0.10478052496910095, 0.10478369891643524, 0.013660931959748268, -0.21866075694561005, 0.07862161844968796, 0.00039586698403581977, -0.03391028195619583, -0.019351817667484283, -0.2873152494430542, -0.1324937343597412, 0.12046070396900177, 0.017295269295573235, 0.12718428671360016, -0.04080680012702942, -0.03418311849236488, 0.0018952866084873676, -0.06066560745239258, 0.0021254001185297966, -0.11502004414796829, 0.09402987360954285, 0.006185406818985939, 0.026479870080947876, 0.03294243663549423, -0.03844897076487541, 0.09148658812046051, 0.03894032910466194, -0.02742534503340721, -0.032271627336740494, 0.12743917107582092, -0.004354414064437151, 0.011336338706314564, 0.14667972922325134, -0.111611008644104, 0.06431492418050766, -0.1222228929400444, -0.1032383069396019, -0.07813803851604462, 0.04774972423911095, 0.030909400433301926, -0.02616851031780243, 0.039949703961610794, -0.0356731116771698, 0.014461079612374306, -0.007860010489821434, -0.08366654068231583, -0.11197128146886826, 0.003221973078325391, 0.1070643737912178, 0.20866702497005463, 0.026172569021582603, -0.0524628721177578, -0.025299223139882088, -0.0063524506986141205, 0.11342286318540573, -0.13965946435928345, 0.008849169127643108, 0.02832626923918724, 0.06050805374979973, 0.08915607631206512, 0.012598775327205658, -0.08039064705371857, 0.07589549571275711, 0.07349785417318344, -0.03517972305417061, -0.10403826832771301, -0.05017786845564842, 0.046955421566963196, -0.020024286583065987, -0.022564196959137917, 0.06859263777732849, -0.09433671832084656, -0.003071368206292391, -0.02258232608437538, 0.01572602614760399, -0.10730405151844025, 0.18402333557605743, 0.03485490381717682, 0.057974301278591156, -0.0717272013425827, 0.04255528375506401, -0.024004600942134857, -0.027615560218691826, 0.018842043355107307, 0.05492738261818886, -0.11156442761421204, -0.08879400044679642, 0.017473656684160233, 0.0015749795129522681, 0.05784716084599495, -0.13129892945289612, -0.03704298660159111, -0.03468245267868042, -0.006413079798221588, 0.006583153270184994, 0.055539559572935104, -0.001529575209133327, -0.10965672880411148, -0.01917070522904396, -0.07909411936998367, 0.04336755350232124, 0.04490410536527634, -0.02965817041695118, -0.0677640438079834, 0.16773578524589539, 0.06225547194480896, 0.03984348103404045, -0.04194566607475281, -0.0742940753698349, -0.01684812270104885, 0.07708816975355148, -0.040545493364334106, 0.02262040600180626, -0.07441534847021103, -0.01573188789188862, 0.004134912975132465, -0.07418432086706161, -0.0033475046511739492, 0.09726369380950928, -0.08573544770479202, 0.04906303808093071, -0.015807796269655228, 0.08599477261304855, -0.07947275042533875, 0.02743363194167614, 0.04770321771502495, -0.04804326221346855, 0.061667121946811676, 0.11944885551929474, -0.11613857746124268, 0.12475373595952988, -0.21677076816558838, -0.001045911805704236, 0.06378476321697235, 0.06676027178764343, -0.033834606409072876, -0.05402299016714096, 0.0628364309668541, 0.06810864806175232, 0.07777635008096695, -0.04180183634161949, 0.10319773107767105, -0.0494307316839695, 0.005976543296128511, -0.04160185903310776, 0.0012148148380219936, -0.05368342995643616, 0.07335802912712097, 0.023771628737449646, 0.13380470871925354, 0.13112324476242065, -0.10398590564727783, 0.0701671689748764, -0.11947682499885559, 0.008864478208124638, -0.02133343182504177, -0.01143623050302267, -0.11788689345121384, -0.09511059522628784, 0.08217080682516098, -0.04074501991271973, 0.0906817615032196, -0.005907007493078709, 0.05564315989613533, -0.018777180463075638, -0.09922000020742416, 0.08208641409873962, -0.029741263017058372, 0.2836399972438812, 0.027905186638236046, 0.03220168873667717, -0.03958684578537941, -0.0024574571289122105, 0.0033377711661159992, 0.07083334773778915, 0.04566777125000954, 0.15368762612342834, -0.055676452815532684, 0.10424736142158508, 0.037282731384038925, -0.047643400728702545, -0.10860416293144226, -0.10048247128725052, -0.12798649072647095, 0.035636384040117264, -0.09622769802808762, 0.145175963640213, 0.158346027135849, -0.06078135594725609, 0.05593692511320114, 0.03114982880651951, -0.08522092550992966, -0.18062372505664825, -0.1522647589445114, -0.03318079933524132, -0.1367952674627304, 0.03670750558376312, -0.0781613364815712, 0.03405766561627388, -0.018696164712309837, 0.07062263786792755, -0.0440693125128746, 0.2018686830997467, 0.05603334680199623, -0.11284423619508743, 0.07378719747066498, -0.09558218717575073, -0.01723855920135975, -0.08020259439945221, 0.046566348522901535, 0.12460047751665115, -0.006850117351859808, 0.06425229460000992, -0.0134458402171731, -0.10395003855228424, 0.03443489968776703, -0.0736306682229042, -0.02709701657295227, -0.022625064477324486, -0.000999279203824699, 0.03660500794649124, 0.14206776022911072, 0.12412755191326141, -0.07784207910299301, 0.018419571220874786, 0.1666075885295868, -0.04642477259039879, -0.14846573770046234, -0.15060843527317047, 0.0942990630865097, 0.015672331675887108, 0.002457754220813513, -0.021159157156944275, -0.007109394762665033, 0.005031881853938103, 0.24342705309391022, 0.14098645746707916, 0.02881152182817459, 0.021776774898171425, -0.011515879072248936, 0.003094796556979418, -0.03347046300768852, 0.1342165172100067, 0.06250495463609695, 0.22641585767269135, -0.016066350042819977, 0.008301820605993271, -0.06522438675165176, -0.05905550718307495, -0.02142038755118847, 0.03160563111305237, -0.07247796654701233, -0.08883640915155411, -0.007922802120447159, 0.14097186923027039, -0.046311646699905396, -0.094158835709095, -0.12425410002470016, 0.028063056990504265, -0.06744751334190369, -0.01459964457899332, -0.002199751790612936, 0.11079105734825134, -0.002718200907111168, -0.07476845383644104, 0.03876066952943802, 0.13896232843399048, 0.004191312473267317, -0.0476871021091938, -0.04015833139419556, 0.02288118004798889, -0.10737941414117813, 0.013239044696092606, -0.027214359492063522, 0.17620982229709625, 0.010708644986152649, 0.08484858274459839, -0.044084325432777405, 0.14795580506324768, -0.022143922746181488, -0.024315226823091507, 0.042751654982566833, 0.09789076447486877, -0.04332978278398514, 0.0560588613152504, 0.016626976430416107, -0.0692158043384552, 0.043429892510175705, -0.0879485160112381, -0.006784758996218443, -0.10307060182094574, 0.072762630879879, -0.05148588865995407, 0.10976825654506683, 0.08053534477949142, -0.09056840091943741, -0.07599709182977676, -0.04918307065963745, 0.06649287045001984, 0.005599695723503828, -0.037167564034461975, -0.04732489958405495, -0.18555235862731934, -0.03216369450092316, -0.07357624173164368, 0.02946661412715912, -0.18471674621105194, -0.014275995083153248, -0.05069804564118385, -0.08694414794445038, 0.020871492102742195, 0.051524341106414795, 0.07555532455444336, 0.016085151582956314, 0.017404381185770035, -0.06340169161558151, 0.057679373770952225, 0.10648731887340546, -0.18060658872127533, -0.10698923468589783 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Large-XLSR-Turkish-Artificial-CV, a fine-tuned [cahya/wav2vec2-large-xlsr-turkish-artificial](https://huggingface.co/cahya/wav2vec2-large-xlsr-turkish-artificial) model on [Turkish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial-cv") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial-cv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.61 % ## Training The Common Voice `train`, `validation`, other and invalidated The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Turkish by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 14.61, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-turkish-artificial-cv
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Large-XLSR-Turkish-Artificial-CV, a fine-tuned cahya/wav2vec2-large-xlsr-turkish-artificial model on Turkish Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 14.61 % ## Training The Common Voice 'train', 'validation', other and invalidated The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-large-xlsr-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 14.61 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-large-xlsr-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 14.61 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ 80, 97, 20, 28, 29 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish-Artificial-CV, a fine-tuned \ncahya/wav2vec2-large-xlsr-turkish-artificial\nmodel on Turkish Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 14.61 %## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ -0.14498569071292877, -0.047702886164188385, -0.0039498223923146725, -0.06986693292856216, 0.03257208317518234, 0.0016718796687200665, 0.1783984750509262, 0.12618482112884521, -0.03469720855355263, 0.04535137861967087, 0.022115739062428474, -0.011758308857679367, 0.08020589500665665, 0.0012949486263096333, 0.008528031408786774, -0.10325317084789276, 0.0042892936617136, -0.03504575043916702, 0.1076980009675026, 0.1229068711400032, 0.12481113523244858, -0.02049105241894722, -0.019633207470178604, 0.07892955094575882, -0.09881376475095749, 0.03640606626868248, 0.03891097009181976, -0.14115609228610992, 0.1447925567626953, 0.01554276142269373, 0.05078229308128357, -0.020984280854463577, -0.014059849083423615, -0.15859444439411163, 0.020847810432314873, 0.003677191212773323, 0.03594394773244858, 0.007101618219166994, 0.12620438635349274, -0.09933080524206161, 0.16639398038387299, 0.0258784182369709, -0.05405021831393242, 0.06054851412773132, -0.02663254551589489, -0.17337927222251892, -0.11949438601732254, 0.048302099108695984, 0.09660861641168594, 0.11719511449337006, -0.08112625032663345, 0.08964276313781738, -0.09275456517934799, 0.13248835504055023, 0.08285012096166611, -0.22911089658737183, -0.03625354543328285, -0.028282713145017624, 0.004520499613136053, 0.02913215383887291, 0.016746724024415016, 0.05622753128409386, 0.03945715352892876, 0.023669051006436348, -0.17960557341575623, -0.02178773656487465, -0.18373367190361023, -0.07892624288797379, -0.07463619112968445, -0.04185524210333824, 0.23824933171272278, -0.015403851866722107, -0.06089717522263527, -0.11264440417289734, 0.04873080551624298, -0.030517850071191788, 0.031016916036605835, -0.014010459184646606, -0.04988013207912445, -0.0226291473954916, 0.012545331381261349, 0.016912152990698814, -0.09818743169307709, -0.0998479574918747, -0.08426748961210251, 0.10574883967638016, 0.06817373633384705, 0.004222537390887737, -0.060069549828767776, 0.08617749065160751, -0.11612273007631302, -0.06262384355068207, -0.02379343844950199, 0.09536881744861603, -0.09780111163854599, -0.01586608588695526, -0.0665445625782013, -0.25985148549079895, 0.10109278559684753, -0.02074413374066353, 0.09293096512556076, 0.04568835720419884, -0.07907672971487045, 0.05650109425187111, -0.03501993045210838, 0.13728296756744385, -0.0012551185209304094, -0.006463839206844568, -0.017398763447999954, -0.00959677156060934, -0.00755477836355567, -0.0007201796979643404, -0.006909357849508524, -0.03576020523905754, 0.13114723563194275, 0.12623436748981476, 0.010128219611942768, -0.05325089395046234, 0.0018918645801022649, 0.03993222489953041, 0.010160165838897228, -0.135957270860672, -0.023105980828404427, 0.061045799404382706, -0.047497838735580444, 0.04880161210894585, -0.0028162833768874407, 0.0039054593071341515, -0.08013296127319336, 0.03159802407026291, 0.08739360421895981, 0.0909230187535286, 0.03692902624607086, -0.05872764810919762, 0.04406103491783142, -0.009579499252140522, -0.03553032502532005, -0.09235421568155289, -0.07356815040111542, -0.08816132694482803, -0.05741102248430252, -0.020646989345550537, 0.04059575870633125, -0.05067978799343109, -0.04061330854892731, 0.004736532922834158, -0.040619857609272, 0.09325775504112244, -0.04657365009188652, 0.09249649941921234, 0.06762365251779556, -0.0021668074186891317, 0.1338653415441513, 0.06231912225484848, -0.0870383083820343, -0.026213474571704865, 0.02600071206688881, 0.16374953091144562, -0.03776942938566208, -0.06094621866941452, -0.13261385262012482, -0.056765682995319366, -0.03364795818924904, 0.014502306468784809, 0.05356649309396744, 0.066761314868927, -0.25752437114715576, -0.07243728637695312, 0.1638370305299759, -0.1028808057308197, -0.04705316200852394, 0.20804110169410706, 0.027829382568597794, 0.03660999611020088, 0.1577390432357788, 0.27519455552101135, 0.08759499341249466, -0.1303815096616745, -0.09937280416488647, -0.02310883067548275, 0.011306338012218475, 0.10599181056022644, 0.0955604538321495, -0.12170514464378357, 0.024193624034523964, 0.02162834070622921, -0.07218978554010391, 0.05498455837368965, -0.025532284751534462, -0.044055625796318054, -0.004701587837189436, -0.05531759932637215, 0.07426891475915909, -0.004196738358587027, 0.01848546601831913, -0.13164646923542023, -0.1039634644985199, -0.00904659554362297, 0.12996764481067657, -0.06461667269468307, 0.02602527290582657, -0.11821452528238297, 0.19538697600364685, -0.1558249145746231, -0.022042330354452133, -0.14473159611225128, 0.1355653703212738, 0.005397056695073843, 0.0362301841378212, 0.09009853005409241, 0.04767641797661781, 0.02230776660144329, -0.0058483220636844635, -0.029716497287154198, -0.006628639530390501, 0.046589694917201996, -0.004320825450122356, -0.04602152109146118, -0.10957752913236618, 0.04394843056797981, -0.007296235766261816, 0.1801891326904297, -0.0878601223230362, -0.017500273883342743, 0.06418202817440033, 0.08164145052433014, -0.0558767169713974, -0.019277241080999374, 0.02071368508040905, 0.07535920292139053, 0.013658439740538597, 0.008126771077513695, -0.021274564787745476, -0.020158221945166588, -0.08207867294549942, 0.16708709299564362, -0.17890626192092896, -0.08690638840198517, 0.09462617337703705, 0.0026931895408779383, -0.09603475779294968, 0.13704350590705872, -0.042337723076343536, -0.036363501101732254, -0.026783959940075874, -0.04138771444559097, 0.29243266582489014, 0.010820189490914345, 0.1151072233915329, -0.075141541659832, -0.04137996584177017, 0.010818999260663986, -0.10785208642482758, 0.027156323194503784, 0.11855296045541763, -0.1274707168340683, -0.03112717717885971, 0.026332082226872444, -0.044110532850027084, -0.06966172158718109, 0.19591297209262848, -0.057264018803834915, -0.1100238561630249, -0.018024826422333717, 0.058078642934560776, 0.014815246686339378, 0.07095550000667572, -0.11013055592775345, -0.03854427859187126, 0.047685254365205765, 0.07153405994176865, 0.060913555324077606, -0.12584280967712402, 0.05034622550010681, 0.018675053492188454, -0.12297514081001282, -0.09377191960811615, 0.1172315925359726, -0.018745215609669685, 0.09185890853404999, -0.1265726089477539, -0.007616256829351187, -0.02104131318628788, -0.045349813997745514, -0.1781880259513855, 0.0882585197687149, -0.08784160017967224, -0.1493997424840927, -0.11621125042438507, 0.055987607687711716, -0.003218707162886858, -0.040333811193704605, 0.09671003371477127, -0.13353599607944489, 0.05649900436401367, -0.04275476187467575, 0.058498088270425797, -0.039206456393003464, -0.003168068826198578, -0.10415047407150269, -0.014760552905499935, 0.08021079003810883, -0.12515032291412354, -0.015110046602785587, -0.028825432062149048, -0.07733123004436493, 0.04038628190755844, 0.0012738766381517053, 0.008482217788696289, 0.1307581514120102, -0.04204438626766205, -0.01242407038807869, -0.044452592730522156, 0.09635017812252045, -0.15818628668785095, -0.01855560392141342, 0.1096968948841095, -0.00690623139962554, -0.04882211610674858, 0.06816249340772629, 0.0009069915395230055, -0.006792127620428801, -0.037686508148908615, -0.0007996344356797636, -0.009976801462471485, -0.3395467698574066, -0.09953802824020386, -0.04370543733239174, -0.06840132921934128, -0.09449633210897446, 0.04261242598295212, 0.07718516886234283, -0.012542150914669037, -0.07123102992773056, -0.10552357137203217, 0.058134179562330246, -0.03474903851747513, 0.21398387849330902, 0.009597430936992168, 0.05832261964678764, -0.10166823863983154, -0.0025177488569170237, 0.03652752935886383, 0.00017022584506776184, 0.14413729310035706, 0.023622971028089523, 0.09451843798160553, 0.0867905244231224, 0.1049867495894432, 0.027725961059331894, -0.03683854639530182, -0.0139014245942235, 0.026363816112279892, 0.06505544483661652, -0.08736008405685425, 0.008747786283493042, -0.00026824718224816024, 0.13945186138153076, -0.006043350324034691, -0.02106214314699173, -0.011232221499085426, 0.13412711024284363, 0.11069834977388382, 0.07938844710588455, -0.15345099568367004, -0.12874402105808258, -0.07016301155090332, -0.11930069327354431, 0.026937533169984818, -0.03706858679652214, 0.07525410503149033, -0.14612244069576263, 0.09822899103164673, -0.00003456061676843092, 0.07400618493556976, 0.008084052242338657, 0.005251704249531031, -0.07845156639814377, -0.028602926060557365, 0.006121037062257528, 0.13531383872032166, -0.24326550960540771, 0.20540757477283478, 0.032136887311935425, 0.14575575292110443, -0.059821706265211105, 0.029982972890138626, 0.06533299386501312, -0.027080202475190163, 0.07303037494421005, 0.0015281584346666932, -0.020583437755703926, -0.0758514478802681, -0.14475800096988678, 0.04718058928847313, 0.018506232649087906, 0.03710680454969406, 0.03918253630399704, 0.009771041572093964, 0.013080421835184097, -0.05078151077032089, -0.13553659617900848, -0.1557885706424713, -0.047313809394836426, 0.05721611529588699, 0.08008593320846558, 0.0437520407140255, -0.0257303137332201, -0.10241889953613281, -0.16950084269046783, 0.07177545875310898, -0.1307818591594696, -0.059588462114334106, -0.012130807153880596, -0.05527773126959801, 0.1510450839996338, -0.0839841440320015, -0.08859902620315552, 0.03900988772511482, 0.029868710786104202, -0.04713180661201477, 0.002697825664654374, -0.013515228405594826, -0.07658031582832336, -0.1554892212152481, -0.02593141607940197, 0.249602273106575, 0.048937901854515076, 0.14118948578834534, 0.04588416963815689, 0.03217426314949989, -0.003837194526568055, -0.01455450989305973, 0.00025326875038444996, 0.02842375636100769, -0.14716263115406036, 0.07625432312488556, 0.07841584831476212, -0.15753859281539917, -0.19635720551013947, -0.07280256599187851, 0.13246802985668182, 0.10080048441886902, -0.03462255001068115, 0.14100445806980133, 0.05398307368159294, -0.10710179060697556, -0.09542228281497955, -0.021043553948402405, 0.10959764569997787, 0.1158623993396759, -0.020991262048482895, -0.07548683881759644, 0.05051276460289955, 0.06194216385483742, -0.04062057286500931, -0.009295955300331116, -0.35572466254234314, -0.15223072469234467, 0.12974029779434204, -0.08144285529851913, -0.01774740219116211, -0.06229308620095253, -0.041756585240364075, 0.015774227678775787, 0.10532335937023163, -0.17881448566913605, -0.0861075222492218, 0.08580086380243301, 0.017111776396632195, 0.10794045776128769, 0.057605478912591934, -0.005210153292864561, 0.1850450485944748, 0.03196512162685394, -0.023951850831508636, -0.04759689047932625, 0.055167511105537415, 0.04677111655473709, 0.02276681363582611, 0.14187052845954895, -0.14682115614414215, 0.03871379792690277, -0.12566371262073517, -0.04335072264075279, -0.059342581778764725, 0.1295521855354309, -0.014108196832239628, 0.05288194492459297, -0.01011027954518795, -0.05388770252466202, -0.019481580704450607, 0.003989080432802439, -0.08892785012722015, -0.10908080637454987, 0.05996980890631676, 0.0039761485531926155, 0.1462288796901703, 0.04728356748819351, -0.10423251241445541, 0.015441615134477615, -0.013740897178649902, 0.03315103426575661, -0.011568489484488964, -0.036165401339530945, 0.11273660510778427, 0.02252250351011753, 0.12659130990505219, -0.06495983898639679, -0.16716217994689941, 0.13125894963741302, 0.0505613274872303, -0.004269344266504049, -0.1282138228416443, -0.006689280737191439, -0.023580720648169518, -0.035947173833847046, -0.02450370043516159, 0.11734522134065628, -0.10068856179714203, -0.007172084879130125, -0.02721772901713848, 0.011403189040720463, -0.12495613843202591, 0.26068195700645447, -0.01680777594447136, 0.05623801052570343, -0.07940930873155594, 0.04322242736816406, 0.0474250353872776, -0.04280500486493111, 0.08982467651367188, -0.02534870058298111, -0.029433203861117363, -0.0382499098777771, -0.034259140491485596, 0.14361050724983215, 0.11238698661327362, -0.1658460944890976, -0.10431824624538422, -0.10236767679452896, -0.013948651030659676, 0.060218244791030884, 0.06122598424553871, 0.04224212095141411, -0.03609311208128929, -0.06694820523262024, -0.06791818886995316, 0.1079643964767456, 0.14869220554828644, 0.0018471087096258998, -0.06898575276136398, 0.18869280815124512, 0.0643356516957283, 0.032272662967443466, -0.012901443988084793, -0.05928073078393936, 0.08395485579967499, 0.0719992071390152, -0.14298628270626068, 0.021329272538423538, -0.08364398777484894, 0.011395875364542007, 0.0576556995511055, -0.05645386129617691, -0.011094141751527786, 0.04834732413291931, -0.06981539726257324, 0.029541725292801857, -0.025489578023552895, 0.09917238354682922, -0.1279941201210022, 0.052572183310985565, 0.02306506223976612, -0.05003714561462402, 0.08085396140813828, 0.15849699079990387, -0.07878479361534119, 0.13127081096172333, -0.16915884613990784, -0.03487219661474228, 0.026397714391350746, 0.07060127705335617, -0.04816138744354248, -0.1674831360578537, 0.036835700273513794, 0.13069143891334534, 0.03542036935687065, 0.06466729938983917, 0.04629610478878021, -0.05489664152264595, -0.03610178828239441, -0.10121824592351913, 0.021935250610113144, -0.0415019728243351, 0.0839439108967781, 0.054841239005327225, 0.09603133052587509, 0.13914678990840912, -0.14241507649421692, 0.10589240491390228, -0.11060865223407745, 0.015580756589770317, -0.09672911465167999, -0.0409596748650074, -0.12599924206733704, -0.043057575821876526, 0.08958300203084946, -0.04656648263335228, 0.09589603543281555, 0.027489950880408287, 0.0419074222445488, 0.005978673230856657, -0.055687759071588516, -0.019495923072099686, -0.010349776595830917, 0.15607373416423798, 0.011140569113194942, 0.018018124625086784, -0.07677962630987167, -0.08273206651210785, -0.031219786033034325, -0.01622425951063633, -0.01917717419564724, 0.17391778528690338, 0.030285364016890526, 0.06884697079658508, 0.0926060900092125, -0.117457315325737, -0.010297315195202827, -0.049646828323602676, -0.16413983702659607, 0.06779727339744568, 0.01712368242442608, 0.16818083822727203, 0.18501393496990204, -0.10975199192762375, 0.04977358132600784, -0.01503879576921463, -0.09699413925409317, -0.0719677060842514, -0.0901651382446289, -0.05754769220948219, -0.0635041818022728, 0.022184884175658226, -0.04167856648564339, 0.027901874855160713, 0.06748045235872269, 0.06569920480251312, -0.05811738222837448, 0.22992178797721863, -0.07599116861820221, -0.0786537453532219, 0.11011189222335815, -0.09381235390901566, 0.030034758150577545, -0.06496219336986542, -0.00771494023501873, 0.13297545909881592, -0.007756066042929888, 0.09364717453718185, 0.053381163626909256, -0.01934640482068062, 0.023322153836488724, -0.1015978753566742, -0.07011071592569351, 0.0508306585252285, -0.016272904351353645, 0.12440481781959534, 0.14623339474201202, 0.1219746470451355, -0.034417882561683655, -0.019019868224859238, 0.08877088874578476, 0.003073054598644376, -0.14963111281394958, -0.10762060433626175, 0.08605495095252991, -0.00791238248348236, -0.0595465824007988, 0.021629098802804947, -0.06748556345701218, 0.029869217425584793, 0.12490416318178177, 0.25442075729370117, 0.1431644856929779, 0.028245393186807632, -0.04617960378527641, -0.009973975829780102, -0.02600332349538803, -0.037178490310907364, 0.012020793743431568, 0.15584763884544373, 0.00402810238301754, 0.0740256980061531, -0.09370789676904678, -0.03906509652733803, -0.007416034583002329, 0.029363563284277916, -0.07189209759235382, -0.1316634565591812, 0.0453946515917778, 0.19425924122333527, -0.00521577475592494, -0.2137106955051422, -0.06368932873010635, -0.07430725544691086, -0.13488160073757172, 0.03995610773563385, 0.1065124124288559, 0.11764445900917053, -0.012281784787774086, -0.03996687009930611, -0.0057980893179774284, 0.09752875566482544, -0.012360308319330215, -0.03392452746629715, -0.0645245835185051, 0.04401080310344696, -0.10250364989042282, 0.04857206717133522, 0.03216816484928131, 0.21900323033332825, 0.04066008701920509, 0.08761854469776154, 0.0030762217938899994, 0.16746112704277039, 0.05250219255685806, -0.030743123963475227, 0.10515131801366806, 0.15038424730300903, 0.028460344299674034, 0.07861027866601944, 0.11310740560293198, -0.0012149447575211525, 0.06401941925287247, -0.20166082680225372, 0.033227697014808655, -0.13706675171852112, 0.07309511303901672, -0.019337123259902, 0.061747826635837555, 0.17980939149856567, -0.05337847024202347, 0.016690891236066818, -0.04279620200395584, -0.042063046246767044, 0.06891904026269913, -0.014985112473368645, -0.022052638232707977, -0.26836973428726196, 0.03472162038087845, -0.09800155460834503, 0.011175885796546936, -0.15852220356464386, -0.046939246356487274, -0.000059210022300248966, -0.10948590189218521, 0.051148053258657455, 0.07145635783672333, 0.08365710079669952, 0.013312775641679764, -0.00736641651019454, 0.02157728746533394, 0.049704547971487045, 0.11593323945999146, -0.1309041827917099, -0.06857098639011383 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Turkish Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 66.98 % ## Training The Artificial Common Voice `train`, `validation` is used to fine tune the model The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Turkish with Artificial Voices by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 66.98, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-turkish-artificial
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Turkish Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Turkish Artificial Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 66.98 % ## Training The Artificial Common Voice 'train', 'validation' is used to fine tune the model The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 66.98 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 66.98 %", "## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ 80, 64, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Turkish\nFine-tuned facebook/wav2vec2-large-xlsr-53\non the Turkish Artificial Common Voice dataset.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 66.98 %## Training\n\nThe Artificial Common Voice 'train', 'validation' is used to fine tune the model\n\nThe script used for training can be found here" ]
[ -0.16110359132289886, -0.06904935091733932, -0.0010115245822817087, -0.040657732635736465, 0.13131365180015564, -0.03669195994734764, 0.22618097066879272, 0.08168533444404602, 0.0069931806065142155, -0.03166288882493973, 0.0036263437941670418, 0.03232252597808838, 0.08537330478429794, 0.11318650096654892, 0.05987749248743057, -0.2337629199028015, 0.0032896094489842653, -0.02557605504989624, 0.09666119515895844, 0.12966546416282654, 0.10676180571317673, -0.04074041545391083, -0.022056819871068, 0.1025514304637909, -0.16451396048069, 0.04559991508722305, 0.05214447155594826, -0.1298379749059677, 0.14667189121246338, 0.05770661681890488, 0.06694003939628601, 0.022780174389481544, 0.05917947739362717, -0.15621650218963623, 0.04543723165988922, 0.010449259541928768, 0.017225690186023712, 0.0345606692135334, 0.11234784871339798, -0.04351816326379776, 0.17077624797821045, 0.06707523763179779, -0.057615987956523895, 0.06954684853553772, -0.06981528550386429, -0.15618892014026642, -0.014786451123654842, 0.05222480744123459, 0.10736607760190964, 0.15838466584682465, -0.07681453973054886, 0.07071597129106522, -0.11396685242652893, 0.09649253636598587, 0.08836199343204498, -0.21679988503456116, -0.010103143751621246, 0.033763326704502106, 0.014099613763391972, 0.04067717865109444, -0.03646983206272125, 0.04483286291360855, -0.02495761588215828, -0.014005917124450207, 0.006010874640196562, -0.02403630129992962, -0.16930273175239563, -0.08563726395368576, -0.08651941269636154, -0.029978875070810318, 0.18645749986171722, -0.01116872113198042, -0.052432138472795486, -0.15487629175186157, -0.0006823739386163652, 0.004961477126926184, -0.02834673412144184, -0.03942883387207985, -0.052471838891506195, 0.04243363440036774, 0.012360071763396263, -0.06179052218794823, -0.1043020561337471, -0.13987550139427185, -0.0026183922309428453, 0.15698671340942383, 0.029919184744358063, -0.01081925444304943, -0.1484140008687973, 0.12323357909917831, -0.07572650164365768, -0.0752318724989891, 0.010302147828042507, 0.04861024022102356, -0.0985010489821434, -0.005247027147561312, -0.08180685341358185, -0.15273027122020721, 0.008005300536751747, 0.008073395118117332, 0.14010734856128693, 0.04900732263922691, 0.004227728117257357, 0.07743603736162186, -0.01734660565853119, 0.10188538581132889, -0.042154278606176376, -0.03240620717406273, 0.050634946674108505, 0.03976701200008392, -0.02543468400835991, -0.029184535145759583, -0.06436984241008759, -0.0800776481628418, 0.036269161850214005, 0.08679423481225967, -0.013216746971011162, 0.013512130826711655, -0.010501129552721977, -0.026765648275613785, 0.0893668383359909, -0.11483444273471832, -0.049897607415914536, 0.0688478872179985, -0.03363858535885811, 0.09210209548473358, 0.02911452017724514, 0.040138017386198044, -0.12007243931293488, -0.00207157083787024, 0.03998338058590889, 0.0904090404510498, -0.005298322066664696, -0.05595216900110245, -0.014047384262084961, 0.010183065198361874, -0.00009663480159360915, -0.12444200366735458, -0.09837023913860321, -0.05601465329527855, -0.0355583131313324, 0.01919245347380638, 0.024436820298433304, -0.07476424425840378, -0.013314725831151009, -0.0195565614849329, -0.055217765271663666, 0.08486944437026978, -0.05663878470659256, 0.07115605473518372, 0.054686449468135834, 0.03241591900587082, 0.07232435047626495, 0.07221728563308716, -0.08651406317949295, -0.0971844270825386, 0.02317100577056408, 0.12546366453170776, 0.018303990364074707, -0.049633752554655075, -0.10720302164554596, -0.062117163091897964, -0.10443948954343796, 0.06540270149707794, 0.06486136466264725, 0.10261082649230957, -0.24505668878555298, -0.09291211515665054, 0.22793981432914734, -0.10299357771873474, -0.018666520714759827, 0.17971758544445038, 0.015183249488472939, 0.10208985209465027, 0.14519169926643372, 0.2260136902332306, 0.1426309198141098, -0.15559685230255127, 0.034244779497385025, -0.002570713171735406, -0.04234299808740616, -0.058446697890758514, 0.07935016602277756, -0.03158174455165863, -0.023054223507642746, 0.04257408529520035, -0.10478728264570236, 0.11817164719104767, -0.003173252334818244, -0.05520505830645561, 0.0029980058316141367, -0.04884224012494087, 0.011816621758043766, 0.008983703330159187, 0.03608610853552818, -0.04472175985574722, -0.09347286075353622, -0.007974312640726566, 0.1406800001859665, -0.08897379040718079, 0.020686563104391098, -0.1221831738948822, 0.10470977425575256, -0.06967797130346298, 0.011562825180590153, -0.1688312143087387, 0.16383714973926544, -0.04829134792089462, 0.06413329392671585, 0.11379443854093552, 0.11731094121932983, 0.009504546411335468, 0.031790684908628464, -0.014682604931294918, -0.016405193135142326, 0.020355224609375, -0.027928870171308517, -0.03324831649661064, -0.06709130108356476, 0.002863745205104351, -0.05014391615986824, 0.14263372123241425, -0.12291371077299118, -0.002775931730866432, 0.008788052946329117, 0.01810062676668167, -0.019869130104780197, -0.020146960392594337, 0.0694841742515564, 0.061979860067367554, 0.010855595581233501, -0.003935708664357662, 0.0477912500500679, 0.023913942277431488, -0.036856509745121, 0.0970323383808136, -0.21809978783130646, 0.015271911397576332, 0.13049206137657166, -0.05988392233848572, -0.034605201333761215, 0.015502466820180416, -0.005769545678049326, -0.008026582188904285, -0.05878673866391182, -0.015483376570045948, 0.3269326686859131, 0.014064973220229149, 0.12855131924152374, -0.07793035358190536, 0.019857877865433693, 0.010006750002503395, -0.0925833135843277, 0.05804365500807762, 0.033614110201597214, -0.020189784467220306, -0.0019887180533260107, -0.0170308668166399, -0.018408987671136856, -0.04305795580148697, 0.2415967881679535, 0.009327711537480354, -0.08834943175315857, 0.019864382222294807, 0.011037417687475681, -0.01267151813954115, 0.015368521213531494, -0.1637853980064392, -0.068552665412426, 0.03837495669722557, 0.045285433530807495, 0.07640036195516586, -0.14939802885055542, 0.00645314110442996, 0.03283940255641937, -0.13035054504871368, -0.16098767518997192, 0.10180812329053879, -0.06159792095422745, 0.07893567532300949, -0.10991113632917404, -0.0372149832546711, -0.011711467057466507, -0.04243507608771324, -0.15792493522167206, 0.10961959511041641, -0.05833304673433304, -0.23632532358169556, -0.16260899603366852, 0.05791909247636795, 0.03188410401344299, 0.01746300607919693, 0.09225742518901825, -0.133867084980011, 0.02094479463994503, -0.004490240942686796, 0.10364310443401337, 0.0340447723865509, -0.04875380918383598, -0.06457632780075073, 0.006572246085852385, 0.05221644788980484, -0.1303371638059616, -0.01544591598212719, -0.015506253577768803, -0.09179260581731796, -0.0006682327948510647, 0.00911285076290369, -0.01514627505093813, 0.17239071428775787, 0.003936671186238527, 0.0222446471452713, -0.02138979732990265, 0.16995833814144135, -0.10249249637126923, 0.012788476422429085, 0.22598062455654144, 0.027059737592935562, -0.014216732233762741, 0.0714411586523056, 0.02699963189661503, -0.053099747747182846, -0.0008052053162828088, -0.03404591232538223, -0.08253946155309677, -0.20838065445423126, -0.08883733302354813, -0.05366510897874832, -0.13052761554718018, -0.03568846732378006, 0.01541638933122158, 0.09194652736186981, 0.03817143663764, -0.06399650126695633, -0.113613061606884, 0.07573345303535461, -0.00027661025524139404, 0.08656355738639832, 0.03117356076836586, 0.09848488122224808, -0.07526596635580063, -0.00833942648023367, 0.02515871450304985, 0.009228618815541267, 0.10389262437820435, 0.053421542048454285, 0.11380201578140259, 0.06861163675785065, 0.08578656613826752, 0.09905824065208435, 0.08078375458717346, -0.019036009907722473, -0.02531532011926174, 0.01994398795068264, -0.06945855170488358, -0.06772758811712265, 0.007674460764974356, 0.08997147530317307, -0.060811735689640045, -0.06555865705013275, 0.013078274205327034, 0.03990418091416359, 0.06638466566801071, 0.038665417581796646, -0.22430731356143951, -0.08650542795658112, -0.04904969409108162, -0.07724273949861526, 0.025584563612937927, 0.02206224575638771, 0.09381429851055145, -0.13833698630332947, 0.008171368390321732, -0.0014680945314466953, 0.095384381711483, -0.0226442813873291, 0.028869986534118652, -0.07194280624389648, 0.06574486941099167, 0.011047739535570145, 0.12850208580493927, -0.20875033736228943, 0.19368739426136017, 0.0027800106909126043, 0.1626303642988205, -0.07342439889907837, -0.0071183242835104465, 0.07757644355297089, 0.029213793575763702, 0.09438254684209824, 0.00991035159677267, -0.006929384078830481, -0.12799909710884094, -0.11118310689926147, 0.038166340440511703, 0.002133237896487117, 0.0039963736198842525, 0.018539123237133026, -0.02593441866338253, 0.004687294829636812, -0.012319548055529594, -0.09082936495542526, -0.17187610268592834, -0.07070460915565491, 0.011381096206605434, 0.15457819402217865, 0.1010911762714386, -0.018747322261333466, -0.07189010828733444, -0.07788189500570297, 0.0508149191737175, -0.05240829661488533, -0.056259702891111374, -0.05936997011303902, -0.01346673909574747, 0.054545626044273376, -0.10739375650882721, -0.04991655424237251, 0.0680626928806305, 0.08469025045633316, -0.015329746529459953, -0.0702868402004242, 0.028732597827911377, -0.11358369886875153, -0.06791124492883682, -0.005428778938949108, 0.21873939037322998, 0.083896704018116, 0.07251361012458801, 0.06949324160814285, -0.016708677634596825, 0.0013349353102967143, -0.04938317462801933, -0.026285840198397636, 0.07504432648420334, -0.11693062633275986, 0.0021198152098804712, 0.02621179074048996, -0.14687669277191162, -0.14974355697631836, -0.021363619714975357, 0.16397260129451752, 0.08094622194766998, -0.03095310553908348, 0.12877951562404633, 0.20341822504997253, -0.059761788696050644, -0.17137761414051056, -0.04310954734683037, 0.07548488676548004, 0.12172412127256393, 0.0045698704198002815, -0.20173043012619019, 0.09422142058610916, 0.0075037661008536816, -0.023446006700396538, -0.057972244918346405, -0.34439796209335327, -0.142963245511055, 0.17467057704925537, 0.009490163996815681, 0.1173805519938469, -0.01585223712027073, -0.030234165489673615, -0.012315627187490463, 0.007630979176610708, -0.033324092626571655, -0.17444264888763428, 0.12357696890830994, 0.03378469869494438, 0.08134306967258453, 0.04487744718790054, -0.01357889175415039, 0.0908799096941948, 0.07788501679897308, 0.0009587607346475124, -0.04957271367311478, 0.0653056800365448, 0.030326755717396736, 0.012297642417252064, 0.1361381858587265, -0.13897167146205902, 0.03728538006544113, -0.08973143249750137, -0.11256678402423859, -0.08441143482923508, 0.0848030224442482, 0.01990428939461708, -0.007651090621948242, 0.029608571901917458, -0.04678914323449135, -0.008972207084298134, -0.0023741968907415867, -0.12130770087242126, -0.12681874632835388, -0.009720999747514725, 0.07823362946510315, 0.17865604162216187, -0.028951145708560944, -0.12186353653669357, -0.023679357022047043, -0.002334476448595524, 0.09581515192985535, -0.02760598435997963, -0.004664831329137087, 0.061556097120046616, 0.027274103835225105, 0.10844253748655319, -0.0026488041039556265, -0.10145560652017593, 0.08292720466852188, 0.0801701620221138, -0.037545379251241684, -0.1445452868938446, -0.05504878610372543, 0.01157586183398962, 0.028521545231342316, -0.033533066511154175, 0.08859968930482864, -0.08229254931211472, -0.01303753349930048, -0.023247141391038895, -0.0047047617845237255, -0.12355268746614456, 0.22414512932300568, -0.013137656264007092, 0.056148700416088104, -0.09980089962482452, 0.04609062895178795, -0.00017568934708833694, -0.02722354419529438, 0.03895863890647888, 0.008504660800099373, -0.10028666257858276, -0.0749804675579071, -0.022446878254413605, 0.10331457108259201, 0.04774009808897972, -0.14082728326320648, -0.05564286932349205, -0.06643517315387726, -0.02813863754272461, -0.02321695163846016, 0.0591270811855793, -0.020298156887292862, -0.1467330902814865, -0.04660891368985176, -0.08561348915100098, 0.04207406938076019, 0.13347671926021576, -0.03603770583868027, -0.10522958636283875, 0.2146785408258438, 0.08704470843076706, 0.01822371780872345, -0.04032667353749275, -0.10142068564891815, 0.035109225660562515, 0.07141707837581635, -0.06398989260196686, -0.022589579224586487, -0.10619321465492249, -0.008475575596094131, -0.0008802750380709767, -0.05507085472345352, 0.02201644517481327, 0.05610828474164009, -0.07380589842796326, 0.028764043003320694, -0.03220231086015701, 0.0578177347779274, -0.11341548711061478, 0.053724922239780426, 0.020567692816257477, -0.04617854580283165, 0.08127125352621078, 0.17346952855587006, -0.10524798184633255, 0.14244800806045532, -0.19813092052936554, -0.04999171197414398, 0.0487954281270504, 0.05247045308351517, -0.02607050910592079, -0.11243502050638199, 0.06253539025783539, 0.0822129026055336, 0.08477495610713959, -0.01096593588590622, 0.10467727482318878, -0.0752623900771141, -0.007413777522742748, -0.06146736815571785, 0.022299455478787422, -0.05409587547183037, 0.08031036704778671, 0.09930916130542755, 0.109390988945961, 0.170441135764122, -0.11921583861112595, 0.07989008724689484, -0.12268286943435669, 0.03344906121492386, -0.07191138714551926, -0.053270697593688965, -0.10444199293851852, -0.11035995930433273, 0.06860524415969849, -0.04533151909708977, 0.07662297040224075, 0.030829500406980515, 0.0399584025144577, -0.02967003919184208, -0.05928024277091026, 0.043729834258556366, -0.028262214735150337, 0.23264054954051971, 0.061368390917778015, 0.013441445305943489, -0.04233786091208458, 0.000782448158133775, 0.033063340932130814, 0.06951750069856644, 0.059911202639341354, 0.1698385775089264, -0.00917838141322136, 0.09275291860103607, 0.07151156663894653, -0.07996375113725662, -0.10374341160058975, -0.11773686110973358, -0.1315903663635254, 0.008234146982431412, -0.07795005291700363, 0.1478564441204071, 0.19626036286354065, -0.06532938778400421, 0.06059078499674797, 0.039983075112104416, -0.10082434117794037, -0.11498355120420456, -0.18713219463825226, -0.0219169482588768, -0.10084135830402374, 0.009698191657662392, -0.05320616811513901, 0.013526053167879581, 0.03287392109632492, 0.047084446996450424, -0.07225093245506287, 0.2782649099826813, -0.0184028223156929, -0.10136391967535019, 0.08234947174787521, -0.10368157923221588, -0.007318656425923109, -0.07096828520298004, 0.010617555119097233, 0.11419105529785156, 0.003744435263797641, 0.09760833531618118, 0.03827301412820816, -0.07922956347465515, 0.022793324664235115, -0.1018037497997284, -0.063629150390625, -0.019565479829907417, -0.017713965848088264, 0.07296813279390335, 0.14513608813285828, 0.11876913905143738, -0.08875866234302521, -0.013561722822487354, 0.15622931718826294, -0.010867721401154995, -0.16450706124305725, -0.08883784711360931, 0.13731427490711212, 0.0394546203315258, -0.014604615047574043, -0.013049952685832977, -0.032815273851156235, -0.0027365267742425203, 0.23560495674610138, 0.2704191505908966, 0.06266117841005325, 0.03429354727268219, -0.045489635318517685, 0.004829335957765579, -0.03792555630207062, 0.08925407379865646, 0.060589499771595, 0.15296031534671783, 0.005296885501593351, 0.07994049787521362, -0.08133397996425629, -0.08945701271295547, 0.001165221445262432, 0.03369774669408798, -0.05505603179335594, -0.10015145689249039, 0.0038950650487095118, 0.14737637341022491, -0.04684683308005333, -0.12844465672969818, -0.1267567127943039, 0.02304159291088581, -0.08710823953151703, 0.01047839317470789, -0.004104390274733305, 0.12557655572891235, 0.04413104057312012, -0.053606122732162476, 0.024358870461583138, 0.0981682687997818, 0.003182650078088045, -0.0680772215127945, -0.053021494299173355, 0.03061782196164131, -0.10857439786195755, 0.02995702251791954, -0.012359746731817722, 0.16244585812091827, 0.018370309844613075, 0.11468484997749329, -0.023276155814528465, 0.18786153197288513, -0.018577715381979942, 0.012530623003840446, 0.0726613849401474, 0.13936688005924225, -0.0134201068431139, -0.006325726862996817, 0.02750447206199169, -0.14017203450202942, 0.049783095717430115, -0.18715959787368774, 0.024848584085702896, -0.10342569649219513, 0.06631718575954437, -0.02300722897052765, 0.08464941382408142, 0.1088634580373764, -0.0509495884180069, -0.0332050584256649, -0.030610376968979836, 0.029675619676709175, 0.06368830054998398, -0.02499871328473091, -0.045811500400304794, -0.23729091882705688, -0.03626689687371254, -0.09006216377019882, 0.010765809565782547, -0.18522652983665466, -0.043056365102529526, -0.037101179361343384, -0.09039594233036041, 0.024889666587114334, 0.08548673242330551, 0.08480387181043625, 0.03508912771940231, 0.005051018670201302, 0.021671516820788383, 0.037003204226493835, 0.14721938967704773, -0.21122978627681732, -0.11418405920267105 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Turkish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 21.13 % ## Training The Common Voice `train`, `validation`, other and invalidated The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Turkish by Cahya", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 21.13, "name": "Test WER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-large-xlsr-turkish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned facebook/wav2vec2-large-xlsr-53 model on the Turkish Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 21.13 % ## Training The Common Voice 'train', 'validation', other and invalidated The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Turkish Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 21.13 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Turkish Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 21.13 %", "## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ 80, 86, 20, 28, 29 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-Turkish\n\nThis is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned \nfacebook/wav2vec2-large-xlsr-53\nmodel on the Turkish Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice.\n\n\n\nTest Result: 21.13 %## Training\n\nThe Common Voice 'train', 'validation', other and invalidated \n\nThe script used for training can be found here" ]
[ -0.1369369477033615, -0.03297926485538483, -0.0032746626529842615, -0.06803575903177261, 0.07142043858766556, -0.02196343243122101, 0.19726550579071045, 0.09437386691570282, -0.0611141063272953, 0.029754638671875, 0.01620582863688469, -0.04262494295835495, 0.08789893239736557, 0.047320008277893066, 0.009654169902205467, -0.1421414017677307, 0.0170737337321043, -0.03575854375958443, 0.14019054174423218, 0.10535949468612671, 0.1054759994149208, -0.021061180159449577, -0.03366885706782341, 0.09229850769042969, -0.13500384986400604, 0.05322139337658882, 0.06777653098106384, -0.14635813236236572, 0.14854775369167328, 0.03610372543334961, 0.044250525534152985, -0.015044488944113255, 0.03881173953413963, -0.1726202517747879, 0.026694970205426216, 0.03263487294316292, 0.02603437565267086, 0.008860115893185139, 0.13591411709785461, -0.07342073321342468, 0.14026987552642822, 0.03708742931485176, -0.05248985439538956, 0.07692087441682816, -0.055850572884082794, -0.1769675314426422, -0.0918499231338501, 0.09438382834196091, 0.12762634456157684, 0.1142859011888504, -0.08092325180768967, 0.07960184663534164, -0.07843611389398575, 0.12601952254772186, 0.06631775945425034, -0.24402394890785217, -0.025583580136299133, -0.0017856268677860498, -0.015812834724783897, 0.04819705709815025, 0.004410341382026672, 0.07552438229322433, 0.04122760146856308, 0.028263499960303307, -0.10937708616256714, -0.024559050798416138, -0.2036675661802292, -0.10654321312904358, -0.08110914379358292, -0.03741099312901497, 0.264583021402359, -0.006350710056722164, -0.056653931736946106, -0.1019129678606987, 0.013082348741590977, -0.013664142228662968, 0.017508311197161674, -0.025974879041314125, -0.0486389622092247, 0.02660329081118107, 0.019261183217167854, -0.0040747071616351604, -0.09876437485218048, -0.10931955277919769, -0.0495908185839653, 0.12287695705890656, 0.05501772090792656, 0.004523245617747307, -0.08593551814556122, 0.0890602171421051, -0.14093565940856934, -0.05303046107292175, 0.03320588171482086, 0.07439865916967392, -0.10095062106847763, -0.005165673326700926, -0.08117739111185074, -0.24949568510055542, 0.07308155298233032, -0.023721689358353615, 0.11966197192668915, 0.03164399787783623, -0.09222917258739471, 0.0729990154504776, -0.02082967944443226, 0.09168046712875366, -0.060628484934568405, -0.02453533746302128, 0.017697572708129883, -0.010521205142140388, -0.011363137513399124, -0.019407272338867188, -0.04370352625846863, -0.06751464307308197, 0.11655879020690918, 0.10691485553979874, -0.025013988837599754, -0.01786515675485134, -0.005269051529467106, 0.014923878014087677, -0.009410704486072063, -0.12021137773990631, -0.02371373027563095, 0.04926677793264389, -0.017971785739064217, 0.09144549071788788, 0.016162797808647156, 0.03962264209985733, -0.10880383104085922, 0.023660996928811073, 0.0740053579211235, 0.08041432499885559, 0.02643192932009697, -0.06545339524745941, 0.015745941549539566, -0.04121268540620804, -0.017518125474452972, -0.10164345800876617, -0.07749609649181366, -0.07285253703594208, -0.045793138444423676, -0.005434779915958643, 0.01873728074133396, -0.07104509323835373, -0.039511483162641525, 0.006987367291003466, -0.047486886382102966, 0.11085698753595352, -0.04535902664065361, 0.08102403581142426, 0.037756018340587616, 0.011856024153530598, 0.07896460592746735, 0.07120819389820099, -0.05639094486832619, -0.031126759946346283, 0.04917525127530098, 0.16893139481544495, -0.003165234811604023, -0.06517241895198822, -0.11745133996009827, -0.03601641580462456, -0.06487876921892166, 0.03902393579483032, 0.06511523574590683, 0.04798295348882675, -0.2807650864124298, -0.07111965119838715, 0.18260741233825684, -0.11037599295377731, -0.001954534789547324, 0.22949208319187164, 0.008204932324588299, 0.039994094520807266, 0.14658969640731812, 0.28851374983787537, 0.06074343994259834, -0.12285761535167694, -0.03984380513429642, -0.01625356450676918, -0.02603069320321083, 0.05537736415863037, 0.061643604189157486, -0.09207422286272049, 0.016973422840237617, 0.014368569478392601, -0.02539009600877762, 0.08042038232088089, -0.009904702194035053, -0.04229598119854927, -0.005148939788341522, -0.060049910098314285, 0.04786240682005882, -0.019380664452910423, 0.0168771892786026, -0.1031096875667572, -0.09744898229837418, -0.009730666875839233, 0.1282179206609726, -0.07564639300107956, 0.027895595878362656, -0.09694423526525497, 0.14545443654060364, -0.14651785790920258, -0.011281884275376797, -0.14503087103366852, 0.17096620798110962, -0.015164160169661045, 0.061991143971681595, 0.08898396044969559, 0.11208969354629517, 0.010431068018078804, 0.011487380601465702, -0.04353467375040054, -0.009544032625854015, 0.04992964491248131, -0.009770030155777931, -0.04872111603617668, -0.10323239862918854, 0.025055428966879845, -0.03217533603310585, 0.13247829675674438, -0.10555142164230347, -0.007609618827700615, 0.06357952952384949, 0.07360116392374039, -0.04382004588842392, -0.01155494712293148, 0.05051271617412567, 0.07693850994110107, 0.012046639807522297, -0.002411977853626013, -0.010161114856600761, -0.003953214269131422, -0.08577527105808258, 0.15579910576343536, -0.22688540816307068, -0.047173961997032166, 0.10947221517562866, -0.004412295296788216, -0.07599752396345139, 0.10994510352611542, -0.003907517995685339, -0.04871108755469322, -0.019593367353081703, -0.026264816522598267, 0.3354864716529846, 0.012646906077861786, 0.11704505980014801, -0.07841938734054565, -0.011751244775950909, 0.027100427076220512, -0.10925383865833282, 0.016432786360383034, 0.06387126445770264, -0.10269882529973984, -0.05255537107586861, 0.021798277273774147, -0.05717514455318451, -0.07587305456399918, 0.21086814999580383, -0.016200244426727295, -0.09967432171106339, 0.0006020304281264544, 0.026978880167007446, 0.005218628793954849, 0.04245709627866745, -0.1400146335363388, -0.06043129414319992, 0.038750436156988144, 0.07499168068170547, 0.07426514476537704, -0.14579245448112488, 0.043351415544748306, 0.0013314287643879652, -0.12057197093963623, -0.09784303605556488, 0.09485659748315811, -0.03184349462389946, 0.08968380838632584, -0.125953808426857, -0.018825292587280273, -0.005350637715309858, -0.045349545776844025, -0.15702632069587708, 0.06891203671693802, -0.0870603621006012, -0.19398169219493866, -0.16011866927146912, 0.026613203808665276, -0.018609870225191116, -0.007135180290788412, 0.09348529577255249, -0.10943238437175751, 0.03156954422593117, -0.008580731227993965, 0.05040411651134491, -0.06739914417266846, -0.0193655863404274, -0.05498325079679489, -0.0033832774497568607, 0.08273716270923615, -0.12759891152381897, -0.011038186028599739, -0.020452778786420822, -0.07858355343341827, 0.027278117835521698, 0.015196286141872406, 0.0033858632668852806, 0.15406674146652222, -0.03372960165143013, -0.005560870282351971, -0.04272668436169624, 0.07162358611822128, -0.12049604207277298, -0.007181559689342976, 0.1517612487077713, -0.013917084783315659, -0.03162601590156555, 0.10229327529668808, 0.011351914145052433, -0.0308256633579731, -0.03425942733883858, -0.0041599455289542675, -0.03669426590204239, -0.28999820351600647, -0.09245075285434723, -0.04729241132736206, -0.10146597027778625, -0.05820653215050697, 0.03899591416120529, 0.09318867325782776, -0.0015265003312379122, -0.0755569338798523, -0.0559171587228775, 0.0681014358997345, -0.01579936407506466, 0.15792539715766907, 0.014274812303483486, 0.0723922997713089, -0.06755916029214859, 0.0023862828966230154, 0.043741367757320404, 0.017545992508530617, 0.12143391370773315, 0.03709503635764122, 0.06636566668748856, 0.06339774280786514, 0.0859450176358223, 0.06089717149734497, 0.00320265581831336, -0.01910928264260292, 0.017055926844477654, 0.026284318417310715, -0.08011320978403091, -0.025713978335261345, 0.013283920474350452, 0.13531842827796936, -0.012159219942986965, -0.021641986444592476, 0.019726304337382317, 0.10836286842823029, 0.14529407024383545, 0.07128317654132843, -0.1815875619649887, -0.09633693099021912, -0.053683292120695114, -0.114839568734169, -0.0032376693561673164, -0.0009459721040911973, 0.11639980971813202, -0.13327506184577942, 0.07579487562179565, 0.006606205832213163, 0.0745711699128151, -0.0008328112307935953, 0.029370734468102455, -0.08165945112705231, 0.037784405052661896, 0.004184145946055651, 0.12310159206390381, -0.25968101620674133, 0.20355215668678284, 0.02906135283410549, 0.15643258392810822, -0.05674821510910988, 0.025388414040207863, 0.05500715225934982, 0.010388730093836784, 0.08690927922725677, 0.010650767013430595, -0.008808013051748276, -0.06329265236854553, -0.14382588863372803, 0.029844263568520546, 0.01415963564068079, 0.04289954900741577, 0.01587236486375332, 0.014712338335812092, 0.014347177930176258, -0.02896539308130741, -0.105964295566082, -0.17669694125652313, -0.08285550773143768, 0.03278205916285515, 0.16048391163349152, 0.08914588391780853, -0.028191499412059784, -0.08419439196586609, -0.14553382992744446, 0.08115468919277191, -0.0879729837179184, -0.049247145652770996, -0.028175944462418556, -0.04458972066640854, 0.10933703184127808, -0.06742653250694275, -0.06901927292346954, 0.05811653658747673, 0.05492853373289108, -0.06721323728561401, -0.011882752180099487, 0.03859376162290573, -0.08819089084863663, -0.11619290709495544, -0.01987365633249283, 0.2602314054965973, 0.05186031386256218, 0.10537587106227875, 0.050546981394290924, 0.013564607128500938, 0.01966330036520958, -0.02451794221997261, 0.01144369412213564, 0.04795987531542778, -0.1022086963057518, 0.04779529944062233, 0.05984880030155182, -0.18639780580997467, -0.18744853138923645, -0.045784421265125275, 0.15926450490951538, 0.12388719618320465, -0.04479220137000084, 0.15154017508029938, 0.1333831548690796, -0.1024160236120224, -0.10972996801137924, -0.03722211718559265, 0.09377864003181458, 0.10661624372005463, -0.03111156076192856, -0.10784921050071716, 0.028352845460176468, 0.0548265278339386, -0.025197001174092293, -0.05356613174080849, -0.33085212111473083, -0.15471462905406952, 0.13002166152000427, -0.061036303639411926, 0.05147085338830948, -0.041456762701272964, -0.03331760689616203, -0.014589287340641022, 0.08320368081331253, -0.14137603342533112, -0.1162383109331131, 0.1006651297211647, 0.03708686679601669, 0.10891848057508469, 0.04658421874046326, -0.01796807162463665, 0.14272943139076233, 0.062301646918058395, -0.0019140553195029497, -0.045514680445194244, 0.0634949654340744, 0.06198718398809433, 0.02383103407919407, 0.14199449121952057, -0.13633336126804352, 0.017572320997714996, -0.09201151877641678, -0.07368496805429459, -0.05408388376235962, 0.11439257860183716, 0.0023922633845359087, 0.015002916567027569, 0.06017279252409935, -0.07194849848747253, -0.019226878881454468, -0.006491641514003277, -0.11084263026714325, -0.10414230823516846, 0.05477962642908096, 0.07056903839111328, 0.16805608570575714, -0.008663048036396503, -0.06839572638273239, -0.01708238199353218, -0.029759570956230164, 0.06837297230958939, 0.01008557341992855, -0.01747147925198078, 0.06426342576742172, 0.02156974747776985, 0.13535980880260468, -0.03960275277495384, -0.14343266189098358, 0.12714365124702454, 0.03747737780213356, -0.03992815315723419, -0.14616265892982483, -0.016841614618897438, 0.011399299837648869, 0.0014105618465691805, -0.01115182414650917, 0.12615396082401276, -0.11266698688268661, -0.009943637996912003, -0.024385366588830948, 0.014079841785132885, -0.13634935021400452, 0.22253555059432983, -0.019387314096093178, 0.060657065361738205, -0.08795428276062012, 0.0671040490269661, 0.04101455211639404, -0.020016483962535858, 0.10719180107116699, -0.03014698624610901, -0.060592371970415115, -0.04697061702609062, -0.03251158818602562, 0.12799790501594543, 0.1431027203798294, -0.180344358086586, -0.05308559164404869, -0.09160830825567245, -0.02097790502011776, 0.04120752960443497, 0.031662359833717346, 0.014116862788796425, -0.10057437419891357, -0.07153645157814026, -0.0919877141714096, 0.06814946234226227, 0.13782265782356262, -0.0006538882153108716, -0.1126820296049118, 0.2308250218629837, 0.07724439352750778, 0.005270598456263542, -0.021768566220998764, -0.06613150238990784, 0.06447611004114151, 0.07106968760490417, -0.1422860473394394, 0.0077376654371619225, -0.08211090415716171, 0.02044708840548992, 0.03550166264176369, -0.03909711912274361, -0.00719824805855751, 0.06149813532829285, -0.06571181118488312, 0.039901964366436005, -0.01565849594771862, 0.07299939543008804, -0.10634715110063553, 0.045135244727134705, 0.0018170482944697142, -0.04099041596055031, 0.08809209614992142, 0.17997179925441742, -0.08833862841129303, 0.1346198171377182, -0.20771706104278564, -0.04620683193206787, 0.06718717515468597, 0.05622164160013199, -0.04199475049972534, -0.13535161316394806, 0.04098515212535858, 0.10809125751256943, 0.041407495737075806, 0.01954619400203228, 0.05799967795610428, -0.059701330959796906, -0.017243899405002594, -0.08533831685781479, 0.009254541248083115, -0.05636479705572128, 0.06639376282691956, 0.08410914242267609, 0.11456087231636047, 0.1471586972475052, -0.14344018697738647, 0.0855691060423851, -0.09547137469053268, 0.019298667088150978, -0.08552123606204987, -0.03320687636733055, -0.1276528537273407, -0.07322053611278534, 0.08118856698274612, -0.05035320669412613, 0.10347366333007812, 0.0209317859262228, 0.03065197356045246, -0.01850193180143833, -0.07964999973773956, -0.039294347167015076, -0.018110334873199463, 0.16147306561470032, 0.02287358231842518, 0.019832748919725418, -0.06995732337236404, -0.05320712551474571, 0.021436305716633797, 0.022904297336935997, -0.01699717715382576, 0.1311221867799759, 0.007623085752129555, 0.06258490681648254, 0.10502495616674423, -0.12200380861759186, -0.05733294412493706, -0.03663858026266098, -0.15693114697933197, 0.0428207591176033, -0.030964216217398643, 0.14279820024967194, 0.196397066116333, -0.09774378687143326, 0.03865314647555351, 0.014806285500526428, -0.09115707129240036, -0.09086310118436813, -0.1414320021867752, -0.03666173666715622, -0.05998817831277847, 0.017931383103132248, -0.051264435052871704, 0.026668857783079147, 0.05450289323925972, 0.0515555702149868, -0.04872707277536392, 0.20790137350559235, -0.06196483597159386, -0.08338738232851028, 0.09269773215055466, -0.09942145645618439, 0.026124514639377594, -0.08306556940078735, -0.002175321104004979, 0.1396123170852661, -0.015930023044347763, 0.09220785647630692, 0.047761909663677216, -0.005743228830397129, 0.017395373433828354, -0.11505913734436035, -0.05793303996324539, 0.0322694256901741, -0.03121483139693737, 0.11177706718444824, 0.14150844514369965, 0.1502973884344101, -0.09547217190265656, -0.01498798094689846, 0.09369543194770813, -0.02042545937001705, -0.15735577046871185, -0.1165936142206192, 0.08913037180900574, -0.010083092376589775, -0.020050901919603348, 0.002044335938990116, -0.05913449451327324, 0.025311842560768127, 0.1337190717458725, 0.2523708939552307, 0.1029924675822258, 0.04287075251340866, -0.05897850915789604, -0.009378068149089813, -0.035399410873651505, 0.00015395689115393907, 0.040666624903678894, 0.0948876366019249, 0.011960398405790329, 0.10585909336805344, -0.08258551359176636, -0.04934397339820862, -0.031640395522117615, 0.04465463012456894, -0.09135260432958603, -0.12118466943502426, 0.03551974520087242, 0.17899534106254578, -0.00394775765016675, -0.17871883511543274, -0.12827414274215698, -0.04546910151839256, -0.10941984504461288, 0.04132436215877533, 0.061054203659296036, 0.12364038825035095, 0.00876004621386528, -0.04796881601214409, 0.010976732708513737, 0.0928848460316658, 0.0019359402358531952, -0.04490241780877113, -0.04050721973180771, 0.02347063459455967, -0.07032229006290436, 0.01699264906346798, 0.023052245378494263, 0.1713578701019287, 0.022766288369894028, 0.1075720340013504, 0.0037308544851839542, 0.1649937778711319, 0.006694968324154615, 0.001934326021000743, 0.081442691385746, 0.15869389474391937, -0.002540262183174491, 0.06787019222974777, 0.07156525552272797, -0.05479462817311287, 0.05079074949026108, -0.22460030019283295, 0.029715361073613167, -0.10239049047231674, 0.08413078635931015, -0.004907776601612568, 0.08357201516628265, 0.13552533090114594, -0.050874460488557816, -0.005184968933463097, -0.046461641788482666, -0.023971905931830406, 0.06188773363828659, -0.021725771948695183, -0.027498703449964523, -0.24811024963855743, 0.014525681734085083, -0.06768950074911118, 0.022332634776830673, -0.17141567170619965, -0.03755651414394379, -0.0380513072013855, -0.09558157622814178, 0.008030945435166359, 0.06219024583697319, 0.09442702680826187, 0.01975177973508835, -0.014436298049986362, -0.017421474680304527, 0.05485387146472931, 0.1191059872508049, -0.14157816767692566, -0.07016868889331818 ]
null
null
transformers
# Automatic Speech Recognition for Luganda This is the model built for the [Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition). It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0. We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` WER without KenLM: 15.38 % WER With KenLM: **Test Result**: 7.53 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)
{"language": "lg", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "lg", "robust-speech-event", "speech"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Luganda by Indonesian-NLP", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice lg", "type": "common_voice", "args": "lg"}, "metrics": [{"type": "wer", "value": 9.332, "name": "Test WER"}, {"type": "cer", "value": 1.987, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "lg"}, "metrics": [{"type": "wer", "value": 13.844, "name": "Test WER"}, {"type": "cer", "value": 2.68, "name": "Test CER"}]}]}]}
automatic-speech-recognition
cahya/wav2vec2-luganda
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "common_voice", "hf-asr-leaderboard", "lg", "robust-speech-event", "speech", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "lg" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #common_voice #hf-asr-leaderboard #lg #robust-speech-event #speech #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Automatic Speech Recognition for Luganda This is the model built for the Mozilla Luganda Automatic Speech Recognition competition. It is a fine-tuned facebook/wav2vec2-large-xlsr-53 model on the Luganda Common Voice dataset version 7.0. We also provide a live demo to test the model. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. WER without KenLM: 15.38 % WER With KenLM: Test Result: 7.53 % ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found here
[ "# Automatic Speech Recognition for Luganda\n\nThis is the model built for the \nMozilla Luganda Automatic Speech Recognition competition.\nIt is a fine-tuned facebook/wav2vec2-large-xlsr-53\nmodel on the Luganda Common Voice dataset version 7.0.\n\nWe also provide a live demo to test the model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nWER without KenLM: 15.38 %\n\nWER With KenLM:\n\nTest Result: 7.53 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #common_voice #hf-asr-leaderboard #lg #robust-speech-event #speech #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Automatic Speech Recognition for Luganda\n\nThis is the model built for the \nMozilla Luganda Automatic Speech Recognition competition.\nIt is a fine-tuned facebook/wav2vec2-large-xlsr-53\nmodel on the Luganda Common Voice dataset version 7.0.\n\nWe also provide a live demo to test the model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nWER without KenLM: 15.38 %\n\nWER With KenLM:\n\nTest Result: 7.53 %", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ 100, 93, 20, 43, 43 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #common_voice #hf-asr-leaderboard #lg #robust-speech-event #speech #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Automatic Speech Recognition for Luganda\n\nThis is the model built for the \nMozilla Luganda Automatic Speech Recognition competition.\nIt is a fine-tuned facebook/wav2vec2-large-xlsr-53\nmodel on the Luganda Common Voice dataset version 7.0.\n\nWe also provide a live demo to test the model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Indonesian test data of Common Voice.\n\n\n\nWER without KenLM: 15.38 %\n\nWER With KenLM:\n\nTest Result: 7.53 %## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO\n\nThe script used for training can be found here" ]
[ -0.06498296558856964, 0.08665987849235535, -0.002547492040321231, -0.022181984037160873, 0.09930657595396042, -0.005357414949685335, 0.13032440841197968, 0.14816947281360626, -0.044476468116045, -0.005568615160882473, -0.041152045130729675, -0.0632234588265419, 0.10684605687856674, 0.057011909782886505, 0.03104812279343605, -0.2889654040336609, 0.021304693073034286, -0.0894179716706276, 0.05380409210920334, 0.09969368577003479, 0.10189690440893173, -0.018911786377429962, 0.027945304289460182, 0.08290442824363708, -0.019304877147078514, 0.01783444918692112, -0.07143063098192215, -0.10020656138658524, 0.07282066345214844, 0.02512950450181961, 0.086760975420475, 0.01698460802435875, 0.05513019114732742, -0.21624282002449036, 0.014014719054102898, 0.007734149228781462, 0.07434088736772537, -0.016641609370708466, 0.03667864203453064, -0.023351898416876793, 0.14604954421520233, 0.08041069656610489, -0.0026811151765286922, 0.0179423987865448, -0.052313387393951416, -0.11490030586719513, -0.0620141439139843, -0.04483124986290932, 0.07032880932092667, 0.10918024927377701, -0.0377020426094532, 0.04380267113447189, -0.1139116957783699, 0.02596690133213997, 0.05020752549171448, -0.1183941438794136, -0.01267883088439703, 0.12446525692939758, 0.046892888844013214, 0.06472577154636383, -0.09701236337423325, -0.015721237286925316, 0.04376976191997528, -0.0012546130456030369, -0.04194169491529465, -0.08608517050743103, -0.11586868762969971, -0.03614554926753044, -0.09147966653108597, -0.001918869442306459, 0.2656276822090149, -0.013926194049417973, -0.0764838233590126, -0.09625954926013947, 0.0668703019618988, 0.0643341913819313, 0.01463097333908081, -0.011849939823150635, -0.01483860332518816, 0.07806280255317688, 0.06171021983027458, -0.04040755331516266, -0.12109917402267456, -0.11627697199583054, 0.03994923457503319, 0.07582402974367142, 0.020503802224993706, 0.02381136454641819, -0.1480497270822525, 0.1001337468624115, -0.0867568776011467, -0.1518317610025406, -0.06439803540706635, -0.024760061874985695, -0.04319150000810623, 0.01603168249130249, -0.037496089935302734, -0.144188791513443, 0.1347075253725052, 0.007855024188756943, 0.10872767120599747, 0.03012140840291977, -0.07219043374061584, 0.041084300726652145, 0.04211002588272095, 0.16675075888633728, -0.039026081562042236, -0.03484874591231346, 0.028291668742895126, 0.06685341149568558, -0.01790737360715866, -0.01578209176659584, -0.033517561852931976, -0.0025170394219458103, 0.05197988823056221, 0.09787540137767792, -0.04364439845085144, 0.017694972455501556, -0.05513662472367287, -0.04457543417811394, 0.03500588983297348, -0.16371934115886688, -0.0479254387319088, 0.021997535601258278, -0.022121036425232887, 0.11307056993246078, 0.12022814899682999, 0.02882266230881214, -0.013511850498616695, 0.04035961627960205, 0.040489260107278824, 0.019601956009864807, -0.08667350560426712, 0.0014673549449071288, 0.014928803779184818, 0.041584670543670654, 0.0035316897556185722, -0.08407338708639145, -0.1336890012025833, -0.07342943549156189, -0.012097847647964954, -0.028858380392193794, 0.05333311855792999, -0.07871927320957184, -0.03433692455291748, -0.0201761145144701, -0.034213099628686905, 0.05108277499675751, -0.03798787295818329, 0.0813717469573021, 0.08175553381443024, 0.05316237360239029, 0.0995921790599823, 0.04749946668744087, -0.10535169392824173, 0.023186249658465385, -0.05651010200381279, 0.12111173570156097, -0.08974535018205643, -0.030185723677277565, -0.10702043771743774, -0.027349524199962616, -0.11392411589622498, 0.01618165522813797, 0.05390935018658638, 0.15958471596240997, -0.2285989224910736, -0.019600072875618935, 0.20542170107364655, -0.15986280143260956, -0.06494753062725067, 0.15518806874752045, 0.011773350648581982, 0.18347926437854767, 0.033983103930950165, 0.15961652994155884, 0.1673727035522461, -0.14461307227611542, 0.04328698664903641, -0.022843873128294945, 0.02662363275885582, 0.09806575626134872, 0.11538031697273254, -0.08418706059455872, 0.020236892625689507, 0.04989342391490936, -0.10181822627782822, 0.05511320009827614, 0.0008288086974062026, -0.07291367650032043, -0.0151765625923872, -0.0389859713613987, 0.02617763914167881, -0.0019673353526741266, -0.0022096368484199047, -0.013931906782090664, -0.06745164096355438, 0.019296927377581596, 0.17843960225582123, -0.10569444298744202, 0.02806340716779232, -0.13802170753479004, 0.06904672831296921, -0.11529695242643356, 0.004276712890714407, -0.1414896696805954, 0.09508612006902695, 0.018673131242394447, -0.06069574132561684, 0.08677441626787186, 0.09091241657733917, 0.002545973053202033, -0.0022878358140587807, -0.026371413841843605, -0.004464327823370695, -0.05059526488184929, -0.013280859217047691, 0.039993297308683395, -0.08963369578123093, -0.011497251689434052, -0.05939624458551407, 0.1106291115283966, -0.12229302525520325, -0.0136973075568676, 0.04349673166871071, 0.0575028657913208, -0.022148089483380318, -0.005896100774407387, 0.10834075510501862, 0.03490873798727989, 0.02369755320250988, -0.018438588827848434, -0.019414067268371582, 0.03488938510417938, -0.09400316327810287, 0.10847415775060654, -0.0854978933930397, -0.12656055390834808, 0.0910520851612091, -0.0012268762802705169, -0.021500946953892708, 0.07673303782939911, -0.015108858235180378, -0.036742597818374634, -0.09442294389009476, -0.010350044816732407, 0.17699696123600006, 0.011844044551253319, 0.09440576285123825, -0.09648342430591583, 0.050412699580192566, -0.0030443554278463125, -0.10906939953565598, 0.03312934935092926, -0.006234935484826565, 0.05350803583860397, 0.012314037419855595, 0.017548421397805214, -0.062097083777189255, -0.09283895790576935, 0.24147288501262665, -0.04861791059374809, -0.10243746638298035, -0.057006318122148514, 0.018888814374804497, -0.024211693555116653, 0.05702750384807587, -0.2245628982782364, -0.02365175634622574, 0.040651869028806686, 0.07910801470279694, 0.07868704199790955, -0.14067333936691284, -0.004840479232370853, 0.0034607388079166412, -0.09167799353599548, -0.02945438027381897, 0.1401888132095337, -0.03484520688652992, 0.02673405595123768, -0.0889219343662262, 0.003112363163381815, -0.028596781194210052, -0.08695810288190842, -0.15165652334690094, 0.09911119192838669, -0.05450021103024483, -0.22556523978710175, -0.1315985918045044, 0.0633518174290657, -0.024784784764051437, -0.019781822338700294, 0.07538136839866638, -0.07103811204433441, -0.03226018324494362, -0.015715502202510834, 0.016300484538078308, 0.03307466581463814, 0.014322268776595592, -0.025230741128325462, 0.02292206510901451, 0.011926707811653614, -0.12623712420463562, -0.0022581510711461306, 0.02991480939090252, -0.07356110215187073, 0.008035396225750446, -0.04372725263237953, 0.047453444451093674, 0.10868339240550995, 0.05114392191171646, -0.002544613089412451, 0.03365117684006691, 0.12074346095323563, -0.12563294172286987, -0.009384307079017162, 0.2281392365694046, -0.07242857664823532, 0.0032075841445475817, 0.07111823558807373, 0.020507177338004112, -0.05523011088371277, 0.04682023078203201, 0.0020589192863553762, -0.037814732640981674, -0.2107032835483551, -0.06150981783866882, -0.07412856817245483, -0.04302133992314339, -0.10028576105833054, 0.01152109820395708, 0.038048066198825836, 0.018711037933826447, -0.007697707507759333, -0.09823212027549744, 0.050962068140506744, 0.02165127545595169, 0.05826127901673317, -0.005910762585699558, 0.028804287314414978, -0.07665714621543884, -0.01832517609000206, 0.03967723995447159, 0.05870167165994644, 0.183450847864151, 0.09365900605916977, -0.009531169198453426, 0.12700439989566803, 0.12910620868206024, 0.09256993234157562, 0.02171977609395981, -0.0849979892373085, 0.044947050511837006, 0.0008997924742288888, -0.07603143900632858, -0.045757170766592026, 0.04521141201257706, 0.03887678310275078, -0.04523041844367981, -0.010750744491815567, 0.014544334262609482, 0.044374480843544006, 0.1114131435751915, 0.06861468404531479, -0.07737088203430176, -0.030811898410320282, 0.011446689255535603, -0.06175801157951355, 0.004197179339826107, 0.012168372981250286, 0.13597483932971954, -0.17064423859119415, 0.05098621919751167, 0.003972259815782309, 0.05311090126633644, -0.07722052931785583, -0.020383330062031746, -0.036252353340387344, 0.04385533183813095, -0.0032899004872888327, 0.12676525115966797, -0.25624892115592957, 0.18415188789367676, 0.004295358434319496, 0.12430642545223236, -0.08575771003961563, 0.01944730244576931, 0.08739258348941803, 0.01540999487042427, 0.11554315686225891, -0.014513754285871983, -0.016044002026319504, -0.06156821548938751, -0.11546968668699265, 0.06339894235134125, 0.06155505031347275, -0.007722524460405111, 0.08329164236783981, -0.026625044643878937, 0.014182664453983307, -0.013398815877735615, -0.018785230815410614, -0.1193581223487854, -0.031674277037382126, 0.08582652360200882, 0.0650000125169754, 0.10997533798217773, -0.047965556383132935, -0.04783156141638756, 0.002900976687669754, 0.056849997490644455, -0.06557264178991318, -0.07853236049413681, -0.0444277785718441, -0.07204682379961014, 0.1772240400314331, -0.06502746045589447, -0.09677249938249588, 0.043509263545274734, 0.10348125547170639, 0.014302191324532032, -0.011445334181189537, -0.005396943539381027, -0.07169899344444275, -0.14919829368591309, -0.013532689772546291, 0.15079209208488464, 0.05134376883506775, 0.054138656705617905, 0.03169991075992584, -0.034689873456954956, 0.034934379160404205, -0.1374955028295517, -0.0805303081870079, 0.18482527136802673, -0.13533183932304382, 0.08457113802433014, -0.03356114402413368, -0.11292172223329544, -0.1330237239599228, -0.1187763586640358, 0.05160261690616608, 0.04600125178694725, 0.0016636863583698869, 0.10489849001169205, 0.12556186318397522, -0.1145002543926239, -0.15811294317245483, -0.08710919320583344, 0.0879758819937706, 0.0510488785803318, -0.0211165864020586, -0.1217484101653099, 0.017895355820655823, 0.04044030234217644, -0.024082764983177185, -0.06971411406993866, -0.3121921420097351, -0.13807329535484314, 0.07677080482244492, -0.06772415339946747, 0.06941786408424377, -0.12475115805864334, -0.0602676123380661, -0.01362360268831253, -0.036805517971515656, -0.007882224395871162, -0.059775955975055695, 0.11000695824623108, 0.002049627946689725, 0.09801754355430603, 0.03510328009724617, -0.013566811569035053, 0.14302244782447815, 0.04172510281205177, 0.019157299771904945, -0.026336614042520523, 0.026783794164657593, 0.011990098282694817, 0.009675797075033188, 0.20967410504817963, -0.05863850936293602, 0.025275863707065582, -0.15270909667015076, -0.0664210170507431, -0.06218300759792328, 0.04964277520775795, 0.002705078572034836, -0.034800030291080475, -0.016602126881480217, 0.06974836438894272, 0.02086574211716652, 0.02153180167078972, -0.053883638232946396, -0.10878400504589081, -0.09221518039703369, 0.0515439510345459, 0.16967663168907166, 0.1059437170624733, -0.02901398204267025, -0.022062906995415688, 0.025657201185822487, 0.07668880373239517, -0.13835321366786957, 0.028526652604341507, 0.046893227845430374, 0.017412645742297173, 0.1784915328025818, -0.03486539423465729, -0.18599958717823029, 0.09883058071136475, 0.08387912064790726, -0.039207957684993744, -0.0916638895869255, -0.04749614745378494, 0.02662646770477295, -0.060571931302547455, -0.024700256064534187, 0.0690094530582428, -0.08884716033935547, -0.002736292313784361, -0.026866918429732323, 0.06517774611711502, -0.1417367160320282, 0.1851259469985962, 0.015468279831111431, 0.04128359630703926, -0.04941606521606445, 0.1448936015367508, 0.022725548595190048, 0.024424565955996513, 0.020828397944569588, 0.025047605857253075, -0.05853840708732605, -0.009203563444316387, -0.054553985595703125, 0.1791502833366394, 0.019828304648399353, -0.15109863877296448, -0.04254914075136185, -0.015106958337128162, -0.10239148139953613, 0.03466790169477463, 0.05664030835032463, 0.07103271782398224, -0.05042990669608116, -0.02662876807153225, -0.10887709259986877, 0.06929554045200348, 0.12837958335876465, -0.03317265585064888, -0.05237303674221039, 0.04854606091976166, 0.12220027297735214, 0.025731971487402916, -0.03033955954015255, -0.11478234827518463, 0.006935677491128445, 0.04769052192568779, -0.0663423016667366, 0.04097029194235802, -0.09709863364696503, -0.011001802049577236, 0.019641445949673653, -0.12840153276920319, -0.0076220096088945866, 0.02834826149046421, -0.044531937688589096, 0.01683339662849903, -0.0633893758058548, 0.11164198070764542, -0.0713781863451004, -0.02688758261501789, 0.07136514782905579, -0.08700123429298401, 0.034525226801633835, 0.09060928225517273, -0.03905417397618294, 0.10289893299341202, -0.05689532309770584, 0.005328773520886898, 0.04964579641819, 0.06927334517240524, -0.025972990319132805, -0.18687713146209717, 0.00006705526175210252, 0.06987401098012924, 0.03384579345583916, -0.013540372252464294, 0.11372842639684677, -0.10783932358026505, -0.052791863679885864, -0.03670063242316246, 0.0127708213403821, -0.0012118533486500382, 0.02129073441028595, 0.09633100777864456, 0.11279415339231491, 0.14268077909946442, -0.0774724930524826, 0.11680743843317032, -0.13975758850574493, 0.0019227323355153203, -0.05373973399400711, 0.018865877762436867, -0.03527363762259483, -0.0315321646630764, 0.05390803515911102, -0.10110719501972198, 0.07655438035726547, 0.020315231755375862, 0.12262388318777084, -0.025235258042812347, -0.08164789527654648, 0.02302372083067894, 0.0030904340092092752, 0.13973155617713928, 0.09608600288629532, 0.056575339287519455, -0.006157129071652889, -0.02775554172694683, -0.0375790074467659, -0.05678519606590271, 0.044268395751714706, 0.1290281116962433, 0.07390464842319489, 0.08718349784612656, 0.16430164873600006, -0.0048248316161334515, -0.08179689198732376, -0.058621637523174286, -0.04709506407380104, -0.007870756089687347, -0.02363751083612442, 0.09712785482406616, 0.1553335338830948, -0.1628989428281784, 0.10327865183353424, 0.04432810842990875, -0.09185396134853363, -0.10634070634841919, -0.187736377120018, -0.05351721867918968, -0.10476166009902954, 0.032475221902132034, -0.10899747908115387, 0.041675224900245667, 0.033678341656923294, 0.037534311413764954, -0.09059372544288635, 0.17976678907871246, -0.07746626436710358, -0.08911245316267014, 0.05204106867313385, -0.06876082718372345, 0.05986722931265831, 0.021030908450484276, 0.03122873604297638, 0.0712447538971901, 0.10844138264656067, 0.04597765579819679, 0.028539860621094704, -0.006905721500515938, 0.004883311223238707, -0.0898057147860527, -0.04702645167708397, 0.008017750456929207, -0.04980137199163437, 0.07696269452571869, 0.13055302202701569, 0.11119627952575684, -0.05566391348838806, 0.03549366071820259, 0.14776858687400818, -0.03664042055606842, -0.146884024143219, -0.21194088459014893, 0.10259760916233063, -0.005889630876481533, -0.023783724755048752, -0.027135880663990974, -0.08968503773212433, -0.04326935112476349, 0.29568642377853394, 0.057053595781326294, 0.03398248180747032, 0.03028857707977295, -0.007421255111694336, 0.0048379115760326385, -0.053322263062000275, 0.03253580257296562, 0.08503799885511398, 0.11618806421756744, 0.009668147191405296, 0.04473135992884636, -0.0494752936065197, -0.07231859117746353, 0.01994151622056961, 0.037399664521217346, -0.07450515776872635, -0.08697693794965744, -0.014942451380193233, 0.1419433206319809, -0.07467318326234818, -0.16418887674808502, -0.0565047562122345, -0.03751923143863678, -0.14107148349285126, -0.012710648588836193, -0.01558011956512928, 0.08264916390180588, -0.01776040531694889, -0.02571665123105049, 0.007511150557547808, 0.12854929268360138, 0.0377398282289505, 0.014015186578035355, -0.09517975896596909, 0.05077193304896355, -0.047371815890073776, 0.0620158389210701, 0.04681885614991188, 0.10995751619338989, 0.015993714332580566, 0.09863904863595963, -0.039808131754398346, 0.16317753493785858, 0.04333386570215225, -0.048446472734212875, 0.0027431126218289137, 0.1356387734413147, -0.033669158816337585, 0.07483673840761185, 0.0431007482111454, -0.038106419146060944, 0.023840753361582756, -0.06209876015782356, -0.003710345830768347, -0.12573125958442688, 0.044716935604810715, -0.09262872487306595, 0.12154088169336319, 0.13192041218280792, -0.0777343288064003, -0.009962493553757668, -0.029247617349028587, 0.10077828168869019, -0.022141270339488983, -0.022025329992175102, -0.1034109815955162, -0.15182913839817047, -0.04540820047259331, -0.0424252524971962, 0.002997137838974595, -0.06705504655838013, -0.020401079207658768, 0.09582903236150742, -0.06089688464999199, 0.03660760074853897, 0.07310585677623749, 0.03179841861128807, 0.06961168348789215, -0.018218308687210083, -0.15400709211826324, 0.036886200308799744, 0.09698739647865295, -0.2246091067790985, -0.10569531470537186 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 135.4675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
{"language": ["ab"], "tags": ["ab", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
cahya/xls-r-ab-test
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ab" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #ab #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #endpoints_compatible #region-us
# This model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 135.4675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
[ "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 135.4675\n- Wer: 1.0", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 100", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2.dev0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #ab #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #endpoints_compatible #region-us \n", "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 135.4675\n- Wer: 1.0", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 100", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2.dev0\n- Tokenizers 0.10.3" ]
[ 103, 70, 6, 12, 8, 3, 88, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #ab #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #endpoints_compatible #region-us \n# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 135.4675\n- Wer: 1.0## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 100### Training results### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.2.dev0\n- Tokenizers 0.10.3" ]
[ -0.09933320432901382, 0.0849357545375824, -0.004780828021466732, 0.04214940220117569, 0.13064497709274292, -0.00287280953489244, 0.11566688120365143, 0.1549714058637619, -0.11035052686929703, 0.0717054083943367, 0.039230819791555405, 0.08090195059776306, 0.07204101234674454, 0.0828932374715805, -0.021242685616016388, -0.22707267105579376, 0.0060178367421031, -0.03828146681189537, -0.09506300091743469, 0.10281825810670853, 0.09463843703269958, -0.10668622702360153, 0.018922695890069008, 0.013339536264538765, -0.12203409522771835, 0.04310785233974457, 0.0006851994548924267, -0.040800683200359344, 0.11108654737472534, 0.04281562194228172, 0.0864725261926651, 0.011367483995854855, 0.10852028429508209, -0.25814950466156006, 0.0019302727887406945, 0.1246054396033287, 0.047974541783332825, 0.057823508977890015, 0.06279423087835312, -0.024020660668611526, 0.09901805222034454, -0.07349050045013428, 0.07672371715307236, 0.05249049514532089, -0.08585098385810852, -0.2165975421667099, -0.10084928572177887, 0.01119364146143198, 0.09771685302257538, 0.11896002292633057, -0.029404178261756897, 0.0740085318684578, -0.10252761840820312, 0.09397240728139877, 0.22102749347686768, -0.20000971853733063, -0.05077652260661125, 0.03081265278160572, 0.05204593390226364, 0.051507413387298584, -0.11841166019439697, 0.017227444797754288, 0.04429119825363159, 0.00919961929321289, 0.06727197766304016, -0.01188262365758419, -0.04388103261590004, 0.01703520491719246, -0.10724129527807236, -0.05135762318968773, 0.11039546877145767, 0.02328556403517723, -0.02814643643796444, -0.11465302854776382, -0.040932219475507736, -0.12364064902067184, -0.013363854959607124, -0.013888503424823284, 0.03484541177749634, -0.035920124500989914, -0.06541085988283157, -0.018228081986308098, -0.07414032518863678, -0.08602848649024963, 0.043297894299030304, 0.10600175708532333, 0.0306340754032135, -0.00010718627891037613, -0.05156058818101883, 0.12305466085672379, 0.025915047153830528, -0.12748083472251892, -0.031025080010294914, 0.025464490056037903, -0.12533214688301086, -0.016150979325175285, -0.03734812140464783, -0.04606800526380539, 0.0036785199772566557, 0.1081717237830162, -0.041420720517635345, 0.0978042408823967, -0.014737814664840698, 0.014000662602484226, -0.049939826130867004, 0.18055619299411774, -0.032680876553058624, -0.06933747231960297, -0.03648458793759346, 0.11571001261472702, -0.020718106999993324, -0.03035460226237774, -0.04233080521225929, 0.04311437904834747, 0.06948532909154892, 0.07165692001581192, -0.03390390798449516, 0.01661684177815914, -0.04957864433526993, 0.00334546878002584, -0.0860937312245369, -0.15946604311466217, 0.04573250561952591, 0.03801089525222778, -0.08031955361366272, 0.0013652306515723467, 0.02738768421113491, -0.006742172874510288, -0.05799933522939682, 0.12130288034677505, -0.036022670567035675, 0.015726737678050995, -0.09009924530982971, -0.09729105234146118, 0.0025905200745910406, -0.06738994270563126, -0.0236824918538332, -0.0367785207927227, -0.14810140430927277, -0.08745681494474411, 0.0570344403386116, -0.056339431554079056, -0.0017238862346857786, -0.06760739535093307, -0.07376455515623093, 0.038204070180654526, -0.019647950306534767, 0.14293324947357178, -0.03749765828251839, 0.08608760684728622, 0.002578411716967821, 0.03295975923538208, 0.10893820226192474, 0.06135319173336029, -0.030768970027565956, 0.02367689460515976, -0.12213312834501266, 0.12409399449825287, -0.09820739179849625, 0.019284548237919807, -0.11776474118232727, -0.07577431201934814, -0.009920899756252766, 0.018815478309988976, 0.0975307822227478, 0.11203562468290329, -0.21885009109973907, -0.08247533440589905, 0.1562102735042572, -0.06587037444114685, -0.020476052537560463, 0.08484836667776108, -0.04678642377257347, 0.04415905475616455, 0.06258249282836914, 0.18397897481918335, 0.1048416942358017, -0.15224657952785492, -0.005432708188891411, -0.02676844224333763, 0.08000162988901138, 0.08567250519990921, 0.013815931044518948, -0.06839930266141891, 0.07227939367294312, -0.0002819148066919297, -0.06645810604095459, 0.0018571773543953896, -0.06279930472373962, -0.07541689276695251, -0.017117483541369438, -0.047070007771253586, 0.011405501514673233, 0.04950052127242088, 0.020231300964951515, -0.05190441384911537, -0.12356775254011154, 0.09476952999830246, 0.11491838842630386, -0.10824134945869446, 0.04399007186293602, -0.08577767759561539, 0.03575994446873665, 0.0021433185320347548, 0.0022358931601047516, -0.20100122690200806, -0.01260172575712204, 0.013532062992453575, -0.05277949571609497, 0.007936455309391022, 0.04101227968931198, 0.0691051185131073, 0.02866516262292862, -0.035838544368743896, -0.03199981525540352, -0.07623499631881714, -0.015908334404230118, -0.07449963688850403, -0.225123792886734, -0.04295453056693077, -0.019800599664449692, 0.1602093130350113, -0.22409938275814056, 0.002115227049216628, 0.039848241955041885, 0.11404118686914444, 0.035198260098695755, -0.06547568738460541, -0.013534619472920895, 0.05801041051745415, -0.00101024832110852, -0.08649595826864243, 0.03335067257285118, 0.007504274137318134, -0.0820719450712204, -0.0027790560852736235, -0.16819868981838226, -0.0281456857919693, 0.0854882001876831, 0.0227349866181612, -0.08922183513641357, -0.0036386477295309305, -0.04878369718790054, -0.03659313917160034, -0.08887964487075806, -0.031481385231018066, 0.2060113251209259, 0.025976158678531647, 0.13417169451713562, -0.07187876850366592, -0.08278690278530121, 0.00315568083897233, 0.006872919388115406, 0.02987491525709629, 0.1189650446176529, 0.03650443255901337, -0.013258054852485657, 0.06349853426218033, 0.023468686267733574, -0.03948799520730972, 0.20083044469356537, -0.06321023404598236, -0.08690466731786728, -0.026354985311627388, 0.015184622257947922, 0.011967352591454983, 0.12646985054016113, -0.12287185341119766, -0.018424443900585175, 0.009966641664505005, 0.04132608696818352, 0.020409569144248962, -0.21028637886047363, 0.015473023056983948, 0.04992783069610596, -0.07307101786136627, -0.02062191255390644, -0.020486503839492798, 0.011179205030202866, 0.08511953800916672, -0.01667254976928234, -0.0456438809633255, -0.021156761795282364, -0.05106857046484947, -0.0961342304944992, 0.168621227145195, -0.10179853439331055, -0.1369844675064087, -0.09699490666389465, -0.00569153344258666, -0.005656969267874956, -0.02421223372220993, 0.024307502433657646, -0.12402692437171936, -0.04891667515039444, -0.08180665969848633, 0.014492900110781193, -0.026644093915820122, -0.017842315137386322, 0.04918365180492401, 0.011593564413487911, 0.09356357902288437, -0.1488284319639206, 0.0088424701243639, -0.04361504688858986, -0.06093951687216759, -0.01692000962793827, 0.058333396911621094, 0.05615438520908356, 0.16277140378952026, 0.02792295813560486, 0.045928750187158585, -0.038998112082481384, 0.18406355381011963, -0.14765983819961548, -0.0019331398652866483, 0.1037825420498848, 0.009174976497888565, 0.047176238149404526, 0.12998735904693604, 0.03763876482844353, -0.09341122955083847, 0.023481030017137527, 0.08967416733503342, -0.028458330780267715, -0.26585403084754944, 0.0020706024952232838, -0.05539814010262489, -0.06119167059659958, 0.06714697927236557, 0.03232661262154579, 0.030425241217017174, -0.008751770481467247, -0.008585835807025433, 0.012930785305798054, 0.045104265213012695, 0.041963931173086166, 0.06500671058893204, 0.020523082464933395, 0.10896676778793335, -0.025551192462444305, -0.011991509236395359, 0.02504146471619606, -0.001259444747120142, 0.2787102460861206, -0.018343092873692513, 0.11566668003797531, 0.07210367172956467, 0.09617185592651367, -0.017329635098576546, 0.04066377878189087, 0.0047104693949222565, -0.022840576246380806, 0.0294312983751297, -0.07444076985120773, -0.02763492241501808, 0.023657552897930145, 0.04028945416212082, 0.019716335460543633, -0.07419377565383911, 0.030978625640273094, 0.032702475786209106, 0.31708502769470215, 0.06657480448484421, -0.21961773931980133, -0.04136926308274269, 0.0030522067099809647, -0.0571858175098896, -0.04135603457689285, 0.008952219039201736, 0.14739321172237396, -0.1229625791311264, 0.0566873773932457, -0.060149259865283966, 0.08647634088993073, -0.056237563490867615, 0.001996582606807351, 0.06174997240304947, 0.09177157282829285, -0.013722307048738003, 0.04779937118291855, -0.2539477050304413, 0.2422541379928589, 0.012329630553722382, 0.13510148227214813, -0.03869250416755676, 0.06004764512181282, 0.03576790913939476, -0.006281782872974873, 0.09329153597354889, 0.003179695922881365, -0.09121710807085037, -0.1717936396598816, -0.0473027266561985, 0.010821709409356117, 0.13504335284233093, -0.03487483039498329, 0.09925971925258636, -0.057591747492551804, -0.015043757855892181, 0.033147044479846954, -0.0853450745344162, -0.1318071186542511, -0.12466873228549957, 0.02071257308125496, 0.007122354581952095, 0.009788607247173786, -0.0802716389298439, -0.086102195084095, -0.03263793885707855, 0.14588052034378052, -0.07876507937908173, -0.04187501594424248, -0.12619227170944214, 0.0676775649189949, 0.10696246474981308, -0.041779760271310806, 0.010868956334888935, 0.05580330640077591, 0.10239806771278381, 0.024894285947084427, -0.03596646711230278, 0.05444929003715515, -0.07402640581130981, -0.1841258704662323, -0.06615685671567917, 0.1607244312763214, 0.058979667723178864, 0.061316125094890594, -0.011336611583828926, 0.016727585345506668, 0.0301496721804142, -0.07154449820518494, 0.039881136268377304, 0.12435557693243027, 0.01652059145271778, 0.05415348336100578, -0.03238397836685181, 0.012304768897593021, -0.07973398268222809, -0.039063792675733566, 0.09993204474449158, 0.18430165946483612, -0.06754361838102341, 0.0882987231016159, 0.054775070399045944, -0.11331681162118912, -0.16780932247638702, 0.058137644082307816, 0.13287822902202606, 0.05190844088792801, 0.023538609966635704, -0.18437404930591583, 0.045352526009082794, 0.07320970296859741, -0.012379461899399757, 0.05418189615011215, -0.36673519015312195, -0.14366663992404938, 0.04926851764321327, 0.06268902122974396, -0.018904458731412888, -0.1196368858218193, -0.04627274349331856, -0.03306380286812782, -0.0691305622458458, 0.012845005840063095, -0.05747959390282631, 0.1280437856912613, 0.020008839666843414, 0.04279348626732826, 0.030025746673345566, -0.03769920766353607, 0.11644402891397476, 0.021945422515273094, 0.0766826868057251, -0.028031986206769943, 0.03896453231573105, 0.0447440966963768, -0.07360193133354187, 0.01263982430100441, -0.049865346401929855, 0.03121635876595974, -0.13506528735160828, -0.016298843547701836, -0.09367874264717102, 0.01713024079799652, -0.06550689786672592, -0.03490776568651199, -0.035650670528411865, 0.042686574161052704, 0.07716841995716095, -0.013527125120162964, 0.020761527121067047, -0.07726208120584488, 0.11303144693374634, 0.11860724538564682, 0.09605889767408371, 0.008831707760691643, -0.16415251791477203, 0.015759877860546112, 0.019294284284114838, 0.06367103010416031, -0.155289888381958, 0.04285600036382675, 0.12363402545452118, 0.05642373859882355, 0.17104926705360413, 0.04328412190079689, -0.10246903449296951, 0.019523391500115395, 0.0370519757270813, -0.06479471921920776, -0.13857018947601318, 0.0017154637025669217, -0.042138952761888504, -0.1010468378663063, 0.01119317952543497, 0.13373753428459167, -0.035057660192251205, 0.005037382710725069, 0.001574179856106639, 0.031103944405913353, -0.0447215735912323, 0.24339960515499115, 0.013057643547654152, 0.09663534164428711, -0.09081485867500305, 0.10276583582162857, 0.03997679054737091, -0.06245807185769081, 0.05754038691520691, 0.05462107062339783, -0.0458657406270504, -0.0014643165050074458, 0.0075561413541436195, 0.12174461781978607, 0.04635624215006828, -0.05577037110924721, -0.11774801462888718, -0.11363468319177628, 0.055322084575891495, 0.10513128340244293, 0.015758873894810677, 0.017640531063079834, -0.06303322315216064, 0.021040474995970726, -0.1281341165304184, 0.08700573444366455, 0.07219654321670532, 0.027444615960121155, -0.11577224731445312, 0.13716617226600647, 0.04075833037495613, 0.009546496905386448, 0.0006459300639107823, -0.027259930968284607, -0.0930987074971199, 0.042810551822185516, -0.09977611899375916, -0.017434008419513702, 0.0020059614907950163, -0.01473644096404314, 0.0013247645692899823, -0.01648087240755558, -0.030471304431557655, 0.06671515107154846, -0.09813512861728668, -0.048511143773794174, 0.0004842330818064511, 0.042925022542476654, -0.12462951242923737, 0.007993835024535656, 0.021545883268117905, -0.12032502889633179, 0.06675790250301361, 0.04870441183447838, -0.005950614344328642, 0.037345170974731445, -0.10604966431856155, -0.02552678808569908, 0.0301845483481884, 0.004304816480726004, 0.049002617597579956, -0.11881403625011444, -0.0032907018903642893, -0.034032393246889114, 0.039332643151283264, 0.007507065311074257, -0.017729809507727623, -0.12197704613208771, 0.017688876017928123, -0.03996606171131134, -0.042952846735715866, -0.0470726378262043, 0.07873352617025375, 0.059517476707696915, 0.056159161031246185, 0.15422122180461884, -0.08218320459127426, 0.06365931034088135, -0.22116175293922424, -0.02381986193358898, 0.012599172070622444, -0.028398722410202026, -0.031602971255779266, -0.040698736906051636, 0.10287602245807648, -0.06525081396102905, 0.07300785183906555, 0.01879945956170559, 0.09972024708986282, 0.03103821352124214, -0.10237287729978561, -0.021999603137373924, 0.02288169227540493, 0.11738795042037964, 0.03962095081806183, -0.009203257039189339, 0.08948724716901779, -0.029390251263976097, 0.0572558231651783, 0.12560079991817474, 0.1677929013967514, 0.16429759562015533, 0.05247950553894043, 0.07769974321126938, 0.05764313042163849, -0.1213005930185318, -0.14092449843883514, 0.10869032144546509, -0.0998455360531807, 0.14012227952480316, -0.07043382525444031, 0.15132546424865723, 0.1200358122587204, -0.18218931555747986, 0.09227795898914337, -0.057419974356889725, -0.11414401233196259, -0.1349116712808609, -0.06798793375492096, -0.06613551080226898, -0.14430677890777588, 0.03879604488611221, -0.09977476298809052, 0.08890350908041, 0.10419505089521408, 0.04429289698600769, 0.02095647342503071, 0.1257426142692566, 0.002060256665572524, -0.020894529297947884, 0.10572057962417603, 0.0044758995063602924, 0.004462090320885181, -0.07302059978246689, -0.04872995987534523, 0.06827250868082047, -0.014957784675061703, 0.07934252917766571, -0.0210624560713768, -0.03941130265593529, 0.04939593747258186, -0.005564059130847454, -0.06471125036478043, 0.04193812236189842, -0.006612792611122131, 0.06063886359333992, 0.06697233021259308, 0.07534559816122055, -0.000512012979015708, -0.03514903411269188, 0.27183592319488525, -0.09665662795305252, -0.09059520810842514, -0.15030647814273834, 0.20230090618133545, 0.053030405193567276, 0.013414295390248299, 0.022968780249357224, -0.11958297342061996, -0.01564604602754116, 0.19020524621009827, 0.1393732875585556, -0.031722478568553925, -0.01087746862322092, -0.018380895256996155, -0.012086575850844383, -0.0584697388112545, 0.10804768651723862, 0.09912459552288055, 0.06613937020301819, -0.022992175072431564, 0.01041179709136486, -0.003798175137490034, -0.0795845314860344, -0.029903220012784004, 0.10273174941539764, 0.009053170680999756, -0.004488516133278608, -0.02128090150654316, 0.09002174437046051, 0.005209705326706171, -0.23499444127082825, 0.06407511979341507, -0.16471220552921295, -0.16510109603405, -0.01386144757270813, 0.11166134476661682, 0.00856123585253954, 0.05708955228328705, -0.012177550233900547, -0.021889833733439445, 0.1426786482334137, -0.009227250702679157, -0.010336237028241158, -0.1389598250389099, 0.0619652085006237, -0.1612163931131363, 0.17332279682159424, -0.02477250061929226, 0.03037143498659134, 0.09849393367767334, 0.04353603348135948, -0.06893827766180038, 0.06209735572338104, 0.06896715611219406, -0.14339464902877808, 0.009975643828511238, 0.2087366282939911, -0.03256377950310707, 0.12278860062360764, 0.039797522127628326, -0.09925447404384613, 0.038343679159879684, -0.07039476186037064, -0.030232606455683708, -0.09066899120807648, -0.020410286262631416, -0.04983212426304817, 0.12362804263830185, 0.22312480211257935, -0.03070097230374813, 0.029226765036582947, -0.07285723835229874, -0.002442405791953206, 0.013325894251465797, 0.0903918668627739, -0.04367538169026375, -0.23809583485126495, 0.047295331954956055, 0.006663316860795021, 0.005916460882872343, -0.19220015406608582, -0.09193309396505356, 0.0803859606385231, -0.08315572887659073, -0.046950746327638626, 0.1116257831454277, 0.05332089588046074, 0.05209076404571533, -0.035697318613529205, -0.16484053432941437, -0.005223387386649847, 0.177606001496315, -0.15067291259765625, -0.044101323932409286 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-md This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2415 | 1.0 | 1044 | 0.2084 | | 0.1244 | 2.0 | 2088 | 0.2903 | | 0.0427 | 3.0 | 3132 | 0.3329 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-finetuned-md", "results": []}]}
text-classification
caioamb/bert-base-uncased-finetuned-md
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-md ============================== This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.3329 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 27 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ -0.09818802028894424, 0.05199512466788292, -0.0018473370000720024, 0.12219730764627457, 0.1828797310590744, 0.025472216308116913, 0.11300966888666153, 0.1182556077837944, -0.10482728481292725, 0.014609066769480705, 0.12512393295764923, 0.19172686338424683, 0.003970614168792963, 0.0816538855433464, -0.05367591977119446, -0.25336217880249023, -0.0175081267952919, 0.049306001514196396, -0.08025875687599182, 0.13717584311962128, 0.09068548679351807, -0.13831107318401337, 0.08557545393705368, 0.007840552367269993, -0.22632767260074615, 0.020932041108608246, 0.022116342559456825, -0.06525222957134247, 0.15752488374710083, 0.01929161511361599, 0.12951552867889404, 0.003174971556290984, 0.0763898491859436, -0.17161822319030762, 0.011053630150854588, 0.05212678015232086, 0.006824488751590252, 0.0881318747997284, 0.06384914368391037, -0.0055829621851444244, 0.1241748183965683, -0.08587091416120529, 0.05348538979887962, 0.019310418516397476, -0.11995977908372879, -0.20754073560237885, -0.07404171675443649, 0.008072341792285442, 0.061576176434755325, 0.10786198079586029, 0.0027525878977030516, 0.13639435172080994, -0.09856656938791275, 0.098030686378479, 0.23569433391094208, -0.297638475894928, -0.07096005231142044, 0.027601420879364014, 0.009632017463445663, 0.08259118348360062, -0.11140765249729156, -0.016581596806645393, 0.05382002517580986, 0.047675564885139465, 0.13716958463191986, -0.04259655997157097, -0.12014438211917877, 0.026279667392373085, -0.14316770434379578, -0.020438455045223236, 0.11879438161849976, 0.02465122565627098, -0.030988210812211037, -0.02950080670416355, -0.05835181847214699, -0.1661030501127243, -0.039847563952207565, -0.013992279767990112, 0.04839644953608513, -0.032786644995212555, -0.06627855449914932, -0.004220214206725359, -0.10864407569169998, -0.07386106252670288, -0.07667744159698486, 0.1627262681722641, 0.03961862623691559, 0.013614688999950886, -0.03414616361260414, 0.10925576090812683, 0.011451015248894691, -0.12951315939426422, 0.033282965421676636, 0.03722613677382469, 0.001462325337342918, -0.04899483174085617, -0.07213915884494781, -0.07262372970581055, 0.010294339619576931, 0.09722807258367538, -0.04755859822034836, 0.051369328051805496, 0.03550664708018303, 0.04495755210518837, -0.11732703447341919, 0.20998656749725342, -0.02545563317835331, -0.013602562248706818, 0.010102193802595139, 0.04319791495800018, 0.0051887319423258305, -0.009012878872454166, -0.12287235260009766, -0.009045789018273354, 0.10502276569604874, 0.015048455446958542, -0.07939641177654266, 0.07379969209432602, -0.049599241465330124, -0.026181355118751526, 0.004931451287120581, -0.09947841614484787, 0.03582591563463211, -0.005083510186523199, -0.0800418108701706, -0.01893411949276924, 0.024013027548789978, 0.015122118405997753, -0.027363048866391182, 0.13295768201351166, -0.07973569631576538, 0.045217081904411316, -0.10650023818016052, -0.10678938031196594, 0.005229065660387278, -0.08080033957958221, 0.025829855352640152, -0.10019811987876892, -0.15230953693389893, -0.013163529336452484, 0.05627450719475746, -0.02039024792611599, -0.0564921610057354, -0.04328404366970062, -0.06637211889028549, 0.007890521548688412, -0.015750879421830177, 0.16621899604797363, -0.056245747953653336, 0.10934917628765106, 0.044524263590574265, 0.06458711624145508, -0.05690682306885719, 0.06281302124261856, -0.09750805050134659, -0.004785721655935049, -0.19146408140659332, 0.03820325806736946, -0.040620408952236176, 0.08396447449922562, -0.08682157844305038, -0.10604460537433624, 0.0010032375575974584, -0.0010311203077435493, 0.0664859414100647, 0.08244084566831589, -0.1585865020751953, -0.08290868252515793, 0.14762628078460693, -0.05730969458818436, -0.10868892818689346, 0.11507211625576019, -0.06106754019856453, 0.04842916131019592, 0.08029264211654663, 0.15237084031105042, 0.076693594455719, -0.0658668577671051, 0.04496949166059494, 0.005439587868750095, 0.04290582239627838, -0.07948366552591324, 0.0592789389193058, -0.002027395647019148, -0.028953319415450096, 0.03736705332994461, -0.034201446920633316, 0.061206139624118805, -0.08595715463161469, -0.0971209704875946, -0.04551217705011368, -0.10112520307302475, 0.05276189744472504, 0.07668381929397583, 0.09737742692232132, -0.10030825436115265, -0.06784311681985855, 0.061603836715221405, 0.06507164239883423, -0.05007043108344078, 0.03212079405784607, -0.04799296334385872, 0.04898929223418236, -0.03614116087555885, -0.020401805639266968, -0.19768939912319183, 0.009235604666173458, 0.009103072807192802, 0.005334511399269104, 0.0315716415643692, 0.029942790046334267, 0.07421968132257462, 0.05278102308511734, -0.055276405066251755, -0.011986447498202324, -0.013492591679096222, -0.011364606209099293, -0.14748458564281464, -0.19417496025562286, -0.014249557629227638, -0.013381600379943848, 0.10853821784257889, -0.20281453430652618, 0.036392658948898315, -0.021699026226997375, 0.049671608954668045, -0.0005462197586894035, 0.005032389424741268, -0.05582871660590172, 0.09836483001708984, -0.03408227860927582, -0.03954963758587837, 0.08374042063951492, -0.0012233181623741984, -0.08847294747829437, -0.04510335996747017, -0.09207663685083389, 0.19576513767242432, 0.14390894770622253, -0.14794959127902985, -0.07771488279104233, -0.00026842262013815343, -0.050711799412965775, -0.02869475819170475, -0.04323684051632881, 0.04579143598675728, 0.2108415961265564, -0.01499634888023138, 0.15925639867782593, -0.0674968883395195, -0.04860135167837143, 0.01724732480943203, -0.027713334187865257, 0.041618287563323975, 0.12043682485818863, 0.12113930284976959, -0.07653732597827911, 0.13484908640384674, 0.16616834700107574, -0.11247806996107101, 0.13059239089488983, -0.03591537103056908, -0.06663116067647934, -0.0026591704227030277, -0.014611383900046349, 0.004943800158798695, 0.0748344212770462, -0.15841270983219147, -0.020190199837088585, 0.014384137466549873, 0.016100643202662468, 0.02356915920972824, -0.23388633131980896, -0.038385678082704544, 0.03413686528801918, -0.034820690751075745, 0.006335513666272163, -0.021854577586054802, 0.006666122004389763, 0.10825588554143906, 0.0028386765625327826, -0.0902741551399231, 0.04191126301884651, 0.0067249685525894165, -0.07853908091783524, 0.21819794178009033, -0.07843610644340515, -0.15287338197231293, -0.12989495694637299, -0.08359993249177933, -0.04751773923635483, 0.012880620546638966, 0.06345906108617783, -0.10606907308101654, -0.025754569098353386, -0.045659471303224564, 0.015149750746786594, -0.011666106060147285, 0.0480179525911808, -0.003643346717581153, 0.0037543734069913626, 0.07133932411670685, -0.10949884355068207, -0.011235116980969906, -0.052334658801555634, -0.08268135040998459, 0.046279970556497574, 0.04001781344413757, 0.11170897632837296, 0.16017580032348633, -0.02966756373643875, 0.0026693306863307953, -0.0276127140969038, 0.21520169079303741, -0.06410165876150131, -0.0372479073703289, 0.13371065258979797, -0.0052721090614795685, 0.05427999421954155, 0.09665922820568085, 0.07750137150287628, -0.08528353273868561, 0.014546013437211514, 0.02598683349788189, -0.037992119789123535, -0.23067706823349, -0.03719213604927063, -0.06101883575320244, -0.03711475431919098, 0.09994706511497498, 0.03563660755753517, 0.061425525695085526, 0.0732356384396553, 0.049381498247385025, 0.1047784760594368, -0.04467153549194336, 0.051923301070928574, 0.11468228697776794, 0.053726207464933395, 0.12987646460533142, -0.049186721444129944, -0.08042523264884949, 0.03324570506811142, -0.022096475586295128, 0.21377699077129364, 0.017826179042458534, 0.1368824988603592, 0.05284242331981659, 0.1863900125026703, 0.0060048834420740604, 0.09107128530740738, -0.008492247201502323, -0.05064075067639351, -0.012406094931066036, -0.04409949481487274, -0.043960098177194595, 0.015114777721464634, -0.0691041350364685, 0.05971063673496246, -0.11381062865257263, -0.02189096249639988, 0.05080698803067207, 0.2616499662399292, 0.010683457367122173, -0.31801849603652954, -0.06940842419862747, -0.0011975689558312297, -0.03137398138642311, -0.015888230875134468, 0.02048945426940918, 0.08485685288906097, -0.0948290079832077, 0.027154644951224327, -0.06907419860363007, 0.09925093501806259, -0.037684082984924316, 0.05411935970187187, 0.07028942555189133, 0.08733896166086197, 0.011350731365382671, 0.08185391873121262, -0.33091163635253906, 0.2687968611717224, 0.008299103006720543, 0.0758107379078865, -0.08296943455934525, -0.0008869057637639344, 0.04756816849112511, 0.07081709802150726, 0.04566318914294243, -0.02015523426234722, -0.01541819330304861, -0.19723637402057648, -0.04575536027550697, 0.03162756562232971, 0.09373040497303009, -0.03042876534163952, 0.08096540719270706, -0.03318432718515396, 0.0026568614412099123, 0.07695195823907852, -0.014034408144652843, -0.04727845638990402, -0.09432549774646759, -0.01637599989771843, 0.02793639898300171, -0.05329224467277527, -0.05920861288905144, -0.10995014011859894, -0.13691449165344238, 0.1601794809103012, -0.018691083416342735, -0.02294882945716381, -0.11244518309831619, 0.07385030388832092, 0.06176484376192093, -0.08821175992488861, 0.04451733082532883, 0.0008080542320385575, 0.053522709757089615, 0.030441060662269592, -0.08259305357933044, 0.11169089376926422, -0.05614907667040825, -0.14805863797664642, -0.058039553463459015, 0.0961679220199585, 0.023336190730333328, 0.06044556945562363, -0.013656520284712315, 0.009827195666730404, -0.044804420322179794, -0.09503505378961563, 0.018628492951393127, -0.029969656839966774, 0.07221884280443192, 0.01430083904415369, -0.0680987611413002, 0.004293976817280054, -0.0677930936217308, -0.03526265546679497, 0.1927761435508728, 0.20680443942546844, -0.09616933017969131, 0.012724383734166622, 0.036581892520189285, -0.06753026694059372, -0.2019312083721161, 0.05208083987236023, 0.06029905751347542, 0.002845117589458823, 0.038881562650203705, -0.17911675572395325, 0.14725074172019958, 0.10507836192846298, -0.010219356045126915, 0.11718431860208511, -0.3217396140098572, -0.13398954272270203, 0.12373257428407669, 0.159210205078125, 0.14136596024036407, -0.15004676580429077, -0.02294408343732357, -0.03261219337582588, -0.10480929911136627, 0.0855163186788559, -0.09696009010076523, 0.12170936167240143, -0.035620640963315964, 0.08375588059425354, 0.0005896460497751832, -0.05689433217048645, 0.11504217237234116, 0.015095124952495098, 0.10382548719644547, -0.06255515664815903, -0.04230290278792381, 0.028215158730745316, -0.03304852545261383, 0.006035630591213703, -0.09710367023944855, 0.022050516679883003, -0.08710077404975891, -0.021432828158140182, -0.07907254248857498, 0.0470334030687809, -0.03293977305293083, -0.054157424718141556, -0.03149642050266266, 0.011181537993252277, 0.03140939772129059, -0.013977211900055408, 0.1342388242483139, 0.013983119279146194, 0.15161851048469543, 0.11190392076969147, 0.07869820296764374, -0.06702836602926254, -0.06419806182384491, -0.015150913968682289, -0.012088350020349026, 0.06616976857185364, -0.1375015377998352, 0.02603684738278389, 0.13718292117118835, 0.017425820231437683, 0.12721014022827148, 0.08656834065914154, -0.00946149043738842, 0.0062247817404568195, 0.06822346895933151, -0.1604415774345398, -0.06532097607851028, -0.009958778508007526, -0.05565505474805832, -0.09612838178873062, 0.05337386578321457, 0.07879328727722168, -0.0653175339102745, -0.012779555283486843, -0.008687121793627739, -0.01305963285267353, -0.06990870088338852, 0.20274618268013, 0.06139158457517624, 0.044389545917510986, -0.10579676181077957, 0.0660041868686676, 0.06251280009746552, -0.06994451582431793, -0.010231798514723778, 0.08064926415681839, -0.08480368554592133, -0.04563882201910019, 0.11881528049707413, 0.19522476196289062, -0.053995706140995026, -0.042437173426151276, -0.1363031268119812, -0.12383220344781876, 0.07822442799806595, 0.1630316972732544, 0.12225770205259323, 0.005027206148952246, -0.06561403721570969, 0.012999817728996277, -0.11374783515930176, 0.07069583982229233, 0.02378605306148529, 0.075018972158432, -0.13495759665966034, 0.16943621635437012, 0.01628722809255123, 0.044339507818222046, -0.02101578563451767, 0.02527238428592682, -0.10187184810638428, 0.01801132969558239, -0.11846523731946945, -0.026207050308585167, -0.00890699215233326, 0.00496231485158205, -0.004011171404272318, -0.06099478527903557, -0.058702439069747925, 0.013980787247419357, -0.12332971394062042, -0.024092892184853554, 0.029732078313827515, 0.05725407227873802, -0.11060456186532974, -0.04076693579554558, 0.02623387612402439, -0.0573391355574131, 0.050908856093883514, 0.050138216465711594, 0.011898105032742023, 0.07148299366235733, -0.1501936912536621, 0.0030281476210802794, 0.07560236006975174, 0.014420588500797749, 0.06750385463237762, -0.06651275604963303, -0.003978887107223272, 0.005139918066561222, 0.0844455361366272, 0.022986868396401405, 0.07958073914051056, -0.15046223998069763, 0.0015476277330890298, -0.03069729171693325, -0.09950891137123108, -0.06723763793706894, 0.02981734834611416, 0.09173913300037384, 0.00513026537373662, 0.19918933510780334, -0.08394655585289001, 0.03649237006902695, -0.21150939166545868, 0.005422031972557306, -0.019264549016952515, -0.12118787318468094, -0.1346016228199005, -0.07619262486696243, 0.06273434311151505, -0.052311934530735016, 0.13255178928375244, 0.0411565825343132, 0.046173740178346634, 0.02861160598695278, -0.012705318629741669, 0.014250032603740692, 0.020691312849521637, 0.2176860272884369, 0.046612195670604706, -0.03360862284898758, 0.06903135776519775, 0.06112593039870262, 0.1013561338186264, 0.12516573071479797, 0.19882649183273315, 0.15651766955852509, -0.023116786032915115, 0.09891609847545624, 0.01954415999352932, -0.04184006527066231, -0.1500311642885208, 0.0331282839179039, -0.05354020744562149, 0.09642621874809265, -0.02528093010187149, 0.22366605699062347, 0.07014450430870056, -0.16983383893966675, 0.05037624016404152, -0.05384876951575279, -0.08862810581922531, -0.11347202956676483, -0.03706955537199974, -0.08598103374242783, -0.1361071765422821, -0.0018009525956586003, -0.09480029344558716, 0.01978270523250103, 0.10708198696374893, 0.0020654122345149517, -0.028521593660116196, 0.16862434148788452, 0.03307931497693062, 0.024644436314702034, 0.06651316583156586, -0.002755453111603856, -0.023109182715415955, -0.10809748619794846, -0.06280544400215149, -0.02909335494041443, -0.021591786295175552, 0.03542551025748253, -0.0647805854678154, -0.08059052377939224, 0.03334440290927887, -0.023794017732143402, -0.09883442521095276, 0.022282572463154793, 0.013142160139977932, 0.0656137689948082, 0.04911072552204132, 0.006538603454828262, 0.012234044261276722, -0.01334308460354805, 0.21693633496761322, -0.08180633932352066, -0.07928711175918579, -0.07718642055988312, 0.2654411792755127, 0.05207016319036484, -0.00295277894474566, 0.02422245591878891, -0.057400211691856384, 0.006612495053559542, 0.2723022401332855, 0.2010274976491928, -0.09581522643566132, -0.006159145385026932, 0.0018805057043209672, -0.009562860243022442, -0.010926580987870693, 0.1253400444984436, 0.13818642497062683, 0.039134424179792404, -0.10579923540353775, -0.035320837050676346, -0.0493193194270134, -0.009061302058398724, -0.05752231925725937, 0.06470567733049393, 0.04661398008465767, 0.001961020054295659, -0.03918110579252243, 0.05431747809052467, -0.0466885007917881, -0.08860792964696884, 0.07037216424942017, -0.19713141024112701, -0.16109399497509003, -0.014833496883511543, 0.11605091392993927, -0.005924288183450699, 0.06518860906362534, -0.025505373254418373, -0.0017826127586886287, 0.042690008878707886, -0.024969449266791344, -0.09471490979194641, -0.08171109855175018, 0.10136517137289047, -0.11430062353610992, 0.1863962560892105, -0.0426168292760849, 0.06199818104505539, 0.12065622955560684, 0.07792746275663376, -0.057491324841976166, 0.06785405427217484, 0.028375592082738876, -0.09124437719583511, 0.040931057184934616, 0.07755059748888016, -0.03221921995282173, 0.03368573635816574, 0.034994229674339294, -0.10643637180328369, 0.03770558908581734, -0.07413172721862793, -0.05115291103720665, -0.042596444487571716, -0.04675457626581192, -0.06022023782134056, 0.12140650302171707, 0.2241724133491516, -0.01387354638427496, 0.01224461942911148, -0.07992871105670929, 0.0013111828593537211, 0.054885383695364, 0.018672283738851547, -0.0940827801823616, -0.21725580096244812, 0.006660499144345522, 0.07043080031871796, -0.027189766988158226, -0.2434229552745819, -0.09230655431747437, 0.0010455516166985035, -0.07037296891212463, -0.10022339969873428, 0.07236796617507935, 0.07484716176986694, 0.05400105565786362, -0.04821539297699928, -0.10586366057395935, -0.07927616685628891, 0.15579672157764435, -0.1563703417778015, -0.09209110587835312 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7647 - Matthews Correlation: 0.5167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5294 | 1.0 | 535 | 0.5029 | 0.4356 | | 0.3507 | 2.0 | 1070 | 0.5285 | 0.4884 | | 0.2406 | 3.0 | 1605 | 0.6550 | 0.5138 | | 0.1825 | 4.0 | 2140 | 0.7647 | 0.5167 | | 0.1282 | 5.0 | 2675 | 0.8664 | 0.5074 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5166623535745778, "name": "Matthews Correlation"}]}]}]}
text-classification
caioamb/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.7647 * Matthews Correlation: 0.5167 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.10120857506990433, 0.0985369086265564, -0.002494392916560173, 0.12051869183778763, 0.16516302525997162, 0.03452373668551445, 0.1314360350370407, 0.1260145902633667, -0.0851946547627449, 0.021890638396143913, 0.12070468813180923, 0.16039900481700897, 0.023282838985323906, 0.11117969453334808, -0.04836660251021385, -0.26487791538238525, -0.01436040922999382, 0.050245948135852814, -0.05703309550881386, 0.13560768961906433, 0.09065352380275726, -0.12052924931049347, 0.0901654064655304, 0.010108556598424911, -0.19145414233207703, 0.0011110849445685744, -0.0002742415526881814, -0.05124231427907944, 0.1486029177904129, 0.026676669716835022, 0.12220233678817749, 0.004781434778124094, 0.08284538984298706, -0.20311196148395538, 0.010930160991847515, 0.04705251753330231, 0.003086889162659645, 0.09271454066038132, 0.04588420316576958, 0.0020067160949110985, 0.11852221190929413, -0.07971905916929245, 0.054479438811540604, 0.025126734748482704, -0.11983471363782883, -0.21347038447856903, -0.07770943641662598, 0.03644008934497833, 0.07682810723781586, 0.1047702431678772, -0.008781730197370052, 0.11806939542293549, -0.08181015402078629, 0.09350617974996567, 0.22675323486328125, -0.2848198413848877, -0.06633434444665909, 0.04325499385595322, 0.014076832681894302, 0.047833628952503204, -0.10179849714040756, -0.034942060708999634, 0.04814813658595085, 0.05144406855106354, 0.12802660465240479, -0.027683734893798828, -0.11496680229902267, 0.006408484186977148, -0.14085102081298828, -0.03238093852996826, 0.16781170666217804, 0.04181193187832832, -0.02744007110595703, -0.055961284786462784, -0.057014789432287216, -0.15029524266719818, -0.03560129180550575, -0.01600479893386364, 0.04910751059651375, -0.02294011041522026, -0.04230532422661781, -0.008934767916798592, -0.10845962911844254, -0.06545126438140869, -0.07184558361768723, 0.11170553416013718, 0.038182929158210754, 0.005913509521633387, -0.03046814166009426, 0.11244543641805649, -0.0065272473730146885, -0.1219012513756752, 0.025850487872958183, 0.022416552528738976, 0.012150943279266357, -0.03955228626728058, -0.05301401764154434, -0.06325723975896835, 0.011257776990532875, 0.1292199343442917, -0.055283546447753906, 0.04328886792063713, 0.051481977105140686, 0.04887391999363899, -0.09317983686923981, 0.18837164342403412, -0.03446650877594948, -0.025159990414977074, -0.0008085038280114532, 0.051129452884197235, 0.01570591703057289, -0.011875620111823082, -0.12154068797826767, 0.00636059558019042, 0.08887293189764023, 0.008928731083869934, -0.06327968090772629, 0.07382924109697342, -0.05971911922097206, -0.024004461243748665, -0.0009244084358215332, -0.09102630615234375, 0.02174471691250801, 0.0021480084396898746, -0.07099298387765884, -0.021978581324219704, 0.03557512164115906, 0.015446251258254051, -0.019877048209309578, 0.10850585997104645, -0.08737024664878845, 0.028004277497529984, -0.0922267735004425, -0.11070677638053894, 0.015992283821105957, -0.10647481679916382, 0.0222250297665596, -0.09183897078037262, -0.17818805575370789, -0.017181646078824997, 0.06040835380554199, -0.025023818016052246, -0.05805380269885063, -0.05977081134915352, -0.06773975491523743, 0.011157714761793613, -0.007673840969800949, 0.1165325865149498, -0.06430650502443314, 0.09347626566886902, 0.025985369458794594, 0.06322890520095825, -0.03919331356883049, 0.06014115363359451, -0.10165214538574219, 0.01430050190538168, -0.15163250267505646, 0.04040233790874481, -0.05163305997848511, 0.0686158835887909, -0.08314981311559677, -0.10606667399406433, 0.004087479785084724, -0.0022905655205249786, 0.0624886080622673, 0.09679535031318665, -0.1843893975019455, -0.08344683796167374, 0.16499458253383636, -0.0730426087975502, -0.12123844027519226, 0.12080787122249603, -0.058288902044296265, 0.06024213880300522, 0.058594055473804474, 0.18010294437408447, 0.08624796569347382, -0.07903490215539932, 0.0027243541553616524, 0.0233007725328207, 0.0511368103325367, -0.06122525408864021, 0.06784063577651978, 0.001665281131863594, 0.02066677063703537, 0.03526715561747551, -0.02829405851662159, 0.06415390223264694, -0.08866160362958908, -0.09935459494590759, -0.038398947566747665, -0.08247238397598267, 0.04717458412051201, 0.07854997366666794, 0.0680328756570816, -0.09372568875551224, -0.0783490315079689, 0.05040588229894638, 0.0812058076262474, -0.059136781841516495, 0.024851709604263306, -0.04975825548171997, 0.07263875752687454, -0.02396903745830059, -0.02146712876856327, -0.18005111813545227, -0.0328533835709095, 0.007530729752033949, 0.0009562692139297724, 0.018081234768033028, 0.03422952815890312, 0.06380993872880936, 0.06123409420251846, -0.05001755431294441, -0.02004752866923809, -0.035864491015672684, -0.00021782219118904322, -0.125425785779953, -0.19804127514362335, -0.029322147369384766, -0.0227554589509964, 0.1595936417579651, -0.2090425044298172, 0.052005235105752945, -0.013148069381713867, 0.0692262053489685, 0.012476266361773014, -0.007284378167241812, -0.03737886622548103, 0.07585032284259796, -0.04245056211948395, -0.05040770769119263, 0.08193089067935944, 0.013789084739983082, -0.09128084033727646, -0.0496365912258625, -0.09922777116298676, 0.1579374223947525, 0.12763072550296783, -0.11097230017185211, -0.07837925851345062, -0.022999966517090797, -0.06737440079450607, -0.035223979502916336, -0.04645410552620888, 0.026108497753739357, 0.18823574483394623, -0.004838444292545319, 0.14992092549800873, -0.06830236315727234, -0.04382210969924927, 0.018030641600489616, -0.03702497109770775, 0.015590868890285492, 0.1348763406276703, 0.1349157840013504, -0.05886835232377052, 0.15494872629642487, 0.14782290160655975, -0.08475177735090256, 0.15121424198150635, -0.04214930161833763, -0.06661267578601837, -0.017743466421961784, -0.028911134228110313, -0.011284548789262772, 0.09997087717056274, -0.15645349025726318, -0.002226055832579732, 0.03020768240094185, 0.015730658546090126, 0.025158729404211044, -0.22774772346019745, -0.04119745269417763, 0.03880121186375618, -0.044838037341833115, -0.006735089235007763, -0.006856536027044058, 0.005365356337279081, 0.10054849088191986, -0.0004600910178851336, -0.08659263700246811, 0.03614921495318413, 0.002037715632468462, -0.08425524830818176, 0.21625348925590515, -0.0804046019911766, -0.17217163741588593, -0.13043312728405, -0.07132602483034134, -0.04581437259912491, -0.0016102262306958437, 0.06923066079616547, -0.09726402908563614, -0.02666587010025978, -0.07180570811033249, 0.028161151334643364, 0.007455997169017792, 0.0236279908567667, 0.003914898727089167, 0.0074314456433057785, 0.06427652388811111, -0.11162133514881134, -0.014440258033573627, -0.057813700288534164, -0.04463149234652519, 0.04538183659315109, 0.02818695642054081, 0.11047902703285217, 0.15310655534267426, -0.012019501999020576, 0.012531038373708725, -0.03149556368589401, 0.23733730614185333, -0.060355108231306076, -0.020879168063402176, 0.14347779750823975, -0.009023165330290794, 0.05207193270325661, 0.11443325132131577, 0.07473216205835342, -0.07814343273639679, 0.0040960051119327545, 0.0384453609585762, -0.0343983955681324, -0.23263442516326904, -0.05307751148939133, -0.054634399712085724, 0.01254629623144865, 0.09092143923044205, 0.022813286632299423, 0.029400525614619255, 0.06984490156173706, 0.041928697377443314, 0.07372305542230606, -0.035366714000701904, 0.05126672610640526, 0.12814711034297943, 0.03043384850025177, 0.1244720071554184, -0.04636416584253311, -0.06441682577133179, 0.04058612138032913, -0.009823963977396488, 0.22571077942848206, 0.011058940552175045, 0.1320226490497589, 0.066447913646698, 0.16280074417591095, -0.009731398895382881, 0.0753825381398201, -0.009094943292438984, -0.03790714219212532, -0.01621435396373272, -0.03976879268884659, -0.03855065628886223, 0.02515486627817154, -0.06294405460357666, 0.0629599392414093, -0.12458352744579315, 0.015293482691049576, 0.05900252237915993, 0.24927155673503876, 0.034494880586862564, -0.31777840852737427, -0.09747262299060822, 0.0012863342417404056, -0.030910205096006393, -0.017459740862250328, 0.026787443086504936, 0.09531217813491821, -0.09778168052434921, 0.029081325978040695, -0.0751015841960907, 0.09574300050735474, -0.05601717159152031, 0.05153273046016693, 0.08247089385986328, 0.08865855634212494, 0.011317332275211811, 0.09213956445455551, -0.2879429757595062, 0.277156800031662, -0.0001718589337542653, 0.056053172796964645, -0.07539563626050949, 0.007996412925422192, 0.041296523064374924, 0.06356388330459595, 0.08009405434131622, -0.01241852343082428, -0.019673466682434082, -0.1877182424068451, -0.06693316251039505, 0.026821307837963104, 0.07039684057235718, -0.04274464771151543, 0.08388329297304153, -0.03173469379544258, 0.00939425639808178, 0.07357373088598251, 0.0019232649356126785, -0.05375213176012039, -0.10744095593690872, -0.004377210047096014, 0.020185839384794235, -0.060501158237457275, -0.06159808486700058, -0.12151964008808136, -0.12907129526138306, 0.1554943472146988, -0.03718525543808937, -0.03886409103870392, -0.10649500787258148, 0.08383053541183472, 0.059630170464515686, -0.08984647691249847, 0.04321885481476784, 0.0029179949779063463, 0.07550302147865295, 0.021413277834653854, -0.07006388157606125, 0.10340460389852524, -0.07402501255273819, -0.15641510486602783, -0.06467760354280472, 0.10780239850282669, 0.035023726522922516, 0.06676528602838516, -0.01483248732984066, 0.003646117402240634, -0.045755695551633835, -0.08820235729217529, 0.02185179479420185, 0.0036399029195308685, 0.07621412724256516, 0.019203031435608864, -0.07600238919258118, 0.011339504271745682, -0.0651724562048912, -0.03411051258444786, 0.20524568855762482, 0.22645166516304016, -0.09980883449316025, 0.024028383195400238, 0.02491845190525055, -0.07412321865558624, -0.19732576608657837, 0.03444812819361687, 0.05562242865562439, 0.00835047010332346, 0.0442991778254509, -0.18640835583209991, 0.1302596926689148, 0.10601073503494263, -0.011334268376231194, 0.1048838421702385, -0.3254081606864929, -0.12102757394313812, 0.1365293264389038, 0.13689495623111725, 0.09800344705581665, -0.13254603743553162, -0.02323482558131218, -0.017228303477168083, -0.13977646827697754, 0.11409677565097809, -0.09135820716619492, 0.12101974338293076, -0.036880768835544586, 0.07578621059656143, 0.0027822894044220448, -0.058168116956949234, 0.12037978321313858, 0.02455485798418522, 0.09463720768690109, -0.05812271311879158, -0.03444954380393028, 0.031069308519363403, -0.04206252470612526, 0.03332628682255745, -0.0985184907913208, 0.028761910274624825, -0.10211655497550964, -0.025367271155118942, -0.06885429471731186, 0.044374339282512665, -0.046213723719120026, -0.06895849853754044, -0.037178173661231995, 0.025934988632798195, 0.04758284613490105, -0.0073350705206394196, 0.12178832292556763, 0.0236514825373888, 0.14792555570602417, 0.09749830514192581, 0.07437007874250412, -0.06522596627473831, -0.0821475237607956, -0.02712431363761425, -0.011040461249649525, 0.05005490034818649, -0.13745534420013428, 0.019951825961470604, 0.15202146768569946, 0.020190805196762085, 0.15404930710792542, 0.08339431881904602, -0.021764226257801056, -0.0013594581978395581, 0.05914903059601784, -0.165196493268013, -0.09579820930957794, -0.017468303442001343, -0.06884122639894485, -0.12106752395629883, 0.04461337998509407, 0.09430185705423355, -0.06759708374738693, -0.007108794059604406, -0.004950678441673517, 0.01448176521807909, -0.049941010773181915, 0.1854168027639389, 0.061933938413858414, 0.04883110150694847, -0.09590891003608704, 0.07269146293401718, 0.044336460530757904, -0.07300487160682678, 0.003363766008988023, 0.07333359122276306, -0.08507663011550903, -0.05461239442229271, 0.06431935727596283, 0.19156326353549957, -0.043129678815603256, -0.04705794155597687, -0.1459866762161255, -0.12351156771183014, 0.07829133421182632, 0.14113131165504456, 0.11800283193588257, 0.010565757751464844, -0.06617981195449829, 0.004423350095748901, -0.10673629492521286, 0.10257592797279358, 0.048874542117118835, 0.061743997037410736, -0.14257988333702087, 0.14446359872817993, 0.0198554415255785, 0.047925036400556564, -0.018172120675444603, 0.022826286032795906, -0.10191065073013306, 0.008096788078546524, -0.09393857419490814, -0.01955888606607914, -0.029364915564656258, 0.011453953571617603, -0.005639183800667524, -0.046790711581707, -0.05404730513691902, 0.010660899803042412, -0.10776542872190475, -0.023372367024421692, 0.029199397191405296, 0.07260743528604507, -0.10940293967723846, -0.03539812192320824, 0.0308896042406559, -0.062277860939502716, 0.0748814269900322, 0.04347330331802368, 0.01571609638631344, 0.05087949335575104, -0.13795077800750732, 0.021150339394807816, 0.07337723672389984, 0.02851335145533085, 0.060132067650556564, -0.09985537827014923, -0.009033008478581905, -0.009972045198082924, 0.03995097056031227, 0.021251726895570755, 0.07519875466823578, -0.14039093255996704, 0.003802476916462183, -0.02354772575199604, -0.08376128226518631, -0.06753291189670563, 0.027563242241740227, 0.08770036697387695, 0.018201716244220734, 0.1989545226097107, -0.07629362493753433, 0.050858814269304276, -0.21855366230010986, 0.006993425078690052, -0.0064710997976362705, -0.10918696969747543, -0.09926774352788925, -0.07321435958147049, 0.0546073243021965, -0.061347246170043945, 0.14897456765174866, 0.045597538352012634, 0.01868860051035881, 0.02490479312837124, -0.011669925414025784, 0.01170232705771923, 0.011679341085255146, 0.18869657814502716, 0.03052016720175743, -0.035302210599184036, 0.05751791223883629, 0.045054513961076736, 0.10340805351734161, 0.11378507316112518, 0.20180003345012665, 0.14461193978786469, -0.00957634299993515, 0.09307323396205902, 0.04260668903589249, -0.0575203113257885, -0.15739403665065765, 0.05267799273133278, -0.03413810208439827, 0.10916174948215485, -0.020675353705883026, 0.22132152318954468, 0.06473735719919205, -0.16994304955005646, 0.05158340185880661, -0.051230285316705704, -0.08760213851928711, -0.11543881893157959, -0.049212414771318436, -0.076521135866642, -0.13105909526348114, -0.004097105469554663, -0.11580254882574081, -0.0024749909061938524, 0.12482071667909622, 0.003867457853630185, -0.026369372382760048, 0.15915073454380035, 0.014280635863542557, 0.022155817598104477, 0.06044489145278931, 0.008311249315738678, -0.03877850994467735, -0.13948790729045868, -0.05883588641881943, -0.012909243814647198, -0.008853900246322155, 0.030005428940057755, -0.06200849264860153, -0.04533907771110535, 0.03060613013803959, -0.020943457260727882, -0.09633848071098328, 0.006023088935762644, 0.011547288857400417, 0.05245714634656906, 0.0447763167321682, 0.00914430245757103, 0.017690351232886314, -0.0033513593953102827, 0.20024730265140533, -0.07220078259706497, -0.06549260765314102, -0.10287623107433319, 0.23296405375003815, 0.03552311658859253, -0.017903534695506096, 0.03448469191789627, -0.06675123423337936, 0.004743082448840141, 0.24890358746051788, 0.2164107710123062, -0.08034200966358185, -0.005474264733493328, 0.017436183989048004, -0.007477596867829561, -0.020848769694566727, 0.09720447659492493, 0.14285440742969513, 0.047099027782678604, -0.09305372089147568, -0.0437154620885849, -0.05813668668270111, -0.018296238034963608, -0.033373694866895676, 0.0704539343714714, 0.051839716732501984, 0.009919699281454086, -0.03610605001449585, 0.05705001950263977, -0.0672704204916954, -0.08974380046129227, 0.057124193757772446, -0.21800029277801514, -0.16726244986057281, -0.0171071644872427, 0.10217034816741943, 0.0015186872333288193, 0.06237169727683067, -0.029239894822239876, -0.00469802413135767, 0.0919845700263977, -0.01832149177789688, -0.09777483344078064, -0.07282990962266922, 0.08539068698883057, -0.11341909319162369, 0.21668241918087006, -0.04776782542467117, 0.05340265855193138, 0.12563437223434448, 0.06769277900457382, -0.06383920460939407, 0.06492334604263306, 0.042695675045251846, -0.040961191058158875, 0.02250262349843979, 0.06988716870546341, -0.03363517299294472, 0.06480054557323456, 0.04796105623245239, -0.13903330266475677, 0.023453060537576675, -0.04628016799688339, -0.07001972943544388, -0.04300715774297714, -0.021932100877165794, -0.06000510975718498, 0.1283344030380249, 0.2187023162841797, -0.025147926062345505, -0.009308586828410625, -0.07133248448371887, 0.009391692467033863, 0.05591951310634613, 0.024565167725086212, -0.056801825761795044, -0.2116239368915558, 0.016333535313606262, 0.0453275702893734, -0.016764767467975616, -0.25166693329811096, -0.10166120529174805, 0.004287302028387785, -0.07197227329015732, -0.09578385949134827, 0.07312100380659103, 0.08936024457216263, 0.05498606711626053, -0.05615054816007614, -0.04915119335055351, -0.07452213764190674, 0.14972738921642303, -0.14539693295955658, -0.09078814834356308 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitexts This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitexts", "results": []}]}
text-generation
calebcsjm/distilgpt2-finetuned-wikitexts
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
distilgpt2-finetuned-wikitexts ============================== This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.6424 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08950301259756088, 0.06324051320552826, -0.00267245015129447, 0.11011294275522232, 0.1468401700258255, 0.021111132577061653, 0.1311519742012024, 0.13870351016521454, -0.11715589463710785, 0.03490753099322319, 0.13680317997932434, 0.16305182874202728, 0.02098129130899906, 0.10987064987421036, -0.043771084398031235, -0.2575596570968628, -0.0026352417189627886, 0.039543960243463516, -0.05231902003288269, 0.13908037543296814, 0.0878702700138092, -0.11338148266077042, 0.08562182635068893, 0.003722667694091797, -0.19067825376987457, 0.009620310738682747, -0.004116801545023918, -0.05591703578829765, 0.1454232633113861, 0.028608538210392, 0.09575463831424713, 0.007879847660660744, 0.06567179411649704, -0.187529519200325, 0.010270900093019009, 0.06128568947315216, -0.001249025808647275, 0.08683837950229645, 0.05222093686461449, 0.012025458738207817, 0.19124937057495117, -0.07085303962230682, 0.035669438540935516, 0.021367402747273445, -0.11846927553415298, -0.19751709699630737, -0.08970960974693298, 0.03000054508447647, 0.07587029039859772, 0.11911837756633759, -0.013198371045291424, 0.13009817898273468, -0.07427242398262024, 0.09877822548151016, 0.23879241943359375, -0.2998689115047455, -0.06555192172527313, 0.014789500273764133, 0.029671818017959595, 0.07405135780572891, -0.08504747599363327, -0.010310174897313118, 0.050796739757061005, 0.04880022630095482, 0.11155591160058975, -0.031057264655828476, -0.1067521944642067, 0.014602514915168285, -0.14458392560482025, -0.05601254105567932, 0.17294110357761383, 0.02847164124250412, -0.03108203038573265, -0.06309175491333008, -0.07239045947790146, -0.1596013903617859, -0.02311149425804615, -0.009734115563333035, 0.03652367368340492, -0.016872383654117584, -0.056420646607875824, -0.038332805037498474, -0.11378123611211777, -0.0726955384016037, -0.07209855318069458, 0.12855800986289978, 0.04067060351371765, 0.01315668411552906, -0.036558594554662704, 0.11564943194389343, 0.0027257290203124285, -0.12713998556137085, 0.009098388254642487, 0.03619871288537979, 0.03144308552145958, -0.022677380591630936, -0.061878398060798645, -0.08023200929164886, 0.02548358216881752, 0.11684860289096832, -0.062057215720415115, 0.04655564948916435, 0.02354016900062561, 0.049604933708906174, -0.09390908479690552, 0.1699676364660263, -0.0273799579590559, 0.001318910624831915, 0.013086454942822456, 0.042684730142354965, 0.04371200129389763, -0.023082254454493523, -0.12607944011688232, 0.010864557698369026, 0.0940815806388855, 0.023436669260263443, -0.05266185104846954, 0.0738605186343193, -0.039981190115213394, -0.01870277151465416, 0.008140693418681622, -0.09587381780147552, 0.02221476472914219, -0.0019991016015410423, -0.07408390939235687, -0.015437809750437737, 0.028076108545064926, 0.013460014946758747, -0.04559304192662239, 0.09217212349176407, -0.07559499144554138, 0.022126607596874237, -0.09595508873462677, -0.10350058227777481, 0.021191736683249474, -0.09497807174921036, 0.015997910872101784, -0.0889868512749672, -0.19931234419345856, -0.009008532389998436, 0.05402223393321037, -0.02756332792341709, -0.06413450092077255, -0.0644141137599945, -0.07739005982875824, 0.019359834492206573, -0.023778803646564484, 0.14520363509655, -0.0674794465303421, 0.10045643150806427, 0.034514859318733215, 0.05920492857694626, -0.04902686923742294, 0.05395573750138283, -0.09331123530864716, 0.0068913837894797325, -0.14669398963451385, 0.04337376728653908, -0.03854243829846382, 0.05599799379706383, -0.08340370655059814, -0.0985967218875885, -0.002591971540823579, 0.009497121907770634, 0.06913475692272186, 0.09401022642850876, -0.16061455011367798, -0.08939828723669052, 0.17511089146137238, -0.07745052874088287, -0.1267842948436737, 0.12640012800693512, -0.04734858497977257, 0.04506021365523338, 0.06352315098047256, 0.17883504927158356, 0.057270023971796036, -0.07434159517288208, 0.008083253167569637, 0.013100234791636467, 0.04623838886618614, -0.061513300985097885, 0.06668393313884735, -0.011626165360212326, 0.03000394068658352, 0.0329459011554718, -0.020799025893211365, 0.051800746470689774, -0.08359966427087784, -0.08905588835477829, -0.05244417488574982, -0.07639278471469879, 0.013552025891840458, 0.0646873489022255, 0.07644336670637131, -0.11093716323375702, -0.09691470116376877, 0.02813207544386387, 0.08375519514083862, -0.07918645441532135, 0.04139186069369316, -0.05431637167930603, 0.07959680259227753, -0.031563352793455124, -0.004939340986311436, -0.17141999304294586, -0.013005767948925495, 0.012824290432035923, -0.004736832343041897, 0.0226021409034729, 0.02113158069550991, 0.06482470780611038, 0.06301475316286087, -0.04419906437397003, -0.013659372925758362, -0.03199353069067001, -0.022312475368380547, -0.12164739519357681, -0.19217996299266815, -0.01863185688853264, -0.021553628146648407, 0.13234859704971313, -0.19847814738750458, 0.04582931846380234, 0.009794246405363083, 0.05677010118961334, 0.0016841045580804348, -0.012257346883416176, -0.03988778218626976, 0.07285597920417786, -0.0572088398039341, -0.05127578228712082, 0.07681066542863846, 0.013256039470434189, -0.09564706683158875, -0.03266318887472153, -0.12343499064445496, 0.14414352178573608, 0.14180994033813477, -0.11701110005378723, -0.06121326982975006, -0.0031659486703574657, -0.06419719010591507, -0.03144676610827446, -0.039424777030944824, 0.019483936950564384, 0.2011353224515915, -0.012058506719768047, 0.1542360484600067, -0.07891898602247238, -0.04991884529590607, 0.024790480732917786, -0.033064499497413635, 0.028647638857364655, 0.1292199045419693, 0.1292143315076828, -0.056379545480012894, 0.14857982099056244, 0.1414489895105362, -0.08836635202169418, 0.14873111248016357, -0.04717686027288437, -0.07638147473335266, -0.0033682717476040125, -0.00007088881829986349, -0.0013991536106914282, 0.07890064269304276, -0.1777249276638031, -0.007157917600125074, 0.025581462308764458, 0.02803686447441578, 0.04310276359319687, -0.2311062514781952, -0.03138185292482376, 0.02983151562511921, -0.0637800469994545, -0.0022214900236576796, -0.00892946682870388, -0.009120010770857334, 0.10747978091239929, -0.004061599262058735, -0.07140384614467621, 0.03854686766862869, 0.0035777667071670294, -0.08575735986232758, 0.21264870464801788, -0.07630299776792526, -0.17003512382507324, -0.12707611918449402, -0.06646227836608887, -0.06513964384794235, 0.010269315913319588, 0.08193543553352356, -0.09309671074151993, -0.02973608300089836, -0.09063950181007385, 0.03224629536271095, -0.00787560734897852, 0.026280749589204788, 0.011700729839503765, -0.0015911721857264638, 0.050947874784469604, -0.11897999048233032, -0.013753524981439114, -0.056962404400110245, -0.08037175238132477, 0.04862205311655998, 0.03324296697974205, 0.11379975080490112, 0.1550203114748001, -0.002163791563361883, 0.01927875727415085, -0.031649839133024216, 0.20658208429813385, -0.07355473935604095, -0.029037341475486755, 0.1510448008775711, 0.008187590166926384, 0.05405491590499878, 0.0838485062122345, 0.055997591465711594, -0.08825324475765228, 0.010212196968495846, 0.02903933636844158, -0.04367103427648544, -0.2334291785955429, -0.0435607023537159, -0.062256474047899246, 0.013120857067406178, 0.08609336614608765, 0.04260338097810745, 0.04887106269598007, 0.06662096828222275, 0.026333509013056755, 0.07820986211299896, -0.0257703959941864, 0.057979315519332886, 0.12537775933742523, 0.03822339326143265, 0.12877154350280762, -0.05620838329195976, -0.057424526661634445, 0.053593724966049194, -0.010308992117643356, 0.23142598569393158, -0.0002254435239592567, 0.1654386818408966, 0.06108206883072853, 0.15262983739376068, -0.007934032008051872, 0.07871846109628677, -0.018847141414880753, -0.035551998764276505, -0.021174218505620956, -0.04829184710979462, -0.03675953298807144, 0.023014532402157784, -0.08927363157272339, 0.04641639068722725, -0.11100107431411743, 0.010006142780184746, 0.06402300298213959, 0.2551436722278595, 0.03649356588721275, -0.3122048079967499, -0.08574511855840683, 0.010660834610462189, -0.03612715005874634, -0.01807297021150589, 0.03585406392812729, 0.10019665956497192, -0.08228428661823273, 0.036799654364585876, -0.07007963955402374, 0.09953810274600983, -0.04897397756576538, 0.053610485047101974, 0.06043163314461708, 0.0914730504155159, 0.011421856470406055, 0.09579823166131973, -0.30989617109298706, 0.26928505301475525, 0.0019789852667599916, 0.07394137233495712, -0.08826161175966263, 0.020366057753562927, 0.028741199523210526, 0.047546543180942535, 0.0722251832485199, -0.018763642758131027, -0.04468236863613129, -0.1455651819705963, -0.07039777934551239, 0.04057813808321953, 0.09031688421964645, -0.03220938891172409, 0.09197638928890228, -0.029706653207540512, 0.01596035435795784, 0.06674430519342422, -0.007190061267465353, -0.04580202326178551, -0.11204829066991806, 0.004835969768464565, 0.02224203757941723, -0.05474735423922539, -0.06234034523367882, -0.10473192483186722, -0.12463851273059845, 0.1742900162935257, -0.026415523141622543, -0.042173467576503754, -0.10299341380596161, 0.0735567957162857, 0.0581982396543026, -0.08702490478754044, 0.03467482700943947, 0.008649761788547039, 0.058636534959077835, 0.02904052473604679, -0.07616090774536133, 0.1074385866522789, -0.06431127339601517, -0.1708630621433258, -0.049085862934589386, 0.11501077562570572, 0.01934928633272648, 0.05582981929183006, -0.016750315204262733, 0.012447090819478035, -0.05770085006952286, -0.10131321102380753, 0.02961757965385914, -0.008277292363345623, 0.07310427725315094, 0.012872876599431038, -0.05018173158168793, 0.030731558799743652, -0.05926666781306267, -0.053816601634025574, 0.20456446707248688, 0.23744717240333557, -0.07979901134967804, 0.0365372858941555, 0.028653090819716454, -0.07864125072956085, -0.20250281691551208, 0.01455656997859478, 0.04192279279232025, 0.0018224669620394707, 0.01947353594005108, -0.19948051869869232, 0.10553817451000214, 0.11790454387664795, -0.014790516346693039, 0.1334753781557083, -0.3610536456108093, -0.12783865630626678, 0.11507777124643326, 0.1318352222442627, 0.11890804022550583, -0.1570717841386795, -0.028177158907055855, -0.027837030589580536, -0.11123459041118622, 0.10750093311071396, -0.11652789264917374, 0.1300830990076065, -0.03458181396126747, 0.09300552308559418, -0.0009298934601247311, -0.06195874512195587, 0.11572621762752533, 0.0062936339527368546, 0.08455321192741394, -0.06903444975614548, 0.0049793594516813755, 0.04203591123223305, -0.03346771001815796, 0.03297370299696922, -0.12630131840705872, 0.02905796840786934, -0.10143227875232697, -0.025852037593722343, -0.0649820864200592, 0.04768601804971695, -0.03436102345585823, -0.06102459505200386, -0.04143192991614342, -0.010840498842298985, 0.04276159405708313, -0.004611561540514231, 0.14816518127918243, 0.015914658084511757, 0.14065004885196686, 0.11332931369543076, 0.0746193453669548, -0.07966025918722153, -0.052204228937625885, -0.020339295268058777, -0.009536659345030785, 0.051845889538526535, -0.16150036454200745, 0.01814296469092369, 0.13569921255111694, 0.0176934152841568, 0.1387692093849182, 0.08549979329109192, -0.03284715861082077, 0.026415787637233734, 0.05976391211152077, -0.17863933742046356, -0.09670725464820862, -0.017110254615545273, -0.05739032104611397, -0.09050923585891724, 0.06671492755413055, 0.10086478292942047, -0.06368373334407806, -0.0030766231939196587, -0.008584154769778252, 0.017975758761167526, -0.05293100327253342, 0.1824536919593811, 0.03618278354406357, 0.04052945226430893, -0.1006958931684494, 0.07993127405643463, 0.03718755021691322, -0.08047187328338623, 0.028179457411170006, 0.09857216477394104, -0.07563544064760208, -0.05619248002767563, 0.06971772760152817, 0.17646197974681854, -0.045669592916965485, -0.05356571450829506, -0.13868342339992523, -0.12218840420246124, 0.08823954313993454, 0.13620127737522125, 0.10342904925346375, 0.015218682587146759, -0.06592251360416412, 0.01902146078646183, -0.12134333699941635, 0.08294276893138885, 0.032773517072200775, 0.060976460576057434, -0.12445004284381866, 0.14316292107105255, 0.020309824496507645, 0.03801889717578888, -0.021597301587462425, 0.021077392622828484, -0.09275338053703308, 0.013586540706455708, -0.10810687392950058, -0.026080327108502388, -0.028322335332632065, -0.0031943998765200377, -0.004630653653293848, -0.04116396978497505, -0.06121616065502167, 0.01632336713373661, -0.11205466091632843, -0.027397355064749718, 0.015422404743731022, 0.05223487690091133, -0.11726147681474686, -0.0210739653557539, 0.0225678700953722, -0.06907874345779419, 0.08399602025747299, 0.056310106068849564, 0.013087596744298935, 0.06530828028917313, -0.14920999109745026, 0.02260410785675049, 0.07399637997150421, 0.025245599448680878, 0.045187219977378845, -0.07141400128602982, -0.009805108420550823, 0.0121726393699646, 0.05245601758360863, 0.02015494368970394, 0.06796339154243469, -0.13819116353988647, 0.01195656880736351, -0.0236703809350729, -0.08570519089698792, -0.06827207654714584, 0.04212374985218048, 0.07322931289672852, 0.017231985926628113, 0.19512595236301422, -0.08393707871437073, 0.03762517124414444, -0.209412083029747, 0.013381638564169407, 0.005739231128245592, -0.11613083630800247, -0.11452342569828033, -0.06424595415592194, 0.0639721229672432, -0.06034103035926819, 0.14890268445014954, 0.029841750860214233, 0.019658830016851425, 0.02454499341547489, -0.016847725957632065, 0.023782094940543175, 0.009211176075041294, 0.22425486147403717, 0.04213949665427208, -0.03096267580986023, 0.045552678406238556, 0.037788841873407364, 0.10951752215623856, 0.10537013411521912, 0.2042313665151596, 0.1297011822462082, -0.004890501964837313, 0.10970135033130646, 0.031910061836242676, -0.06388764828443527, -0.15673010051250458, 0.044787850230932236, -0.040452100336551666, 0.12494030594825745, -0.023155758157372475, 0.20972079038619995, 0.08817969262599945, -0.15082122385501862, 0.03576644882559776, -0.04497316852211952, -0.07980223745107651, -0.12041723728179932, -0.06789291650056839, -0.08246713131666183, -0.1468033790588379, 0.005345434881746769, -0.12075840681791306, 0.032298844307661057, 0.10842471569776535, 0.012820429168641567, -0.02770046889781952, 0.15358461439609528, 0.033799514174461365, 0.01183138508349657, 0.05551353842020035, -0.0021538713481277227, -0.029016515240073204, -0.10687613487243652, -0.06699652224779129, -0.012265896424651146, -0.015228373929858208, 0.050473425537347794, -0.038664765655994415, -0.048074834048748016, 0.0398908294737339, -0.03818870335817337, -0.09019989520311356, 0.005442126654088497, 0.021884284913539886, 0.06232258304953575, 0.0516403391957283, 0.010206292383372784, -0.00006314683560049161, -0.003040955401957035, 0.21496620774269104, -0.0787058174610138, -0.07687122374773026, -0.08101418614387512, 0.2405424565076828, 0.037305716425180435, -0.013057613745331764, 0.025738434866070747, -0.062257520854473114, -0.008213692344725132, 0.2590637505054474, 0.21814587712287903, -0.07215194404125214, -0.01406883541494608, 0.007793676108121872, -0.002781497547402978, -0.016599904745817184, 0.11335686594247818, 0.14953318238258362, 0.0718986764550209, -0.08748476207256317, -0.04417148604989052, -0.046180400997400284, -0.00639087799936533, -0.05641442909836769, 0.07848206162452698, 0.04259924218058586, -0.0029931040480732918, -0.02712254412472248, 0.05212957039475441, -0.06644974648952484, -0.0753619447350502, 0.025809314101934433, -0.20307868719100952, -0.15390248596668243, 0.0052459146827459335, 0.12872867286205292, -0.0019416564609855413, 0.06632203608751297, -0.024679388850927353, 0.0000730752944946289, 0.06723986566066742, -0.0197640061378479, -0.10963226109743118, -0.055789437144994736, 0.08459078520536423, -0.14219069480895996, 0.2020171731710434, -0.04387632757425308, 0.05988681688904762, 0.12491656839847565, 0.054287832230329514, -0.07328066974878311, 0.07994834333658218, 0.034631237387657166, -0.0598248615860939, 0.030371028929948807, 0.07616563886404037, -0.030195046216249466, 0.03541017696261406, 0.05325935781002045, -0.11096498370170593, 0.016140514984726906, -0.04893425852060318, -0.04917734116315842, -0.032521504908800125, -0.044765815138816833, -0.06815741211175919, 0.1262660026550293, 0.20319412648677826, -0.02574772574007511, 0.004862917121499777, -0.08150865137577057, 0.011238300241529942, 0.041587699204683304, 0.03744594752788544, -0.052749816328287125, -0.22584667801856995, -0.0018871872453019023, 0.0717470645904541, -0.020680999383330345, -0.26736414432525635, -0.08178029209375381, 0.001890571671538055, -0.0644855797290802, -0.11151494085788727, 0.0673656091094017, 0.09789731353521347, 0.0464114248752594, -0.05617733299732208, -0.04498688876628876, -0.0708947405219078, 0.15171262621879578, -0.13880708813667297, -0.08895090967416763 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-vi-finetuned-eng-to-vie This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 219 | 0.3771 | 73.2405 | 8.274 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "opus-mt-en-vi-finetuned-eng-to-vie", "results": []}]}
text2text-generation
callmeJ/opus-mt-en-vi-finetuned-eng-to-vie
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
opus-mt-en-vi-finetuned-eng-to-vie ================================== This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-vi on an unknown dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09933696687221527, 0.06256796419620514, -0.0023745729122310877, 0.1166335940361023, 0.16529491543769836, 0.01285720244050026, 0.1306983232498169, 0.12443883717060089, -0.12649337947368622, 0.020259087905287743, 0.1320558786392212, 0.17696160078048706, 0.004792134277522564, 0.12245280295610428, -0.05127551034092903, -0.2500479817390442, -0.012463092803955078, 0.05561622977256775, -0.08428417146205902, 0.14015161991119385, 0.09528180211782455, -0.13385385274887085, 0.0859738364815712, 0.008399995975196362, -0.22624169290065765, 0.006723588332533836, 0.007298705633729696, -0.06318049132823944, 0.1533684879541397, 0.021119259297847748, 0.1270517110824585, 0.008162036538124084, 0.0770316869020462, -0.17047825455665588, 0.009466086514294147, 0.041346680372953415, 0.017594827339053154, 0.08955202996730804, 0.06132659688591957, 0.002164325676858425, 0.13883550465106964, -0.07096406072378159, 0.04319246858358383, 0.019504355266690254, -0.12444209307432175, -0.20707058906555176, -0.08783940970897675, 0.022823184728622437, 0.05833384394645691, 0.11737237870693207, -0.0007817111327312887, 0.1328832358121872, -0.07971527427434921, 0.09813075512647629, 0.2452918291091919, -0.2706867456436157, -0.06719832867383957, 0.023931438103318214, 0.030377043411135674, 0.07076055556535721, -0.0909213125705719, -0.018141979351639748, 0.05711912736296654, 0.04612847417593002, 0.12480110675096512, -0.036747150123119354, -0.11689318716526031, 0.016942869871854782, -0.14348165690898895, -0.04074547812342644, 0.14291584491729736, 0.019613908603787422, -0.023117071017622948, -0.03812422603368759, -0.0630011260509491, -0.15250003337860107, -0.03353767842054367, -0.015154174529016018, 0.03935103863477707, -0.035900335758924484, -0.07692309468984604, -0.017321385443210602, -0.11532454937696457, -0.06705962121486664, -0.0743454098701477, 0.12153194099664688, 0.03890760615468025, 0.012834715656936169, -0.04864894226193428, 0.10593685507774353, 0.018452027812600136, -0.13480617105960846, 0.032415710389614105, 0.028575006872415543, 0.0258527509868145, -0.04273610562086105, -0.07580293715000153, -0.07530845701694489, 0.008100361563265324, 0.10075245052576065, -0.07157870382070541, 0.04064323753118515, 0.03101002424955368, 0.04983314126729965, -0.10217384248971939, 0.18607354164123535, -0.038410063832998276, -0.007037950213998556, 0.010454587638378143, 0.0453149750828743, 0.0063355229794979095, -0.008177253417670727, -0.1158105880022049, -0.00006946514622541144, 0.10646703094244003, 0.019824523478746414, -0.05703616142272949, 0.06783980131149292, -0.04745011404156685, -0.022356286644935608, -0.003096790984272957, -0.09144599735736847, 0.029913656413555145, -0.0042617712169885635, -0.08963685482740402, 0.0014105685986578465, 0.037745922803878784, 0.01441920455545187, -0.032546285539865494, 0.10656371712684631, -0.07959152013063431, 0.03824897110462189, -0.10486574470996857, -0.10395211726427078, 0.019550969824194908, -0.07250991463661194, 0.026530703529715538, -0.10579043626785278, -0.17430245876312256, -0.01792631298303604, 0.05520977824926376, -0.027362825348973274, -0.05702982097864151, -0.05053355172276497, -0.08049304783344269, 0.0049571264535188675, -0.021236171945929527, 0.15936030447483063, -0.05137303099036217, 0.11754251271486282, 0.04477105662226677, 0.06898694485425949, -0.0421561598777771, 0.06032742187380791, -0.09798285365104675, -0.0058575039729475975, -0.178707554936409, 0.04802711680531502, -0.03329182043671608, 0.07247375696897507, -0.08752895891666412, -0.11062899231910706, 0.00941702164709568, 0.0006051857490092516, 0.08456376194953918, 0.10072414577007294, -0.16238152980804443, -0.07615158706903458, 0.15937696397304535, -0.06632480025291443, -0.11835804581642151, 0.11233196407556534, -0.054467152804136276, 0.0737650990486145, 0.07444506138563156, 0.15917284786701202, 0.0526493601500988, -0.07453610748052597, 0.03978068381547928, -0.01285600382834673, 0.052254702895879745, -0.07563906162977219, 0.05625610426068306, 0.001970600336790085, 0.006574100814759731, 0.032360371202230453, -0.0281458031386137, 0.06714403629302979, -0.10700848698616028, -0.09336313605308533, -0.04226512461900711, -0.10716218501329422, 0.04282442480325699, 0.07444728910923004, 0.09724549949169159, -0.09511522203683853, -0.06711445748806, 0.0669240653514862, 0.07298396527767181, -0.06661222130060196, 0.033660296350717545, -0.04982743039727211, 0.06547097116708755, -0.032313209027051926, -0.015226571820676327, -0.19368800520896912, 0.007058942690491676, 0.005014092195779085, -0.003887909697368741, 0.029110122472047806, 0.02080339752137661, 0.07637553662061691, 0.06117008253931999, -0.04902772605419159, -0.010829666629433632, -0.022227061912417412, -0.010326877236366272, -0.1332322359085083, -0.18711045384407043, -0.017894795164465904, -0.01640337146818638, 0.1193925142288208, -0.19391563534736633, 0.037798862904310226, -0.02242276817560196, 0.06937908381223679, -0.00038891841541044414, -0.00726503599435091, -0.04537248983979225, 0.09385141730308533, -0.03361324965953827, -0.0443870984017849, 0.08134159445762634, 0.013009345158934593, -0.07621327042579651, -0.02485538087785244, -0.1034662127494812, 0.1683293730020523, 0.14732185006141663, -0.1423342525959015, -0.07390369474887848, 0.006569989025592804, -0.057808417826890945, -0.03544994816184044, -0.036591917276382446, 0.041159532964229584, 0.18227612972259521, -0.012023430317640305, 0.16050884127616882, -0.07362417131662369, -0.050446417182683945, 0.023674670606851578, -0.04030779004096985, 0.03368937224149704, 0.12002123892307281, 0.10583972185850143, -0.06603685021400452, 0.1366928368806839, 0.14539767801761627, -0.10414460301399231, 0.13073737919330597, -0.04351130872964859, -0.07605212926864624, -0.011729607358574867, -0.013624847866594791, 0.002108444459736347, 0.0791299045085907, -0.14009900391101837, -0.006213833577930927, 0.021434808149933815, 0.02067285217344761, 0.03487395867705345, -0.23187944293022156, -0.03860648721456528, 0.03259297460317612, -0.03808707743883133, -0.007199746556580067, -0.009846223518252373, 0.00904798973351717, 0.10698598623275757, -0.005675802938640118, -0.07220809161663055, 0.03689071536064148, 0.007998780347406864, -0.07948879152536392, 0.21750639379024506, -0.08121313154697418, -0.1627250462770462, -0.12922963500022888, -0.07707717269659042, -0.035451170057058334, 0.013387994840741158, 0.07303507626056671, -0.09095408022403717, -0.022123251110315323, -0.05363882705569267, 0.04250127077102661, -0.00646885996684432, 0.028658615425229073, 0.016669370234012604, 0.008227645419538021, 0.06715167313814163, -0.11287463456392288, -0.004080151207745075, -0.05158105492591858, -0.06866387277841568, 0.05384979397058487, 0.031888287514448166, 0.1205037459731102, 0.1532873958349228, -0.02568596415221691, 0.009270342998206615, -0.027047891169786453, 0.22136783599853516, -0.06334082037210464, -0.03288668766617775, 0.15620006620883942, 0.0015614525182172656, 0.0548834502696991, 0.09219685196876526, 0.06559285521507263, -0.08557414263486862, 0.0071578980423510075, 0.016194047406315804, -0.03786639869213104, -0.23708795011043549, -0.04774494469165802, -0.05401676148176193, -0.011645857244729996, 0.09229713678359985, 0.022356031462550163, 0.05429581180214882, 0.0747479498386383, 0.04458194226026535, 0.08716849237680435, -0.03312253579497337, 0.05279777571558952, 0.12906770408153534, 0.04121529683470726, 0.12651842832565308, -0.04900912940502167, -0.06987262517213821, 0.03672841563820839, -0.01130022294819355, 0.22457046806812286, -0.0068678902462124825, 0.13381198048591614, 0.06281808763742447, 0.1734141856431961, -0.0013706093886867166, 0.09207238256931305, 0.0012743029510602355, -0.03962467610836029, -0.015374504961073399, -0.04031732305884361, -0.04408835247159004, 0.009775971062481403, -0.07870291918516159, 0.04972892999649048, -0.12650783360004425, -0.003427499905228615, 0.04599913954734802, 0.2514021396636963, 0.018976131454110146, -0.3246460556983948, -0.08871766179800034, -0.003940072376281023, -0.02565869502723217, -0.018464265391230583, 0.026212774217128754, 0.0938199907541275, -0.09969156980514526, 0.019896799698472023, -0.07066384702920914, 0.10139820724725723, -0.0474565289914608, 0.0519753135740757, 0.05974498391151428, 0.08220837265253067, 0.01928459294140339, 0.08571358770132065, -0.33848440647125244, 0.2814277112483978, -0.004959437996149063, 0.07408925890922546, -0.08014366030693054, -0.001923277392052114, 0.024272281676530838, 0.04543599486351013, 0.05242454633116722, -0.0175823662430048, -0.035192519426345825, -0.1877741664648056, -0.05065269023180008, 0.026761729270219803, 0.09156056493520737, -0.009305293671786785, 0.09077805280685425, -0.029314443469047546, 0.009798333048820496, 0.07094855606555939, -0.01846039853990078, -0.05748355761170387, -0.09698950499296188, -0.0065976777113974094, 0.01785697601735592, -0.03364237770438194, -0.06279902905225754, -0.11201567202806473, -0.11419884860515594, 0.14775016903877258, 0.00981959979981184, -0.03206697478890419, -0.10938619822263718, 0.08035941421985626, 0.09068156033754349, -0.09165918827056885, 0.049472272396087646, 0.009038133546710014, 0.056089289486408234, 0.02727312035858631, -0.0731460452079773, 0.10207211226224899, -0.06759548932313919, -0.1573389321565628, -0.05348502844572067, 0.09832499176263809, 0.03049165941774845, 0.06084709241986275, -0.011188792064785957, 0.012395375408232212, -0.057631541043519974, -0.08645223081111908, 0.01206361036747694, -0.016627036035060883, 0.07689034938812256, 0.010690673254430294, -0.06149125099182129, 0.010505222715437412, -0.06522507965564728, -0.04994635283946991, 0.19767113029956818, 0.22473067045211792, -0.09280026704072952, 0.018073998391628265, 0.053724732249975204, -0.07269366085529327, -0.20234732329845428, 0.030874738469719887, 0.06193625554442406, 0.005964372307062149, 0.031999621540308, -0.17860010266304016, 0.10859787464141846, 0.09872348606586456, -0.012011503800749779, 0.10018609464168549, -0.3586489260196686, -0.12909507751464844, 0.11634641885757446, 0.15170149505138397, 0.13968516886234283, -0.15806950628757477, -0.02395373210310936, -0.027364581823349, -0.13707183301448822, 0.09389814734458923, -0.08567647635936737, 0.1232961118221283, -0.032578401267528534, 0.10381053388118744, 0.005162857472896576, -0.06330594420433044, 0.10933346301317215, 0.010782616212964058, 0.08630575239658356, -0.06818540394306183, -0.02061638794839382, 0.04759219288825989, -0.03384942561388016, 0.01736091822385788, -0.0726768895983696, 0.03549667075276375, -0.08241529762744904, -0.01788053847849369, -0.08536563813686371, 0.03850105404853821, -0.03448963537812233, -0.05225977301597595, -0.02943652682006359, 0.008350633084774017, 0.04378684237599373, -0.010911278426647186, 0.11370451748371124, 0.02036045305430889, 0.14862805604934692, 0.12256304174661636, 0.06526980549097061, -0.06467119604349136, -0.04855843633413315, -0.017390597611665726, -0.017842620611190796, 0.053535934537649155, -0.14181910455226898, 0.022221598774194717, 0.1414102166891098, 0.02112581580877304, 0.12283563613891602, 0.08338569849729538, -0.025498732924461365, 0.014716466888785362, 0.06412515044212341, -0.16872252523899078, -0.0722997784614563, -0.015286293812096119, -0.04776276275515556, -0.08654709160327911, 0.0555533841252327, 0.09408511221408844, -0.067377969622612, -0.013593077659606934, -0.017034629359841347, -0.000570356089156121, -0.06389984488487244, 0.21325932443141937, 0.052211612462997437, 0.04509585723280907, -0.10422585904598236, 0.0716206505894661, 0.05404186621308327, -0.07691297680139542, 0.005115428939461708, 0.0957154855132103, -0.07848823815584183, -0.04873408004641533, 0.1111157089471817, 0.17024320363998413, -0.08295799791812897, -0.04085466265678406, -0.1453356295824051, -0.12294945120811462, 0.08160167187452316, 0.16347426176071167, 0.11128787696361542, 0.01305282860994339, -0.05815120041370392, 0.009005971252918243, -0.13324688374996185, 0.07860977202653885, 0.05700777843594551, 0.0669160708785057, -0.12908856570720673, 0.17615489661693573, 0.0089143430814147, 0.04509809985756874, -0.022744497284293175, 0.03044113889336586, -0.09862485527992249, 0.02348925545811653, -0.12548798322677612, -0.034157637506723404, -0.015306313522160053, -0.01016975101083517, -0.014875402674078941, -0.05571620166301727, -0.052458249032497406, 0.020788926631212234, -0.11799312382936478, -0.019965222105383873, 0.01801644265651703, 0.0483168326318264, -0.11849132180213928, -0.037332553416490555, 0.02547290362417698, -0.057995669543743134, 0.058011431246995926, 0.05770895257592201, 0.007422061637043953, 0.06114022433757782, -0.14522483944892883, -0.005562132224440575, 0.06991110742092133, 0.010327666066586971, 0.06355763226747513, -0.08675754070281982, -0.00741276890039444, 0.01389692910015583, 0.07590875774621964, 0.014798777177929878, 0.07075019925832748, -0.13795004785060883, -0.00426143454387784, -0.023895245045423508, -0.0851302370429039, -0.06667561829090118, 0.02928679808974266, 0.08377870917320251, 0.010713443160057068, 0.185186967253685, -0.07668914645910263, 0.048326581716537476, -0.20158350467681885, 0.0038920065853744745, -0.012551351450383663, -0.1174996942281723, -0.13045239448547363, -0.0699787363409996, 0.06743334978818893, -0.048974957317113876, 0.13152213394641876, 0.02206794172525406, 0.04353443905711174, 0.02461179904639721, -0.019334055483341217, 0.00913455430418253, 0.024602238088846207, 0.2197866439819336, 0.029946528375148773, -0.029222538694739342, 0.058934397995471954, 0.07088803499937057, 0.0931812971830368, 0.12323710322380066, 0.19653655588626862, 0.1496010273694992, -0.005349196959286928, 0.0927705243229866, 0.028104247525334358, -0.03394864499568939, -0.15456001460552216, 0.024914273992180824, -0.04231558367609978, 0.09140754491090775, -0.03468248248100281, 0.21591737866401672, 0.06949330866336823, -0.16367781162261963, 0.04889751970767975, -0.05783238261938095, -0.08538045734167099, -0.10254491865634918, -0.03647896274924278, -0.08264115452766418, -0.13981209695339203, -0.0015479408903047442, -0.10932829976081848, 0.024082589894533157, 0.10125599056482315, 0.007270169910043478, -0.034593258053064346, 0.15640296041965485, 0.04233811795711517, 0.01290617510676384, 0.05152187868952751, -0.000724008132237941, -0.01747244782745838, -0.10380026698112488, -0.060646042227745056, -0.023366747424006462, -0.002271345118060708, 0.03640341758728027, -0.045502107590436935, -0.07866007834672928, 0.036576710641384125, -0.0308493934571743, -0.0952993705868721, 0.013045653700828552, 0.024280518293380737, 0.08072272688150406, 0.05574977025389671, 0.001396344043314457, 0.006460618227720261, -0.011350448243319988, 0.22491663694381714, -0.07596688717603683, -0.10294939577579498, -0.0862826332449913, 0.2584803104400635, 0.04546389728784561, -0.01110780518501997, 0.025504199787974358, -0.0525861419737339, -0.007476144470274448, 0.2833215594291687, 0.20383146405220032, -0.09088939428329468, -0.015611592680215836, 0.01746140420436859, -0.007054344285279512, -0.01866934448480606, 0.11815445870161057, 0.14995840191841125, 0.06679324060678482, -0.10451745241880417, -0.03584000840783119, -0.05633309856057167, -0.011178453452885151, -0.057229917496442795, 0.06821507215499878, 0.03137476369738579, -0.0028694141656160355, -0.030449843034148216, 0.05833732709288597, -0.07285104691982269, -0.08319568634033203, 0.03483343869447708, -0.21421146392822266, -0.1521361768245697, -0.012782747857272625, 0.12530720233917236, -0.002495787339285016, 0.06628213822841644, -0.02532499097287655, 0.008694414049386978, 0.07165169715881348, -0.02383938431739807, -0.09006966650485992, -0.06764387339353561, 0.08505844324827194, -0.12570741772651672, 0.18113382160663605, -0.044055208563804626, 0.06825146079063416, 0.12412417680025101, 0.06481951475143433, -0.07707169651985168, 0.061708640307188034, 0.034495703876018524, -0.07462840527296066, 0.036283642053604126, 0.0894128829240799, -0.031595733016729355, 0.03689611703157425, 0.03762727230787277, -0.12436399608850479, 0.02990509755909443, -0.06235038861632347, -0.033830028027296066, -0.02979666367173195, -0.05077018216252327, -0.05457302927970886, 0.12093445658683777, 0.21443912386894226, -0.028043534606695175, 0.015418143942952156, -0.07725859433412552, 0.012543128803372383, 0.051823392510414124, 0.029849987477064133, -0.074384406208992, -0.23267127573490143, -0.006840734276920557, 0.061428382992744446, -0.017073454335331917, -0.23826327919960022, -0.08956290036439896, -0.005301154218614101, -0.0822790116071701, -0.10606800764799118, 0.08249606192111969, 0.08123613148927689, 0.045090656727552414, -0.04734895005822182, -0.06845171749591827, -0.08271942287683487, 0.16155599057674408, -0.15269048511981964, -0.09427883476018906 ]
null
null
transformers
# BioRedditBERT ## Model description BioRedditBERT is a BERT model initialised from BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) and further pre-trained on health-related Reddit posts. Please view our paper [COMETA: A Corpus for Medical Entity Linking in the Social Media](https://arxiv.org/pdf/2010.03295.pdf) (EMNLP 2020) for more details. ## Training data We crawled all threads from 68 health themed subreddits such as `r/AskDocs`, `r/health` and etc. starting from the beginning of 2015 to the end of 2018, obtaining a collection of more than 800K discussions. This collection was then pruned by removing deleted posts, comments from bots or moderators, and so on. In the end, we obtained the training corpus with ca. 300 million tokens and a vocabulary size of ca. 780,000 words. ## Training procedure We use the same pre-training script in the original [google-research/bert](https://github.com/google-research/bert) repo. The model is initialised with [`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`](https://github.com/dmis-lab/biobert). We train with a batch size of 64, a max sequence length of 64, a learning rate of `2e-5` for 100k steps on two GeForce GTX 1080Ti (11 GB) GPUs. Other hyper-parameters are the same as default. ## Eval results To show the benefit from further pre-training on the social media domain, we demonstrate results on a medical entity linking dataset also in the social media: [AskAPatient](https://zenodo.org/record/55013#.X4ncRmTYpb8) [(Limsopatham and Collier 2016)](https://www.aclweb.org/anthology/P16-1096.pdf). We follow the same 10-fold cross-validation procedure for all models and report the average result without fine-tuning. `[CLS]` is used as representations for entity mentions (we also tried average of all tokens but found `[CLS]` generally performs better). Model | Accuracy@1 | Accuracy@5 -------|---------|--------- [BERT-base-uncased](https://huggingface.co/bert-base-uncased) | 38.2 | 43.3 [BioBERT v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) | 41.4 | 51.5 [ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) | 43.9 | 54.3 [BlueBERT](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/NCBI_BERT_pubmed_mimic_uncased_L-12_H-768_A-12.zip) | 41.5 | 48.5 [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased) | 42.3 | 51.9 [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) | 42.5 | 49.6 BioRedditBERT | **44.3** | **56.2** ### BibTeX entry and citation info ```bibtex @inproceedings{basaldella-2020-cometa, title = "{COMETA}: A Corpus for Medical Entity Linking in the Social Media", author = "Basaldella, Marco and Liu, Fangyu, and Shareghi, Ehsan, and Collier, Nigel", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2020", publisher = "Association for Computational Linguistics" } ```
{"language": ["en"], "tags": ["BioNLP", "social_media"]}
feature-extraction
cambridgeltl/BioRedditBERT-uncased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "feature-extraction", "BioNLP", "social_media", "en", "arxiv:2010.03295", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.03295" ]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #BioNLP #social_media #en #arxiv-2010.03295 #endpoints_compatible #has_space #region-us
BioRedditBERT ============= Model description ----------------- BioRedditBERT is a BERT model initialised from BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') and further pre-trained on health-related Reddit posts. Please view our paper COMETA: A Corpus for Medical Entity Linking in the Social Media (EMNLP 2020) for more details. Training data ------------- We crawled all threads from 68 health themed subreddits such as 'r/AskDocs', 'r/health' and etc. starting from the beginning of 2015 to the end of 2018, obtaining a collection of more than 800K discussions. This collection was then pruned by removing deleted posts, comments from bots or moderators, and so on. In the end, we obtained the training corpus with ca. 300 million tokens and a vocabulary size of ca. 780,000 words. Training procedure ------------------ We use the same pre-training script in the original google-research/bert repo. The model is initialised with 'BioBERT-Base v1.0 + PubMed 200K + PMC 270K'. We train with a batch size of 64, a max sequence length of 64, a learning rate of '2e-5' for 100k steps on two GeForce GTX 1080Ti (11 GB) GPUs. Other hyper-parameters are the same as default. Eval results ------------ To show the benefit from further pre-training on the social media domain, we demonstrate results on a medical entity linking dataset also in the social media: AskAPatient (Limsopatham and Collier 2016). We follow the same 10-fold cross-validation procedure for all models and report the average result without fine-tuning. '[CLS]' is used as representations for entity mentions (we also tried average of all tokens but found '[CLS]' generally performs better). Model: BERT-base-uncased, Accuracy@1: 38.2, Accuracy@5: 43.3 Model: BioBERT v1.1, Accuracy@1: 41.4, Accuracy@5: 51.5 Model: ClinicalBERT, Accuracy@1: 43.9, Accuracy@5: 54.3 Model: BlueBERT, Accuracy@1: 41.5, Accuracy@5: 48.5 Model: SciBERT, Accuracy@1: 42.3, Accuracy@5: 51.9 Model: PubMedBERT, Accuracy@1: 42.5, Accuracy@5: 49.6 Model: BioRedditBERT, Accuracy@1: 44.3, Accuracy@5: 56.2 ### BibTeX entry and citation info
[ "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #BioNLP #social_media #en #arxiv-2010.03295 #endpoints_compatible #has_space #region-us \n", "### BibTeX entry and citation info" ]
[ 63, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #BioNLP #social_media #en #arxiv-2010.03295 #endpoints_compatible #has_space #region-us \n### BibTeX entry and citation info" ]
[ 0.004917020909488201, 0.0597628690302372, -0.004995142109692097, -0.0008845027186907828, -0.00124137825332582, 0.003968421369791031, 0.061302024871110916, 0.11812774091959, 0.05143808573484421, 0.013304502703249454, 0.12555663287639618, 0.17817269265651703, 0.007946977391839027, 0.1926754117012024, -0.06474901735782623, -0.15426288545131683, 0.030005697160959244, 0.12190838158130646, 0.05178745463490486, 0.08479484170675278, 0.06183124706149101, -0.11021386831998825, 0.0694543868303299, -0.032663632184267044, -0.07134150713682175, 0.041833341121673584, 0.048348378390073776, -0.051859017461538315, 0.1375090628862381, 0.017926029860973358, 0.08772165328264236, 0.08214729279279709, -0.019096029922366142, -0.1161009818315506, 0.05831049755215645, 0.006996694952249527, -0.10318578779697418, 0.10979516804218292, 0.029305635020136833, -0.058441441506147385, 0.11705856025218964, 0.0035238356795161963, -0.012775381095707417, 0.026402592658996582, -0.16637668013572693, -0.20286045968532562, -0.04845024272799492, 0.15457049012184143, -0.05719665437936783, -0.01891043782234192, 0.019417215138673782, 0.17807620763778687, -0.044316139072179794, 0.10214302688837051, 0.23930656909942627, -0.20824439823627472, -0.02712509036064148, 0.03291657194495201, 0.2163611650466919, 0.09691645950078964, -0.08015865087509155, 0.09997431188821793, 0.04374127835035324, -0.007286157459020615, 0.10791316628456116, -0.09060920029878616, -0.025149459019303322, 0.031565453857183456, -0.09490348398685455, 0.01266101561486721, 0.18970118463039398, -0.007254351396113634, 0.015255010686814785, 0.017917867749929428, -0.06521038711071014, 0.052525751292705536, -0.016031183302402496, -0.025505434721708298, -0.0002696624433156103, -0.01679854467511177, 0.0034465347416698933, -0.05757838115096092, -0.0864802896976471, -0.013034622184932232, -0.09503056108951569, 0.1931125372648239, -0.04003272205591202, 0.056765973567962646, -0.16765590012073517, 0.037746429443359375, 0.06499132513999939, -0.1126670092344284, 0.04392638057470322, -0.0864546075463295, 0.12267965823411942, -0.0009565307409502566, 0.016274409368634224, 0.11252117156982422, 0.0815720185637474, 0.1530272364616394, -0.024619122967123985, -0.04490194097161293, -0.0876210629940033, 0.1246880367398262, 0.049196209758520126, -0.07489260286092758, -0.08961039036512375, -0.08562861382961273, 0.11393001675605774, 0.005844823084771633, 0.034988678991794586, -0.02418653853237629, -0.09246092289686203, -0.036916062235832214, 0.012472061440348625, 0.05379786714911461, 0.11173208057880402, -0.008714149706065655, -0.05935577675700188, 0.026134930551052094, 0.1439206302165985, -0.005595830734819174, -0.01715523935854435, -0.005828590132296085, 0.06675878912210464, -0.013103567995131016, 0.05081486701965332, -0.01723031885921955, 0.02521565742790699, 0.0664820522069931, -0.1252361387014389, -0.0186251699924469, 0.02988668903708458, -0.07763677835464478, 0.052866727113723755, -0.06355853378772736, 0.09257978945970535, -0.19141390919685364, -0.05031502991914749, 0.04403867572546005, 0.0020194784738123417, -0.023994380608201027, -0.02008797600865364, 0.11886437982320786, -0.01989099569618702, 0.02916884422302246, -0.08296442031860352, 0.004223404917865992, -0.11492065340280533, 0.11383534967899323, -0.08440099656581879, 0.12034135311841965, -0.18014740943908691, 0.013416390866041183, -0.0745559111237526, 0.008173472248017788, -0.0378611758351326, -0.07093597948551178, -0.04549820348620415, 0.05936890468001366, -0.014903860166668892, -0.02891930565237999, -0.18209072947502136, 0.028529386967420578, 0.046052124351263046, 0.16718652844429016, -0.11064905673265457, -0.07082189619541168, 0.18976040184497833, -0.0491415336728096, -0.18811878561973572, 0.07315601408481598, -0.009870951063930988, 0.07487665116786957, 0.04886554926633835, 0.2567802369594574, -0.020745055750012398, -0.17539383471012115, -0.036704111844301224, 0.10692083090543747, -0.06846261024475098, -0.04276325926184654, 0.018621793016791344, 0.07545793801546097, -0.011291502974927425, -0.0275359358638525, 0.10246626287698746, 0.09395396709442139, -0.06443019211292267, -0.004177549853920937, -0.018110888078808784, -0.044395215809345245, 0.07125376164913177, 0.0384172759950161, 0.02561372146010399, -0.08435283601284027, 0.0040241447277367115, 0.06422960013151169, -0.0013871995033696294, 0.0771997794508934, 0.037729568779468536, 0.009989459067583084, 0.13457919657230377, -0.1086580827832222, -0.009912294335663319, -0.1523372083902359, -0.0008781162323430181, -0.027071747928857803, 0.0483582504093647, 0.05137023702263832, 0.14704914391040802, 0.04924942925572395, -0.06787414848804474, -0.06992387771606445, -0.01395105104893446, 0.06776992231607437, 0.054598018527030945, -0.06028549000620842, -0.1422470360994339, 0.057567596435546875, -0.07351264357566833, -0.11677789688110352, -0.10281288623809814, 0.030795220285654068, 0.06746802479028702, 0.13963767886161804, -0.005417877808213234, 0.03058856539428234, 0.04352853074669838, -0.0215171966701746, -0.07568003982305527, -0.00012482320016715676, 0.06831664592027664, -0.0047020879574120045, -0.08099976181983948, 0.2009921818971634, -0.05147792771458626, 0.35987192392349243, 0.18564873933792114, -0.16412653028964996, -0.03635149076581001, 0.028049830347299576, -0.018693340942263603, 0.01741606369614601, 0.02209642343223095, -0.07414472103118896, -0.019350139424204826, -0.035762473940849304, 0.0982634499669075, -0.10124409943819046, -0.08149993419647217, 0.004335249308496714, -0.028308739885687828, -0.05277932435274124, 0.081852987408638, -0.0025156920310109854, -0.2815365791320801, 0.13959866762161255, 0.28945016860961914, 0.0768541470170021, 0.18997670710086823, 0.03667145594954491, -0.030597001314163208, -0.0008374899625778198, -0.08952232450246811, -0.03827257454395294, 0.17850147187709808, -0.07114170491695404, 0.013936021365225315, 0.06333999335765839, -0.039573367685079575, 0.041336026042699814, -0.09598996490240097, -0.07029328495264053, -0.02242150902748108, 0.035657692700624466, -0.11727270483970642, 0.08761708438396454, 0.03694722428917885, 0.1924780309200287, 0.012396717444062233, -0.009900743141770363, 0.015757670626044273, 0.004259096458554268, -0.08586586266756058, 0.15408527851104736, -0.06629662215709686, -0.28262048959732056, -0.02637084387242794, -0.08083714544773102, 0.06709600985050201, 0.0033379425294697285, 0.061550550162792206, -0.02639041468501091, 0.015199856832623482, 0.01602007821202278, -0.02808772213757038, -0.07808889448642731, 0.027263689786195755, -0.04931981861591339, 0.03360220044851303, -0.0037873846013098955, -0.11888404935598373, -0.051235396414995193, -0.059115197509527206, 0.06312311440706253, 0.07652248442173004, -0.08727187663316727, 0.11460532993078232, 0.02679852955043316, -0.0583171471953392, -0.008615334518253803, -0.041315045207738876, 0.19656595587730408, -0.07847990095615387, 0.0766136646270752, 0.19911052286624908, -0.03327120095491409, 0.05861475691199303, 0.11697891354560852, 0.05930382013320923, -0.040142644196748734, -0.013870012946426868, -0.06102796271443367, -0.10308950394392014, -0.184890478849411, -0.059282511472702026, -0.0961613804101944, 0.028431978076696396, 0.0359165295958519, 0.0213162899017334, 0.10300081223249435, 0.047910016030073166, -0.02407069317996502, -0.020334072411060333, -0.004212123341858387, 0.08171585947275162, 0.010250594466924667, -0.030897045508027077, 0.1359182447195053, -0.025014277547597885, -0.06412404775619507, 0.11382061243057251, 0.08367979526519775, 0.028563303872942924, 0.041420575231313705, -0.030422097072005272, 0.052295930683612823, 0.1064767986536026, 0.12299075722694397, 0.15344108641147614, -0.033561211079359055, -0.04938811808824539, -0.03801765665411949, -0.037131089717149734, 0.012802042998373508, 0.05048646777868271, 0.03913141414523125, -0.027785563841462135, 0.011380229145288467, -0.27882516384124756, 0.07229717820882797, -0.05158166214823723, 0.046751491725444794, -0.12899988889694214, -0.004688794258981943, 0.10444401204586029, 0.023864220827817917, -0.11478012055158615, 0.03400619700551033, 0.1402202546596527, -0.06494707614183426, 0.09602789580821991, 0.001081631751731038, 0.09376108646392822, 0.08441106230020523, 0.04923984780907631, -0.11351614445447922, -0.19287873804569244, -0.04517131671309471, 0.029527340084314346, -0.19171804189682007, 0.24368388950824738, 0.020136667415499687, -0.08868606388568878, -0.01552450843155384, -0.051768504083156586, 0.022600675001740456, 0.15315955877304077, 0.1694519817829132, 0.02660231664776802, -0.03453169763088226, -0.049383167177438736, -0.002274351194500923, 0.02124224230647087, 0.03621107339859009, -0.042287714779376984, -0.00849262997508049, 0.01642419956624508, 0.0028908492531627417, -0.022759517654776573, 0.0011133123189210892, -0.06328307092189789, -0.10098091512918472, 0.06768443435430527, -0.0162325669080019, -0.04207935184240341, -0.011795748956501484, -0.05880149081349373, 0.002679361030459404, 0.14378049969673157, -0.09436279535293579, -0.04834049940109253, -0.13312071561813354, 0.008695113472640514, 0.09369383007287979, -0.04529084637761116, 0.030703462660312653, -0.045135486871004105, 0.004038602579385042, -0.10320228338241577, -0.1950569599866867, 0.11972576379776001, -0.11801929771900177, -0.0510534830391407, -0.1087639257311821, 0.14363723993301392, -0.04633653536438942, 0.05686752125620842, 0.04107077419757843, 0.02320876345038414, -0.16772447526454926, -0.07633588463068008, 0.055477239191532135, -0.16425244510173798, 0.13179270923137665, -0.026243915781378746, -0.14921866357326508, -0.15614746510982513, 0.02848159894347191, -0.008619106374680996, 0.09672071784734726, 0.27927443385124207, -0.07142358273267746, 0.0941084697842598, 0.16639335453510284, -0.04699557647109032, -0.2859514355659485, -0.017245396971702576, -0.14498399198055267, -0.05649734288454056, 0.07129014283418655, -0.046223048120737076, 0.10630359500646591, 0.05160684511065483, -0.06708689033985138, 0.1432243436574936, -0.030313538387417793, -0.09813559055328369, 0.09140195697546005, 0.0025746554601937532, 0.3723216950893402, -0.17817853391170502, -0.03937221318483353, -0.018804509192705154, -0.14078226685523987, 0.18047314882278442, -0.13452178239822388, 0.011072013527154922, -0.04563198238611221, -0.021820813417434692, 0.015740083530545235, -0.03859676048159599, 0.10470420867204666, -0.10320471227169037, 0.02746657468378544, -0.06053544208407402, -0.2027016133069992, 0.05697603151202202, -0.02113916538655758, -0.005176590755581856, -0.026720808818936348, 0.0292592104524374, -0.17092975974082947, 0.02651902288198471, -0.13643813133239746, 0.10473287105560303, -0.015602863393723965, -0.08841196447610855, -0.08719324320554733, 0.020929332822561264, -0.016123924404382706, -0.019436411559581757, 0.265021413564682, -0.1047702431678772, 0.28769972920417786, 0.056117162108421326, 0.08935587853193283, -0.12063959240913391, 0.03688743710517883, 0.005895618349313736, -0.0774194672703743, 0.024567045271396637, -0.14963214099407196, 0.03551351651549339, 0.0796353667974472, 0.03118053823709488, -0.004163028206676245, 0.08683183789253235, -0.011501642875373363, -0.009300748817622662, 0.13039785623550415, -0.22835029661655426, 0.0460037887096405, -0.02231215126812458, 0.020056461915373802, 0.028481336310505867, 0.08271787315607071, 0.1317930966615677, 0.014722700230777264, -0.09387405216693878, -0.01117546483874321, 0.012328831478953362, -0.083644337952137, 0.024236854165792465, 0.14812599122524261, 0.049313321709632874, -0.06926979869604111, -0.043923020362854004, 0.022168150171637535, -0.03692625090479851, -0.06210707873106003, 0.08737994730472565, -0.045627325773239136, -0.09240231662988663, -0.028419943526387215, 0.04414923116564751, -0.05992472544312477, 0.014996936544775963, -0.018852930516004562, -0.10285365581512451, 0.029688557609915733, 0.3818269670009613, 0.022767186164855957, 0.003981325309723616, 0.029207395389676094, -0.04662041738629341, 0.022456632927060127, 0.06208604574203491, -0.12231259793043137, 0.026248332113027573, -0.005425287410616875, 0.036706678569316864, -0.0396411158144474, 0.13161484897136688, -0.11650272458791733, 0.07188846170902252, -0.20691025257110596, 0.00004945504406350665, -0.05367346853017807, -0.012443294748663902, -0.10405227541923523, -0.06484413146972656, -0.06835833191871643, -0.11341182142496109, -0.06617080420255661, -0.03768085688352585, -0.09812106937170029, 0.051928017288446426, 0.010222825221717358, 0.05062704160809517, -0.10434835404157639, -0.06138286367058754, 0.07248903810977936, -0.015257282182574272, 0.09121593087911606, 0.06188541278243065, -0.005113984923809767, 0.03948860988020897, -0.16668610274791718, -0.06555633991956711, 0.08867479860782623, 0.03493400290608406, 0.011988458223640919, 0.03053153119981289, 0.00738907465711236, 0.01267629861831665, 0.012718193233013153, 0.044762689620256424, 0.0014853531029075384, -0.07648560404777527, 0.009478497318923473, -0.02175695076584816, -0.10747359693050385, 0.022227438166737556, -0.025802044197916985, 0.08460104465484619, -0.01954965479671955, 0.011936300434172153, -0.015079140663146973, -0.0003948161902371794, -0.15706957876682281, 0.028135448694229126, -0.031220735982060432, -0.23763622343540192, -0.035399265587329865, -0.039668839424848557, 0.02291412279009819, 0.026035279035568237, 0.2825554609298706, -0.0003605928213801235, -0.09401051700115204, 0.052286699414253235, 0.044867392629384995, 0.00517005892470479, 0.006860547233372927, 0.16158515214920044, -0.03248147293925285, -0.07258344441652298, -0.11877996474504471, 0.050855837762355804, -0.039191845804452896, -0.03315345570445061, 0.09475627541542053, 0.1724274903535843, 0.05487228184938431, 0.017791887745261192, -0.001974784303456545, -0.01880251057446003, 0.022070394828915596, -0.2229572981595993, 0.03841870278120041, -0.017467133700847626, 0.0015620302874594927, 0.08621057122945786, 0.181457057595253, -0.049155570566654205, 0.024033812806010246, -0.016989631578326225, 0.020282763987779617, -0.12161115556955338, 0.030850887298583984, -0.030077017843723297, -0.0023171198554337025, -0.050120193511247635, -0.10382421314716339, 0.023308614268898964, 0.03753722459077835, 0.01931406930088997, -0.021040501073002815, 0.0249768253415823, 0.10596071183681488, -0.05349194258451462, 0.05045903101563454, 0.07825665920972824, 0.022568661719560623, -0.11817934364080429, 0.02376234345138073, -0.06859161704778671, -0.03751255199313164, -0.03521735966205597, -0.016869716346263885, -0.05590182542800903, -0.022081589326262474, -0.09549587219953537, -0.083648681640625, -0.030614672228693962, 0.02176961861550808, 0.0182209275662899, 0.12442705035209656, -0.0009301102254539728, 0.00012164085637778044, 0.04250096529722214, 0.17822541296482086, -0.029671764001250267, 0.05152850225567818, 0.01970568113029003, 0.12449934333562851, -0.04069971293210983, 0.08820224553346634, -0.044349491596221924, 0.013544700108468533, 0.006144749000668526, 0.26481813192367554, 0.2202960103750229, -0.10854881256818771, 0.07122011482715607, 0.032570935785770416, 0.02848276123404503, 0.10284432023763657, 0.025885600596666336, 0.12432747334241867, 0.2190016508102417, -0.06777388602495193, -0.028834844008088112, -0.008930033072829247, 0.059031352400779724, -0.038412850350141525, 0.0480378083884716, 0.03553131967782974, -0.040845777839422226, -0.08128097653388977, 0.028839124366641045, -0.05023498460650444, -0.055738937109708786, 0.0022761879954487085, -0.26336869597435, -0.05727487429976463, -0.0365121066570282, -0.002797420136630535, -0.07576251775026321, 0.03399381786584854, -0.021146489307284355, -0.056209467351436615, -0.040004026144742966, 0.02429005689918995, -0.15079864859580994, -0.05978003516793251, 0.060726020485162735, -0.023736415430903435, 0.07497143000364304, -0.07075394690036774, -0.01898627169430256, 0.09563520550727844, -0.019923429936170578, -0.05587325245141983, 0.021051229909062386, 0.04350251331925392, -0.04233018681406975, -0.03691067546606064, 0.010481651872396469, 0.02198268286883831, -0.061081163585186005, 0.10310371220111847, -0.08368935436010361, 0.033611513674259186, -0.028190599754452705, -0.11440418660640717, -0.02046440728008747, 0.069503553211689, -0.043245721608400345, 0.08595925569534302, 0.031605832278728485, -0.04513245075941086, -0.055497366935014725, -0.041118018329143524, -0.01865721121430397, 0.09324607998132706, 0.055251024663448334, -0.058810148388147354, -0.05498050898313522, -0.03298031911253929, 0.002092296490445733, 0.02645174041390419, -0.22777244448661804, -0.011640293523669243, -0.1040436401963234, 0.03499249368906021, -0.13121165335178375, 0.03553330898284912, 0.019559327512979507, -0.018501637503504753, 0.0146127725020051, -0.17222990095615387, 0.07794718444347382, 0.04483652859926224, -0.08319903910160065, -0.03496335446834564 ]
null
null
transformers
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-XLMR SapBERT [(Liu et al. 2021)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the base model. Please use [CLS] as the representation of the input. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. ```python import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext") model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda() # replace with your own list of entity names all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0) ``` For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert). ### Citation ```bibtex @inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} } ```
{}
feature-extraction
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "arxiv:2010.11784", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11784" ]
[]
TAGS #transformers #pytorch #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS [news] A cross-lingual extension of SapBERT will appear in the main onference of ACL 2021! <br> [news] SapBERT will appear in the conference proceedings of NAACL 2021! ### SapBERT-XLMR SapBERT (Liu et al. 2021) trained with UMLS 2020AB, using xlm-roberta-large as the base model. Please use [CLS] as the representation of the input. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. For more details about training and eval, see SapBERT github repo.
[ "### SapBERT-XLMR\nSapBERT (Liu et al. 2021) trained with UMLS 2020AB, using xlm-roberta-large as the base model. Please use [CLS] as the representation of the input.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us \n", "### SapBERT-XLMR\nSapBERT (Liu et al. 2021) trained with UMLS 2020AB, using xlm-roberta-large as the base model. Please use [CLS] as the representation of the input.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ 41, 55, 51 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us \n### SapBERT-XLMR\nSapBERT (Liu et al. 2021) trained with UMLS 2020AB, using xlm-roberta-large as the base model. Please use [CLS] as the representation of the input.#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ -0.10645328462123871, -0.007876639254391193, -0.0017772851279005408, 0.09632523357868195, 0.17857858538627625, -0.030696840956807137, -0.037427693605422974, 0.060965646058321, -0.0673922598361969, 0.04663366824388504, 0.14026880264282227, 0.20719876885414124, -0.003105586627498269, 0.18360216915607452, -0.07757098972797394, -0.23394325375556946, 0.03114936873316765, 0.031989067792892456, -0.008699112571775913, 0.03440094739198685, 0.11278921365737915, -0.07073810696601868, 0.1509319543838501, -0.024502448737621307, -0.20094336569309235, 0.07514192909002304, -0.038986146450042725, -0.029067620635032654, 0.07026810199022293, 0.07940595597028732, 0.06409682333469391, -0.05255112424492836, 0.03951915726065636, -0.14387215673923492, 0.02671857178211212, -0.05579275265336037, -0.017246855422854424, 0.06317129731178284, -0.02263190597295761, -0.06368578225374222, 0.14706705510616302, -0.029988419264554977, 0.01780424267053604, 0.00489824777469039, -0.12107396870851517, 0.08432638645172119, -0.03983723372220993, 0.03158719465136528, 0.12457011640071869, 0.11968046426773071, 0.008164195343852043, 0.11626666784286499, -0.04524747654795647, 0.10331805795431137, 0.1562427431344986, -0.18019062280654907, -0.02705887332558632, 0.015444353222846985, 0.11502493172883987, 0.041701365262269974, 0.04235071688890457, 0.019885897636413574, 0.10903231054544449, 0.03913915529847145, 0.027706341817975044, -0.07289046794176102, -0.1600528061389923, 0.0071654184721410275, -0.11034609377384186, -0.04111684858798981, 0.28771451115608215, -0.04360119253396988, -0.07936108112335205, 0.02253495529294014, -0.010732611641287804, -0.07428579777479172, 0.013761847279965878, -0.028499998152256012, 0.03663084656000137, -0.0006010766956023872, 0.0596560500562191, -0.03682274743914604, -0.06231607496738434, -0.06348827481269836, -0.10457534343004227, 0.05519538372755051, 0.03201032802462578, 0.031332578510046005, -0.07705731689929962, 0.006598026491701603, -0.07628368586301804, -0.041396092623472214, -0.02621246688067913, -0.04541056230664253, 0.02774904854595661, 0.013847491703927517, -0.07304392755031586, 0.009078152477741241, 0.003595514688640833, 0.18307314813137054, -0.03372351825237274, 0.031198197975754738, 0.04914320260286331, 0.06550247967243195, 0.013444392010569572, 0.14574109017848969, 0.07155247032642365, 0.003659876063466072, 0.11872122436761856, -0.1252397745847702, -0.02925889939069748, -0.006043755449354649, -0.16024143993854523, -0.0410582609474659, -0.10359270125627518, 0.061483483761548996, -0.061363667249679565, 0.0859408974647522, -0.07372412085533142, -0.029604896903038025, 0.002501211129128933, -0.13008861243724823, 0.01146933063864708, -0.013981751166284084, -0.05892757326364517, 0.011623094789683819, 0.08993745595216751, 0.009392565116286278, -0.08985219150781631, -0.05307631939649582, -0.0923609659075737, 0.04590816795825958, -0.09737959504127502, -0.1066785529255867, 0.022719528526067734, -0.10209918767213821, 0.0649438425898552, -0.17889845371246338, -0.23866507411003113, -0.023950522765517235, 0.02966086007654667, 0.05904212221503258, -0.03611212223768234, -0.10572991520166397, 0.000032033352908911183, -0.06774908304214478, -0.052851732820272446, 0.03145875409245491, -0.013073592446744442, -0.027072330936789513, 0.04001617059111595, 0.014109036885201931, -0.19541451334953308, 0.061770666390657425, -0.11056651175022125, 0.010965936817228794, -0.10073859989643097, 0.08823678642511368, -0.0440623015165329, 0.16191928088665009, -0.036608077585697174, -0.07620494067668915, -0.01723305881023407, 0.08731942623853683, 0.024095473811030388, 0.12821723520755768, -0.1692611575126648, -0.09005258232355118, 0.046963170170784, -0.10795199126005173, -0.11883604526519775, 0.055111657828092575, -0.05349704250693321, 0.029974984005093575, 0.09063458442687988, 0.277094304561615, 0.032518040388822556, -0.016855912283062935, 0.037268366664648056, 0.0455840565264225, -0.02231202833354473, -0.13877440989017487, 0.08695431053638458, 0.08573776483535767, -0.08427823334932327, 0.07692369818687439, -0.1313251107931137, 0.015207896940410137, -0.017846858128905296, -0.06381838023662567, -0.035392653197050095, -0.03644048050045967, -0.16169017553329468, -0.01717720367014408, 0.07566404342651367, -0.02605110965669155, 0.012770690023899078, 0.11652287095785141, 0.05534079670906067, -0.0651497021317482, 0.03568658605217934, -0.053169768303632736, 0.04690716415643692, 0.012253188528120518, 0.0017042926046997309, -0.165756493806839, 0.07620969414710999, 0.005810540169477463, 0.004071658477187157, 0.07145916670560837, 0.04670478031039238, 0.005515740253031254, 0.03307029604911804, 0.07306905835866928, -0.002733383560553193, 0.016335852444171906, -0.04877358302474022, -0.04210870340466499, -0.057149115949869156, -0.027263782918453217, -0.09255942702293396, -0.09628786891698837, -0.12635034322738647, 0.0686439648270607, -0.14050307869911194, 0.05744437128305435, -0.028709879145026207, -0.026306597515940666, -0.029988806694746017, 0.08296558260917664, -0.07122749835252762, -0.017909502610564232, 0.0457526296377182, 0.013688827864825726, -0.11086296290159225, 0.11536293476819992, -0.045579470694065094, 0.13313330709934235, 0.14749465882778168, -0.03538114205002785, -0.02574349381029606, -0.022143589332699776, -0.06238338723778725, 0.037843942642211914, 0.051095250993967056, 0.001566426595672965, 0.3638095259666443, -0.0872887521982193, 0.14269667863845825, -0.047476876527071, -0.03534887731075287, -0.034635938704013824, -0.04014904797077179, -0.014567741192877293, 0.19065821170806885, 0.1061098575592041, -0.02563597820699215, 0.10559041053056717, 0.004633336327970028, -0.036381691694259644, 0.061735790222883224, -0.06395364552736282, -0.03252239152789116, -0.023015402257442474, 0.03012634813785553, -0.00740150036290288, 0.04922359809279442, -0.1351165771484375, -0.09041990339756012, 0.016519002616405487, -0.002261572750285268, 0.0964827835559845, -0.12185154855251312, -0.030722299590706825, 0.04050955921411514, 0.014473195187747478, -0.09660274535417557, -0.01800117827951908, -0.07538694143295288, 0.02761249430477619, -0.019888700917363167, 0.04304848238825798, 0.006123366765677929, 0.042201150208711624, -0.10826376080513, 0.2265143245458603, -0.1348453313112259, -0.2563127875328064, -0.13564138114452362, -0.004905457608401775, 0.01636114902794361, 0.06087349355220795, 0.0789978876709938, -0.08198422193527222, -0.0707867443561554, -0.04146851599216461, 0.1363852322101593, -0.1253058761358261, 0.025031575933098793, 0.08372152596712112, 0.0015456238761544228, -0.01124035194516182, -0.10159168392419815, -0.04891583323478699, -0.03803766518831253, -0.04054586589336395, 0.021644623950123787, -0.07974991947412491, 0.1148836612701416, 0.04244985431432724, -0.04066787660121918, 0.06361063569784164, 0.010159393772482872, 0.16263052821159363, 0.045756515115499496, -0.11591934412717819, 0.1956404596567154, -0.08521363139152527, 0.010419275611639023, 0.025995725765824318, -0.025639569386839867, -0.10722213238477707, 0.021291527897119522, -0.08972467482089996, -0.06203633174300194, -0.24400877952575684, -0.11261921375989914, -0.08455166965723038, 0.13430458307266235, 0.016721809282898903, 0.055656224489212036, -0.11367572098970413, 0.07451994717121124, 0.05887933447957039, 0.14229759573936462, -0.08367258310317993, 0.09492268413305283, 0.03395116329193115, -0.05641741305589676, 0.05641553923487663, -0.03692155331373215, -0.04831916466355324, 0.047624558210372925, -0.03527004271745682, 0.17273442447185516, 0.06546305119991302, 0.040645431727170944, 0.032867226749658585, 0.08586407452821732, 0.07421819865703583, 0.14106391370296478, -0.05278322100639343, -0.006648735608905554, -0.051297981292009354, -0.002485858276486397, -0.10145415365695953, 0.07210906594991684, -0.022399039939045906, -0.025880834087729454, -0.09749819338321686, 0.04597587510943413, 0.07199559360742569, 0.01713467575609684, -0.040163274854421616, -0.3281002342700958, -0.0878838300704956, 0.02997654490172863, -0.06987867504358292, -0.012072712182998657, 0.023988597095012665, 0.09469088166952133, -0.05961344391107559, -0.03202752023935318, 0.022991560399532318, 0.13746842741966248, 0.015503755770623684, 0.05061062052845955, -0.09076759964227676, 0.07141420245170593, 0.042037483304739, 0.06704385578632355, -0.2556934952735901, 0.12534946203231812, -0.01839197799563408, 0.08352020382881165, -0.023740649223327637, 0.0458562858402729, 0.00909683108329773, 0.025046493858098984, 0.13592824339866638, 0.03650341555476189, -0.29496511816978455, -0.06752315163612366, -0.10469847917556763, 0.12368031591176987, 0.055925868451595306, -0.07792394608259201, 0.04755502939224243, 0.0042036124505102634, 0.06139010563492775, 0.014780544675886631, 0.07099145650863647, -0.0676080510020256, -0.10197547823190689, -0.004229616839438677, -0.08023989945650101, 0.0661858320236206, 0.00677707651630044, -0.02084711194038391, 0.018959559500217438, 0.2864285409450531, -0.1281295120716095, -0.03590049967169762, -0.12237183749675751, 0.06757315248250961, 0.04138723760843277, -0.10899127274751663, 0.10584895312786102, 0.03824193403124809, 0.08328911662101746, -0.05731154605746269, -0.1445871740579605, 0.054457999765872955, -0.09246374666690826, 0.04826578497886658, -0.0011296177981421351, 0.054838959127664566, -0.03672594577074051, 0.042126890271902084, 0.030961813405156136, 0.018872834742069244, -0.09549003094434738, -0.11467108875513077, -0.02384001761674881, 0.17389190196990967, 0.12564891576766968, 0.0878886878490448, -0.22121629118919373, -0.10081139951944351, -0.0028411236125975847, -0.01073211245238781, 0.2196689397096634, 0.13243341445922852, -0.05353408306837082, 0.03237514570355415, -0.011630724184215069, -0.0932459831237793, -0.26563969254493713, 0.06713085621595383, 0.0432455949485302, 0.08748628944158554, 0.009125166572630405, -0.20487958192825317, 0.11584396660327911, 0.07030526548624039, 0.03994122892618179, 0.04839223995804787, -0.11287716031074524, -0.08854679763317108, 0.08630053699016571, 0.07386016845703125, 0.24918660521507263, -0.06433723866939545, -0.03380585089325905, -0.0717024877667427, -0.061668768525123596, 0.12675398588180542, -0.03761439397931099, 0.0767715722322464, -0.020445657894015312, 0.14633257687091827, 0.007272854447364807, -0.027011163532733917, 0.08915947377681732, 0.034840162843465805, 0.056065287441015244, -0.020085925236344337, -0.10919667035341263, -0.026308398693799973, -0.014202880673110485, 0.16223369538784027, -0.13806624710559845, 0.08682788908481598, -0.15298832952976227, -0.03442798927426338, 0.005211945623159409, 0.1414961814880371, 0.024531207978725433, -0.049704764038324356, -0.024311164394021034, -0.031158577650785446, 0.029930727556347847, 0.05424030125141144, 0.10399194806814194, 0.010587146505713463, -0.05508791655302048, -0.01630575954914093, 0.054156169295310974, 0.07661312073469162, 0.03019833005964756, -0.00017089411267079413, -0.026286596432328224, 0.08327384293079376, -0.24204832315444946, -0.0029572362545877695, 0.15384453535079956, 0.020335320383310318, 0.11773071438074112, 0.07155101001262665, 0.03674160689115524, 0.030425503849983215, 0.08295287936925888, -0.13975881040096283, -0.005466747563332319, -0.05933393910527229, -0.05832706391811371, -0.0046763368882238865, 0.08094125986099243, 0.09412703663110733, -0.1073167696595192, -0.04397008568048477, -0.03581753745675087, 0.016090773046016693, -0.11296702921390533, 0.08955919742584229, 0.027551569044589996, -0.009310497902333736, -0.15386119484901428, 0.08052898198366165, -0.0620548352599144, -0.10437577962875366, 0.064019113779068, 0.06625836342573166, -0.07911103218793869, -0.07971134781837463, -0.008841062895953655, 0.2241416871547699, -0.1404695361852646, -0.015447859652340412, -0.11490168422460556, -0.09346006065607071, 0.06250898540019989, 0.08543366193771362, 0.05722380802035332, 0.022648530080914497, -0.028366515412926674, 0.05142051354050636, -0.04984951764345169, 0.00755061861127615, 0.13060058653354645, 0.04987660422921181, -0.12397092580795288, 0.1706678718328476, -0.01631016470491886, 0.07219366729259491, -0.023708689957857132, 0.045455001294612885, -0.11764032393693924, 0.018210744485259056, -0.06805385649204254, 0.01633775420486927, -0.02085687220096588, -0.03663194179534912, 0.011828768067061901, -0.04551336169242859, -0.07667228579521179, 0.09567096084356308, -0.11011262238025665, -0.005589151754975319, -0.08976539224386215, 0.01482337061315775, 0.005591904278844595, -0.025843530893325806, 0.0684165358543396, -0.06069960817694664, 0.033333975821733475, 0.19446322321891785, -0.02813625894486904, 0.10959263890981674, -0.17076416313648224, 0.005795889534056187, 0.14222638309001923, 0.04963942989706993, 0.06013191118836403, 0.052762459963560104, 0.007048273924738169, 0.0647495910525322, 0.00970666017383337, -0.06964968889951706, 0.08061517030000687, -0.10015079379081726, -0.06209632381796837, -0.0020358720794320107, -0.07044941931962967, -0.0545077845454216, -0.05633968114852905, 0.05441049858927727, 0.15400449931621552, 0.12364905327558517, -0.024341993033885956, 0.10424844175577164, -0.08251641690731049, 0.009321024641394615, 0.0392007976770401, -0.1164437085390091, -0.13159802556037903, -0.08702972531318665, 0.03806242346763611, -0.033496350049972534, 0.24602945148944855, 0.06456214189529419, -0.06250578910112381, -0.02199292741715908, -0.004655725322663784, 0.14857737720012665, 0.028414912521839142, 0.2765190899372101, 0.01799021102488041, 0.02610023319721222, -0.08319501578807831, 0.09839189052581787, 0.07463318854570389, -0.008940822444856167, 0.04443269222974777, 0.1571800708770752, 0.0038061756640672684, 0.11010785400867462, 0.07766789942979813, 0.036936745047569275, -0.0944950059056282, -0.16178272664546967, -0.012445765547454357, 0.054969243705272675, 0.0028449813835322857, 0.12183471024036407, 0.0961710512638092, -0.12580932676792145, 0.047234661877155304, 0.04182368144392967, -0.08084344118833542, -0.10773980617523193, -0.11529893428087234, -0.0830814316868782, -0.07105008512735367, 0.015678580850362778, -0.17183208465576172, -0.04766891151666641, -0.002974004950374365, -0.021623412147164345, -0.008439628407359123, 0.12137747555971146, 0.018535006791353226, -0.0936940461397171, 0.009347988292574883, -0.021411027759313583, -0.02903926931321621, -0.00642898865044117, -0.014221731573343277, 0.040092144161462784, -0.09156917780637741, 0.04478678107261658, -0.01622445322573185, 0.017649183049798012, 0.02959229052066803, -0.03987456485629082, -0.012257651425898075, -0.08450299501419067, 0.02180282399058342, -0.0721006840467453, 0.12298120558261871, 0.040152180939912796, -0.12115075439214706, 0.035254817456007004, 0.05710262805223465, -0.03542623668909073, -0.007505194284021854, -0.11852431297302246, 0.2337522655725479, 0.09341418743133545, 0.04116562381386757, -0.040161725133657455, -0.005637823138386011, -0.0015032662777230144, 0.2347247153520584, 0.169436976313591, -0.013195249252021313, -0.020197199657559395, -0.013970999047160149, 0.02287132851779461, -0.02490217611193657, 0.047335799783468246, 0.13259060680866241, 0.1448979526758194, -0.025001119822263718, -0.0759691521525383, -0.06689788401126862, -0.018095649778842926, -0.06212155520915985, -0.029403232038021088, 0.010111156851053238, -0.07091119885444641, -0.006631240248680115, 0.01209643017500639, -0.19070714712142944, -0.1632218360900879, 0.010957462713122368, -0.13232284784317017, -0.0680653527379036, -0.0528908409178257, 0.04703933373093605, 0.09046079218387604, 0.12062177807092667, -0.03726619854569435, 0.0017631471855565906, 0.00569833442568779, 0.003910287283360958, -0.20061619579792023, -0.020333629101514816, 0.06784291565418243, -0.09117840975522995, 0.06801096349954605, -0.02475724183022976, 0.05799595266580582, 0.009269973263144493, 0.08754667639732361, -0.014913597144186497, 0.06567458063364029, -0.040685538202524185, -0.01937379129230976, 0.021375184878706932, 0.055751699954271317, -0.08089439570903778, 0.034338828176259995, -0.013274063356220722, -0.09231174737215042, 0.008317732252180576, 0.055697087198495865, -0.067082978785038, -0.04232819378376007, 0.012279870919883251, -0.10766586661338806, 0.09443368762731552, 0.19435563683509827, 0.004781996365636587, 0.009973534382879734, -0.08654110133647919, 0.08710228651762009, 0.05864494666457176, 0.006237783469259739, -0.01559376996010542, -0.1957704722881317, -0.05510985851287842, 0.18852487206459045, -0.011512141674757004, -0.13723668456077576, -0.05608723312616348, -0.1372750699520111, -0.02156410738825798, -0.037715792655944824, 0.058254893869161606, 0.19502322375774384, 0.018037855625152588, -0.012126428075134754, -0.04014965519309044, 0.0804767981171608, 0.0652482807636261, 0.016684046015143394, -0.11675071716308594 ]
null
null
transformers
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-XLMR SapBERT [(Liu et al. 2020)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the base model. Please use [CLS] as the representation of the input. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. ```python import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext") model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda() # replace with your own list of entity names all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0) ``` For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert). ### Citation ```bibtex @inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} } ```
{}
feature-extraction
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "feature-extraction", "arxiv:2010.11784", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11784" ]
[]
TAGS #transformers #pytorch #safetensors #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS [news] A cross-lingual extension of SapBERT will appear in the main onference of ACL 2021! <br> [news] SapBERT will appear in the conference proceedings of NAACL 2021! ### SapBERT-XLMR SapBERT (Liu et al. 2020) trained with UMLS 2020AB, using xlm-roberta-base as the base model. Please use [CLS] as the representation of the input. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. For more details about training and eval, see SapBERT github repo.
[ "### SapBERT-XLMR\nSapBERT (Liu et al. 2020) trained with UMLS 2020AB, using xlm-roberta-base as the base model. Please use [CLS] as the representation of the input.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ "TAGS\n#transformers #pytorch #safetensors #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us \n", "### SapBERT-XLMR\nSapBERT (Liu et al. 2020) trained with UMLS 2020AB, using xlm-roberta-base as the base model. Please use [CLS] as the representation of the input.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ 46, 54, 51 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #xlm-roberta #feature-extraction #arxiv-2010.11784 #endpoints_compatible #region-us \n### SapBERT-XLMR\nSapBERT (Liu et al. 2020) trained with UMLS 2020AB, using xlm-roberta-base as the base model. Please use [CLS] as the representation of the input.#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ -0.11578401178121567, -0.0032037741038948298, -0.002221057191491127, 0.09110698848962784, 0.17901110649108887, -0.051917120814323425, -0.010021586902439594, 0.052876830101013184, -0.059211909770965576, 0.044450968503952026, 0.136117622256279, 0.20645716786384583, -0.013275151140987873, 0.19879627227783203, -0.09226211905479431, -0.1916765570640564, 0.04467441141605377, 0.015713157132267952, 0.005751929711550474, 0.03619726747274399, 0.11711256206035614, -0.0873020812869072, 0.13963796198368073, -0.03496667742729187, -0.1846347600221634, 0.06580039858818054, -0.01620415970683098, -0.047761622816324234, 0.0757029578089714, 0.052981339395046234, 0.09016041457653046, -0.04328606650233269, 0.04215533286333084, -0.15015234053134918, 0.030719025060534477, -0.023986082524061203, -0.024289269000291824, 0.060537829995155334, 0.0007121039088815451, -0.08580076694488525, 0.09414675831794739, -0.04739479720592499, 0.035966742783784866, -0.0016317503759637475, -0.12031520903110504, 0.0482957661151886, -0.038833219558000565, 0.013748669996857643, 0.14451633393764496, 0.11747347563505173, 0.008839468471705914, 0.13634929060935974, -0.044638048857450485, 0.1152334064245224, 0.16486123204231262, -0.19206911325454712, -0.02020934969186783, 0.010412796400487423, 0.1006050556898117, 0.0662013366818428, 0.02752006985247135, 0.014241260476410389, 0.11030495166778564, 0.034049902111291885, 0.06153229624032974, -0.06488946825265884, -0.1763756424188614, -0.007714456878602505, -0.12741655111312866, -0.04127409681677818, 0.27257171273231506, -0.04570657014846802, -0.08873268961906433, 0.01150224357843399, -0.02442392148077488, -0.05362412706017494, 0.006037880666553974, -0.029493067413568497, 0.037515368312597275, -0.0034670536406338215, 0.05193869024515152, -0.023060502484440804, -0.06798379868268967, -0.062403444200754166, -0.07734014093875885, 0.09376184642314911, 0.048393718898296356, 0.02908439002931118, -0.08654370903968811, 0.015842387452721596, -0.06192402541637421, -0.058004558086395264, -0.03198057785630226, -0.050014205276966095, 0.04020242020487785, 0.006018758751451969, -0.06337804347276688, -0.013955854810774326, 0.02642471343278885, 0.20463645458221436, -0.07850415259599686, 0.029508719220757484, 0.02870156429708004, 0.0559358224272728, -0.0024785269051790237, 0.12136245518922806, 0.06625717133283615, -0.0021791497711092234, 0.14882734417915344, -0.10313012450933456, -0.008677639067173004, -0.002807997865602374, -0.14535491168498993, -0.022480925545096397, -0.058695804327726364, 0.08763286471366882, -0.05826004222035408, 0.09283092617988586, -0.07248762249946594, -0.002939098048955202, 0.014156041666865349, -0.14176124334335327, 0.00530614797025919, -0.0066012488678097725, -0.04171769693493843, -0.016333775594830513, 0.09112770855426788, 0.012332433834671974, -0.07842543721199036, -0.04484168067574501, -0.08529649674892426, 0.03910619020462036, -0.09210363775491714, -0.12130232900381088, 0.0297455545514822, -0.09706474840641022, 0.07272825390100479, -0.20207642018795013, -0.24138842523097992, -0.01268909964710474, 0.023250354453921318, 0.07751478254795074, 0.00585155189037323, -0.10066632926464081, -0.024279635399580002, -0.07171526551246643, -0.052956536412239075, 0.012210000306367874, -0.024443797767162323, -0.021581368520855904, 0.04526541009545326, 0.012623313814401627, -0.16647100448608398, 0.048889096826314926, -0.12213408201932907, 0.013959670439362526, -0.12120471149682999, 0.05937216803431511, -0.05205773934721947, 0.1690434366464615, -0.027545446529984474, -0.062498725950717926, -0.008411089889705181, 0.08297164738178253, 0.028096353635191917, 0.13790328800678253, -0.1509874016046524, -0.06482352316379547, 0.08739893138408661, -0.1453382670879364, -0.13402819633483887, 0.06826705485582352, -0.0578039214015007, 0.008707542903721333, 0.10372267663478851, 0.2609371542930603, 0.015951039269566536, -0.045442961156368256, 0.027304938063025475, 0.03277584910392761, -0.03380993381142616, -0.1293453723192215, 0.08479514718055725, 0.08334165066480637, -0.10811635851860046, 0.07084770500659943, -0.14152248203754425, 0.01895611546933651, -0.01772400364279747, -0.05624287575483322, -0.03969932720065117, -0.04741201922297478, -0.12046375870704651, -0.02671034447848797, 0.059481751173734665, -0.044429000467061996, 0.0015837872633710504, 0.10163582861423492, 0.05963059142231941, -0.0722074955701828, 0.027029508724808693, -0.07103755325078964, 0.06743738055229187, -0.025516606867313385, -0.007124850992113352, -0.16068850457668304, 0.03909620642662048, 0.004485699348151684, 0.0008757852483540773, 0.03890833258628845, -0.0044920919463038445, 0.023593232035636902, 0.060969144105911255, 0.06522197276353836, -0.03694096952676773, 0.03528544306755066, -0.02999446541070938, -0.03720288351178169, -0.06219536066055298, -0.014450552873313427, -0.11017608642578125, -0.06980138272047043, -0.13947521150112152, 0.07206864655017853, -0.12477996945381165, 0.06034606695175171, 0.0036458976101130247, -0.02367970533668995, -0.01751752756536007, 0.07640665024518967, -0.06718787550926208, -0.03734125196933746, 0.035765402019023895, 0.015873942524194717, -0.08584518730640411, 0.0940377488732338, -0.08336980640888214, 0.15749573707580566, 0.15268997848033905, -0.029769713059067726, -0.028662918135523796, -0.010200493969023228, -0.04887080192565918, 0.04315749928355217, 0.020078040659427643, -0.004817637149244547, 0.3155653774738312, -0.0780419111251831, 0.14127406477928162, -0.05844394862651825, -0.037171054631471634, -0.02523651160299778, -0.060468029230833054, -0.01982274278998375, 0.1720716506242752, 0.07362337410449982, -0.03133837878704071, 0.11100336909294128, 0.030465980991721153, -0.03369864076375961, 0.04853588715195656, -0.06445476412773132, -0.023375719785690308, -0.013994041830301285, 0.0583859421312809, 0.005084455944597721, 0.057311661541461945, -0.12057697027921677, -0.07838902622461319, 0.005305442027747631, -0.012178895063698292, 0.08936464041471481, -0.1339617520570755, -0.03003067895770073, 0.03168008476495743, 0.008062439039349556, -0.07598937302827835, -0.02293037250638008, -0.0738857313990593, 0.025692781433463097, -0.036988962441682816, 0.027922682464122772, 0.022748980671167374, 0.03612551465630531, -0.11631452292203903, 0.23840177059173584, -0.1452125459909439, -0.24996037781238556, -0.11976595222949982, -0.011500634253025055, 0.017849214375019073, 0.068834088742733, 0.0904691144824028, -0.08683393895626068, -0.08964762091636658, -0.06537828594446182, 0.09810665249824524, -0.0848148986697197, 0.027926582843065262, 0.06890327483415604, -0.00009705059346742928, 0.00761526171118021, -0.1088462844491005, -0.04856378957629204, -0.028225190937519073, -0.049175724387168884, 0.043522030115127563, -0.059066131711006165, 0.11510879546403885, 0.05240362882614136, -0.04583412781357765, 0.05091729760169983, 0.0029783083591610193, 0.1622384637594223, 0.043632544577121735, -0.11004307866096497, 0.20521318912506104, -0.0875629261136055, 0.012990914285182953, 0.030463609844446182, -0.03517310321331024, -0.11756651103496552, 0.03646387532353401, -0.09279126673936844, -0.06055740267038345, -0.24741336703300476, -0.10653285682201385, -0.06107432395219803, 0.1175033301115036, 0.020840279757976532, 0.05766456201672554, -0.08972956985235214, 0.07938481867313385, 0.03774695098400116, 0.1059865653514862, -0.04607662186026573, 0.10375674813985825, -0.018374226987361908, -0.0433925986289978, 0.05827305093407631, -0.035619355738162994, -0.04737735912203789, 0.03923754021525383, -0.0450163371860981, 0.1834128201007843, 0.056717295199632645, 0.004657874349504709, 0.043838780373334885, 0.11631861329078674, 0.08243165165185928, 0.15587708353996277, -0.058367446064949036, -0.0052096229046583176, -0.037314970046281815, -0.016897784546017647, -0.09358470141887665, 0.06373492628335953, -0.07344426214694977, -0.017543675377964973, -0.09963462501764297, 0.046045150607824326, 0.08259454369544983, 0.005660371854901314, -0.036861568689346313, -0.34137752652168274, -0.07972652465105057, 0.03826765716075897, -0.053693391382694244, -0.015856003388762474, 0.03587724268436432, 0.10952956974506378, -0.05172976851463318, -0.027705924585461617, 0.0054390765726566315, 0.11732033640146255, 0.028996765613555908, 0.04016413912177086, -0.10335351526737213, 0.09428593516349792, 0.024828840047121048, 0.05310862883925438, -0.27263355255126953, 0.1210029125213623, -0.014131619594991207, 0.11395426094532013, -0.017125876620411873, 0.047878697514534, 0.022275064140558243, 0.04617803171277046, 0.14795489609241486, 0.023875940591096878, -0.309247761964798, -0.09033220261335373, -0.09741947799921036, 0.11618068814277649, 0.05332768335938454, -0.048976361751556396, 0.0595194548368454, 0.006396728102117777, 0.046782173216342926, 0.026932833716273308, 0.032898664474487305, -0.0949605405330658, -0.09564489871263504, -0.027043960988521576, -0.06360361725091934, 0.08494318276643753, -0.020232023671269417, -0.020043551921844482, -0.0052866702899336815, 0.22890634834766388, -0.12811969220638275, -0.05046437680721283, -0.11935700476169586, 0.046381741762161255, 0.02046222798526287, -0.11280795931816101, 0.1234910786151886, 0.04096817970275879, 0.10421650856733322, -0.0630028173327446, -0.14108939468860626, 0.05494535341858864, -0.1113363727927208, 0.027738584205508232, 0.003110123798251152, 0.05268697440624237, -0.022117719054222107, 0.012268180958926678, 0.0440407395362854, 0.019884057343006134, -0.07839693874120712, -0.10748017579317093, -0.02234170399606228, 0.17485946416854858, 0.14670643210411072, 0.09301342070102692, -0.21615570783615112, -0.15000854432582855, -0.009155891835689545, -0.0037948088720440865, 0.1945170909166336, 0.16404755413532257, -0.04681391268968582, 0.014007856138050556, 0.031045323237776756, -0.07938311249017715, -0.2742103934288025, 0.06442341953516006, 0.014423813670873642, 0.05999791994690895, 0.02994171902537346, -0.1711021214723587, 0.12506502866744995, 0.06410204619169235, 0.025289809331297874, 0.032227352261543274, -0.10594101250171661, -0.08697652816772461, 0.10479060560464859, 0.12462370097637177, 0.23584459722042084, -0.07578060775995255, -0.030657008290290833, -0.06645713001489639, -0.056363750249147415, 0.12513798475265503, -0.10860530287027359, 0.05597132444381714, -0.0016431279946118593, 0.10390163213014603, 0.007875031791627407, -0.04576103389263153, 0.08049046248197556, 0.019726701080799103, 0.08718810975551605, -0.02707286924123764, -0.09662351757287979, -0.002676313044503331, -0.02439299412071705, 0.16530044376850128, -0.13936689496040344, 0.09068740159273148, -0.10641583800315857, -0.03402310237288475, 0.01643465831875801, 0.1451399177312851, 0.0184796079993248, -0.0513438880443573, -0.013152111321687698, -0.029288101941347122, 0.03457200899720192, 0.04941960424184799, 0.1251184493303299, 0.02465975470840931, -0.021950827911496162, 0.007063576485961676, 0.053322989493608475, 0.05354717746376991, 0.052515897899866104, 0.00036758219357579947, -0.03661934286355972, 0.08238855004310608, -0.22917431592941284, 0.01419670507311821, 0.12169552594423294, 0.012913030572235584, 0.12800589203834534, 0.07141387462615967, 0.026149682700634003, 0.032018210738897324, 0.08829393237829208, -0.15099947154521942, -0.016606973484158516, -0.04377057030797005, -0.04918763414025307, 0.0025814936961978674, 0.10734544694423676, 0.10191607475280762, -0.10783350467681885, -0.04079219698905945, -0.051493339240550995, 0.030042290687561035, -0.08949373662471771, 0.10185744613409042, 0.05120234191417694, -0.006488721817731857, -0.15125349164009094, 0.09024292230606079, -0.05306508392095566, -0.09812964498996735, 0.06055472418665886, 0.045587703585624695, -0.10368706285953522, -0.09101099520921707, 0.008891867473721504, 0.2456233650445938, -0.106333889067173, -0.04029865935444832, -0.12160178273916245, -0.09227938205003738, 0.037422750145196915, 0.09804222732782364, 0.05843469500541687, 0.016052229329943657, -0.0016295543173328042, 0.05084506794810295, -0.06233986094594002, 0.03967397287487984, 0.13255177438259125, 0.05416860431432724, -0.14732874929904938, 0.18603460490703583, -0.012427641078829765, 0.0498809814453125, -0.02966958098113537, 0.055821023881435394, -0.11579384654760361, 0.01593542844057083, -0.07554493844509125, 0.04265118017792702, -0.02784276194870472, -0.022944375872612, 0.012529861181974411, -0.03513989970088005, -0.06461293250322342, 0.10797987878322601, -0.09629137814044952, 0.009342596866190434, -0.07156800478696823, 0.0033903729636222124, -0.01617812179028988, -0.0427388995885849, 0.058085717260837555, -0.06424745172262192, 0.0372965969145298, 0.18116331100463867, -0.037189774215221405, 0.12280792742967606, -0.2127549648284912, 0.0052571287378668785, 0.14234089851379395, 0.03600471839308739, 0.045918021351099014, 0.041693221777677536, 0.010153229348361492, 0.06775250285863876, -0.0025456822477281094, -0.06657721847295761, 0.08972190320491791, -0.09331713616847992, -0.04595886915922165, 0.0006795891094952822, -0.04968051612377167, -0.05162181705236435, -0.05426469072699547, 0.06081555411219597, 0.12258907407522202, 0.14918741583824158, -0.05014651641249657, 0.08790795505046844, -0.07879360765218735, 0.003590044565498829, 0.03705080598592758, -0.13229802250862122, -0.14327336847782135, -0.054261237382888794, 0.03838222101330757, -0.03563991189002991, 0.23414529860019684, 0.0627208799123764, -0.05044632405042648, -0.02307017706334591, -0.014136568643152714, 0.159539133310318, 0.03379657864570618, 0.2744119465351105, -0.0029739842284470797, 0.01940247416496277, -0.10135799646377563, 0.0867302417755127, 0.09710276126861572, -0.05290341004729271, 0.042751211673021317, 0.17983652651309967, -0.019185498356819153, 0.09772256016731262, 0.06105901673436165, 0.03515654802322388, -0.07241978496313095, -0.16836290061473846, -0.013788203708827496, 0.036722034215927124, 0.011467733420431614, 0.11260037869215012, 0.12935517728328705, -0.10718559473752975, 0.028950771316885948, 0.04622560739517212, -0.07505568861961365, -0.1133287101984024, -0.11239157617092133, -0.09291745722293854, -0.07465493679046631, 0.01651071012020111, -0.16953356564044952, -0.05969095975160599, 0.012749417684972286, -0.02019454911351204, -0.011690889485180378, 0.1549752950668335, 0.039910610765218735, -0.07903876155614853, 0.005738765466958284, -0.016414234414696693, -0.035449784249067307, 0.026502542197704315, -0.02744295634329319, 0.04866315796971321, -0.09628032892942429, 0.04180219769477844, -0.020372146740555763, 0.01348125096410513, 0.0529509037733078, -0.032049305737018585, -0.02146420069038868, -0.07214350253343582, 0.033715520054101944, -0.07370168715715408, 0.12842054665088654, 0.05210791528224945, -0.11653158068656921, 0.046211156994104385, 0.07979772984981537, -0.026422373950481415, -0.029299650341272354, -0.11335304379463196, 0.2060164511203766, 0.10200756788253784, 0.053798627108335495, -0.027913523837924004, -0.027775684371590614, 0.030214261263608932, 0.22331048548221588, 0.15050242841243744, 0.00992346741259098, 0.0026852814480662346, -0.04469376802444458, 0.014805755577981472, -0.04467372968792915, 0.056029677391052246, 0.1339910328388214, 0.14181555807590485, -0.013608666136860847, -0.057178154587745667, -0.054478440433740616, -0.003080703318119049, -0.09428662806749344, -0.042061079293489456, -0.009147807024419308, -0.06727489084005356, -0.008759710937738419, 0.02017899788916111, -0.15977323055267334, -0.18271026015281677, -0.0002908541355282068, -0.1026323065161705, -0.05596015602350235, -0.057657212018966675, 0.0704571008682251, 0.08396070450544357, 0.10394462198019028, -0.0342143252491951, 0.00043408622150309384, 0.012656408362090588, 0.00930053647607565, -0.17064961791038513, -0.022719675675034523, 0.04767169803380966, -0.08532845973968506, 0.11115461587905884, -0.007697575259953737, 0.04196181893348694, 0.017755478620529175, 0.06568242609500885, -0.03355720266699791, 0.10079137235879898, -0.037547264248132706, -0.024172469973564148, 0.043629441410303116, 0.050202902406454086, -0.08638878911733627, 0.035460881888866425, -0.015334200114011765, -0.08724775165319443, 0.010295344516634941, 0.053828317672014236, -0.08609556406736374, -0.0474117249250412, 0.009005195461213589, -0.10183247923851013, 0.09187346696853638, 0.14986832439899445, -0.006136565003544092, 0.028150245547294617, -0.07401702553033829, 0.09932780265808105, 0.06262940168380737, 0.0018127691000699997, 0.0068862163461744785, -0.21147409081459045, -0.03124578855931759, 0.1926814168691635, -0.005458669736981392, -0.15502206981182098, -0.04413455352187157, -0.14108490943908691, -0.026235593482851982, -0.06735975295305252, 0.048361144959926605, 0.2271856963634491, 0.019686264917254448, -0.015499121509492397, -0.03919514641165733, 0.062116265296936035, 0.0881805345416069, 0.01647055894136429, -0.11837506294250488 ]
null
null
transformers
--- language: en tags: - biomedical - lexical-semantics datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-PubMedBERT SapBERT by [Liu et al. (2020)](https://arxiv.org/pdf/2010.11784.pdf). Trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AA (English only), using [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) as the base model. Please use the mean-pooling of the output as the representation. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. ```python import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token") model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token").cuda() # replace with your own list of entity names all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0].mean(1)# use mean pooling representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0) ``` For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert). ### Citation ```bibtex @inproceedings{liu-etal-2021-self, title = "Self-Alignment Pretraining for Biomedical Entity Representations", author = "Liu, Fangyu and Shareghi, Ehsan and Meng, Zaiqiao and Basaldella, Marco and Collier, Nigel", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.334", pages = "4228--4238", abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.", } ```
{}
feature-extraction
cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token
[ "transformers", "pytorch", "jax", "safetensors", "bert", "feature-extraction", "arxiv:2010.11784", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11784" ]
[]
TAGS #transformers #pytorch #jax #safetensors #bert #feature-extraction #arxiv-2010.11784 #endpoints_compatible #has_space #region-us
--- language: en tags: - biomedical - lexical-semantics datasets: - UMLS [news] A cross-lingual extension of SapBERT will appear in the main onference of ACL 2021! <br> [news] SapBERT will appear in the conference proceedings of NAACL 2021! ### SapBERT-PubMedBERT SapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model. Please use the mean-pooling of the output as the representation. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. For more details about training and eval, see SapBERT github repo.
[ "### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model. Please use the mean-pooling of the output as the representation.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #bert #feature-extraction #arxiv-2010.11784 #endpoints_compatible #has_space #region-us \n", "### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model. Please use the mean-pooling of the output as the representation.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ 49, 79, 51 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #bert #feature-extraction #arxiv-2010.11784 #endpoints_compatible #has_space #region-us \n### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model. Please use the mean-pooling of the output as the representation.#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ -0.08955323696136475, 0.03958314657211304, -0.0007249670452438295, 0.07793886214494705, 0.1450444757938385, -0.04048707336187363, 0.010797311551868916, 0.06460350006818771, -0.08036778122186661, 0.056166958063840866, 0.12010064721107483, 0.1057363823056221, 0.00224946322850883, 0.20100794732570648, -0.03990478441119194, -0.24493220448493958, 0.08324333280324936, 0.03609402850270271, 0.07933954894542694, 0.0566423200070858, 0.10276656597852707, -0.08827097713947296, 0.08973314613103867, -0.011573879048228264, -0.13666442036628723, 0.04204210638999939, -0.044864263385534286, -0.05651743337512016, 0.07305625081062317, 0.03733060136437416, 0.10138112306594849, -0.02882208302617073, 0.016581663861870766, -0.13168218731880188, 0.03354579955339432, -0.012620365247130394, -0.028484228998422623, 0.08426660299301147, 0.0018810249166563153, -0.04104094207286835, 0.0851908028125763, -0.015870314091444016, 0.042829371988773346, -0.0026845852844417095, -0.1284470409154892, -0.004483754280954599, -0.038475628942251205, 0.024282578378915787, 0.1064181923866272, 0.1073036938905716, -0.027183586731553078, 0.12856356799602509, -0.04111871123313904, 0.07905465364456177, 0.1515185385942459, -0.2480141520500183, -0.009448510594666004, 0.023473329842090607, 0.09638596326112747, 0.0647391751408577, -0.013348046690225601, -0.019078373908996582, 0.06936978548765182, 0.05129140987992287, 0.0830245390534401, -0.03890927508473396, -0.16388052701950073, -0.030257925391197205, -0.1419823169708252, -0.03362719714641571, 0.2680552899837494, -0.04258396103978157, -0.07154103368520737, -0.0017174012027680874, -0.04932345822453499, -0.02434217743575573, 0.0037351048085838556, -0.028217695653438568, 0.032597314566373825, 0.015139461494982243, 0.027868513017892838, -0.022758208215236664, -0.08237642049789429, -0.05052227899432182, -0.11221470683813095, 0.07648826390504837, 0.048555683344602585, 0.010558619163930416, -0.073489248752594, 0.04159953445196152, -0.08995312452316284, -0.0727979838848114, -0.016048336401581764, -0.06923343986272812, 0.05390986055135727, 0.012719039805233479, -0.10336319357156754, -0.0720122829079628, -0.004222383722662926, 0.19539496302604675, -0.10842819511890411, 0.019418388605117798, 0.022062867879867554, 0.0704662874341011, 0.02320338599383831, 0.09992104768753052, 0.0069180019199848175, 0.026603110134601593, 0.11659125983715057, -0.05134563148021698, 0.014239867217838764, -0.009317923337221146, -0.14579157531261444, -0.028613846749067307, -0.008235780522227287, 0.02758595533668995, -0.033260513097047806, 0.09065410494804382, -0.09903167933225632, -0.004878726322203875, 0.09152355045080185, -0.1236259788274765, -0.001504186075180769, -0.004008828196674585, -0.026944095268845558, -0.025400886312127113, 0.13349635899066925, 0.006309950724244118, -0.08852388709783554, -0.006263149436563253, -0.08883535861968994, 0.02635456621646881, -0.07767809927463531, -0.11474298685789108, 0.04194952920079231, -0.04439888522028923, 0.03652335703372955, -0.20533587038516998, -0.187073215842247, -0.0018176031298935413, 0.017977844923734665, 0.06407672166824341, 0.014547561295330524, -0.06505335867404938, 0.008219737559556961, -0.06210647150874138, -0.07751346379518509, -0.011843660846352577, -0.026904966682195663, -0.010204791091382504, 0.013604961335659027, 0.05204930901527405, -0.1848832219839096, 0.05864349752664566, -0.14459583163261414, -0.004406727850437164, -0.1861772984266281, 0.0374828577041626, -0.04729802906513214, 0.12259288132190704, -0.046531543135643005, -0.05905666947364807, -0.0523395799100399, 0.06663549691438675, 0.05730495601892471, 0.14960475265979767, -0.13222910463809967, -0.05538482964038849, 0.10982654988765717, -0.1373046487569809, -0.11870606988668442, 0.0871720239520073, -0.041906457394361496, 0.04723263159394264, 0.08344191312789917, 0.3050110340118408, -0.015269119292497635, -0.04412376508116722, -0.004729314241558313, 0.04261903837323189, -0.007706408854573965, -0.09903734922409058, 0.07607628405094147, 0.032413676381111145, -0.07528015226125717, 0.05432752147316933, -0.05058331415057182, 0.025251880288124084, -0.006558199413120747, -0.04212652146816254, -0.0188484787940979, -0.04464207962155342, -0.039082713425159454, -0.02305792272090912, 0.09156981855630875, -0.024616383016109467, -0.023305019363760948, 0.16599516570568085, 0.024570800364017487, -0.053080495446920395, 0.06681632995605469, -0.0363345630466938, 0.0768408477306366, -0.006955521181225777, 0.00835093017667532, -0.19655048847198486, 0.027231601998209953, -0.005573661532253027, -0.01776758022606373, 0.03448139876127243, -0.023913605138659477, 0.02752959355711937, 0.059826385229825974, 0.013698719441890717, -0.022378653287887573, 0.03214726597070694, -0.008870675228536129, -0.07691829651594162, -0.03481880947947502, -0.023183397948741913, -0.1089848205447197, -0.10840117186307907, -0.07569887489080429, 0.08323635160923004, -0.10953666269779205, 0.07965796440839767, -0.01033188495784998, -0.03691580146551132, 0.022590605542063713, 0.06797272711992264, -0.05142150819301605, -0.0153151024132967, 0.045441024005413055, 0.021512463688850403, -0.10317832976579666, 0.11295481026172638, -0.10236523300409317, 0.13205792009830475, 0.15508617460727692, -0.019915882498025894, -0.03472139313817024, -0.02243753895163536, -0.04831068217754364, 0.02549584209918976, 0.0068082381039857864, -0.029552407562732697, 0.2901395857334137, -0.05417658016085625, 0.12472571432590485, -0.07580969482660294, -0.015871766954660416, -0.03851339593529701, -0.054508309811353683, -0.03437887877225876, 0.12502458691596985, -0.022410208359360695, -0.05386985093355179, 0.11241132020950317, 0.11563996970653534, -0.041365593671798706, 0.10137945413589478, -0.047760482877492905, -0.03555246815085411, 0.004577991086989641, 0.015573129057884216, -0.01839699223637581, 0.04736829921603203, -0.148805633187294, -0.0639980211853981, 0.02868209406733513, 0.03296804800629616, 0.0869801938533783, -0.1097983792424202, -0.022213729098439217, 0.02842375822365284, 0.02571958489716053, -0.0938938558101654, -0.01434172410517931, -0.0564924031496048, 0.029234176501631737, -0.002797831315547228, 0.07649848610162735, 0.016460733488202095, 0.033880867063999176, -0.11256952583789825, 0.22627927362918854, -0.16121266782283783, -0.24595725536346436, -0.09063782542943954, 0.0005687799421139061, 0.036440566182136536, 0.06550046056509018, 0.11320123821496964, -0.07875819504261017, -0.054612983018159866, -0.09898963570594788, 0.09223711490631104, -0.05364138260483742, 0.032225195318460464, 0.012772341258823872, -0.018066218122839928, 0.03174230828881264, -0.10909663140773773, -0.027798013761639595, -0.029894469305872917, -0.04282652214169502, 0.057037338614463806, -0.0739368349313736, 0.0955633744597435, 0.032933443784713745, -0.03481682389974594, 0.016721786931157112, -0.02272804267704487, 0.16966457664966583, 0.041389670222997665, -0.06537113338708878, 0.20151619613170624, -0.07765927165746689, 0.03338998183608055, 0.05289008468389511, -0.027109013870358467, -0.07981473207473755, 0.05541780963540077, -0.08773732930421829, -0.059274908155202866, -0.21200160682201385, -0.10745511204004288, -0.060976628214120865, 0.12644889950752258, 0.04531807079911232, 0.0438559427857399, -0.1546703577041626, 0.06489492207765579, 0.0225384384393692, 0.07584922015666962, -0.03006458468735218, 0.10379838943481445, 0.019206279888749123, -0.06205279380083084, 0.09832201898097992, -0.013806203380227089, -0.03280140087008476, 0.06238231062889099, -0.06809379160404205, 0.1316254585981369, 0.015548598021268845, -0.02045801281929016, 0.033535052090883255, 0.14945077896118164, 0.09463561326265335, 0.1664746254682541, -0.054477278143167496, -0.003331323154270649, -0.06023760885000229, -0.03872431442141533, -0.09754420816898346, 0.06282239407300949, -0.043136585503816605, -0.04392432048916817, -0.0850614607334137, -0.03722056746482849, 0.07662318646907806, -0.02023480460047722, 0.03532107174396515, -0.30206677317619324, -0.11014334112405777, 0.021421929821372032, -0.0525660440325737, -0.04640111327171326, 0.04442829266190529, 0.1000935286283493, -0.03949317708611488, -0.017569072544574738, 0.011633037589490414, 0.11105233430862427, 0.018240399658679962, 0.06774309277534485, -0.13128440082073212, 0.024765362963080406, 0.0016673860372975469, 0.05987752601504326, -0.25725871324539185, 0.10032711178064346, -0.019447078928351402, 0.06808335334062576, -0.003001655451953411, 0.019674116745591164, 0.03279075399041176, 0.06491534411907196, 0.11034923046827316, 0.035706717520952225, -0.1737714558839798, -0.047625381499528885, -0.1119980663061142, 0.09708228707313538, 0.031823426485061646, -0.043378204107284546, 0.024215735495090485, 0.035122741013765335, 0.06371103227138519, 0.02625093050301075, 0.10767318308353424, -0.11464489996433258, -0.09863894432783127, -0.005370722617954016, -0.05050571635365486, 0.13484419882297516, -0.028683798387646675, -0.053492169827222824, -0.006957406643778086, 0.19823765754699707, -0.04227288439869881, -0.061497386544942856, -0.11271084100008011, 0.04643731936812401, 0.036938123404979706, -0.09469234198331833, 0.11954505741596222, 0.006289354991167784, 0.0655565857887268, -0.07710207998752594, -0.13998247683048248, 0.1065947562456131, -0.0789899155497551, 0.010310557670891285, -0.024670295417308807, 0.02953573875129223, -0.001858529169112444, 0.024407193064689636, 0.019269203767180443, 0.037349898368120193, -0.10629408806562424, -0.09575540572404861, -0.019514013081789017, 0.14513544738292694, 0.1904653161764145, 0.07165297865867615, -0.215162456035614, -0.13293680548667908, 0.023485884070396423, 0.004612192511558533, 0.1924307942390442, 0.17152783274650574, -0.04359475523233414, 0.030921196565032005, 0.13118523359298706, -0.04789918288588524, -0.3082715570926666, -0.0014111280906945467, 0.01029888167977333, 0.05217750370502472, 0.05044388025999069, -0.18427416682243347, 0.1148102879524231, 0.07075882703065872, -0.01289080549031496, -0.01638888753950596, -0.04663727805018425, -0.11194930225610733, 0.13588207960128784, 0.0966358408331871, 0.24695897102355957, -0.09165220707654953, -0.027831653133034706, -0.057979218661785126, -0.08509857207536697, 0.12982694804668427, -0.15165551006793976, 0.08389564603567123, -0.006490856409072876, 0.10561468452215195, 0.0006947453948669136, -0.05586608499288559, 0.07156018912792206, 0.012262807227671146, 0.03428071364760399, -0.04925622418522835, -0.061734333634376526, 0.017989013344049454, -0.0441051684319973, 0.1620309203863144, -0.11664164066314697, 0.08359585702419281, -0.11224681884050369, -0.017962196841835976, -0.016157303005456924, 0.1184830591082573, 0.011741840280592442, -0.06929841637611389, -0.029838725924491882, 0.010744214989244938, 0.03615502268075943, 0.03940219804644585, 0.17295679450035095, -0.002914448268711567, 0.016167104244232178, 0.10454815626144409, 0.02377638779580593, 0.00865227822214365, 0.05417434871196747, 0.023615024983882904, -0.057988811284303665, 0.09120538830757141, -0.25146782398223877, 0.007838180288672447, 0.10230477899312973, -0.0016102022491395473, 0.09660793095827103, 0.08229991048574448, -0.016023190692067146, 0.01609799824655056, 0.08955339342355728, -0.17358404397964478, -0.0211904626339674, -0.00909279752522707, 0.0018132779514417052, -0.05395275726914406, 0.09017367660999298, 0.10193745791912079, -0.11090206354856491, -0.039224687963724136, -0.029211584478616714, 0.026805728673934937, -0.09237927198410034, 0.08769667148590088, 0.05526932328939438, 0.00007024619117146358, -0.11441455781459808, 0.11355869472026825, -0.007993826642632484, -0.11066831648349762, 0.05716680362820625, 0.045101847499608994, -0.13138575851917267, -0.10440646857023239, -0.023437924683094025, 0.18342605233192444, -0.04155774414539337, -0.021183306351304054, -0.07209146022796631, -0.08194968104362488, 0.04491909220814705, 0.0595909059047699, 0.06654979288578033, 0.014282059855759144, -0.02976318448781967, 0.04306185618042946, -0.021383851766586304, 0.02955862134695053, 0.09631074219942093, 0.06351423263549805, -0.06918270140886307, 0.12642109394073486, -0.01160481758415699, 0.030872125178575516, -0.0427158921957016, 0.0447293221950531, -0.14782802760601044, 0.0026638873387128115, -0.10126949101686478, -0.007540366146713495, -0.05881401151418686, -0.04283231496810913, -0.016939464956521988, -0.03497312590479851, -0.027387326583266258, 0.05824455991387367, -0.08660514652729034, -0.0018480154685676098, -0.08773324638605118, 0.0071373069658875465, -0.05309223383665085, -0.015314226038753986, 0.05878090113401413, -0.0574353002011776, 0.07761881500482559, 0.1445184051990509, -0.03495730459690094, 0.08874986320734024, -0.160062775015831, -0.016675595194101334, 0.11623515188694, 0.011174019426107407, 0.043522242456674576, 0.05715188384056091, -0.020646531134843826, 0.042563553899526596, 0.006735027767717838, -0.039382319897413254, 0.1636953055858612, -0.09457322210073471, -0.02009386569261551, 0.0005675492575392127, -0.027518855407834053, -0.050132542848587036, -0.04617133364081383, 0.03661275655031204, 0.112791508436203, 0.14019210636615753, -0.05302705988287926, 0.05317991226911545, -0.09177576750516891, 0.00644645793363452, 0.04156770557165146, -0.14627794921398163, -0.09481637179851532, -0.07425614446401596, 0.029878878965973854, -0.02876371704041958, 0.2248285859823227, 0.0398351289331913, -0.09085585176944733, -0.011397022753953934, 0.02339937724173069, 0.12039776891469955, 0.01041129045188427, 0.24509823322296143, 0.0063959392718970776, -0.01730029657483101, -0.08358625322580338, 0.08892294764518738, 0.07181922346353531, 0.0028413808904588223, 0.039655473083257675, 0.17073410749435425, -0.010460436344146729, 0.1111287996172905, 0.005230606067925692, 0.04810603708028793, -0.1073635071516037, -0.17642253637313843, 0.0186475720256567, 0.06023038923740387, -0.007634799461811781, 0.07957839220762253, 0.09581981599330902, -0.09893365949392319, 0.05111424997448921, 0.0326288603246212, -0.07879086583852768, -0.09851283580064774, -0.10495580732822418, -0.058530110865831375, -0.07808460295200348, -0.009956993162631989, -0.14989764988422394, -0.06390698254108429, 0.058461688458919525, -0.007506024558097124, -0.005601830314844847, 0.19462482631206512, 0.03760067746043205, -0.09359770268201828, 0.03672564774751663, -0.020829740911722183, -0.011844048276543617, 0.035359881818294525, -0.03499046713113785, 0.05609603971242905, -0.041714221239089966, 0.0438891239464283, 0.00680351909250021, 0.0016541110817342997, 0.0494208000600338, -0.022769268602132797, -0.0433269701898098, -0.06727927178144455, 0.052537281066179276, -0.063711978495121, 0.17041704058647156, 0.03489142656326294, -0.09195505082607269, 0.04014510288834572, 0.13157247006893158, -0.04368762671947479, -0.02507649175822735, -0.09486471861600876, 0.2524941861629486, 0.09154058247804642, 0.041498005390167236, -0.05062713474035263, -0.06978563219308853, -0.012593279592692852, 0.2219904661178589, 0.18448415398597717, -0.027888277545571327, 0.013576504774391651, -0.0030564581975340843, 0.011276512406766415, 0.010279381647706032, 0.05148817226290703, 0.14398260414600372, 0.09729340672492981, -0.02290347032248974, 0.0048141200095415115, -0.029796117916703224, -0.030607234686613083, -0.11837298423051834, -0.016963301226496696, 0.016119685024023056, -0.06225915998220444, -0.05313602462410927, 0.011181896552443504, -0.15606330335140228, -0.18784749507904053, -0.034688081592321396, -0.12183014303445816, -0.06419727206230164, -0.03840535506606102, 0.12108395993709564, 0.06188409775495529, 0.11351234465837479, -0.011758679524064064, 0.038053128868341446, 0.011163207702338696, 0.005565558094531298, -0.10377239435911179, -0.016734683886170387, 0.05334237590432167, -0.08448071032762527, 0.10296014696359634, -0.002263021655380726, 0.012263183481991291, 0.025559721514582634, 0.07893377542495728, -0.05521780624985695, 0.1096608117222786, -0.04760682210326195, -0.009596613235771656, 0.006524717900902033, 0.03572291135787964, -0.06919132173061371, 0.02256505750119686, -0.008715971373021603, -0.1304996907711029, 0.008894756436347961, 0.026795022189617157, -0.08746708184480667, -0.05685722827911377, -0.005519174039363861, -0.07713267207145691, 0.09218043833971024, 0.15052515268325806, -0.017473025247454643, -0.00013620655226986855, -0.06877795606851578, 0.052245352417230606, 0.03418116271495819, -0.0397455096244812, -0.00814790464937687, -0.186099573969841, -0.027914205566048622, 0.2081550806760788, 0.0030193126294761896, -0.20673847198486328, -0.022437691688537598, -0.12065096199512482, -0.008929567411541939, -0.06539443880319595, 0.0627070963382721, 0.15550470352172852, 0.004297301173210144, -0.021433772519230843, -0.06464182585477829, 0.07206956297159195, 0.0699746385216713, -0.027558308094739914, -0.1175725981593132 ]
null
null
transformers
--- datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-PubMedBERT SapBERT by [Liu et al. (2020)](https://arxiv.org/pdf/2010.11784.pdf). Trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AA (English only), using [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) as the base model. ### Expected input and output The input should be a string of biomedical entity names, e.g., "covid infection" or "Hydroxychloroquine". The [CLS] embedding of the last layer is regarded as the output. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. ```python import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext") model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda() # replace with your own list of entity names all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0) ``` For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert). ### Citation ```bibtex @inproceedings{liu-etal-2021-self, title = "Self-Alignment Pretraining for Biomedical Entity Representations", author = "Liu, Fangyu and Shareghi, Ehsan and Meng, Zaiqiao and Basaldella, Marco and Collier, Nigel", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.334", pages = "4228--4238", abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.", } ```
{"language": ["en"], "license": "apache-2.0", "tags": ["biomedical", "lexical semantics", "bionlp", "biology", "science", "embedding", "entity linking"]}
feature-extraction
cambridgeltl/SapBERT-from-PubMedBERT-fulltext
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "feature-extraction", "biomedical", "lexical semantics", "bionlp", "biology", "science", "embedding", "entity linking", "en", "arxiv:2010.11784", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11784" ]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #biomedical #lexical semantics #bionlp #biology #science #embedding #entity linking #en #arxiv-2010.11784 #license-apache-2.0 #endpoints_compatible #has_space #region-us
--- datasets: - UMLS [news] A cross-lingual extension of SapBERT will appear in the main onference of ACL 2021! <br> [news] SapBERT will appear in the conference proceedings of NAACL 2021! ### SapBERT-PubMedBERT SapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model. ### Expected input and output The input should be a string of biomedical entity names, e.g., "covid infection" or "Hydroxychloroquine". The [CLS] embedding of the last layer is regarded as the output. #### Extracting embeddings from SapBERT The following script converts a list of strings (entity names) into embeddings. For more details about training and eval, see SapBERT github repo.
[ "### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model.", "### Expected input and output\nThe input should be a string of biomedical entity names, e.g., \"covid infection\" or \"Hydroxychloroquine\". The [CLS] embedding of the last layer is regarded as the output.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #biomedical #lexical semantics #bionlp #biology #science #embedding #entity linking #en #arxiv-2010.11784 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model.", "### Expected input and output\nThe input should be a string of biomedical entity names, e.g., \"covid infection\" or \"Hydroxychloroquine\". The [CLS] embedding of the last layer is regarded as the output.", "#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ 89, 64, 62, 51 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #feature-extraction #biomedical #lexical semantics #bionlp #biology #science #embedding #entity linking #en #arxiv-2010.11784 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### SapBERT-PubMedBERT\nSapBERT by Liu et al. (2020). Trained with UMLS 2020AA (English only), using microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext as the base model.### Expected input and output\nThe input should be a string of biomedical entity names, e.g., \"covid infection\" or \"Hydroxychloroquine\". The [CLS] embedding of the last layer is regarded as the output.#### Extracting embeddings from SapBERT\n\nThe following script converts a list of strings (entity names) into embeddings.\n\n\nFor more details about training and eval, see SapBERT github repo." ]
[ -0.0040620178915560246, 0.005601347424089909, -0.0030563848558813334, 0.021359218284487724, 0.09187520295381546, -0.025006279349327087, -0.004536577500402927, 0.1226668506860733, -0.02313060499727726, 0.12301819026470184, 0.08335341513156891, 0.09213503450155258, 0.04365892708301544, 0.189693883061409, 0.010764394886791706, -0.16759853065013885, 0.058801647275686264, 0.03381912037730217, 0.14571212232112885, 0.048688314855098724, 0.08756241947412491, -0.05446133762598038, 0.09675523638725281, 0.0035805220250040293, -0.04277240112423897, 0.0282188281416893, 0.011419786140322685, -0.03555110841989517, 0.0834868997335434, 0.043270062655210495, 0.0298902727663517, -0.019673440605401993, 0.0397137850522995, -0.19462788105010986, 0.020034201443195343, 0.010678163729608059, -0.021383164450526237, 0.09493556618690491, 0.0007656719535589218, -0.07573707401752472, 0.08334812521934509, -0.058068688958883286, 0.09393486380577087, 0.014107306487858295, -0.10808172821998596, -0.08537754416465759, -0.047122564166784286, 0.06215282529592514, 0.059999190270900726, 0.07793788611888885, -0.02186278998851776, 0.09454665333032608, -0.013378007337450981, 0.07948075979948044, 0.14017769694328308, -0.18174952268600464, 0.03477343171834946, -0.0364530086517334, 0.1826045960187912, 0.06990526616573334, -0.033871136605739594, -0.020999006927013397, 0.037528444081544876, 0.03638215363025665, 0.12383108586072922, -0.007920638658106327, -0.03449709340929985, -0.05659492313861847, -0.11306805908679962, 0.001941096386872232, 0.24227510392665863, -0.0646529272198677, -0.08335615694522858, -0.030984854325652122, -0.009319640696048737, -0.04684016853570938, 0.029715556651353836, -0.07593017816543579, 0.0475902184844017, -0.01643051952123642, 0.12656091153621674, -0.026191120967268944, -0.06098733842372894, -0.026486387476325035, -0.10219423472881317, 0.03782765194773674, 0.04871531203389168, 0.017464442178606987, -0.01981973648071289, 0.053750742226839066, -0.0929020494222641, -0.06972756236791611, -0.04934746399521828, -0.011197449639439583, -0.022509265691041946, -0.034953948110342026, -0.05398492142558098, -0.036987774074077606, -0.004036403726786375, 0.21616801619529724, -0.06243537738919258, -0.0483531579375267, -0.009714347310364246, 0.05637254938483238, 0.043071065098047256, 0.020653942599892616, -0.06434565782546997, 0.054417144507169724, 0.10245145857334137, -0.01719753071665764, -0.0017820422071963549, 0.022045783698558807, -0.07220666110515594, 0.031104186549782753, -0.03151310235261917, 0.03644981607794762, -0.049360185861587524, 0.02369595319032669, -0.11058741062879562, -0.027063071727752686, 0.07521854341030121, -0.1184718981385231, -0.02243843488395214, 0.008735669776797295, -0.010880967602133751, 0.047529734671115875, 0.19802631437778473, 0.003705533454194665, -0.09116055816411972, 0.008802495896816254, -0.08411239087581635, 0.009979849681258202, -0.07241944968700409, -0.11983758211135864, 0.05027385056018829, 0.028199318796396255, 0.013454994186758995, -0.14921699464321136, -0.16343684494495392, -0.016379477456212044, -0.007553589064627886, 0.029146932065486908, 0.030109385028481483, -0.026402277871966362, 0.04076661169528961, -0.040280647575855255, -0.08790231496095657, -0.043590545654296875, -0.052381910383701324, -0.00855840090662241, -0.0517997108399868, 0.04455101490020752, -0.15856176614761353, 0.05261945724487305, -0.1371999830007553, -0.014166796579957008, -0.19491896033287048, 0.042325522750616074, -0.04745113104581833, 0.03638562187552452, -0.12038058787584305, -0.05730605125427246, -0.052043672651052475, 0.004597288556396961, 0.04852933809161186, 0.10167457163333893, -0.1366717368364334, -0.027879582718014717, 0.1858176290988922, -0.06686880439519882, -0.15183651447296143, 0.10326147824525833, -0.03424770012497902, 0.09458056837320328, 0.09350600093603134, 0.2622925043106079, -0.06851129233837128, -0.13587379455566406, -0.030866580083966255, -0.04301925003528595, 0.026410292834043503, 0.046078648418188095, 0.10046618431806564, -0.04979696869850159, 0.027901386842131615, 0.0176484826952219, -0.12090890109539032, 0.04171997681260109, -0.020706158131361008, -0.013600609265267849, 0.0009904634207487106, -0.051755327731370926, -0.039505600929260254, -0.07972297817468643, 0.027455341070890427, 0.0021423844154924154, -0.05009269341826439, 0.16225861012935638, 0.03255847841501236, -0.0845099464058876, 0.06430590897798538, -0.06682990491390228, 0.02155284397304058, 0.013429924845695496, 0.015069072134792805, -0.15080058574676514, -0.06910640001296997, 0.04742801561951637, -0.08363290131092072, 0.07897159457206726, -0.0685541182756424, -0.0032781793270260096, 0.09346600621938705, -0.002080917824059725, -0.003239452140405774, 0.014445731416344643, -0.0001861717610154301, -0.07035718113183975, -0.11741211265325546, 0.011229465715587139, -0.09041617810726166, -0.011993620544672012, -0.071110300719738, 0.07627806812524796, -0.10505294799804688, 0.08424145728349686, 0.006276322528719902, -0.06568801403045654, 0.02788945659995079, 0.018708577379584312, -0.04861734062433243, -0.00785277970135212, 0.006770764477550983, -0.052430447190999985, -0.13842414319515228, 0.10018280148506165, -0.10644757002592087, 0.021665142849087715, 0.06659132987260818, 0.10005567967891693, -0.06338933110237122, -0.04988996684551239, -0.03706008195877075, 0.002662279875949025, -0.037825461477041245, -0.10842087119817734, 0.3234298825263977, -0.007827084511518478, 0.09290491044521332, -0.09009155631065369, -0.07028049230575562, -0.0333700105547905, -0.05273224785923958, 0.002403770573437214, 0.08546365797519684, 0.014868195168673992, -0.1107482835650444, 0.04411718249320984, 0.07661423832178116, -0.009850509464740753, 0.10561205446720123, -0.010236339643597603, -0.08711769431829453, -0.02958468161523342, 0.029486482962965965, 0.011002885177731514, 0.048115186393260956, -0.08030850440263748, 0.0024004336446523666, 0.06258833408355713, 0.007726605515927076, 0.03119214065372944, -0.04998372495174408, 0.032030604779720306, 0.015615594573318958, -0.015361183322966099, -0.04347497969865799, -0.03493921458721161, -0.058284904807806015, 0.07833072543144226, 0.0019442240009084344, 0.10200438648462296, -0.01130768284201622, 0.03247394040226936, -0.1518918126821518, 0.23462890088558197, -0.16097483038902283, -0.19903258979320526, -0.09942157566547394, -0.0516473650932312, 0.0542021319270134, 0.04858566075563431, 0.09248930960893631, -0.026824768632650375, -0.09706335514783859, -0.09498515725135803, 0.09054961800575256, 0.054873429238796234, -0.015657352283596992, -0.028795847669243813, -0.048001546412706375, 0.06536650657653809, -0.10763142257928848, -0.017555952072143555, -0.02083802968263626, -0.014627112075686455, 0.023597346618771553, -0.04535508528351784, 0.07916561514139175, 0.08447413891553879, -0.044502340257167816, -0.03675084188580513, -0.04597635194659233, 0.15379969775676727, 0.011906884610652924, 0.003935268614441156, 0.20896309614181519, -0.06766746193170547, 0.01690763793885708, 0.042134109884500504, -0.007366507779806852, -0.06737303733825684, 0.08061768859624863, -0.040331609547138214, -0.011528350412845612, -0.3036399185657501, -0.07499843835830688, -0.030568797141313553, 0.019349517300724983, 0.031061626970767975, 0.02255508117377758, -0.025493750348687172, 0.03750573471188545, -0.020298026502132416, 0.07062186300754547, 0.00585645716637373, 0.09731470793485641, -0.012165868654847145, -0.036804962903261185, 0.10504351556301117, 0.04003877192735672, -0.0031683696433901787, 0.06816615164279938, -0.015114383772015572, 0.09602032601833344, 0.0023063630796968937, 0.0595976896584034, 0.0699780061841011, 0.09711802005767822, 0.026028243824839592, 0.1312924027442932, -0.06811674684286118, 0.037140779197216034, -0.044049542397260666, -0.06686845421791077, -0.061169520020484924, 0.051825642585754395, -0.05400039628148079, -0.01145919319242239, -0.041466306895017624, -0.012490861117839813, 0.07680469006299973, 0.014060032553970814, 0.004072999116033316, -0.24721254408359528, -0.10158104449510574, 0.029341939836740494, -0.037844520062208176, -0.09409604221582413, -0.005683154333382845, 0.08880592882633209, -0.0696944072842598, 0.04317658022046089, 0.016554906964302063, 0.09340491145849228, 0.06627953052520752, 0.049940407276153564, -0.0533122718334198, 0.0029948444571346045, -0.041658442467451096, 0.07952269166707993, -0.20106588304042816, 0.025815138593316078, -0.003964720293879509, 0.05972905457019806, -0.024970512837171555, 0.038400787860155106, 0.016205374151468277, 0.10502206534147263, 0.15634052455425262, 0.03135748207569122, -0.02949582412838936, 0.008374622091650963, -0.17318953573703766, 0.06043824180960655, 0.03827017545700073, -0.1185884103178978, 0.07445789128541946, 0.03289886564016342, 0.06189129874110222, -0.004955593030899763, 0.012113852426409721, -0.12805357575416565, -0.09190697222948074, 0.061256591230630875, -0.11213693767786026, 0.1870892494916916, -0.038836948573589325, -0.04244006425142288, 0.024304278194904327, 0.2235265076160431, -0.21081744134426117, -0.07496162503957748, -0.1532571166753769, 0.08328165113925934, 0.06685368716716766, -0.09295154362916946, 0.09085635840892792, 0.0035302904434502125, 0.08561043441295624, -0.057894233614206314, -0.15235747396945953, 0.11039432883262634, -0.06287354230880737, -0.0615096390247345, -0.0835474357008934, 0.06812592595815659, 0.02296951599419117, 0.07091820985078812, 0.05521073192358017, 0.007855942472815514, -0.1034473106265068, -0.07055893540382385, 0.003374428255483508, 0.17264485359191895, 0.1180150955915451, 0.12227004021406174, -0.29755598306655884, -0.2052212804555893, -0.0367140956223011, -0.03956964239478111, 0.11872057616710663, 0.1745346486568451, -0.03038157895207405, 0.07924003899097443, 0.13343492150306702, -0.10325398296117783, -0.24386700987815857, 0.004592535085976124, 0.10913299024105072, 0.04155451059341431, 0.05113208293914795, -0.18871062994003296, 0.180415078997612, 0.12551702558994293, 0.010755321942269802, -0.010349198244512081, 0.002014231402426958, -0.14496175944805145, 0.052916064858436584, 0.04670407995581627, 0.054435424506664276, -0.11656995117664337, -0.05980383977293968, -0.03201170638203621, -0.07895202934741974, 0.14073002338409424, -0.1706300675868988, 0.06700001657009125, -0.003644498996436596, 0.09352398663759232, 0.0019395386334508657, -0.021438492462038994, 0.06632862985134125, 0.05141442269086838, 0.012684637680649757, 0.005588487256318331, 0.00804191641509533, 0.049541085958480835, -0.012831926345825195, 0.21309898793697357, -0.041350509971380234, 0.030397936701774597, -0.10734201967716217, -0.028553904965519905, -0.06875444203615189, 0.12292018532752991, -0.010855474509298801, -0.07268320024013519, -0.05714815855026245, 0.011775300838053226, 0.10603078454732895, 0.023500045761466026, 0.10071549564599991, -0.06013753265142441, 0.024670293554663658, 0.06100253388285637, 0.104606494307518, 0.08938241750001907, -0.019030731171369553, 0.058810196816921234, -0.07441733032464981, 0.03988010808825493, -0.20263899862766266, 0.014363848604261875, 0.11003780364990234, -0.006406082306057215, 0.13815322518348694, 0.05151829868555069, -0.07634537667036057, -0.002290672156959772, 0.0636744275689125, -0.1774396449327469, -0.02869504876434803, 0.0027894640807062387, 0.06467464566230774, -0.14978468418121338, 0.031975600868463516, 0.1241498738527298, -0.06377564370632172, -0.05151718109846115, -0.0446910485625267, 0.06208646669983864, -0.09163776785135269, 0.1545690894126892, 0.033051297068595886, 0.007217761594802141, -0.09568643569946289, 0.046244945377111435, 0.0478849932551384, -0.07737858593463898, 0.06079986318945885, 0.06268831342458725, -0.10880293697118759, -0.06543125957250595, 0.0008011285099200904, 0.18084602057933807, -0.11425618082284927, -0.0031609327998012304, -0.03880106657743454, -0.09782720357179642, 0.020619887858629227, 0.1441284418106079, -0.01892215944826603, -0.012902610003948212, -0.02700650878250599, 0.008283475413918495, -0.03612023591995239, 0.10312951356172562, 0.03854735940694809, 0.0725821703672409, 0.05763539671897888, 0.19066409766674042, -0.006959197111427784, 0.024110043421387672, -0.04446551203727722, 0.10027432441711426, -0.0985858365893364, -0.04767179489135742, -0.027210600674152374, 0.010773247107863426, 0.021452685818076134, -0.06006808951497078, 0.005391074810177088, -0.022132957354187965, 0.02060043253004551, 0.052921220660209656, -0.06548972427845001, -0.02612735889852047, -0.04762173816561699, 0.059531427919864655, -0.08917451649904251, -0.05359378829598427, 0.04186900705099106, -0.0587492361664772, 0.11180578917264938, 0.08784060180187225, 0.010836123488843441, 0.03525153174996376, -0.1780831664800644, 0.029188644140958786, 0.10545678436756134, 0.08736346662044525, 0.00715545192360878, -0.0494050458073616, -0.015929359942674637, -0.0009178091422654688, -0.05844443663954735, -0.02849547006189823, 0.07983016967773438, -0.0665891170501709, -0.02705235593020916, -0.005181583110243082, 0.023023810237646103, -0.06614720821380615, -0.015941541641950607, -0.04325839877128601, 0.0648391842842102, 0.08964581042528152, -0.045621197670698166, 0.039569515734910965, -0.12139250338077545, 0.0072877369821071625, 0.03686080127954483, -0.09673597663640976, -0.13974997401237488, -0.059303540736436844, 0.0429566353559494, 0.015095793642103672, 0.17069149017333984, 0.0036318229977041483, -0.04744105041027069, -0.001470240531489253, 0.005307955201715231, 0.15816517174243927, 0.01585637778043747, 0.163986474275589, -0.031198775395751, -0.016126977279782295, -0.0662815123796463, 0.01790488511323929, 0.03750377893447876, -0.06311029195785522, 0.07561500370502472, 0.1105564758181572, 0.03309343382716179, 0.010364399291574955, 0.00009500764281256124, -0.027443304657936096, -0.08699695765972137, -0.18015320599079132, 0.08958955854177475, 0.026843523606657982, 0.029139267280697823, 0.11494267731904984, 0.056028954684734344, -0.1530461609363556, 0.0438406728208065, 0.04690266028046608, -0.09875073283910751, -0.08020971715450287, -0.021687505766749382, -0.00677711283788085, 0.0028099273331463337, -0.03927137702703476, -0.20439794659614563, -0.0286946352571249, -0.04344012215733528, 0.0017780546331778169, -0.005129829980432987, 0.19956009089946747, -0.062485579401254654, -0.11687277257442474, 0.023362919688224792, 0.010334504768252373, 0.022519227117300034, -0.0413074865937233, -0.028023462742567062, 0.06823522597551346, -0.016026273369789124, 0.058499984443187714, 0.022942038252949715, 0.039738383144140244, 0.03505946323275566, -0.010574216023087502, -0.04842193052172661, 0.001391268684528768, -0.003157326253131032, -0.07230155169963837, 0.18752633035182953, 0.07379832863807678, -0.08493699878454208, 0.029499268159270287, 0.05923915654420853, -0.0132478978484869, 0.008090691640973091, -0.10594923794269562, 0.2124956101179123, 0.10982464998960495, 0.03890872746706009, -0.05777629464864731, -0.0698649063706398, 0.00046812297659926116, 0.21839872002601624, 0.002014733385294676, -0.03756294026970863, -0.029283838346600533, 0.0021248164121061563, 0.01805979199707508, 0.06147175654768944, 0.021152665838599205, 0.12133999168872833, 0.10333627462387085, -0.02795056439936161, 0.09557881951332092, 0.006547874771058559, -0.011596961878240108, -0.16846811771392822, -0.07190301269292831, 0.002045773435384035, -0.031976934522390366, -0.011903568170964718, -0.008903066627681255, -0.10225866734981537, -0.22970308363437653, -0.04548126831650734, -0.08336041122674942, -0.040291205048561096, -0.09087365120649338, 0.03171681985259056, 0.020783472806215286, 0.04808412864804268, 0.00006337281229207292, 0.01709148660302162, 0.14239157736301422, 0.01822650618851185, -0.12703776359558105, 0.021662136539816856, 0.04763989895582199, -0.1344723254442215, 0.14310342073440552, 0.012669005431234837, 0.046463239938020706, 0.026224328204989433, 0.012827298603951931, -0.0630892813205719, 0.11523783206939697, -0.06170458719134331, 0.019993437454104424, 0.07258231937885284, 0.09487279504537582, -0.006891874596476555, 0.05672234669327736, -0.02177007496356964, -0.09229113906621933, -0.002879519946873188, 0.08514852821826935, -0.10335034132003784, -0.016821296885609627, 0.025162501260638237, -0.06570108234882355, 0.11190733313560486, 0.15074479579925537, -0.018800420686602592, 0.012071289122104645, -0.10156606882810593, 0.05506681278347969, 0.07051444053649902, 0.0140163479372859, 0.013855482451617718, -0.1737610399723053, 0.03154708445072174, 0.0941808894276619, 0.028943948447704315, -0.3159990608692169, -0.05156794562935829, -0.10553426295518875, 0.00875583104789257, -0.10395939648151398, 0.07746627926826477, 0.12263157218694687, 0.003681809874251485, -0.02605406381189823, -0.09803175926208496, 0.056639522314071655, 0.07372995465993881, -0.06282126158475876, -0.09337840974330902 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-bert-base-uncased-sentence-drophead An unsupervised sentence encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf), using [drophead](https://aclanthology.org/2020.findings-emnlp.178.pdf) instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the base model. Please use mean-pooling over *all tokens* as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
{}
feature-extraction
cambridgeltl/mirror-bert-base-uncased-sentence-drophead
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "arxiv:2104.08027", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08027" ]
[]
TAGS #transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-bert-base-uncased-sentence-drophead An unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs.
[ "### cambridgeltl/mirror-bert-base-uncased-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n", "### cambridgeltl/mirror-bert-base-uncased-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ 43, 126 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n### cambridgeltl/mirror-bert-base-uncased-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ -0.09903424978256226, -0.031379714608192444, -0.003186671994626522, 0.04125944897532463, 0.06449658423662186, 0.02177286334335804, 0.1308516561985016, 0.046822741627693176, 0.02106257528066635, 0.04457889497280121, 0.16690365970134735, 0.07883162051439285, 0.039857082068920135, 0.14644727110862732, -0.11521090567111969, -0.22940118610858917, 0.08644440025091171, 0.07926370948553085, 0.08631745725870132, 0.11271297186613083, 0.034925177693367004, -0.11069417744874954, 0.02860199101269245, -0.008801744319498539, -0.08037066459655762, 0.02797243930399418, -0.028455577790737152, -0.035988759249448776, 0.08068922907114029, 0.04402501881122589, 0.09628013521432877, 0.06739503145217896, 0.010611312463879585, 0.0009339155512861907, 0.03911139816045761, 0.012964121997356415, -0.04658646136522293, 0.10178482532501221, -0.04503845050930977, -0.0038716362323611975, 0.030156334862113, -0.05328255519270897, 0.005867879372090101, -0.007749597541987896, -0.09537983685731888, -0.14505381882190704, -0.01742119900882244, 0.0987701490521431, 0.058593668043613434, 0.04985335096716881, -0.05139825493097305, 0.1907767653465271, -0.01413733046501875, 0.10194725543260574, 0.20035305619239807, -0.3382047712802887, -0.031314220279455185, 0.10736582428216934, -0.03181540593504906, -0.020829293876886368, -0.03528892993927002, -0.003450461197644472, 0.08466772735118866, 0.001996220089495182, -0.002953513525426388, -0.041286833584308624, -0.018956055864691734, -0.0020137953106313944, -0.13423988223075867, 0.05404774844646454, 0.140895277261734, 0.020715516060590744, -0.08085993677377701, -0.06514245271682739, -0.09024915844202042, -0.01729828678071499, -0.05021904408931732, -0.04482917860150337, 0.0065116798505187035, 0.002518192632123828, -0.017202898859977722, 0.016332104802131653, -0.07229240983724594, -0.04788535460829735, -0.13363702595233917, 0.1346988081932068, 0.03251299262046814, 0.07135090976953506, -0.08846066892147064, 0.0440777949988842, -0.1836366206407547, -0.1261383295059204, 0.017222654074430466, -0.0979754626750946, 0.04025354981422424, 0.055117178708314896, -0.07555454224348068, -0.14199888706207275, -0.01318445336073637, 0.04962192475795746, 0.024295087903738022, 0.03652232140302658, -0.048640523105859756, 0.07551997154951096, 0.06071535125374794, 0.08347120136022568, -0.06901787221431732, -0.03637434169650078, 0.026380395516753197, 0.09115061163902283, 0.0849195122718811, -0.08564038574695587, -0.10814891755580902, -0.0063938782550394535, 0.05487674102187157, -0.023157011717557907, -0.041257377713918686, 0.10381894558668137, -0.049018122255802155, -0.04728437587618828, 0.17992717027664185, -0.11413496732711792, -0.045367930084466934, -0.031047837808728218, -0.02368529513478279, 0.21960264444351196, 0.008486776612699032, 0.014616300351917744, -0.041722189635038376, 0.013488074764609337, -0.12175112217664719, -0.011355459690093994, -0.03084869123995304, -0.12477608770132065, -0.052721843123435974, -0.09315865486860275, -0.004675321280956268, -0.07733140885829926, -0.12289067357778549, 0.01063702255487442, 0.02486312948167324, -0.029086796566843987, 0.052237823605537415, -0.0797642320394516, 0.01321922056376934, -0.06044986471533775, -0.016244539991021156, -0.15903028845787048, 0.0003761816187761724, 0.06996026635169983, 0.09914768487215042, 0.1293199062347412, -0.18860948085784912, 0.03429492935538292, -0.17768417298793793, -0.017312224954366684, -0.230389803647995, 0.026658937335014343, 0.05572911724448204, 0.04972106218338013, -0.02815070189535618, -0.09564870595932007, -0.032420460134744644, 0.03275483846664429, 0.05999753624200821, 0.1581311970949173, -0.17570750415325165, -0.09650550037622452, 0.10785075277090073, -0.13510236144065857, -0.06574559956789017, 0.09483537822961807, -0.03503872826695442, 0.055887188762426376, 0.08293398469686508, 0.19714699685573578, -0.08480657637119293, -0.07474052160978317, 0.0009616974275559187, 0.021227141842246056, -0.025683656334877014, -0.02946530096232891, 0.0249236561357975, 0.01383895706385374, -0.09444670379161835, 0.0677441954612732, 0.0014865804696455598, -0.07522781193256378, -0.05840573459863663, -0.034739505499601364, 0.031631674617528915, -0.03617440536618233, 0.15750081837177277, -0.009166988544166088, 0.06250090152025223, -0.042240217328071594, -0.03596252202987671, 0.12108157575130463, 0.03792480379343033, -0.0986080914735794, 0.019847145304083824, -0.08724402636289597, 0.08600182831287384, -0.04524897038936615, 0.018530219793319702, -0.15160085260868073, -0.02405642345547676, -0.00006257127097342163, 0.20807290077209473, -0.000032058167562354356, 0.09805366396903992, 0.01952439732849598, 0.03782499209046364, -0.04147927463054657, 0.02504054456949234, 0.12041871249675751, -0.024081436917185783, -0.09155134856700897, -0.07079214602708817, -0.07277758419513702, -0.048198577016592026, -0.04813126474618912, -0.14013944566249847, 0.059453126043081284, -0.03977843001484871, 0.04343264922499657, -0.021087946370244026, -0.028066249564290047, 0.022663919255137444, 0.05721141770482063, -0.009578893892467022, 0.022252418100833893, 0.10180974751710892, 0.014913170598447323, -0.125117689371109, -0.014306772500276566, -0.1253998577594757, 0.07855608314275742, 0.15206192433834076, -0.06131478026509285, -0.028404466807842255, -0.07965904474258423, 0.004880513064563274, -0.0113812992349267, 0.005947002675384283, -0.03201502189040184, 0.20893073081970215, 0.0260113924741745, 0.11421067267656326, -0.11064594238996506, -0.01824694499373436, 0.029921283945441246, -0.04636191949248314, -0.046807415783405304, 0.029250064864754677, -0.09252435714006424, -0.06912773102521896, 0.04668610170483589, 0.0734809935092926, -0.05053979530930519, 0.142705038189888, -0.020213836804032326, -0.03533688560128212, -0.012141500599682331, 0.01750907115638256, -0.03534941375255585, 0.04626483470201492, -0.16653601825237274, -0.04142880439758301, 0.0420466884970665, 0.0006839777925051749, 0.021709345281124115, -0.11133322864770889, -0.045398712158203125, -0.017067143693566322, -0.010438421741127968, -0.15510642528533936, 0.03199141100049019, -0.018708212301135063, 0.04030805826187134, -0.006847959943115711, -0.019942965358495712, 0.05461528152227402, 0.007888074964284897, -0.07821498811244965, 0.1714010238647461, -0.038895633071660995, -0.21092233061790466, -0.11560623347759247, -0.03846210613846779, -0.10260708630084991, -0.006683703046292067, 0.037699270993471146, -0.0682932585477829, -0.03808244690299034, -0.09175553917884827, 0.012494103983044624, -0.017738519236445427, 0.03202788531780243, 0.10438943654298782, -0.05409414321184158, 0.02751299925148487, -0.11579718440771103, -0.04326134920120239, -0.13537059724330902, -0.049289509654045105, 0.11239702254533768, -0.09119954705238342, 0.008085093460977077, 0.13698598742485046, -0.05589372292160988, 0.04208414629101753, -0.022525623440742493, 0.17571991682052612, 0.03481971099972725, 0.007586818188428879, 0.1707826554775238, -0.06456980109214783, 0.0761074349284172, 0.14305199682712555, 0.03717922046780586, -0.07501917332410812, 0.03309541568160057, 0.00838317722082138, -0.07817494124174118, -0.14559340476989746, -0.019420145079493523, -0.07019701600074768, 0.024870842695236206, 0.037999581545591354, 0.009584595449268818, 0.04491202533245087, 0.06947609782218933, -0.004151258617639542, 0.07596472650766373, -0.05073444917798042, 0.07076352834701538, 0.1311732977628708, -0.00723402202129364, 0.17008115351200104, -0.00036143153556622565, -0.06232347711920738, 0.04943624511361122, -0.0729394182562828, 0.16599568724632263, -0.027158983051776886, -0.04044133052229881, 0.03872526064515114, 0.1189156025648117, 0.12289831042289734, 0.20856063067913055, -0.11938111484050751, -0.08309854567050934, -0.04287809133529663, -0.07984021306037903, -0.043779157102108, 0.047765154391527176, -0.0487896129488945, 0.024497291073203087, -0.056367263197898865, 0.005797519814223051, 0.05814741551876068, 0.08423668891191483, 0.18947045505046844, -0.24333889782428741, -0.06939977407455444, -0.009678449481725693, 0.026606354862451553, -0.04161154478788376, 0.054715003818273544, 0.0012154503492638469, -0.030327344313263893, 0.04839809611439705, -0.010895788669586182, 0.05748078599572182, -0.024981681257486343, 0.09089876711368561, -0.11519954353570938, 0.049709685146808624, -0.02618524432182312, 0.03065088391304016, -0.11331330984830856, 0.19656914472579956, 0.017815927043557167, 0.03290785104036331, -0.03120143711566925, -0.019586291164159775, 0.015158725902438164, 0.06175146624445915, 0.10188672691583633, 0.003115543397143483, 0.06209353730082512, -0.13264340162277222, -0.11208033561706543, 0.06117744743824005, 0.07166263461112976, 0.016142994165420532, 0.07645831257104874, -0.0035829292610287666, 0.022656524553894997, 0.059259772300720215, 0.10563204437494278, -0.07163732498884201, -0.08786091953516006, 0.020644953474402428, 0.0077943140640854836, 0.05544049292802811, -0.010974829085171223, -0.11849812418222427, 0.03160068765282631, 0.20566263794898987, 0.06980802863836288, -0.12831991910934448, -0.08227738738059998, 0.029004178941249847, 0.10234536230564117, -0.07807748764753342, 0.039178814738988876, -0.04683107137680054, 0.02746886946260929, -0.04491959884762764, -0.12510813772678375, 0.1302112191915512, -0.036906804889440536, -0.06430632621049881, -0.004740983247756958, 0.11487317830324173, 0.023026127368211746, 0.0024905246682465076, 0.04199378192424774, 0.029786022379994392, 0.005864308215677738, -0.08212696015834808, 0.005724536720663309, -0.01886308193206787, 0.1716173142194748, -0.000337798468535766, -0.07664267718791962, -0.021296106278896332, -0.04831409826874733, 0.047861497849226, 0.15869617462158203, 0.2671511769294739, -0.04168030619621277, 0.04936131089925766, 0.26076841354370117, 0.01962233893573284, -0.18602421879768372, -0.07555996626615524, -0.02371671423316002, 0.037747450172901154, 0.017509235069155693, -0.09957347810268402, 0.10247701406478882, 0.09731043875217438, 0.004158020485192537, -0.040695156902074814, -0.14609593152999878, -0.10175681859254837, 0.18529309332370758, 0.05130857229232788, 0.4640336334705353, -0.12474347651004791, -0.058760564774274826, -0.03107376955449581, -0.12989702820777893, 0.06386096775531769, -0.02805689349770546, 0.08972904086112976, -0.0578383170068264, -0.009266502223908901, 0.032318416982889175, -0.03331759199500084, 0.07258662581443787, 0.015288248658180237, 0.0493801049888134, -0.013718775473535061, -0.1888469159603119, 0.02211564965546131, -0.02332296594977379, 0.14605207741260529, -0.039026059210300446, 0.06935715675354004, -0.007737567648291588, -0.05799129232764244, -0.021710282191634178, -0.01252733077853918, 0.004438803531229496, -0.10049532353878021, -0.015107040293514729, -0.006860732566565275, -0.00815395824611187, -0.01017929706722498, 0.2341935634613037, -0.07441363483667374, 0.09897994250059128, 0.17959631979465485, 0.042145054787397385, -0.1599508821964264, 0.06929034739732742, 0.0009990459075197577, -0.06536130607128143, 0.095835380256176, -0.14356786012649536, 0.0326414629817009, 0.09723638743162155, 0.028664395213127136, 0.09360761940479279, 0.09025835990905762, -0.021388210356235504, 0.017312148585915565, 0.06306388974189758, -0.1702566146850586, -0.0566154308617115, -0.0035695224069058895, -0.06063879281282425, -0.12567931413650513, 0.1757015883922577, 0.09462052583694458, -0.032899998128414154, -0.017304612323641777, 0.0008170952787622809, 0.02014777995646, -0.04131634533405304, 0.05313931778073311, 0.05033443868160248, 0.05247964337468147, -0.1196918785572052, 0.022612042725086212, -0.008353880606591702, 0.03656540438532829, 0.03204311802983284, 0.012778586708009243, -0.09919892251491547, -0.020281603559851646, -0.10444486886262894, 0.11734238266944885, -0.006183623801916838, -0.015885092318058014, -0.10839052498340607, -0.1028420478105545, -0.004238487686961889, 0.11637242138385773, 0.10840027779340744, 0.05697908625006676, -0.07279809564352036, -0.004916300531476736, -0.0747498944401741, -0.008211669512093067, 0.10022687911987305, 0.015835175290703773, -0.05677884817123413, 0.04249173775315285, 0.0010819800663739443, 0.04984027147293091, -0.06769911199808121, -0.06270034611225128, -0.13966485857963562, 0.0025511234998703003, -0.10301070660352707, -0.055033084005117416, -0.09238697588443756, -0.022762788459658623, -0.003965172450989485, -0.019751153886318207, -0.018822751939296722, 0.0014203668106347322, -0.03920212760567665, 0.04595820605754852, 0.011961827985942364, -0.03919965401291847, -0.10122893750667572, -0.0070954579859972, 0.01947900280356407, -0.038635533303022385, 0.05479017272591591, 0.04526191204786301, -0.04313311353325844, 0.08656485378742218, -0.12400220334529877, 0.0030843191780149937, 0.06350433826446533, 0.02651645988225937, 0.06756754219532013, 0.08797474950551987, -0.044834237545728683, 0.041813332587480545, 0.009411773644387722, 0.013595064170658588, 0.14165660738945007, -0.09409049898386002, -0.01664932630956173, -0.05011763423681259, -0.04502926394343376, -0.059754885733127594, -0.01584997959434986, 0.1040034070611, 0.10267292708158493, 0.10801837593317032, -0.055765844881534576, 0.03683747723698616, -0.11231592297554016, 0.010092226788401604, 0.013716996647417545, -0.13960927724838257, 0.0643811821937561, -0.08968930691480637, 0.018543601036071777, 0.0231330543756485, 0.1601334810256958, -0.07633301615715027, -0.060162968933582306, -0.02591082453727722, 0.041665587574243546, 0.061666324734687805, -0.04884054511785507, 0.26394328474998474, 0.07227303087711334, -0.023524289950728416, -0.09030015021562576, 0.0866837128996849, 0.03085692599415779, 0.11738067120313644, 0.15503093600273132, -0.00026918353978544474, -0.02024519257247448, 0.09467196464538574, -0.016253234818577766, 0.08914235234260559, -0.028021765872836113, -0.023265419527888298, -0.006708243861794472, -0.01499983575195074, 0.03881611302495003, 0.07960779219865799, 0.17753826081752777, -0.06002204492688179, 0.052611809223890305, 0.025113219395279884, -0.08920808881521225, -0.11612704396247864, -0.14171244204044342, -0.03507829084992409, -0.2095690369606018, -0.02907835878431797, -0.12387584149837494, -0.03772008419036865, 0.09886251389980316, 0.037090692669153214, 0.026781175285577774, 0.1262023001909256, -0.04923161864280701, -0.001072578364983201, 0.10171458125114441, -0.06317929923534393, -0.02552291564643383, 0.03543265908956528, -0.0007553905015811324, 0.042815595865249634, 0.0045108189806342125, 0.033496636897325516, 0.015385136939585209, 0.061435043811798096, 0.03739506006240845, -0.017777541652321815, -0.14402545988559723, -0.06838863343000412, 0.027550842612981796, 0.02495463378727436, 0.14758284389972687, 0.02613256126642227, -0.02174084447324276, -0.037921641021966934, 0.09093107283115387, -0.04262465238571167, -0.08161254972219467, -0.08742076903581619, 0.20842596888542175, 0.05407879501581192, 0.039062704890966415, -0.025828009471297264, -0.1411389410495758, -0.002563441637903452, 0.2568199336528778, 0.21373479068279266, -0.013756017200648785, 0.02221001125872135, 0.009528961963951588, 0.025221386924386024, 0.021284855902194977, 0.034456703811883926, 0.09496599435806274, 0.21320794522762299, -0.04236903786659241, -0.021974194794893265, -0.06778283417224884, -0.016505330801010132, -0.08227402716875076, -0.03053482621908188, 0.1046578586101532, -0.026323389261960983, -0.07457182556390762, 0.06646767258644104, -0.07389470189809799, -0.048869308084249496, -0.017118701711297035, -0.09853041917085648, -0.06179998070001602, -0.05980706214904785, -0.0001604784483788535, 0.01012452319264412, 0.12338872998952866, -0.03681619092822075, 0.046928051859140396, 0.11876963078975677, 0.0037657511420547962, -0.0925961509346962, -0.0741143524646759, 0.09138992428779602, 0.004399376921355724, 0.012172224931418896, 0.01388851460069418, 0.07960160076618195, 0.03551217168569565, 0.06178923323750496, 0.028862379491329193, 0.12717564404010773, -0.03979960083961487, 0.03389768302440643, -0.01883019506931305, 0.002792652929201722, 0.018204107880592346, -0.02387329377233982, 0.01605585217475891, -0.1200469583272934, 0.025355102494359016, -0.08241642266511917, -0.07369430363178253, -0.056407034397125244, 0.026174107566475868, -0.055968333035707474, 0.08331508189439774, 0.1456543654203415, -0.021789319813251495, -0.05230413004755974, 0.009123519994318485, 0.02215328998863697, 0.04294302687048912, -0.09064215421676636, -0.02298833802342415, -0.16784031689167023, 0.016348447650671005, 0.1241716593503952, -0.01477423869073391, -0.23631443083286285, -0.013078738003969193, -0.07516071200370789, -0.011097916401922703, -0.10537180304527283, 0.011708998121321201, 0.08549564331769943, 0.014511176384985447, -0.012230103835463524, -0.05025704205036163, -0.0005574508686549962, 0.041308727115392685, -0.05496569350361824, -0.11592350900173187 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-bert-base-uncased-sentence An unsupervised sentence encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf). Trained with unlabelled raw sentences, using [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the base model. Please use mean-pooling over *all tokens* (including padded ones) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
{}
feature-extraction
cambridgeltl/mirror-bert-base-uncased-sentence
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.08027", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08027" ]
[]
TAGS #transformers #pytorch #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-bert-base-uncased-sentence An unsupervised sentence encoder proposed by Liu et al. (2021). Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* (including padded ones) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs.
[ "### cambridgeltl/mirror-bert-base-uncased-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* (including padded ones) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n", "### cambridgeltl/mirror-bert-base-uncased-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* (including padded ones) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ 38, 116 ]
[ "passage: TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n### cambridgeltl/mirror-bert-base-uncased-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). Trained with unlabelled raw sentences, using bert-base-uncased as the base model. Please use mean-pooling over *all tokens* (including padded ones) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ -0.06165691092610359, -0.001378098619170487, -0.0029248741921037436, 0.013794399797916412, 0.07781072705984116, 0.0029897927306592464, 0.13846085965633392, 0.0421241857111454, -0.014611832797527313, 0.05385773256421089, 0.18160736560821533, 0.0505116768181324, 0.029868202283978462, 0.06198490783572197, -0.10874037444591522, -0.2074810266494751, 0.06816662102937698, 0.1102018728852272, 0.07767325639724731, 0.11422794312238693, 0.009147979319095612, -0.08772869408130646, 0.034065648913383484, -0.003804421052336693, -0.10896013677120209, 0.07312483340501785, -0.037203866988420486, -0.04770796373486519, 0.07036150246858597, 0.04383394494652748, 0.08563534170389175, 0.07159384340047836, -0.004374164156615734, -0.0018460440915077925, 0.02345150150358677, -0.00746822590008378, -0.07221632450819016, 0.0918835997581482, -0.06127111241221428, 0.003169651608914137, 0.08870548754930496, -0.02411295287311077, -0.014202513732016087, -0.018208470195531845, -0.08470732718706131, -0.1716802716255188, 0.018547585234045982, 0.10058099031448364, 0.038659654557704926, 0.058586906641721725, -0.058210957795381546, 0.14798186719417572, -0.008938497863709927, 0.109648197889328, 0.19021424651145935, -0.3686267137527466, -0.02731725014746189, 0.07445140182971954, -0.013771639205515385, -0.010489544831216335, -0.009627447463572025, 0.012049498967826366, 0.08706779032945633, 0.029599621891975403, -0.041434869170188904, -0.0818396732211113, -0.0309478547424078, 0.02215903252363205, -0.12621758878231049, 0.07554557919502258, 0.12650656700134277, 0.02092467062175274, -0.06505284458398819, -0.003984919283539057, -0.07780254632234573, -0.03814204782247543, -0.0462166927754879, -0.024533851072192192, 0.011527331545948982, -0.016721244901418686, -0.09219082444906235, 0.04925624281167984, -0.06174410879611969, -0.046066056936979294, -0.12755301594734192, 0.1061512678861618, 0.03159051015973091, 0.06784788519144058, -0.12906217575073242, 0.03222499415278435, -0.1863456666469574, -0.11569801717996597, 0.016430556774139404, -0.08252111077308655, 0.05559859797358513, 0.05454544350504875, -0.0944182500243187, -0.14646786451339722, -0.019672105088829994, 0.07599397003650665, 0.07107860594987869, 0.05470983311533928, -0.05321486294269562, 0.07406843453645706, 0.06792934983968735, 0.07856376469135284, -0.08347849547863007, 0.00777917867526412, -0.01050240732729435, 0.024966513738036156, 0.05885707959532738, -0.0755482167005539, -0.13090898096561432, -0.013256941922008991, 0.03603222593665123, -0.019842049106955528, -0.07288642227649689, 0.09059146791696548, -0.016869457438588142, -0.0220979992300272, 0.12878409028053284, -0.08734280616044998, -0.026292553171515465, -0.03724908083677292, -0.017388997599482536, 0.20620276033878326, -0.02435748465359211, 0.016438888385891914, -0.06166437640786171, 0.019724220037460327, -0.11219466477632523, -0.03899269551038742, -0.022126397117972374, -0.16340512037277222, -0.043255873024463654, -0.08968909084796906, 0.015061775222420692, -0.06326152384281158, -0.03615570440888405, -0.011987746693193913, 0.01809217594563961, -0.04757174849510193, 0.06055225804448128, -0.1183331161737442, 0.006712699308991432, -0.0558396652340889, -0.015899360179901123, -0.0869792252779007, 0.005020109936594963, 0.059777289628982544, 0.11141853034496307, 0.14207199215888977, -0.16278117895126343, 0.046642404049634933, -0.1737898737192154, -0.02057640440762043, -0.16432061791419983, 0.0025036479346454144, 0.037306416779756546, 0.029896114021539688, -0.02612028270959854, -0.12691082060337067, 0.0018501364393159747, 0.03741657733917236, 0.08098744601011276, 0.12641781568527222, -0.1279052197933197, -0.11974310874938965, 0.16937853395938873, -0.10234005749225616, -0.05461088567972183, 0.09466172754764557, -0.015818586573004723, 0.055186573415994644, 0.0870271623134613, 0.15386833250522614, -0.12562616169452667, 0.001007384737022221, 0.003366428194567561, 0.043096937239170074, 0.01630988158285618, -0.031934283673763275, 0.03272463008761406, 0.021350355818867683, -0.09130602329969406, 0.0577629916369915, 0.025942539796233177, -0.08386319130659103, -0.07141238451004028, -0.032485779374837875, 0.05801947042346001, -0.01697830855846405, 0.0888032466173172, -0.029247405007481575, 0.09186439216136932, -0.048757556825876236, -0.04220064356923103, 0.07681244611740112, 0.019817035645246506, -0.1530049741268158, 0.039470430463552475, -0.07103575021028519, 0.06094982102513313, -0.02638370171189308, 0.04018407687544823, -0.137708380818367, 0.04507478326559067, 0.018169870600104332, 0.19579027593135834, 0.0003708944423124194, 0.10566414147615433, 0.012623961083590984, 0.029316172003746033, -0.057912543416023254, 0.03814395144581795, 0.11427976936101913, -0.03313927724957466, -0.09224016219377518, -0.0726415291428566, -0.06115273758769035, -0.0539831817150116, -0.050353869795799255, -0.14220942556858063, 0.035512715578079224, -0.016668081283569336, 0.012498054653406143, -0.02600146271288395, -0.012873666360974312, -0.0015848643379285932, 0.0715726986527443, -0.01640581712126732, 0.043811339884996414, 0.11821810901165009, -0.0012010737555101514, -0.14301429688930511, 0.030330579727888107, -0.09863824397325516, 0.022455131635069847, 0.13829147815704346, -0.11114118993282318, -0.03514421731233597, -0.04698082432150841, 0.006269017234444618, -0.012610203586518764, 0.025008423253893852, -0.028545059263706207, 0.23449170589447021, 0.034297145903110504, 0.11897869408130646, -0.10810630768537521, -0.02386000193655491, 0.03938143327832222, -0.047435078769922256, -0.03318371996283531, 0.09659113734960556, -0.0072640529833734035, -0.1494816094636917, 0.035122666507959366, 0.038599297404289246, -0.06436391174793243, 0.10805726051330566, 0.006181666161864996, -0.052991144359111786, -0.001051470055244863, 0.0022667068988084793, -0.011965910904109478, 0.0017718514427542686, -0.1946922242641449, -0.09755975753068924, 0.031006209552288055, -0.017307357862591743, 0.02360474318265915, -0.1175638735294342, -0.03919582813978195, -0.021436495706439018, -0.008163581602275372, -0.2071387618780136, 0.05279608443379402, -0.05174092948436737, 0.028066221624612808, 0.0031367989722639322, -0.07587604224681854, 0.062229566276073456, 0.014461399987339973, -0.09633694589138031, 0.1784188598394394, -0.03478972986340523, -0.16926056146621704, -0.14560912549495697, -0.09144848585128784, -0.07115402072668076, 0.00798027217388153, 0.04518873617053032, -0.059190694242715836, -0.0345645397901535, -0.07234382629394531, 0.0017177077243104577, -0.10252416878938675, 0.03370735049247742, 0.10576944798231125, -0.05388643592596054, 0.005378535483032465, -0.10212460905313492, -0.04271399974822998, -0.14824165403842926, -0.06712718307971954, 0.10221997648477554, -0.139047309756279, 0.02842457965016365, 0.1292274445295334, -0.04527082294225693, 0.04258960857987404, -0.029835209250450134, 0.17503227293491364, 0.0615486316382885, -0.029337750747799873, 0.07200758159160614, -0.056297652423381805, 0.07433562725782394, 0.12053027004003525, 0.05103488638997078, -0.05744212865829468, 0.030568985268473625, 0.027852583676576614, -0.07571141421794891, -0.16249656677246094, 0.014547353610396385, -0.04163907840847969, 0.04631432518362999, 0.07230046391487122, 0.02305270917713642, -0.036047689616680145, 0.06023615971207619, 0.00955753494054079, 0.06680905818939209, -0.0657351016998291, 0.07420298457145691, 0.12494923919439316, -0.0023302168119698763, 0.15659312903881073, 0.014799962751567364, -0.06296013295650482, 0.03170211240649223, -0.08465971797704697, 0.1762075126171112, 0.010031381621956825, 0.003311231965199113, 0.031071210280060768, 0.0488557443022728, 0.1098705604672432, 0.19603164494037628, -0.1458030790090561, -0.0669010654091835, -0.0482710599899292, -0.06873396039009094, 0.015152860432863235, 0.06412062048912048, -0.06736798584461212, -0.00012476100528147072, -0.0685930848121643, -0.0270569808781147, 0.05028017237782478, 0.0938650518655777, 0.22026057541370392, -0.1991962045431137, -0.06435376405715942, -0.01609352044761181, -0.0035770924296230078, -0.03038943000137806, 0.07068005949258804, 0.018643394112586975, -0.028463026508688927, 0.03928115591406822, -0.004138740710914135, 0.08131274580955505, -0.015971966087818146, 0.10822440683841705, -0.10562872886657715, 0.02847171388566494, -0.01091969944536686, 0.059751298278570175, -0.1399659961462021, 0.22568345069885254, 0.0037451968528330326, 0.0041923560202121735, -0.03169029578566551, -0.021252404898405075, -0.032111939042806625, -0.001209215261042118, 0.0991893857717514, 0.015580052509903908, 0.06532817333936691, -0.16411229968070984, -0.08785389363765717, 0.0799369364976883, 0.08708730340003967, 0.022406011819839478, 0.07666018605232239, 0.03229323402047157, 0.0067239864729344845, 0.060078319162130356, 0.10935051739215851, -0.01584862358868122, -0.07948308438062668, 0.02422739937901497, 0.012545084580779076, 0.014266641810536385, 0.02531532756984234, -0.13562582433223724, -0.03241363540291786, 0.2151353359222412, 0.06588282436132431, -0.09653571248054504, -0.038046374917030334, 0.060078561305999756, 0.09476383775472641, -0.08679728955030441, 0.023747211322188377, -0.04187872260808945, -0.0015692486194893718, -0.03343532979488373, -0.10299873352050781, 0.14041060209274292, -0.017140770331025124, -0.024993404746055603, -0.008698740974068642, 0.10451243072748184, 0.04955459386110306, 0.024652840569615364, 0.026403311640024185, 0.04266898334026337, -0.02104509249329567, -0.09511412680149078, 0.033017419278621674, -0.07320768386125565, 0.18134821951389313, -0.02243286557495594, -0.10118141770362854, 0.07812537252902985, -0.06631329655647278, 0.034955937415361404, 0.18232889473438263, 0.2743953764438629, -0.04478444159030914, 0.018389109522104263, 0.26984819769859314, 0.0011056484654545784, -0.1726486086845398, -0.09873170405626297, -0.017709890380501747, 0.0666843131184578, -0.0319695807993412, -0.13914754986763, 0.09518781304359436, 0.09208613634109497, 0.0408831425011158, -0.04318905249238014, -0.15397682785987854, -0.10305194556713104, 0.19610662758350372, 0.05051158368587494, 0.48155921697616577, -0.11275184899568558, -0.058553021401166916, -0.03767295181751251, -0.1639513373374939, 0.0608670748770237, -0.038762982934713364, 0.11055636405944824, -0.033573660999536514, 0.011148775927722454, 0.008650545962154865, -0.0280609093606472, 0.06565896421670914, 0.06716101616621017, 0.01833181455731392, 0.024775177240371704, -0.2089751958847046, 0.023819575086236, 0.003561423858627677, 0.10156755894422531, -0.06305546313524246, 0.056731291115283966, -0.0011483830166980624, -0.05381729453802109, -0.03130374476313591, -0.03252909705042839, 0.016329195350408554, -0.08565399050712585, -0.01111327949911356, -0.016640882939100266, 0.021363861858844757, -0.009152931161224842, 0.23053531348705292, -0.09939926862716675, 0.08739539980888367, 0.1841399073600769, 0.017497222870588303, -0.20208394527435303, 0.11796969175338745, 0.00416891323402524, -0.07114775478839874, 0.10935311019420624, -0.07600551098585129, 0.03591829538345337, 0.1246567964553833, 0.04255986586213112, 0.0883578211069107, 0.09312808513641357, -0.013585406355559826, -0.007347330451011658, 0.05130460485816002, -0.16920658946037292, -0.027488114312291145, -0.007479590829461813, -0.08964395523071289, -0.11303321272134781, 0.14992083609104156, 0.08911030739545822, -0.03190334141254425, -0.016653798520565033, 0.01817176677286625, -0.003227928886190057, -0.06533977389335632, 0.09132764488458633, 0.011461076326668262, 0.04214174300432205, -0.13221603631973267, 0.0221061110496521, 0.011278514750301838, 0.02357962727546692, 0.053531624376773834, 0.018341535702347755, -0.092300184071064, -0.000789177545811981, -0.10926929861307144, 0.15147921442985535, -0.05794263631105423, -0.015211327001452446, -0.12099514901638031, -0.07627342641353607, 0.03494739532470703, 0.12583573162555695, 0.10946197807788849, 0.06861770898103714, -0.09957247972488403, -0.004382005892693996, -0.07876168936491013, -0.03599434345960617, 0.1033521369099617, 0.02926931530237198, -0.015974629670381546, 0.06736533343791962, 0.008199584670364857, 0.05431748181581497, -0.06151127070188522, -0.06322403252124786, -0.15686063468456268, 0.022367076948285103, -0.11561214923858643, -0.054768942296504974, -0.08126173168420792, -0.022030023857951164, 0.0018078876892104745, 0.0017759891925379634, -0.04682665318250656, -0.015464999713003635, -0.06411796063184738, 0.03895104303956032, 0.013918671756982803, -0.04154697805643082, -0.09840407967567444, 0.0003329422906972468, 0.027010392397642136, -0.028365038335323334, 0.04280352592468262, 0.08490487188100815, -0.052429813891649246, 0.07977215200662613, -0.11299443244934082, -0.03066284768283367, 0.06555957347154617, 0.02591003105044365, 0.05767714977264404, 0.029273299500346184, -0.05366700142621994, 0.04753974825143814, 0.008024349808692932, 0.022082213312387466, 0.09741471707820892, -0.07873298227787018, -0.04379699379205704, -0.06339426338672638, -0.06463909894227982, -0.06466534733772278, -0.0014999557752162218, 0.08918608725070953, 0.12887416779994965, 0.09337939321994781, -0.06017806753516197, 0.02438531257212162, -0.06080237403512001, 0.02900451049208641, 0.009184204041957855, -0.15051127970218658, 0.05964820086956024, -0.07859405130147934, 0.0033439374528825283, 0.004837386775761843, 0.1863640397787094, -0.1305762529373169, -0.01434001699090004, -0.034063417464494705, 0.0063170986250042915, 0.006517523434013128, -0.050967488437891006, 0.2946494519710541, 0.0970790833234787, -0.02694089151918888, -0.10110921412706375, 0.10612890124320984, 0.024295160546898842, 0.2047482430934906, 0.1452166587114334, -0.04718925058841705, 0.048087429255247116, 0.1011144295334816, 0.010804060846567154, 0.0804891586303711, -0.006985663436353207, 0.002602263353765011, 0.011739730834960938, 0.030210008844733238, 0.04336930066347122, 0.13441424071788788, 0.1471891850233078, -0.05837554112076759, 0.048182614147663116, 0.03287846967577934, -0.11038093268871307, -0.13021866977214813, -0.14001186192035675, -0.044618044048547745, -0.17486533522605896, -0.01145129930227995, -0.11575841158628464, -0.03274284303188324, 0.04485097527503967, 0.06707814335823059, 0.018637007102370262, 0.0623636357486248, -0.043149709701538086, -0.027718130499124527, 0.11623695492744446, -0.08144500851631165, -0.018436729907989502, 0.013719099573791027, 0.011605745181441307, 0.059944998472929, 0.02578822337090969, 0.015503700822591782, 0.007868999615311623, 0.10925616323947906, 0.002753125037997961, -0.05043270066380501, -0.11504371464252472, -0.05751748010516167, 0.05422592908143997, 0.05161578580737114, 0.1128632128238678, 0.02986629493534565, -0.03580872714519501, -0.025185486301779747, 0.07328683882951736, -0.06555459648370743, -0.053675808012485504, -0.092408187687397, 0.2693506181240082, 0.05731723830103874, 0.07061771303415298, -0.02014785259962082, -0.11652631312608719, -0.04831140860915184, 0.25365352630615234, 0.22861014306545258, 0.011943751946091652, 0.005902215838432312, 0.040271956473588943, 0.03046894446015358, 0.04250970482826233, -0.010835935361683369, 0.11910835653543472, 0.17747679352760315, -0.04958057031035423, -0.0648156926035881, -0.050267528742551804, 0.02458246983587742, -0.0850326344370842, -0.024847112596035004, 0.14772433042526245, -0.03924521431326866, -0.07778102159500122, 0.04707321897149086, -0.07789044082164764, -0.03852644935250282, -0.05618135258555412, -0.0615246556699276, -0.06269410252571106, -0.03190109506249428, -0.057212069630622864, 0.03740109130740166, 0.13290616869926453, -0.030085748061537743, 0.05012265592813492, 0.09201324731111526, 0.02120925486087799, -0.08110155910253525, -0.09664411842823029, 0.10355079919099808, -0.0039310213178396225, -0.042246587574481964, 0.004864856600761414, 0.08097907900810242, 0.05318309739232063, 0.08698389679193497, 0.0586187019944191, 0.09473375976085663, -0.02437443844974041, 0.03883102163672447, -0.008271099999547005, 0.006337255705147982, -0.007077350746840239, 0.003998075611889362, -0.002187090925872326, -0.0995778739452362, 0.0258463267236948, -0.1018364354968071, -0.043566323816776276, -0.05973424017429352, 0.012366317212581635, -0.06284310668706894, 0.07846242189407349, 0.17457273602485657, -0.0064030359499156475, -0.058476731181144714, 0.01767384633421898, -0.0037469833623617887, 0.028666768223047256, -0.11481712758541107, -0.022838357836008072, -0.1621624380350113, 0.01727907732129097, 0.1338733434677124, -0.010245535522699356, -0.25459498167037964, 0.005260936915874481, -0.048023875802755356, 0.01644730009138584, -0.08505886048078537, 0.0058475881814956665, 0.05002352222800255, 0.015666404739022255, -0.040581803768873215, -0.09666409343481064, 0.011221128515899181, 0.051444463431835175, -0.08585337549448013, -0.1374049186706543 ]
null
null
transformers
--- language: en tags: - word-embeddings - word-similarity ### mirror-bert-base-uncased-word An unsupervised word encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf). Trained with a set of unlabelled words, using [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the base model. Please use `[CLS]` as the representation of the input. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective and Self-Supervised: Transforming Masked LanguageModels into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
{}
feature-extraction
cambridgeltl/mirror-bert-base-uncased-word
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "arxiv:2104.08027", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08027" ]
[]
TAGS #transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us
--- language: en tags: - word-embeddings - word-similarity ### mirror-bert-base-uncased-word An unsupervised word encoder proposed by Liu et al. (2021). Trained with a set of unlabelled words, using bert-base-uncased as the base model. Please use '[CLS]' as the representation of the input.
[ "### mirror-bert-base-uncased-word\nAn unsupervised word encoder proposed by Liu et al. (2021). Trained with a set of unlabelled words, using bert-base-uncased as the base model. Please use '[CLS]' as the representation of the input." ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n", "### mirror-bert-base-uncased-word\nAn unsupervised word encoder proposed by Liu et al. (2021). Trained with a set of unlabelled words, using bert-base-uncased as the base model. Please use '[CLS]' as the representation of the input." ]
[ 43, 74 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n### mirror-bert-base-uncased-word\nAn unsupervised word encoder proposed by Liu et al. (2021). Trained with a set of unlabelled words, using bert-base-uncased as the base model. Please use '[CLS]' as the representation of the input." ]
[ -0.07005920261144638, -0.003861866658553481, -0.005559708923101425, 0.003088664263486862, 0.04577712342143059, -0.05857888609170914, 0.07071073353290558, 0.05300790071487427, 0.10187388956546783, 0.01463005319237709, 0.156709685921669, 0.1109829843044281, -0.061285022646188736, 0.10050015896558762, -0.10052146017551422, -0.14835374057292938, 0.09690225124359131, 0.04175746813416481, 0.006043338682502508, 0.07081035524606705, 0.04852587357163429, -0.09360483288764954, 0.05824952945113182, -0.044335853308439255, -0.09177310764789581, 0.021976206451654434, -0.05460907146334648, -0.10511608421802521, 0.03611836954951286, 0.008364545181393623, 0.1549026072025299, 0.06301496922969818, -0.015585336834192276, -0.05720347538590431, 0.01294775027781725, -0.02742660976946354, -0.06526532769203186, 0.03682177513837814, -0.03395504876971245, -0.039783090353012085, -0.005576226394623518, -0.011740751564502716, 0.02337765321135521, -0.03019540198147297, -0.08083226531744003, -0.1575172245502472, 0.10055270791053772, 0.0012904176255688071, 0.02074536494910717, 0.04623754322528839, -0.023609425872564316, 0.05361168086528778, -0.11000614613294601, 0.10904788225889206, 0.04729611054062843, -0.3241354525089264, -0.0226897019892931, 0.0028149064164608717, -0.007998444139957428, 0.032250210642814636, -0.025799989700317383, 0.00009265507833333686, 0.0033206201624125242, 0.01496873889118433, 0.03440842032432556, -0.09142782539129257, -0.12648625671863556, 0.040787506848573685, -0.14986222982406616, 0.04780150204896927, 0.1903243362903595, -0.018624115735292435, -0.034992773085832596, 0.010242940858006477, -0.07498817145824432, 0.015377608127892017, -0.017937475815415382, -0.07564538717269897, 0.00308307446539402, 0.03987773507833481, -0.04452085122466087, -0.06973922997713089, -0.05019925907254219, -0.02707279473543167, -0.12289319187402725, 0.2455991804599762, 0.041057128459215164, 0.05887855961918831, -0.07257788628339767, 0.04038828983902931, -0.049672480672597885, -0.12217248231172562, -0.0038712751120328903, -0.11141209304332733, 0.044440921396017075, 0.06951235234737396, -0.04973549023270607, -0.05209120362997055, 0.049042366445064545, 0.03811396658420563, 0.07356981188058853, 0.025016697123646736, -0.01318090595304966, 0.08221281319856644, -0.026674143970012665, 0.08024139702320099, 0.002337629208341241, 0.07168234884738922, 0.049160536378622055, 0.04044996201992035, 0.01270431000739336, -0.08284854143857956, -0.17109161615371704, 0.07042351365089417, 0.01848151534795761, -0.0229469183832407, -0.022705018520355225, 0.08447606861591339, -0.06873800605535507, -0.01797737367451191, 0.02088015340268612, -0.09274350851774216, 0.009025423787534237, 0.03595000132918358, -0.021018732339143753, 0.054455071687698364, 0.0875471830368042, 0.02394247055053711, -0.03015820123255253, -0.038260262459516525, -0.0732431411743164, 0.02654857560992241, -0.09985022246837616, -0.11285841464996338, -0.023846888914704323, -0.08378171175718307, 0.03339550644159317, -0.17406396567821503, -0.07963579148054123, 0.0005965736345387995, 0.008148129098117352, 0.0033096689730882645, 0.0774330347776413, -0.1792157143354416, -0.028168827295303345, -0.02228725515305996, -0.06821334362030029, -0.23171809315681458, -0.0024324744008481503, 0.05186435580253601, 0.03665301203727722, 0.10243421792984009, -0.269413024187088, 0.044819604605436325, -0.19064146280288696, 0.0002466142177581787, -0.1526258885860443, 0.09694831073284149, -0.07597062736749649, 0.13617131114006042, 0.018678933382034302, -0.036312080919742584, -0.10333611816167831, 0.06754172593355179, 0.03972776234149933, 0.1492307037115097, -0.21609893441200256, -0.1045299544930458, 0.16424350440502167, -0.10667674988508224, -0.11585690081119537, 0.11874835193157196, -0.03661758080124855, 0.07111798226833344, 0.09644132852554321, 0.26722052693367004, -0.07796332240104675, 0.056172315031290054, 0.011159542016685009, 0.12472021579742432, -0.007146784104406834, 0.011279388330876827, 0.026120666414499283, 0.006594955921173096, -0.14535020291805267, 0.0657430961728096, 0.009307797066867352, -0.04007925093173981, -0.03972673788666725, -0.08143558353185654, 0.00025788837228901684, -0.064600870013237, 0.1491308957338333, -0.04724840819835663, 0.0888177901506424, -0.028262881562113762, -0.04503990337252617, 0.12585605680942535, 0.015702160075306892, -0.1252707988023758, 0.036209531128406525, -0.12046337872743607, 0.0925518125295639, 0.03376340866088867, 0.03807852789759636, -0.16807317733764648, -0.022715702652931213, 0.03718358278274536, 0.15953955054283142, 0.05371963232755661, -0.009756111539900303, 0.025996077805757523, -0.007215091027319431, 0.017188994213938713, -0.027689676731824875, 0.11664540320634842, 0.014103616587817669, -0.04953717812895775, -0.09797567874193192, -0.0312797874212265, -0.03209224343299866, 0.013100352138280869, -0.1271384358406067, 0.04820762947201729, 0.05413864180445671, 0.040937017649412155, -0.001420181361027062, -0.0055024465546011925, -0.023500517010688782, 0.12278755009174347, -0.0029370503034442663, 0.04971032589673996, 0.0743584930896759, 0.006677893456071615, -0.18916161358356476, 0.01898900792002678, -0.04858740419149399, 0.16975298523902893, 0.14398494362831116, -0.23777149617671967, 0.02606947161257267, 0.029588866978883743, 0.040953509509563446, 0.022569363936781883, 0.1259978711605072, 0.021282849833369255, 0.3086916506290436, -0.05009970813989639, 0.10390032827854156, -0.10007426887750626, 0.03380005061626434, -0.042850516736507416, -0.08649053424596786, -0.011746552772819996, 0.12230110913515091, -0.05906549468636513, -0.10139928758144379, 0.07319045066833496, 0.118510402739048, -0.15706472098827362, 0.1132386177778244, 0.014278986491262913, -0.017673777416348457, -0.006556121166795492, 0.06569679826498032, -0.02307496778666973, -0.009672153741121292, -0.15880045294761658, -0.09488372504711151, 0.025626130402088165, -0.05350632593035698, 0.049218010157346725, -0.0837189257144928, -0.0044542644172906876, -0.004489002283662558, 0.009729458019137383, -0.08421874791383743, -0.004117509815841913, -0.031411319971084595, 0.008756188675761223, -0.006049287039786577, -0.13215644657611847, 0.08341167122125626, -0.0071603464893996716, -0.07490977644920349, 0.18330973386764526, -0.13902175426483154, -0.24253220856189728, -0.0875483974814415, -0.06434572488069534, -0.054745178669691086, 0.06367506831884384, 0.08004932850599289, -0.07394907623529434, 0.002708515850827098, -0.0619024857878685, -0.08969936519861221, -0.055878929793834686, 0.029531629756093025, 0.019667208194732666, -0.023314325138926506, 0.003973857965320349, -0.03943648189306259, -0.043402135372161865, -0.10062573105096817, -0.06865402311086655, 0.12709225714206696, -0.058122970163822174, 0.10823195427656174, 0.12621431052684784, 0.020921681076288223, 0.013007556088268757, -0.027682244777679443, 0.16359034180641174, 0.03486010804772377, -0.07822507619857788, 0.04238693043589592, -0.15704797208309174, 0.057953011244535446, 0.11817888915538788, 0.04488099366426468, -0.08958268165588379, -0.004470604471862316, -0.0707411840558052, -0.057837214320898056, -0.1494402140378952, -0.0917300432920456, -0.06486023962497711, -0.005533822346478701, -0.00010193847265327349, 0.02697826735675335, 0.030355336144566536, 0.04542917758226395, 0.04589414969086647, 0.047891609370708466, -0.03550548106431961, 0.05632355436682701, 0.14666755497455597, -0.02687210589647293, 0.15044084191322327, 0.01766224578022957, -0.0800652727484703, 0.0195760540664196, -0.04633152484893799, 0.18177677690982819, 0.04759968817234039, 0.06687473505735397, 0.07878261059522629, 0.15937763452529907, 0.13766545057296753, 0.06906826794147491, -0.11231449246406555, -0.015888376161456108, -0.0014901962131261826, -0.09207401424646378, -0.06121809780597687, 0.09048976004123688, 0.0013942442601546645, 0.011367116123437881, -0.04260602220892906, -0.0028104702942073345, 0.08743133395910263, 0.05391427502036095, 0.0677017867565155, -0.24831709265708923, -0.014443944208323956, 0.02678745612502098, 0.06388446688652039, -0.061155177652835846, 0.08317028731107712, 0.06484708189964294, 0.03025471605360508, -0.004109583795070648, 0.06791973859071732, 0.0570116750895977, -0.013099116273224354, 0.09314504265785217, -0.0895516648888588, -0.021832283586263657, 0.0405828021466732, 0.02358805388212204, -0.19932271540164948, 0.15911653637886047, 0.001611186540685594, 0.0032160072587430477, 0.010542741045355797, -0.006381385028362274, 0.003445202950388193, 0.08437317609786987, 0.1228560209274292, -0.000670588226057589, -0.0191423911601305, -0.18646350502967834, -0.10711058974266052, 0.07613100111484528, 0.15522775053977966, -0.024202117696404457, 0.031877804547548294, 0.0595841147005558, 0.009240522980690002, 0.03930637240409851, -0.02387847751379013, -0.03578571602702141, -0.10188589990139008, 0.019586192443966866, 0.07418270409107208, 0.1205291748046875, -0.025581587105989456, -0.03219170495867729, -0.02426200360059738, 0.15706612169742584, -0.061238911002874374, -0.06533676385879517, -0.08489882200956345, -0.06715105473995209, 0.05384206771850586, -0.0827440395951271, 0.10125353932380676, -0.008686971850693226, -0.04989302158355713, -0.00917320977896452, -0.1497153788805008, 0.1598467081785202, -0.04429280012845993, 0.05327250808477402, -0.014845590107142925, 0.09527898579835892, 0.07858071476221085, 0.04718878120183945, 0.0440538264811039, -0.0015268096467480063, -0.06774771958589554, -0.04824168235063553, -0.004351479932665825, 0.09723993390798569, 0.04707164689898491, 0.05320463329553604, -0.16836002469062805, 0.048001017421483994, -0.07255242764949799, 0.046514980494976044, 0.19857345521450043, 0.15929868817329407, -0.07542601227760315, 0.10607001930475235, 0.22449633479118347, -0.044492870569229126, -0.2851467430591583, -0.09365478157997131, 0.005701547488570213, 0.04720686003565788, -0.06701423972845078, -0.21790339052677155, 0.11853212863206863, 0.05944026634097099, -0.005176680162549019, 0.06259747594594955, -0.06852999329566956, -0.0822220966219902, 0.26818034052848816, -0.017044952139258385, 0.3510908782482147, -0.12475759536027908, -0.10903850942850113, -0.008105987682938576, 0.00029868626734241843, 0.046282730996608734, -0.05856139212846756, 0.026149950921535492, 0.03266400098800659, 0.007002563681453466, 0.025360925123095512, 0.020848333835601807, 0.1021818146109581, 0.03555283695459366, 0.05348556116223335, 0.0016875986475497484, -0.09808788448572159, -0.045687731355428696, 0.0017392789013683796, 0.05045946314930916, 0.03510911017656326, 0.04723965749144554, -0.00828113965690136, -0.03144143894314766, -0.03586791083216667, 0.04228982329368591, 0.044339340180158615, -0.075961634516716, -0.007191316690295935, -0.055752649903297424, 0.018511373549699783, 0.05792203173041344, 0.201040580868721, -0.11688963323831558, 0.05737908557057381, 0.1397712379693985, 0.11123176664113998, -0.19759196043014526, 0.06673613935709, 0.03761480376124382, -0.10411327332258224, 0.15867535769939423, -0.08079951256513596, 0.041681401431560516, 0.08261855691671371, -0.007643280550837517, 0.08370812237262726, 0.11495502293109894, 0.029050005599856377, 0.0002123707381542772, 0.05481238290667534, -0.16754689812660217, 0.045574549585580826, -0.07680625468492508, 0.029448239132761955, -0.03155767545104027, 0.09646125882863998, 0.09903483092784882, -0.0501413494348526, -0.018358122557401657, -0.03318244218826294, -0.035478994250297546, -0.06514918804168701, 0.009246313944458961, 0.0912797749042511, 0.04005715623497963, -0.13434648513793945, 0.01654701866209507, 0.0024029267951846123, -0.0618010088801384, 0.03686424344778061, -0.010843882337212563, -0.10857077687978745, -0.08951227366924286, -0.12171176820993423, 0.20460644364356995, 0.014181473292410374, -0.05266173183917999, -0.04171176627278328, -0.13238616287708282, 0.03140482306480408, 0.19676946103572845, 0.13622520864009857, 0.08469963073730469, -0.0557655468583107, 0.05335618555545807, 0.03556317463517189, 0.026058834046125412, -0.008212275803089142, -0.003435043850913644, -0.07878785580396652, 0.046947456896305084, -0.023081764578819275, 0.0635361596941948, -0.08865409344434738, -0.048783719539642334, -0.1775585561990738, 0.06083973869681358, -0.027523407712578773, 0.022980377078056335, -0.020589884370565414, -0.02415155991911888, 0.04890788719058037, -0.03861523047089577, -0.03376138210296631, 0.012407582253217697, -0.08212917298078537, 0.03433246538043022, 0.052556127309799194, -0.018127886578440666, -0.0481213703751564, -0.0613764226436615, 0.04473064839839935, -0.032602809369564056, 0.04013437405228615, 0.16375792026519775, -0.11772067844867706, 0.10688719153404236, -0.19373440742492676, -0.07093140482902527, 0.15021593868732452, 0.06369774043560028, 0.031164733693003654, 0.1494503766298294, -0.03582318499684334, 0.06721648573875427, 0.0034114341251552105, -0.007940351031720638, 0.0995192602276802, -0.0458192341029644, -0.021212341263890266, -0.028392955660820007, -0.04689835384488106, -0.04082813858985901, -0.014689452014863491, 0.10201533883810043, 0.1317777782678604, 0.10396908968687057, -0.08306928724050522, 0.018425825983285904, 0.012963111512362957, 0.010360161773860455, 0.018135208636522293, -0.13345114886760712, 0.019734084606170654, -0.1309669315814972, 0.04027658328413963, -0.023414501920342445, 0.19638270139694214, -0.076081782579422, -0.06836438924074173, -0.04872037097811699, -0.07420182973146439, 0.019315315410494804, 0.06326870620250702, 0.3163445293903351, 0.13660255074501038, -0.007008989807218313, -0.04128735512495041, 0.05630522966384888, 0.045256879180669785, 0.1901104897260666, -0.049078475683927536, 0.038488369435071945, 0.054032228887081146, 0.14276906847953796, 0.05234347656369209, 0.08014292269945145, -0.011785672977566719, -0.005228729918599129, -0.044713281095027924, 0.016624344512820244, -0.005819394718855619, 0.14777755737304688, 0.0868813619017601, 0.036439426243305206, 0.04777712747454643, 0.08161187916994095, -0.11125146597623825, -0.16099464893341064, -0.11472366005182266, -0.08385783433914185, -0.1686459332704544, -0.016854504123330116, -0.08368684351444244, -0.1010819599032402, 0.0592188686132431, 0.0032697482965886593, 0.036406174302101135, 0.1671002358198166, -0.06784574687480927, 0.0024505648761987686, 0.08655840158462524, -0.08756670355796814, -0.03881106525659561, -0.009632549248635769, -0.07908917218446732, 0.04299401864409447, 0.02505393885076046, -0.02510831132531166, -0.017108041793107986, -0.013875170610845089, 0.021985160186886787, -0.03790766000747681, -0.09170684218406677, -0.04598207399249077, 0.03744525462388992, -0.04996315389871597, 0.06177816167473793, 0.051593974232673645, -0.12421814352273941, 0.013414286077022552, 0.1159372553229332, -0.05487271770834923, -0.06385686248540878, -0.048438068479299545, 0.17276133596897125, 0.042428307235240936, 0.10184627771377563, -0.07323500514030457, -0.07132314145565033, -0.020960303023457527, 0.18597179651260376, 0.2584765553474426, -0.06494655460119247, 0.042083870619535446, 0.0227533970028162, 0.04228109121322632, -0.021681617945432663, 0.02340289205312729, 0.12457448244094849, 0.2510073184967041, -0.03339951112866402, -0.14318765699863434, -0.03710683062672615, 0.01719617284834385, -0.19002766907215118, -0.11876893043518066, 0.06862644851207733, -0.0553210973739624, -0.10285612940788269, 0.009177882224321365, -0.1446121782064438, 0.05936119705438614, 0.03207974135875702, -0.1133795902132988, -0.020712796598672867, -0.04917430132627487, 0.058768436312675476, 0.05690234899520874, 0.05253634229302406, -0.06820064038038254, -0.0574471578001976, 0.08375660330057144, 0.002445201389491558, -0.1012168675661087, 0.022322362288832664, 0.05185055360198021, -0.020940527319908142, 0.015355790965259075, 0.007064215838909149, 0.11361552774906158, 0.01177739817649126, 0.11234806478023529, 0.08132126182317734, 0.12118608504533768, -0.01992691494524479, -0.05853638797998428, 0.0040309252217411995, 0.013048743829131126, -0.04448676481842995, 0.11425523459911346, 0.02277883142232895, -0.08366970717906952, 0.022984495386481285, -0.046385977417230606, -0.12887880206108093, -0.009096252731978893, -0.052636466920375824, -0.09026549011468887, 0.03043147549033165, 0.06644709408283234, -0.0129703339189291, -0.04353582486510277, 0.032763414084911346, 0.011787531897425652, 0.012530507519841194, -0.08848356455564499, -0.056796807795763016, -0.08464648574590683, -0.017237452790141106, 0.07159306854009628, -0.009787974879145622, -0.18042543530464172, -0.01686893403530121, -0.04351300373673439, 0.07180695235729218, -0.10222901403903961, 0.008116701617836952, 0.08849535882472992, 0.027924738824367523, -0.032710932195186615, -0.09203901141881943, 0.04099387675523758, 0.052640046924352646, -0.053139831870794296, -0.10354384034872055 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-roberta-base-sentence-drophead An unsupervised sentence encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf), using [drophead](https://aclanthology.org/2020.findings-emnlp.178.pdf) instead of dropout as feature space augmentation. The model is trained with unlabelled raw sentences, using [roberta-base](https://huggingface.co/roberta-base) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
{}
feature-extraction
cambridgeltl/mirror-roberta-base-sentence-drophead
[ "transformers", "pytorch", "safetensors", "roberta", "feature-extraction", "arxiv:2104.08027", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08027" ]
[]
TAGS #transformers #pytorch #safetensors #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-roberta-base-sentence-drophead An unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs.
[ "### cambridgeltl/mirror-roberta-base-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n", "### cambridgeltl/mirror-roberta-base-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ 44, 124 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n### cambridgeltl/mirror-roberta-base-sentence-drophead\nAn unsupervised sentence encoder proposed by Liu et al. (2021), using drophead instead of dropout as feature space augmentation. The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ -0.08783033490180969, -0.059645410627126694, -0.0029311387334018946, 0.016581464558839798, 0.048751525580883026, 0.01911279931664467, 0.1544354110956192, 0.0354047529399395, -0.005997682921588421, 0.05576084926724434, 0.1836843490600586, 0.09295644611120224, 0.024736326187849045, 0.12208490818738937, -0.11091618239879608, -0.22516006231307983, 0.09643213450908661, 0.054246678948402405, 0.042196933180093765, 0.12260682880878448, 0.06612306088209152, -0.09280392527580261, 0.043364498764276505, -0.011198180727660656, -0.07972691208124161, 0.027541780844330788, -0.004280793946236372, -0.04813550412654877, 0.09397736191749573, 0.059496697038412094, 0.0829479917883873, 0.08603205531835556, 0.04143746942281723, -0.004110341425985098, 0.043997444212436676, -0.008204312063753605, -0.03392479941248894, 0.10049595683813095, -0.08182687312364578, -0.04517020285129547, 0.08675524592399597, -0.0668630450963974, 0.01377249974757433, -0.007323578931391239, -0.10068348795175552, -0.13368839025497437, -0.034397706389427185, 0.07132002711296082, 0.06746520847082138, 0.05349690839648247, -0.030720507726073265, 0.20495763421058655, -0.05688634514808655, 0.08942408114671707, 0.20186491310596466, -0.3251780867576599, -0.044922105967998505, 0.18091152608394623, 0.007220784667879343, -0.021853577345609665, -0.02797274850308895, 0.02694789692759514, 0.0817105770111084, -0.005003930535167456, -0.0022134133614599705, -0.05018656700849533, -0.007240227423608303, 0.0020023351535201073, -0.10905800014734268, 0.012389779090881348, 0.19382944703102112, 0.016942137852311134, -0.07853204756975174, -0.08041577786207199, -0.06990624219179153, 0.0018228348344564438, -0.04747486487030983, -0.04427218809723854, -0.003213007701560855, -0.008581218309700489, -0.05223396047949791, 0.004436790011823177, -0.08476918935775757, -0.05653874948620796, -0.12859711050987244, 0.12322930246591568, 0.009510153904557228, 0.08452869206666946, -0.0969548299908638, 0.06487983465194702, -0.1556061953306198, -0.0970262736082077, 0.006471704691648483, -0.10018723458051682, 0.010435766540467739, 0.07732848823070526, -0.05199074372649193, -0.10864460468292236, 0.011924097314476967, 0.12331994622945786, 0.10175434499979019, 0.007217634003609419, 0.03656337782740593, 0.07966016978025436, 0.05679016187787056, 0.08927781879901886, -0.06132306158542633, -0.06830379366874695, 0.04651913419365883, 0.06065806746482849, 0.09529990702867508, -0.0759628489613533, -0.10324587672948837, -0.05336577817797661, 0.04858753830194473, -0.024797875434160233, -0.01568816415965557, 0.08848921954631805, 0.0019089947454631329, -0.02646503411233425, 0.13345566391944885, -0.09792771190404892, -0.08111577481031418, -0.04438142850995064, -0.02682686038315296, 0.2360583394765854, 0.04009612277150154, 0.006304226815700531, -0.01547689363360405, -0.0006537659210152924, -0.12185441702604294, -0.03698301315307617, -0.037819817662239075, -0.10719612240791321, -0.06730494648218155, -0.11381746083498001, 0.018482506275177002, -0.07521756738424301, -0.13216717541217804, -0.01974746584892273, 0.02090003527700901, -0.041292283684015274, 0.02821684442460537, -0.07232944667339325, 0.0054572406224906445, -0.05736585706472397, -0.020572610199451447, -0.13991761207580566, 0.003192814299836755, 0.06380163878202438, 0.08882326632738113, 0.12387752532958984, -0.21078631281852722, 0.021358096972107887, -0.1564209759235382, 0.005964893847703934, -0.2179393768310547, 0.040506262332201004, 0.06625182181596756, 0.07205825299024582, -0.019850850105285645, -0.10453910380601883, -0.04383217543363571, 0.03454681485891342, 0.028936419636011124, 0.14604078233242035, -0.1396196335554123, -0.08349792659282684, 0.10509540885686874, -0.14651377499103546, -0.07360351830720901, 0.057100649923086166, -0.05558089166879654, 0.09520512074232101, 0.08995986729860306, 0.18820972740650177, -0.0322246327996254, -0.047348715364933014, 0.018021125346422195, 0.009525623172521591, -0.04781551659107208, -0.07065830379724503, 0.029534991830587387, 0.01942386105656624, -0.04729978367686272, 0.08428298681974411, -0.03192635625600815, -0.06334567815065384, -0.06462296098470688, -0.013801568187773228, 0.027937138453125954, -0.03583433851599693, 0.08034563809633255, -0.012079400010406971, 0.06744612753391266, -0.047429800033569336, -0.017498113214969635, 0.09725356847047806, 0.06156430020928383, -0.09025996923446655, 0.002200374146923423, -0.07239492237567902, 0.08638500422239304, -0.050014324486255646, -0.0035775997675955296, -0.15239813923835754, -0.02901841327548027, -0.036014899611473083, 0.2566692531108856, 0.028557514771819115, 0.13222692906856537, 0.03316082805395126, -0.006859814748167992, -0.01214177068322897, 0.052389346063137054, 0.12499979138374329, -0.024136515334248543, -0.05627482384443283, -0.05900115892291069, -0.0799461305141449, -0.04323704540729523, 0.05043232813477516, -0.14891007542610168, 0.05224970728158951, -0.0656701996922493, 0.0704861581325531, -0.026721572503447533, -0.026170598343014717, 0.022633021697402, 0.010943017899990082, -0.01564136892557144, 0.01058962568640709, 0.07571367919445038, 0.027422131970524788, -0.11501948535442352, 0.010474145412445068, -0.12485940754413605, 0.09593191742897034, 0.15190786123275757, -0.011377704329788685, -0.031165050342679024, -0.0750274658203125, -0.015053295530378819, 0.004292154684662819, 0.019032863900065422, -0.022200770676136017, 0.19188497960567474, 0.02251407504081726, 0.11169033497571945, -0.1050490140914917, -0.019047394394874573, 0.03251383453607559, -0.07385782152414322, -0.011633462272584438, 0.04712201654911041, -0.0762685239315033, -0.026333486661314964, 0.032007846981287, -0.003027289407327771, -0.04595720395445824, 0.11664410680532455, -0.02824687957763672, -0.048454463481903076, -0.03527778387069702, 0.010713193565607071, -0.029234733432531357, 0.06955379247665405, -0.09268584847450256, -0.046644676476716995, 0.05024251714348793, -0.02933584898710251, 0.026785289868712425, -0.109810009598732, -0.059344928711652756, -0.01670660637319088, -0.010692824609577656, -0.08272285014390945, 0.06091943383216858, -0.01077756192535162, 0.05190953612327576, -0.013630556873977184, -0.025985989719629288, 0.02721945010125637, 0.006730322260409594, -0.06709413975477219, 0.18304510414600372, -0.0029485062696039677, -0.17064738273620605, -0.14195509254932404, 0.00286863069050014, -0.06866239756345749, -0.011160232126712799, 0.010072890669107437, -0.03889721632003784, -0.040506768971681595, -0.082701675593853, 0.011158114299178123, -0.035858940333127975, 0.018605146557092667, 0.0844479650259018, -0.009210468269884586, 0.00169189868029207, -0.11323045939207077, -0.04148450493812561, -0.1543670892715454, -0.051634978502988815, 0.12573359906673431, -0.10853810608386993, 0.008406965993344784, 0.12905968725681305, -0.054792266339063644, 0.04808392748236656, -0.009906122460961342, 0.17915338277816772, 0.025085141882300377, 0.016608189791440964, 0.2027650624513626, -0.030750518664717674, 0.04254123941063881, 0.13279247283935547, 0.027338026091456413, -0.0702429786324501, 0.019169827923178673, -0.01700461469590664, -0.11005374789237976, -0.16832174360752106, -0.03008120507001877, -0.06592114269733429, -0.03924717754125595, 0.017925741150975227, 0.011040136218070984, 0.09190730005502701, 0.1068561002612114, -0.005038097966462374, 0.06870745122432709, -0.03959091380238533, 0.07202979177236557, 0.15703555941581726, -0.015364467166364193, 0.15658432245254517, -0.045625705271959305, -0.0956348404288292, 0.05115256831049919, -0.08967448025941849, 0.20452545583248138, -0.012453955598175526, -0.05159105733036995, 0.050436053425073624, 0.0929248183965683, 0.11974337697029114, 0.18898028135299683, -0.0762728601694107, -0.08207963407039642, -0.049043312668800354, -0.0768730565905571, -0.06610912084579468, 0.05700632557272911, -0.04860236495733261, 0.016643334180116653, -0.03283645957708359, 0.03829849138855934, 0.04281175881624222, 0.06746372580528259, 0.188101664185524, -0.2709343433380127, -0.08081910759210587, 0.004701059777289629, 0.039904989302158356, -0.03648916259407997, 0.06350427120923996, -0.027147457003593445, -0.05439165607094765, 0.010341656394302845, 0.012696224264800549, 0.061483606696128845, -0.06098660081624985, 0.05599161237478256, -0.15051616728305817, 0.036832790821790695, -0.01119571179151535, 0.032045017927885056, -0.056902509182691574, 0.21875399351119995, 0.004002875182777643, 0.01834464818239212, -0.034411653876304626, -0.014963141642510891, -0.014285524375736713, 0.043120622634887695, 0.12699970602989197, 0.003908488433808088, -0.04740083962678909, -0.06792023032903671, -0.12591156363487244, 0.061680637300014496, 0.06891457736492157, -0.005617658607661724, 0.10472611337900162, -0.03737562149763107, 0.020971806719899178, 0.036785051226615906, 0.015632344409823418, -0.04407705366611481, -0.10244178771972656, 0.019497651606798172, 0.018581772223114967, 0.004082673694938421, -0.02708292007446289, -0.09613242000341415, 0.0780152976512909, 0.2287280261516571, 0.03707702457904816, -0.11967820674180984, -0.09529557079076767, 0.043690577149391174, 0.14591984450817108, -0.07442808896303177, 0.05328001081943512, -0.04432520642876625, 0.026193898171186447, -0.05017135292291641, -0.12572571635246277, 0.09785636514425278, -0.024538012221455574, -0.059331461787223816, 0.012344486080110073, 0.15242113173007965, -0.003266360843554139, -0.00021042223670519888, 0.06114310026168823, 0.05117426812648773, -0.010305885225534439, -0.09998046606779099, -0.019366620108485222, -0.00912726204842329, 0.1221652552485466, -0.0025904953945428133, -0.03983341157436371, -0.04520672559738159, -0.025676364079117775, 0.0549362376332283, 0.16634158790111542, 0.2595900297164917, -0.0694560781121254, 0.05343884602189064, 0.196090430021286, 0.021364260464906693, -0.15712212026119232, -0.08583977818489075, -0.05396173149347305, 0.05202680826187134, 0.0027860894333571196, -0.0399898961186409, 0.1107802614569664, 0.09217566251754761, -0.007622990291565657, -0.05641375109553337, -0.18569524586200714, -0.10520613193511963, 0.17431022226810455, 0.03302069753408432, 0.5076726078987122, -0.12626488506793976, -0.06988832354545593, -0.044423144310712814, -0.1601225882768631, 0.03327401727437973, -0.04785638675093651, 0.08122441917657852, -0.07816608250141144, 0.01582961156964302, 0.03658723086118698, -0.04528172314167023, 0.10555342584848404, 0.005664217751473188, 0.06396550685167313, -0.03736448287963867, -0.21291175484657288, 0.08498198539018631, -0.021503182128071785, 0.1580793261528015, -0.008524265140295029, 0.08323229849338531, -0.04444469138979912, -0.05901870131492615, -0.02581409551203251, -0.01641027256846428, -0.010889546945691109, -0.07941675931215286, -0.07125778496265411, -0.0015819696709513664, -0.030524106696248055, -0.014465167187154293, 0.2092890590429306, -0.09710154682397842, 0.10336821526288986, 0.13457082211971283, 0.025439368560910225, -0.07946360111236572, 0.05211697146296501, 0.017563099041581154, -0.043641429394483566, 0.05208228901028633, -0.1798158437013626, 0.0013203227426856756, 0.10227793455123901, 0.03310127183794975, 0.08800739794969559, 0.06874052435159683, -0.03170866519212723, 0.030270183458924294, 0.0826224759221077, -0.17423008382320404, -0.043688300997018814, 0.010634819976985455, -0.08370937407016754, -0.10770761966705322, 0.1495211124420166, 0.11160340160131454, -0.04238006845116615, -0.022689875215291977, -0.013275889679789543, 0.014822344295680523, -0.04898392781615257, 0.029896287247538567, 0.0656881034374237, 0.05471494421362877, -0.11895502358675003, -0.004549081437289715, -0.00055106938816607, 0.07737725228071213, -0.00048745181993581355, 0.017066512256860733, -0.1030014380812645, -0.007853314280509949, -0.12112332135438919, 0.05861348286271095, -0.06318871676921844, 0.002403400605544448, -0.13852663338184357, -0.134247824549675, -0.01777835749089718, 0.12103825062513351, 0.10600167512893677, 0.07460334897041321, -0.04823613539338112, -0.03724220022559166, -0.08537820726633072, -0.030811786651611328, 0.11562622338533401, -0.00046882967581041157, -0.05339569225907326, 0.028238698840141296, -0.0010170850437134504, 0.02651909552514553, -0.06873095035552979, -0.08417316526174545, -0.1310206651687622, 0.023374734446406364, -0.07545465975999832, -0.03820698335766792, -0.10530158877372742, -0.034055568277835846, -0.001128973439335823, -0.02940882369875908, -0.05560087040066719, -0.002213452709838748, -0.03670459985733032, 0.05262918397784233, -0.011712340638041496, -0.02638865076005459, -0.07526590675115585, -0.018864257261157036, 0.029302800074219704, -0.04823514446616173, 0.04605695977807045, 0.07714859396219254, -0.03045932576060295, 0.07819834351539612, -0.13074161112308502, -0.004581676796078682, 0.06764499843120575, 0.022771738469600677, 0.06404893100261688, 0.06506456434726715, -0.03981202468276024, 0.05535079538822174, 0.043671637773513794, 0.02342166379094124, 0.056714996695518494, -0.09025406092405319, -0.01547534205019474, -0.05498460307717323, -0.04371264949440956, -0.05982435494661331, -0.023842239752411842, 0.12660159170627594, 0.10940483212471008, 0.08474734425544739, -0.05232761800289154, 0.04252202808856964, -0.144978329539299, 0.02220076136291027, -0.019174430519342422, -0.13474847376346588, 0.049488216638565063, -0.10061991214752197, 0.004455123096704483, 0.036745887249708176, 0.21054920554161072, -0.06785465776920319, -0.05090958997607231, -0.020214803516864777, 0.06552105396986008, 0.08626162260770798, -0.024509282782673836, 0.24224330484867096, 0.08866063505411148, -0.005080829840153456, -0.08578469604253769, 0.07567053288221359, 0.017947804182767868, 0.02946721762418747, 0.13517244160175323, 0.00793079100549221, 0.01106335036456585, 0.11357761919498444, 0.007974592968821526, 0.10755852609872818, 0.07779756933450699, 0.007800330873578787, 0.0004883023793809116, -0.048392798751592636, 0.033990152180194855, 0.03741227090358734, 0.26126983761787415, -0.05064241215586662, 0.03709322214126587, 0.03296101838350296, -0.07112056761980057, -0.12885743379592896, -0.1225072517991066, -0.05869651213288307, -0.1888114959001541, -0.018771758303046227, -0.12881921231746674, -0.05903065577149391, 0.10962996631860733, 0.03746041655540466, 0.030761543661355972, 0.07834096252918243, -0.03034176677465439, -0.00841284729540348, 0.07556622475385666, -0.05814485251903534, -0.019975818693637848, 0.014177408069372177, 0.018926169723272324, 0.03580764681100845, -0.004411695990711451, 0.03134913370013237, 0.019727814942598343, 0.09299905598163605, 0.03358116373419762, -0.014654397964477539, -0.12830939888954163, -0.07172311842441559, 0.04555976018309593, 0.03244008123874664, 0.1270376443862915, 0.025044649839401245, -0.05421849340200424, -0.046480704098939896, 0.10588143765926361, -0.03283858299255371, -0.11521381884813309, -0.08754085004329681, 0.15074051916599274, 0.03900641202926636, 0.02936929278075695, -0.03470194339752197, -0.11212650686502457, 0.024104043841362, 0.2555588185787201, 0.2729529142379761, 0.015127123333513737, 0.021157480776309967, -0.005318874027580023, 0.020823199301958084, 0.015198532491922379, 0.012731951661407948, 0.05370742827653885, 0.24478448927402496, -0.04170622304081917, -0.03507024794816971, -0.07516365498304367, -0.009384007193148136, -0.053448066115379333, -0.037286773324012756, 0.07740381360054016, -0.029349377378821373, -0.04642181843519211, 0.0976967141032219, -0.09041359275579453, -0.03013853169977665, 0.013678661547601223, -0.1095539927482605, -0.07139885425567627, -0.05368689447641373, -0.0641421303153038, 0.008887630887329578, 0.1299165040254593, -0.05795009806752205, 0.021695192903280258, 0.09415177255868912, 0.010193022899329662, -0.1549462527036667, -0.04849592596292496, 0.1107703372836113, 0.04852737486362457, 0.026107335463166237, -0.004274260718375444, 0.0811462476849556, 0.03606581315398216, 0.03612357750535011, 0.0029503211844712496, 0.12484843283891678, -0.02955240197479725, 0.041876040399074554, 0.0015836631646379828, -0.006109265610575676, 0.0138368746265769, -0.03569056838750839, 0.029095999896526337, -0.11987186223268509, 0.044965531677007675, -0.0776122584939003, -0.06132840737700462, -0.07900571078062057, 0.026585744693875313, -0.06744524836540222, 0.09669045358896255, 0.12423785775899887, -0.03718274086713791, -0.043022800236940384, 0.013212811201810837, 0.02969570830464363, 0.05631644278764725, -0.08321977406740189, -0.01724301464855671, -0.13564568758010864, 0.004764883778989315, 0.08922630548477173, -0.02676531858742237, -0.27290526032447815, -0.020108865574002266, -0.09691952913999557, -0.028483128175139427, -0.060474496334791183, 0.04121454060077667, 0.10189758241176605, 0.03356883302330971, -0.007884503342211246, -0.011234222911298275, 0.0008488588500767946, 0.04757565259933472, -0.06802608072757721, -0.12643517553806305 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-roberta-base-sentence An unsupervised sentence encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf). The model is trained with unlabelled raw sentences, using [roberta-base](https://huggingface.co/roberta-base) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
{}
feature-extraction
cambridgeltl/mirror-roberta-base-sentence
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2104.08027", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2104.08027" ]
[]
TAGS #transformers #pytorch #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-roberta-base-sentence An unsupervised sentence encoder proposed by Liu et al. (2021). The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs.
[ "### cambridgeltl/mirror-roberta-base-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n", "### cambridgeltl/mirror-roberta-base-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ 39, 108 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2104.08027 #endpoints_compatible #region-us \n### cambridgeltl/mirror-roberta-base-sentence\nAn unsupervised sentence encoder proposed by Liu et al. (2021). The model is trained with unlabelled raw sentences, using roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.\n\nNote the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs." ]
[ -0.03392425924539566, -0.05013211816549301, -0.003473475342616439, 0.007623124402016401, 0.06363111734390259, 0.015578406862914562, 0.14588318765163422, 0.023873433470726013, -0.029789425432682037, 0.06512341648340225, 0.21145188808441162, 0.0641380101442337, 0.010984237305819988, 0.012080887332558632, -0.10626351833343506, -0.21869803965091705, 0.06642166525125504, 0.06948734819889069, 0.022055022418498993, 0.10691498965024948, 0.0569477453827858, -0.05808568000793457, 0.06774558871984482, -0.019058484584093094, -0.09728147834539413, 0.07201868295669556, -0.021385353058576584, -0.05230706185102463, 0.0788482204079628, 0.0737701952457428, 0.0674448162317276, 0.07979334890842438, 0.029687821865081787, -0.01475269440561533, 0.02114378660917282, -0.039674706757068634, -0.05381886661052704, 0.07435444742441177, -0.11991456896066666, -0.035101309418678284, 0.1561930626630783, -0.028248531743884087, 0.012333743274211884, -0.02450956217944622, -0.09880387783050537, -0.09422840178012848, 0.029251553118228912, 0.024192700162529945, 0.034803606569767, 0.08459342271089554, -0.031653206795454025, 0.12352725863456726, -0.07909835875034332, 0.1006753072142601, 0.17221306264400482, -0.3532337546348572, -0.039504993706941605, 0.15409429371356964, 0.044979918748140335, 0.01986050046980381, -0.0063982256688177586, 0.019739538431167603, 0.10026591271162033, 0.02539173886179924, -0.05216546356678009, -0.10245038568973541, -0.018194986507296562, 0.04276328533887863, -0.09318429976701736, 0.03324127942323685, 0.2196880429983139, 0.005340935196727514, -0.055435698479413986, 0.019850540906190872, -0.04404149577021599, -0.02975492924451828, -0.01813448965549469, -0.007263359613716602, -0.014163821004331112, -0.0072636716067790985, -0.09973422437906265, 0.02677057683467865, -0.07841265946626663, -0.05481496453285217, -0.150377556681633, 0.11235124617815018, 0.005763969849795103, 0.08649321645498276, -0.1416672021150589, 0.03946889936923981, -0.1633155196905136, -0.09255506098270416, 0.003951619379222393, -0.08572816848754883, 0.013488762080669403, 0.09135572612285614, -0.07228189706802368, -0.09544353187084198, -0.0024216254241764545, 0.12228221446275711, 0.1338135153055191, 0.03834373503923416, 0.04212423413991928, 0.09202339500188828, 0.06489652395248413, 0.07186908274888992, -0.03871168568730354, -0.03796617314219475, 0.0061401003040373325, -0.003371802857145667, 0.0739726796746254, -0.0751570388674736, -0.16293206810951233, -0.04232684150338173, -0.0006763405981473625, -0.03888222947716713, -0.06238826364278793, 0.06735172867774963, 0.027530020102858543, 0.005074498243629932, 0.05299084261059761, -0.07305291295051575, -0.03917640447616577, -0.03892354294657707, -0.0372684970498085, 0.20223301649093628, -0.004773118998855352, 0.007918593473732471, -0.014726454392075539, -0.002912728814408183, -0.1157543733716011, -0.06673885881900787, -0.037107810378074646, -0.13384495675563812, -0.05474315583705902, -0.12181209772825241, 0.049627237021923065, -0.06724999099969864, -0.04731978848576546, -0.034237440675497055, 0.018662722781300545, -0.0804925262928009, 0.0165316853672266, -0.12299920618534088, 0.0007926039979793131, -0.03210417181253433, -0.014859744347631931, -0.10766864567995071, 0.00940221268683672, 0.05537017434835434, 0.10396414250135422, 0.14270178973674774, -0.21136590838432312, 0.03277791291475296, -0.1637713611125946, 0.008521046489477158, -0.14707927405834198, 0.028220316395163536, 0.06084471940994263, 0.06534271687269211, 0.00529009522870183, -0.12392263859510422, -0.03813362866640091, 0.04903162270784378, 0.019914885982871056, 0.09374547749757767, -0.10213194042444229, -0.10442496091127396, 0.13949543237686157, -0.11073272675275803, -0.0558977834880352, 0.061241257935762405, -0.04702049493789673, 0.09042291343212128, 0.0834391787648201, 0.14704476296901703, -0.04931074008345604, 0.034429386258125305, 0.03859337791800499, 0.055280592292547226, -0.004269240889698267, -0.05521184951066971, 0.041406892240047455, 0.028806563466787338, -0.0719882994890213, 0.07412651926279068, -0.004082618746906519, -0.07034444063901901, -0.0643979161977768, -0.01836666278541088, 0.04805172607302666, -0.026427138596773148, -0.005093163810670376, -0.01762479729950428, 0.09053222090005875, -0.06519145518541336, -0.015242486260831356, 0.022393442690372467, 0.056384433060884476, -0.13382190465927124, 0.012554793618619442, -0.06380286067724228, 0.04338663071393967, -0.007445663213729858, 0.004561612848192453, -0.12718024849891663, 0.06655671447515488, -0.008902475237846375, 0.26806965470314026, 0.04425404220819473, 0.1357414424419403, 0.030881313607096672, -0.005517706740647554, -0.020292801782488823, 0.06423420459032059, 0.13068559765815735, -0.027881503105163574, -0.04249648377299309, -0.09330009669065475, -0.0585670992732048, -0.05462133139371872, 0.07480026036500931, -0.1596420556306839, 0.025024937465786934, -0.04916445165872574, 0.04349179193377495, -0.04320819303393364, 0.004858595319092274, -0.02358884923160076, 0.03953097388148308, -0.03796688839793205, 0.04721810296177864, 0.06572384387254715, 0.026382053270936012, -0.14469249546527863, 0.039760004729032516, -0.09826243668794632, 0.0009468076168559492, 0.1236976608633995, -0.07081253081560135, -0.03868033364415169, -0.040661465376615524, 0.008910709992051125, 0.0020943048875778913, 0.0437859483063221, -0.04202958941459656, 0.24256595969200134, 0.0004025812086183578, 0.12041306495666504, -0.10749465972185135, -0.004765705205500126, 0.042329322546720505, -0.10177972167730331, 0.01607801951467991, 0.12032276391983032, 0.04086196422576904, -0.12056700885295868, 0.041578322649002075, -0.04581378400325775, -0.10966432094573975, 0.08589202165603638, 0.004741795361042023, -0.058844875544309616, -0.030810369178652763, 0.023304713889956474, -0.006617071107029915, 0.026753924787044525, -0.11774113774299622, -0.08871293812990189, 0.02065378986299038, -0.04556075483560562, 0.023804552853107452, -0.10943559557199478, -0.05962134525179863, -0.009849571622908115, 0.004119393415749073, -0.10284779220819473, 0.05390241742134094, -0.040824584662914276, 0.03312147781252861, 0.01007767952978611, -0.11733024567365646, 0.041884537786245346, 0.015786539763212204, -0.07950194180011749, 0.1963253766298294, -0.017731836065649986, -0.13495375216007233, -0.17364779114723206, -0.05182959511876106, -0.027585778385400772, 0.009333116002380848, 0.01978103257715702, -0.04971875250339508, -0.027706123888492584, -0.07551658153533936, 0.007984098047018051, -0.14293965697288513, 0.014217236079275608, 0.09180844575166702, 0.010886355303227901, -0.0414949506521225, -0.0766226127743721, -0.04325364530086517, -0.14850659668445587, -0.06613382697105408, 0.1041625440120697, -0.17242832481861115, 0.02426186203956604, 0.14133159816265106, -0.0282969418913126, 0.045204006135463715, -0.008232994936406612, 0.1849885880947113, 0.05696256086230278, -0.007477165199816227, 0.0719938576221466, -0.041855018585920334, 0.04691825807094574, 0.14444032311439514, 0.044681187719106674, -0.048996131867170334, 0.025040196254849434, -0.009470469318330288, -0.10756207257509232, -0.18492378294467926, -0.010281792841851711, -0.07383812963962555, -0.014476466923952103, 0.05181942880153656, 0.027141371741890907, 0.060217805206775665, 0.08550047129392624, 0.017500096932053566, 0.09758420288562775, -0.04605325311422348, 0.0700509175658226, 0.1460631936788559, 0.001211389433592558, 0.13529004156589508, -0.03511608764529228, -0.10859283804893494, 0.04349216818809509, -0.08184672892093658, 0.2355497032403946, 0.033105965703725815, 0.012514818459749222, 0.0435156412422657, 0.03262244537472725, 0.1155850738286972, 0.14564236998558044, -0.12580031156539917, -0.05755402520298958, -0.05845015123486519, -0.06236819550395012, 0.0016178772784769535, 0.09280064702033997, -0.06461566686630249, -0.002785512711852789, -0.03551170602440834, 0.055777352303266525, 0.019243819639086723, 0.03614615276455879, 0.21822114288806915, -0.22206741571426392, -0.05378546193242073, 0.026604801416397095, 0.03100065141916275, -0.019358564168214798, 0.095901720225811, 0.010604261420667171, -0.03722565993666649, 0.006362501066178083, 0.05002674460411072, 0.08200374990701675, -0.0545913502573967, 0.0626429095864296, -0.12472419440746307, 0.019660184159874916, 0.018910741433501244, 0.05084269121289253, -0.10361552983522415, 0.23544783890247345, -0.0159540306776762, -0.00915770698338747, -0.03959592431783676, -0.005549376364797354, -0.06487530469894409, 0.0052059851586818695, 0.1054111048579216, 0.009296182543039322, -0.09628404676914215, -0.08561816066503525, -0.07856009155511856, 0.06698521226644516, 0.10093044489622116, 0.005668337922543287, 0.10004744678735733, -0.014969947747886181, 0.021839551627635956, 0.0467711016535759, -0.0025678917299956083, 0.03965812548995018, -0.11796711385250092, 0.004958071745932102, 0.042144741863012314, -0.045049212872982025, 0.01436919067054987, -0.08381171524524689, 0.06630906462669373, 0.21668381989002228, -0.00808483362197876, -0.07373227924108505, -0.037112195044755936, 0.0690665990114212, 0.14894895255565643, -0.08474588394165039, 0.03275332972407341, -0.04663917049765587, -0.02734895795583725, -0.029630323871970177, -0.09753205627202988, 0.08676693588495255, -0.003214323427528143, -0.019018566235899925, -0.0032357173040509224, 0.14179261028766632, 0.009530086070299149, 0.04099540784955025, 0.0408446229994297, 0.06423507630825043, -0.05385231971740723, -0.1077781543135643, -0.003808285342529416, -0.06870120763778687, 0.09587446600198746, -0.008057954721152782, -0.05848376825451851, 0.06405329704284668, -0.034111324697732925, 0.020608313381671906, 0.19698208570480347, 0.2257719784975052, -0.08468133956193924, 0.012055281549692154, 0.21870124340057373, -0.011189302429556847, -0.12545517086982727, -0.11810135841369629, -0.03840828314423561, 0.08676814287900925, -0.05693882703781128, -0.09088212251663208, 0.10245276987552643, 0.09531695395708084, 0.03702481463551521, -0.06464002281427383, -0.21696431934833527, -0.08650533109903336, 0.15733548998832703, -0.0037306530866771936, 0.5232496857643127, -0.12000696361064911, -0.08506438881158829, -0.04569061100482941, -0.18829384446144104, 0.01077223476022482, -0.03989885374903679, 0.10409100353717804, -0.04613346606492996, 0.030544526875019073, 0.011024713516235352, -0.02640106901526451, 0.11472329497337341, 0.04178614541888237, 0.021245069801807404, -0.01401591021567583, -0.2525060474872589, 0.0744696855545044, 0.01715080998837948, 0.11229019612073898, -0.06302574276924133, 0.0697472020983696, -0.04694034531712532, -0.04886909946799278, -0.034800972789525986, -0.0596458874642849, -0.002849461743608117, -0.0652061179280281, -0.0883219912648201, -0.022959373891353607, -0.013487693853676319, -0.006606201641261578, 0.22303913533687592, -0.11302653700113297, 0.07600291818380356, 0.1312246024608612, 0.019806761294603348, -0.10431096702814102, 0.07769566029310226, 0.029666481539607048, -0.05212188884615898, 0.07710608094930649, -0.1499416083097458, 0.001773185096681118, 0.12494192272424698, 0.028921963647007942, 0.10692129284143448, 0.07708556205034256, -0.02366657368838787, 0.034795183688402176, 0.0935596376657486, -0.16824154555797577, 0.0008838099893182516, 0.0022138613276183605, -0.07537797838449478, -0.08443816006183624, 0.11243773251771927, 0.10075853019952774, -0.04741997644305229, -0.01135258749127388, -0.003103731432929635, 0.0004567872965708375, -0.08695828169584274, 0.05688672885298729, 0.049666039645671844, 0.03471754863858223, -0.1285601258277893, 0.0007246685563586652, 0.03458153083920479, 0.06856303662061691, 0.027918251231312752, 0.06738743931055069, -0.09468909353017807, 0.007840258069336414, -0.14014656841754913, 0.08457231521606445, -0.11117500811815262, -0.006713334936648607, -0.14572560787200928, -0.12947164475917816, 0.015760408714413643, 0.11543973535299301, 0.0941990539431572, 0.09188003093004227, -0.08283290266990662, -0.019552532583475113, -0.08668898791074753, -0.06546536833047867, 0.09019936621189117, 0.01466786116361618, -0.026206061244010925, 0.015561887063086033, 0.01353327464312315, 0.025206759572029114, -0.05562538653612137, -0.08638540655374527, -0.1568881869316101, 0.056429482996463776, -0.05932636186480522, -0.01934177055954933, -0.10177713632583618, -0.04042324423789978, 0.02964114211499691, -0.03282090276479721, -0.0943874940276146, -0.015155822038650513, -0.03933832421898842, 0.04259679839015007, -0.006996472366154194, -0.02404552511870861, -0.04220929741859436, -0.018679648637771606, 0.041272569447755814, -0.04033507779240608, 0.02393687330186367, 0.11155804246664047, -0.06275937706232071, 0.06266003102064133, -0.11014451086521149, -0.012764248065650463, 0.08495552837848663, 0.03635622188448906, 0.04531220719218254, 0.0437810979783535, -0.04680969566106796, 0.06372296065092087, 0.04272572323679924, 0.024099580943584442, 0.010046282783150673, -0.06616898626089096, -0.023955099284648895, -0.06240540370345116, -0.1018371731042862, -0.06431025266647339, -0.016852835193276405, 0.1288355588912964, 0.12015502154827118, 0.06528981029987335, -0.04413134977221489, 0.03517433628439903, -0.0754222571849823, 0.041146330535411835, -0.02450842224061489, -0.13018707931041718, 0.01789204403758049, -0.09813138097524643, -0.009478886611759663, 0.018130017444491386, 0.22525246441364288, -0.12521149218082428, -0.010246770456433296, -0.03643812984228134, 0.047629229724407196, 0.06811171025037766, -0.004590046126395464, 0.2617925703525543, 0.11557508260011673, -0.023679403588175774, -0.13018934428691864, 0.07667972147464752, 0.004946315661072731, 0.1287471354007721, 0.09659945964813232, -0.04526820406317711, 0.11882232874631882, 0.12555646896362305, 0.06493167579174042, 0.10369282960891724, 0.10550234466791153, 0.05238031595945358, 0.01739688403904438, -0.02791140042245388, 0.05123496800661087, 0.10054390132427216, 0.2477891445159912, -0.032773207873106, 0.02872486226260662, 0.027275612577795982, -0.10243470966815948, -0.14765316247940063, -0.11777200549840927, -0.07486681640148163, -0.17882110178470612, -0.005212391261011362, -0.12688182294368744, -0.036181386560201645, 0.0505322702229023, 0.057875607162714005, 0.015874210745096207, 0.012365085072815418, 0.0001794174750102684, -0.036869537085294724, 0.06297124177217484, -0.0653732568025589, 0.018943995237350464, 0.0036872411146759987, 0.024616342037916183, 0.04230031743645668, -0.005645383149385452, 0.007543161045759916, 0.02029956504702568, 0.12771643698215485, -0.007974481210112572, -0.03978988155722618, -0.09306397289037704, -0.05491084232926369, 0.06150306761264801, 0.011172207072377205, 0.09094206243753433, 0.02246154099702835, -0.06225554272532463, -0.03295470401644707, 0.08703234046697617, -0.061325911432504654, -0.09996543824672699, -0.09705694764852524, 0.18077625334262848, 0.052834272384643555, 0.0694214329123497, -0.04839969053864479, -0.09432496130466461, -0.0410233736038208, 0.26656782627105713, 0.28846240043640137, 0.02094048447906971, -0.00334675470367074, 0.02442234382033348, 0.025411739945411682, 0.04563603177666664, -0.030010318383574486, 0.07768139243125916, 0.27711057662963867, -0.054377954453229904, -0.08537042140960693, -0.07928475737571716, 0.04292763024568558, -0.06525219231843948, -0.05995449051260948, 0.11042335629463196, -0.046534277498722076, -0.05268912389874458, 0.06684936583042145, -0.10629510134458542, 0.01701776497066021, -0.006416365969926119, -0.09851644933223724, -0.055750008672475815, -0.02276875637471676, -0.058045778423547745, 0.038491424173116684, 0.12336878478527069, -0.05918661504983902, 0.00019315374083817005, 0.034516770392656326, 0.026077786460518837, -0.16568385064601898, -0.06620185077190399, 0.11303427815437317, 0.027919741347432137, -0.05053141340613365, -0.02333211898803711, 0.10426507890224457, 0.06180647015571594, 0.0832209587097168, 0.04614241048693657, 0.10125212371349335, -0.0011911363108083606, 0.05660359561443329, 0.012922330759465694, -0.010548071004450321, -0.014089906588196754, 0.016784032806754112, 0.03372707590460777, -0.08844465017318726, 0.04388480633497238, -0.04707861319184303, -0.02570721134543419, -0.0771937221288681, 0.004255451261997223, -0.07539784908294678, 0.08386046439409256, 0.14537636935710907, -0.021018268540501595, -0.07175765186548233, 0.03479414060711861, -0.006403245497494936, 0.04092388227581978, -0.08374946564435959, -0.02232922799885273, -0.14349265396595, -0.014189492911100388, 0.11102797836065292, 0.001361801871098578, -0.2656332552433014, -0.01420801691710949, -0.06477635353803635, 0.014303897507488728, -0.04813561215996742, 0.03266085684299469, 0.08473079651594162, 0.04041071608662605, -0.03416365385055542, -0.07422836869955063, 0.007326213642954826, 0.05763193964958191, -0.09591161459684372, -0.15715456008911133 ]
null
null
transformers
This model provides a GPT-2 language model trained with SimCTG on the English Wikipedia based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_english_wikipedia' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 128 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities Output: ---------------------------------------------------------------------------------------------------- Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities they produce, such as honey, corn, sorghum, and other crops. In some cases, the production of insects is a way to increase income for the owner or his family. This type of farming has been described as "an economic system that benefits all people regardless of race, sex, or social status" (p. 9). A large number of farmers in North America, Europe, and South America have used the method of farming for food production in order to feed their families and livestock. The most common method of farming is by hand-cropping, which consists of cutting a hole in the ground and using a saw ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
{}
text-generation
cambridgeltl/simctg_english_wikipedia
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2202.06417", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.06417" ]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This model provides a GPT-2 language model trained with SimCTG on the English Wikipedia based on our paper _A Contrastive Framework for Neural Text Generation_. We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our project repo. In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ## 2. Initialize SimCTG Model: ## 3. Prepare the Text Prefix: ## 4. Generate Text with Contrastive Search: For more details of our work, please refer to our main project repo. ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!
[ "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ 56, 8, 10, 9, 26, 27 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## 1. Installation of SimCTG:## 2. Initialize SimCTG Model:## 3. Prepare the Text Prefix:## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ -0.055097758769989014, -0.006344715598970652, -0.0031977789476513863, -0.038428135216236115, 0.1413930505514145, 0.027921315282583237, 0.11520282179117203, 0.08874436467885971, -0.04630652070045471, -0.021992819383740425, 0.18986839056015015, 0.18109522759914398, 0.0279682707041502, 0.11257705092430115, -0.04019681736826897, -0.23416264355182648, 0.010142599232494831, 0.08460962027311325, 0.002322504995390773, 0.1338127851486206, 0.13921287655830383, -0.05785094201564789, 0.13622775673866272, 0.036300379782915115, -0.18162572383880615, -0.008523708209395409, 0.014397288672626019, -0.07544013857841492, 0.13753961026668549, 0.0338849313557148, 0.061172544956207275, 0.08960335701704025, 0.02048264443874359, -0.067588210105896, 0.03316318616271019, -0.0014201942831277847, -0.02282795123755932, 0.10523909330368042, 0.08933433890342712, -0.012535467743873596, 0.3482629954814911, 0.015658099204301834, -0.038543522357940674, 0.04626650735735893, -0.13639305531978607, -0.06403164565563202, -0.056723613291978836, 0.07500974088907242, 0.10059066116809845, 0.07399788498878479, -0.010270089842379093, 0.13847927749156952, -0.04815397411584854, 0.0955338180065155, 0.1999233365058899, -0.23759736120700836, -0.06041927635669708, 0.15106548368930817, 0.08075180649757385, 0.007076073903590441, 0.039853837341070175, 0.08536245673894882, 0.035533562302589417, -0.009783605113625526, -0.019246160984039307, -0.07237420231103897, -0.06527688354253769, 0.01083535049110651, -0.15718653798103333, -0.05584944039583206, 0.2609797716140747, -0.07809294760227203, -0.013529365882277489, -0.03146563097834587, -0.08124904334545135, 0.006356149446219206, 0.0071915737353265285, -0.09149046987295151, -0.03775114566087723, 0.010338333435356617, 0.07431194186210632, -0.10429827123880386, -0.1364980787038803, -0.09267622977495193, -0.03176049888134003, 0.002577023347839713, -0.012201187200844288, 0.05446783825755119, -0.10413264483213425, 0.13206398487091064, -0.09876307845115662, -0.0689350888133049, 0.02240707166492939, -0.10751662403345108, 0.0429525226354599, -0.0523272342979908, -0.005327070597559214, -0.15992692112922668, 0.030808856710791588, 0.167794331908226, 0.07370254397392273, 0.05731954798102379, 0.017922615632414818, 0.08509889990091324, 0.02941620722413063, 0.10451255738735199, -0.05696703493595123, -0.049813687801361084, 0.05233728885650635, -0.12691107392311096, 0.034260232001543045, -0.06791526079177856, -0.14675290882587433, -0.050091441720724106, 0.01677524484694004, 0.06064298376441002, 0.03920872509479523, 0.05676967650651932, -0.009258653968572617, -0.060448646545410156, 0.22573015093803406, -0.0234431903809309, -0.05225985869765282, -0.06661345064640045, 0.04877113178372383, 0.1294812560081482, 0.06118243187665939, 0.04076709225773811, -0.0853978767991066, 0.08218851685523987, -0.07560667395591736, 0.0063491323962807655, -0.037641000002622604, -0.044761642813682556, 0.00606200797483325, -0.12616035342216492, 0.016886206343770027, -0.1260579377412796, -0.13463646173477173, 0.024950813502073288, 0.0563410259783268, -0.07213400304317474, -0.07512350380420685, -0.011352813802659512, -0.012075402773916721, -0.01076535601168871, -0.018672674894332886, 0.04804779961705208, -0.04147845506668091, 0.042382463812828064, 0.06967489421367645, 0.08559450507164001, -0.19492314755916595, 0.029520878568291664, -0.07570627331733704, 0.03248792886734009, -0.1304914355278015, 0.021375825628638268, -0.03858807310461998, 0.07807020097970963, -0.07789850234985352, -0.05173289775848389, -0.007339023984968662, 0.007468211930245161, 0.020014815032482147, 0.14322274923324585, 0.01241704449057579, -0.0525832325220108, 0.19618572294712067, -0.15928417444229126, -0.17656093835830688, 0.131225124001503, 0.014680019579827785, 0.08852287381887436, 0.044596362859010696, 0.10447829216718674, 0.05107809603214264, -0.10771706700325012, 0.08181396871805191, 0.07638731598854065, -0.10554267466068268, -0.1591474413871765, 0.08078096061944962, 0.004053810611367226, -0.1270916908979416, 0.03300464153289795, -0.021541191264986992, 0.03561902418732643, -0.06509526073932648, -0.02278728038072586, -0.05336471647024155, -0.017675764858722687, 0.003784965258091688, 0.04134869575500488, 0.08156003803014755, -0.004081333056092262, -0.04458499699831009, -0.02882428653538227, 0.04364141821861267, 0.01992090232670307, 0.002959806239232421, -0.039090048521757126, 0.16215355694293976, -0.07708004117012024, 0.000325455010170117, -0.1695045828819275, 0.002015665639191866, -0.029136670753359795, 0.19046463072299957, 0.06711789965629578, 0.11833322048187256, 0.03981373831629753, 0.03842322528362274, -0.04517259821295738, 0.05632422864437103, 0.13597483932971954, -0.013803686946630478, -0.07836797833442688, -0.0492996871471405, -0.00701482268050313, -0.02155148796737194, 0.06467286497354507, -0.1517333835363388, 0.024444732815027237, 0.01873898133635521, 0.06484431773424149, -0.007090659812092781, -0.0318601131439209, 0.01565917581319809, 0.009310311637818813, -0.09806323051452637, 0.00492310943081975, 0.08003807812929153, 0.0014176903059706092, -0.0863766148686409, 0.07821713387966156, -0.07099378108978271, 0.09234409034252167, 0.11942311376333237, -0.28842437267303467, -0.06558653712272644, -0.05318060144782066, -0.04455704241991043, 0.008562009781599045, -0.004711051005870104, -0.04481707513332367, 0.052428051829338074, -0.04554465040564537, 0.13618016242980957, -0.04156316816806793, -0.02238982543349266, -0.014349710196256638, -0.057966843247413635, 0.007692227605730295, 0.10776763409376144, 0.28961265087127686, -0.15117701888084412, 0.10512985289096832, 0.0901542603969574, 0.007854605093598366, 0.0844738706946373, 0.020765384659171104, -0.0673718973994255, 0.031169341877102852, 0.01461919117718935, 0.015844184905290604, 0.02688034251332283, -0.279541939496994, -0.011125270277261734, 0.08074164390563965, -0.03788047656416893, 0.08934930711984634, -0.12825517356395721, -0.020327873528003693, 0.005589511711150408, -0.0036375662311911583, -0.07745184004306793, 0.09009595960378647, -0.05448196083307266, 0.08602994680404663, -0.018166320398449898, 0.03660115227103233, 0.046254172921180725, 0.02507721818983555, -0.0854625403881073, 0.17291052639484406, 0.012410872615873814, -0.24799765646457672, -0.18550029397010803, -0.07844395190477371, -0.013597575016319752, 0.06654717773199081, 0.05574742332100868, -0.05626991018652916, -0.04864362254738808, 0.008938119746744633, 0.040479615330696106, -0.14963440597057343, -0.008356602862477303, -0.04297773540019989, 0.04487136751413345, -0.05536292493343353, -0.06643107533454895, -0.04665248468518257, -0.026529481634497643, -0.0013694821391254663, 0.12397519499063492, -0.10694076120853424, 0.10868075489997864, 0.1669057458639145, 0.004727134481072426, 0.053436413407325745, -0.016407877206802368, 0.22399112582206726, -0.08338665217161179, 0.012591025792062283, 0.25973570346832275, -0.0377679318189621, 0.05553402006626129, 0.0618208646774292, 0.021742306649684906, -0.06614071875810623, 0.0160762220621109, -0.06155626103281975, -0.09884554892778397, -0.24554157257080078, -0.08150354027748108, -0.09577308595180511, 0.08983692526817322, -0.016713101416826248, 0.019253378733992577, 0.08908514678478241, 0.15066969394683838, -0.00172662572003901, 0.0533202663064003, -0.015939436852931976, 0.08075737953186035, 0.12208717316389084, -0.04229038953781128, 0.12382899224758148, -0.06903061270713806, -0.08420868963003159, 0.092813640832901, -0.07582221180200577, 0.0967898815870285, 0.0638352781534195, 0.12678027153015137, 0.0257217139005661, 0.07511327415704727, 0.08704071491956711, 0.10894322395324707, 0.01196953933686018, -0.025367988273501396, -0.04889436066150665, -0.02337076887488365, -0.1007792055606842, 0.05326433107256889, 0.02758200094103813, -0.11384712159633636, -0.00928572192788124, 0.022218190133571625, 0.005234926473349333, 0.033952221274375916, 0.06662645936012268, -0.22912968695163727, -0.0578661747276783, 0.031683094799518585, 0.004650680348277092, -0.09572936594486237, -0.0021689580753445625, -0.004994828719645739, -0.13052478432655334, 0.04687481373548508, -0.04293243587017059, 0.12431791424751282, -0.0891108363866806, 0.03543898090720177, -0.07032379508018494, -0.004300220403820276, 0.004433525260537863, 0.1341533064842224, -0.20941495895385742, 0.23221248388290405, 0.009783320128917694, -0.07373122125864029, -0.14722760021686554, 0.02446025237441063, -0.01974213309586048, 0.1590406596660614, 0.12718826532363892, -0.0031791734509170055, -0.17667081952095032, -0.0983436182141304, -0.08808187395334244, 0.008505498990416527, 0.08319466561079025, -0.05040282756090164, 0.01115160807967186, -0.03675833344459534, -0.024801217019557953, -0.004110798239707947, -0.0649101510643959, -0.05777028575539589, -0.1349571794271469, 0.13582219183444977, -0.03724163770675659, -0.003046884201467037, -0.009358118288218975, -0.008303141221404076, 0.04753430560231209, 0.2757376432418823, 0.00979663897305727, -0.11920925974845886, -0.12963873147964478, 0.021969402208924294, 0.09295691549777985, -0.07635864615440369, 0.060929086059331894, -0.0552285872399807, 0.00969362910836935, -0.00032247541821561754, -0.09801004827022552, 0.10794035345315933, -0.1282016783952713, -0.06827345490455627, -0.03147872909903526, 0.17235851287841797, -0.036425285041332245, 0.04546156898140907, 0.0023489119485020638, 0.030538396909832954, -0.10548041760921478, -0.12775427103042603, 0.043212831020355225, -0.0315646193921566, -0.013655329123139381, 0.040890008211135864, -0.011335085146129131, 0.028608636930584908, 0.02592114917933941, -0.08187564462423325, 0.23356753587722778, 0.21296481788158417, -0.030743781477212906, 0.1472419947385788, 0.026801029220223427, -0.07694819569587708, -0.285429984331131, -0.07881350070238113, -0.03783894330263138, -0.02327360399067402, 0.0020020417869091034, -0.1422700136899948, 0.10382332652807236, 0.011439340189099312, -0.03490622341632843, 0.10306847095489502, -0.2714521586894989, -0.09427889436483383, 0.13843923807144165, 0.017937354743480682, 0.2848900556564331, -0.1577063947916031, -0.09624005854129791, -0.08948344737291336, -0.15979750454425812, 0.11693894863128662, -0.03331749141216278, 0.07063619047403336, -0.03988484665751457, -0.0018780096434056759, 0.02443135902285576, -0.08520478755235672, 0.1281055361032486, -0.05992640554904938, -0.03496776148676872, -0.1109018623828888, -0.04544566571712494, 0.10662870854139328, 0.04519541934132576, 0.07637020945549011, 0.0009096327121369541, 0.02128385379910469, -0.15703007578849792, -0.08445940911769867, -0.03256586939096451, 0.04822593927383423, 0.025104939937591553, -0.06292804330587387, -0.056882038712501526, -0.0516529381275177, -0.0765954777598381, -0.002345556393265724, 0.12772110104560852, -0.06882676482200623, 0.10359157621860504, 0.1062077060341835, 0.19437646865844727, -0.13606446981430054, 0.028479384258389473, -0.05337248742580414, -0.037857070565223694, 0.01701326295733452, -0.09771531820297241, -0.0024247043766081333, 0.11271071434020996, 0.018187906593084335, 0.056704893708229065, 0.07277064770460129, -0.018153250217437744, 0.04677248373627663, 0.11335113644599915, -0.24675104022026062, -0.07802549749612808, -0.10371874272823334, -0.025911327451467514, -0.009585770778357983, 0.08244746923446655, 0.11788693070411682, -0.02546115405857563, -0.03950834274291992, 0.028143087401986122, 0.03927828371524811, -0.04255785420536995, 0.09342578053474426, 0.05107300728559494, 0.02293754182755947, -0.09115085005760193, -0.0003725046117324382, 0.10441678762435913, -0.024261394515633583, -0.03475576639175415, 0.11146766692399979, -0.11034232378005981, -0.10940942168235779, -0.04156942293047905, 0.012724136002361774, -0.14073145389556885, -0.043237652629613876, -0.05553782731294632, -0.0838250070810318, 0.02221434935927391, 0.047606803476810455, 0.09503357857465744, -0.0011817419435828924, -0.02650945447385311, 0.019671907648444176, -0.0945994108915329, -0.0063695358112454414, 0.05520479381084442, 0.054851189255714417, -0.09161460399627686, 0.08136895298957825, -0.01749797910451889, 0.11134348809719086, -0.07898212224245071, 0.0010581117821857333, -0.13504207134246826, 0.013395949266850948, -0.09012780338525772, -0.02305833250284195, -0.11453037708997726, -0.05678785592317581, 0.020602211356163025, -0.01226796768605709, -0.0144960330799222, -0.008918600156903267, -0.08561287820339203, 0.02544737607240677, -0.04632548615336418, 0.01727925054728985, -0.04973839968442917, 0.020794391632080078, 0.12409910559654236, -0.02688836306333542, 0.10643234848976135, 0.05099204182624817, -0.019668463617563248, 0.04840609058737755, -0.2254508137702942, -0.02126268297433853, 0.0871240571141243, 0.02632225677371025, -0.008201874792575836, -0.01712259277701378, 0.02580433152616024, 0.04093509912490845, 0.021427638828754425, 0.02956290729343891, 0.014145495370030403, -0.09251467138528824, -0.005734541453421116, -0.029203496873378754, -0.15273737907409668, -0.0037684510461986065, 0.01699264533817768, 0.024489406496286392, 0.003802939783781767, 0.041012633591890335, -0.060338344424963, 0.06374526768922806, -0.08001866191625595, 0.06402327865362167, -0.008812513202428818, -0.1016145646572113, -0.05394567549228668, -0.11890172958374023, 0.0514574833214283, -0.000323141401167959, 0.2360505759716034, 0.008048255927860737, 0.06682085990905762, 0.006778412032872438, 0.10497662425041199, 0.17035624384880066, -0.016840631142258644, 0.1723565310239792, 0.09211878478527069, -0.000041969120502471924, -0.0506645031273365, 0.09749920666217804, 0.039647575467824936, -0.015970438718795776, 0.22595170140266418, 0.004621168132871389, -0.14937639236450195, 0.03757631406188011, -0.055399712175130844, 0.02031841315329075, -0.07842095196247101, -0.08221106231212616, -0.015883730724453926, 0.05781344696879387, -0.03615131974220276, 0.15107835829257965, 0.09136368334293365, -0.010825022123754025, -0.025718774646520615, -0.005817200057208538, -0.0579143688082695, -0.1502748280763626, -0.10648754239082336, -0.05740802735090256, -0.13030284643173218, -0.002577687380835414, -0.08064038306474686, 0.015408042818307877, 0.08367583155632019, 0.05320659279823303, -0.07791297882795334, 0.1346169114112854, 0.04931183531880379, -0.051067184656858444, 0.037991344928741455, -0.015387187711894512, 0.0050745471380651, -0.07220741361379623, 0.028362907469272614, -0.056658703833818436, 0.05441480129957199, 0.021272294223308563, -0.003966702148318291, -0.07374724745750427, 0.0028158901259303093, -0.054662104696035385, -0.08672270178794861, -0.07304909825325012, 0.08055607229471207, -0.00955286342650652, 0.053990885615348816, -0.05202285945415497, 0.029580242931842804, -0.004375129006803036, 0.11471988260746002, -0.02242439240217209, -0.0730886310338974, -0.05674121901392937, 0.2609843313694, -0.030412929132580757, 0.029156455770134926, -0.014267806895077229, -0.045377109199762344, 0.011515455320477486, 0.333755224943161, 0.25841256976127625, -0.007851112633943558, -0.007679162546992302, 0.045140039175748825, 0.028937406837940216, 0.10539897531270981, 0.08462120592594147, 0.011163115501403809, 0.21958833932876587, -0.07819633930921555, -0.0741550400853157, -0.016278835013508797, -0.011805977672338486, -0.05837760865688324, 0.034458279609680176, 0.11175478994846344, -0.05017232894897461, 0.019188813865184784, 0.11789403855800629, -0.19538164138793945, -0.004785618279129267, -0.07234195619821548, -0.13163162767887115, -0.0717688798904419, 0.00038752384716644883, 0.006899111904203892, 0.02348017506301403, 0.06266368180513382, -0.04099924862384796, -0.05263457074761391, 0.11331245303153992, 0.04961468279361725, -0.23415030539035797, 0.03362390026450157, 0.11505929380655289, -0.0561818890273571, 0.08520779758691788, -0.045395832508802414, 0.05407925322651863, 0.08765865117311478, -0.010328364558517933, -0.0402664951980114, 0.00001964076545846183, 0.02162156254053116, -0.046542294323444366, 0.07028031349182129, 0.0686584860086441, 0.01518314890563488, -0.07419011741876602, 0.011507770046591759, -0.1422709822654724, 0.028184540569782257, 0.024438900873064995, 0.028331570327281952, -0.017000265419483185, 0.03477364033460617, -0.11387722939252853, 0.11741145700216293, 0.12730635702610016, -0.026645071804523468, -0.0013963950332254171, -0.07510937750339508, 0.05619196221232414, -0.009840084239840508, -0.022727003321051598, -0.060090694576501846, -0.15539605915546417, -0.04928620904684067, 0.033525388687849045, 0.016093365848064423, -0.20365029573440552, 0.004298465792089701, -0.08828192949295044, 0.05852028355002403, -0.12159042805433273, 0.03649817034602165, 0.10447411984205246, -0.00428673205897212, -0.012845597229897976, 0.03947523608803749, -0.02033572643995285, 0.07554369419813156, -0.11621502786874771, -0.03402315080165863 ]
null
null
transformers
This model provides a Chinese GPT-2 language model trained with SimCTG on the LCCC benchmark [(Wang et al., 2020)](https://arxiv.org/pdf/2008.03946v2.pdf) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_lccc_dialogue' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer eos_token = '[SEP]' eos_token_id = tokenizer.convert_tokens_to_ids([eos_token])[0] ``` ## 3. Prepare the Text Prefix: ```python context_list = ['刺猬很可爱!以前别人送了只没养,味儿太大!', '是很可爱但是非常臭', '是啊,没办法养', '那个怎么养哦不会扎手吗'] prefix_text = eos_token.join(context_list).strip(eos_token) + eos_token print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 64 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len, end_of_sequence_token_id=eos_token_id, early_stop=True) print("Output:\n" + 100 * '-') print(''.join(tokenizer.decode(output))) ''' Prefix is: 刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP] Output: ---------------------------------------------------------------------------------------------------- 刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP]我觉得还好,就是有点臭 ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
{}
text-generation
cambridgeltl/simctg_lccc_dialogue
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2008.03946", "arxiv:2202.06417", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2008.03946", "2202.06417" ]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #arxiv-2008.03946 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This model provides a Chinese GPT-2 language model trained with SimCTG on the LCCC benchmark (Wang et al., 2020) based on our paper _A Contrastive Framework for Neural Text Generation_. We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our project repo. In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ## 2. Initialize SimCTG Model: ## 3. Prepare the Text Prefix: ## 4. Generate Text with Contrastive Search: For more details of our work, please refer to our main project repo. ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!
[ "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-2008.03946 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ 65, 8, 10, 9, 26, 27 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-2008.03946 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## 1. Installation of SimCTG:## 2. Initialize SimCTG Model:## 3. Prepare the Text Prefix:## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ -0.0675254762172699, 0.01371043175458908, -0.00394038762897253, -0.01793276146054268, 0.12217435985803604, 0.02779388800263405, 0.09981483966112137, 0.0932796373963356, -0.04011152312159538, -0.01545422337949276, 0.1971857100725174, 0.18966951966285706, 0.017606310546398163, 0.11469022184610367, -0.04226525127887726, -0.2537683844566345, 0.0012718933867290616, 0.10500796884298325, 0.031140735372900963, 0.14131379127502441, 0.1409483402967453, -0.06844697147607803, 0.12642858922481537, 0.04292268678545952, -0.17832227051258087, -0.021678898483514786, 0.005574263632297516, -0.0692778155207634, 0.15060292184352875, 0.02853907085955143, 0.062142860144376755, 0.09258564561605453, 0.021654026582837105, -0.050446510314941406, 0.03576153889298439, -0.014658652245998383, -0.020012706518173218, 0.10702025890350342, 0.08807438611984253, -0.03296965733170509, 0.3334626257419586, 0.01570414938032627, -0.04289399832487106, 0.05182280018925667, -0.1304735392332077, -0.0913228765130043, -0.060674767941236496, 0.09342706203460693, 0.10887884348630905, 0.07115818560123444, -0.006687304470688105, 0.12149834632873535, -0.021356776356697083, 0.09949235618114471, 0.22247196733951569, -0.26562899351119995, -0.0689639076590538, 0.13211698830127716, 0.07636285573244095, -0.00506666861474514, 0.023597078397870064, 0.08379093557596207, 0.030774874612689018, -0.0036605331115424633, 0.002614203840494156, -0.083537258207798, -0.07826969027519226, 0.010702099651098251, -0.16418831050395966, -0.04076719284057617, 0.24021103978157043, -0.08007843047380447, -0.014854474924504757, -0.041219424456357956, -0.0793074443936348, -0.0016820827731862664, 0.004104272462427616, -0.09466729313135147, -0.03491705656051636, -0.010248420760035515, 0.0817323848605156, -0.10209956765174866, -0.13608932495117188, -0.09133424609899521, -0.03830166161060333, 0.018185459077358246, -0.008616547100245953, 0.04816533252596855, -0.09034088253974915, 0.1395711898803711, -0.10052148252725601, -0.06984364241361618, 0.017862975597381592, -0.09925607591867447, 0.05299543961882591, -0.0436905138194561, -0.01478222943842411, -0.15895496308803558, 0.0164299625903368, 0.16499179601669312, 0.08541210740804672, 0.04868188127875328, 0.03199977055191994, 0.08487211912870407, 0.014230957254767418, 0.11335889250040054, -0.05024954676628113, -0.06673388928174973, 0.06256620585918427, -0.09817039221525192, 0.03628142550587654, -0.056874312460422516, -0.1495729237794876, -0.07929912209510803, 0.0342935211956501, 0.04571283236145973, 0.040497615933418274, 0.06364774703979492, -0.005914841778576374, -0.06063487008213997, 0.21139559149742126, -0.03206947073340416, -0.04484965279698372, -0.0640517920255661, 0.03846515715122223, 0.11865396797657013, 0.06702784448862076, 0.04123478755354881, -0.07836462557315826, 0.08117571473121643, -0.07033681124448776, 0.01686948910355568, -0.04140293225646019, -0.045201949775218964, -0.0003848753694910556, -0.11167244613170624, 0.010204784572124481, -0.1245681568980217, -0.13844576478004456, 0.0195913128554821, 0.05645986273884773, -0.06078557297587395, -0.0858382135629654, -0.015832670032978058, -0.0004756752459798008, -0.008945699781179428, -0.020864663645625114, 0.042996007949113846, -0.030567603185772896, 0.04786229133605957, 0.07159864157438278, 0.08786575496196747, -0.1870345026254654, 0.0296188835054636, -0.07073407620191574, 0.020666051656007767, -0.13826191425323486, 0.006403740029782057, -0.01913183555006981, 0.07032247632741928, -0.07270099222660065, -0.06621511280536652, 0.0012197335017845035, 0.004023665562272072, 0.016736388206481934, 0.13845370709896088, -0.0009700091322883964, -0.05085505545139313, 0.17495986819267273, -0.15161597728729248, -0.17076624929904938, 0.13391849398612976, 0.009827852249145508, 0.07811716198921204, 0.04767743870615959, 0.10328490287065506, 0.043649062514305115, -0.08373811841011047, 0.0816945806145668, 0.060379739850759506, -0.11160621047019958, -0.14773692190647125, 0.0911160483956337, 0.013072025030851364, -0.10428684204816818, 0.030982479453086853, -0.01976114697754383, 0.015298278070986271, -0.06965836882591248, -0.026190655305981636, -0.0437292605638504, -0.02199774980545044, 0.02700713649392128, 0.04446631297469139, 0.07752501219511032, -0.005584212485700846, -0.05125897005200386, -0.03719125688076019, 0.03748534247279167, 0.017815884202718735, 0.015963904559612274, -0.032720644026994705, 0.15426070988178253, -0.06277036666870117, -0.002311409218236804, -0.16325554251670837, 0.011185096576809883, -0.030575335025787354, 0.18195366859436035, 0.05885425955057144, 0.10476095974445343, 0.036922503262758255, 0.03519313409924507, -0.04642480984330177, 0.05615352839231491, 0.12976442277431488, -0.017520470544695854, -0.09366987645626068, -0.04582735523581505, -0.022473055869340897, -0.015955908223986626, 0.07222713530063629, -0.1674894392490387, 0.02853107824921608, 0.02065044268965721, 0.05251879617571831, -0.02421180158853531, -0.030307529494166374, 0.020642254501581192, 0.006266656797379255, -0.09418922662734985, 0.015730462968349457, 0.09343083947896957, 0.006292687263339758, -0.09422843903303146, 0.07787136733531952, -0.06636036932468414, 0.11630338430404663, 0.11126034706830978, -0.29066941142082214, -0.06627947837114334, -0.07083391398191452, -0.05779077485203743, 0.007815700955688953, -0.00007543240644736215, -0.03555717691779137, 0.08493505418300629, -0.03949790820479393, 0.14015571773052216, -0.040173567831516266, -0.02964133210480213, -0.018513856455683708, -0.06263899803161621, 0.02130032144486904, 0.1106860488653183, 0.22619429230690002, -0.13432292640209198, 0.09917767345905304, 0.0697324126958847, -0.0038178949616849422, 0.0647568330168724, 0.04293237254023552, -0.05068805441260338, 0.029247451573610306, -0.0035245991311967373, 0.013475309126079082, 0.020414119586348534, -0.2527524530887604, -0.020855586975812912, 0.08759373426437378, -0.04546618089079857, 0.08299188315868378, -0.12983642518520355, -0.019884612411260605, 0.003971726633608341, 0.005379310343414545, -0.07674793154001236, 0.09053423255681992, -0.05174635723233223, 0.09941914677619934, -0.015695607289671898, 0.024276286363601685, 0.037308983504772186, 0.02809637412428856, -0.09184030443429947, 0.17852255702018738, 0.021362924948334694, -0.25235825777053833, -0.18251079320907593, -0.07786760479211807, -0.017948297783732414, 0.05954771861433983, 0.05594773218035698, -0.03749806806445122, -0.04240874573588371, 0.018268248066306114, 0.031986054033041, -0.14928020536899567, -0.012216893024742603, -0.035176705569028854, 0.029453741386532784, -0.05891624093055725, -0.06812345236539841, -0.04624154791235924, -0.03224476799368858, -0.017910251393914223, 0.1258859485387802, -0.09017954021692276, 0.11349363625049591, 0.16310782730579376, 0.0007690924103371799, 0.05849490314722061, -0.020023183897137642, 0.19655530154705048, -0.07403016090393066, 0.030500290915369987, 0.26668328046798706, -0.04994826391339302, 0.06207653135061264, 0.04915151000022888, 0.02769441530108452, -0.05982333421707153, 0.010317022912204266, -0.06448058784008026, -0.09395276010036469, -0.2232895940542221, -0.07971086353063583, -0.09809549152851105, 0.07410804182291031, -0.0061075096018612385, 0.02018691785633564, 0.09299007058143616, 0.14830464124679565, -0.006301839370280504, 0.04647784307599068, -0.009422955103218555, 0.09477918595075607, 0.13306009769439697, -0.030165741220116615, 0.12998104095458984, -0.05706246197223663, -0.07777483761310577, 0.07724199444055557, -0.07644136250019073, 0.10226428508758545, 0.05030595138669014, 0.10782486200332642, 0.035843268036842346, 0.06229131296277046, 0.08703424781560898, 0.10642892122268677, -0.01306933630257845, -0.018381791189312935, -0.050017520785331726, -0.030222734436392784, -0.09257423132658005, 0.05406544730067253, -0.006208738312125206, -0.08683282136917114, -0.024713478982448578, 0.004427548032253981, 0.0026559580583125353, 0.04151778668165207, 0.06637120991945267, -0.2527204155921936, -0.06226550042629242, 0.022124461829662323, 0.00439930334687233, -0.09167089313268661, -0.0038793033454567194, -0.03028840571641922, -0.13340029120445251, 0.05642767995595932, -0.05473412945866585, 0.12053649127483368, -0.0933709591627121, 0.04729992896318436, -0.06675433367490768, -0.01343990582972765, 0.008879301138222218, 0.13510273396968842, -0.21367007493972778, 0.2466820925474167, 0.009342992678284645, -0.07090351730585098, -0.12618905305862427, 0.01572837308049202, -0.01410034392029047, 0.16653160750865936, 0.14012956619262695, -0.005465165711939335, -0.11193893849849701, -0.08563196659088135, -0.07361680269241333, 0.013476245105266571, 0.07260118424892426, -0.0545244961977005, 0.021946793422102928, -0.029826955869793892, -0.02716977521777153, -0.005189749412238598, -0.03487517312169075, -0.04851154983043671, -0.13255169987678528, 0.14593009650707245, -0.03438003733754158, -0.0017930911853909492, -0.006213412620127201, -0.019107747822999954, 0.02287266030907631, 0.27350789308547974, -0.001424395595677197, -0.12813179194927216, -0.12526151537895203, 0.02290339022874832, 0.0928896889090538, -0.08073005825281143, 0.0668298527598381, -0.05024845153093338, 0.015740947797894478, -0.018974289298057556, -0.0922902524471283, 0.09573047608137131, -0.12172449380159378, -0.07117383182048798, -0.02666114643216133, 0.16777674853801727, -0.025821562856435776, 0.046578969806432724, 0.006841782480478287, 0.041561782360076904, -0.11719248443841934, -0.12183400243520737, 0.04622099921107292, -0.01869848184287548, 0.013986987993121147, -0.004654584918171167, -0.015285758301615715, 0.040422070771455765, 0.011958993971347809, -0.06553420424461365, 0.2319163680076599, 0.2107682079076767, -0.042518530040979385, 0.14610008895397186, 0.022292455658316612, -0.07964213192462921, -0.2745848000049591, -0.09215375036001205, -0.038678593933582306, -0.01618192531168461, -0.015849635004997253, -0.14417970180511475, 0.0959555059671402, 0.016932588070631027, -0.03955111652612686, 0.10153074562549591, -0.269813597202301, -0.09648963809013367, 0.14161601662635803, 0.011516043916344643, 0.29924437403678894, -0.15157254040241241, -0.08819468319416046, -0.07528375089168549, -0.19133947789669037, 0.08550763875246048, -0.0033949220087379217, 0.06861644983291626, -0.05696897581219673, 0.014181421138346195, 0.022890886291861534, -0.08365681022405624, 0.11905580759048462, -0.04599541798233986, -0.03515055775642395, -0.10694250464439392, -0.07280252128839493, 0.07458366453647614, 0.02918953076004982, 0.07785085588693619, 0.008051388897001743, 0.01696786843240261, -0.16838274896144867, -0.08514010906219482, -0.03766772896051407, 0.056713003665208817, 0.025322280824184418, -0.0629829689860344, -0.05202534422278404, -0.04452763497829437, -0.07377716153860092, 0.0025955892633646727, 0.12369859218597412, -0.07575087249279022, 0.11709001660346985, 0.09820990264415741, 0.2006959617137909, -0.15198634564876556, 0.01925334520637989, -0.056499138474464417, -0.036712970584630966, 0.02033364772796631, -0.08847001940011978, 0.0010252947686240077, 0.1287248581647873, 0.029064642265439034, 0.0494702011346817, 0.0803028866648674, 0.0018274856265634298, 0.04519835487008095, 0.09788159281015396, -0.24835564196109772, -0.06634219735860825, -0.10493475198745728, -0.029944254085421562, -0.011893458664417267, 0.09686390310525894, 0.11327282339334488, -0.03060496412217617, -0.05662773922085762, 0.030809421092271805, 0.03621048852801323, -0.03181092441082001, 0.08594075590372086, 0.048338670283555984, 0.03304580599069595, -0.08191538602113724, -0.01300662662833929, 0.1024334579706192, -0.020489109680056572, -0.03867382928729057, 0.11167315393686295, -0.10998242348432541, -0.10785137861967087, -0.04990238696336746, 0.011682406067848206, -0.15425227582454681, -0.025776762515306473, -0.0650213435292244, -0.07981191575527191, 0.01919608935713768, 0.0734562873840332, 0.1038978174328804, -0.005391921382397413, -0.02706902101635933, 0.018612468615174294, -0.09114627540111542, 0.004931398667395115, 0.06386396288871765, 0.054105084389448166, -0.08572760969400406, 0.10510139167308807, -0.024006253108382225, 0.11272130161523819, -0.07634853571653366, 0.003627496538683772, -0.12211679667234421, 0.011242056265473366, -0.07156474143266678, -0.023226823657751083, -0.11849775910377502, -0.05805109813809395, -0.0010592994512990117, -0.021149465814232826, -0.015027089975774288, -0.002517386805266142, -0.0774671733379364, 0.029374927282333374, -0.047648798674345016, 0.01309451274573803, -0.0490633100271225, 0.009377977810800076, 0.11219968646764755, -0.019949741661548615, 0.1084771528840065, 0.048449210822582245, -0.01966547593474388, 0.03178933635354042, -0.21122226119041443, -0.01777280680835247, 0.0747734010219574, 0.02353973686695099, -0.011042594909667969, -0.020881198346614838, 0.01870255172252655, 0.03738005459308624, 0.01625829003751278, 0.026828186586499214, 0.03782925009727478, -0.09383745491504669, -0.007652759552001953, -0.021242497488856316, -0.142521470785141, -0.011666519567370415, 0.01416474673897028, 0.028394412249326706, 0.01350038219243288, 0.03965598717331886, -0.06582023948431015, 0.06738477200269699, -0.09727544337511063, 0.06471256911754608, -0.009992127306759357, -0.10323997586965561, -0.05226875841617584, -0.11370212584733963, 0.05148167163133621, -0.00486623402684927, 0.21673117578029633, 0.0010205440921708941, 0.042615942656993866, 0.01188633218407631, 0.10996246337890625, 0.15213756263256073, -0.020002448931336403, 0.15524975955486298, 0.08551649004220963, -0.007756778039038181, -0.03739960864186287, 0.11268341541290283, 0.03900262340903282, -0.010438674129545689, 0.22837036848068237, 0.01643507368862629, -0.12013350427150726, 0.03754286840558052, -0.05753330886363983, 0.026625679805874825, -0.08535835146903992, -0.08074689656496048, -0.007523792330175638, 0.05289106443524361, -0.03324846178293228, 0.16002269089221954, 0.1155184954404831, -0.0039367047138512135, -0.013269148766994476, -0.002945489250123501, -0.053163446485996246, -0.1416940540075302, -0.12316681444644928, -0.06007114052772522, -0.11292444914579391, -0.015472451224923134, -0.07636813074350357, 0.015943825244903564, 0.07008903473615646, 0.04816284403204918, -0.06320329755544662, 0.127476766705513, 0.05517568811774254, -0.045810192823410034, 0.04571802169084549, -0.01566253788769245, 0.010622246190905571, -0.06115833669900894, 0.03483661264181137, -0.04978686943650246, 0.048326894640922546, 0.026881912723183632, -0.016126811504364014, -0.0559922493994236, -0.016059136018157005, -0.04471319913864136, -0.08876679092645645, -0.0742553174495697, 0.07616683095693588, 0.014869449660182, 0.03338879346847534, -0.048727065324783325, 0.02786634862422943, -0.00795943196862936, 0.12257155776023865, -0.016685670241713524, -0.07044278830289841, -0.03686632588505745, 0.269867479801178, -0.016255822032690048, 0.019635802134871483, -0.01655895635485649, -0.03199198842048645, 0.029035039246082306, 0.32994696497917175, 0.2601222097873688, -0.00939477514475584, -0.014311506412923336, 0.049810685217380524, 0.031668998301029205, 0.1244552731513977, 0.07269585132598877, 0.02169250324368477, 0.23593299090862274, -0.07726600766181946, -0.07060480862855911, -0.03459025174379349, -0.00038161076372489333, -0.05733092129230499, 0.057584475725889206, 0.10590573400259018, -0.037714362144470215, 0.02138926088809967, 0.1086878776550293, -0.16617190837860107, 0.018820790573954582, -0.08491629362106323, -0.1382824033498764, -0.0786997601389885, 0.007854323834180832, 0.006292235106229782, 0.012574024498462677, 0.0719841718673706, -0.033724721521139145, -0.047640420496463776, 0.12399512529373169, 0.04686712846159935, -0.21262577176094055, 0.04575653374195099, 0.11392273008823395, -0.07395241409540176, 0.1019546315073967, -0.047368742525577545, 0.056263554841279984, 0.08681963384151459, -0.009265285916626453, -0.04412781447172165, -0.002016299171373248, 0.014286286197602749, -0.046210065484046936, 0.08034571260213852, 0.07263284921646118, 0.022969163954257965, -0.0821853056550026, 0.010007699020206928, -0.1413295865058899, 0.030560970306396484, 0.029691755771636963, 0.006747064180672169, -0.011919479817152023, 0.04432438686490059, -0.10133515298366547, 0.11456847190856934, 0.12266581505537033, -0.03401951119303703, -0.007499723695218563, -0.072578065097332, 0.03793570026755333, 0.0034905816428363323, -0.005250137764960527, -0.05642430856823921, -0.15054382383823395, -0.03830835223197937, 0.011335550807416439, 0.00641570333391428, -0.20247706770896912, -0.009515063837170601, -0.08654072135686874, 0.04364931210875511, -0.11414335668087006, 0.022822221741080284, 0.09204497933387756, -0.007594525348395109, -0.012294943444430828, 0.029270945116877556, -0.017302006483078003, 0.07878094166517258, -0.12272929400205612, -0.04183537885546684 ]
null
null
transformers
This model provides a GPT-2 language model trained with SimCTG on the Wikitext-103 benchmark [(Merity et al., 2016)](https://arxiv.org/abs/1609.07843) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_wikitext103' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"Butt criticized Donald 's controls in certain situations in the game , as well as the difficulty of some levels and puzzles . Buchanan also criticized the controls , calling" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 8, 0.6, 128 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: Butt criticized Donald 's controls in certain situations in the game , as well as the difficulty of some levels and puzzles . Buchanan also criticized the controls , calling Output: ---------------------------------------------------------------------------------------------------- Butt criticized Donald's controls in certain situations in the game, as well as the difficulty of some levels and puzzles. Buchanan also criticized the controls, calling them " unimpressive " and a " nightmare " of an experience to play with players unfamiliar with Tetris. On the other hand, his opinion was shared by other reviewers, and some were critical of the game's technical design for the Wii version of Tetris. In addition, Tintin's review included a quote from Roger Ebert, who said that Tetris was better than the original game due to its simplicity and ease of play. Ebert's comments were included in the game's DVD commentary, released on March 22, 2010. It is unclear if any of the video commentary was taken from the DVD ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
{}
text-generation
cambridgeltl/simctg_wikitext103
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:1609.07843", "arxiv:2202.06417", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1609.07843", "2202.06417" ]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #arxiv-1609.07843 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
This model provides a GPT-2 language model trained with SimCTG on the Wikitext-103 benchmark (Merity et al., 2016) based on our paper _A Contrastive Framework for Neural Text Generation_. We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our project repo. In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ## 2. Initialize SimCTG Model: ## 3. Prepare the Text Prefix: ## 4. Generate Text with Contrastive Search: For more details of our work, please refer to our main project repo. ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!
[ "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-1609.07843 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## 1. Installation of SimCTG:", "## 2. Initialize SimCTG Model:", "## 3. Prepare the Text Prefix:", "## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.", "## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ 69, 8, 10, 9, 26, 27 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #arxiv-1609.07843 #arxiv-2202.06417 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## 1. Installation of SimCTG:## 2. Initialize SimCTG Model:## 3. Prepare the Text Prefix:## 4. Generate Text with Contrastive Search:\n\n\nFor more details of our work, please refer to our main project repo.## 5. Citation:\nIf you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!" ]
[ -0.06162293627858162, -0.016150526702404022, -0.0032553020864725113, -0.022127849981188774, 0.10706721991300583, 0.03281145170331001, 0.08577943593263626, 0.08803578466176987, -0.06496497243642807, -0.008653589524328709, 0.1783287227153778, 0.15454693138599396, 0.011461651884019375, 0.1023162454366684, -0.04380610212683678, -0.25624746084213257, 0.005377576686441898, 0.10391554981470108, 0.003142413916066289, 0.13369862735271454, 0.13734611868858337, -0.07057014107704163, 0.13023622334003448, 0.047675732523202896, -0.1701851338148117, -0.018716424703598022, -0.014572134241461754, -0.07054000347852707, 0.14820268750190735, 0.014950014650821686, 0.06892796605825424, 0.09288938343524933, 0.012856480665504932, -0.03040093556046486, 0.035617753863334656, -0.003828942310065031, -0.03907338157296181, 0.09546662867069244, 0.07316523790359497, -0.03831877559423447, 0.369803786277771, -0.024341603741049767, -0.03970438241958618, 0.04428775981068611, -0.13153862953186035, -0.10150924324989319, -0.06286747753620148, 0.08515512198209763, 0.10405664145946503, 0.055062420666217804, -0.004909125156700611, 0.12287579476833344, -0.03743185102939606, 0.0916745662689209, 0.25546616315841675, -0.2700086534023285, -0.07594555616378784, 0.16037710011005402, 0.10529401153326035, 0.01095731183886528, 0.031812697649002075, 0.10031921416521072, 0.012946253642439842, -0.0020444670226424932, 0.026211444288492203, -0.08579390496015549, -0.09151837229728699, 0.018822526559233665, -0.1713738590478897, -0.04137760028243065, 0.25030893087387085, -0.08175139874219894, -0.008290459401905537, -0.055246591567993164, -0.08862399309873581, 0.0035132067278027534, -0.006420282647013664, -0.09803317487239838, -0.023175165057182312, -0.010566873475909233, 0.0741366595029831, -0.1136576309800148, -0.1358260065317154, -0.09909746795892715, -0.04359946772456169, 0.029295189306139946, -0.01675461046397686, 0.043683011084795, -0.0724116787314415, 0.14206863939762115, -0.12144589424133301, -0.07017403841018677, -0.006716450210660696, -0.1030159592628479, 0.04873891919851303, -0.033814966678619385, -0.02264845184981823, -0.14920836687088013, 0.003989434335380793, 0.1568588763475418, 0.09274564683437347, 0.048408836126327515, 0.033148396760225296, 0.07739824056625366, 0.005414022598415613, 0.11392373591661453, -0.05010787025094032, -0.07329938560724258, 0.0494258888065815, -0.12180326879024506, 0.04566008970141411, -0.06726740300655365, -0.1559796929359436, -0.09044093638658524, 0.02277264930307865, 0.03619714453816414, 0.04284030944108963, 0.06928751617670059, -0.007347700651735067, -0.05561363324522972, 0.2442106306552887, -0.016967186704277992, -0.01968933828175068, -0.05011046305298805, 0.05639028176665306, 0.09266389906406403, 0.08770842105150223, 0.04306601732969284, -0.05729658901691437, 0.06296193599700928, -0.058749765157699585, 0.019976716488599777, -0.032911233603954315, -0.056584857404232025, 0.0008650128147564828, -0.11776517331600189, 0.009405306540429592, -0.1427033245563507, -0.11763883382081985, 0.03789758309721947, 0.05489707738161087, -0.06145583093166351, -0.06867311149835587, -0.0016265391604974866, -0.026196856051683426, 0.0002987096377182752, -0.01242388878017664, 0.0721379816532135, -0.028149547055363655, 0.031203968450427055, 0.04185766354203224, 0.10263054072856903, -0.1930856704711914, 0.034831445664167404, -0.05207667872309685, 0.034694697707891464, -0.16192683577537537, 0.025902150198817253, -0.027707397937774658, 0.05341196432709694, -0.061290230602025986, -0.07321899384260178, -0.022022036835551262, 0.0016860479954630136, 0.019094590097665787, 0.14077962934970856, -0.022444935515522957, -0.03939129412174225, 0.1563839465379715, -0.13833893835544586, -0.1712285280227661, 0.1289301961660385, 0.009196627885103226, 0.06886409223079681, 0.027140820398926735, 0.11830800026655197, 0.06978023052215576, -0.09628534317016602, 0.07811586558818817, 0.06682923436164856, -0.11814720183610916, -0.14550183713436127, 0.08913449198007584, 0.026395518332719803, -0.0726257786154747, 0.016881566494703293, -0.012785715982317924, 0.013720096088945866, -0.05882704630494118, -0.022648906335234642, -0.06176073104143143, -0.02693791873753071, 0.03560734540224075, 0.04427705705165863, 0.07626552134752274, -0.015624544583261013, -0.05095810070633888, -0.010503292083740234, 0.030353305861353874, 0.02142190746963024, 0.02858208306133747, -0.021529415622353554, 0.15532521903514862, -0.0535745732486248, -0.004756144713610411, -0.15944655239582062, -0.000413243513321504, -0.038910023868083954, 0.2085873782634735, 0.042768217623233795, 0.12478004395961761, 0.049016717821359634, 0.036745335906744, -0.05027828738093376, 0.061563797295093536, 0.12457475811243057, 0.0029324942734092474, -0.09862968325614929, -0.026307497173547745, -0.04086986929178238, -0.018075095489621162, 0.05820180103182793, -0.15802288055419922, 0.04218028485774994, 0.04989595338702202, 0.06840341538190842, -0.01861175149679184, -0.03220425918698311, 0.02414463274180889, 0.00828834343701601, -0.09176619350910187, -0.0010521867079660296, 0.0748801976442337, 0.003471844596788287, -0.10795506089925766, 0.10140439867973328, -0.09383582323789597, 0.14875103533267975, 0.12293802201747894, -0.2849039137363434, -0.052695807069540024, -0.0426420159637928, -0.04972638934850693, 0.014505934901535511, -0.002297475002706051, -0.04614448547363281, 0.06158031150698662, -0.04870093613862991, 0.12782390415668488, -0.039281733334064484, -0.031917084008455276, -0.01519536692649126, -0.04628324881196022, 0.0033013990614563227, 0.11628277599811554, 0.20741571485996246, -0.1348869353532791, 0.09938908368349075, 0.1115611121058464, 0.009127581492066383, 0.054851580411195755, 0.04569927230477333, -0.04694508761167526, 0.019969187676906586, -0.011845283210277557, 0.014890461228787899, 0.03278374299407005, -0.2786388397216797, -0.03722190111875534, 0.08896664530038834, -0.03771921992301941, 0.08081308007240295, -0.12109729647636414, -0.02601071074604988, 0.024864984676241875, 0.005382881499826908, -0.09363646805286407, 0.11421022564172745, -0.0371495746076107, 0.0837847962975502, -0.020906606689095497, 0.03243516385555267, 0.028841352090239525, 0.033719565719366074, -0.08305803686380386, 0.16860835254192352, 0.015742745250463486, -0.23929238319396973, -0.15352758765220642, -0.06625237315893173, -0.003610620042309165, 0.06622610986232758, 0.07439535856246948, -0.027274930849671364, -0.032907161861658096, -0.005626519210636616, 0.022738590836524963, -0.15673832595348358, 0.003633180633187294, -0.06213900074362755, 0.019021054729819298, -0.056333571672439575, -0.07170899957418442, -0.04249923676252365, -0.025451842695474625, -0.023040929809212685, 0.1260286420583725, -0.0929294303059578, 0.11814527958631516, 0.1450708508491516, -0.014891006052494049, 0.05726463720202446, -0.01836204156279564, 0.20894654095172882, -0.07650057226419449, 0.04162926226854324, 0.2649182975292206, -0.029358739033341408, 0.06411927193403244, 0.044644732028245926, 0.036747366189956665, -0.04518070071935654, -0.00558383297175169, -0.0637902244925499, -0.11972396820783615, -0.19664768874645233, -0.09242693334817886, -0.1225392147898674, 0.060265474021434784, -0.0221028383821249, 0.02093161828815937, 0.08391056209802628, 0.14020419120788574, -0.00659184018149972, 0.054673898965120316, -0.012133424170315266, 0.09199178218841553, 0.13163481652736664, -0.0361781045794487, 0.13631686568260193, -0.058861542493104935, -0.08049368113279343, 0.07625169306993484, -0.07792811840772629, 0.09678131341934204, 0.0441964827477932, 0.0832412987947464, 0.03152377903461456, 0.0850992202758789, 0.08688303828239441, 0.09854334592819214, -0.0015398123068735003, -0.02499721571803093, -0.05374635010957718, -0.034466713666915894, -0.07293582707643509, 0.062340978533029556, 0.029507016763091087, -0.09695281088352203, -0.019273482263088226, -0.01298784464597702, 0.0025248464662581682, 0.020170986652374268, 0.06977306306362152, -0.2367701381444931, -0.05144092068076134, 0.0424041822552681, 0.013353723101317883, -0.09222541004419327, -0.015562267042696476, 0.005524707958102226, -0.1226232722401619, 0.05436425283551216, -0.04078219458460808, 0.12280693650245667, -0.05339057743549347, 0.04137158393859863, -0.07402177155017853, -0.03321242704987526, 0.0016381036257371306, 0.11892549693584442, -0.19441504776477814, 0.23698344826698303, 0.015025550499558449, -0.08090361207723618, -0.1324620246887207, 0.003113562474027276, -0.0004884463851340115, 0.18916894495487213, 0.12053387612104416, 0.0012080471497029066, -0.13715845346450806, -0.08570202440023422, -0.07135603576898575, 0.013815220445394516, 0.06763391941785812, -0.05930149927735329, 0.010797280818223953, -0.02128012292087078, -0.0323227159678936, 0.005924299359321594, 0.01308358833193779, -0.05831892788410187, -0.14072811603546143, 0.14706982672214508, -0.008853038772940636, -0.024370145052671432, -0.016337813809514046, -0.017793893814086914, 0.0025121993385255337, 0.26273515820503235, 0.02915755659341812, -0.12298690527677536, -0.1308455914258957, -0.007968345656991005, 0.10912864655256271, -0.06865240633487701, 0.09247516095638275, -0.037449512630701065, 0.009985178709030151, -0.01967739686369896, -0.09428860992193222, 0.10189256817102432, -0.1250024288892746, -0.059807274490594864, -0.017951343208551407, 0.16472268104553223, -0.022137494757771492, 0.05629286915063858, 0.008565818890929222, 0.05136440694332123, -0.12601926922798157, -0.12342534214258194, 0.04974275827407837, -0.028551805764436722, 0.024202778935432434, -0.001527947373688221, 0.009585767053067684, 0.04488873854279518, 0.04971567913889885, -0.0557936355471611, 0.2059607058763504, 0.1957327425479889, -0.0631415918469429, 0.15755942463874817, -0.03946021944284439, -0.050976164638996124, -0.27604445815086365, -0.0854186937212944, -0.058019328862428665, -0.0035070704761892557, 0.015285358764231205, -0.11161775141954422, 0.07931474596261978, -0.0008401451050303876, -0.04739866033196449, 0.09143462777137756, -0.2665870785713196, -0.10123129934072495, 0.1445065587759018, 0.0002602885360829532, 0.28731581568717957, -0.15010759234428406, -0.07367914915084839, -0.05652204900979996, -0.1889837086200714, 0.0825502797961235, -0.06762920320034027, 0.0745621919631958, -0.05247151851654053, 0.022799480706453323, 0.026382455602288246, -0.07899507880210876, 0.1338883489370346, -0.05157437175512314, -0.031633682548999786, -0.11342698335647583, -0.06093429774045944, 0.09575077891349792, 0.015327578410506248, 0.06188249960541725, -0.02328290417790413, 0.019712381064891815, -0.17981469631195068, -0.06530241668224335, -0.029873428866267204, 0.06546565890312195, 0.01924923248589039, -0.054359182715415955, -0.06779124587774277, -0.053597718477249146, -0.061891745775938034, 0.004107898101210594, 0.12496393173933029, -0.06700507551431656, 0.11321674287319183, 0.09986665844917297, 0.19075390696525574, -0.16764472424983978, 0.03157556802034378, -0.04210368171334267, -0.03370252251625061, 0.024514932185411453, -0.11262921988964081, 0.0014596725814044476, 0.10277779400348663, 0.028633959591388702, 0.02631700411438942, 0.08911894261837006, 0.005908097606152296, 0.05299421772360802, 0.0979900136590004, -0.23837348818778992, -0.09226365387439728, -0.10131631791591644, -0.03896239027380943, -0.0014480731915682554, 0.10971448570489883, 0.10870152711868286, -0.042076610028743744, -0.052448004484176636, 0.025539258494973183, 0.025415901094675064, -0.04200676083564758, 0.06794779747724533, 0.05077897757291794, 0.03571361303329468, -0.07962372153997421, -0.03830929473042488, 0.09448415786027908, -0.015192599967122078, -0.040695175528526306, 0.09220988303422928, -0.11125605553388596, -0.116683229804039, -0.03711063414812088, -0.018819231539964676, -0.12817075848579407, -0.01954052224755287, -0.03765005245804787, -0.08689513057470322, 0.025435637682676315, 0.07399172335863113, 0.10253562778234482, -0.004014503210783005, -0.03033311851322651, 0.03187188506126404, -0.06422637403011322, 0.00520989578217268, 0.057877376675605774, 0.06398285180330276, -0.0926559567451477, 0.10910190641880035, -0.03234424814581871, 0.11453008651733398, -0.08370506018400192, 0.015403798781335354, -0.11924577504396439, 0.004989486187696457, -0.0733216255903244, -0.0397423580288887, -0.1258944422006607, -0.05089306831359863, -0.008029812015593052, -0.0348181314766407, -0.024850204586982727, 0.004625905770808458, -0.06990411132574081, 0.024355683475732803, -0.058523498475551605, 0.018729671835899353, -0.05467239394783974, -0.004331489093601704, 0.11682485789060593, -0.035174064338207245, 0.10145552456378937, 0.04961657524108887, -0.025935476645827293, 0.005791946779936552, -0.2110777646303177, -0.035964492708444595, 0.07639087736606598, 0.03597820922732353, 0.00401157746091485, -0.00985159445554018, 0.01389129739254713, 0.026695001870393753, 0.020296864211559296, 0.030664820224046707, 0.039963219314813614, -0.06839896738529205, 0.005832426715642214, -0.04963657259941101, -0.13836541771888733, 0.0036997077986598015, 0.020563555881381035, 0.03830953314900398, 0.009233594872057438, 0.02189819887280464, -0.04546554386615753, 0.06013542041182518, -0.10303061455488205, 0.056491632014513016, -0.01829967461526394, -0.11826679110527039, -0.034051861613988876, -0.12014753371477127, 0.05570700392127037, -0.0019335532560944557, 0.22977586090564728, 0.01844853162765503, 0.02694779634475708, 0.010298521257936954, 0.13489173352718353, 0.16913485527038574, -0.016255594789981842, 0.17700080573558807, 0.08872142434120178, -0.014193573966622353, -0.018574636429548264, 0.11278437823057175, 0.04926050826907158, 0.007637522183358669, 0.20680299401283264, 0.03758932650089264, -0.1446288824081421, 0.043588075786828995, -0.06488935649394989, 0.009794296696782112, -0.1158333346247673, -0.09685369580984116, -0.006795576307922602, 0.05722672864794731, -0.06217661872506142, 0.12849600613117218, 0.10128163546323776, -0.020487230271100998, -0.012423484586179256, 0.0018697988707572222, -0.040810950100421906, -0.13570280373096466, -0.10094939917325974, -0.061763763427734375, -0.1263829469680786, -0.030580949038267136, -0.061894118785858154, 0.02961328811943531, 0.07736576348543167, 0.03912506252527237, -0.032725028693675995, 0.13993960618972778, 0.0441838800907135, -0.027145391330122948, 0.040351949632167816, -0.01567237451672554, 0.013460027053952217, -0.055596400052309036, 0.03594169393181801, -0.045089323073625565, 0.044727496802806854, 0.02426944486796856, -0.027320511639118195, -0.0570036955177784, -0.007847074419260025, -0.05311761796474457, -0.0871705487370491, -0.0823853611946106, 0.07201594114303589, 0.007926629856228828, 0.03240801393985748, -0.045357223600149155, 0.02434397116303444, -0.010436464101076126, 0.13320064544677734, -0.023981880396604538, -0.07023117691278458, -0.0350065715610981, 0.2196904867887497, -0.014963041059672832, 0.011096479371190071, -0.017070982605218887, -0.04362919554114342, 0.020655160769820213, 0.3121580183506012, 0.28385815024375916, -0.010630810633301735, 0.005557793192565441, 0.05602003633975983, 0.027805279940366745, 0.13278666138648987, 0.057005494832992554, 0.025288358330726624, 0.22245700657367706, -0.0794205591082573, -0.08279357850551605, -0.03404822200536728, -0.012162133120000362, -0.07391422241926193, 0.06826096028089523, 0.09806507080793381, -0.05350185185670853, 0.03663527965545654, 0.09947718679904938, -0.15428152680397034, 0.021371379494667053, -0.05720328539609909, -0.15708871185779572, -0.06800978630781174, 0.012584674172103405, 0.01315456721931696, 0.01142025925219059, 0.06894374638795853, -0.040616150945425034, -0.05081629380583763, 0.11646851152181625, 0.04793855547904968, -0.20990777015686035, 0.06286679953336716, 0.12019272893667221, -0.06326834112405777, 0.10883146524429321, -0.06039981544017792, 0.03863150253891945, 0.09512755274772644, 0.001309579936787486, -0.04500406235456467, -0.022252606227993965, 0.02544049546122551, -0.058298759162425995, 0.07106028497219086, 0.06643087416887283, 0.003006204729899764, -0.09868121892213821, 0.010339939966797829, -0.1672591269016266, 0.03828580677509308, 0.044561948627233505, 0.02647598832845688, -0.012114289216697216, 0.02070150338113308, -0.09187468141317368, 0.10400638729333878, 0.10812229663133621, -0.027448896318674088, -0.009195453487336636, -0.061057593673467636, 0.017028216272592545, 0.008354965597391129, 0.005767603404819965, -0.056826401501894, -0.1405889242887497, -0.04255995899438858, 0.01472653727978468, 0.004198721144348383, -0.1779545396566391, -0.025725996121764183, -0.07639665901660919, 0.044334858655929565, -0.09917233139276505, 0.01599487103521824, 0.10920168459415436, -0.026461876928806305, -0.01836841180920601, 0.020570462569594383, -0.022859185934066772, 0.08012236654758453, -0.11658215522766113, -0.023911818861961365 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-bert-base An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-bert-base-uncased](https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
{}
feature-extraction
cambridgeltl/trans-encoder-bi-simcse-bert-base
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2109.13059", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.13059" ]
[]
TAGS #transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-bert-base An unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-base-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input.
[ "### cambridgeltl/trans-encoder-bi-simcse-bert-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-base-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n", "### cambridgeltl/trans-encoder-bi-simcse-bert-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-base-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ 37, 125 ]
[ "passage: TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n### cambridgeltl/trans-encoder-bi-simcse-bert-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-base-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ -0.10812095552682877, -0.011126648634672165, -0.0026003990788012743, 0.013033607043325901, 0.07923243194818497, 0.027336491271853447, 0.07138857245445251, 0.01982313208281994, 0.14462082087993622, 0.021268684417009354, 0.159133642911911, 0.12378843128681183, -0.012896624393761158, 0.03748197853565216, -0.053116798400878906, -0.19629795849323273, 0.08629331737756729, 0.08004295825958252, -0.04284466803073883, 0.11994016915559769, 0.08744343370199203, -0.06037071347236633, 0.0783749371767044, 0.0004286252078600228, -0.03845040127635002, 0.01003503892570734, -0.009249197319149971, -0.01029908936470747, 0.07593593001365662, 0.013064268045127392, 0.12684130668640137, 0.11726064234972, 0.07732883095741272, -0.09522505849599838, 0.03143138810992241, -0.03208116814494133, -0.03545897826552391, 0.08117751032114029, -0.03662508726119995, -0.03593449667096138, 0.10191610455513, -0.018101971596479416, 0.008922047913074493, -0.005741316359490156, -0.09766136109828949, -0.04522503912448883, 0.029099389910697937, 0.08657996356487274, 0.05552324652671814, 0.02471236139535904, -0.015436985529959202, 0.1015041321516037, -0.15010122954845428, 0.10331215709447861, 0.05398814007639885, -0.3002092242240906, 0.020895259454846382, 0.08234905451536179, 0.05770670250058174, 0.0021869551856070757, 0.024474216625094414, 0.0006967676454223692, 0.026612086221575737, -0.01064156275242567, 0.002988782012835145, -0.07598284631967545, -0.08111009746789932, 0.09143650531768799, -0.14598463475704193, 0.015340332873165607, 0.22681359946727753, 0.012819748371839523, -0.036166686564683914, 0.10427188873291016, -0.08065129816532135, -0.09189945459365845, -0.005136570893228054, -0.08354288339614868, -0.0045104301534593105, 0.03309950977563858, -0.03413684293627739, -0.004323539789766073, -0.0566430427134037, -0.0629907175898552, -0.12578468024730682, 0.10406427830457687, 0.0023119349498301744, 0.07260830700397491, -0.09599530696868896, 0.06315920501947403, -0.13024373352527618, -0.0906764343380928, 0.01044294610619545, -0.09772934764623642, -0.058978546410799026, 0.030719032511115074, -0.06438452005386353, -0.008336445316672325, -0.041274312883615494, 0.022002574056386948, 0.10801830142736435, 0.023400520905852318, 0.04278146103024483, 0.08211774379014969, 0.057362671941518784, 0.038565803319215775, -0.09227703511714935, 0.006592947524040937, 0.040882304310798645, 0.01586812175810337, 0.00519934855401516, -0.06751655042171478, -0.15349751710891724, 0.0024903900921344757, -0.02094443514943123, -0.04627839848399162, -0.05703682079911232, 0.09043551236391068, -0.09104995429515839, -0.06757081300020218, 0.10533870756626129, -0.03257908672094345, -0.024397028610110283, 0.029461579397320747, -0.06640451401472092, 0.14901073276996613, 0.09047611802816391, 0.018568700179457664, -0.020711028948426247, 0.04402727261185646, -0.1163443848490715, 0.0008494886569678783, -0.06247038021683693, -0.10936448723077774, -0.02668030560016632, -0.10070692747831345, 0.019985496997833252, -0.06779104471206665, -0.15648794174194336, -0.007117680739611387, 0.00955886859446764, 0.007385525852441788, -0.001983894733712077, -0.11635176092386246, 0.02989116683602333, -0.03177281841635704, -0.0607152096927166, -0.2544548511505127, -0.017987197265028954, 0.04291814938187599, -0.0004167138540651649, 0.08071261644363403, -0.23324275016784668, 0.052801694720983505, -0.1745501160621643, 0.032674726098775864, -0.16924042999744415, 0.09454236924648285, -0.047302741557359695, 0.020413460209965706, -0.02613624930381775, -0.08489100635051727, -0.04844023287296295, 0.056522443890571594, 0.03600800037384033, 0.16792386770248413, -0.16821862757205963, -0.08441184461116791, 0.10015182197093964, -0.12152670323848724, -0.12359514832496643, 0.08854188770055771, -0.05740554630756378, 0.05075894668698311, 0.08049547672271729, 0.1691659837961197, -0.02842472866177559, 0.025136305019259453, 0.015221807174384594, 0.09830498695373535, 0.014123833738267422, -0.06663064658641815, 0.05355513095855713, 0.03591743856668472, -0.16867147386074066, 0.05190577730536461, -0.12417403608560562, -0.012281890027225018, -0.06693363189697266, -0.03338358923792839, -0.022470925003290176, -0.067359559237957, 0.1165056899189949, 0.007362665142863989, 0.08255107700824738, -0.014403918758034706, -0.030204612761735916, 0.15609091520309448, 0.07481100410223007, -0.0988176167011261, 0.027061233296990395, -0.09138956665992737, 0.06366509944200516, -0.018903041258454323, -0.015069576911628246, -0.1925114393234253, -0.024365250021219254, -0.018030332401394844, 0.1984831839799881, 0.06120068207383156, 0.06284868717193604, 0.039059050381183624, 0.0348203182220459, -0.010873743332922459, 0.0003809587797150016, 0.11123894900083542, 0.015576137229800224, -0.05870508775115013, -0.16431118547916412, -0.10638292133808136, -0.02817501500248909, 0.026280434802174568, -0.1118473932147026, 0.022103874012827873, -0.041910260915756226, 0.0781354010105133, -0.047912076115608215, -0.010441486723721027, -0.0008303786744363606, 0.07149333506822586, -0.03418438509106636, 0.06323330849409103, 0.06055256724357605, -0.0014861540403217077, -0.1599174588918686, 0.10869231075048447, -0.08821830153465271, 0.05353308841586113, 0.12974122166633606, -0.14781510829925537, -0.0080929696559906, -0.024770164862275124, 0.015990572050213814, 0.031740400940179825, 0.11345032602548599, -0.001285479054786265, 0.24336254596710205, -0.034183163195848465, 0.10608109086751938, -0.07250051945447922, 0.02407558262348175, -0.040977563709020615, -0.06269587576389313, 0.018414206802845, 0.12560439109802246, 0.10623084008693695, -0.1465579867362976, 0.07432665675878525, 0.03830764815211296, -0.09771160036325455, 0.03380700945854187, -0.009375851601362228, -0.05650889128446579, -0.041532620787620544, 0.008016773499548435, -0.027451587840914726, 0.09702784568071365, -0.2284083515405655, -0.06132451072335243, 0.03969050571322441, -0.061237554997205734, 0.014819623902440071, -0.09777238219976425, -0.017958885058760643, 0.05312976613640785, -0.012780708260834217, -0.20853537321090698, -0.027122819796204567, -0.029825294390320778, 0.05457743629813194, -0.051075585186481476, -0.0970451608300209, 0.042354755103588104, 0.022911611944437027, -0.13705913722515106, 0.19035017490386963, -0.12802748382091522, -0.13316136598587036, -0.10457780212163925, -0.05997776240110397, -0.03338209167122841, 0.0606880746781826, 0.02060031332075596, -0.06238492205739021, -0.03088204748928547, -0.07056456059217453, -0.016309017315506935, -0.08161400258541107, 0.01685302145779133, 0.02401665970683098, -0.052886515855789185, -0.0175941064953804, -0.06823067367076874, -0.012913664802908897, -0.12212461233139038, 0.018015267327427864, 0.05432736128568649, -0.1336170732975006, 0.06840258836746216, 0.23046903312206268, -0.013520471751689911, 0.02261403575539589, -0.016522372141480446, 0.1631156951189041, 0.051697637885808945, -0.01432852540165186, 0.12352316081523895, -0.14168234169483185, 0.04617815837264061, 0.11376143991947174, 0.0509314090013504, -0.03043173812329769, 0.00016588394646532834, -0.07254114747047424, -0.08324757218360901, -0.16004635393619537, -0.10419989377260208, -0.09260199218988419, -0.01214883103966713, -0.0020213532261550426, -0.0028168458957225084, 0.03975835070014, 0.1270994246006012, 0.0208628810942173, 0.031866610050201416, -0.07921696454286575, 0.030475642532110214, 0.0934063121676445, -0.03145050257444382, 0.145737424492836, -0.002036966383457184, -0.06450386345386505, 0.05305190756917, -0.037077296525239944, 0.09963541477918625, -0.007734820246696472, 0.10853490233421326, 0.05928831174969673, 0.19470253586769104, 0.10927038639783859, 0.0989624410867691, -0.09504377096891403, -0.0082939974963665, -0.040063776075839996, -0.058470796793699265, -0.10669002681970596, 0.07480809837579727, 0.013986067846417427, -0.01078572403639555, -0.05998151749372482, 0.06001972779631615, 0.030677752569317818, 0.021424967795610428, 0.13457971811294556, -0.28733107447624207, -0.07779421657323837, 0.026567941531538963, 0.12868526577949524, -0.011759852059185505, 0.06127673387527466, 0.018802257254719734, 0.025471564382314682, -0.037265270948410034, 0.04806233197450638, 0.0838768258690834, -0.025666797533631325, 0.07492729276418686, -0.032128795981407166, 0.014316633343696594, 0.025716055184602737, 0.0529908686876297, -0.1608095020055771, 0.18471898138523102, -0.01214159931987524, -0.03835688531398773, -0.018225697800517082, -0.028941895812749863, 0.004015387035906315, 0.1680794507265091, 0.13585986196994781, 0.03299378603696823, -0.17732776701450348, -0.12408943474292755, -0.06542466580867767, 0.06516524404287338, 0.09524219483137131, -0.03051762655377388, 0.05767202377319336, 0.022075479850172997, 0.011394170112907887, 0.08093266934156418, -0.029491949826478958, -0.034072570502758026, -0.08717676997184753, 0.03382297232747078, 0.04036778584122658, 0.050591450184583664, 0.0014704338973388076, -0.03927000239491463, 0.019043587148189545, 0.24591708183288574, -0.052594732493162155, -0.0637304037809372, -0.11531656235456467, -0.021817579865455627, 0.1481553167104721, -0.09189867228269577, 0.011153710074722767, -0.0021496263798326254, -0.02951742894947529, 0.007796412333846092, -0.1618417203426361, 0.15394888818264008, -0.074175626039505, -0.0014361538924276829, -0.0657554343342781, 0.126006618142128, 0.053085435181856155, 0.07464399188756943, 0.042243264615535736, -0.004432448651641607, -0.04094535857439041, -0.0954592227935791, -0.0494949147105217, 0.006855526473373175, 0.04797590523958206, 0.1014678105711937, -0.1288541704416275, 0.08560272306203842, -0.022789357230067253, 0.10508888959884644, 0.19057190418243408, 0.14111118018627167, -0.07415354251861572, 0.12083568423986435, 0.20685416460037231, -0.06177786737680435, -0.2552320063114166, -0.05179973319172859, -0.007168595213443041, 0.0652092918753624, -0.019798075780272484, -0.16788990795612335, 0.1523638665676117, 0.04918520152568817, 0.008172610774636269, -0.05356041342020035, -0.16131767630577087, -0.09587717056274414, 0.2296782284975052, 0.022191647440195084, 0.39419063925743103, -0.0866687074303627, -0.08996497094631195, -0.015181923285126686, -0.0746481642127037, 0.14570961892604828, -0.018001800402998924, 0.03629510849714279, 0.014648037031292915, 0.02370244264602661, 0.03649675101041794, -0.014895140193402767, 0.14066967368125916, 0.07785629481077194, 0.01790447346866131, -0.009119266644120216, -0.10751258581876755, 0.0619402639567852, 0.00976252369582653, 0.09671387821435928, 0.009951776824891567, 0.07503891736268997, -0.1933668702840805, -0.04067648574709892, -0.045518286526203156, -0.00842362828552723, 0.026996517553925514, -0.05702151358127594, -0.03802106902003288, -0.019451264292001724, 0.0506708025932312, 0.011905514635145664, 0.17493918538093567, -0.09527537971735, 0.01958048902451992, 0.13083992898464203, 0.15824109315872192, -0.06917235255241394, -0.05453622341156006, 0.054363664239645004, -0.04513465240597725, 0.09128393977880478, -0.12370678037405014, 0.03309330344200134, 0.13875555992126465, 0.027640188112854958, 0.07924573123455048, 0.1076555848121643, 0.03786550089716911, 0.008430802263319492, 0.05891283601522446, -0.1814126819372177, 0.049771446734666824, -0.03690531104803085, -0.05774455517530441, -0.0795217826962471, 0.06959640234708786, 0.13196930289268494, -0.05386093258857727, 0.0072115748189389706, -0.017301641404628754, 0.018262257799506187, -0.06894826889038086, 0.04200161620974541, 0.08089783042669296, 0.03726181760430336, -0.144392728805542, -0.008900532498955727, 0.01584789529442787, -0.02900000661611557, 0.011484679765999317, -0.002268025418743491, -0.1345260590314865, -0.05433068796992302, -0.14478839933872223, 0.06804059445858002, -0.11465176939964294, -0.03727171570062637, -0.08795255422592163, -0.16386862099170685, 0.023485055193305016, 0.16569392383098602, 0.09485170990228653, 0.04769310727715492, -0.11134088784456253, -0.038051050156354904, -0.07825980335474014, -0.005747020244598389, 0.07282210141420364, 0.026927011087536812, -0.03618195652961731, 0.08356020599603653, -0.05332518368959427, 0.09032879024744034, -0.07787930220365524, -0.01761125773191452, -0.14815755188465118, 0.039778679609298706, -0.14590546488761902, -0.035064250230789185, -0.09624643623828888, -0.06595923751592636, 0.053298115730285645, -0.06154429167509079, -0.02408308908343315, 0.011598324403166771, -0.07985468953847885, 0.06280574202537537, 0.038547251373529434, -0.01584901288151741, -0.07391760498285294, -0.017878340557217598, 0.07232370227575302, -0.03472030162811279, 0.05002446845173836, 0.17339913547039032, -0.08242994546890259, 0.08133504539728165, -0.18620911240577698, -0.033351875841617584, 0.0899747684597969, 0.07353828102350235, 0.04437413439154625, 0.0727754607796669, -0.008373909629881382, 0.06112461909651756, -0.0022520048078149557, -0.014087398536503315, 0.10547339171171188, -0.007794175297021866, -0.026441289111971855, -0.014901773072779179, -0.017369989305734634, -0.03605136647820473, -0.010816310532391071, 0.08301176130771637, 0.11956783384084702, 0.07440821826457977, -0.018085287883877754, 0.04040716588497162, -0.09488425403833389, 0.02318311110138893, 0.009129306301474571, -0.0727987214922905, -0.11927178502082825, -0.13409890234470367, 0.04273107647895813, -0.004146224819123745, 0.18365462124347687, -0.10694832354784012, -0.011629604734480381, -0.036790359765291214, 0.0361851267516613, 0.19301220774650574, 0.017725201323628426, 0.27712637186050415, 0.07939460128545761, -0.01258894894272089, -0.06518281996250153, 0.07013356685638428, 0.007267486769706011, 0.05901220068335533, 0.1037386804819107, -0.01853768713772297, 0.034459758549928665, 0.12476840615272522, 0.033690083771944046, 0.04326929152011871, 0.03697880730032921, -0.07475780695676804, -0.0595843605697155, 0.0023213273379951715, 0.06348752975463867, 0.21275345981121063, 0.06131383031606674, -0.010087970644235611, 0.05847011134028435, 0.04723461717367172, -0.1326914131641388, -0.166937455534935, -0.13687331974506378, -0.05169590935111046, -0.19302935898303986, -0.02335939183831215, -0.15800060331821442, -0.09442144632339478, 0.1476156860589981, 0.027053233236074448, 0.03389570116996765, 0.05209091305732727, -0.06838501989841461, 0.01356393564492464, 0.03656071797013283, -0.029496077448129654, 0.018548889085650444, 0.0099470354616642, -0.04557102546095848, 0.06531930714845657, 0.010255738161504269, 0.013557245954871178, -0.023396402597427368, 0.060830410569906235, 0.005233811214566231, 0.02521478943526745, -0.09481895714998245, -0.07763221114873886, 0.058172766119241714, -0.015473056584596634, 0.15583519637584686, 0.022140169516205788, -0.048521336168050766, -0.04178661108016968, 0.06827203929424286, -0.059168070554733276, 0.0023859781213104725, -0.09422577172517776, 0.24403229355812073, 0.0225543063133955, 0.07599680870771408, -0.0000660904188407585, -0.06894724816083908, -0.016785742715001106, 0.22176063060760498, 0.22184625267982483, -0.14124517142772675, -0.002956453477963805, -0.017942707985639572, 0.02980620600283146, 0.039305541664361954, 0.031182467937469482, 0.06495041400194168, 0.2322535663843155, -0.08034544438123703, -0.09809041023254395, -0.05214129388332367, -0.0030656352173537016, -0.044433191418647766, -0.06375926733016968, 0.07638097554445267, -0.07863422483205795, -0.06266669183969498, 0.05500466749072075, -0.2103915810585022, 0.02168731391429901, 0.028100505471229553, -0.09996876865625381, -0.025567281991243362, -0.05553517863154411, 0.005661971401423216, 0.08504892885684967, 0.05555557832121849, -0.08832423388957977, -0.01345841120928526, 0.15825779736042023, 0.023999718949198723, -0.21978870034217834, 0.03191203624010086, 0.08872324228286743, -0.03329281508922577, 0.02327442541718483, 0.007328374776989222, 0.13591286540031433, 0.01884067989885807, 0.0649586096405983, 0.011555604636669159, 0.013541346415877342, 0.00805910024791956, -0.06445464491844177, -0.017777472734451294, 0.008097809739410877, -0.0033182851038873196, 0.06498244404792786, 0.020835690200328827, -0.1737811267375946, 0.024364305660128593, -0.0018486814806237817, -0.10749855637550354, -0.024720562621951103, -0.03500143066048622, -0.06662672013044357, 0.09350067377090454, 0.14486388862133026, -0.0195736326277256, -0.04474668949842453, -0.011811841279268265, 0.006005941424518824, 0.004596150945872068, -0.04913722351193428, 0.0017674124101176858, -0.10548292845487595, -0.029562823474407196, 0.12166640162467957, 0.008995289914309978, -0.20057319104671478, -0.04533706605434418, -0.07329267263412476, 0.011098526418209076, -0.011605747044086456, 0.03335624560713768, 0.0853235200047493, 0.06636219471693039, -0.0338033065199852, 0.028109678998589516, 0.049017056822776794, 0.04945293813943863, -0.07658141851425171, -0.13245795667171478 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-bert-large An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-bert-large-uncased](https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
{}
feature-extraction
cambridgeltl/trans-encoder-bi-simcse-bert-large
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2109.13059", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.13059" ]
[]
TAGS #transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-bert-large An unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-large-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input.
[ "### cambridgeltl/trans-encoder-bi-simcse-bert-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-large-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n", "### cambridgeltl/trans-encoder-bi-simcse-bert-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-large-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ 37, 127 ]
[ "passage: TAGS\n#transformers #pytorch #bert #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n### cambridgeltl/trans-encoder-bi-simcse-bert-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-bert-large-uncased as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ -0.09731877595186234, -0.02915337309241295, -0.0030720788054168224, 0.018819119781255722, 0.08156739920377731, 0.01791648007929325, 0.057927150279283524, 0.01934860087931156, 0.15659168362617493, 0.03660767525434494, 0.15722553431987762, 0.10563237220048904, -0.019929928705096245, 0.05434788018465042, -0.054021578282117844, -0.22003605961799622, 0.07378598302602768, 0.07751251012086868, -0.06782175600528717, 0.12146852910518646, 0.08691053837537766, -0.08058737963438034, 0.08366923034191132, 0.0013316025724634528, -0.058903250843286514, -0.0007935783942230046, -0.020403042435646057, -0.0034398329444229603, 0.06944803893566132, 0.017136704176664352, 0.1182151660323143, 0.10864663124084473, 0.06829984486103058, -0.08817188441753387, 0.029764149338006973, -0.03982004150748253, -0.019335098564624786, 0.0784514993429184, -0.009726358577609062, 0.007673189975321293, 0.11216458678245544, -0.06212765723466873, 0.002872144803404808, -0.003580451011657715, -0.0802517831325531, -0.07195796817541122, 0.02464529499411583, 0.09401430934667587, 0.042209602892398834, 0.015642505139112473, -0.01368251908570528, 0.08969917893409729, -0.14308416843414307, 0.10037712007761002, 0.08675037324428558, -0.3061791956424713, 0.020657991990447044, 0.08796840906143188, 0.06034227833151817, -0.0032107983715832233, 0.015430239960551262, 0.0009053300018422306, 0.03412773460149765, -0.0075934091582894325, 0.02127997577190399, -0.08834931254386902, -0.08215218782424927, 0.08033110946416855, -0.14749297499656677, 0.0178248081356287, 0.2143271565437317, 0.014792956411838531, -0.03067474626004696, 0.06689740717411041, -0.08477136492729187, -0.09097684919834137, -0.012388001196086407, -0.08208933472633362, 0.013891417533159256, 0.014971771277487278, -0.032578855752944946, -0.00815543532371521, -0.06521277874708176, -0.05217243358492851, -0.1483301818370819, 0.1114373654127121, -0.0012483777245506644, 0.07108870893716812, -0.11077921837568283, 0.02666146494448185, -0.12322722375392914, -0.08284837007522583, 0.012574233114719391, -0.09652918577194214, -0.06347587704658508, 0.03760318085551262, -0.06384529173374176, -0.02299918234348297, -0.0311847273260355, -0.0025377394631505013, 0.07074610143899918, 0.010500707663595676, 0.05366142466664314, 0.08568762242794037, 0.060520973056554794, 0.06515208631753922, -0.1058851107954979, 0.005578520707786083, 0.024087511003017426, 0.00786734651774168, 0.010365868918597698, -0.06428533792495728, -0.15867511928081512, -0.010971896350383759, -0.030481787398457527, -0.045097753405570984, -0.06910108029842377, 0.0963432639837265, -0.07576681673526764, -0.06860566884279251, 0.10979754477739334, -0.0277482308447361, -0.013344875536859035, 0.02464868314564228, -0.04960770159959793, 0.17719009518623352, 0.06299526244401932, -0.0006926386267878115, -0.017292331904172897, 0.06344425678253174, -0.11790703237056732, 0.0018655111780390143, -0.05136839672923088, -0.1145663857460022, -0.016148457303643227, -0.10135086625814438, 0.018636517226696014, -0.07744787633419037, -0.13059593737125397, 0.009885127656161785, -0.006196332164108753, 0.01616169512271881, -0.011835374869406223, -0.09748536348342896, 0.02901758812367916, -0.0420684888958931, -0.06149832904338837, -0.23836642503738403, -0.008425573818385601, 0.05346984416246414, -0.006812235340476036, 0.0985432118177414, -0.24302642047405243, 0.04184022545814514, -0.17901571094989777, 0.0411619208753109, -0.1336357295513153, 0.08227497339248657, -0.015163572505116463, 0.01866845414042473, -0.027830252423882484, -0.10126370191574097, -0.04913938790559769, 0.06210166588425636, 0.022840777412056923, 0.14050987362861633, -0.1696232110261917, -0.08895200490951538, 0.13239935040473938, -0.10400126129388809, -0.13624298572540283, 0.10779651999473572, -0.039237312972545624, 0.04480716586112976, 0.08496459573507309, 0.17715731263160706, -0.03336115926504135, 0.029358919709920883, -0.008031546138226986, 0.09274159371852875, -0.00038706493796780705, -0.06685679405927658, 0.06696849316358566, 0.03299972414970398, -0.14650177955627441, 0.049026262015104294, -0.08946668356657028, -0.014178511686623096, -0.06358882039785385, -0.03027956746518612, -0.02712290920317173, -0.0725964605808258, 0.11760392785072327, 0.0012227380648255348, 0.07689829915761948, -0.026284512132406235, -0.01487677451223135, 0.13773596286773682, 0.06728440523147583, -0.0959678515791893, 0.027513476088643074, -0.09647976607084274, 0.04468367621302605, -0.028943831101059914, 0.0006340316613204777, -0.19316551089286804, -0.02055041491985321, -0.015908025205135345, 0.166790172457695, 0.05331261828541756, 0.09521137177944183, 0.0375593900680542, 0.02062106691300869, -0.016082141548395157, 0.018894294276833534, 0.12121251970529556, -0.00168557558208704, -0.06855308264493942, -0.12376715987920761, -0.09991339594125748, -0.02388763055205345, -0.018855616450309753, -0.11686843633651733, 0.015337194316089153, -0.023529401049017906, 0.051538608968257904, -0.03655710443854332, -0.0032505120616406202, -0.0014261145843192935, 0.0722741112112999, -0.03603803366422653, 0.07317422330379486, 0.06050346419215202, -0.015354678966104984, -0.15868693590164185, 0.11000613868236542, -0.10315041244029999, 0.07414691150188446, 0.12585324048995972, -0.1348026841878891, -0.0007858654134906828, -0.04377695545554161, 0.002509154612198472, 0.0359429307281971, 0.10726004838943481, -0.00873694010078907, 0.20502039790153503, -0.03119666315615177, 0.1163257285952568, -0.08405789732933044, 0.016112150624394417, -0.02600899152457714, -0.05844612792134285, 0.02330273576080799, 0.12815022468566895, 0.10489726066589355, -0.15046440064907074, 0.06535514444112778, 0.07033734768629074, -0.09188739210367203, 0.06305592507123947, 0.00040263557457365096, -0.06721595674753189, -0.033635202795267105, 0.004985460080206394, -0.023322269320487976, 0.0785742849111557, -0.20556390285491943, -0.056297723203897476, 0.055482540279626846, -0.05027210712432861, 0.006384857930243015, -0.08690541982650757, -0.023596255108714104, 0.05561196058988571, -0.013614472933113575, -0.20405110716819763, -0.0009861381258815527, -0.016590803861618042, 0.05706058070063591, -0.05083736777305603, -0.08834914863109589, 0.0381043367087841, 0.020942922681570053, -0.12173932790756226, 0.18575935065746307, -0.10168911516666412, -0.17537358403205872, -0.09850233793258667, -0.07560152560472488, -0.037698667496442795, 0.06017147749662399, 0.0270499587059021, -0.06580745428800583, -0.030284393578767776, -0.07339814305305481, 0.015201294794678688, -0.07741763442754745, 0.032950565218925476, 0.02312828041613102, -0.036868683993816376, -0.019487464800477028, -0.06533616781234741, -0.014071236364543438, -0.1196310967206955, 0.003518814919516444, 0.04682379961013794, -0.13308832049369812, 0.09030931442975998, 0.23274902999401093, -0.024733835831284523, 0.022522207349538803, -0.0201854445040226, 0.1504155844449997, 0.037710316479206085, -0.019451763480901718, 0.14287830889225006, -0.12561191618442535, 0.051465749740600586, 0.12295687943696976, 0.05697788670659065, -0.02505226619541645, -0.0022011655382812023, -0.06834260374307632, -0.08889522403478622, -0.14856982231140137, -0.10822615027427673, -0.10589233040809631, 0.03002144582569599, 0.014155406504869461, -0.00438971072435379, 0.024689819663763046, 0.11940260231494904, 0.012268313206732273, 0.054220229387283325, -0.08248751610517502, 0.0330507755279541, 0.10338100045919418, -0.02178005315363407, 0.14068683981895447, -0.011397925205528736, -0.07555650174617767, 0.06470976024866104, -0.030912837013602257, 0.11365118622779846, -0.005740771535784006, 0.13813917338848114, 0.05526746064424515, 0.14366549253463745, 0.10532023012638092, 0.11183439195156097, -0.10361646115779877, -0.01582985557615757, -0.050714198499917984, -0.05811586230993271, -0.0840383917093277, 0.07077880948781967, 0.02829078771173954, -0.004455095622688532, -0.06783412396907806, 0.05739922076463699, 0.03873581066727638, 0.02561338245868683, 0.14218248426914215, -0.2759283483028412, -0.07153791934251785, 0.020939094945788383, 0.12123016268014908, -0.012781918048858643, 0.06866996735334396, 0.059086401015520096, 0.021058036014437675, -0.030878083780407906, 0.045094337314367294, 0.08095842599868774, -0.017142968252301216, 0.09370137006044388, -0.022437993437051773, 0.025957748293876648, 0.029430080205202103, 0.06342242658138275, -0.1529206484556198, 0.18516331911087036, -0.005347634200006723, -0.056584760546684265, -0.03203120082616806, -0.0353553332388401, 0.0001399150351062417, 0.15141409635543823, 0.13846585154533386, 0.03195447474718094, -0.1326179951429367, -0.12991464138031006, -0.05981523171067238, 0.06190741807222366, 0.11284671723842621, -0.032890770584344864, 0.06475551426410675, 0.007676577195525169, 0.011213032528758049, 0.06927784532308578, -0.02116803452372551, 0.014347759075462818, -0.10528820008039474, 0.03243538737297058, 0.06670655310153961, 0.012535694055259228, 0.00583883561193943, -0.03333861380815506, 0.0010680453851819038, 0.24048717319965363, -0.05277075618505478, -0.0640164241194725, -0.10171975195407867, -0.01819206029176712, 0.15023371577262878, -0.09870962798595428, 0.006663853302598, -0.010538341477513313, -0.010587532073259354, -0.0031969647388905287, -0.14991076290607452, 0.1551714837551117, -0.06663262844085693, -0.022047724574804306, -0.060506485402584076, 0.12558701634407043, 0.017380686476826668, 0.07900466024875641, 0.03949860855937004, 0.0005207984359003603, -0.04334176704287529, -0.10077758133411407, -0.057323042303323746, 0.005739943590015173, 0.05872518569231033, 0.11481164395809174, -0.12254718691110611, 0.09472993016242981, -0.005796143785119057, 0.09768906235694885, 0.20345063507556915, 0.15604744851589203, -0.07771188020706177, 0.11685761064291, 0.18853366374969482, -0.03237098827958107, -0.2765061557292938, -0.06418953090906143, -0.00764232873916626, 0.061680715531110764, 0.0007831541006453335, -0.1489492654800415, 0.1510494351387024, 0.06879628449678421, 0.01756371557712555, -0.03204544261097908, -0.18308359384536743, -0.09348294883966446, 0.19014893472194672, 0.009435422718524933, 0.3985236883163452, -0.08411302417516708, -0.08380678296089172, -0.029822437092661858, -0.05367138981819153, 0.15552622079849243, -0.007975845597684383, 0.04579758271574974, 0.002535591833293438, 0.032716281712055206, 0.043799687176942825, -0.012831739149987698, 0.13779796659946442, 0.057140715420246124, 0.012594987638294697, -0.01003346312791109, -0.11725777387619019, 0.06704357266426086, 0.004232281353324652, 0.10879482328891754, -0.026761546730995178, 0.06340175122022629, -0.16540928184986115, -0.055677663534879684, -0.06129411980509758, -0.016538970172405243, 0.028067007660865784, -0.0617506317794323, -0.05341186001896858, -0.0173330195248127, 0.05707142502069473, 0.015757055953145027, 0.17195385694503784, -0.09529298543930054, -0.027353664860129356, 0.10725430399179459, 0.1718674898147583, -0.08550731837749481, -0.08504638075828552, 0.043977100402116776, -0.04549654200673103, 0.08920636773109436, -0.12496822327375412, 0.044073015451431274, 0.13841377198696136, 0.03491128608584404, 0.05883127823472023, 0.1141778826713562, 0.052102286368608475, 0.009418057277798653, 0.0626344084739685, -0.16659902036190033, 0.014188826084136963, -0.030763033777475357, -0.01996127888560295, -0.1038198471069336, 0.07457033544778824, 0.12107862532138824, -0.046129971742630005, 0.008146687410771847, -0.009708737954497337, 0.020151900127530098, -0.05101804435253143, 0.040258653461933136, 0.07201386988162994, 0.03979858011007309, -0.14559891819953918, -0.02225324511528015, 0.027056287974119186, -0.04562295973300934, -0.0004099973011761904, 0.006986771244555712, -0.1262432485818863, -0.04601152613759041, -0.13554935157299042, 0.04157264530658722, -0.09895607084035873, -0.03579172492027283, -0.062008924782276154, -0.1585330069065094, 0.027338597923517227, 0.1459568291902542, 0.10632842779159546, 0.04839370399713516, -0.10804115980863571, -0.04019071161746979, -0.09624777734279633, 0.011578936129808426, 0.05921466648578644, 0.03795115649700165, -0.05205172672867775, 0.08723194897174835, -0.07196441292762756, 0.10442136228084564, -0.07330793142318726, -0.0044060805812478065, -0.1389717310667038, 0.02329365722835064, -0.15040342509746552, -0.031471896916627884, -0.09083522856235504, -0.07086718082427979, 0.039876893162727356, -0.03787028416991234, -0.03224844112992287, -0.003951122518628836, -0.07881706953048706, 0.05163555592298508, 0.03644638508558273, -0.00442188885062933, -0.06883181631565094, -0.02238968387246132, 0.07184964418411255, -0.0314021073281765, 0.060117967426776886, 0.1291016936302185, -0.08430492877960205, 0.0729018971323967, -0.1681738942861557, -0.05132873356342316, 0.09618836641311646, 0.08108807355165482, 0.058063119649887085, 0.09408881515264511, -0.01520475558936596, 0.06433230638504028, 0.004294900689274073, -0.00481052789837122, 0.07775944471359253, -0.009850415401160717, -0.002905512461438775, -0.034427251666784286, -0.02450362779200077, -0.03706544265151024, -0.018625972792506218, 0.04705841839313507, 0.12437208741903305, 0.08925613015890121, -0.015024210326373577, 0.04450715333223343, -0.10208874940872192, 0.02545471116900444, -0.00011850148439407349, -0.07421547174453735, -0.11491601914167404, -0.11855519562959671, 0.04242125526070595, -0.0031081202905625105, 0.1933421790599823, -0.09724165499210358, -0.018744533881545067, -0.03429894894361496, 0.033813830465078354, 0.17594848573207855, 0.007469508796930313, 0.3044716417789459, 0.07481882721185684, -0.020042238757014275, -0.049852363765239716, 0.0688801184296608, 0.020200323313474655, 0.11855937540531158, 0.12666542828083038, -0.000368299224646762, 0.021406738087534904, 0.12019668519496918, 0.02100352756679058, 0.038672588765621185, 0.012206757441163063, -0.0801691859960556, -0.05624055117368698, 0.005910115782171488, 0.06059600040316582, 0.21814580261707306, 0.06323911994695663, -0.018491679802536964, 0.057723987847566605, 0.03904862701892853, -0.12125888466835022, -0.14972040057182312, -0.12847591936588287, -0.06467942893505096, -0.1756112277507782, -0.02776089683175087, -0.15471251308918, -0.08979739248752594, 0.1438438594341278, 0.02264629863202572, 0.03043096698820591, 0.055415078997612, -0.11255010217428207, 0.020734813064336777, 0.0401383712887764, -0.03392133116722107, 0.026158353313803673, 0.04796258732676506, -0.03875168412923813, 0.05306649208068848, 0.009886223822832108, 0.026859521865844727, -0.01569192111492157, 0.051880620419979095, -0.01697593554854393, 0.007908342406153679, -0.09605491906404495, -0.08523793518543243, 0.05822652950882912, 0.0052394079975783825, 0.1280495673418045, 0.024104198440909386, -0.05622740089893341, -0.0513121671974659, 0.06270816922187805, -0.061979226768016815, -0.00742934737354517, -0.07471329718828201, 0.225529283285141, 0.023679716512560844, 0.08415193855762482, -0.013005625456571579, -0.07838423550128937, -0.042376305907964706, 0.23671041429042816, 0.22843125462532043, -0.1549719125032425, -0.005158279091119766, -0.018251881003379822, 0.03616016358137131, 0.03873921558260918, 0.04569028317928314, 0.06591929495334625, 0.2727694511413574, -0.0670098215341568, -0.09936525672674179, -0.03755982592701912, 0.0120205357670784, -0.061906687915325165, -0.05640937015414238, 0.08180590718984604, -0.0712413415312767, -0.06506995111703873, 0.05197389796376228, -0.1887052357196808, 0.04102105647325516, 0.025359436869621277, -0.11008290946483612, -0.02659522369503975, -0.03804827481508255, 0.012587882578372955, 0.07479540258646011, 0.06767354905605316, -0.0971633717417717, -0.015367118641734123, 0.12561342120170593, 0.010875982232391834, -0.23159797489643097, 0.05566171929240227, 0.0914926677942276, -0.014534445479512215, 0.03964889794588089, 0.012953720055520535, 0.14675407111644745, 0.02193165384232998, 0.046487003564834595, 0.01144028827548027, 0.0006564618088304996, 0.006815382279455662, -0.05073234438896179, -0.014123925007879734, 0.022785013541579247, -0.014419479295611382, 0.022839149460196495, 0.032232679426670074, -0.18719929456710815, 0.005783496890217066, 0.03427711874246597, -0.09059379249811172, -0.03383052721619606, -0.03439348191022873, -0.06244951859116554, 0.08886092901229858, 0.16506755352020264, -0.015873292461037636, -0.04540395364165306, -0.004405078943818808, 0.011579717509448528, 0.00945646595209837, -0.035384390503168106, -0.010156511329114437, -0.09059008210897446, -0.04354042932391167, 0.10611404478549957, 0.0008527316967956722, -0.20360296964645386, -0.04419977217912674, -0.07424087822437286, 0.01959528774023056, -0.01918327435851097, 0.03394053503870964, 0.08169595152139664, 0.056969109922647476, -0.029759906232357025, 0.03215457871556282, 0.044759076088666916, 0.03992301970720291, -0.08898600935935974, -0.13814136385917664 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-base An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-roberta-base](https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
{}
feature-extraction
cambridgeltl/trans-encoder-bi-simcse-roberta-base
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2109.13059", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.13059" ]
[]
TAGS #transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-base An unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input.
[ "### cambridgeltl/trans-encoder-bi-simcse-roberta-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n", "### cambridgeltl/trans-encoder-bi-simcse-roberta-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ 38, 123 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n### cambridgeltl/trans-encoder-bi-simcse-roberta-base\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-base as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ -0.08901646733283997, -0.01856093481183052, -0.0037549694534391165, 0.008638128638267517, 0.08238053321838379, 0.020430022850632668, 0.08182504028081894, 0.026875516399741173, 0.08513761311769485, 0.02172866277396679, 0.14541170001029968, 0.13981112837791443, 0.00015846671885810792, 0.0192482378333807, -0.04629024863243103, -0.1943621039390564, 0.09013615548610687, 0.06417667120695114, -0.06856390833854675, 0.12854032218456268, 0.105876125395298, -0.0388832688331604, 0.0802253782749176, 0.002896293066442013, -0.04605661332607269, 0.015203421004116535, 0.001322590047493577, -0.027325740084052086, 0.08717672526836395, 0.011077792383730412, 0.12031307816505432, 0.11322963237762451, 0.06704138219356537, -0.09991428256034851, 0.036823615431785583, -0.030816074460744858, -0.04269559681415558, 0.07529179751873016, -0.06359617412090302, -0.07201739400625229, 0.1630593240261078, -0.008542876690626144, 0.019947782158851624, -0.001408631564117968, -0.1222962960600853, -0.05789560079574585, 0.00912728626281023, 0.06870731711387634, 0.06053704768419266, 0.04212694615125656, -0.010977234691381454, 0.13942040503025055, -0.14569184184074402, 0.10829930007457733, 0.07259692251682281, -0.2878139019012451, 0.01062943134456873, 0.08831007033586502, 0.07641676068305969, -0.005229441449046135, 0.015980137512087822, 0.0037786723114550114, 0.017199579626321793, -0.009531615301966667, -0.012055707164108753, -0.09491117298603058, -0.11668341606855392, 0.0978313535451889, -0.12747369706630707, 0.004274351987987757, 0.24740242958068848, 0.0003715772181749344, -0.04551299288868904, 0.1064656674861908, -0.06434205919504166, -0.07523876428604126, 0.0036607966758310795, -0.07261648774147034, -0.01865452155470848, 0.04194149374961853, -0.04355207085609436, -0.01863212324678898, -0.06330114603042603, -0.06638069450855255, -0.11739812791347504, 0.0818224549293518, -0.0077006518840789795, 0.07397426664829254, -0.10505535453557968, 0.043339621275663376, -0.10422079265117645, -0.08735240250825882, 0.0018638913752511144, -0.08928395807743073, -0.07416540384292603, 0.03803085535764694, -0.051380716264247894, -0.011241639032959938, -0.02567545510828495, 0.0712750032544136, 0.12969565391540527, 0.019323676824569702, 0.05707935988903046, 0.0819428563117981, 0.05311356857419014, 0.022244596853852272, -0.08982661366462708, 0.004142651334404945, 0.05856122076511383, -0.005006385501474142, 0.014129972085356712, -0.07124462723731995, -0.1456138640642166, -0.005711331032216549, -0.0431220717728138, -0.03757913038134575, -0.042070306837558746, 0.07677865773439407, -0.07076366245746613, -0.04121599346399307, 0.0845886692404747, -0.04186856374144554, -0.0429893396794796, 0.010298539884388447, -0.050774261355400085, 0.13876651227474213, 0.10176470130681992, 0.02605561539530754, -0.009099514223635197, 0.026963405311107635, -0.11841782927513123, -0.0022329995408654213, -0.05158468708395958, -0.08562462031841278, -0.02692759782075882, -0.1306457817554474, 0.029556477442383766, -0.07828281819820404, -0.1760379672050476, -0.017377939075231552, 0.005375000648200512, -0.009213285520672798, -0.0029433646705001593, -0.09947669506072998, 0.01390692126005888, -0.03328237682580948, -0.047589126974344254, -0.24836525321006775, -0.012496679089963436, 0.05511757358908653, 0.011184425093233585, 0.07451457530260086, -0.234706848859787, 0.04120449721813202, -0.18545319139957428, 0.0313989520072937, -0.17007799446582794, 0.09833398461341858, -0.03097054734826088, 0.051388826221227646, -0.02734924666583538, -0.0700078010559082, -0.04841482639312744, 0.05689265951514244, 0.02493787556886673, 0.1491580605506897, -0.1667173057794571, -0.07734069973230362, 0.12232067435979843, -0.1399538666009903, -0.12003059685230255, 0.0762219950556755, -0.06184086576104164, 0.07816775143146515, 0.07384185492992401, 0.1794372946023941, 0.011609245091676712, 0.03727263957262039, 0.027693165466189384, 0.0707811787724495, -0.0026020407676696777, -0.0673203244805336, 0.060579728335142136, 0.03766029700636864, -0.11213646829128265, 0.051196493208408356, -0.0961710512638092, 0.001514207455329597, -0.047119054943323135, -0.04829055815935135, -0.024862468242645264, -0.061894357204437256, 0.05260750278830528, 0.01701951213181019, 0.07199806720018387, -0.027554800733923912, -0.02140679396688938, 0.10324282944202423, 0.08740289509296417, -0.07419751584529877, 0.028812365606427193, -0.09902669489383698, 0.061269551515579224, 0.004980449099093676, -0.022167647257447243, -0.20212575793266296, 0.005218305625021458, -0.04231056198477745, 0.21193866431713104, 0.07567039877176285, 0.05934521183371544, 0.030262814834713936, 0.014050710946321487, -0.003874130779877305, 0.024455692619085312, 0.10619476437568665, 0.010957294143736362, -0.022453397512435913, -0.17432187497615814, -0.07919302582740784, -0.03576879948377609, 0.05748376622796059, -0.10651647299528122, 0.026161164045333862, -0.03630424663424492, 0.08896567672491074, -0.043927017599344254, -0.0181450005620718, 0.0030001529958099127, 0.05832720547914505, -0.04641180485486984, 0.0578814372420311, 0.04337667301297188, 0.018450435250997543, -0.15375123918056488, 0.12260327488183975, -0.10340705513954163, 0.017796479165554047, 0.11976999044418335, -0.12617231905460358, -0.042930711060762405, -0.004088659770786762, 0.012993309646844864, 0.028369562700390816, 0.11683744937181473, 0.013329055160284042, 0.21053753793239594, -0.047595590353012085, 0.10654304921627045, -0.07106583565473557, 0.021556271240115166, -0.03136739879846573, -0.09067284315824509, 0.028233161196112633, 0.13376566767692566, 0.09404351562261581, -0.14890900254249573, 0.08540483564138412, 0.000528940639924258, -0.10171948373317719, 0.05636760964989662, -0.008052946999669075, -0.050266191363334656, -0.057119011878967285, 0.013686423189938068, -0.006848190911114216, 0.11080679297447205, -0.19500631093978882, -0.05064099654555321, 0.04072831943631172, -0.06857120990753174, 0.010672912001609802, -0.09380458295345306, -0.03134904056787491, 0.04219833016395569, -0.010122877545654774, -0.1762091964483261, -0.00600875960662961, -0.029198184609413147, 0.06249389052391052, -0.05354731157422066, -0.08344359695911407, 0.02825695089995861, 0.019601276144385338, -0.13012351095676422, 0.1933632642030716, -0.12028052657842636, -0.12695541977882385, -0.12452645599842072, -0.05526597052812576, -0.011585810221731663, 0.06475018709897995, 0.023351125419139862, -0.06278039515018463, -0.027996234595775604, -0.061754804104566574, -0.01946212537586689, -0.08362554013729095, -0.0011584378080442548, 0.020967841148376465, -0.0010024320799857378, -0.026616264134645462, -0.05943748727440834, -0.010652542114257812, -0.11550741642713547, 0.009240034967660904, 0.06283098459243774, -0.1306351125240326, 0.07204718887805939, 0.2042289674282074, 0.0013431222178041935, 0.017942707985639572, -0.016714146360754967, 0.14831821620464325, 0.02713216096162796, -0.012746625579893589, 0.15318694710731506, -0.13240426778793335, 0.04018867015838623, 0.11584898084402084, 0.03375035896897316, -0.02828950807452202, -0.001152561977505684, -0.07504076510667801, -0.10666794329881668, -0.18020394444465637, -0.09551370143890381, -0.10844326764345169, -0.0038534027989953756, -0.03328367695212364, 0.000543287955224514, 0.06719911843538284, 0.1416965126991272, 0.0072246999479830265, 0.039821404963731766, -0.06242725998163223, 0.037935853004455566, 0.08308210968971252, -0.011920759454369545, 0.13590461015701294, -0.037662096321582794, -0.07555139064788818, 0.052030112594366074, -0.03301192447543144, 0.11373495310544968, 0.004116267431527376, 0.10571729391813278, 0.06761537492275238, 0.18888670206069946, 0.09982562065124512, 0.08408885449171066, -0.08386647701263428, -0.010575056076049805, -0.045598555356264114, -0.0537484772503376, -0.10405702143907547, 0.0764203891158104, -0.004766496829688549, -0.011591500602662563, -0.026167742908000946, 0.09613998234272003, 0.03412294760346413, 0.031867578625679016, 0.12831071019172668, -0.27225416898727417, -0.0768887922167778, 0.040423549711704254, 0.1361725777387619, -0.011570088565349579, 0.050817884504795074, -0.0027784265112131834, -0.009035198017954826, -0.026927538216114044, 0.053805433213710785, 0.07757469266653061, -0.023042235523462296, 0.059705473482608795, -0.06409682333469391, 0.006433708127588034, 0.02807818539440632, 0.06225826218724251, -0.16779248416423798, 0.19412344694137573, -0.013695171102881432, -0.0436570905148983, -0.022159580141305923, -0.016455110162496567, -0.001128476345911622, 0.11692657321691513, 0.15793244540691376, 0.03165140002965927, -0.23878809809684753, -0.09211240708827972, -0.059782981872558594, 0.05689657852053642, 0.09899382293224335, -0.030114419758319855, 0.06292126327753067, -0.00030299514764919877, 0.021563034504652023, 0.06325904279947281, -0.04249870404601097, -0.0026146217714995146, -0.106003038585186, 0.03932764381170273, 0.03953272104263306, -0.001567325321957469, -0.00017301575280725956, -0.011133020743727684, 0.04593845084309578, 0.24911628663539886, -0.053872451186180115, -0.05632316693663597, -0.11680489778518677, -0.011407734826207161, 0.14956949651241302, -0.09575524181127548, 0.016157157719135284, -0.01942123845219612, -0.03938305750489235, -0.005884166341274977, -0.14434583485126495, 0.13833045959472656, -0.06473246961832047, -0.006521501112729311, -0.06318609416484833, 0.13395532965660095, 0.03860285133123398, 0.07419147342443466, 0.0448138564825058, 0.01663792133331299, -0.052885089069604874, -0.09390849620103836, -0.0479905866086483, -0.03207334876060486, 0.03885471820831299, 0.12383279204368591, -0.10904689133167267, 0.05982073396444321, -0.03294125944375992, 0.060793373733758926, 0.19183094799518585, 0.1650332659482956, -0.07704313099384308, 0.14190712571144104, 0.17349030077457428, -0.06312250345945358, -0.24886608123779297, -0.0629410669207573, -0.02451012097299099, 0.0659361258149147, -0.009537794627249241, -0.1472589522600174, 0.1319989562034607, 0.0499829538166523, 0.0023617702536284924, -0.07213336229324341, -0.14513888955116272, -0.0887259691953659, 0.21255676448345184, 0.00163744215387851, 0.3935650587081909, -0.10407508909702301, -0.09169907122850418, -0.026472991332411766, -0.09219203144311905, 0.12039836496114731, -0.04251202568411827, 0.03995975852012634, 0.009272895753383636, 0.010654824785888195, 0.028273720294237137, -0.016095906496047974, 0.15677130222320557, 0.06770562380552292, 0.031133359298110008, -0.024957163259387016, -0.10419266670942307, 0.12137463688850403, 0.021170733496546745, 0.08028201013803482, 0.012726720422506332, 0.07536160945892334, -0.19880689680576324, -0.025777019560337067, -0.05204810947179794, -0.009968644939363003, 0.02193295769393444, -0.05191605165600777, -0.06573925912380219, -0.008561674505472183, 0.03089824691414833, 0.004788341000676155, 0.185951828956604, -0.101899154484272, 0.05214647948741913, 0.10748295485973358, 0.139268696308136, -0.01128828339278698, -0.03487939387559891, 0.052431486546993256, -0.03624339401721954, 0.06767261028289795, -0.1434907466173172, 0.029805734753608704, 0.11318999528884888, 0.03062385506927967, 0.0774889588356018, 0.10042989253997803, 0.016165968030691147, 0.0358688160777092, 0.08497797697782516, -0.1879306435585022, 0.07939262688159943, -0.02422945946455002, -0.0647587701678276, -0.05363532155752182, 0.04441041126847267, 0.13960517942905426, -0.049496106803417206, -0.003709881566464901, -0.012792660854756832, 0.02030380442738533, -0.07889024168252945, 0.03236784413456917, 0.07730157673358917, 0.036127328872680664, -0.14707371592521667, -0.0023578102700412273, 0.028920063748955727, -0.021559424698352814, 0.016211314126849174, 0.01773436926305294, -0.13546288013458252, -0.05087163671851158, -0.13764989376068115, 0.0616445355117321, -0.14361672103405, -0.030490104109048843, -0.11575338244438171, -0.16956399381160736, 0.009372960776090622, 0.17431771755218506, 0.09319591522216797, 0.05596936121582985, -0.09080923348665237, -0.043231621384620667, -0.09114372730255127, -0.013725517317652702, 0.08334145694971085, 0.017111163586378098, -0.04319317638874054, 0.08012847602367401, -0.055408887565135956, 0.09253107756376266, -0.0689912885427475, -0.021752241998910904, -0.14739543199539185, 0.05185742303729057, -0.10700150579214096, -0.024904660880565643, -0.11249011754989624, -0.07200106978416443, 0.05098312720656395, -0.06374985724687576, -0.03980136662721634, 0.0007440212648361921, -0.07795752584934235, 0.059087980538606644, 0.020454304292798042, -0.014954048208892345, -0.06370335817337036, -0.021620864048600197, 0.0925075113773346, -0.04436805099248886, 0.052066873759031296, 0.18882186710834503, -0.07388510555028915, 0.07962114363908768, -0.18508490920066833, -0.01894487626850605, 0.09071248769760132, 0.06562545895576477, 0.03136417269706726, 0.07142060250043869, -0.0063180201686918736, 0.0571555495262146, 0.011705751530826092, -0.006209303624927998, 0.07667841017246246, -0.022210445255041122, -0.018648572266101837, -0.027102652937173843, -0.03890364244580269, -0.04073861986398697, -0.017054259777069092, 0.09062095731496811, 0.11529377102851868, 0.07524287700653076, -0.019378256052732468, 0.049647822976112366, -0.10612960904836655, 0.02553137019276619, -0.006017186213284731, -0.07912909984588623, -0.12170150876045227, -0.12702341377735138, 0.036379147320985794, -0.0016077825566753745, 0.1822296679019928, -0.1046195849776268, -0.019177932292222977, -0.02804170362651348, 0.04818880558013916, 0.2130761742591858, 0.0252985917031765, 0.2403201460838318, 0.09660597890615463, -0.018558340147137642, -0.058849070221185684, 0.05591154471039772, -0.0070912521332502365, 0.028117872774600983, 0.08094536513090134, 0.004324746318161488, 0.07259519398212433, 0.12570340931415558, 0.050584644079208374, 0.0571882538497448, 0.09801315516233444, -0.05599884316325188, -0.04896640032529831, -0.03634444624185562, 0.06865658611059189, 0.16283240914344788, 0.13606595993041992, -0.023910047486424446, 0.06666675209999084, 0.04122425615787506, -0.11622556298971176, -0.1728982925415039, -0.13654841482639313, -0.053991299122571945, -0.16122852265834808, -0.006726905237883329, -0.1487773358821869, -0.08471670746803284, 0.1508016586303711, 0.016248220577836037, 0.03527341037988663, 0.025810645893216133, -0.055092714726924896, 0.004236578941345215, 0.020144039765000343, -0.022844120860099792, 0.020425014197826385, 0.03329075127840042, -0.02623720094561577, 0.07056526094675064, 0.005563774611800909, 0.019480373710393906, -0.012547972612082958, 0.07768800109624863, 0.013350437395274639, -0.01676919311285019, -0.09540706127882004, -0.06784126162528992, 0.05758349597454071, -0.021333878859877586, 0.12400618940591812, 0.028327828273177147, -0.04648767039179802, -0.035519860684871674, 0.10119763016700745, -0.05673813074827194, -0.018022824078798294, -0.1125851571559906, 0.20188309252262115, 0.022596342489123344, 0.05878126621246338, -0.015498507767915726, -0.06458029896020889, 0.011051340028643608, 0.23056282103061676, 0.24927349388599396, -0.11299403756856918, 0.0038010156713426113, -0.02214753068983555, 0.03164256364107132, 0.043266989290714264, 0.008471835404634476, 0.07270149886608124, 0.24147038161754608, -0.08810877799987793, -0.10865645110607147, -0.07392748445272446, -0.0004162091063335538, -0.045033473521471024, -0.05123685672879219, 0.07058563083410263, -0.07398146390914917, -0.03844554349780083, 0.07069040089845657, -0.2169799506664276, 0.013461614027619362, 0.049277983605861664, -0.11498191207647324, -0.03635565936565399, -0.052453115582466125, -0.0069650947116315365, 0.08775706589221954, 0.04879656061530113, -0.08102130144834518, -0.026110440492630005, 0.11236970871686935, 0.038374725729227066, -0.23572105169296265, 0.03261907026171684, 0.09605717658996582, -0.026393618434667587, 0.004443541634827852, -0.019454242661595345, 0.12351767718791962, 0.03281926363706589, 0.06897196918725967, 0.014397364109754562, 0.02818397991359234, 0.013947797939181328, -0.04535435885190964, -0.0145476208999753, 0.026068316772580147, -0.004757712595164776, 0.046769559383392334, 0.03757265955209732, -0.15201306343078613, 0.030671998858451843, -0.0034095076844096184, -0.0848936140537262, -0.01584312506020069, -0.014628392644226551, -0.07442954182624817, 0.10188385099172592, 0.14103934168815613, -0.02909514307975769, -0.02582964487373829, -0.019778970628976822, -0.0041732932440936565, 0.01640802063047886, -0.05834931507706642, -0.00880091916769743, -0.10199148952960968, -0.039076440036296844, 0.10988203436136246, 0.01549637969583273, -0.21957142651081085, -0.05560774356126785, -0.07400812208652496, -0.00660998048260808, -0.021085746586322784, 0.051820963621139526, 0.08890640735626221, 0.07150142639875412, -0.03455286845564842, 0.033596500754356384, 0.05330582335591316, 0.05569052696228027, -0.07564134150743484, -0.13396653532981873 ]
null
null
transformers
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-large An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-roberta-large](https://huggingface.co/princeton-nlp/unsup-simcse-roberta-large) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
{}
feature-extraction
cambridgeltl/trans-encoder-bi-simcse-roberta-large
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2109.13059", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.13059" ]
[]
TAGS #transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-large An unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-large as the base model. Please use '[CLS]' (before pooler) as the representation of the input.
[ "### cambridgeltl/trans-encoder-bi-simcse-roberta-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-large as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n", "### cambridgeltl/trans-encoder-bi-simcse-roberta-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-large as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ 38, 125 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #arxiv-2109.13059 #endpoints_compatible #region-us \n### cambridgeltl/trans-encoder-bi-simcse-roberta-large\nAn unsupervised sentence encoder (bi-encoder) proposed by Liu et al. (2021). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using princeton-nlp/unsup-simcse-roberta-large as the base model. Please use '[CLS]' (before pooler) as the representation of the input." ]
[ -0.08350895345211029, -0.04438817873597145, -0.004140857607126236, 0.013372426852583885, 0.08750487118959427, 0.009287074208259583, 0.06555142998695374, 0.022407975047826767, 0.10385764390230179, 0.03781435638666153, 0.14713013172149658, 0.11957346647977829, -0.011761202476918697, 0.04449484124779701, -0.046277645975351334, -0.2238025814294815, 0.07961367070674896, 0.06612514704465866, -0.07638537883758545, 0.13014917075634003, 0.10679277777671814, -0.0696832612156868, 0.08723657578229904, -0.0007948199054226279, -0.06247157230973244, 0.00026361795607954264, -0.008893304504454136, -0.020232554525136948, 0.08428819477558136, 0.012708529829978943, 0.10608943551778793, 0.11161249130964279, 0.0636114552617073, -0.09257224947214127, 0.03360718488693237, -0.04587576538324356, -0.022862089797854424, 0.07778097689151764, -0.03887111321091652, -0.031561899930238724, 0.1585599184036255, -0.05827437341213226, 0.016021233052015305, -0.0038171291816979647, -0.09968395531177521, -0.07391037791967392, 0.003282314632087946, 0.0707935094833374, 0.05044339969754219, 0.0330183170735836, -0.010079494677484035, 0.11635385453701019, -0.15200449526309967, 0.09809093922376633, 0.09729127585887909, -0.29804447293281555, 0.01840871199965477, 0.10150883346796036, 0.07220465689897537, 0.0016179296653717756, 0.007248672191053629, -0.0029128838796168566, 0.02230590209364891, -0.009094771929085255, 0.016142599284648895, -0.10221076011657715, -0.10813652724027634, 0.08560290187597275, -0.13222640752792358, 0.004657902289181948, 0.23895028233528137, 0.004267112351953983, -0.034483205527067184, 0.06830093264579773, -0.06428609788417816, -0.07134878635406494, -0.002108324319124222, -0.07153717428445816, 0.006702044978737831, 0.011628583073616028, -0.044577449560165405, -0.01994243450462818, -0.06774409860372543, -0.05527409538626671, -0.15451063215732574, 0.08807352930307388, -0.002171413041651249, 0.07001543790102005, -0.1137595921754837, 0.0181373730301857, -0.12333083152770996, -0.07082030922174454, 0.0011699756141752005, -0.08820722997188568, -0.07689011842012405, 0.04215500131249428, -0.054166290909051895, -0.022231753915548325, -0.022206876426935196, 0.04684770479798317, 0.08267704397439957, 0.0024464589077979326, 0.07375801354646683, 0.08710632473230362, 0.05122498795390129, 0.04982532560825348, -0.10974285751581192, 0.012249269522726536, 0.039481449872255325, -0.007285682950168848, 0.015253402292728424, -0.05850433185696602, -0.15098786354064941, -0.026110965758562088, -0.04607433080673218, -0.03922690078616142, -0.05720264092087746, 0.08812908083200455, -0.054104484617710114, -0.04407697170972824, 0.08279508352279663, -0.03941810876131058, -0.036567095667123795, 0.005292739253491163, -0.04618397355079651, 0.16739793121814728, 0.07617630809545517, 0.008633335120975971, -0.012112220749258995, 0.05137434974312782, -0.11813459545373917, 0.0031766719184815884, -0.041939057409763336, -0.09649251401424408, -0.016751950606703758, -0.11671364307403564, 0.024424152448773384, -0.08724714815616608, -0.14438915252685547, -0.006797310896217823, -0.020414533093571663, 0.005213813856244087, -0.023094048723578453, -0.08407004922628403, 0.01686425879597664, -0.05087386444211006, -0.05439545214176178, -0.22829577326774597, -0.0047470396384596825, 0.0617903470993042, 0.004810496233403683, 0.0982808768749237, -0.24111689627170563, 0.03634915500879288, -0.18853062391281128, 0.03397345915436745, -0.14967241883277893, 0.08752914518117905, 0.0033937457483261824, 0.050556667149066925, -0.03144847974181175, -0.10257628560066223, -0.054952651262283325, 0.062358371913433075, 0.00804293155670166, 0.12231573462486267, -0.15527606010437012, -0.08140421658754349, 0.16117770969867706, -0.11502478271722794, -0.12149535864591599, 0.09006750583648682, -0.048916786909103394, 0.06730224937200546, 0.08288709819316864, 0.17710258066654205, -0.0012195936869829893, 0.05134056136012077, 0.012569284997880459, 0.06309040635824203, -0.016935382038354874, -0.08116047829389572, 0.07884136587381363, 0.02809213660657406, -0.09809412807226181, 0.05193182826042175, -0.07823050022125244, -0.007322612684220076, -0.055499117821455, -0.03627511486411095, -0.024750426411628723, -0.07015398144721985, 0.07479996234178543, 0.005568611901253462, 0.07772674411535263, -0.03217076510190964, -0.004927436821162701, 0.10770384222269058, 0.07577545195817947, -0.0768028050661087, 0.02980779856443405, -0.09931632876396179, 0.04911276698112488, 0.000322433392284438, -0.00884918961673975, -0.20536229014396667, 0.009662535041570663, -0.037179991602897644, 0.19253741204738617, 0.0733555480837822, 0.09604548662900925, 0.029078779742121696, -0.0003380998387001455, -0.013726387172937393, 0.04338454082608223, 0.11595746874809265, -0.009107307530939579, -0.03363464027643204, -0.12479724735021591, -0.07658493518829346, -0.027645770460367203, 0.025079818442463875, -0.11434996873140335, 0.022125713527202606, -0.020193682983517647, 0.06238261237740517, -0.035906996577978134, -0.0042756651528179646, 0.0037888078950345516, 0.06651008874177933, -0.04029319807887077, 0.07222790271043777, 0.04819526895880699, -0.003785904264077544, -0.15740391612052917, 0.12976130843162537, -0.11037221550941467, 0.04257676377892494, 0.12361275404691696, -0.11549917608499527, -0.03031834028661251, -0.02814478985965252, -0.0037271492183208466, 0.03508327901363373, 0.10459970682859421, -0.0008174733957275748, 0.1949225813150406, -0.03818172588944435, 0.12129611521959305, -0.07975619286298752, 0.014987961389124393, -0.02485501766204834, -0.07817567139863968, 0.041524507105350494, 0.13326385617256165, 0.09755226224660873, -0.13425657153129578, 0.0686112716794014, 0.031092451885342598, -0.10191934555768967, 0.066454216837883, -0.0037163652013987303, -0.06404855847358704, -0.04035321623086929, 0.010916953906416893, -0.015554819256067276, 0.07884368300437927, -0.16052314639091492, -0.05085083469748497, 0.05865373834967613, -0.05539574846625328, 0.004148524720221758, -0.08720052987337112, -0.034442223608493805, 0.04965560510754585, -0.00917738489806652, -0.17226910591125488, 0.014446403831243515, -0.0025943906512111425, 0.07080411911010742, -0.050689298659563065, -0.08157525956630707, 0.024896664544939995, 0.02091142162680626, -0.11866682767868042, 0.19234530627727509, -0.0950874537229538, -0.17015837132930756, -0.11283066123723984, -0.05274409055709839, -0.015365950763225555, 0.057159241288900375, 0.021575111895799637, -0.06422098726034164, -0.02312914840877056, -0.07014892995357513, 0.014375885017216206, -0.07327524572610855, 0.014478972181677818, 0.01370687410235405, 0.008729900233447552, -0.028667354956269264, -0.05007221922278404, -0.014130664058029652, -0.12060165405273438, -0.017970746383070946, 0.06465683877468109, -0.12732796370983124, 0.08354578912258148, 0.2118234634399414, -0.02105575054883957, 0.014090580865740776, -0.025560779497027397, 0.12069374322891235, 0.022892208769917488, -0.018971966579556465, 0.17740586400032043, -0.10881008207798004, 0.0416259691119194, 0.12884539365768433, 0.04134746268391609, -0.02075105719268322, -0.003946220967918634, -0.07366985827684402, -0.10656587779521942, -0.1709306389093399, -0.10661502182483673, -0.11676025390625, 0.024173228070139885, -0.00800454430282116, -0.005711816251277924, 0.038513872772455215, 0.13054338097572327, 0.00992420595139265, 0.05058889836072922, -0.06553289294242859, 0.03939409181475639, 0.11651027947664261, -0.014716828241944313, 0.14208462834358215, -0.03598623350262642, -0.08601002395153046, 0.0646536573767662, -0.036343567073345184, 0.13080528378486633, -0.0024005614686757326, 0.12344478070735931, 0.06541440635919571, 0.1457364708185196, 0.09652054309844971, 0.09393126517534256, -0.08348598331212997, -0.014356683008372784, -0.05441295728087425, -0.05188310518860817, -0.08911580592393875, 0.06909559667110443, 0.02586033008992672, -0.0102061927318573, -0.050363678485155106, 0.08478762954473495, 0.03893204778432846, 0.024328457191586494, 0.1339491605758667, -0.27744218707084656, -0.07592055946588516, 0.024896450340747833, 0.11691591143608093, -0.009249231778085232, 0.0645022764801979, 0.042787112295627594, -0.01814332604408264, -0.024774260818958282, 0.053675319999456406, 0.07520250976085663, -0.023825546726584435, 0.07738999277353287, -0.0567438043653965, 0.018828023225069046, 0.03884056583046913, 0.06588129699230194, -0.1628325879573822, 0.20374152064323425, -0.011644220910966396, -0.06906276941299438, -0.031249186024069786, -0.02665160596370697, -0.004509365651756525, 0.12058575451374054, 0.15004009008407593, 0.032348908483982086, -0.1915115863084793, -0.09391163289546967, -0.06407596915960312, 0.055997785180807114, 0.10592704266309738, -0.04014492407441139, 0.0669388547539711, -0.009505310095846653, 0.020153960213065147, 0.046135302633047104, -0.04569882154464722, 0.03816372901201248, -0.11099258065223694, 0.0358407236635685, 0.057646818459033966, -0.01676560938358307, -0.0003258231154177338, -0.01638103276491165, 0.02172706462442875, 0.24207043647766113, -0.04016561433672905, -0.05935760214924812, -0.10365758836269379, -0.0009475629776716232, 0.15431790053844452, -0.10284395515918732, 0.015773992985486984, -0.021962106227874756, -0.02394886687397957, -0.01320918183773756, -0.1308329999446869, 0.132436603307724, -0.04851311072707176, -0.027204835787415504, -0.04981352761387825, 0.1441916972398758, -0.002327549969777465, 0.08347946405410767, 0.0415012463927269, 0.020712746307253838, -0.04933813959360123, -0.10044649243354797, -0.06209811940789223, -0.0073356227949261665, 0.05462917312979698, 0.1374722719192505, -0.10805010050535202, 0.07059389352798462, -0.015624597668647766, 0.06520862877368927, 0.22169408202171326, 0.16963908076286316, -0.0879056304693222, 0.1299649029970169, 0.15253286063671112, -0.030404234305024147, -0.2733707129955292, -0.06604059040546417, -0.02360483445227146, 0.0644545778632164, 0.010267465375363827, -0.13297544419765472, 0.13274942338466644, 0.07063484936952591, 0.01381094753742218, -0.06529899686574936, -0.17322620749473572, -0.09302452951669693, 0.17937071621418, -0.003897689748555422, 0.399420827627182, -0.09414062649011612, -0.08265086263418198, -0.03750160336494446, -0.07396070659160614, 0.12191455066204071, -0.02530706115067005, 0.04827961325645447, -0.007469322998076677, 0.041967298835515976, 0.039928141981363297, -0.015281232073903084, 0.15079474449157715, 0.05244309827685356, 0.017749078571796417, -0.029686901718378067, -0.11501342803239822, 0.10911969095468521, 0.01106190588325262, 0.10581086575984955, -0.012838561087846756, 0.06702380627393723, -0.1696302890777588, -0.04077262058854103, -0.06705231219530106, -0.022173399105668068, 0.026642493903636932, -0.048221565783023834, -0.08521000295877457, -0.005076239351183176, 0.04029138758778572, 0.010194160044193268, 0.16477927565574646, -0.10507480800151825, 0.0025120791979134083, 0.08728539943695068, 0.1658780425786972, -0.04076559841632843, -0.06895683705806732, 0.04347778111696243, -0.03380369395017624, 0.06824646145105362, -0.14835917949676514, 0.03918560594320297, 0.1301480531692505, 0.03497399017214775, 0.06137196347117424, 0.10324425250291824, 0.03603393957018852, 0.02582901529967785, 0.08414100110530853, -0.17177876830101013, 0.027361854910850525, -0.016412200406193733, -0.030202623456716537, -0.08577819913625717, 0.05167252942919731, 0.1292569786310196, -0.04902520030736923, -0.00794762372970581, -0.008140346966683865, 0.023540643975138664, -0.05796148255467415, 0.03198901191353798, 0.07084483653306961, 0.04199650511145592, -0.14548736810684204, -0.02225668542087078, 0.04326404631137848, -0.03166365250945091, -0.002061274601146579, 0.023924212902784348, -0.13142970204353333, -0.04488445445895195, -0.13637344539165497, 0.011122491210699081, -0.1276787668466568, -0.027902469038963318, -0.0915251150727272, -0.17198586463928223, 0.01669088378548622, 0.15221098065376282, 0.09952427446842194, 0.051767874509096146, -0.08302661776542664, -0.053444135934114456, -0.10045508295297623, -0.004241219721734524, 0.06766178458929062, 0.02507212571799755, -0.05024811252951622, 0.09722720086574554, -0.07121415436267853, 0.1134454756975174, -0.06393377482891083, -0.011113750748336315, -0.13041844964027405, 0.039792947471141815, -0.1150689646601677, -0.023771950975060463, -0.09729082882404327, -0.07922379672527313, 0.03885370120406151, -0.04107435792684555, -0.04198093339800835, -0.007320207078009844, -0.08158078044652939, 0.05172242224216461, 0.016517415642738342, -0.001997056184336543, -0.058268897235393524, -0.022754281759262085, 0.08701219409704208, -0.03171992301940918, 0.06450677663087845, 0.1356033831834793, -0.08150298148393631, 0.0703275203704834, -0.159826397895813, -0.04377282038331032, 0.10230014473199844, 0.07521143555641174, 0.044543150812387466, 0.08249254524707794, -0.009961825795471668, 0.06783477216959, 0.01847202517092228, 0.0029599873814731836, 0.04790029302239418, -0.021982569247484207, -0.001391695230267942, -0.04240808263421059, -0.031993523240089417, -0.04341600462794304, -0.02613099105656147, 0.04686994478106499, 0.12120465934276581, 0.08577095717191696, -0.015112928114831448, 0.050639256834983826, -0.11226964741945267, 0.028158510103821754, -0.019549408927559853, -0.07616260647773743, -0.11150473356246948, -0.11421152204275131, 0.04253750294446945, 0.0012508038198575377, 0.20309807360172272, -0.08943120390176773, -0.03979220241308212, -0.02365272119641304, 0.05762793496251106, 0.19562573730945587, 0.019961757585406303, 0.2601635754108429, 0.08661631494760513, -0.025193681940436363, -0.04159581661224365, 0.059985365718603134, 0.003199819941073656, 0.07784851640462875, 0.12581327557563782, 0.028290659189224243, 0.0604306235909462, 0.11597798019647598, 0.04122745245695114, 0.05758843570947647, 0.07798910140991211, -0.071382537484169, -0.05075736716389656, -0.03074498288333416, 0.06324370205402374, 0.17986945807933807, 0.12697575986385345, -0.029058584943413734, 0.06815003603696823, 0.03411369025707245, -0.10844699293375015, -0.15541431307792664, -0.11875686049461365, -0.07066407799720764, -0.15406695008277893, -0.017775997519493103, -0.14864923059940338, -0.09153122454881668, 0.15308968722820282, 0.01886211708188057, 0.029921526089310646, 0.029518796131014824, -0.10441798716783524, 0.0014540613628923893, 0.028317226096987724, -0.02998417802155018, 0.03359425440430641, 0.060071781277656555, -0.02781515382230282, 0.06025935709476471, 0.010316023603081703, 0.03595579043030739, -0.0059327734634280205, 0.0687018558382988, -0.00707602733746171, -0.027249203994870186, -0.08840473741292953, -0.07592479884624481, 0.060972556471824646, 0.0006321856053546071, 0.1054852306842804, 0.030010586604475975, -0.056613728404045105, -0.04699216037988663, 0.0954628735780716, -0.056033264845609665, -0.033584870398044586, -0.0887526124715805, 0.20662613213062286, 0.03501560166478157, 0.05966534465551376, -0.025469522923231125, -0.07050520181655884, -0.014465867541730404, 0.24045832455158234, 0.26304757595062256, -0.13143831491470337, 0.002324031898751855, -0.026676706969738007, 0.03532138839364052, 0.0578184649348259, 0.02725790999829769, 0.07271386682987213, 0.2717788517475128, -0.06934294104576111, -0.10551314800977707, -0.05214546248316765, 0.017646968364715576, -0.06470435857772827, -0.05195801705121994, 0.07189567387104034, -0.06432712823152542, -0.04507814720273018, 0.06237596645951271, -0.1918697953224182, 0.036135587841272354, 0.03889163210988045, -0.12984132766723633, -0.03674384579062462, -0.03653451427817345, -0.0064919437281787395, 0.07840698212385178, 0.05377742648124695, -0.09046462178230286, -0.023733705282211304, 0.08599580824375153, 0.025427600368857384, -0.24090217053890228, 0.054842785000801086, 0.10257001221179962, -0.009784934110939503, 0.0231967493891716, -0.010615352541208267, 0.1414719521999359, 0.03444373607635498, 0.04837442561984062, 0.01134877186268568, 0.021490681916475296, 0.006489400286227465, -0.027290064841508865, -0.005763402208685875, 0.03868897631764412, -0.006661158055067062, 0.010208736173808575, 0.04785976931452751, -0.16707611083984375, 0.00956234335899353, 0.0058284024707973, -0.07478896528482437, -0.030762389302253723, -0.01863567903637886, -0.0678737461566925, 0.09549860656261444, 0.16615048050880432, -0.0269135944545269, -0.030523810535669327, -0.013377299532294273, -0.004846668336540461, 0.014497879892587662, -0.05377678573131561, -0.019386818632483482, -0.0851905420422554, -0.0495711974799633, 0.0866890624165535, 0.003602544777095318, -0.21960963308811188, -0.05239470675587654, -0.07739412784576416, 0.00542704900726676, -0.021070001646876335, 0.05683298781514168, 0.08639350533485413, 0.0634286031126976, -0.03225022181868553, 0.02160722389817238, 0.042930155992507935, 0.05025380104780197, -0.09213662892580032, -0.13512657582759857 ]
null
null
transformers
# CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet-4gb", tokenizer="camembert/camembert-base-ccnet-4gb") results = camembert_fill_mask("Le camembert est-il <mask> ?") # results #[{'sequence': '<s> Le camembert est-il sain?</s>', 'score': 0.07001790404319763, 'token': 10286}, #{'sequence': '<s> Le camembert est-il français?</s>', 'score': 0.057594332844018936, 'token': 384}, #{'sequence': '<s> Le camembert est-il bon?</s>', 'score': 0.04098724573850632, 'token': 305}, #{'sequence': '<s> Le camembert est-il périmé?</s>', 'score': 0.03486393392086029, 'token': 30862}, #{'sequence': '<s> Le camembert est-il cher?</s>', 'score': 0.021535946056246758, 'token': 1604}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[ 0.0331, 0.0095, -0.2776, ..., 0.2875, -0.0827, -0.2467], # [-0.1348, 0.0478, -0.5409, ..., 0.8330, 0.0467, 0.0662], # [ 0.0920, -0.0264, 0.0177, ..., 0.1112, 0.0108, -0.1123], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0144, 0.1855, 0.4895, ..., -0.1537, 0.0107, -0.2293], # [-0.6664, -0.0880, -0.1539, ..., 0.3635, 0.4047, 0.1258], # [ 0.0511, 0.0540, 0.2545, ..., 0.0709, -0.0288, -0.0779], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
null
almanach/camembert-base-ccnet-4gb
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us
CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 36, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.08817266672849655, 0.06722962111234665, -0.0054194023832678795, 0.0851949006319046, 0.0921679362654686, -0.04885023459792137, 0.1101437509059906, -0.004030230920761824, 0.06269332766532898, 0.007938276045024395, 0.15735214948654175, 0.10977049916982651, -0.007448417134582996, -0.0025018099695444107, -0.005956305656582117, -0.24173957109451294, 0.00908584613353014, 0.05436045676469803, -0.13212352991104126, 0.11000384390354156, 0.09806844592094421, -0.07484549283981323, 0.14767377078533173, 0.03218673914670944, -0.09583549201488495, 0.061888474971055984, -0.07348532229661942, -0.07941266149282455, 0.15129274129867554, 0.053144052624702454, 0.1385699212551117, 0.09916042536497116, -0.022784799337387085, -0.10617369413375854, 0.038279205560684204, -0.000025068351533263922, -0.05882224440574646, 0.006901250686496496, 0.05500525236129761, -0.19719558954238892, 0.16663770377635956, -0.11610756814479828, 0.012590714730322361, -0.008610128425061703, -0.21252988278865814, -0.04667479917407036, -0.05681735277175903, 0.012500235810875893, 0.048968859016895294, 0.0752452164888382, 0.002524702111259103, 0.05770038440823555, -0.04712129384279251, 0.05370553582906723, 0.19093771278858185, -0.22383254766464233, -0.06684049963951111, -0.11454278975725174, 0.16430048644542694, 0.004933223593980074, -0.0500892736017704, 0.07395929098129272, 0.03182363882660866, -0.015783805400133133, 0.0759313553571701, -0.138003870844841, 0.09545822441577911, -0.03119087964296341, -0.1122988760471344, -0.012285583652555943, 0.1908658891916275, 0.01174106728285551, -0.01157007459551096, -0.05259737744927406, -0.09966026246547699, -0.026083845645189285, -0.04062191769480705, -0.09682749956846237, 0.027895020321011543, -0.058795586228370667, 0.04795299097895622, -0.03192036226391792, -0.09110879898071289, -0.040989626199007034, -0.07955625653266907, 0.10470077395439148, -0.012560777366161346, -0.021759459748864174, -0.10524443536996841, 0.03558192029595375, -0.09566310048103333, -0.13549581170082092, 0.016596084460616112, -0.08400753885507584, 0.038349051028490067, -0.007407240103930235, 0.04299572482705116, -0.04163171350955963, 0.01568242348730564, 0.2078385055065155, -0.07017552852630615, 0.05939418822526932, 0.015097538940608501, 0.09443113952875137, 0.04530017077922821, 0.11752843856811523, -0.028148038312792778, -0.11453252285718918, -0.027420787140727043, -0.05703374743461609, 0.017647702246904373, -0.0017663206672295928, -0.17485499382019043, -0.02567189931869507, -0.06691601127386093, 0.07630420476198196, 0.026513725519180298, -0.02909793332219124, -0.07273799180984497, -0.034790124744176865, 0.06414495408535004, -0.033154260367155075, 0.02330334298312664, -0.007103482726961374, -0.004693017341196537, 0.10190488398075104, 0.027468068525195122, 0.004298487212508917, -0.04378587752580643, 0.03366594389081001, -0.07127486914396286, 0.04643639177083969, -0.04540674388408661, -0.1041712611913681, 0.03794927895069122, -0.11470769345760345, 0.05188737064599991, -0.20602841675281525, 0.0030874183867126703, -0.027074582874774933, 0.0752166286110878, -0.031725965440273285, 0.028621183708310127, -0.10757392644882202, -0.021436726674437523, 0.03215690702199936, 0.026432715356349945, -0.1582198441028595, -0.10049954801797867, 0.01714634709060192, 0.020050309598445892, 0.10944207012653351, -0.1192619577050209, 0.019411085173487663, -0.0761835128068924, 0.07602954655885696, -0.2835274338722229, 0.07387594133615494, -0.006514269392937422, 0.0506230928003788, -0.18013495206832886, -0.07357872277498245, -0.09660831093788147, 0.020709553733468056, 0.06635402888059616, 0.24090459942817688, -0.16693417727947235, -0.11346816271543503, 0.2005625069141388, -0.06502073258161545, -0.09289948642253876, 0.17337143421173096, -0.010790610685944557, 0.018010012805461884, 0.054313354194164276, 0.14849984645843506, 0.019714221358299255, -0.19453224539756775, 0.09941355139017105, 0.06164444610476494, 0.05490536242723465, 0.014272418804466724, 0.15436269342899323, -0.025898555293679237, 0.07087373733520508, -0.05912638083100319, -0.037686582654714584, 0.018017873167991638, -0.05625040456652641, -0.05185331776738167, 0.05701266601681709, 0.03085779771208763, 0.1290571689605713, -0.006531028542667627, 0.03495021164417267, -0.008476149290800095, -0.09338871389627457, -0.07278821617364883, 0.0035350145772099495, 0.009981720708310604, 0.04240425303578377, -0.06528366357088089, 0.1525823175907135, -0.002141666831448674, -0.003380679292604327, -0.14298030734062195, 0.03317515179514885, -0.02907918579876423, 0.0772455483675003, 0.06819099187850952, -0.0018759352387860417, 0.05211305990815163, 0.04502854868769646, -0.026999445632100105, 0.0376526303589344, -0.0918537825345993, -0.040435198694467545, 0.022818276658654213, -0.18735909461975098, 0.06404547393321991, -0.060120839625597, 0.08683968335390091, -0.07061527669429779, 0.03423133119940758, 0.06141011789441109, 0.06034889817237854, 0.02393503487110138, 0.002391457324847579, -0.05789177864789963, 0.08696731925010681, -0.05345430225133896, -0.0023251506499946117, 0.07396379858255386, -0.03902840241789818, -0.13312171399593353, 0.1731880009174347, -0.11572133004665375, 0.060275349766016006, 0.12495565414428711, -0.2489316165447235, -0.08911176025867462, -0.09430573880672455, -0.015828996896743774, 0.02255200780928135, 0.10461872816085815, 0.02217506617307663, 0.21047013998031616, 0.041936472058296204, 0.10329336673021317, -0.10303760319948196, 0.015581599436700344, 0.003533419454470277, -0.028942320495843887, -0.1142798587679863, 0.18275976181030273, 0.15117870271205902, -0.07180794328451157, 0.12413597106933594, 0.3073484003543854, 0.042065106332302094, 0.1592887043952942, 0.02713506482541561, -0.007573118899017572, -0.05048356205224991, 0.03218279033899307, -0.015060036443173885, 0.1089554950594902, -0.20110468566417694, -0.038660068064928055, -0.019806895405054092, -0.0637812614440918, 0.024332275614142418, -0.1121850460767746, -0.01309358049184084, 0.03662731871008873, 0.044877976179122925, -0.10504150390625, 0.06053522974252701, -0.050162382423877716, 0.07398506999015808, 0.06552612036466599, -0.12633199989795685, -0.024693328887224197, 0.03247229754924774, -0.04316515475511551, 0.18080642819404602, -0.03955000638961792, -0.27252474427223206, -0.03472131863236427, -0.038112491369247437, -0.06696846336126328, 0.05865173414349556, 0.06272678077220917, -0.08133389800786972, 0.05528371036052704, 0.05819687992334366, 0.08545839786529541, -0.10262474417686462, -0.04944780096411705, -0.00023171612701844424, -0.02541232295334339, -0.09524703770875931, -0.04920979589223862, -0.0653427317738533, -0.018819184973835945, 0.05119847506284714, 0.00215687183663249, -0.1335582286119461, 0.22959570586681366, 0.11276694387197495, 0.023554526269435883, -0.00105934904422611, -0.023068491369485855, 0.29507210850715637, -0.09722527861595154, -0.029861902818083763, 0.16503708064556122, -0.039043717086315155, 0.06759520620107651, 0.09459684044122696, 0.02260955236852169, -0.04561058431863785, -0.04416966065764427, 0.03074236772954464, -0.09146907180547714, -0.10551662743091583, -0.10798506438732147, -0.10961335152387619, 0.03851359337568283, 0.1039169505238533, -0.0169708039611578, -0.06256011128425598, 0.03730761632323265, -0.02176368422806263, 0.00043341057607904077, 0.07673189789056778, 0.10579247772693634, 0.09921184182167053, -0.0063974387012422085, 0.0610395148396492, -0.028916969895362854, -0.1469034105539322, 0.0028280646074563265, 0.0657956451177597, -0.00450577586889267, 0.12983447313308716, 0.1919342279434204, 0.09358492493629456, 0.03505503386259079, 0.01200892310589552, 0.020334122702479362, 0.05389250069856644, -0.006900044623762369, -0.06768956035375595, -0.07416341453790665, -0.019682426005601883, 0.011746732518076897, 0.02657209150493145, -0.07029207050800323, -0.18192926049232483, 0.041544098407030106, 0.11371725797653198, 0.08493974059820175, 0.005157058127224445, -0.20348238945007324, -0.02268950454890728, 0.034157611429691315, 0.03086954914033413, -0.036251116544008255, 0.011631818488240242, 0.04976389929652214, -0.10784229636192322, 0.0980152115225792, -0.025171739980578423, 0.1484333574771881, 0.008129294030368328, 0.059557411819696426, -0.1717628538608551, -0.09343087673187256, -0.006522203329950571, 0.004062212072312832, -0.20438489317893982, 0.3063701391220093, 0.04119396582245827, -0.04705575853586197, -0.04990461468696594, -0.06333684921264648, 0.009826773777604103, 0.20646093785762787, 0.253313809633255, 0.03224042057991028, -0.10158194601535797, 0.041455499827861786, -0.05219700559973717, -0.00403613829985261, 0.12106981873512268, -0.09904737025499344, 0.030938049778342247, 0.06658989936113358, -0.03778071328997612, -0.021066496148705482, 0.05429535359144211, -0.08316678553819656, -0.19163154065608978, 0.041692160069942474, -0.03709728643298149, -0.037188757210969925, 0.0024766556452959776, -0.0592045821249485, -0.08600955456495285, 0.11247606575489044, -0.11506383866071701, 0.011129019781947136, -0.06530271470546722, -0.06972567737102509, 0.00551924854516983, -0.09048977494239807, 0.05859995260834694, -0.059627216309309006, 0.03019910305738449, -0.1393723338842392, -0.0004685524618253112, 0.1496741771697998, -0.11452828347682953, 0.07805564254522324, -0.05306517332792282, 0.19219225645065308, 0.03908265009522438, 0.04925082251429558, 0.04619681090116501, -0.027858620509505272, -0.046896956861019135, -0.0944167897105217, -0.03667794540524483, -0.11720345914363861, 0.02809177152812481, 0.029322881251573563, -0.10523737967014313, -0.08201385289430618, -0.06788531690835953, 0.016416236758232117, 0.22710776329040527, 0.12899786233901978, -0.0285669956356287, 0.11546722054481506, 0.12204843014478683, -0.06386294215917587, -0.28520116209983826, 0.029363226145505905, -0.011301500722765923, -0.0040685138665139675, -0.004505480173975229, -0.16120564937591553, -0.05997830629348755, -0.04550077021121979, 0.016924403607845306, 0.037716615945100784, -0.35007455945014954, -0.0938788503408432, 0.06483704596757889, -0.003184504574164748, 0.25482091307640076, -0.04055643826723099, -0.005641852039843798, -0.12093304097652435, -0.10758531838655472, 0.08976173400878906, -0.009050171822309494, 0.02987842820584774, 0.017628276720643044, -0.002732370048761368, 0.013911172747612, -0.04252544045448303, 0.19399920105934143, 0.00048124176100827754, 0.048366520553827286, -0.04708687961101532, -0.13078157603740692, 0.014626847580075264, -0.014639563858509064, -0.0451284684240818, -0.03682991489768028, -0.0382704883813858, -0.0881250873208046, -0.037401795387268066, -0.03263649344444275, 0.1387893557548523, -0.04643002524971962, 0.0025955787859857082, -0.014333895407617092, 0.031097600236535072, 0.021805785596370697, 0.0153213394805789, 0.12261013686656952, -0.11871050298213959, 0.062436867505311966, -0.006580706220120192, 0.17575198411941528, -0.04376284033060074, -0.050089020282030106, 0.03659162297844887, -0.0041972496546804905, 0.08614730834960938, -0.11020065099000931, 0.0748642235994339, 0.15099851787090302, -0.009718277491629124, 0.06028610095381737, 0.06612210720777512, -0.06332061439752579, -0.015978528186678886, 0.08830811828374863, -0.134969562292099, -0.07552607357501984, -0.0743221640586853, -0.07479315251111984, 0.06136549264192581, -0.00808671023696661, 0.12484578788280487, 0.02424377202987671, -0.040308479219675064, 0.005445791874080896, -0.02131575345993042, -0.06450627744197845, 0.04337142035365105, -0.04047601297497749, 0.00761465122923255, -0.10065075755119324, 0.04420735314488411, 0.02997218258678913, -0.27830174565315247, -0.02381390705704689, 0.11226102709770203, -0.07532031089067459, -0.10117100179195404, -0.06381838023662567, 0.22330965101718903, -0.16257008910179138, -0.03686608374118805, -0.09267888963222504, -0.07363011687994003, 0.03860117122530937, 0.24243766069412231, 0.0736243799328804, -0.04682634770870209, 0.03008648008108139, -0.031366586685180664, -0.03572875261306763, 0.032122861593961716, 0.11548615247011185, -0.03503834456205368, 0.036609627306461334, 0.035972125828266144, 0.0038082299288362265, 0.16876763105392456, -0.034961678087711334, -0.009917736053466797, -0.19470742344856262, 0.04153183102607727, -0.01649067923426628, -0.002212721388787031, -0.08373218774795532, -0.008018841966986656, -0.05837000533938408, 0.019078485667705536, -0.07482413947582245, -0.022232402116060257, -0.117137111723423, 0.0358341820538044, 0.02853756956756115, 0.0446164570748806, -0.05629375949501991, -0.016338210552930832, 0.09455504268407822, -0.036136358976364136, 0.05217898264527321, 0.036221712827682495, -0.002967140404507518, 0.039738863706588745, -0.2017059177160263, -0.034826505929231644, -0.03737803176045418, 0.022047964856028557, 0.0044584935531020164, -0.03165515139698982, 0.014655695296823978, 0.013207938522100449, 0.030532365664839745, -0.020170001313090324, -0.014073333702981472, -0.026981094852089882, -0.036082714796066284, 0.0705767497420311, -0.19004373252391815, -0.013052865862846375, 0.10926255583763123, 0.03183639422059059, 0.013455472886562347, 0.07615416496992111, -0.03677992522716522, 0.08405627310276031, 0.0033478981349617243, 0.02418931946158409, -0.008093100972473621, -0.10277385264635086, -0.016700852662324905, -0.14696086943149567, 0.04801285266876221, -0.023908592760562897, 0.10820071399211884, 0.04238312691450119, 0.1091894879937172, 0.03615301847457886, 0.05851056054234505, -0.10732544213533401, 0.044783495366573334, 0.04795995354652405, 0.026737120002508163, -0.022939899936318398, -0.05415891483426094, 0.1274682879447937, 0.09439124912023544, 0.28022852540016174, 0.13986578583717346, 0.1932697594165802, 0.10574470460414886, 0.0994328111410141, -0.039607711136341095, 0.03879236802458763, -0.014817506074905396, -0.09992358833551407, 0.1280249059200287, 0.05220254138112068, -0.06805796921253204, 0.06397386640310287, 0.10658075660467148, -0.07694660872220993, 0.1111939325928688, 0.05207343026995659, -0.052322808653116226, -0.15649531781673431, -0.07851853966712952, -0.0089334137737751, -0.026650208979845047, -0.031015049666166306, -0.031145408749580383, 0.01448634173721075, -0.14395394921302795, 0.03599165752530098, -0.04953283071517944, 0.21770763397216797, -0.12028715759515762, -0.14154505729675293, 0.12837395071983337, 0.012958988547325134, 0.1123504713177681, -0.005153459031134844, 0.050324343144893646, -0.04904213920235634, -0.040866702795028687, -0.029264749959111214, 0.002281460678204894, 0.01030815951526165, 0.0016127221751958132, -0.0969044640660286, -0.06624170392751694, -0.042549457401037216, 0.07778183370828629, 0.036357682198286057, 0.181832954287529, -0.015163319185376167, -0.03494752570986748, 0.0015027327463030815, 0.13401269912719727, 0.01496712677180767, -0.009949170984327793, -0.0964469462633133, 0.11032864451408386, 0.0386957973241806, 0.07611386477947235, -0.11171941459178925, -0.012346829287707806, 0.0857258290052414, 0.21064437925815582, 0.2621421813964844, -0.04172097519040108, 0.039955735206604004, -0.018582452088594437, 0.06853790581226349, 0.1152377650141716, -0.06747902184724808, 0.05464283376932144, 0.1814749538898468, -0.07630573958158493, -0.05217129737138748, -0.09724234789609909, 0.02009741961956024, -0.04314752668142319, 0.10336629301309586, 0.1050499826669693, -0.03121371939778328, 0.012543839402496815, 0.13805006444454193, -0.11631616950035095, -0.14630015194416046, 0.10599400848150253, -0.21818320453166962, -0.04249242693185806, -0.037548914551734924, 0.008661968633532524, 0.09292558580636978, 0.12090727686882019, 0.01582990027964115, -0.12753695249557495, 0.05658978223800659, 0.0667189210653305, -0.1099873036146164, -0.11353424191474915, 0.06839516013860703, 0.05039689317345619, 0.15145358443260193, -0.05236639827489853, 0.03178291395306587, 0.12930892407894135, 0.05570230633020401, 0.046774592250585556, -0.047901105135679245, 0.0683010146021843, 0.015387111343443394, -0.017793554812669754, -0.023260226473212242, -0.02865578792989254, 0.007532235700637102, 0.032371826469898224, -0.08197037875652313, 0.0617825984954834, -0.028859451413154602, -0.08095932751893997, -0.018245980143547058, 0.15151546895503998, -0.12466428428888321, 0.04538756608963013, 0.11921001225709915, 0.04250165447592735, 0.01095994096249342, -0.047836702316999435, 0.03434329852461815, 0.06614852696657181, 0.007069090381264687, -0.08311644941568375, -0.16144385933876038, 0.02969575859606266, -0.0062604197300970554, 0.02721451409161091, -0.19380547106266022, -0.03796682879328728, -0.009993284940719604, 0.05822078138589859, -0.051945578306913376, 0.019746186211705208, 0.04193849489092827, -0.025439992547035217, -0.02106873318552971, -0.2349635511636734, 0.04612205922603607, 0.05595667287707329, -0.03220188245177269, 0.0018871346255764365 ]
null
null
transformers
# CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet") camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet", tokenizer="camembert/camembert-base-ccnet") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.14011502265930176, 'token': 305}, # {'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.13929404318332672, 'token': 11661}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.07010319083929062, 'token': 3497}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.025885622948408127, 'token': 2528}, # {'sequence': '<s> Le camembert est top :)</s>', 'score': 0.025684962049126625, 'token': 2328}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[ 0.0667, -0.2467, 0.0954, ..., 0.2144, 0.0279, 0.3621], # [-0.0472, 0.4092, -0.6602, ..., 0.2095, 0.1391, -0.0401], # [ 0.1911, -0.2347, -0.0811, ..., 0.4306, -0.0639, 0.1821], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[ 0.0057, -0.1022, 0.0163, ..., -0.0675, -0.0360, 0.1078], # [-0.1096, -0.3344, -0.0593, ..., 0.1625, -0.0432, -0.1646], # [ 0.3751, -0.3829, 0.0844, ..., 0.1067, -0.0330, 0.3334], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
null
almanach/camembert-base-ccnet
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us
CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 36, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.08817266672849655, 0.06722962111234665, -0.0054194023832678795, 0.0851949006319046, 0.0921679362654686, -0.04885023459792137, 0.1101437509059906, -0.004030230920761824, 0.06269332766532898, 0.007938276045024395, 0.15735214948654175, 0.10977049916982651, -0.007448417134582996, -0.0025018099695444107, -0.005956305656582117, -0.24173957109451294, 0.00908584613353014, 0.05436045676469803, -0.13212352991104126, 0.11000384390354156, 0.09806844592094421, -0.07484549283981323, 0.14767377078533173, 0.03218673914670944, -0.09583549201488495, 0.061888474971055984, -0.07348532229661942, -0.07941266149282455, 0.15129274129867554, 0.053144052624702454, 0.1385699212551117, 0.09916042536497116, -0.022784799337387085, -0.10617369413375854, 0.038279205560684204, -0.000025068351533263922, -0.05882224440574646, 0.006901250686496496, 0.05500525236129761, -0.19719558954238892, 0.16663770377635956, -0.11610756814479828, 0.012590714730322361, -0.008610128425061703, -0.21252988278865814, -0.04667479917407036, -0.05681735277175903, 0.012500235810875893, 0.048968859016895294, 0.0752452164888382, 0.002524702111259103, 0.05770038440823555, -0.04712129384279251, 0.05370553582906723, 0.19093771278858185, -0.22383254766464233, -0.06684049963951111, -0.11454278975725174, 0.16430048644542694, 0.004933223593980074, -0.0500892736017704, 0.07395929098129272, 0.03182363882660866, -0.015783805400133133, 0.0759313553571701, -0.138003870844841, 0.09545822441577911, -0.03119087964296341, -0.1122988760471344, -0.012285583652555943, 0.1908658891916275, 0.01174106728285551, -0.01157007459551096, -0.05259737744927406, -0.09966026246547699, -0.026083845645189285, -0.04062191769480705, -0.09682749956846237, 0.027895020321011543, -0.058795586228370667, 0.04795299097895622, -0.03192036226391792, -0.09110879898071289, -0.040989626199007034, -0.07955625653266907, 0.10470077395439148, -0.012560777366161346, -0.021759459748864174, -0.10524443536996841, 0.03558192029595375, -0.09566310048103333, -0.13549581170082092, 0.016596084460616112, -0.08400753885507584, 0.038349051028490067, -0.007407240103930235, 0.04299572482705116, -0.04163171350955963, 0.01568242348730564, 0.2078385055065155, -0.07017552852630615, 0.05939418822526932, 0.015097538940608501, 0.09443113952875137, 0.04530017077922821, 0.11752843856811523, -0.028148038312792778, -0.11453252285718918, -0.027420787140727043, -0.05703374743461609, 0.017647702246904373, -0.0017663206672295928, -0.17485499382019043, -0.02567189931869507, -0.06691601127386093, 0.07630420476198196, 0.026513725519180298, -0.02909793332219124, -0.07273799180984497, -0.034790124744176865, 0.06414495408535004, -0.033154260367155075, 0.02330334298312664, -0.007103482726961374, -0.004693017341196537, 0.10190488398075104, 0.027468068525195122, 0.004298487212508917, -0.04378587752580643, 0.03366594389081001, -0.07127486914396286, 0.04643639177083969, -0.04540674388408661, -0.1041712611913681, 0.03794927895069122, -0.11470769345760345, 0.05188737064599991, -0.20602841675281525, 0.0030874183867126703, -0.027074582874774933, 0.0752166286110878, -0.031725965440273285, 0.028621183708310127, -0.10757392644882202, -0.021436726674437523, 0.03215690702199936, 0.026432715356349945, -0.1582198441028595, -0.10049954801797867, 0.01714634709060192, 0.020050309598445892, 0.10944207012653351, -0.1192619577050209, 0.019411085173487663, -0.0761835128068924, 0.07602954655885696, -0.2835274338722229, 0.07387594133615494, -0.006514269392937422, 0.0506230928003788, -0.18013495206832886, -0.07357872277498245, -0.09660831093788147, 0.020709553733468056, 0.06635402888059616, 0.24090459942817688, -0.16693417727947235, -0.11346816271543503, 0.2005625069141388, -0.06502073258161545, -0.09289948642253876, 0.17337143421173096, -0.010790610685944557, 0.018010012805461884, 0.054313354194164276, 0.14849984645843506, 0.019714221358299255, -0.19453224539756775, 0.09941355139017105, 0.06164444610476494, 0.05490536242723465, 0.014272418804466724, 0.15436269342899323, -0.025898555293679237, 0.07087373733520508, -0.05912638083100319, -0.037686582654714584, 0.018017873167991638, -0.05625040456652641, -0.05185331776738167, 0.05701266601681709, 0.03085779771208763, 0.1290571689605713, -0.006531028542667627, 0.03495021164417267, -0.008476149290800095, -0.09338871389627457, -0.07278821617364883, 0.0035350145772099495, 0.009981720708310604, 0.04240425303578377, -0.06528366357088089, 0.1525823175907135, -0.002141666831448674, -0.003380679292604327, -0.14298030734062195, 0.03317515179514885, -0.02907918579876423, 0.0772455483675003, 0.06819099187850952, -0.0018759352387860417, 0.05211305990815163, 0.04502854868769646, -0.026999445632100105, 0.0376526303589344, -0.0918537825345993, -0.040435198694467545, 0.022818276658654213, -0.18735909461975098, 0.06404547393321991, -0.060120839625597, 0.08683968335390091, -0.07061527669429779, 0.03423133119940758, 0.06141011789441109, 0.06034889817237854, 0.02393503487110138, 0.002391457324847579, -0.05789177864789963, 0.08696731925010681, -0.05345430225133896, -0.0023251506499946117, 0.07396379858255386, -0.03902840241789818, -0.13312171399593353, 0.1731880009174347, -0.11572133004665375, 0.060275349766016006, 0.12495565414428711, -0.2489316165447235, -0.08911176025867462, -0.09430573880672455, -0.015828996896743774, 0.02255200780928135, 0.10461872816085815, 0.02217506617307663, 0.21047013998031616, 0.041936472058296204, 0.10329336673021317, -0.10303760319948196, 0.015581599436700344, 0.003533419454470277, -0.028942320495843887, -0.1142798587679863, 0.18275976181030273, 0.15117870271205902, -0.07180794328451157, 0.12413597106933594, 0.3073484003543854, 0.042065106332302094, 0.1592887043952942, 0.02713506482541561, -0.007573118899017572, -0.05048356205224991, 0.03218279033899307, -0.015060036443173885, 0.1089554950594902, -0.20110468566417694, -0.038660068064928055, -0.019806895405054092, -0.0637812614440918, 0.024332275614142418, -0.1121850460767746, -0.01309358049184084, 0.03662731871008873, 0.044877976179122925, -0.10504150390625, 0.06053522974252701, -0.050162382423877716, 0.07398506999015808, 0.06552612036466599, -0.12633199989795685, -0.024693328887224197, 0.03247229754924774, -0.04316515475511551, 0.18080642819404602, -0.03955000638961792, -0.27252474427223206, -0.03472131863236427, -0.038112491369247437, -0.06696846336126328, 0.05865173414349556, 0.06272678077220917, -0.08133389800786972, 0.05528371036052704, 0.05819687992334366, 0.08545839786529541, -0.10262474417686462, -0.04944780096411705, -0.00023171612701844424, -0.02541232295334339, -0.09524703770875931, -0.04920979589223862, -0.0653427317738533, -0.018819184973835945, 0.05119847506284714, 0.00215687183663249, -0.1335582286119461, 0.22959570586681366, 0.11276694387197495, 0.023554526269435883, -0.00105934904422611, -0.023068491369485855, 0.29507210850715637, -0.09722527861595154, -0.029861902818083763, 0.16503708064556122, -0.039043717086315155, 0.06759520620107651, 0.09459684044122696, 0.02260955236852169, -0.04561058431863785, -0.04416966065764427, 0.03074236772954464, -0.09146907180547714, -0.10551662743091583, -0.10798506438732147, -0.10961335152387619, 0.03851359337568283, 0.1039169505238533, -0.0169708039611578, -0.06256011128425598, 0.03730761632323265, -0.02176368422806263, 0.00043341057607904077, 0.07673189789056778, 0.10579247772693634, 0.09921184182167053, -0.0063974387012422085, 0.0610395148396492, -0.028916969895362854, -0.1469034105539322, 0.0028280646074563265, 0.0657956451177597, -0.00450577586889267, 0.12983447313308716, 0.1919342279434204, 0.09358492493629456, 0.03505503386259079, 0.01200892310589552, 0.020334122702479362, 0.05389250069856644, -0.006900044623762369, -0.06768956035375595, -0.07416341453790665, -0.019682426005601883, 0.011746732518076897, 0.02657209150493145, -0.07029207050800323, -0.18192926049232483, 0.041544098407030106, 0.11371725797653198, 0.08493974059820175, 0.005157058127224445, -0.20348238945007324, -0.02268950454890728, 0.034157611429691315, 0.03086954914033413, -0.036251116544008255, 0.011631818488240242, 0.04976389929652214, -0.10784229636192322, 0.0980152115225792, -0.025171739980578423, 0.1484333574771881, 0.008129294030368328, 0.059557411819696426, -0.1717628538608551, -0.09343087673187256, -0.006522203329950571, 0.004062212072312832, -0.20438489317893982, 0.3063701391220093, 0.04119396582245827, -0.04705575853586197, -0.04990461468696594, -0.06333684921264648, 0.009826773777604103, 0.20646093785762787, 0.253313809633255, 0.03224042057991028, -0.10158194601535797, 0.041455499827861786, -0.05219700559973717, -0.00403613829985261, 0.12106981873512268, -0.09904737025499344, 0.030938049778342247, 0.06658989936113358, -0.03778071328997612, -0.021066496148705482, 0.05429535359144211, -0.08316678553819656, -0.19163154065608978, 0.041692160069942474, -0.03709728643298149, -0.037188757210969925, 0.0024766556452959776, -0.0592045821249485, -0.08600955456495285, 0.11247606575489044, -0.11506383866071701, 0.011129019781947136, -0.06530271470546722, -0.06972567737102509, 0.00551924854516983, -0.09048977494239807, 0.05859995260834694, -0.059627216309309006, 0.03019910305738449, -0.1393723338842392, -0.0004685524618253112, 0.1496741771697998, -0.11452828347682953, 0.07805564254522324, -0.05306517332792282, 0.19219225645065308, 0.03908265009522438, 0.04925082251429558, 0.04619681090116501, -0.027858620509505272, -0.046896956861019135, -0.0944167897105217, -0.03667794540524483, -0.11720345914363861, 0.02809177152812481, 0.029322881251573563, -0.10523737967014313, -0.08201385289430618, -0.06788531690835953, 0.016416236758232117, 0.22710776329040527, 0.12899786233901978, -0.0285669956356287, 0.11546722054481506, 0.12204843014478683, -0.06386294215917587, -0.28520116209983826, 0.029363226145505905, -0.011301500722765923, -0.0040685138665139675, -0.004505480173975229, -0.16120564937591553, -0.05997830629348755, -0.04550077021121979, 0.016924403607845306, 0.037716615945100784, -0.35007455945014954, -0.0938788503408432, 0.06483704596757889, -0.003184504574164748, 0.25482091307640076, -0.04055643826723099, -0.005641852039843798, -0.12093304097652435, -0.10758531838655472, 0.08976173400878906, -0.009050171822309494, 0.02987842820584774, 0.017628276720643044, -0.002732370048761368, 0.013911172747612, -0.04252544045448303, 0.19399920105934143, 0.00048124176100827754, 0.048366520553827286, -0.04708687961101532, -0.13078157603740692, 0.014626847580075264, -0.014639563858509064, -0.0451284684240818, -0.03682991489768028, -0.0382704883813858, -0.0881250873208046, -0.037401795387268066, -0.03263649344444275, 0.1387893557548523, -0.04643002524971962, 0.0025955787859857082, -0.014333895407617092, 0.031097600236535072, 0.021805785596370697, 0.0153213394805789, 0.12261013686656952, -0.11871050298213959, 0.062436867505311966, -0.006580706220120192, 0.17575198411941528, -0.04376284033060074, -0.050089020282030106, 0.03659162297844887, -0.0041972496546804905, 0.08614730834960938, -0.11020065099000931, 0.0748642235994339, 0.15099851787090302, -0.009718277491629124, 0.06028610095381737, 0.06612210720777512, -0.06332061439752579, -0.015978528186678886, 0.08830811828374863, -0.134969562292099, -0.07552607357501984, -0.0743221640586853, -0.07479315251111984, 0.06136549264192581, -0.00808671023696661, 0.12484578788280487, 0.02424377202987671, -0.040308479219675064, 0.005445791874080896, -0.02131575345993042, -0.06450627744197845, 0.04337142035365105, -0.04047601297497749, 0.00761465122923255, -0.10065075755119324, 0.04420735314488411, 0.02997218258678913, -0.27830174565315247, -0.02381390705704689, 0.11226102709770203, -0.07532031089067459, -0.10117100179195404, -0.06381838023662567, 0.22330965101718903, -0.16257008910179138, -0.03686608374118805, -0.09267888963222504, -0.07363011687994003, 0.03860117122530937, 0.24243766069412231, 0.0736243799328804, -0.04682634770870209, 0.03008648008108139, -0.031366586685180664, -0.03572875261306763, 0.032122861593961716, 0.11548615247011185, -0.03503834456205368, 0.036609627306461334, 0.035972125828266144, 0.0038082299288362265, 0.16876763105392456, -0.034961678087711334, -0.009917736053466797, -0.19470742344856262, 0.04153183102607727, -0.01649067923426628, -0.002212721388787031, -0.08373218774795532, -0.008018841966986656, -0.05837000533938408, 0.019078485667705536, -0.07482413947582245, -0.022232402116060257, -0.117137111723423, 0.0358341820538044, 0.02853756956756115, 0.0446164570748806, -0.05629375949501991, -0.016338210552930832, 0.09455504268407822, -0.036136358976364136, 0.05217898264527321, 0.036221712827682495, -0.002967140404507518, 0.039738863706588745, -0.2017059177160263, -0.034826505929231644, -0.03737803176045418, 0.022047964856028557, 0.0044584935531020164, -0.03165515139698982, 0.014655695296823978, 0.013207938522100449, 0.030532365664839745, -0.020170001313090324, -0.014073333702981472, -0.026981094852089882, -0.036082714796066284, 0.0705767497420311, -0.19004373252391815, -0.013052865862846375, 0.10926255583763123, 0.03183639422059059, 0.013455472886562347, 0.07615416496992111, -0.03677992522716522, 0.08405627310276031, 0.0033478981349617243, 0.02418931946158409, -0.008093100972473621, -0.10277385264635086, -0.016700852662324905, -0.14696086943149567, 0.04801285266876221, -0.023908592760562897, 0.10820071399211884, 0.04238312691450119, 0.1091894879937172, 0.03615301847457886, 0.05851056054234505, -0.10732544213533401, 0.044783495366573334, 0.04795995354652405, 0.026737120002508163, -0.022939899936318398, -0.05415891483426094, 0.1274682879447937, 0.09439124912023544, 0.28022852540016174, 0.13986578583717346, 0.1932697594165802, 0.10574470460414886, 0.0994328111410141, -0.039607711136341095, 0.03879236802458763, -0.014817506074905396, -0.09992358833551407, 0.1280249059200287, 0.05220254138112068, -0.06805796921253204, 0.06397386640310287, 0.10658075660467148, -0.07694660872220993, 0.1111939325928688, 0.05207343026995659, -0.052322808653116226, -0.15649531781673431, -0.07851853966712952, -0.0089334137737751, -0.026650208979845047, -0.031015049666166306, -0.031145408749580383, 0.01448634173721075, -0.14395394921302795, 0.03599165752530098, -0.04953283071517944, 0.21770763397216797, -0.12028715759515762, -0.14154505729675293, 0.12837395071983337, 0.012958988547325134, 0.1123504713177681, -0.005153459031134844, 0.050324343144893646, -0.04904213920235634, -0.040866702795028687, -0.029264749959111214, 0.002281460678204894, 0.01030815951526165, 0.0016127221751958132, -0.0969044640660286, -0.06624170392751694, -0.042549457401037216, 0.07778183370828629, 0.036357682198286057, 0.181832954287529, -0.015163319185376167, -0.03494752570986748, 0.0015027327463030815, 0.13401269912719727, 0.01496712677180767, -0.009949170984327793, -0.0964469462633133, 0.11032864451408386, 0.0386957973241806, 0.07611386477947235, -0.11171941459178925, -0.012346829287707806, 0.0857258290052414, 0.21064437925815582, 0.2621421813964844, -0.04172097519040108, 0.039955735206604004, -0.018582452088594437, 0.06853790581226349, 0.1152377650141716, -0.06747902184724808, 0.05464283376932144, 0.1814749538898468, -0.07630573958158493, -0.05217129737138748, -0.09724234789609909, 0.02009741961956024, -0.04314752668142319, 0.10336629301309586, 0.1050499826669693, -0.03121371939778328, 0.012543839402496815, 0.13805006444454193, -0.11631616950035095, -0.14630015194416046, 0.10599400848150253, -0.21818320453166962, -0.04249242693185806, -0.037548914551734924, 0.008661968633532524, 0.09292558580636978, 0.12090727686882019, 0.01582990027964115, -0.12753695249557495, 0.05658978223800659, 0.0667189210653305, -0.1099873036146164, -0.11353424191474915, 0.06839516013860703, 0.05039689317345619, 0.15145358443260193, -0.05236639827489853, 0.03178291395306587, 0.12930892407894135, 0.05570230633020401, 0.046774592250585556, -0.047901105135679245, 0.0683010146021843, 0.015387111343443394, -0.017793554812669754, -0.023260226473212242, -0.02865578792989254, 0.007532235700637102, 0.032371826469898224, -0.08197037875652313, 0.0617825984954834, -0.028859451413154602, -0.08095932751893997, -0.018245980143547058, 0.15151546895503998, -0.12466428428888321, 0.04538756608963013, 0.11921001225709915, 0.04250165447592735, 0.01095994096249342, -0.047836702316999435, 0.03434329852461815, 0.06614852696657181, 0.007069090381264687, -0.08311644941568375, -0.16144385933876038, 0.02969575859606266, -0.0062604197300970554, 0.02721451409161091, -0.19380547106266022, -0.03796682879328728, -0.009993284940719604, 0.05822078138589859, -0.051945578306913376, 0.019746186211705208, 0.04193849489092827, -0.025439992547035217, -0.02106873318552971, -0.2349635511636734, 0.04612205922603607, 0.05595667287707329, -0.03220188245177269, 0.0018871346255764365 ]
null
null
transformers
# CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-oscar-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-oscar-4gb", tokenizer="camembert/camembert-base-oscar-4gb") >>> results = camembert_fill_mask("Le camembert est <mask> !") # results #[{'sequence': '<s> Le camembert est parfait!</s>', 'score': 0.04089554399251938, 'token': 1654}, #{'sequence': '<s> Le camembert est délicieux!</s>', 'score': 0.037193264812231064, 'token': 7200}, #{'sequence': '<s> Le camembert est prêt!</s>', 'score': 0.025467922911047935, 'token': 1415}, #{'sequence': '<s> Le camembert est meilleur!</s>', 'score': 0.022812040522694588, 'token': 528}, #{'sequence': '<s> Le camembert est différent!</s>', 'score': 0.017135459929704666, 'token': 2935}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.1120, -0.1464, 0.0181, ..., -0.1723, -0.0278, 0.1606], # [ 0.1234, 0.1202, -0.0773, ..., -0.0405, -0.0668, -0.0788], # [-0.0440, 0.0480, -0.1926, ..., 0.1066, -0.0961, 0.0637], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-oscar-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.1584, -0.1207, -0.0179, ..., 0.5457, 0.1491, -0.1191], # [-0.1122, 0.3634, 0.0676, ..., 0.4395, -0.0470, -0.3781], # [-0.2232, 0.0019, 0.0140, ..., 0.4461, -0.0233, 0.0735], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
null
almanach/camembert-base-oscar-4gb
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us
CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 36, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.08817266672849655, 0.06722962111234665, -0.0054194023832678795, 0.0851949006319046, 0.0921679362654686, -0.04885023459792137, 0.1101437509059906, -0.004030230920761824, 0.06269332766532898, 0.007938276045024395, 0.15735214948654175, 0.10977049916982651, -0.007448417134582996, -0.0025018099695444107, -0.005956305656582117, -0.24173957109451294, 0.00908584613353014, 0.05436045676469803, -0.13212352991104126, 0.11000384390354156, 0.09806844592094421, -0.07484549283981323, 0.14767377078533173, 0.03218673914670944, -0.09583549201488495, 0.061888474971055984, -0.07348532229661942, -0.07941266149282455, 0.15129274129867554, 0.053144052624702454, 0.1385699212551117, 0.09916042536497116, -0.022784799337387085, -0.10617369413375854, 0.038279205560684204, -0.000025068351533263922, -0.05882224440574646, 0.006901250686496496, 0.05500525236129761, -0.19719558954238892, 0.16663770377635956, -0.11610756814479828, 0.012590714730322361, -0.008610128425061703, -0.21252988278865814, -0.04667479917407036, -0.05681735277175903, 0.012500235810875893, 0.048968859016895294, 0.0752452164888382, 0.002524702111259103, 0.05770038440823555, -0.04712129384279251, 0.05370553582906723, 0.19093771278858185, -0.22383254766464233, -0.06684049963951111, -0.11454278975725174, 0.16430048644542694, 0.004933223593980074, -0.0500892736017704, 0.07395929098129272, 0.03182363882660866, -0.015783805400133133, 0.0759313553571701, -0.138003870844841, 0.09545822441577911, -0.03119087964296341, -0.1122988760471344, -0.012285583652555943, 0.1908658891916275, 0.01174106728285551, -0.01157007459551096, -0.05259737744927406, -0.09966026246547699, -0.026083845645189285, -0.04062191769480705, -0.09682749956846237, 0.027895020321011543, -0.058795586228370667, 0.04795299097895622, -0.03192036226391792, -0.09110879898071289, -0.040989626199007034, -0.07955625653266907, 0.10470077395439148, -0.012560777366161346, -0.021759459748864174, -0.10524443536996841, 0.03558192029595375, -0.09566310048103333, -0.13549581170082092, 0.016596084460616112, -0.08400753885507584, 0.038349051028490067, -0.007407240103930235, 0.04299572482705116, -0.04163171350955963, 0.01568242348730564, 0.2078385055065155, -0.07017552852630615, 0.05939418822526932, 0.015097538940608501, 0.09443113952875137, 0.04530017077922821, 0.11752843856811523, -0.028148038312792778, -0.11453252285718918, -0.027420787140727043, -0.05703374743461609, 0.017647702246904373, -0.0017663206672295928, -0.17485499382019043, -0.02567189931869507, -0.06691601127386093, 0.07630420476198196, 0.026513725519180298, -0.02909793332219124, -0.07273799180984497, -0.034790124744176865, 0.06414495408535004, -0.033154260367155075, 0.02330334298312664, -0.007103482726961374, -0.004693017341196537, 0.10190488398075104, 0.027468068525195122, 0.004298487212508917, -0.04378587752580643, 0.03366594389081001, -0.07127486914396286, 0.04643639177083969, -0.04540674388408661, -0.1041712611913681, 0.03794927895069122, -0.11470769345760345, 0.05188737064599991, -0.20602841675281525, 0.0030874183867126703, -0.027074582874774933, 0.0752166286110878, -0.031725965440273285, 0.028621183708310127, -0.10757392644882202, -0.021436726674437523, 0.03215690702199936, 0.026432715356349945, -0.1582198441028595, -0.10049954801797867, 0.01714634709060192, 0.020050309598445892, 0.10944207012653351, -0.1192619577050209, 0.019411085173487663, -0.0761835128068924, 0.07602954655885696, -0.2835274338722229, 0.07387594133615494, -0.006514269392937422, 0.0506230928003788, -0.18013495206832886, -0.07357872277498245, -0.09660831093788147, 0.020709553733468056, 0.06635402888059616, 0.24090459942817688, -0.16693417727947235, -0.11346816271543503, 0.2005625069141388, -0.06502073258161545, -0.09289948642253876, 0.17337143421173096, -0.010790610685944557, 0.018010012805461884, 0.054313354194164276, 0.14849984645843506, 0.019714221358299255, -0.19453224539756775, 0.09941355139017105, 0.06164444610476494, 0.05490536242723465, 0.014272418804466724, 0.15436269342899323, -0.025898555293679237, 0.07087373733520508, -0.05912638083100319, -0.037686582654714584, 0.018017873167991638, -0.05625040456652641, -0.05185331776738167, 0.05701266601681709, 0.03085779771208763, 0.1290571689605713, -0.006531028542667627, 0.03495021164417267, -0.008476149290800095, -0.09338871389627457, -0.07278821617364883, 0.0035350145772099495, 0.009981720708310604, 0.04240425303578377, -0.06528366357088089, 0.1525823175907135, -0.002141666831448674, -0.003380679292604327, -0.14298030734062195, 0.03317515179514885, -0.02907918579876423, 0.0772455483675003, 0.06819099187850952, -0.0018759352387860417, 0.05211305990815163, 0.04502854868769646, -0.026999445632100105, 0.0376526303589344, -0.0918537825345993, -0.040435198694467545, 0.022818276658654213, -0.18735909461975098, 0.06404547393321991, -0.060120839625597, 0.08683968335390091, -0.07061527669429779, 0.03423133119940758, 0.06141011789441109, 0.06034889817237854, 0.02393503487110138, 0.002391457324847579, -0.05789177864789963, 0.08696731925010681, -0.05345430225133896, -0.0023251506499946117, 0.07396379858255386, -0.03902840241789818, -0.13312171399593353, 0.1731880009174347, -0.11572133004665375, 0.060275349766016006, 0.12495565414428711, -0.2489316165447235, -0.08911176025867462, -0.09430573880672455, -0.015828996896743774, 0.02255200780928135, 0.10461872816085815, 0.02217506617307663, 0.21047013998031616, 0.041936472058296204, 0.10329336673021317, -0.10303760319948196, 0.015581599436700344, 0.003533419454470277, -0.028942320495843887, -0.1142798587679863, 0.18275976181030273, 0.15117870271205902, -0.07180794328451157, 0.12413597106933594, 0.3073484003543854, 0.042065106332302094, 0.1592887043952942, 0.02713506482541561, -0.007573118899017572, -0.05048356205224991, 0.03218279033899307, -0.015060036443173885, 0.1089554950594902, -0.20110468566417694, -0.038660068064928055, -0.019806895405054092, -0.0637812614440918, 0.024332275614142418, -0.1121850460767746, -0.01309358049184084, 0.03662731871008873, 0.044877976179122925, -0.10504150390625, 0.06053522974252701, -0.050162382423877716, 0.07398506999015808, 0.06552612036466599, -0.12633199989795685, -0.024693328887224197, 0.03247229754924774, -0.04316515475511551, 0.18080642819404602, -0.03955000638961792, -0.27252474427223206, -0.03472131863236427, -0.038112491369247437, -0.06696846336126328, 0.05865173414349556, 0.06272678077220917, -0.08133389800786972, 0.05528371036052704, 0.05819687992334366, 0.08545839786529541, -0.10262474417686462, -0.04944780096411705, -0.00023171612701844424, -0.02541232295334339, -0.09524703770875931, -0.04920979589223862, -0.0653427317738533, -0.018819184973835945, 0.05119847506284714, 0.00215687183663249, -0.1335582286119461, 0.22959570586681366, 0.11276694387197495, 0.023554526269435883, -0.00105934904422611, -0.023068491369485855, 0.29507210850715637, -0.09722527861595154, -0.029861902818083763, 0.16503708064556122, -0.039043717086315155, 0.06759520620107651, 0.09459684044122696, 0.02260955236852169, -0.04561058431863785, -0.04416966065764427, 0.03074236772954464, -0.09146907180547714, -0.10551662743091583, -0.10798506438732147, -0.10961335152387619, 0.03851359337568283, 0.1039169505238533, -0.0169708039611578, -0.06256011128425598, 0.03730761632323265, -0.02176368422806263, 0.00043341057607904077, 0.07673189789056778, 0.10579247772693634, 0.09921184182167053, -0.0063974387012422085, 0.0610395148396492, -0.028916969895362854, -0.1469034105539322, 0.0028280646074563265, 0.0657956451177597, -0.00450577586889267, 0.12983447313308716, 0.1919342279434204, 0.09358492493629456, 0.03505503386259079, 0.01200892310589552, 0.020334122702479362, 0.05389250069856644, -0.006900044623762369, -0.06768956035375595, -0.07416341453790665, -0.019682426005601883, 0.011746732518076897, 0.02657209150493145, -0.07029207050800323, -0.18192926049232483, 0.041544098407030106, 0.11371725797653198, 0.08493974059820175, 0.005157058127224445, -0.20348238945007324, -0.02268950454890728, 0.034157611429691315, 0.03086954914033413, -0.036251116544008255, 0.011631818488240242, 0.04976389929652214, -0.10784229636192322, 0.0980152115225792, -0.025171739980578423, 0.1484333574771881, 0.008129294030368328, 0.059557411819696426, -0.1717628538608551, -0.09343087673187256, -0.006522203329950571, 0.004062212072312832, -0.20438489317893982, 0.3063701391220093, 0.04119396582245827, -0.04705575853586197, -0.04990461468696594, -0.06333684921264648, 0.009826773777604103, 0.20646093785762787, 0.253313809633255, 0.03224042057991028, -0.10158194601535797, 0.041455499827861786, -0.05219700559973717, -0.00403613829985261, 0.12106981873512268, -0.09904737025499344, 0.030938049778342247, 0.06658989936113358, -0.03778071328997612, -0.021066496148705482, 0.05429535359144211, -0.08316678553819656, -0.19163154065608978, 0.041692160069942474, -0.03709728643298149, -0.037188757210969925, 0.0024766556452959776, -0.0592045821249485, -0.08600955456495285, 0.11247606575489044, -0.11506383866071701, 0.011129019781947136, -0.06530271470546722, -0.06972567737102509, 0.00551924854516983, -0.09048977494239807, 0.05859995260834694, -0.059627216309309006, 0.03019910305738449, -0.1393723338842392, -0.0004685524618253112, 0.1496741771697998, -0.11452828347682953, 0.07805564254522324, -0.05306517332792282, 0.19219225645065308, 0.03908265009522438, 0.04925082251429558, 0.04619681090116501, -0.027858620509505272, -0.046896956861019135, -0.0944167897105217, -0.03667794540524483, -0.11720345914363861, 0.02809177152812481, 0.029322881251573563, -0.10523737967014313, -0.08201385289430618, -0.06788531690835953, 0.016416236758232117, 0.22710776329040527, 0.12899786233901978, -0.0285669956356287, 0.11546722054481506, 0.12204843014478683, -0.06386294215917587, -0.28520116209983826, 0.029363226145505905, -0.011301500722765923, -0.0040685138665139675, -0.004505480173975229, -0.16120564937591553, -0.05997830629348755, -0.04550077021121979, 0.016924403607845306, 0.037716615945100784, -0.35007455945014954, -0.0938788503408432, 0.06483704596757889, -0.003184504574164748, 0.25482091307640076, -0.04055643826723099, -0.005641852039843798, -0.12093304097652435, -0.10758531838655472, 0.08976173400878906, -0.009050171822309494, 0.02987842820584774, 0.017628276720643044, -0.002732370048761368, 0.013911172747612, -0.04252544045448303, 0.19399920105934143, 0.00048124176100827754, 0.048366520553827286, -0.04708687961101532, -0.13078157603740692, 0.014626847580075264, -0.014639563858509064, -0.0451284684240818, -0.03682991489768028, -0.0382704883813858, -0.0881250873208046, -0.037401795387268066, -0.03263649344444275, 0.1387893557548523, -0.04643002524971962, 0.0025955787859857082, -0.014333895407617092, 0.031097600236535072, 0.021805785596370697, 0.0153213394805789, 0.12261013686656952, -0.11871050298213959, 0.062436867505311966, -0.006580706220120192, 0.17575198411941528, -0.04376284033060074, -0.050089020282030106, 0.03659162297844887, -0.0041972496546804905, 0.08614730834960938, -0.11020065099000931, 0.0748642235994339, 0.15099851787090302, -0.009718277491629124, 0.06028610095381737, 0.06612210720777512, -0.06332061439752579, -0.015978528186678886, 0.08830811828374863, -0.134969562292099, -0.07552607357501984, -0.0743221640586853, -0.07479315251111984, 0.06136549264192581, -0.00808671023696661, 0.12484578788280487, 0.02424377202987671, -0.040308479219675064, 0.005445791874080896, -0.02131575345993042, -0.06450627744197845, 0.04337142035365105, -0.04047601297497749, 0.00761465122923255, -0.10065075755119324, 0.04420735314488411, 0.02997218258678913, -0.27830174565315247, -0.02381390705704689, 0.11226102709770203, -0.07532031089067459, -0.10117100179195404, -0.06381838023662567, 0.22330965101718903, -0.16257008910179138, -0.03686608374118805, -0.09267888963222504, -0.07363011687994003, 0.03860117122530937, 0.24243766069412231, 0.0736243799328804, -0.04682634770870209, 0.03008648008108139, -0.031366586685180664, -0.03572875261306763, 0.032122861593961716, 0.11548615247011185, -0.03503834456205368, 0.036609627306461334, 0.035972125828266144, 0.0038082299288362265, 0.16876763105392456, -0.034961678087711334, -0.009917736053466797, -0.19470742344856262, 0.04153183102607727, -0.01649067923426628, -0.002212721388787031, -0.08373218774795532, -0.008018841966986656, -0.05837000533938408, 0.019078485667705536, -0.07482413947582245, -0.022232402116060257, -0.117137111723423, 0.0358341820538044, 0.02853756956756115, 0.0446164570748806, -0.05629375949501991, -0.016338210552930832, 0.09455504268407822, -0.036136358976364136, 0.05217898264527321, 0.036221712827682495, -0.002967140404507518, 0.039738863706588745, -0.2017059177160263, -0.034826505929231644, -0.03737803176045418, 0.022047964856028557, 0.0044584935531020164, -0.03165515139698982, 0.014655695296823978, 0.013207938522100449, 0.030532365664839745, -0.020170001313090324, -0.014073333702981472, -0.026981094852089882, -0.036082714796066284, 0.0705767497420311, -0.19004373252391815, -0.013052865862846375, 0.10926255583763123, 0.03183639422059059, 0.013455472886562347, 0.07615416496992111, -0.03677992522716522, 0.08405627310276031, 0.0033478981349617243, 0.02418931946158409, -0.008093100972473621, -0.10277385264635086, -0.016700852662324905, -0.14696086943149567, 0.04801285266876221, -0.023908592760562897, 0.10820071399211884, 0.04238312691450119, 0.1091894879937172, 0.03615301847457886, 0.05851056054234505, -0.10732544213533401, 0.044783495366573334, 0.04795995354652405, 0.026737120002508163, -0.022939899936318398, -0.05415891483426094, 0.1274682879447937, 0.09439124912023544, 0.28022852540016174, 0.13986578583717346, 0.1932697594165802, 0.10574470460414886, 0.0994328111410141, -0.039607711136341095, 0.03879236802458763, -0.014817506074905396, -0.09992358833551407, 0.1280249059200287, 0.05220254138112068, -0.06805796921253204, 0.06397386640310287, 0.10658075660467148, -0.07694660872220993, 0.1111939325928688, 0.05207343026995659, -0.052322808653116226, -0.15649531781673431, -0.07851853966712952, -0.0089334137737751, -0.026650208979845047, -0.031015049666166306, -0.031145408749580383, 0.01448634173721075, -0.14395394921302795, 0.03599165752530098, -0.04953283071517944, 0.21770763397216797, -0.12028715759515762, -0.14154505729675293, 0.12837395071983337, 0.012958988547325134, 0.1123504713177681, -0.005153459031134844, 0.050324343144893646, -0.04904213920235634, -0.040866702795028687, -0.029264749959111214, 0.002281460678204894, 0.01030815951526165, 0.0016127221751958132, -0.0969044640660286, -0.06624170392751694, -0.042549457401037216, 0.07778183370828629, 0.036357682198286057, 0.181832954287529, -0.015163319185376167, -0.03494752570986748, 0.0015027327463030815, 0.13401269912719727, 0.01496712677180767, -0.009949170984327793, -0.0964469462633133, 0.11032864451408386, 0.0386957973241806, 0.07611386477947235, -0.11171941459178925, -0.012346829287707806, 0.0857258290052414, 0.21064437925815582, 0.2621421813964844, -0.04172097519040108, 0.039955735206604004, -0.018582452088594437, 0.06853790581226349, 0.1152377650141716, -0.06747902184724808, 0.05464283376932144, 0.1814749538898468, -0.07630573958158493, -0.05217129737138748, -0.09724234789609909, 0.02009741961956024, -0.04314752668142319, 0.10336629301309586, 0.1050499826669693, -0.03121371939778328, 0.012543839402496815, 0.13805006444454193, -0.11631616950035095, -0.14630015194416046, 0.10599400848150253, -0.21818320453166962, -0.04249242693185806, -0.037548914551734924, 0.008661968633532524, 0.09292558580636978, 0.12090727686882019, 0.01582990027964115, -0.12753695249557495, 0.05658978223800659, 0.0667189210653305, -0.1099873036146164, -0.11353424191474915, 0.06839516013860703, 0.05039689317345619, 0.15145358443260193, -0.05236639827489853, 0.03178291395306587, 0.12930892407894135, 0.05570230633020401, 0.046774592250585556, -0.047901105135679245, 0.0683010146021843, 0.015387111343443394, -0.017793554812669754, -0.023260226473212242, -0.02865578792989254, 0.007532235700637102, 0.032371826469898224, -0.08197037875652313, 0.0617825984954834, -0.028859451413154602, -0.08095932751893997, -0.018245980143547058, 0.15151546895503998, -0.12466428428888321, 0.04538756608963013, 0.11921001225709915, 0.04250165447592735, 0.01095994096249342, -0.047836702316999435, 0.03434329852461815, 0.06614852696657181, 0.007069090381264687, -0.08311644941568375, -0.16144385933876038, 0.02969575859606266, -0.0062604197300970554, 0.02721451409161091, -0.19380547106266022, -0.03796682879328728, -0.009993284940719604, 0.05822078138589859, -0.051945578306913376, 0.019746186211705208, 0.04193849489092827, -0.025439992547035217, -0.02106873318552971, -0.2349635511636734, 0.04612205922603607, 0.05595667287707329, -0.03220188245177269, 0.0018871346255764365 ]
null
null
transformers
# CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb") results = camembert_fill_mask("Le camembert est un fromage de <mask>!") # results #[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, #{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, #{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364}, # {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, #{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302], # [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802], # [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095], # [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914], # [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
null
almanach/camembert-base-wikipedia-4gb
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us
CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 36, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.08817266672849655, 0.06722962111234665, -0.0054194023832678795, 0.0851949006319046, 0.0921679362654686, -0.04885023459792137, 0.1101437509059906, -0.004030230920761824, 0.06269332766532898, 0.007938276045024395, 0.15735214948654175, 0.10977049916982651, -0.007448417134582996, -0.0025018099695444107, -0.005956305656582117, -0.24173957109451294, 0.00908584613353014, 0.05436045676469803, -0.13212352991104126, 0.11000384390354156, 0.09806844592094421, -0.07484549283981323, 0.14767377078533173, 0.03218673914670944, -0.09583549201488495, 0.061888474971055984, -0.07348532229661942, -0.07941266149282455, 0.15129274129867554, 0.053144052624702454, 0.1385699212551117, 0.09916042536497116, -0.022784799337387085, -0.10617369413375854, 0.038279205560684204, -0.000025068351533263922, -0.05882224440574646, 0.006901250686496496, 0.05500525236129761, -0.19719558954238892, 0.16663770377635956, -0.11610756814479828, 0.012590714730322361, -0.008610128425061703, -0.21252988278865814, -0.04667479917407036, -0.05681735277175903, 0.012500235810875893, 0.048968859016895294, 0.0752452164888382, 0.002524702111259103, 0.05770038440823555, -0.04712129384279251, 0.05370553582906723, 0.19093771278858185, -0.22383254766464233, -0.06684049963951111, -0.11454278975725174, 0.16430048644542694, 0.004933223593980074, -0.0500892736017704, 0.07395929098129272, 0.03182363882660866, -0.015783805400133133, 0.0759313553571701, -0.138003870844841, 0.09545822441577911, -0.03119087964296341, -0.1122988760471344, -0.012285583652555943, 0.1908658891916275, 0.01174106728285551, -0.01157007459551096, -0.05259737744927406, -0.09966026246547699, -0.026083845645189285, -0.04062191769480705, -0.09682749956846237, 0.027895020321011543, -0.058795586228370667, 0.04795299097895622, -0.03192036226391792, -0.09110879898071289, -0.040989626199007034, -0.07955625653266907, 0.10470077395439148, -0.012560777366161346, -0.021759459748864174, -0.10524443536996841, 0.03558192029595375, -0.09566310048103333, -0.13549581170082092, 0.016596084460616112, -0.08400753885507584, 0.038349051028490067, -0.007407240103930235, 0.04299572482705116, -0.04163171350955963, 0.01568242348730564, 0.2078385055065155, -0.07017552852630615, 0.05939418822526932, 0.015097538940608501, 0.09443113952875137, 0.04530017077922821, 0.11752843856811523, -0.028148038312792778, -0.11453252285718918, -0.027420787140727043, -0.05703374743461609, 0.017647702246904373, -0.0017663206672295928, -0.17485499382019043, -0.02567189931869507, -0.06691601127386093, 0.07630420476198196, 0.026513725519180298, -0.02909793332219124, -0.07273799180984497, -0.034790124744176865, 0.06414495408535004, -0.033154260367155075, 0.02330334298312664, -0.007103482726961374, -0.004693017341196537, 0.10190488398075104, 0.027468068525195122, 0.004298487212508917, -0.04378587752580643, 0.03366594389081001, -0.07127486914396286, 0.04643639177083969, -0.04540674388408661, -0.1041712611913681, 0.03794927895069122, -0.11470769345760345, 0.05188737064599991, -0.20602841675281525, 0.0030874183867126703, -0.027074582874774933, 0.0752166286110878, -0.031725965440273285, 0.028621183708310127, -0.10757392644882202, -0.021436726674437523, 0.03215690702199936, 0.026432715356349945, -0.1582198441028595, -0.10049954801797867, 0.01714634709060192, 0.020050309598445892, 0.10944207012653351, -0.1192619577050209, 0.019411085173487663, -0.0761835128068924, 0.07602954655885696, -0.2835274338722229, 0.07387594133615494, -0.006514269392937422, 0.0506230928003788, -0.18013495206832886, -0.07357872277498245, -0.09660831093788147, 0.020709553733468056, 0.06635402888059616, 0.24090459942817688, -0.16693417727947235, -0.11346816271543503, 0.2005625069141388, -0.06502073258161545, -0.09289948642253876, 0.17337143421173096, -0.010790610685944557, 0.018010012805461884, 0.054313354194164276, 0.14849984645843506, 0.019714221358299255, -0.19453224539756775, 0.09941355139017105, 0.06164444610476494, 0.05490536242723465, 0.014272418804466724, 0.15436269342899323, -0.025898555293679237, 0.07087373733520508, -0.05912638083100319, -0.037686582654714584, 0.018017873167991638, -0.05625040456652641, -0.05185331776738167, 0.05701266601681709, 0.03085779771208763, 0.1290571689605713, -0.006531028542667627, 0.03495021164417267, -0.008476149290800095, -0.09338871389627457, -0.07278821617364883, 0.0035350145772099495, 0.009981720708310604, 0.04240425303578377, -0.06528366357088089, 0.1525823175907135, -0.002141666831448674, -0.003380679292604327, -0.14298030734062195, 0.03317515179514885, -0.02907918579876423, 0.0772455483675003, 0.06819099187850952, -0.0018759352387860417, 0.05211305990815163, 0.04502854868769646, -0.026999445632100105, 0.0376526303589344, -0.0918537825345993, -0.040435198694467545, 0.022818276658654213, -0.18735909461975098, 0.06404547393321991, -0.060120839625597, 0.08683968335390091, -0.07061527669429779, 0.03423133119940758, 0.06141011789441109, 0.06034889817237854, 0.02393503487110138, 0.002391457324847579, -0.05789177864789963, 0.08696731925010681, -0.05345430225133896, -0.0023251506499946117, 0.07396379858255386, -0.03902840241789818, -0.13312171399593353, 0.1731880009174347, -0.11572133004665375, 0.060275349766016006, 0.12495565414428711, -0.2489316165447235, -0.08911176025867462, -0.09430573880672455, -0.015828996896743774, 0.02255200780928135, 0.10461872816085815, 0.02217506617307663, 0.21047013998031616, 0.041936472058296204, 0.10329336673021317, -0.10303760319948196, 0.015581599436700344, 0.003533419454470277, -0.028942320495843887, -0.1142798587679863, 0.18275976181030273, 0.15117870271205902, -0.07180794328451157, 0.12413597106933594, 0.3073484003543854, 0.042065106332302094, 0.1592887043952942, 0.02713506482541561, -0.007573118899017572, -0.05048356205224991, 0.03218279033899307, -0.015060036443173885, 0.1089554950594902, -0.20110468566417694, -0.038660068064928055, -0.019806895405054092, -0.0637812614440918, 0.024332275614142418, -0.1121850460767746, -0.01309358049184084, 0.03662731871008873, 0.044877976179122925, -0.10504150390625, 0.06053522974252701, -0.050162382423877716, 0.07398506999015808, 0.06552612036466599, -0.12633199989795685, -0.024693328887224197, 0.03247229754924774, -0.04316515475511551, 0.18080642819404602, -0.03955000638961792, -0.27252474427223206, -0.03472131863236427, -0.038112491369247437, -0.06696846336126328, 0.05865173414349556, 0.06272678077220917, -0.08133389800786972, 0.05528371036052704, 0.05819687992334366, 0.08545839786529541, -0.10262474417686462, -0.04944780096411705, -0.00023171612701844424, -0.02541232295334339, -0.09524703770875931, -0.04920979589223862, -0.0653427317738533, -0.018819184973835945, 0.05119847506284714, 0.00215687183663249, -0.1335582286119461, 0.22959570586681366, 0.11276694387197495, 0.023554526269435883, -0.00105934904422611, -0.023068491369485855, 0.29507210850715637, -0.09722527861595154, -0.029861902818083763, 0.16503708064556122, -0.039043717086315155, 0.06759520620107651, 0.09459684044122696, 0.02260955236852169, -0.04561058431863785, -0.04416966065764427, 0.03074236772954464, -0.09146907180547714, -0.10551662743091583, -0.10798506438732147, -0.10961335152387619, 0.03851359337568283, 0.1039169505238533, -0.0169708039611578, -0.06256011128425598, 0.03730761632323265, -0.02176368422806263, 0.00043341057607904077, 0.07673189789056778, 0.10579247772693634, 0.09921184182167053, -0.0063974387012422085, 0.0610395148396492, -0.028916969895362854, -0.1469034105539322, 0.0028280646074563265, 0.0657956451177597, -0.00450577586889267, 0.12983447313308716, 0.1919342279434204, 0.09358492493629456, 0.03505503386259079, 0.01200892310589552, 0.020334122702479362, 0.05389250069856644, -0.006900044623762369, -0.06768956035375595, -0.07416341453790665, -0.019682426005601883, 0.011746732518076897, 0.02657209150493145, -0.07029207050800323, -0.18192926049232483, 0.041544098407030106, 0.11371725797653198, 0.08493974059820175, 0.005157058127224445, -0.20348238945007324, -0.02268950454890728, 0.034157611429691315, 0.03086954914033413, -0.036251116544008255, 0.011631818488240242, 0.04976389929652214, -0.10784229636192322, 0.0980152115225792, -0.025171739980578423, 0.1484333574771881, 0.008129294030368328, 0.059557411819696426, -0.1717628538608551, -0.09343087673187256, -0.006522203329950571, 0.004062212072312832, -0.20438489317893982, 0.3063701391220093, 0.04119396582245827, -0.04705575853586197, -0.04990461468696594, -0.06333684921264648, 0.009826773777604103, 0.20646093785762787, 0.253313809633255, 0.03224042057991028, -0.10158194601535797, 0.041455499827861786, -0.05219700559973717, -0.00403613829985261, 0.12106981873512268, -0.09904737025499344, 0.030938049778342247, 0.06658989936113358, -0.03778071328997612, -0.021066496148705482, 0.05429535359144211, -0.08316678553819656, -0.19163154065608978, 0.041692160069942474, -0.03709728643298149, -0.037188757210969925, 0.0024766556452959776, -0.0592045821249485, -0.08600955456495285, 0.11247606575489044, -0.11506383866071701, 0.011129019781947136, -0.06530271470546722, -0.06972567737102509, 0.00551924854516983, -0.09048977494239807, 0.05859995260834694, -0.059627216309309006, 0.03019910305738449, -0.1393723338842392, -0.0004685524618253112, 0.1496741771697998, -0.11452828347682953, 0.07805564254522324, -0.05306517332792282, 0.19219225645065308, 0.03908265009522438, 0.04925082251429558, 0.04619681090116501, -0.027858620509505272, -0.046896956861019135, -0.0944167897105217, -0.03667794540524483, -0.11720345914363861, 0.02809177152812481, 0.029322881251573563, -0.10523737967014313, -0.08201385289430618, -0.06788531690835953, 0.016416236758232117, 0.22710776329040527, 0.12899786233901978, -0.0285669956356287, 0.11546722054481506, 0.12204843014478683, -0.06386294215917587, -0.28520116209983826, 0.029363226145505905, -0.011301500722765923, -0.0040685138665139675, -0.004505480173975229, -0.16120564937591553, -0.05997830629348755, -0.04550077021121979, 0.016924403607845306, 0.037716615945100784, -0.35007455945014954, -0.0938788503408432, 0.06483704596757889, -0.003184504574164748, 0.25482091307640076, -0.04055643826723099, -0.005641852039843798, -0.12093304097652435, -0.10758531838655472, 0.08976173400878906, -0.009050171822309494, 0.02987842820584774, 0.017628276720643044, -0.002732370048761368, 0.013911172747612, -0.04252544045448303, 0.19399920105934143, 0.00048124176100827754, 0.048366520553827286, -0.04708687961101532, -0.13078157603740692, 0.014626847580075264, -0.014639563858509064, -0.0451284684240818, -0.03682991489768028, -0.0382704883813858, -0.0881250873208046, -0.037401795387268066, -0.03263649344444275, 0.1387893557548523, -0.04643002524971962, 0.0025955787859857082, -0.014333895407617092, 0.031097600236535072, 0.021805785596370697, 0.0153213394805789, 0.12261013686656952, -0.11871050298213959, 0.062436867505311966, -0.006580706220120192, 0.17575198411941528, -0.04376284033060074, -0.050089020282030106, 0.03659162297844887, -0.0041972496546804905, 0.08614730834960938, -0.11020065099000931, 0.0748642235994339, 0.15099851787090302, -0.009718277491629124, 0.06028610095381737, 0.06612210720777512, -0.06332061439752579, -0.015978528186678886, 0.08830811828374863, -0.134969562292099, -0.07552607357501984, -0.0743221640586853, -0.07479315251111984, 0.06136549264192581, -0.00808671023696661, 0.12484578788280487, 0.02424377202987671, -0.040308479219675064, 0.005445791874080896, -0.02131575345993042, -0.06450627744197845, 0.04337142035365105, -0.04047601297497749, 0.00761465122923255, -0.10065075755119324, 0.04420735314488411, 0.02997218258678913, -0.27830174565315247, -0.02381390705704689, 0.11226102709770203, -0.07532031089067459, -0.10117100179195404, -0.06381838023662567, 0.22330965101718903, -0.16257008910179138, -0.03686608374118805, -0.09267888963222504, -0.07363011687994003, 0.03860117122530937, 0.24243766069412231, 0.0736243799328804, -0.04682634770870209, 0.03008648008108139, -0.031366586685180664, -0.03572875261306763, 0.032122861593961716, 0.11548615247011185, -0.03503834456205368, 0.036609627306461334, 0.035972125828266144, 0.0038082299288362265, 0.16876763105392456, -0.034961678087711334, -0.009917736053466797, -0.19470742344856262, 0.04153183102607727, -0.01649067923426628, -0.002212721388787031, -0.08373218774795532, -0.008018841966986656, -0.05837000533938408, 0.019078485667705536, -0.07482413947582245, -0.022232402116060257, -0.117137111723423, 0.0358341820538044, 0.02853756956756115, 0.0446164570748806, -0.05629375949501991, -0.016338210552930832, 0.09455504268407822, -0.036136358976364136, 0.05217898264527321, 0.036221712827682495, -0.002967140404507518, 0.039738863706588745, -0.2017059177160263, -0.034826505929231644, -0.03737803176045418, 0.022047964856028557, 0.0044584935531020164, -0.03165515139698982, 0.014655695296823978, 0.013207938522100449, 0.030532365664839745, -0.020170001313090324, -0.014073333702981472, -0.026981094852089882, -0.036082714796066284, 0.0705767497420311, -0.19004373252391815, -0.013052865862846375, 0.10926255583763123, 0.03183639422059059, 0.013455472886562347, 0.07615416496992111, -0.03677992522716522, 0.08405627310276031, 0.0033478981349617243, 0.02418931946158409, -0.008093100972473621, -0.10277385264635086, -0.016700852662324905, -0.14696086943149567, 0.04801285266876221, -0.023908592760562897, 0.10820071399211884, 0.04238312691450119, 0.1091894879937172, 0.03615301847457886, 0.05851056054234505, -0.10732544213533401, 0.044783495366573334, 0.04795995354652405, 0.026737120002508163, -0.022939899936318398, -0.05415891483426094, 0.1274682879447937, 0.09439124912023544, 0.28022852540016174, 0.13986578583717346, 0.1932697594165802, 0.10574470460414886, 0.0994328111410141, -0.039607711136341095, 0.03879236802458763, -0.014817506074905396, -0.09992358833551407, 0.1280249059200287, 0.05220254138112068, -0.06805796921253204, 0.06397386640310287, 0.10658075660467148, -0.07694660872220993, 0.1111939325928688, 0.05207343026995659, -0.052322808653116226, -0.15649531781673431, -0.07851853966712952, -0.0089334137737751, -0.026650208979845047, -0.031015049666166306, -0.031145408749580383, 0.01448634173721075, -0.14395394921302795, 0.03599165752530098, -0.04953283071517944, 0.21770763397216797, -0.12028715759515762, -0.14154505729675293, 0.12837395071983337, 0.012958988547325134, 0.1123504713177681, -0.005153459031134844, 0.050324343144893646, -0.04904213920235634, -0.040866702795028687, -0.029264749959111214, 0.002281460678204894, 0.01030815951526165, 0.0016127221751958132, -0.0969044640660286, -0.06624170392751694, -0.042549457401037216, 0.07778183370828629, 0.036357682198286057, 0.181832954287529, -0.015163319185376167, -0.03494752570986748, 0.0015027327463030815, 0.13401269912719727, 0.01496712677180767, -0.009949170984327793, -0.0964469462633133, 0.11032864451408386, 0.0386957973241806, 0.07611386477947235, -0.11171941459178925, -0.012346829287707806, 0.0857258290052414, 0.21064437925815582, 0.2621421813964844, -0.04172097519040108, 0.039955735206604004, -0.018582452088594437, 0.06853790581226349, 0.1152377650141716, -0.06747902184724808, 0.05464283376932144, 0.1814749538898468, -0.07630573958158493, -0.05217129737138748, -0.09724234789609909, 0.02009741961956024, -0.04314752668142319, 0.10336629301309586, 0.1050499826669693, -0.03121371939778328, 0.012543839402496815, 0.13805006444454193, -0.11631616950035095, -0.14630015194416046, 0.10599400848150253, -0.21818320453166962, -0.04249242693185806, -0.037548914551734924, 0.008661968633532524, 0.09292558580636978, 0.12090727686882019, 0.01582990027964115, -0.12753695249557495, 0.05658978223800659, 0.0667189210653305, -0.1099873036146164, -0.11353424191474915, 0.06839516013860703, 0.05039689317345619, 0.15145358443260193, -0.05236639827489853, 0.03178291395306587, 0.12930892407894135, 0.05570230633020401, 0.046774592250585556, -0.047901105135679245, 0.0683010146021843, 0.015387111343443394, -0.017793554812669754, -0.023260226473212242, -0.02865578792989254, 0.007532235700637102, 0.032371826469898224, -0.08197037875652313, 0.0617825984954834, -0.028859451413154602, -0.08095932751893997, -0.018245980143547058, 0.15151546895503998, -0.12466428428888321, 0.04538756608963013, 0.11921001225709915, 0.04250165447592735, 0.01095994096249342, -0.047836702316999435, 0.03434329852461815, 0.06614852696657181, 0.007069090381264687, -0.08311644941568375, -0.16144385933876038, 0.02969575859606266, -0.0062604197300970554, 0.02721451409161091, -0.19380547106266022, -0.03796682879328728, -0.009993284940719604, 0.05822078138589859, -0.051945578306913376, 0.019746186211705208, 0.04193849489092827, -0.025439992547035217, -0.02106873318552971, -0.2349635511636734, 0.04612205922603607, 0.05595667287707329, -0.03220188245177269, 0.0018871346255764365 ]
null
null
transformers
> 🚨 **Update:** This checkpoint is deprecated, please use https://huggingface.co/almanach/camembert-base instead 🚨 # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb") results = camembert_fill_mask("Le camembert est un fromage de <mask>!") # results #[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, #{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, #{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364}, # {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, #{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302], # [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802], # [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095], # [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914], # [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
fill-mask
almanach/camembert-base-legacy
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "arxiv:1911.03894", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fill-mask #fr #arxiv-1911.03894 #autotrain_compatible #endpoints_compatible #region-us
> > Update: This checkpoint is deprecated, please use URL instead > > > CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #fr #arxiv-1911.03894 #autotrain_compatible #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 49, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fill-mask #fr #arxiv-1911.03894 #autotrain_compatible #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.09820099174976349, 0.07367213070392609, -0.003927118610590696, 0.10067092627286911, 0.10442473739385605, -0.04630975052714348, 0.11983886361122131, 0.012186025269329548, 0.06277313828468323, 0.018482210114598274, 0.17118923366069794, 0.1292964667081833, 0.007071709260344505, 0.02622842602431774, -0.01787945255637169, -0.2388063371181488, 0.00486466521397233, 0.033597949892282486, -0.13567379117012024, 0.09883428364992142, 0.10138867795467377, -0.06675352156162262, 0.1599675416946411, 0.02525925450026989, -0.0994175523519516, 0.06869480758905411, -0.032881882041692734, -0.11045026034116745, 0.1553686261177063, 0.07522871345281601, 0.14151053130626678, 0.09959030151367188, -0.006991748698055744, -0.11082149296998978, 0.035235315561294556, -0.01492192130535841, -0.06638515740633011, 0.019881317391991615, 0.06928252428770065, -0.1703081876039505, 0.09431922435760498, -0.09155326336622238, 0.0253701563924551, 0.00925644300878048, -0.20126263797283173, -0.03176717460155487, -0.046566449105739594, -0.01308791060000658, 0.06843290477991104, 0.068193219602108, 0.008376939222216606, 0.0711452066898346, -0.05309194326400757, 0.04818253219127655, 0.15959276258945465, -0.2359047383069992, -0.07017268985509872, -0.09072454273700714, 0.1423654556274414, -0.026530751958489418, -0.05562092363834381, 0.0798507034778595, 0.05308673158288002, -0.018391935154795647, 0.08653893321752548, -0.13608600199222565, 0.08226390182971954, -0.04010315611958504, -0.08305977284908295, -0.0021537526044994593, 0.17581996321678162, 0.012852278538048267, -0.019289813935756683, -0.06859366595745087, -0.09375261515378952, -0.027832457795739174, -0.04393763840198517, -0.07635302096605301, 0.0258297361433506, -0.05377645045518875, 0.02657281421124935, 0.00010634482896421105, -0.09733831882476807, -0.04693256691098213, -0.07770469039678574, 0.08440421521663666, -0.017113033682107925, -0.036219771951436996, -0.07901136577129364, 0.03355545550584793, -0.08602985739707947, -0.15474025905132294, 0.024462737143039703, -0.0781889334321022, 0.009438963606953621, -0.016149336472153664, 0.03229115530848503, -0.06748136878013611, 0.03505768999457359, 0.219941183924675, -0.029243169352412224, 0.06786434352397919, 0.03207257017493248, 0.07195950299501419, 0.02376849576830864, 0.11099069565534592, -0.027126917615532875, -0.1480613648891449, -0.010882285423576832, -0.07290700823068619, 0.017276711761951447, -0.027016013860702515, -0.19519895315170288, -0.0020042764954268932, -0.06073085218667984, 0.05833234637975693, 0.026823529973626137, 0.00034153746673837304, -0.08126901835203171, -0.03619701415300369, 0.07798849046230316, -0.022838391363620758, 0.029382111504673958, -0.017359238117933273, -0.003574790433049202, 0.030931811779737473, 0.029546238481998444, 0.01951635256409645, -0.014378543011844158, 0.05970907583832741, -0.0830639898777008, 0.008883443661034107, -0.05300770327448845, -0.10534145683050156, 0.053054168820381165, -0.12511759996414185, 0.062440354377031326, -0.23315539956092834, -0.015223882161080837, -0.03504222631454468, 0.0681910291314125, -0.05422719568014145, 0.015693703666329384, -0.09135739505290985, -0.0015858706319704652, 0.05605410411953926, 0.023683099076151848, -0.1268366277217865, -0.09085657447576523, 0.020638514310121536, 0.046841565519571304, 0.117959164083004, -0.12641380727291107, 0.03038637712597847, -0.1073930412530899, 0.06039457768201828, -0.270820677280426, 0.06520535051822662, -0.012144137173891068, 0.05413871631026268, -0.18046900629997253, -0.037111084908246994, -0.07911574840545654, 0.030412990599870682, 0.060568638145923615, 0.2351730763912201, -0.14836163818836212, -0.11062566936016083, 0.17504793405532837, -0.036795858293771744, -0.09850799292325974, 0.1536441296339035, -0.02445239946246147, 0.03417430445551872, 0.052407246083021164, 0.12017392367124557, 0.021521076560020447, -0.16962867975234985, 0.09536213427782059, 0.03994077444076538, 0.07296273857355118, 0.03138769418001175, 0.13437145948410034, -0.030960287898778915, 0.022923218086361885, -0.03523598238825798, -0.02022923156619072, 0.017278922721743584, -0.034669943153858185, -0.04996529966592789, 0.0593828409910202, 0.01855647563934326, 0.1373383104801178, -0.010653072036802769, 0.06302125751972198, -0.025074923411011696, -0.08109445124864578, -0.0638701394200325, -0.0074478681199252605, 0.0327959805727005, 0.013324828818440437, -0.05961356684565544, 0.15620830655097961, -0.054372016340494156, -0.00940645020455122, -0.12720896303653717, -0.005130385980010033, -0.023924659937620163, 0.07089858502149582, 0.06701627373695374, -0.017796844244003296, 0.04956468194723129, 0.060975175350904465, -0.029589779675006866, 0.021290946751832962, -0.0437234565615654, -0.021737266331911087, 0.018477430567145348, -0.22032637894153595, 0.05458478257060051, -0.05705901235342026, 0.11807449907064438, -0.10503534227609634, 0.016159016638994217, 0.028283724561333656, 0.07405795156955719, 0.025096425786614418, 0.005470516625791788, -0.05522458627820015, 0.0866355150938034, -0.08657293021678925, 0.004011811688542366, 0.07026571035385132, -0.03277629613876343, -0.13673460483551025, 0.18361987173557281, -0.13419301807880402, 0.08558999747037888, 0.13376128673553467, -0.24686571955680847, -0.11322228610515594, -0.08465576171875, 0.006103699095547199, -0.0005728033138439059, 0.060676101595163345, 0.02454291470348835, 0.1728246808052063, 0.019491160288453102, 0.1365877389907837, -0.09609699994325638, 0.02974439226090908, 0.02097952552139759, -0.050144262611866, -0.1083603948354721, 0.15375040471553802, 0.16424739360809326, -0.07706321030855179, 0.1577119082212448, 0.2658351957798004, 0.05033602938055992, 0.1884891241788864, 0.06489226222038269, -0.003213894786313176, -0.044270019978284836, 0.006173367612063885, 0.004501964431256056, 0.10163171589374542, -0.19122080504894257, -0.04483593627810478, -0.012429604306817055, -0.07192525267601013, 0.004818902816623449, -0.10635232925415039, -0.008319919928908348, 0.05497800558805466, 0.06646477431058884, -0.08666177839040756, 0.06413983553647995, -0.052781496196985245, 0.07271602004766464, 0.06024473160505295, -0.1483054906129837, 0.009645066224038601, 0.031972553580999374, -0.0651482343673706, 0.17505286633968353, -0.03544940426945686, -0.28587713837623596, -0.08038198947906494, -0.10277044028043747, -0.08038469403982162, 0.09056219458580017, 0.06389186531305313, -0.08253319561481476, 0.032172806560993195, 0.06525891274213791, 0.05482345074415207, -0.05773686245083809, -0.03401019051671028, -0.04096192866563797, -0.013916733674705029, -0.06632506847381592, -0.028528712689876556, -0.062258295714855194, 0.01065642386674881, 0.0635404884815216, 0.021725768223404884, -0.12789864838123322, 0.24152690172195435, 0.10854405909776688, 0.026552468538284302, -0.008872038684785366, -0.030674241483211517, 0.266604483127594, -0.09950268268585205, -0.018403152003884315, 0.14130425453186035, -0.05958998575806618, 0.041769836097955704, 0.14019547402858734, 0.0331665463745594, -0.05859631299972534, -0.021618947386741638, 0.020191026851534843, -0.09349118918180466, -0.10149938613176346, -0.10161440074443817, -0.10630520433187485, 0.04142141714692116, 0.1403311938047409, -0.01875496841967106, 0.02839728631079197, 0.07144120335578918, -0.018400002270936966, 0.0569809228181839, 0.06369128078222275, 0.11234912276268005, 0.09656842052936554, -0.00255340663716197, 0.07423853129148483, -0.018315210938453674, -0.166291281580925, 0.025163287296891212, 0.06375481933355331, -0.02685127593576908, 0.14444571733474731, 0.1816970556974411, 0.05626269057393074, 0.03927115350961685, 0.01886817440390587, 0.01965567283332348, 0.0659971758723259, -0.026809638366103172, -0.0650474801659584, -0.07369959354400635, -0.03134148567914963, 0.04668159782886505, 0.04297410324215889, -0.06733569502830505, -0.1826854795217514, 0.022349735721945763, 0.0838729739189148, 0.10963619500398636, 0.037463244050741196, -0.24091759324073792, -0.032036446034908295, 0.0360439196228981, 0.02471667155623436, -0.047439392656087875, -0.0010375765850767493, 0.025635307654738426, -0.11722322553396225, 0.11589117348194122, -0.019827716052532196, 0.13002391159534454, 0.021197834983468056, 0.05974549055099487, -0.14416645467281342, -0.07712887972593307, -0.010669033974409103, 0.01876278594136238, -0.22242872416973114, 0.3045661449432373, 0.0428982712328434, -0.049720555543899536, -0.07414759695529938, -0.04459361359477043, 0.005419675260782242, 0.1717233657836914, 0.24810393154621124, 0.013955350033938885, -0.14682747423648834, -0.027904558926820755, -0.053357940167188644, -0.017419880256056786, 0.10807544738054276, -0.11992146074771881, 0.05076213181018829, 0.04520620033144951, -0.050841186195611954, -0.010544076561927795, 0.06849100440740585, -0.08072414994239807, -0.18997822701931, 0.05234701558947563, -0.021933970972895622, -0.003172666532918811, -0.0027787608560174704, -0.05468418821692467, -0.09639047086238861, 0.1192106306552887, -0.10996701568365097, 0.020363420248031616, -0.10030760616064072, -0.03759744390845299, -0.002967590931802988, -0.08432264626026154, 0.07791357487440109, -0.060961805284023285, 0.05338113009929657, -0.11149459332227707, 0.000356574630131945, 0.17697110772132874, -0.12657900154590607, 0.03437013924121857, -0.08406960219144821, 0.15784280002117157, 0.023102102801203728, 0.05517078563570976, 0.06261983513832092, -0.004182721488177776, -0.03206846863031387, -0.0754731222987175, -0.0182612556964159, -0.1222756877541542, 0.025634584948420525, 0.01973758079111576, -0.1043381616473198, -0.09168412536382675, -0.04146936163306236, -0.019461533054709435, 0.2090190052986145, 0.1601027399301529, -0.04984765872359276, 0.1208978220820427, 0.12705081701278687, -0.06919961422681808, -0.27905696630477905, 0.02097698301076889, -0.012610901147127151, 0.0018648093100637197, 0.005075064953416586, -0.15321508049964905, -0.026711121201515198, -0.039682067930698395, 0.010322337038815022, 0.04756933078169823, -0.30580392479896545, -0.11701572686433792, 0.0962936133146286, -0.005092744715511799, 0.2696199417114258, -0.056910064071416855, -0.03587011620402336, -0.1727849245071411, -0.09341006726026535, 0.07090295851230621, 0.015015767887234688, 0.055134888738393784, 0.007717253174632788, -0.0070940288715064526, 0.012584184296429157, -0.04016868397593498, 0.18190039694309235, -0.018092123791575432, 0.04721128195524216, -0.06544120609760284, -0.10604323446750641, -0.014990312047302723, -0.013436857610940933, -0.03550742194056511, -0.037227533757686615, -0.050473377108573914, -0.07573090493679047, -0.03945854306221008, -0.03065917268395424, 0.15558747947216034, -0.04792662337422371, -0.011649342253804207, 0.007953339256346226, 0.02247762866318226, 0.02285081334412098, -0.005954486317932606, 0.11851541697978973, -0.12334585934877396, 0.08964039385318756, 0.0237013828009367, 0.16636745631694794, -0.033982403576374054, -0.042552608996629715, 0.033676519989967346, -0.028645601123571396, 0.0870850458741188, -0.09601335227489471, 0.07476112991571426, 0.1381189227104187, -0.00028299540281295776, 0.06132134050130844, 0.05557931587100029, -0.04799477010965347, -0.010211680084466934, 0.10526484996080399, -0.14059442281723022, -0.02258274145424366, -0.07466486841440201, -0.08658713847398758, 0.07007065415382385, -0.04526887461543083, 0.14186331629753113, 0.0014662080211564898, -0.038923896849155426, 0.008398945443332195, -0.03254818916320801, -0.05137059465050697, 0.08775167167186737, -0.015925725921988487, -0.014062215574085712, -0.09759677946567535, 0.04978436604142189, 0.03680045157670975, -0.23964114487171173, -0.006721272598952055, 0.09394361823797226, -0.07453124225139618, -0.10817533731460571, -0.03782039135694504, 0.22662320733070374, -0.19661369919776917, -0.04783010482788086, -0.11128359287977219, -0.07705914974212646, 0.04395528510212898, 0.2556547522544861, 0.06453277915716171, -0.05479574576020241, 0.037304673343896866, -0.03209296986460686, -0.03631284087896347, 0.03683115169405937, 0.10799872875213623, 0.02282455377280712, -0.002711732406169176, 0.03462935611605644, -0.0011973492801189423, 0.12589077651500702, -0.046632070094347, 0.011545892804861069, -0.22150185704231262, 0.021783452481031418, -0.062499579042196274, -0.0023642343003302813, -0.07541272789239883, -0.02341621182858944, -0.053764160722494125, 0.019500885158777237, -0.06436967104673386, -0.030501022934913635, -0.10336708277463913, 0.015387548133730888, 0.027317581698298454, 0.05505312234163284, -0.06718149781227112, -0.016056152060627937, 0.0840369313955307, -0.03842106834053993, 0.047958433628082275, 0.018329091370105743, 0.014902511611580849, 0.028405005112290382, -0.2281506508588791, -0.02413482777774334, -0.024844611063599586, 0.014006338082253933, 0.027039919048547745, -0.0708639919757843, 0.020122690126299858, 0.024878621101379395, 0.026032645255327225, -0.00971158966422081, 0.040455542504787445, -0.05033641308546066, -0.057279717177152634, 0.07827248424291611, -0.19554731249809265, -0.009236167185008526, 0.08781564235687256, 0.05953506752848625, -0.020748110488057137, 0.09213820844888687, -0.06960704922676086, 0.09918025135993958, -0.027294060215353966, 0.021825550124049187, -0.02824973501265049, -0.1054101511836052, -0.04069053754210472, -0.12871937453746796, 0.04919232055544853, -0.02236546389758587, 0.12774808704853058, 0.05290791764855385, 0.13092270493507385, 0.032149553298950195, 0.08581232279539108, -0.06970804929733276, 0.05544710159301758, 0.06273879110813141, 0.03944786638021469, -0.017053714022040367, -0.07061319798231125, 0.1570119708776474, 0.10591167956590652, 0.2779626250267029, 0.09940224140882492, 0.15505124628543854, 0.09392446279525757, 0.08761675655841827, -0.0024666842073202133, 0.02332482859492302, -0.0293520987033844, -0.0904402807354927, 0.08379954844713211, 0.07065019011497498, -0.05510017275810242, 0.020869888365268707, 0.1072913259267807, -0.09213905781507492, 0.09117751568555832, 0.013809526339173317, -0.04187672212719917, -0.15234491229057312, -0.10064665973186493, -0.042868006974458694, -0.04040764272212982, -0.020511362701654434, -0.027622733265161514, 0.014909115619957447, -0.13273374736309052, 0.023860428482294083, -0.04918297752737999, 0.22410134971141815, -0.12732231616973877, -0.1322169452905655, 0.11205045133829117, 0.018771260976791382, 0.0933324545621872, -0.029876742511987686, 0.045052193105220795, -0.07875297218561172, -0.02458285354077816, -0.04619356989860535, -0.017528869211673737, 0.01895047165453434, 0.012730461545288563, -0.07154185324907303, -0.07610540837049484, -0.03282129392027855, 0.05603284016251564, 0.025146182626485825, 0.1794157177209854, -0.01849067583680153, -0.005836753640323877, 0.0051297638565301895, 0.15007051825523376, -0.008039801381528378, -0.006676640827208757, -0.11956240981817245, 0.10805671662092209, 0.027639692649245262, 0.08024216443300247, -0.09807614982128143, -0.03300704434514046, 0.11135881394147873, 0.23110143840312958, 0.2739570438861847, -0.04100346937775612, 0.04393161088228226, -0.013527249917387962, 0.0568666085600853, 0.10226355493068695, -0.03241878002882004, 0.030780576169490814, 0.18766646087169647, -0.0758429542183876, -0.05131736025214195, -0.07209980487823486, 0.009605761617422104, -0.038533613085746765, 0.15354929864406586, 0.09482931345701218, -0.030090373009443283, 0.010046491399407387, 0.129389688372612, -0.10448986291885376, -0.14464974403381348, 0.11200296878814697, -0.2166600078344345, -0.04494926705956459, -0.03028634749352932, 0.019458334892988205, 0.0957435742020607, 0.10489441454410553, 0.02056272141635418, -0.10751660168170929, 0.05168436840176582, 0.059054262936115265, -0.11677582561969757, -0.12707377970218658, 0.05773577839136124, 0.0613628588616848, 0.17079082131385803, -0.05669301003217697, 0.03406073898077011, 0.13782909512519836, 0.07674704492092133, 0.021108219400048256, -0.04345678165555, 0.081284299492836, 0.01074252836406231, 0.02198728546500206, -0.018818389624357224, -0.028610486537218094, 0.04081267490983009, 0.03160512074828148, -0.10527364164590836, 0.08577584475278854, -0.03442009910941124, -0.08778282254934311, -0.03319472447037697, 0.15953874588012695, -0.11799405515193939, 0.06650776416063309, 0.13071665167808533, 0.017527855932712555, -0.0012194905430078506, -0.043336447328329086, 0.04613179713487625, 0.07137063890695572, 0.011051706969738007, -0.09554571658372879, -0.18284662067890167, 0.03144747018814087, 0.006657980382442474, 0.0312507189810276, -0.23302054405212402, -0.044575534760951996, -0.02907155640423298, 0.027346087619662285, -0.060816556215286255, 0.033491361886262894, 0.0638512447476387, -0.011907748878002167, -0.02750450186431408, -0.22957713901996613, 0.04545667767524719, 0.05874979868531227, -0.05543524771928787, -0.029728516936302185 ]
null
null
transformers
# CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large") camembert = CamembertModel.from_pretrained("camembert/camembert-large") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305}, #{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497}, #{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661}, #{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373}, #{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # torch.Size([1, 10, 1024]) #tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305], # [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318], # [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 1024]) #tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287], # [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321], # [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr"}
null
almanach/camembert-large
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us
CamemBERT: a Tasty French Language Model ======================================== Introduction ------------ CamemBERT is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to Camembert Website Pre-trained models ------------------ How to use CamemBERT with HuggingFace ------------------------------------- ##### Load CamemBERT and its sub-word tokenizer : ##### Filling masks using pipeline ##### Extract contextual embedding features from Camembert output ##### Extract contextual embedding features from all Camembert layers Authors ------- CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. If you use our work, please cite:
[ "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n", "##### Load CamemBERT and its sub-word tokenizer :", "##### Filling masks using pipeline", "##### Extract contextual embedding features from Camembert output", "##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ 36, 17, 9, 15, 91 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fr #arxiv-1911.03894 #endpoints_compatible #region-us \n##### Load CamemBERT and its sub-word tokenizer :##### Filling masks using pipeline##### Extract contextual embedding features from Camembert output##### Extract contextual embedding features from all Camembert layers\n\n\nAuthors\n-------\n\n\nCamemBERT was trained and evaluated by Louis Martin\\*, Benjamin Muller\\*, Pedro Javier Ortiz Suárez\\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.\n\n\nIf you use our work, please cite:" ]
[ -0.08817266672849655, 0.06722962111234665, -0.0054194023832678795, 0.0851949006319046, 0.0921679362654686, -0.04885023459792137, 0.1101437509059906, -0.004030230920761824, 0.06269332766532898, 0.007938276045024395, 0.15735214948654175, 0.10977049916982651, -0.007448417134582996, -0.0025018099695444107, -0.005956305656582117, -0.24173957109451294, 0.00908584613353014, 0.05436045676469803, -0.13212352991104126, 0.11000384390354156, 0.09806844592094421, -0.07484549283981323, 0.14767377078533173, 0.03218673914670944, -0.09583549201488495, 0.061888474971055984, -0.07348532229661942, -0.07941266149282455, 0.15129274129867554, 0.053144052624702454, 0.1385699212551117, 0.09916042536497116, -0.022784799337387085, -0.10617369413375854, 0.038279205560684204, -0.000025068351533263922, -0.05882224440574646, 0.006901250686496496, 0.05500525236129761, -0.19719558954238892, 0.16663770377635956, -0.11610756814479828, 0.012590714730322361, -0.008610128425061703, -0.21252988278865814, -0.04667479917407036, -0.05681735277175903, 0.012500235810875893, 0.048968859016895294, 0.0752452164888382, 0.002524702111259103, 0.05770038440823555, -0.04712129384279251, 0.05370553582906723, 0.19093771278858185, -0.22383254766464233, -0.06684049963951111, -0.11454278975725174, 0.16430048644542694, 0.004933223593980074, -0.0500892736017704, 0.07395929098129272, 0.03182363882660866, -0.015783805400133133, 0.0759313553571701, -0.138003870844841, 0.09545822441577911, -0.03119087964296341, -0.1122988760471344, -0.012285583652555943, 0.1908658891916275, 0.01174106728285551, -0.01157007459551096, -0.05259737744927406, -0.09966026246547699, -0.026083845645189285, -0.04062191769480705, -0.09682749956846237, 0.027895020321011543, -0.058795586228370667, 0.04795299097895622, -0.03192036226391792, -0.09110879898071289, -0.040989626199007034, -0.07955625653266907, 0.10470077395439148, -0.012560777366161346, -0.021759459748864174, -0.10524443536996841, 0.03558192029595375, -0.09566310048103333, -0.13549581170082092, 0.016596084460616112, -0.08400753885507584, 0.038349051028490067, -0.007407240103930235, 0.04299572482705116, -0.04163171350955963, 0.01568242348730564, 0.2078385055065155, -0.07017552852630615, 0.05939418822526932, 0.015097538940608501, 0.09443113952875137, 0.04530017077922821, 0.11752843856811523, -0.028148038312792778, -0.11453252285718918, -0.027420787140727043, -0.05703374743461609, 0.017647702246904373, -0.0017663206672295928, -0.17485499382019043, -0.02567189931869507, -0.06691601127386093, 0.07630420476198196, 0.026513725519180298, -0.02909793332219124, -0.07273799180984497, -0.034790124744176865, 0.06414495408535004, -0.033154260367155075, 0.02330334298312664, -0.007103482726961374, -0.004693017341196537, 0.10190488398075104, 0.027468068525195122, 0.004298487212508917, -0.04378587752580643, 0.03366594389081001, -0.07127486914396286, 0.04643639177083969, -0.04540674388408661, -0.1041712611913681, 0.03794927895069122, -0.11470769345760345, 0.05188737064599991, -0.20602841675281525, 0.0030874183867126703, -0.027074582874774933, 0.0752166286110878, -0.031725965440273285, 0.028621183708310127, -0.10757392644882202, -0.021436726674437523, 0.03215690702199936, 0.026432715356349945, -0.1582198441028595, -0.10049954801797867, 0.01714634709060192, 0.020050309598445892, 0.10944207012653351, -0.1192619577050209, 0.019411085173487663, -0.0761835128068924, 0.07602954655885696, -0.2835274338722229, 0.07387594133615494, -0.006514269392937422, 0.0506230928003788, -0.18013495206832886, -0.07357872277498245, -0.09660831093788147, 0.020709553733468056, 0.06635402888059616, 0.24090459942817688, -0.16693417727947235, -0.11346816271543503, 0.2005625069141388, -0.06502073258161545, -0.09289948642253876, 0.17337143421173096, -0.010790610685944557, 0.018010012805461884, 0.054313354194164276, 0.14849984645843506, 0.019714221358299255, -0.19453224539756775, 0.09941355139017105, 0.06164444610476494, 0.05490536242723465, 0.014272418804466724, 0.15436269342899323, -0.025898555293679237, 0.07087373733520508, -0.05912638083100319, -0.037686582654714584, 0.018017873167991638, -0.05625040456652641, -0.05185331776738167, 0.05701266601681709, 0.03085779771208763, 0.1290571689605713, -0.006531028542667627, 0.03495021164417267, -0.008476149290800095, -0.09338871389627457, -0.07278821617364883, 0.0035350145772099495, 0.009981720708310604, 0.04240425303578377, -0.06528366357088089, 0.1525823175907135, -0.002141666831448674, -0.003380679292604327, -0.14298030734062195, 0.03317515179514885, -0.02907918579876423, 0.0772455483675003, 0.06819099187850952, -0.0018759352387860417, 0.05211305990815163, 0.04502854868769646, -0.026999445632100105, 0.0376526303589344, -0.0918537825345993, -0.040435198694467545, 0.022818276658654213, -0.18735909461975098, 0.06404547393321991, -0.060120839625597, 0.08683968335390091, -0.07061527669429779, 0.03423133119940758, 0.06141011789441109, 0.06034889817237854, 0.02393503487110138, 0.002391457324847579, -0.05789177864789963, 0.08696731925010681, -0.05345430225133896, -0.0023251506499946117, 0.07396379858255386, -0.03902840241789818, -0.13312171399593353, 0.1731880009174347, -0.11572133004665375, 0.060275349766016006, 0.12495565414428711, -0.2489316165447235, -0.08911176025867462, -0.09430573880672455, -0.015828996896743774, 0.02255200780928135, 0.10461872816085815, 0.02217506617307663, 0.21047013998031616, 0.041936472058296204, 0.10329336673021317, -0.10303760319948196, 0.015581599436700344, 0.003533419454470277, -0.028942320495843887, -0.1142798587679863, 0.18275976181030273, 0.15117870271205902, -0.07180794328451157, 0.12413597106933594, 0.3073484003543854, 0.042065106332302094, 0.1592887043952942, 0.02713506482541561, -0.007573118899017572, -0.05048356205224991, 0.03218279033899307, -0.015060036443173885, 0.1089554950594902, -0.20110468566417694, -0.038660068064928055, -0.019806895405054092, -0.0637812614440918, 0.024332275614142418, -0.1121850460767746, -0.01309358049184084, 0.03662731871008873, 0.044877976179122925, -0.10504150390625, 0.06053522974252701, -0.050162382423877716, 0.07398506999015808, 0.06552612036466599, -0.12633199989795685, -0.024693328887224197, 0.03247229754924774, -0.04316515475511551, 0.18080642819404602, -0.03955000638961792, -0.27252474427223206, -0.03472131863236427, -0.038112491369247437, -0.06696846336126328, 0.05865173414349556, 0.06272678077220917, -0.08133389800786972, 0.05528371036052704, 0.05819687992334366, 0.08545839786529541, -0.10262474417686462, -0.04944780096411705, -0.00023171612701844424, -0.02541232295334339, -0.09524703770875931, -0.04920979589223862, -0.0653427317738533, -0.018819184973835945, 0.05119847506284714, 0.00215687183663249, -0.1335582286119461, 0.22959570586681366, 0.11276694387197495, 0.023554526269435883, -0.00105934904422611, -0.023068491369485855, 0.29507210850715637, -0.09722527861595154, -0.029861902818083763, 0.16503708064556122, -0.039043717086315155, 0.06759520620107651, 0.09459684044122696, 0.02260955236852169, -0.04561058431863785, -0.04416966065764427, 0.03074236772954464, -0.09146907180547714, -0.10551662743091583, -0.10798506438732147, -0.10961335152387619, 0.03851359337568283, 0.1039169505238533, -0.0169708039611578, -0.06256011128425598, 0.03730761632323265, -0.02176368422806263, 0.00043341057607904077, 0.07673189789056778, 0.10579247772693634, 0.09921184182167053, -0.0063974387012422085, 0.0610395148396492, -0.028916969895362854, -0.1469034105539322, 0.0028280646074563265, 0.0657956451177597, -0.00450577586889267, 0.12983447313308716, 0.1919342279434204, 0.09358492493629456, 0.03505503386259079, 0.01200892310589552, 0.020334122702479362, 0.05389250069856644, -0.006900044623762369, -0.06768956035375595, -0.07416341453790665, -0.019682426005601883, 0.011746732518076897, 0.02657209150493145, -0.07029207050800323, -0.18192926049232483, 0.041544098407030106, 0.11371725797653198, 0.08493974059820175, 0.005157058127224445, -0.20348238945007324, -0.02268950454890728, 0.034157611429691315, 0.03086954914033413, -0.036251116544008255, 0.011631818488240242, 0.04976389929652214, -0.10784229636192322, 0.0980152115225792, -0.025171739980578423, 0.1484333574771881, 0.008129294030368328, 0.059557411819696426, -0.1717628538608551, -0.09343087673187256, -0.006522203329950571, 0.004062212072312832, -0.20438489317893982, 0.3063701391220093, 0.04119396582245827, -0.04705575853586197, -0.04990461468696594, -0.06333684921264648, 0.009826773777604103, 0.20646093785762787, 0.253313809633255, 0.03224042057991028, -0.10158194601535797, 0.041455499827861786, -0.05219700559973717, -0.00403613829985261, 0.12106981873512268, -0.09904737025499344, 0.030938049778342247, 0.06658989936113358, -0.03778071328997612, -0.021066496148705482, 0.05429535359144211, -0.08316678553819656, -0.19163154065608978, 0.041692160069942474, -0.03709728643298149, -0.037188757210969925, 0.0024766556452959776, -0.0592045821249485, -0.08600955456495285, 0.11247606575489044, -0.11506383866071701, 0.011129019781947136, -0.06530271470546722, -0.06972567737102509, 0.00551924854516983, -0.09048977494239807, 0.05859995260834694, -0.059627216309309006, 0.03019910305738449, -0.1393723338842392, -0.0004685524618253112, 0.1496741771697998, -0.11452828347682953, 0.07805564254522324, -0.05306517332792282, 0.19219225645065308, 0.03908265009522438, 0.04925082251429558, 0.04619681090116501, -0.027858620509505272, -0.046896956861019135, -0.0944167897105217, -0.03667794540524483, -0.11720345914363861, 0.02809177152812481, 0.029322881251573563, -0.10523737967014313, -0.08201385289430618, -0.06788531690835953, 0.016416236758232117, 0.22710776329040527, 0.12899786233901978, -0.0285669956356287, 0.11546722054481506, 0.12204843014478683, -0.06386294215917587, -0.28520116209983826, 0.029363226145505905, -0.011301500722765923, -0.0040685138665139675, -0.004505480173975229, -0.16120564937591553, -0.05997830629348755, -0.04550077021121979, 0.016924403607845306, 0.037716615945100784, -0.35007455945014954, -0.0938788503408432, 0.06483704596757889, -0.003184504574164748, 0.25482091307640076, -0.04055643826723099, -0.005641852039843798, -0.12093304097652435, -0.10758531838655472, 0.08976173400878906, -0.009050171822309494, 0.02987842820584774, 0.017628276720643044, -0.002732370048761368, 0.013911172747612, -0.04252544045448303, 0.19399920105934143, 0.00048124176100827754, 0.048366520553827286, -0.04708687961101532, -0.13078157603740692, 0.014626847580075264, -0.014639563858509064, -0.0451284684240818, -0.03682991489768028, -0.0382704883813858, -0.0881250873208046, -0.037401795387268066, -0.03263649344444275, 0.1387893557548523, -0.04643002524971962, 0.0025955787859857082, -0.014333895407617092, 0.031097600236535072, 0.021805785596370697, 0.0153213394805789, 0.12261013686656952, -0.11871050298213959, 0.062436867505311966, -0.006580706220120192, 0.17575198411941528, -0.04376284033060074, -0.050089020282030106, 0.03659162297844887, -0.0041972496546804905, 0.08614730834960938, -0.11020065099000931, 0.0748642235994339, 0.15099851787090302, -0.009718277491629124, 0.06028610095381737, 0.06612210720777512, -0.06332061439752579, -0.015978528186678886, 0.08830811828374863, -0.134969562292099, -0.07552607357501984, -0.0743221640586853, -0.07479315251111984, 0.06136549264192581, -0.00808671023696661, 0.12484578788280487, 0.02424377202987671, -0.040308479219675064, 0.005445791874080896, -0.02131575345993042, -0.06450627744197845, 0.04337142035365105, -0.04047601297497749, 0.00761465122923255, -0.10065075755119324, 0.04420735314488411, 0.02997218258678913, -0.27830174565315247, -0.02381390705704689, 0.11226102709770203, -0.07532031089067459, -0.10117100179195404, -0.06381838023662567, 0.22330965101718903, -0.16257008910179138, -0.03686608374118805, -0.09267888963222504, -0.07363011687994003, 0.03860117122530937, 0.24243766069412231, 0.0736243799328804, -0.04682634770870209, 0.03008648008108139, -0.031366586685180664, -0.03572875261306763, 0.032122861593961716, 0.11548615247011185, -0.03503834456205368, 0.036609627306461334, 0.035972125828266144, 0.0038082299288362265, 0.16876763105392456, -0.034961678087711334, -0.009917736053466797, -0.19470742344856262, 0.04153183102607727, -0.01649067923426628, -0.002212721388787031, -0.08373218774795532, -0.008018841966986656, -0.05837000533938408, 0.019078485667705536, -0.07482413947582245, -0.022232402116060257, -0.117137111723423, 0.0358341820538044, 0.02853756956756115, 0.0446164570748806, -0.05629375949501991, -0.016338210552930832, 0.09455504268407822, -0.036136358976364136, 0.05217898264527321, 0.036221712827682495, -0.002967140404507518, 0.039738863706588745, -0.2017059177160263, -0.034826505929231644, -0.03737803176045418, 0.022047964856028557, 0.0044584935531020164, -0.03165515139698982, 0.014655695296823978, 0.013207938522100449, 0.030532365664839745, -0.020170001313090324, -0.014073333702981472, -0.026981094852089882, -0.036082714796066284, 0.0705767497420311, -0.19004373252391815, -0.013052865862846375, 0.10926255583763123, 0.03183639422059059, 0.013455472886562347, 0.07615416496992111, -0.03677992522716522, 0.08405627310276031, 0.0033478981349617243, 0.02418931946158409, -0.008093100972473621, -0.10277385264635086, -0.016700852662324905, -0.14696086943149567, 0.04801285266876221, -0.023908592760562897, 0.10820071399211884, 0.04238312691450119, 0.1091894879937172, 0.03615301847457886, 0.05851056054234505, -0.10732544213533401, 0.044783495366573334, 0.04795995354652405, 0.026737120002508163, -0.022939899936318398, -0.05415891483426094, 0.1274682879447937, 0.09439124912023544, 0.28022852540016174, 0.13986578583717346, 0.1932697594165802, 0.10574470460414886, 0.0994328111410141, -0.039607711136341095, 0.03879236802458763, -0.014817506074905396, -0.09992358833551407, 0.1280249059200287, 0.05220254138112068, -0.06805796921253204, 0.06397386640310287, 0.10658075660467148, -0.07694660872220993, 0.1111939325928688, 0.05207343026995659, -0.052322808653116226, -0.15649531781673431, -0.07851853966712952, -0.0089334137737751, -0.026650208979845047, -0.031015049666166306, -0.031145408749580383, 0.01448634173721075, -0.14395394921302795, 0.03599165752530098, -0.04953283071517944, 0.21770763397216797, -0.12028715759515762, -0.14154505729675293, 0.12837395071983337, 0.012958988547325134, 0.1123504713177681, -0.005153459031134844, 0.050324343144893646, -0.04904213920235634, -0.040866702795028687, -0.029264749959111214, 0.002281460678204894, 0.01030815951526165, 0.0016127221751958132, -0.0969044640660286, -0.06624170392751694, -0.042549457401037216, 0.07778183370828629, 0.036357682198286057, 0.181832954287529, -0.015163319185376167, -0.03494752570986748, 0.0015027327463030815, 0.13401269912719727, 0.01496712677180767, -0.009949170984327793, -0.0964469462633133, 0.11032864451408386, 0.0386957973241806, 0.07611386477947235, -0.11171941459178925, -0.012346829287707806, 0.0857258290052414, 0.21064437925815582, 0.2621421813964844, -0.04172097519040108, 0.039955735206604004, -0.018582452088594437, 0.06853790581226349, 0.1152377650141716, -0.06747902184724808, 0.05464283376932144, 0.1814749538898468, -0.07630573958158493, -0.05217129737138748, -0.09724234789609909, 0.02009741961956024, -0.04314752668142319, 0.10336629301309586, 0.1050499826669693, -0.03121371939778328, 0.012543839402496815, 0.13805006444454193, -0.11631616950035095, -0.14630015194416046, 0.10599400848150253, -0.21818320453166962, -0.04249242693185806, -0.037548914551734924, 0.008661968633532524, 0.09292558580636978, 0.12090727686882019, 0.01582990027964115, -0.12753695249557495, 0.05658978223800659, 0.0667189210653305, -0.1099873036146164, -0.11353424191474915, 0.06839516013860703, 0.05039689317345619, 0.15145358443260193, -0.05236639827489853, 0.03178291395306587, 0.12930892407894135, 0.05570230633020401, 0.046774592250585556, -0.047901105135679245, 0.0683010146021843, 0.015387111343443394, -0.017793554812669754, -0.023260226473212242, -0.02865578792989254, 0.007532235700637102, 0.032371826469898224, -0.08197037875652313, 0.0617825984954834, -0.028859451413154602, -0.08095932751893997, -0.018245980143547058, 0.15151546895503998, -0.12466428428888321, 0.04538756608963013, 0.11921001225709915, 0.04250165447592735, 0.01095994096249342, -0.047836702316999435, 0.03434329852461815, 0.06614852696657181, 0.007069090381264687, -0.08311644941568375, -0.16144385933876038, 0.02969575859606266, -0.0062604197300970554, 0.02721451409161091, -0.19380547106266022, -0.03796682879328728, -0.009993284940719604, 0.05822078138589859, -0.051945578306913376, 0.019746186211705208, 0.04193849489092827, -0.025439992547035217, -0.02106873318552971, -0.2349635511636734, 0.04612205922603607, 0.05595667287707329, -0.03220188245177269, 0.0018871346255764365 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-earlystop This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9095 - Rouge1: 27.9262 - Rouge2: 11.895 - Rougel: 21.4029 - Rougelsum: 24.7805 - Gen Len: 67.68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.502 | 1.0 | 1000 | 1.7405 | 26.5705 | 11.4807 | 20.1226 | 23.6827 | 66.73 | | 0.7337 | 2.0 | 2000 | 1.9095 | 27.9262 | 11.895 | 21.4029 | 24.7805 | 67.68 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000-earlystop", "results": []}]}
text2text-generation
cammy/bart-large-cnn-finetuned-weaksup-1000-earlystop
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
bart-large-cnn-finetuned-weaksup-1000-earlystop =============================================== This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.9095 * Rouge1: 27.9262 * Rouge2: 11.895 * Rougel: 21.4029 * Rougelsum: 24.7805 * Gen Len: 67.68 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 50, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.07937213778495789, 0.026944007724523544, -0.0021364004351198673, 0.09308724850416183, 0.1794862151145935, 0.02505098097026348, 0.12264418601989746, 0.1176474392414093, -0.10308455675840378, 0.009069761261343956, 0.11984095722436905, 0.16297027468681335, 0.012601897120475769, 0.13814930617809296, -0.05065898969769478, -0.2800741195678711, -0.004972386173903942, 0.03460605815052986, -0.039614032953977585, 0.13216808438301086, 0.10255999863147736, -0.1462049037218094, 0.06558717787265778, 0.008548051118850708, -0.23481544852256775, 0.019445588812232018, 0.022076083347201347, -0.05063458904623985, 0.1520119309425354, 0.01523223053663969, 0.13149847090244293, 0.011497823521494865, 0.10074349492788315, -0.1988222748041153, 0.011355765163898468, 0.041759368032217026, 0.021021651104092598, 0.07075312733650208, 0.07422758638858795, -0.0069232117384672165, 0.13032011687755585, -0.06380262970924377, 0.06114191934466362, 0.019865743815898895, -0.1346493661403656, -0.23800595104694366, -0.08549897372722626, 0.001293772249482572, 0.07118286192417145, 0.09899311512708664, -0.013446362689137459, 0.1544763296842575, -0.11446493864059448, 0.09116005152463913, 0.21715301275253296, -0.280373215675354, -0.07082189619541168, 0.008600560948252678, 0.01983153447508812, 0.07626697421073914, -0.11789935827255249, -0.02415245957672596, 0.04520519822835922, 0.06293396651744843, 0.13669024407863617, -0.03136200085282326, -0.09401562809944153, 0.014959623105823994, -0.13715891540050507, -0.033398743718862534, 0.09463553130626678, 0.028735671192407608, -0.040932927280664444, -0.040179286152124405, -0.039016250520944595, -0.1339481920003891, -0.051242321729660034, -0.015969321131706238, 0.041809555143117905, -0.03586432710289955, -0.09307459741830826, -0.002412723610177636, -0.10225275158882141, -0.06586237251758575, -0.05542279779911041, 0.1727127581834793, 0.04295302554965019, 0.005744535475969315, -0.029343051835894585, 0.10622353106737137, -0.0163518488407135, -0.13287559151649475, 0.028753453865647316, 0.024974623695015907, -0.01599760167300701, -0.06062668561935425, -0.07443324476480484, -0.0616193562746048, 0.0035496025811880827, 0.111691914498806, -0.061533067375421524, 0.05539721995592117, 0.01594567857682705, 0.02995993010699749, -0.0997409075498581, 0.18155920505523682, -0.008033547550439835, -0.01438890490680933, -0.0008216469432227314, 0.045343898236751556, -0.010383431799709797, -0.012018784880638123, -0.1132495105266571, 0.017185959964990616, 0.11182146519422531, 0.015786949545145035, -0.07242460548877716, 0.05672331526875496, -0.05048244446516037, -0.018113618716597557, -0.027457820251584053, -0.09343694895505905, 0.04704999178647995, -0.010963105596601963, -0.08343915641307831, -0.02176445722579956, -0.006910264957696199, 0.03436599671840668, -0.02157626301050186, 0.13803553581237793, -0.08116162568330765, 0.05724543333053589, -0.11433863639831543, -0.12107019871473312, 0.012240178883075714, -0.04213142767548561, 0.02260499633848667, -0.09751959145069122, -0.1690616011619568, -0.015262640081346035, 0.05358687788248062, -0.03666312247514725, -0.04975319281220436, -0.05006779357790947, -0.060019273310899734, 0.013365508057177067, -0.029255839064717293, 0.16543884575366974, -0.06064201891422272, 0.11759114265441895, 0.05138308182358742, 0.05029643326997757, -0.05265991389751434, 0.06008433923125267, -0.1071029007434845, -0.00363934226334095, -0.19202983379364014, 0.04852684959769249, -0.04620179533958435, 0.0797092467546463, -0.07793444395065308, -0.10883396118879318, 0.010128991678357124, 0.00046207866398617625, 0.0978122279047966, 0.10133271664381027, -0.1650962382555008, -0.0795828178524971, 0.16580653190612793, -0.0621543824672699, -0.09969925135374069, 0.12033030390739441, -0.07040956616401672, 0.049964822828769684, 0.08549155294895172, 0.18297144770622253, 0.042089276015758514, -0.08515868335962296, 0.04906345531344414, -0.04726239666342735, 0.06302183121442795, -0.04113589599728584, 0.05412808805704117, 0.0036770112346857786, -0.01079829502850771, 0.03244921937584877, -0.013740049675107002, 0.07191791385412216, -0.11679902672767639, -0.08661945909261703, -0.0376572459936142, -0.0905725359916687, 0.0462898425757885, 0.06122962012887001, 0.08919475972652435, -0.12192864716053009, -0.07983458042144775, 0.08121494948863983, 0.06421343237161636, -0.04744008183479309, 0.0327235572040081, -0.05520307272672653, 0.06529143452644348, -0.03671907261013985, -0.018178684636950493, -0.18948175013065338, -0.016738668084144592, 0.01824832335114479, 0.013997232541441917, 0.04805275425314903, -0.007373538333922625, 0.07605671882629395, 0.06831426173448563, -0.05622910335659981, -0.02214808575809002, -0.03290886431932449, -0.0015901571605354548, -0.14051848649978638, -0.19133901596069336, -0.025614289566874504, -0.017151257023215294, 0.10760924965143204, -0.2045518308877945, 0.02336171083152294, -0.032880749553442, 0.08348412066698074, 0.00196027010679245, -0.014194506220519543, -0.05824679881334305, 0.10420600324869156, -0.023676658049225807, -0.03995214030146599, 0.07831277698278427, 0.005451399367302656, -0.08741455525159836, -0.028508448973298073, -0.10976176708936691, 0.16805459558963776, 0.1336083859205246, -0.14117150008678436, -0.084324412047863, -0.020956387743353844, -0.05473501235246658, -0.02538473717868328, -0.05279083177447319, 0.04365331679582596, 0.17846070230007172, -0.0042195250280201435, 0.14763107895851135, -0.06299583613872528, -0.03928595036268234, 0.01747533679008484, -0.03481763228774071, 0.04131319373846054, 0.10777536779642105, 0.10388398170471191, -0.08111169934272766, 0.1323438286781311, 0.1636269986629486, -0.07853170484304428, 0.1353999525308609, -0.03600069880485535, -0.0750855952501297, -0.018638309091329575, -0.023740753531455994, -0.010979562066495419, 0.09282097220420837, -0.11343272030353546, -0.005162057466804981, 0.012752437964081764, 0.03682601824402809, 0.017956484109163284, -0.23277533054351807, -0.04167454317212105, 0.028860507532954216, -0.03734812140464783, -0.02356971614062786, -0.024400049820542336, 0.02201041392982006, 0.11179328709840775, 0.004471801221370697, -0.07362613081932068, 0.030904708430171013, 0.004420580342411995, -0.07059633731842041, 0.20122769474983215, -0.08910776674747467, -0.1251455694437027, -0.10612501949071884, -0.09574045240879059, -0.04186815395951271, 0.0131752360612154, 0.06762734800577164, -0.09377181529998779, -0.025949006900191307, -0.04330518841743469, 0.03417413681745529, -0.010092480108141899, 0.023181280121207237, -0.013192437589168549, -0.014494328759610653, 0.06477601081132889, -0.10203219205141068, -0.021900812163949013, -0.0468040406703949, -0.07000520080327988, 0.06982830166816711, 0.046022363007068634, 0.11478975415229797, 0.1413792222738266, -0.034430891275405884, 0.006882968358695507, -0.03952735289931297, 0.24283045530319214, -0.07170382887125015, -0.043077368289232254, 0.11819696426391602, -0.002951281610876322, 0.058640796691179276, 0.11403826624155045, 0.07162105292081833, -0.10212426632642746, 0.01878185197710991, 0.030505474656820297, -0.027922553941607475, -0.1996450424194336, -0.03913963958621025, -0.055829234421253204, -0.05050835385918617, 0.09280887991189957, 0.018328415229916573, 0.031177561730146408, 0.05957718566060066, 0.03426399827003479, 0.06006914749741554, -0.03225015103816986, 0.0754343792796135, 0.1271025389432907, 0.05020288750529289, 0.14188647270202637, -0.032731711864471436, -0.08195317536592484, 0.033356837928295135, -0.023266294971108437, 0.2321782261133194, 0.031114809215068817, 0.10248278081417084, 0.059492237865924835, 0.1785707175731659, 0.00722611416131258, 0.078080914914608, 0.02216878905892372, -0.05049411952495575, -0.01608622446656227, -0.03885000944137573, -0.03764030709862709, 0.020634140819311142, -0.03954082354903221, 0.037277575582265854, -0.13468362390995026, -0.054511770606040955, 0.05737808719277382, 0.2647194266319275, 0.020833000540733337, -0.30630820989608765, -0.07613912969827652, 0.00917469896376133, -0.06264100968837738, -0.015608592890202999, 0.008947698399424553, 0.07251071184873581, -0.1148844063282013, 0.03606110066175461, -0.06725344806909561, 0.10920126736164093, 0.00034537125611677766, 0.05534312129020691, 0.04295617714524269, 0.10169075429439545, -0.0022800194565206766, 0.07412485033273697, -0.3638560473918915, 0.28804996609687805, 0.004375447053462267, 0.08392637968063354, -0.07925376296043396, -0.005699177272617817, 0.03533588722348213, 0.035222604870796204, 0.028659315779805183, -0.017002621665596962, -0.07588910311460495, -0.22057032585144043, -0.021061373874545097, 0.03651667386293411, 0.11449266970157623, -0.011020478792488575, 0.11514785140752792, -0.032786302268505096, 0.02281750924885273, 0.07409466058015823, 0.00444963900372386, -0.08709966391324997, -0.07773081213235855, -0.02053532376885414, 0.017467692494392395, -0.005898627452552319, -0.07185360789299011, -0.10964452475309372, -0.09792999923229218, 0.13255831599235535, 0.029618561267852783, -0.01949523389339447, -0.12147614359855652, 0.09775371104478836, 0.0707726702094078, -0.08019939810037613, 0.02902911603450775, 0.013710957951843739, 0.06757787615060806, 0.017702797427773476, -0.05743273347616196, 0.11361975222826004, -0.059967704117298126, -0.1595519483089447, -0.05451158806681633, 0.09680106490850449, 0.03281457722187042, 0.07637981325387955, -0.004656695295125246, 0.025629745796322823, -0.03862343356013298, -0.09328311681747437, 0.018523912876844406, -0.04835306107997894, 0.058915361762046814, 0.022712701931595802, -0.059684500098228455, 0.019345181062817574, -0.06954716145992279, -0.05001033842563629, 0.18705664575099945, 0.26484379172325134, -0.0886317789554596, 0.02748185396194458, 0.04270172119140625, -0.0715976133942604, -0.1783052533864975, 0.047224536538124084, 0.07204445451498032, 0.007259827572852373, 0.06326287984848022, -0.17716392874717712, 0.10879862308502197, 0.0962216928601265, -0.011235075071454048, 0.08995233476161957, -0.30113157629966736, -0.13156026601791382, 0.10837581753730774, 0.16195523738861084, 0.12633830308914185, -0.15144026279449463, -0.014310428872704506, -0.03328506648540497, -0.12531673908233643, 0.1076652929186821, -0.06011231243610382, 0.1257740557193756, -0.02149876393377781, 0.1265946328639984, 0.010900461114943027, -0.05166628956794739, 0.10896877199411392, -0.00036239688051864505, 0.10933446139097214, -0.06736406683921814, -0.0043135229498147964, 0.030474361032247543, -0.025059552863240242, -0.0010701031424105167, -0.07748487591743469, 0.010897594504058361, -0.09622108936309814, -0.025239162147045135, -0.09298418462276459, 0.03682076185941696, -0.035341259092092514, -0.06611742824316025, -0.012155409902334213, 0.02914818562567234, 0.04338446259498596, -0.020130347460508347, 0.11783035099506378, -0.011450572870671749, 0.186631977558136, 0.0826784074306488, 0.07709284126758575, -0.07705224305391312, -0.024930085986852646, -0.013539105653762817, -0.021439312025904655, 0.04280676692724228, -0.11780699342489243, 0.02612205035984516, 0.14805299043655396, 0.01616756059229374, 0.14585475623607635, 0.08395551145076752, -0.028891615569591522, 0.02204875648021698, 0.07340018451213837, -0.14885061979293823, -0.08328236639499664, -0.001704452675767243, -0.0223386250436306, -0.08281920105218887, 0.019383572041988373, 0.0902472659945488, -0.0716809630393982, -0.02185003086924553, -0.018440034240484238, -0.0060856761410832405, -0.0731939896941185, 0.2120792120695114, 0.04507145658135414, 0.049252770841121674, -0.10282710939645767, 0.06586470454931259, 0.05729874595999718, -0.07533308863639832, 0.007169688120484352, 0.09692850708961487, -0.06497371941804886, -0.03246553987264633, 0.10576611012220383, 0.19636693596839905, -0.0791083574295044, -0.03306901082396507, -0.1373412311077118, -0.13425201177597046, 0.07745803892612457, 0.14952436089515686, 0.09762119501829147, -0.004140476696193218, -0.05122069641947746, 0.02913730964064598, -0.12368747591972351, 0.07136864215135574, 0.05837816372513771, 0.06525435298681259, -0.11605925858020782, 0.19457001984119415, 0.0026561974082142115, 0.040169328451156616, -0.024972669780254364, 0.018769042566418648, -0.11252940446138382, 0.02737947180867195, -0.152076855301857, -0.05113948881626129, -0.020996281877160072, -0.0013717516558244824, -0.005851656198501587, -0.07194624096155167, -0.05473564565181732, 0.009486114606261253, -0.13468590378761292, -0.027401432394981384, 0.025963108986616135, 0.046886179596185684, -0.10944214463233948, -0.042912088334560394, 0.025010162964463234, -0.05316883698105812, 0.04710664972662926, 0.05969581753015518, 0.013169201090931892, 0.07649208605289459, -0.15902194380760193, -0.011044839397072792, 0.04869523644447327, -0.005684695206582546, 0.06618284434080124, -0.08900753408670425, -0.008867578580975533, 0.015167085453867912, 0.09381674975156784, 0.023655468598008156, 0.06809823215007782, -0.13932636380195618, -0.019825374707579613, -0.014725744724273682, -0.11552678793668747, -0.05618211254477501, 0.025391416624188423, 0.06236516684293747, 0.016631359234452248, 0.1922808587551117, -0.09131768345832825, 0.04952050372958183, -0.2131054401397705, -0.006431800778955221, -0.02609468251466751, -0.111974336206913, -0.12834016978740692, -0.08519620448350906, 0.06814222782850266, -0.04221859574317932, 0.13423366844654083, 0.03249156475067139, 0.0755397379398346, 0.03849530220031738, -0.028988458216190338, 0.006977134849876165, 0.018924053758382797, 0.21707002818584442, 0.04038224741816521, -0.03830163553357124, 0.06464048475027084, 0.06947504729032516, 0.08487929403781891, 0.11887220293283463, 0.20794886350631714, 0.1692638099193573, 0.009681381285190582, 0.07738535106182098, 0.036899250000715256, -0.04929518699645996, -0.1496429294347763, 0.017757495865225792, -0.0202566497027874, 0.09087015688419342, -0.047313641756772995, 0.23686710000038147, 0.0692066103219986, -0.17741645872592926, 0.0602288655936718, -0.06925909221172333, -0.08153777569532394, -0.10753247886896133, -0.03127668425440788, -0.08433060348033905, -0.16148146986961365, 0.009297684766352177, -0.10615743696689606, 0.0537334680557251, 0.1027497947216034, 0.01301959715783596, -0.026101691648364067, 0.15312840044498444, 0.03526213765144348, 0.01675380766391754, 0.06212940812110901, -0.014995076693594456, -0.011584619991481304, -0.09506401419639587, -0.07603885978460312, -0.020021766424179077, -0.0224323533475399, 0.038383204489946365, -0.05112505704164505, -0.09383101761341095, 0.018489327281713486, -0.03820391371846199, -0.10670425742864609, 0.02598201483488083, 0.023825643584132195, 0.08641614019870758, 0.06811346858739853, 0.0003601045464165509, 0.012999312952160835, -0.018710611388087273, 0.242861807346344, -0.07933766394853592, -0.1086953729391098, -0.0890434980392456, 0.3039129376411438, 0.045487020164728165, -0.008122449740767479, 0.025171156972646713, -0.05437716841697693, 0.01422351598739624, 0.22680413722991943, 0.17480836808681488, -0.10944308340549469, -0.010885879397392273, -0.009797821752727032, -0.015459314920008183, -0.019781192764639854, 0.13769859075546265, 0.12806449830532074, 0.02992076613008976, -0.10438153892755508, -0.0037796259857714176, -0.059562359005212784, -0.017808768898248672, -0.05088748782873154, 0.07084474712610245, 0.043841466307640076, 0.0043214973993599415, -0.043206434696912766, 0.06650150567293167, -0.05669369921088219, -0.07292873412370682, 0.026376519352197647, -0.1934855431318283, -0.1565614640712738, -0.01027392502874136, 0.09708952158689499, 0.006395778153091669, 0.06436317414045334, -0.029113318771123886, 0.013865107670426369, 0.0475892536342144, -0.026969676837325096, -0.05498349666595459, -0.1007520779967308, 0.12224172800779343, -0.12989258766174316, 0.17881165444850922, -0.04129158705472946, 0.06504002213478088, 0.12526127696037292, 0.07048255950212479, -0.06509476155042648, 0.08798003196716309, 0.03903704509139061, -0.09837444126605988, 0.031556081026792526, 0.11876638978719711, -0.03512687608599663, 0.05235513672232628, 0.03975099325180054, -0.14045748114585876, 0.039571668952703476, -0.0817996934056282, -0.05385543033480644, -0.0252543855458498, -0.03899766877293587, -0.053006697446107864, 0.12607084214687347, 0.223028764128685, -0.026417983695864677, 0.02145248092710972, -0.08893284201622009, 0.01794915832579136, 0.05538873001933098, 0.05562407150864601, -0.09164445102214813, -0.26098039746284485, 0.0037845957558602095, 0.10917017608880997, -0.03258580341935158, -0.25457265973091125, -0.09677626192569733, 0.0018102381145581603, -0.06349752843379974, -0.09610699117183685, 0.11302448064088821, 0.0811234638094902, 0.04537055268883705, -0.049663323909044266, -0.15705718100070953, -0.07654830068349838, 0.17291925847530365, -0.13524632155895233, -0.07428589463233948 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4168 - Rouge1: 26.2506 - Rouge2: 10.7802 - Rougel: 19.2236 - Rougelsum: 22.6883 - Gen Len: 68.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1434 | 1.0 | 1000 | 0.4168 | 26.2506 | 10.7802 | 19.2236 | 22.6883 | 68.74 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000-pad", "results": []}]}
text2text-generation
cammy/bart-large-cnn-finetuned-weaksup-1000-pad
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
bart-large-cnn-finetuned-weaksup-1000-pad ========================================= This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4168 * Rouge1: 26.2506 * Rouge2: 10.7802 * Rougel: 19.2236 * Rougelsum: 22.6883 * Gen Len: 68.74 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 54, 113, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08550143241882324, 0.036649174988269806, -0.0024786146823316813, 0.09521595388650894, 0.15859219431877136, 0.024019412696361542, 0.15304633975028992, 0.11945553869009018, -0.09875433146953583, 0.024829991161823273, 0.12568587064743042, 0.16079166531562805, 0.01456836424767971, 0.11777489632368088, -0.0436583086848259, -0.2727062702178955, -0.008755016140639782, 0.03337382525205612, -0.04336301237344742, 0.12867377698421478, 0.08688269555568695, -0.1365860402584076, 0.07085800915956497, 0.00946500338613987, -0.21988582611083984, 0.018303565680980682, 0.02184281498193741, -0.04812583699822426, 0.15808501839637756, 0.02868722938001156, 0.13825231790542603, 0.025056330487132072, 0.08872096240520477, -0.19877757132053375, 0.018235478550195694, 0.04610312357544899, 0.004680556710809469, 0.07878613471984863, 0.07098042964935303, -0.009300684556365013, 0.14702777564525604, -0.06780990958213806, 0.06676647067070007, 0.02231121063232422, -0.13955388963222504, -0.21888233721256256, -0.09033054858446121, -0.0018551326356828213, 0.06013161689043045, 0.09426146000623703, -0.01103064976632595, 0.1381441205739975, -0.09121617674827576, 0.09586430341005325, 0.21617862582206726, -0.2919671833515167, -0.07265405356884003, 0.015127390623092651, 0.03407912328839302, 0.08894656598567963, -0.11278349906206131, -0.013814223930239677, 0.03702147677540779, 0.05306459963321686, 0.13798925280570984, -0.035779375582933426, -0.08081674575805664, 0.016568046063184738, -0.1357439160346985, -0.035305265337228775, 0.08534102886915207, 0.02962525747716427, -0.03675498813390732, -0.049059655517339706, -0.05075544863939285, -0.14364416897296906, -0.04593992605805397, -0.007921798154711723, 0.041071273386478424, -0.029633373022079468, -0.10593859851360321, -0.026884913444519043, -0.10804641991853714, -0.06819551438093185, -0.06329347938299179, 0.1470593363046646, 0.032255832105875015, 0.0023882819805294275, -0.03135672211647034, 0.10280788689851761, 0.0017559992847964168, -0.13598980009555817, 0.025600798428058624, 0.03915151581168175, -0.02541395090520382, -0.05582171306014061, -0.06707537919282913, -0.09191466867923737, 0.004009765572845936, 0.11392642557621002, -0.048789240419864655, 0.05734836310148239, 0.0015617855824530125, 0.041307106614112854, -0.10242060571908951, 0.18863844871520996, -0.023000041022896767, -0.014652302488684654, -0.004327544942498207, 0.04788242280483246, 0.006690087262541056, -0.02487570233643055, -0.1209455356001854, 0.02337653748691082, 0.09703478217124939, 0.014028753153979778, -0.059832312166690826, 0.05697616562247276, -0.050533756613731384, -0.01500716619193554, -0.007109815254807472, -0.08881685137748718, 0.04430224746465683, -0.002104995772242546, -0.06539870798587799, -0.021737346425652504, 0.005356293637305498, 0.030147302895784378, -0.006450791843235493, 0.1306455135345459, -0.08412893116474152, 0.04787604510784149, -0.10389772057533264, -0.13131605088710785, 0.016423624008893967, -0.07010312378406525, 0.01698242872953415, -0.09228985011577606, -0.15850219130516052, -0.020503662526607513, 0.05657338351011276, -0.031834252178668976, -0.03290244936943054, -0.05774246156215668, -0.06102410703897476, 0.02049039863049984, -0.015767710283398628, 0.15380845963954926, -0.06115082651376724, 0.10883234441280365, 0.0346551388502121, 0.05183901637792587, -0.058852337300777435, 0.05430562049150467, -0.09352600574493408, 0.009844427928328514, -0.19035395979881287, 0.04980480298399925, -0.05060192570090294, 0.07378921657800674, -0.08546416461467743, -0.09530170261859894, 0.012741683050990105, 0.0038256992120295763, 0.09315358847379684, 0.08745130896568298, -0.18377497792243958, -0.08592701703310013, 0.1707083284854889, -0.06129726395010948, -0.0993669182062149, 0.12521257996559143, -0.07214777171611786, 0.050254251807928085, 0.0711430013179779, 0.18681566417217255, 0.05690127611160278, -0.09009838104248047, 0.04300077632069588, -0.035625752061605453, 0.05545369163155556, -0.04400406777858734, 0.053868167102336884, -0.005230406299233437, 0.017289362847805023, 0.017229542136192322, -0.007048261817544699, 0.061757877469062805, -0.10414739698171616, -0.08938848227262497, -0.033608656376600266, -0.08470146358013153, 0.04193554446101189, 0.062241069972515106, 0.07699116319417953, -0.10813789814710617, -0.08822323381900787, 0.07986822724342346, 0.06212468445301056, -0.06003422290086746, 0.039296865463256836, -0.06262540817260742, 0.0655359998345375, -0.041469328105449677, -0.020349515601992607, -0.1822323203086853, -0.02990143746137619, 0.012674652971327305, 0.013599056750535965, 0.04939279332756996, 0.015218405053019524, 0.08009226620197296, 0.07407186925411224, -0.052098579704761505, -0.01972758024930954, -0.02910098060965538, -0.0025190524756908417, -0.1356828808784485, -0.20918461680412292, -0.027605146169662476, -0.026431666687130928, 0.12250860780477524, -0.20990149676799774, 0.02844555303454399, -0.009627491235733032, 0.07226207852363586, 0.01899098791182041, -0.021819528192281723, -0.04932332783937454, 0.10049822926521301, -0.0327567383646965, -0.047768812626600266, 0.07559467107057571, 0.008112411014735699, -0.10416562110185623, -0.021545259281992912, -0.13919223845005035, 0.15195626020431519, 0.1296088993549347, -0.1233978122472763, -0.08197149634361267, -0.02749364636838436, -0.05339408293366432, -0.02590992860496044, -0.043566327542066574, 0.03732510283589363, 0.1948002725839615, 0.006753596011549234, 0.1470915675163269, -0.06052297353744507, -0.04232467710971832, 0.023119185119867325, -0.024463988840579987, 0.025130391120910645, 0.11840605735778809, 0.10165515542030334, -0.081358402967453, 0.12554831802845, 0.15075644850730896, -0.0778852328658104, 0.14359818398952484, -0.03339330852031708, -0.07963812351226807, -0.02537992224097252, -0.018615838140249252, 0.011025230400264263, 0.10317190736532211, -0.12641644477844238, -0.009502886794507504, 0.009544298984110355, 0.02334660477936268, 0.01720098964869976, -0.2336564064025879, -0.04145236313343048, 0.03915892168879509, -0.04858476668596268, -0.026180963963270187, -0.03019409254193306, 0.01184574794024229, 0.10567077249288559, 0.004495259840041399, -0.07457777857780457, 0.025291742756962776, 0.0014314500149339437, -0.0716693252325058, 0.20366890728473663, -0.08059997856616974, -0.1208762377500534, -0.12432007491588593, -0.10011033713817596, -0.030861876904964447, 0.0123521126806736, 0.06470510363578796, -0.0816039964556694, -0.025030873715877533, -0.06802456080913544, 0.02062024362385273, -0.011292535811662674, 0.021565021947026253, -0.018625084310770035, -0.016205715015530586, 0.054710883647203445, -0.10849779099225998, -0.012520113959908485, -0.048802077770233154, -0.07326311618089676, 0.0631149411201477, 0.04450184106826782, 0.12699927389621735, 0.15208515524864197, -0.023163186386227608, 0.006756224203854799, -0.0423225536942482, 0.22124280035495758, -0.07719019055366516, -0.028552625328302383, 0.10986563563346863, -0.013502616435289383, 0.06241739168763161, 0.11598891764879227, 0.07804875820875168, -0.09255858510732651, 0.015370258130133152, 0.03417523205280304, -0.04029421508312225, -0.21239683032035828, -0.02703140117228031, -0.056864187121391296, -0.030429650098085403, 0.08909577876329422, 0.02319299429655075, 0.04186715930700302, 0.058104995638132095, 0.03811714053153992, 0.06497985869646072, -0.026712046936154366, 0.07158850878477097, 0.11772862821817398, 0.049162864685058594, 0.13711778819561005, -0.04006967693567276, -0.06885247677564621, 0.03672541677951813, -0.013698112219572067, 0.2343088537454605, 0.027892082929611206, 0.16391679644584656, 0.06442195922136307, 0.1630862057209015, 0.0070803407579660416, 0.06499083340167999, 0.009534144774079323, -0.047421954572200775, -0.01554527785629034, -0.04379686340689659, -0.02600020542740822, 0.021059155464172363, -0.038255367428064346, 0.03503493219614029, -0.11599573493003845, -0.030481360852718353, 0.04537060484290123, 0.2562587559223175, 0.02476748824119568, -0.31593769788742065, -0.07613702118396759, 0.009366783313453197, -0.04529060795903206, -0.011481594294309616, 0.004732979461550713, 0.09995539486408234, -0.0955742672085762, 0.03512046858668327, -0.07353267073631287, 0.10448693484067917, -0.03168370947241783, 0.050881363451480865, 0.04698065668344498, 0.09493783116340637, -0.012207632884383202, 0.06336571276187897, -0.3397519290447235, 0.2926911413669586, 0.012336118146777153, 0.08015842735767365, -0.0720074474811554, -0.007892653346061707, 0.035929493606090546, 0.03054462932050228, 0.04269569367170334, -0.020819969475269318, -0.06280152499675751, -0.21579024195671082, -0.04013034328818321, 0.032769978046417236, 0.10908474028110504, -0.016548864543437958, 0.1142563447356224, -0.02842959761619568, 0.013231690973043442, 0.07525484263896942, 0.005843195598572493, -0.07221120595932007, -0.09697411954402924, -0.013370748609304428, 0.016506416723132133, -0.030305365100502968, -0.07102327793836594, -0.10561645776033401, -0.10001261532306671, 0.15053673088550568, 0.00499827740713954, -0.014322357252240181, -0.12352272123098373, 0.08199718594551086, 0.06636642664670944, -0.08667748421430588, 0.027204083278775215, 0.011691372841596603, 0.0723053589463234, 0.013403167016804218, -0.06068090721964836, 0.11932623386383057, -0.052503958344459534, -0.15661188960075378, -0.06630999594926834, 0.09303820878267288, 0.03858362138271332, 0.07488349825143814, -0.006391479633748531, 0.02614578790962696, -0.03317517414689064, -0.08631063997745514, 0.029298774898052216, -0.038249172270298004, 0.04697521775960922, 0.0009885270847007632, -0.04963650926947594, 0.033820319920778275, -0.06693589687347412, -0.044607147574424744, 0.19094274938106537, 0.2627587914466858, -0.09031093120574951, 0.03200450912117958, 0.03695444017648697, -0.0723232850432396, -0.17941458523273468, 0.04987044632434845, 0.05440274998545647, 0.008743761107325554, 0.061031825840473175, -0.18564772605895996, 0.09447319060564041, 0.09855922311544418, -0.007368413731455803, 0.10821299999952316, -0.3217393159866333, -0.13676537573337555, 0.10677250474691391, 0.16481105983257294, 0.10304463654756546, -0.1563432812690735, -0.02803870104253292, -0.020591331645846367, -0.1198386624455452, 0.10349779576063156, -0.09483643621206284, 0.13053610920906067, -0.015795104205608368, 0.11623848229646683, 0.005704838316887617, -0.05527150630950928, 0.1115831583738327, -0.00018023556913249195, 0.10656028240919113, -0.06264181435108185, -0.010755679570138454, 0.05042029172182083, -0.032702915370464325, -0.014864112250506878, -0.08510982990264893, 0.007753916084766388, -0.09250319004058838, -0.027261851355433464, -0.07925498485565186, 0.03333165496587753, -0.04145737364888191, -0.06501820683479309, -0.021090950816869736, 0.02012055739760399, 0.0397612527012825, -0.015256143175065517, 0.13329488039016724, -0.018397124484181404, 0.1777474284172058, 0.09353332966566086, 0.08162161707878113, -0.06916631758213043, -0.03345651924610138, -0.012904987670481205, -0.020458299666643143, 0.04345150664448738, -0.12111629545688629, 0.02371802181005478, 0.14561603963375092, 0.023547988384962082, 0.1431189626455307, 0.08004571497440338, -0.035693444311618805, 0.03646053001284599, 0.06275204569101334, -0.14161644876003265, -0.10631924122571945, 0.0052201575599610806, -0.030370716005563736, -0.09668061137199402, 0.022046614438295364, 0.10534802079200745, -0.0595412477850914, -0.013116957619786263, -0.005900845862925053, -0.01211713906377554, -0.05990225076675415, 0.1939934641122818, 0.04383615031838417, 0.04468737170100212, -0.09789431840181351, 0.05232224240899086, 0.0586809478700161, -0.08296738564968109, 0.0047300029546022415, 0.09660269320011139, -0.06239081919193268, -0.03496076166629791, 0.08558905869722366, 0.20910850167274475, -0.07966435700654984, -0.027981212362647057, -0.1396651268005371, -0.12877348065376282, 0.07890721410512924, 0.1765798181295395, 0.08640189468860626, 0.005769083276391029, -0.06146182119846344, 0.028712548315525055, -0.11808410286903381, 0.0754053145647049, 0.039841458201408386, 0.07312275469303131, -0.10583047568798065, 0.19450494647026062, 0.003941188100725412, 0.02917088381946087, -0.022369705140590668, 0.015075938776135445, -0.10665453970432281, 0.019838018342852592, -0.15828482806682587, -0.02853900007903576, -0.030838437378406525, -0.0008007949800230563, -0.0051371376030147076, -0.06551481783390045, -0.05737864226102829, 0.0009221768705174327, -0.12278768420219421, -0.02945864200592041, 0.026048988103866577, 0.047821901738643646, -0.12495716661214828, -0.037855349481105804, 0.02069135755300522, -0.059870876371860504, 0.05821574479341507, 0.04198861122131348, 0.017203127965331078, 0.06142915040254593, -0.1588779091835022, 0.0076577309519052505, 0.04662271961569786, -0.00021582878252957016, 0.06373582035303116, -0.07385137677192688, -0.016309861093759537, -0.001996316947042942, 0.07867076992988586, 0.02402615360915661, 0.07015606760978699, -0.13491931557655334, -0.001885782927274704, -0.019945286214351654, -0.10966432839632034, -0.06276527047157288, 0.042071323841810226, 0.06296038627624512, 0.012637690640985966, 0.19082531332969666, -0.09298466145992279, 0.047367509454488754, -0.2200099378824234, -0.0012971449177712202, -0.007814977318048477, -0.10629403591156006, -0.11211686581373215, -0.08626607060432434, 0.06549206376075745, -0.053624894469976425, 0.1274275779724121, 0.017161929979920387, 0.058735284954309464, 0.03959076106548309, -0.022828180342912674, 0.010223904624581337, 0.017084477469325066, 0.20910398662090302, 0.045445479452610016, -0.04058346897363663, 0.05759582668542862, 0.05352182686328888, 0.08612232655286789, 0.12641605734825134, 0.21313020586967468, 0.15795110166072845, 0.010391474701464176, 0.08227673918008804, 0.03988204896450043, -0.04634048417210579, -0.14920803904533386, 0.041824087500572205, -0.034607768058776855, 0.09689377248287201, -0.036152198910713196, 0.23439985513687134, 0.08275528997182846, -0.17615725100040436, 0.05321364849805832, -0.048593129962682724, -0.08690083026885986, -0.10706928372383118, -0.05395788326859474, -0.0852089673280716, -0.13605882227420807, 0.004030606709420681, -0.10385456681251526, 0.0496881827712059, 0.09863757342100143, 0.013986938633024693, -0.015260524116456509, 0.15069252252578735, 0.045122839510440826, 0.02394719235599041, 0.05944216996431351, -0.0020089519675821066, -0.011390605941414833, -0.09963179379701614, -0.07631206512451172, -0.009089486673474312, -0.020483337342739105, 0.03281959146261215, -0.04574447497725487, -0.0633036345243454, 0.02794671058654785, -0.0368029847741127, -0.11340674757957458, 0.021349646151065826, 0.024216972291469574, 0.07507310807704926, 0.05521516129374504, 0.009345493279397488, 0.012981495819985867, -0.01259919535368681, 0.23116913437843323, -0.07046769559383392, -0.08867455273866653, -0.0832972452044487, 0.2816776931285858, 0.02885022945702076, -0.008435321040451527, 0.02087286300957203, -0.05807610601186752, 0.020151257514953613, 0.2303437888622284, 0.19129547476768494, -0.1029578447341919, -0.009043856523931026, 0.0007532809395343065, -0.011277283541858196, -0.01509020198136568, 0.12693777680397034, 0.11094804853200912, 0.04172127693891525, -0.10098592191934586, -0.03584650531411171, -0.05471813306212425, -0.016286596655845642, -0.042225081473588943, 0.06926332414150238, 0.04985876381397247, 0.005280420649796724, -0.04166025668382645, 0.06527586281299591, -0.06428851932287216, -0.07796033471822739, 0.0419878289103508, -0.19509008526802063, -0.15638424456119537, -0.014199446886777878, 0.1074390858411789, 0.0006190896383486688, 0.0668223649263382, -0.024951370432972908, 0.00847245380282402, 0.05516572296619415, -0.02509072795510292, -0.07046762853860855, -0.07451917231082916, 0.10483966767787933, -0.13485142588615417, 0.18762503564357758, -0.050770703703165054, 0.047483742237091064, 0.13263514637947083, 0.07660916447639465, -0.06033334508538246, 0.07937581092119217, 0.04560956731438637, -0.09695753455162048, 0.030964264646172523, 0.10723471641540527, -0.036964889615774155, 0.05926810950040817, 0.04937722161412239, -0.1286701112985611, 0.05060843750834465, -0.08645208925008774, -0.057907260954380035, -0.022244181483983994, -0.047738101333379745, -0.050747811794281006, 0.12758125364780426, 0.21189554035663605, -0.019608937203884125, 0.020650891587138176, -0.07492367923259735, 0.0016565544065088034, 0.06338007748126984, 0.05820367857813835, -0.08920163661241531, -0.24316978454589844, 0.003904205746948719, 0.08633552491664886, -0.02812250331044197, -0.28349143266677856, -0.10145469754934311, 0.00140199635643512, -0.05599804222583771, -0.0935201644897461, 0.10266932845115662, 0.08791946619749069, 0.053064826875925064, -0.053095895797014236, -0.1202181950211525, -0.06910012662410736, 0.17094668745994568, -0.13995811343193054, -0.07242759317159653 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6325 - Rouge1: 26.1954 - Rouge2: 10.7128 - Rougel: 19.3873 - Rougelsum: 22.785 - Gen Len: 66.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3896 | 1.0 | 1000 | 1.6325 | 26.1954 | 10.7128 | 19.3873 | 22.785 | 66.85 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000", "results": []}]}
text2text-generation
cammy/bart-large-cnn-finetuned-weaksup-1000
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
bart-large-cnn-finetuned-weaksup-1000 ===================================== This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6325 * Rouge1: 26.1954 * Rouge2: 10.7128 * Rougel: 19.3873 * Rougelsum: 22.785 * Gen Len: 66.85 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 50, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.07729998975992203, 0.02664991095662117, -0.0022247061133384705, 0.09321358054876328, 0.17891545593738556, 0.02522365376353264, 0.12311524897813797, 0.11731310188770294, -0.10216965526342392, 0.0095068933442235, 0.1200571358203888, 0.16243551671504974, 0.0124069694429636, 0.13611425459384918, -0.05006471648812294, -0.28086844086647034, -0.003751161741092801, 0.03228450566530228, -0.04087749496102333, 0.1316818743944168, 0.10263369232416153, -0.14421819150447845, 0.06637194752693176, 0.00882923323661089, -0.2324172705411911, 0.018332695588469505, 0.02163616381585598, -0.05002494528889656, 0.1527429223060608, 0.015573643147945404, 0.13287311792373657, 0.011035054922103882, 0.10182593017816544, -0.20034413039684296, 0.011084015481173992, 0.04187847673892975, 0.021015165373682976, 0.06948214024305344, 0.07302973419427872, -0.009526598267257214, 0.13145305216312408, -0.0634566992521286, 0.06182943284511566, 0.02066362276673317, -0.13519729673862457, -0.23856961727142334, -0.08590243756771088, 0.0010221523698419333, 0.07068181037902832, 0.09848267585039139, -0.012532411143183708, 0.1531810164451599, -0.1130964383482933, 0.09053165465593338, 0.215566486120224, -0.2784925699234009, -0.07054085284471512, 0.007892082445323467, 0.018503936007618904, 0.07685897499322891, -0.11625691503286362, -0.023397410288453102, 0.043939948081970215, 0.06354327499866486, 0.13622009754180908, -0.032189734280109406, -0.09282802045345306, 0.014764737337827682, -0.1373504251241684, -0.03373507037758827, 0.09305885434150696, 0.027844678610563278, -0.04151461645960808, -0.037619221955537796, -0.03973109647631645, -0.13250038027763367, -0.05041387677192688, -0.015758264809846878, 0.04163844510912895, -0.034729693084955215, -0.09275683760643005, -0.0035267374478280544, -0.10115863382816315, -0.06508961319923401, -0.05755098909139633, 0.17582808434963226, 0.042568136006593704, 0.006399935111403465, -0.027649791911244392, 0.10585881769657135, -0.014844952151179314, -0.13368259370326996, 0.028608858585357666, 0.02742213010787964, -0.017414748668670654, -0.06048303470015526, -0.07354892790317535, -0.05974113941192627, 0.0036831737961620092, 0.11169961094856262, -0.06281033903360367, 0.05543200299143791, 0.01568119041621685, 0.030503973364830017, -0.09881304204463959, 0.18251821398735046, -0.0071840062737464905, -0.013456987217068672, -0.0010260562412440777, 0.04440739378333092, -0.0086657190695405, -0.012981219217181206, -0.11478466540575027, 0.01914067380130291, 0.11053502559661865, 0.016580913215875626, -0.07094185054302216, 0.05521579831838608, -0.05078011006116867, -0.01790590025484562, -0.027725152671337128, -0.09377144277095795, 0.04744744673371315, -0.01069601159542799, -0.08216272294521332, -0.021723542362451553, -0.006099943071603775, 0.03492027148604393, -0.020877094939351082, 0.13733556866645813, -0.08044401556253433, 0.0587027408182621, -0.11234331876039505, -0.12036652117967606, 0.012675178237259388, -0.040941204875707626, 0.021230939775705338, -0.0976392850279808, -0.1687646508216858, -0.0138827720656991, 0.05582939460873604, -0.03740698844194412, -0.04970923811197281, -0.049423445016145706, -0.05955737084150314, 0.013856190256774426, -0.028191305696964264, 0.16239555180072784, -0.06106352433562279, 0.11668766289949417, 0.0491454042494297, 0.05011224001646042, -0.05274585634469986, 0.059662509709596634, -0.1068728044629097, -0.001060623093508184, -0.1937004178762436, 0.04983556643128395, -0.046953827142715454, 0.07879303395748138, -0.07757191359996796, -0.10764271020889282, 0.010681211948394775, 0.0006592468125745654, 0.09682167321443558, 0.10059273988008499, -0.16657574474811554, -0.08046435564756393, 0.1630486398935318, -0.06354493647813797, -0.10053989291191101, 0.12137562781572342, -0.07069548964500427, 0.049478933215141296, 0.08398278057575226, 0.18291239440441132, 0.04164690151810646, -0.08608558773994446, 0.04950990900397301, -0.04700498282909393, 0.06031547486782074, -0.03850648179650307, 0.05466940999031067, 0.0024725154507905245, -0.010305858217179775, 0.030633389949798584, -0.013039633631706238, 0.07138074934482574, -0.11713002622127533, -0.08737944811582565, -0.03778836876153946, -0.08958902955055237, 0.04491488263010979, 0.05956103652715683, 0.08771907538175583, -0.12089800834655762, -0.08134910464286804, 0.0815475732088089, 0.06334452331066132, -0.0470878966152668, 0.03368509188294411, -0.055526670068502426, 0.06467315554618835, -0.0357903428375721, -0.018254313617944717, -0.18891361355781555, -0.019252443686127663, 0.018374774605035782, 0.012470399960875511, 0.04900946095585823, -0.009454280138015747, 0.07559461146593094, 0.0688137337565422, -0.056170202791690826, -0.021051565185189247, -0.032234903424978256, -0.0004447001265361905, -0.13921378552913666, -0.19204066693782806, -0.0258206594735384, -0.017153823748230934, 0.10895133018493652, -0.20396403968334198, 0.02301442250609398, -0.03187188506126404, 0.08267825096845627, 0.001706874929368496, -0.014178709127008915, -0.05979107692837715, 0.10369149595499039, -0.024973390623927116, -0.04132652282714844, 0.07669934630393982, 0.005405915901064873, -0.09078298509120941, -0.026840616017580032, -0.10990302264690399, 0.1660412698984146, 0.13274875283241272, -0.1425187736749649, -0.08509819209575653, -0.019796457141637802, -0.05517057701945305, -0.025040116161108017, -0.05332637578248978, 0.04351222887635231, 0.18047890067100525, -0.0028033952694386244, 0.14625775814056396, -0.06156467646360397, -0.038648273795843124, 0.017765024676918983, -0.03647488355636597, 0.040376145392656326, 0.10785400122404099, 0.10401351004838943, -0.08125101774930954, 0.13183142244815826, 0.16335439682006836, -0.07837757468223572, 0.13232015073299408, -0.03578309342265129, -0.07406168431043625, -0.020320642739534378, -0.02420446276664734, -0.009490667842328548, 0.09300342202186584, -0.11310986429452896, -0.0037342447321861982, 0.012252667918801308, 0.03863724693655968, 0.017655707895755768, -0.23334360122680664, -0.04209214448928833, 0.03012617491185665, -0.039180267602205276, -0.023723358288407326, -0.027063818648457527, 0.022966228425502777, 0.11121710389852524, 0.00546584976837039, -0.07342252135276794, 0.03162739425897598, 0.004068978596478701, -0.07101283967494965, 0.20102821290493011, -0.0893755853176117, -0.12363656610250473, -0.10801420360803604, -0.09750278294086456, -0.04153478890657425, 0.014848621562123299, 0.06714718043804169, -0.09307912737131119, -0.026334799826145172, -0.04446694254875183, 0.036161523312330246, -0.011005021631717682, 0.022797485813498497, -0.012491762638092041, -0.01531659159809351, 0.06444250047206879, -0.10185446590185165, -0.023263312876224518, -0.04564603790640831, -0.07087529450654984, 0.06999427825212479, 0.045804355293512344, 0.11514382064342499, 0.14375902712345123, -0.034416716545820236, 0.007408355828374624, -0.038192059844732285, 0.24231122434139252, -0.0719592347741127, -0.040756214410066605, 0.11633046716451645, -0.004511961713433266, 0.06016084551811218, 0.1149621531367302, 0.07231990247964859, -0.10193941742181778, 0.018529685214161873, 0.030928809195756912, -0.029606975615024567, -0.1980687379837036, -0.040337931364774704, -0.05471554026007652, -0.05100570619106293, 0.09219612926244736, 0.01889820210635662, 0.02983626164495945, 0.059127263724803925, 0.03467122092843056, 0.05965876579284668, -0.03194034472107887, 0.07558906823396683, 0.12751369178295135, 0.05035023018717766, 0.14085553586483002, -0.032442957162857056, -0.08148720115423203, 0.03542139381170273, -0.023721367120742798, 0.23304206132888794, 0.031945619732141495, 0.10484084486961365, 0.06081467866897583, 0.1760055273771286, 0.00651394622400403, 0.0755382776260376, 0.022537561133503914, -0.050553254783153534, -0.016235526651144028, -0.039318397641181946, -0.03668157011270523, 0.020632872357964516, -0.04007793590426445, 0.036944419145584106, -0.13296784460544586, -0.05209943279623985, 0.05734940245747566, 0.26324427127838135, 0.019641926512122154, -0.30577734112739563, -0.0760589987039566, 0.0110334986820817, -0.06150427088141441, -0.01509842835366726, 0.008433186449110508, 0.07258538156747818, -0.11430235207080841, 0.0364212766289711, -0.06610850244760513, 0.10969159752130508, -0.00010573504550848156, 0.05464836582541466, 0.043845292180776596, 0.10064318776130676, -0.0026023564860224724, 0.07400557398796082, -0.36048248410224915, 0.2892259657382965, 0.004360956605523825, 0.08331845700740814, -0.07900075614452362, -0.0049942173063755035, 0.03549648076295853, 0.03762102872133255, 0.0286400243639946, -0.01522915530949831, -0.07617009431123734, -0.22224538028240204, -0.021214833483099937, 0.036201417446136475, 0.11391851305961609, -0.01092586200684309, 0.11558748781681061, -0.0329253226518631, 0.02349536307156086, 0.07397419214248657, 0.006916837766766548, -0.08507278561592102, -0.078270822763443, -0.021063130348920822, 0.017123715952038765, -0.006692793220281601, -0.07230447232723236, -0.10875090211629868, -0.09698930382728577, 0.13380642235279083, 0.032655294984579086, -0.019122347235679626, -0.12127617001533508, 0.09556134790182114, 0.07129213958978653, -0.08140307664871216, 0.02806088514626026, 0.01338251307606697, 0.06690073013305664, 0.01734011061489582, -0.05683355778455734, 0.11272113770246506, -0.059620022773742676, -0.15913449227809906, -0.05542226508259773, 0.09584981203079224, 0.03356869891285896, 0.07762956619262695, -0.005010443739593029, 0.026860063895583153, -0.03853776305913925, -0.09389301389455795, 0.01873914711177349, -0.04871805012226105, 0.05702357366681099, 0.023218555375933647, -0.05930590629577637, 0.02246578224003315, -0.06956817209720612, -0.05036494508385658, 0.18675757944583893, 0.2666179835796356, -0.08919188380241394, 0.027805086225271225, 0.04274080693721771, -0.07121548056602478, -0.17881330847740173, 0.04535600170493126, 0.07123195379972458, 0.00599135784432292, 0.06405282765626907, -0.17722277343273163, 0.11070265620946884, 0.09798979014158249, -0.011799262836575508, 0.09090764075517654, -0.3021496832370758, -0.13191623985767365, 0.10795290768146515, 0.1613912284374237, 0.1248733401298523, -0.15282930433750153, -0.014833425171673298, -0.03373035416007042, -0.1266457885503769, 0.10792169719934464, -0.059658460319042206, 0.12576046586036682, -0.019828153774142265, 0.1281675398349762, 0.010241426527500153, -0.05057657137513161, 0.11138121783733368, 0.0017456029308959842, 0.10836664587259293, -0.06791320443153381, -0.005785474553704262, 0.0314914733171463, -0.025731725618243217, -0.0020233120303601027, -0.07627686858177185, 0.010514527559280396, -0.09651722013950348, -0.025462403893470764, -0.09093684703111649, 0.03684017434716225, -0.03550465404987335, -0.06674885749816895, -0.012769396416842937, 0.02837902121245861, 0.04438260197639465, -0.021121418103575706, 0.11903725564479828, -0.01165738981217146, 0.18515242636203766, 0.0831431895494461, 0.0755007266998291, -0.07850604504346848, -0.0246170274913311, -0.013191080652177334, -0.021496685221791267, 0.04209210351109505, -0.11707881093025208, 0.02784876711666584, 0.14728540182113647, 0.016008920967578888, 0.14652840793132782, 0.08420746773481369, -0.028337623924016953, 0.023222947493195534, 0.07212041318416595, -0.1459895670413971, -0.08471809327602386, -0.0006540916510857642, -0.022617893293499947, -0.08277077972888947, 0.018399575725197792, 0.09045077860355377, -0.07025536149740219, -0.020500540733337402, -0.017976906150579453, -0.005707842297852039, -0.07361697405576706, 0.20926550030708313, 0.045689359307289124, 0.04922933131456375, -0.10195143520832062, 0.06617739051580429, 0.059133127331733704, -0.07447468489408493, 0.006616621278226376, 0.09784560650587082, -0.0643489882349968, -0.03192763403058052, 0.10518907010555267, 0.19773538410663605, -0.0805995836853981, -0.03190230950713158, -0.1375412791967392, -0.13625851273536682, 0.0774545893073082, 0.14989183843135834, 0.09777641296386719, -0.002559415530413389, -0.052383843809366226, 0.029438793659210205, -0.12306009232997894, 0.07117831707000732, 0.0586053803563118, 0.06488152593374252, -0.11596713215112686, 0.1940935105085373, 0.002768001751974225, 0.041737452149391174, -0.02550058253109455, 0.017302611842751503, -0.11245636641979218, 0.02797296643257141, -0.15533940494060516, -0.04925568774342537, -0.021802643314003944, -0.0012807822786271572, -0.004583466798067093, -0.07310478389263153, -0.0553557462990284, 0.008760074153542519, -0.13371476531028748, -0.027934605255723, 0.024884214624762535, 0.04662536457180977, -0.11010587215423584, -0.04349762946367264, 0.026161015033721924, -0.05354534089565277, 0.04772314056754112, 0.05986163392663002, 0.012889303267002106, 0.07476162910461426, -0.15947166085243225, -0.01037979032844305, 0.048791054636240005, -0.005326110403984785, 0.06720186769962311, -0.09022580087184906, -0.010159323923289776, 0.014438863843679428, 0.09321369975805283, 0.02407475933432579, 0.0695362314581871, -0.13923783600330353, -0.017045747488737106, -0.0146761080250144, -0.11877976357936859, -0.055237315595149994, 0.025594398379325867, 0.06299594044685364, 0.016233257949352264, 0.1928756833076477, -0.09147866815328598, 0.05078618600964546, -0.21284173429012299, -0.006774548906832933, -0.025159653276205063, -0.10899083316326141, -0.1271573305130005, -0.08584548532962799, 0.06656941026449203, -0.041879042983055115, 0.13458937406539917, 0.032019153237342834, 0.074014812707901, 0.03891861438751221, -0.02815103530883789, 0.007295970804989338, 0.018481697887182236, 0.21724779903888702, 0.04170745238661766, -0.038998186588287354, 0.06396204233169556, 0.0667014867067337, 0.08490049839019775, 0.11600164324045181, 0.2079852968454361, 0.16854450106620789, 0.010394791141152382, 0.07601791620254517, 0.03723165765404701, -0.050251271575689316, -0.15014177560806274, 0.01721593737602234, -0.020797211676836014, 0.08958461880683899, -0.04497600346803665, 0.23772695660591125, 0.06803031265735626, -0.17756220698356628, 0.06024102866649628, -0.06811211258172989, -0.08148171752691269, -0.10866431146860123, -0.03176802396774292, -0.08470076322555542, -0.16073158383369446, 0.008782313205301762, -0.10504164546728134, 0.054676156491041183, 0.10402850061655045, 0.013246274553239346, -0.02448934316635132, 0.15161797404289246, 0.032644156366586685, 0.01722346991300583, 0.058367159217596054, -0.014551132917404175, -0.010994714684784412, -0.09350340068340302, -0.07649349421262741, -0.019980136305093765, -0.02183578349649906, 0.03833300247788429, -0.04929541051387787, -0.0920988917350769, 0.01850983314216137, -0.03992854058742523, -0.10761235654354095, 0.026071051135659218, 0.023211756721138954, 0.08537393063306808, 0.06755921989679337, 0.00043706849100999534, 0.013783926144242287, -0.018320316448807716, 0.24267159402370453, -0.07848059386014938, -0.11142269521951675, -0.08836302161216736, 0.3072718381881714, 0.04338044300675392, -0.007455900311470032, 0.024356981739401817, -0.05450205132365227, 0.012630588375031948, 0.22507476806640625, 0.17606811225414276, -0.11166082322597504, -0.011318333446979523, -0.00963570922613144, -0.015355026349425316, -0.018504861742258072, 0.13710588216781616, 0.1265212595462799, 0.03132273256778717, -0.1040106788277626, -0.004985826089978218, -0.060745518654584885, -0.01695205830037594, -0.05337406322360039, 0.0709887146949768, 0.04366642236709595, 0.005555170122534037, -0.04468779265880585, 0.06595257669687271, -0.05833880603313446, -0.07365675270557404, 0.0280058104544878, -0.19372260570526123, -0.15558649599552155, -0.009557729586958885, 0.09787092357873917, 0.0056243762373924255, 0.06459631025791168, -0.028498858213424683, 0.01252041757106781, 0.04867704212665558, -0.026663921773433685, -0.05579414218664169, -0.09822455793619156, 0.12268004566431046, -0.12978047132492065, 0.1810811311006546, -0.04174317419528961, 0.0648646354675293, 0.125211700797081, 0.07090064883232117, -0.06519047915935516, 0.0886760726571083, 0.03895274177193642, -0.09732601046562195, 0.02991561032831669, 0.11769777536392212, -0.03618008643388748, 0.05214362218976021, 0.04131490737199783, -0.14061413705348969, 0.03875063732266426, -0.08005588501691818, -0.055367887020111084, -0.024235181510448456, -0.04299803823232651, -0.053362563252449036, 0.12579819560050964, 0.22264032065868378, -0.02607031725347042, 0.022533390671014786, -0.08838288486003876, 0.01719903200864792, 0.05686161294579506, 0.055965621024370193, -0.09179452806711197, -0.260947585105896, 0.0038520335219800472, 0.10830801725387573, -0.03266965597867966, -0.25510770082473755, -0.09902539104223251, 0.0025529214181005955, -0.062284134328365326, -0.09444157779216766, 0.11313898861408234, 0.07987546920776367, 0.0462600477039814, -0.05025770515203476, -0.15666377544403076, -0.07604029029607773, 0.17307628691196442, -0.13446931540966034, -0.07406657189130783 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000-pad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3541 - eval_rouge1: 27.8229 - eval_rouge2: 12.9484 - eval_rougeL: 21.4909 - eval_rougeLsum: 24.7737 - eval_gen_len: 67.365 - eval_runtime: 1162.9446 - eval_samples_per_second: 0.86 - eval_steps_per_second: 0.86 - epoch: 2.0 - step: 20000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-10000-pad-early", "results": []}]}
text2text-generation
cammy/bart-large-cnn-finetuned-weaksup-10000-pad-early
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
# bart-large-cnn-finetuned-weaksup-10000-pad-early This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3541 - eval_rouge1: 27.8229 - eval_rouge2: 12.9484 - eval_rougeL: 21.4909 - eval_rougeLsum: 24.7737 - eval_gen_len: 67.365 - eval_runtime: 1162.9446 - eval_samples_per_second: 0.86 - eval_steps_per_second: 0.86 - epoch: 2.0 - step: 20000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# bart-large-cnn-finetuned-weaksup-10000-pad-early\n\nThis model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.3541\n- eval_rouge1: 27.8229\n- eval_rouge2: 12.9484\n- eval_rougeL: 21.4909\n- eval_rougeLsum: 24.7737\n- eval_gen_len: 67.365\n- eval_runtime: 1162.9446\n- eval_samples_per_second: 0.86\n- eval_steps_per_second: 0.86\n- epoch: 2.0\n- step: 20000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.2\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# bart-large-cnn-finetuned-weaksup-10000-pad-early\n\nThis model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.3541\n- eval_rouge1: 27.8229\n- eval_rouge2: 12.9484\n- eval_rougeL: 21.4909\n- eval_rougeLsum: 24.7737\n- eval_gen_len: 67.365\n- eval_runtime: 1162.9446\n- eval_samples_per_second: 0.86\n- eval_steps_per_second: 0.86\n- epoch: 2.0\n- step: 20000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.2\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 50, 177, 6, 12, 8, 3, 103, 32 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# bart-large-cnn-finetuned-weaksup-10000-pad-early\n\nThis model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.3541\n- eval_rouge1: 27.8229\n- eval_rouge2: 12.9484\n- eval_rougeL: 21.4909\n- eval_rougeLsum: 24.7737\n- eval_gen_len: 67.365\n- eval_runtime: 1162.9446\n- eval_samples_per_second: 0.86\n- eval_steps_per_second: 0.86\n- epoch: 2.0\n- step: 20000## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.2\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.08709852397441864, 0.11216914653778076, -0.0060269772075116634, 0.060055967420339584, 0.10703921318054199, 0.01775399222970009, 0.08334954082965851, 0.15780305862426758, -0.04803458973765373, 0.1214073896408081, 0.06881918013095856, 0.05062784627079964, 0.0691712498664856, 0.17110000550746918, -0.02447035349905491, -0.19656933844089508, 0.014092898927628994, -0.044179242104291916, -0.045971956104040146, 0.09014679491519928, 0.09174017608165741, -0.08627651631832123, 0.06217042729258537, 0.0008574488456360996, -0.08510874211788177, 0.03637862578034401, -0.012864435091614723, -0.06704536825418472, 0.08806443959474564, 0.046441104263067245, 0.05869172140955925, -0.0029747679363936186, 0.07975328713655472, -0.2448219656944275, -0.011012906208634377, 0.10387388616800308, 0.027163084596395493, 0.06471193581819534, 0.10229562222957611, -0.0009025182225741446, 0.11984998732805252, -0.13924363255500793, 0.07870777696371078, 0.042685337364673615, -0.11627114564180374, -0.2269376665353775, -0.11592716723680496, 0.0649336501955986, 0.12080211192369461, 0.10054606199264526, -0.031992483884096146, 0.06071582809090614, -0.07938682287931442, 0.06627143919467926, 0.21390607953071594, -0.239449143409729, -0.06172206997871399, -0.0033158466685563326, 0.053324904292821884, 0.00952482782304287, -0.09234445542097092, -0.0030316964257508516, 0.020878326147794724, 0.03164030611515045, 0.08276548981666565, -0.029098225757479668, 0.007279194425791502, 0.0007214432116597891, -0.10611782222986221, -0.05593673139810562, 0.09082458168268204, 0.06978506594896317, -0.042429860681295395, -0.1416078507900238, -0.05042978748679161, -0.06943757832050323, -0.00511541310697794, -0.03958805650472641, 0.029384737834334373, -0.029107140377163887, -0.05727796256542206, -0.020999658852815628, -0.054837651550769806, -0.022919895127415657, 0.028619391843676567, 0.07222478836774826, 0.020573684945702553, 0.006538768298923969, -0.027684031054377556, 0.07352257519960403, 0.0046545034274458885, -0.11456054449081421, -0.037602901458740234, -0.006425897125154734, -0.11928996443748474, -0.026828913018107414, -0.035090722143650055, 0.007676488719880581, -0.004277681931853294, 0.19143661856651306, -0.07704634219408035, 0.09554491937160492, 0.023284005001187325, -0.004689003806561232, -0.04600849747657776, 0.15233133733272552, -0.025358522310853004, -0.10240884125232697, -0.039192620664834976, 0.09165560454130173, -0.009837331250309944, -0.025400808081030846, -0.040178604423999786, 0.018258051946759224, 0.06433624029159546, 0.05317310243844986, 0.0034362049773335457, 0.014530770480632782, -0.05107210949063301, -0.015501031652092934, 0.0013477777829393744, -0.13516095280647278, 0.07438135147094727, 0.028118276968598366, -0.08236167579889297, -0.03252115845680237, 0.01771656423807144, -0.02449558861553669, -0.0701112449169159, 0.10607682168483734, -0.04299543425440788, -0.017079021781682968, -0.06467457115650177, -0.07523077726364136, 0.019921187311410904, -0.03367966040968895, -0.024680549278855324, -0.0788780227303505, -0.1555597484111786, -0.08315669000148773, 0.04892827942967415, -0.06904301047325134, -0.025165144354104996, -0.037808943539857864, -0.04988942667841911, 0.04693622887134552, -0.03838271647691727, 0.11867785453796387, -0.04373452439904213, 0.05419308692216873, -0.006235190667212009, 0.030660074204206467, 0.1069648489356041, 0.04481026530265808, -0.07348762452602386, 0.05274335294961929, -0.11620482802391052, 0.11232170462608337, -0.07038494199514389, 0.0058916714042425156, -0.14570942521095276, -0.06698071211576462, -0.010410784743726254, 0.015356714837253094, 0.09376011043787003, 0.1020851582288742, -0.165218323469162, -0.06448212265968323, 0.15959669649600983, -0.03652884438633919, -0.06392799317836761, 0.07332874089479446, -0.027973061427474022, -0.014360963366925716, 0.05557183176279068, 0.17504987120628357, 0.09538751095533371, -0.08895406872034073, -0.024213619530200958, -0.019879646599292755, 0.07548578828573227, 0.08579051494598389, 0.041399870067834854, -0.06260412931442261, 0.0698050782084465, 0.002236048225313425, -0.07990766316652298, -0.0069214762188494205, -0.05069439113140106, -0.06431858986616135, -0.021643616259098053, -0.031319838017225266, 0.011199639178812504, 0.011312881484627724, 0.007393007166683674, -0.06606549769639969, -0.1368747353553772, 0.06744949519634247, 0.10185204446315765, -0.05576331540942192, 0.03596184030175209, -0.06844537705183029, 0.04677310958504677, 0.03913392126560211, 0.010380348190665245, -0.20076926052570343, -0.07217985391616821, 0.02552732080221176, -0.11574611812829971, -0.002693043788895011, 0.01851877011358738, 0.05155797302722931, 0.030921224504709244, -0.018997913226485252, -0.040268514305353165, -0.08235925436019897, -0.03701937571167946, -0.07948275655508041, -0.14810103178024292, -0.05953549966216087, -0.011646004393696785, 0.15119092166423798, -0.221885547041893, -0.00104520411696285, 0.008303668349981308, 0.1390470564365387, 0.017096199095249176, -0.06397268176078796, -0.03081684373319149, 0.03850620239973068, -0.001280584023334086, -0.09798616915941238, 0.042889706790447235, -0.008392399176955223, -0.0814855545759201, -0.012861878611147404, -0.1632303148508072, -0.026020530611276627, 0.06188316270709038, 0.04240183159708977, -0.09887099266052246, -0.00526072271168232, -0.06471303105354309, -0.01843937486410141, -0.08151006698608398, -0.012931973673403263, 0.20019137859344482, 0.046286895871162415, 0.1202494353055954, -0.045359738171100616, -0.0775696188211441, -0.001147581497207284, 0.011744419112801552, -0.0053202323615550995, 0.13300111889839172, 0.05060497671365738, -0.07154224812984467, 0.06082119792699814, 0.08853181451559067, 0.029436370357871056, 0.11100072413682938, -0.027138691395521164, -0.09293096512556076, -0.03565482050180435, 0.025615377351641655, 0.007876857183873653, 0.07641343772411346, -0.04712648689746857, -0.007282930891960859, 0.03798287734389305, 0.04343196749687195, 0.005870489869266748, -0.13820108771324158, 0.015308139845728874, 0.04638928547501564, -0.041322529315948486, 0.016289593651890755, -0.01822017692029476, 0.034180473536252975, 0.08004405349493027, 0.04643169790506363, -0.00893610343337059, -0.01772673800587654, -0.03595103695988655, -0.09357989579439163, 0.17937210202217102, -0.09596633911132812, -0.2064971923828125, -0.11075791716575623, -0.002962916623800993, -0.03949267417192459, -0.021651482209563255, 0.04156352952122688, -0.09725737571716309, -0.07244366407394409, -0.08663692325353622, 0.04103517904877663, -0.02129615843296051, -0.018412115052342415, 0.05608563870191574, 0.0015969867818057537, 0.11791766434907913, -0.12430224567651749, -0.002334548393264413, -0.011633044108748436, -0.05621565505862236, -0.01376650296151638, 0.0742456465959549, 0.061672527343034744, 0.09466034173965454, 0.027307726442813873, 0.026103751733899117, -0.04047609120607376, 0.2236485779285431, -0.0969407707452774, 0.010359164327383041, 0.11754617840051651, 0.036141060292720795, 0.07009443640708923, 0.110062375664711, 0.012802219949662685, -0.09484578669071198, 0.03151838481426239, 0.09431411325931549, -0.009721294976770878, -0.24002113938331604, -0.02086806111037731, -0.030027447268366814, -0.005100179463624954, 0.1440332531929016, 0.04932757467031479, -0.04432041943073273, 0.02831323631107807, -0.030001891776919365, 0.060196276754140854, 0.022787565365433693, 0.07481402903795242, 0.09071603417396545, 0.04603183642029762, 0.0989876464009285, -0.011399857699871063, 0.018090838566422462, 0.08036207407712936, -0.039453089237213135, 0.22969050705432892, -0.02684646286070347, 0.097925566136837, 0.05662049353122711, 0.11409832537174225, -0.048209983855485916, 0.0029490934684872627, 0.02105710096657276, 0.009336595423519611, 0.006875456776469946, -0.0655401423573494, -0.031717609614133835, 0.033050574362277985, -0.014586717821657658, 0.02473277784883976, -0.10750189423561096, 0.039890509098768234, 0.05011174827814102, 0.26544421911239624, 0.08093270659446716, -0.25627943873405457, -0.05484366416931152, 0.01856953836977482, -0.048248644918203354, -0.07199439406394958, 0.0003255529736634344, 0.08243311941623688, -0.14325517416000366, 0.09024176001548767, -0.05849747359752655, 0.09346064180135727, -0.031622979789972305, 0.01188118476420641, 0.08098196983337402, 0.09798827022314072, 0.016759589314460754, 0.054883912205696106, -0.19257564842700958, 0.2008054405450821, 0.005003003869205713, 0.07818024605512619, -0.03346538543701172, 0.07405590265989304, 0.01006262842565775, -0.00643594516441226, 0.11651202291250229, 0.016474781557917595, -0.0913320779800415, -0.1564510315656662, -0.0659063532948494, 0.00579146109521389, 0.10883576422929764, -0.1042744442820549, 0.09651751071214676, -0.047732748091220856, -0.007882915437221527, -0.0047445097006857395, -0.005060066003352404, -0.12252644449472427, -0.12794658541679382, 0.026154175400733948, -0.004192833323031664, -0.011064178310334682, -0.0903427004814148, -0.05883266404271126, -0.03770635277032852, 0.19862516224384308, -0.016069617122411728, -0.03054957464337349, -0.13983139395713806, 0.08515924215316772, 0.11273393034934998, -0.0822942927479744, 0.014884787611663342, 0.019127393141388893, 0.11503627896308899, 0.020353369414806366, -0.07080337405204773, 0.06776364147663116, -0.05983410403132439, -0.17134059965610504, -0.06146754324436188, 0.13916714489459991, 0.03916032239794731, 0.04334535449743271, 0.00107323017437011, 0.03022567182779312, 0.011584870517253876, -0.08118584752082825, 0.028220707550644875, 0.08408748358488083, 0.03326605260372162, 0.036850765347480774, -0.014722115360200405, 0.013649140484631062, -0.05659102275967598, -0.012950247153639793, 0.06619326025247574, 0.2509579658508301, -0.08693137764930725, 0.08873509615659714, 0.053869232535362244, -0.08748070150613785, -0.1562594324350357, 0.026041021570563316, 0.10286716371774673, 0.0290376003831625, 0.07014397531747818, -0.16419540345668793, 0.08523569256067276, 0.11696305871009827, -0.011083295568823814, 0.025416458025574684, -0.3221532106399536, -0.13565585017204285, 0.04934454709291458, 0.059814948588609695, -0.02144436165690422, -0.14239394664764404, -0.06805473566055298, -0.0414988249540329, -0.09266176074743271, 0.040083155035972595, -0.04960392042994499, 0.08501236140727997, 0.004430944100022316, 0.05652438849210739, 0.03058857098221779, -0.012812459841370583, 0.1391638070344925, 0.018282372504472733, 0.0595279298722744, -0.05472015589475632, 0.05703816935420036, 0.030396902933716774, -0.09790360182523727, 0.028004009276628494, -0.044194210320711136, 0.047295816242694855, -0.1793532520532608, -0.021558165550231934, -0.06863339990377426, 0.05130890756845474, -0.06604007631540298, -0.03345382213592529, -0.05083518475294113, 0.04268493130803108, 0.07995626330375671, -0.013574696145951748, 0.04139535874128342, -0.011538299731910229, 0.0796288251876831, 0.10118016600608826, 0.04759491980075836, 0.023757625371217728, -0.15684925019741058, 0.007389896083623171, 0.003246377222239971, 0.040170568972826004, -0.1430121511220932, 0.03334594517946243, 0.11776189506053925, 0.022992949932813644, 0.14593838155269623, 0.025567807257175446, -0.08355443924665451, 0.0121193528175354, 0.046734075993299484, -0.0926109030842781, -0.12309303879737854, 0.0015826324233785272, -0.02928611822426319, -0.1179734393954277, -0.033495206385850906, 0.15056869387626648, -0.01183016411960125, -0.017544234171509743, -0.0027607507072389126, 0.036145832389593124, -0.005536623299121857, 0.17093133926391602, -0.0159450713545084, 0.08147852122783661, -0.06979887187480927, 0.12477569282054901, 0.08514957875013351, -0.08912687748670578, 0.06010805815458298, 0.10716424137353897, -0.06536085158586502, -0.016676543280482292, -0.00007871371053624898, 0.1101914793252945, -0.002033685799688101, -0.028517629951238632, -0.05831550806760788, -0.10351739078760147, 0.08730855584144592, 0.04182365909218788, 0.017489897087216377, -0.014233062975108624, -0.017738649621605873, 0.009676600806415081, -0.08962883055210114, 0.07254677265882492, 0.07842198759317398, 0.030923757702112198, -0.09555624425411224, 0.11964108049869537, 0.01668848842382431, 0.016193808987736702, 0.013951525092124939, 0.003952882718294859, -0.10835044085979462, -0.0038665058091282845, -0.12686242163181305, 0.0047888606786727905, -0.03084946610033512, -0.014625252224504948, -0.02385576441884041, -0.006176196504384279, -0.0354025736451149, 0.0369710810482502, -0.07439251244068146, -0.0928560271859169, -0.014010583981871605, 0.07082229852676392, -0.1481628268957138, -0.0032686511985957623, 0.011870690621435642, -0.11258326470851898, 0.06906858831644058, 0.032480109483003616, 0.0359380878508091, 0.007792774122208357, -0.06660403311252594, -0.014390921220183372, 0.005779770668596029, 0.013209023512899876, 0.0589095801115036, -0.12931391596794128, 0.0012677746126428246, -0.0390455536544323, 0.017198950052261353, 0.009344055317342281, -0.025633109733462334, -0.12978342175483704, -0.012640290893614292, -0.04257762432098389, -0.06389743089675903, -0.05117974802851677, 0.05363112688064575, 0.06587477028369904, 0.04335208237171173, 0.1409856528043747, -0.0801415741443634, 0.058629110455513, -0.2224375605583191, -0.03503056988120079, 0.0010891018901020288, 0.0007797899888828397, -0.015745708718895912, -0.0426432341337204, 0.09568025916814804, -0.04320915415883064, 0.0798460990190506, 0.007494756020605564, 0.12989971041679382, 0.04316103085875511, -0.10075961798429489, -0.043162308633327484, 0.021147796884179115, 0.09302431344985962, 0.04896586760878563, -0.015237434767186642, 0.08285299688577652, -0.015502635389566422, 0.06436600536108017, 0.11593727767467499, 0.16117922961711884, 0.1946418434381485, 0.0656028464436531, 0.06687067449092865, 0.015400116331875324, -0.12790843844413757, -0.15185418725013733, 0.0857497900724411, -0.08274807780981064, 0.1373271942138672, -0.06733561307191849, 0.1309937685728073, 0.07760398089885712, -0.19800247251987457, 0.06955873966217041, -0.06416210532188416, -0.08116549998521805, -0.116826131939888, -0.08574613928794861, -0.07845029979944229, -0.11294180899858475, 0.02659527212381363, -0.09557744115591049, 0.07233089953660965, 0.07653273642063141, 0.013079087249934673, 0.0163672287017107, 0.09463925659656525, -0.054551862180233, -0.03604526072740555, 0.09260635823011398, 0.026199374347925186, 0.00747139984741807, -0.022305745631456375, -0.0418795682489872, 0.030909249559044838, 0.004314799327403307, 0.09195993840694427, -0.014897915534675121, 0.004274978768080473, 0.04338741675019264, -0.0072061773389577866, -0.06504359841346741, 0.021602384746074677, 0.003336115274578333, 0.025129323825240135, 0.06182854622602463, 0.07007060945034027, 0.009631441906094551, -0.040056273341178894, 0.28195706009864807, -0.07550682872533798, -0.036903973668813705, -0.13503311574459076, 0.14949190616607666, 0.05660729110240936, 0.006243087351322174, 0.025760449469089508, -0.10777226835489273, -0.02231661230325699, 0.1653245985507965, 0.10611961036920547, -0.03003697469830513, -0.01581461727619171, -0.003729382064193487, -0.006479133386164904, -0.03683023527264595, 0.10768941044807434, 0.08849474787712097, 0.05283266678452492, -0.028945498168468475, 0.011845098808407784, 0.010753566399216652, -0.05192909017205238, -0.053902767598629, 0.11306307464838028, 0.0014627244090661407, 0.025442523881793022, -0.03357319533824921, 0.05940050631761551, 0.020839763805270195, -0.22804637253284454, 0.07378575950860977, -0.16867059469223022, -0.1665685921907425, -0.008674385957419872, 0.07818460464477539, -0.0031801885925233364, 0.0990915596485138, 0.011457085609436035, -0.02731747180223465, 0.16616375744342804, -0.015180890448391438, -0.03303605318069458, -0.1291113793849945, 0.052358027547597885, -0.11176807433366776, 0.24030424654483795, -0.007360119838267565, 0.008856512606143951, 0.1162414625287056, 0.03213442862033844, -0.1270078420639038, 0.021450873464345932, 0.08112926036119461, -0.06647053360939026, 0.04024173691868782, 0.14546337723731995, -0.046691298484802246, 0.1227971538901329, 0.08243700116872787, -0.12034003436565399, -0.006133739370852709, 0.0035939295776188374, 0.0026774408761411905, -0.08290322870016098, -0.012907186523079872, -0.05650509148836136, 0.12144719809293747, 0.22010383009910583, -0.03086042031645775, -0.00036747989361174405, -0.06955321878194809, 0.016925718635320663, -0.0017274576239287853, 0.11535056680440903, -0.015106420032680035, -0.16540886461734772, 0.04679394140839577, 0.04080359637737274, 0.0463029108941555, -0.23633858561515808, -0.10315023362636566, 0.058609489351511, -0.055905021727085114, -0.043082788586616516, 0.15061649680137634, 0.0023482786491513252, 0.021172957494854927, -0.04188438504934311, -0.15717263519763947, -0.02147080935537815, 0.1653270125389099, -0.11109250038862228, -0.0528511181473732 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6031 - Rouge1: 28.3912 - Rouge2: 13.655 - Rougel: 22.287 - Rougelsum: 25.4794 - Gen Len: 67.995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 1.2991 | 1.0 | 10000 | 1.6031 | 28.3912 | 13.655 | 22.287 | 25.4794 | 67.995 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-10000", "results": []}]}
text2text-generation
cammy/bart-large-cnn-finetuned-weaksup-10000
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
bart-large-cnn-finetuned-weaksup-10000 ====================================== This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6031 * Rouge1: 28.3912 * Rouge2: 13.655 * Rougel: 22.287 * Rougelsum: 25.4794 * Gen Len: 67.995 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 50, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.07729998975992203, 0.02664991095662117, -0.0022247061133384705, 0.09321358054876328, 0.17891545593738556, 0.02522365376353264, 0.12311524897813797, 0.11731310188770294, -0.10216965526342392, 0.0095068933442235, 0.1200571358203888, 0.16243551671504974, 0.0124069694429636, 0.13611425459384918, -0.05006471648812294, -0.28086844086647034, -0.003751161741092801, 0.03228450566530228, -0.04087749496102333, 0.1316818743944168, 0.10263369232416153, -0.14421819150447845, 0.06637194752693176, 0.00882923323661089, -0.2324172705411911, 0.018332695588469505, 0.02163616381585598, -0.05002494528889656, 0.1527429223060608, 0.015573643147945404, 0.13287311792373657, 0.011035054922103882, 0.10182593017816544, -0.20034413039684296, 0.011084015481173992, 0.04187847673892975, 0.021015165373682976, 0.06948214024305344, 0.07302973419427872, -0.009526598267257214, 0.13145305216312408, -0.0634566992521286, 0.06182943284511566, 0.02066362276673317, -0.13519729673862457, -0.23856961727142334, -0.08590243756771088, 0.0010221523698419333, 0.07068181037902832, 0.09848267585039139, -0.012532411143183708, 0.1531810164451599, -0.1130964383482933, 0.09053165465593338, 0.215566486120224, -0.2784925699234009, -0.07054085284471512, 0.007892082445323467, 0.018503936007618904, 0.07685897499322891, -0.11625691503286362, -0.023397410288453102, 0.043939948081970215, 0.06354327499866486, 0.13622009754180908, -0.032189734280109406, -0.09282802045345306, 0.014764737337827682, -0.1373504251241684, -0.03373507037758827, 0.09305885434150696, 0.027844678610563278, -0.04151461645960808, -0.037619221955537796, -0.03973109647631645, -0.13250038027763367, -0.05041387677192688, -0.015758264809846878, 0.04163844510912895, -0.034729693084955215, -0.09275683760643005, -0.0035267374478280544, -0.10115863382816315, -0.06508961319923401, -0.05755098909139633, 0.17582808434963226, 0.042568136006593704, 0.006399935111403465, -0.027649791911244392, 0.10585881769657135, -0.014844952151179314, -0.13368259370326996, 0.028608858585357666, 0.02742213010787964, -0.017414748668670654, -0.06048303470015526, -0.07354892790317535, -0.05974113941192627, 0.0036831737961620092, 0.11169961094856262, -0.06281033903360367, 0.05543200299143791, 0.01568119041621685, 0.030503973364830017, -0.09881304204463959, 0.18251821398735046, -0.0071840062737464905, -0.013456987217068672, -0.0010260562412440777, 0.04440739378333092, -0.0086657190695405, -0.012981219217181206, -0.11478466540575027, 0.01914067380130291, 0.11053502559661865, 0.016580913215875626, -0.07094185054302216, 0.05521579831838608, -0.05078011006116867, -0.01790590025484562, -0.027725152671337128, -0.09377144277095795, 0.04744744673371315, -0.01069601159542799, -0.08216272294521332, -0.021723542362451553, -0.006099943071603775, 0.03492027148604393, -0.020877094939351082, 0.13733556866645813, -0.08044401556253433, 0.0587027408182621, -0.11234331876039505, -0.12036652117967606, 0.012675178237259388, -0.040941204875707626, 0.021230939775705338, -0.0976392850279808, -0.1687646508216858, -0.0138827720656991, 0.05582939460873604, -0.03740698844194412, -0.04970923811197281, -0.049423445016145706, -0.05955737084150314, 0.013856190256774426, -0.028191305696964264, 0.16239555180072784, -0.06106352433562279, 0.11668766289949417, 0.0491454042494297, 0.05011224001646042, -0.05274585634469986, 0.059662509709596634, -0.1068728044629097, -0.001060623093508184, -0.1937004178762436, 0.04983556643128395, -0.046953827142715454, 0.07879303395748138, -0.07757191359996796, -0.10764271020889282, 0.010681211948394775, 0.0006592468125745654, 0.09682167321443558, 0.10059273988008499, -0.16657574474811554, -0.08046435564756393, 0.1630486398935318, -0.06354493647813797, -0.10053989291191101, 0.12137562781572342, -0.07069548964500427, 0.049478933215141296, 0.08398278057575226, 0.18291239440441132, 0.04164690151810646, -0.08608558773994446, 0.04950990900397301, -0.04700498282909393, 0.06031547486782074, -0.03850648179650307, 0.05466940999031067, 0.0024725154507905245, -0.010305858217179775, 0.030633389949798584, -0.013039633631706238, 0.07138074934482574, -0.11713002622127533, -0.08737944811582565, -0.03778836876153946, -0.08958902955055237, 0.04491488263010979, 0.05956103652715683, 0.08771907538175583, -0.12089800834655762, -0.08134910464286804, 0.0815475732088089, 0.06334452331066132, -0.0470878966152668, 0.03368509188294411, -0.055526670068502426, 0.06467315554618835, -0.0357903428375721, -0.018254313617944717, -0.18891361355781555, -0.019252443686127663, 0.018374774605035782, 0.012470399960875511, 0.04900946095585823, -0.009454280138015747, 0.07559461146593094, 0.0688137337565422, -0.056170202791690826, -0.021051565185189247, -0.032234903424978256, -0.0004447001265361905, -0.13921378552913666, -0.19204066693782806, -0.0258206594735384, -0.017153823748230934, 0.10895133018493652, -0.20396403968334198, 0.02301442250609398, -0.03187188506126404, 0.08267825096845627, 0.001706874929368496, -0.014178709127008915, -0.05979107692837715, 0.10369149595499039, -0.024973390623927116, -0.04132652282714844, 0.07669934630393982, 0.005405915901064873, -0.09078298509120941, -0.026840616017580032, -0.10990302264690399, 0.1660412698984146, 0.13274875283241272, -0.1425187736749649, -0.08509819209575653, -0.019796457141637802, -0.05517057701945305, -0.025040116161108017, -0.05332637578248978, 0.04351222887635231, 0.18047890067100525, -0.0028033952694386244, 0.14625775814056396, -0.06156467646360397, -0.038648273795843124, 0.017765024676918983, -0.03647488355636597, 0.040376145392656326, 0.10785400122404099, 0.10401351004838943, -0.08125101774930954, 0.13183142244815826, 0.16335439682006836, -0.07837757468223572, 0.13232015073299408, -0.03578309342265129, -0.07406168431043625, -0.020320642739534378, -0.02420446276664734, -0.009490667842328548, 0.09300342202186584, -0.11310986429452896, -0.0037342447321861982, 0.012252667918801308, 0.03863724693655968, 0.017655707895755768, -0.23334360122680664, -0.04209214448928833, 0.03012617491185665, -0.039180267602205276, -0.023723358288407326, -0.027063818648457527, 0.022966228425502777, 0.11121710389852524, 0.00546584976837039, -0.07342252135276794, 0.03162739425897598, 0.004068978596478701, -0.07101283967494965, 0.20102821290493011, -0.0893755853176117, -0.12363656610250473, -0.10801420360803604, -0.09750278294086456, -0.04153478890657425, 0.014848621562123299, 0.06714718043804169, -0.09307912737131119, -0.026334799826145172, -0.04446694254875183, 0.036161523312330246, -0.011005021631717682, 0.022797485813498497, -0.012491762638092041, -0.01531659159809351, 0.06444250047206879, -0.10185446590185165, -0.023263312876224518, -0.04564603790640831, -0.07087529450654984, 0.06999427825212479, 0.045804355293512344, 0.11514382064342499, 0.14375902712345123, -0.034416716545820236, 0.007408355828374624, -0.038192059844732285, 0.24231122434139252, -0.0719592347741127, -0.040756214410066605, 0.11633046716451645, -0.004511961713433266, 0.06016084551811218, 0.1149621531367302, 0.07231990247964859, -0.10193941742181778, 0.018529685214161873, 0.030928809195756912, -0.029606975615024567, -0.1980687379837036, -0.040337931364774704, -0.05471554026007652, -0.05100570619106293, 0.09219612926244736, 0.01889820210635662, 0.02983626164495945, 0.059127263724803925, 0.03467122092843056, 0.05965876579284668, -0.03194034472107887, 0.07558906823396683, 0.12751369178295135, 0.05035023018717766, 0.14085553586483002, -0.032442957162857056, -0.08148720115423203, 0.03542139381170273, -0.023721367120742798, 0.23304206132888794, 0.031945619732141495, 0.10484084486961365, 0.06081467866897583, 0.1760055273771286, 0.00651394622400403, 0.0755382776260376, 0.022537561133503914, -0.050553254783153534, -0.016235526651144028, -0.039318397641181946, -0.03668157011270523, 0.020632872357964516, -0.04007793590426445, 0.036944419145584106, -0.13296784460544586, -0.05209943279623985, 0.05734940245747566, 0.26324427127838135, 0.019641926512122154, -0.30577734112739563, -0.0760589987039566, 0.0110334986820817, -0.06150427088141441, -0.01509842835366726, 0.008433186449110508, 0.07258538156747818, -0.11430235207080841, 0.0364212766289711, -0.06610850244760513, 0.10969159752130508, -0.00010573504550848156, 0.05464836582541466, 0.043845292180776596, 0.10064318776130676, -0.0026023564860224724, 0.07400557398796082, -0.36048248410224915, 0.2892259657382965, 0.004360956605523825, 0.08331845700740814, -0.07900075614452362, -0.0049942173063755035, 0.03549648076295853, 0.03762102872133255, 0.0286400243639946, -0.01522915530949831, -0.07617009431123734, -0.22224538028240204, -0.021214833483099937, 0.036201417446136475, 0.11391851305961609, -0.01092586200684309, 0.11558748781681061, -0.0329253226518631, 0.02349536307156086, 0.07397419214248657, 0.006916837766766548, -0.08507278561592102, -0.078270822763443, -0.021063130348920822, 0.017123715952038765, -0.006692793220281601, -0.07230447232723236, -0.10875090211629868, -0.09698930382728577, 0.13380642235279083, 0.032655294984579086, -0.019122347235679626, -0.12127617001533508, 0.09556134790182114, 0.07129213958978653, -0.08140307664871216, 0.02806088514626026, 0.01338251307606697, 0.06690073013305664, 0.01734011061489582, -0.05683355778455734, 0.11272113770246506, -0.059620022773742676, -0.15913449227809906, -0.05542226508259773, 0.09584981203079224, 0.03356869891285896, 0.07762956619262695, -0.005010443739593029, 0.026860063895583153, -0.03853776305913925, -0.09389301389455795, 0.01873914711177349, -0.04871805012226105, 0.05702357366681099, 0.023218555375933647, -0.05930590629577637, 0.02246578224003315, -0.06956817209720612, -0.05036494508385658, 0.18675757944583893, 0.2666179835796356, -0.08919188380241394, 0.027805086225271225, 0.04274080693721771, -0.07121548056602478, -0.17881330847740173, 0.04535600170493126, 0.07123195379972458, 0.00599135784432292, 0.06405282765626907, -0.17722277343273163, 0.11070265620946884, 0.09798979014158249, -0.011799262836575508, 0.09090764075517654, -0.3021496832370758, -0.13191623985767365, 0.10795290768146515, 0.1613912284374237, 0.1248733401298523, -0.15282930433750153, -0.014833425171673298, -0.03373035416007042, -0.1266457885503769, 0.10792169719934464, -0.059658460319042206, 0.12576046586036682, -0.019828153774142265, 0.1281675398349762, 0.010241426527500153, -0.05057657137513161, 0.11138121783733368, 0.0017456029308959842, 0.10836664587259293, -0.06791320443153381, -0.005785474553704262, 0.0314914733171463, -0.025731725618243217, -0.0020233120303601027, -0.07627686858177185, 0.010514527559280396, -0.09651722013950348, -0.025462403893470764, -0.09093684703111649, 0.03684017434716225, -0.03550465404987335, -0.06674885749816895, -0.012769396416842937, 0.02837902121245861, 0.04438260197639465, -0.021121418103575706, 0.11903725564479828, -0.01165738981217146, 0.18515242636203766, 0.0831431895494461, 0.0755007266998291, -0.07850604504346848, -0.0246170274913311, -0.013191080652177334, -0.021496685221791267, 0.04209210351109505, -0.11707881093025208, 0.02784876711666584, 0.14728540182113647, 0.016008920967578888, 0.14652840793132782, 0.08420746773481369, -0.028337623924016953, 0.023222947493195534, 0.07212041318416595, -0.1459895670413971, -0.08471809327602386, -0.0006540916510857642, -0.022617893293499947, -0.08277077972888947, 0.018399575725197792, 0.09045077860355377, -0.07025536149740219, -0.020500540733337402, -0.017976906150579453, -0.005707842297852039, -0.07361697405576706, 0.20926550030708313, 0.045689359307289124, 0.04922933131456375, -0.10195143520832062, 0.06617739051580429, 0.059133127331733704, -0.07447468489408493, 0.006616621278226376, 0.09784560650587082, -0.0643489882349968, -0.03192763403058052, 0.10518907010555267, 0.19773538410663605, -0.0805995836853981, -0.03190230950713158, -0.1375412791967392, -0.13625851273536682, 0.0774545893073082, 0.14989183843135834, 0.09777641296386719, -0.002559415530413389, -0.052383843809366226, 0.029438793659210205, -0.12306009232997894, 0.07117831707000732, 0.0586053803563118, 0.06488152593374252, -0.11596713215112686, 0.1940935105085373, 0.002768001751974225, 0.041737452149391174, -0.02550058253109455, 0.017302611842751503, -0.11245636641979218, 0.02797296643257141, -0.15533940494060516, -0.04925568774342537, -0.021802643314003944, -0.0012807822786271572, -0.004583466798067093, -0.07310478389263153, -0.0553557462990284, 0.008760074153542519, -0.13371476531028748, -0.027934605255723, 0.024884214624762535, 0.04662536457180977, -0.11010587215423584, -0.04349762946367264, 0.026161015033721924, -0.05354534089565277, 0.04772314056754112, 0.05986163392663002, 0.012889303267002106, 0.07476162910461426, -0.15947166085243225, -0.01037979032844305, 0.048791054636240005, -0.005326110403984785, 0.06720186769962311, -0.09022580087184906, -0.010159323923289776, 0.014438863843679428, 0.09321369975805283, 0.02407475933432579, 0.0695362314581871, -0.13923783600330353, -0.017045747488737106, -0.0146761080250144, -0.11877976357936859, -0.055237315595149994, 0.025594398379325867, 0.06299594044685364, 0.016233257949352264, 0.1928756833076477, -0.09147866815328598, 0.05078618600964546, -0.21284173429012299, -0.006774548906832933, -0.025159653276205063, -0.10899083316326141, -0.1271573305130005, -0.08584548532962799, 0.06656941026449203, -0.041879042983055115, 0.13458937406539917, 0.032019153237342834, 0.074014812707901, 0.03891861438751221, -0.02815103530883789, 0.007295970804989338, 0.018481697887182236, 0.21724779903888702, 0.04170745238661766, -0.038998186588287354, 0.06396204233169556, 0.0667014867067337, 0.08490049839019775, 0.11600164324045181, 0.2079852968454361, 0.16854450106620789, 0.010394791141152382, 0.07601791620254517, 0.03723165765404701, -0.050251271575689316, -0.15014177560806274, 0.01721593737602234, -0.020797211676836014, 0.08958461880683899, -0.04497600346803665, 0.23772695660591125, 0.06803031265735626, -0.17756220698356628, 0.06024102866649628, -0.06811211258172989, -0.08148171752691269, -0.10866431146860123, -0.03176802396774292, -0.08470076322555542, -0.16073158383369446, 0.008782313205301762, -0.10504164546728134, 0.054676156491041183, 0.10402850061655045, 0.013246274553239346, -0.02448934316635132, 0.15161797404289246, 0.032644156366586685, 0.01722346991300583, 0.058367159217596054, -0.014551132917404175, -0.010994714684784412, -0.09350340068340302, -0.07649349421262741, -0.019980136305093765, -0.02183578349649906, 0.03833300247788429, -0.04929541051387787, -0.0920988917350769, 0.01850983314216137, -0.03992854058742523, -0.10761235654354095, 0.026071051135659218, 0.023211756721138954, 0.08537393063306808, 0.06755921989679337, 0.00043706849100999534, 0.013783926144242287, -0.018320316448807716, 0.24267159402370453, -0.07848059386014938, -0.11142269521951675, -0.08836302161216736, 0.3072718381881714, 0.04338044300675392, -0.007455900311470032, 0.024356981739401817, -0.05450205132365227, 0.012630588375031948, 0.22507476806640625, 0.17606811225414276, -0.11166082322597504, -0.011318333446979523, -0.00963570922613144, -0.015355026349425316, -0.018504861742258072, 0.13710588216781616, 0.1265212595462799, 0.03132273256778717, -0.1040106788277626, -0.004985826089978218, -0.060745518654584885, -0.01695205830037594, -0.05337406322360039, 0.0709887146949768, 0.04366642236709595, 0.005555170122534037, -0.04468779265880585, 0.06595257669687271, -0.05833880603313446, -0.07365675270557404, 0.0280058104544878, -0.19372260570526123, -0.15558649599552155, -0.009557729586958885, 0.09787092357873917, 0.0056243762373924255, 0.06459631025791168, -0.028498858213424683, 0.01252041757106781, 0.04867704212665558, -0.026663921773433685, -0.05579414218664169, -0.09822455793619156, 0.12268004566431046, -0.12978047132492065, 0.1810811311006546, -0.04174317419528961, 0.0648646354675293, 0.125211700797081, 0.07090064883232117, -0.06519047915935516, 0.0886760726571083, 0.03895274177193642, -0.09732601046562195, 0.02991561032831669, 0.11769777536392212, -0.03618008643388748, 0.05214362218976021, 0.04131490737199783, -0.14061413705348969, 0.03875063732266426, -0.08005588501691818, -0.055367887020111084, -0.024235181510448456, -0.04299803823232651, -0.053362563252449036, 0.12579819560050964, 0.22264032065868378, -0.02607031725347042, 0.022533390671014786, -0.08838288486003876, 0.01719903200864792, 0.05686161294579506, 0.055965621024370193, -0.09179452806711197, -0.260947585105896, 0.0038520335219800472, 0.10830801725387573, -0.03266965597867966, -0.25510770082473755, -0.09902539104223251, 0.0025529214181005955, -0.062284134328365326, -0.09444157779216766, 0.11313898861408234, 0.07987546920776367, 0.0462600477039814, -0.05025770515203476, -0.15666377544403076, -0.07604029029607773, 0.17307628691196442, -0.13446931540966034, -0.07406657189130783 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-weaksup-1000 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6818 - Rouge1: 25.9199 - Rouge2: 11.2697 - Rougel: 20.3598 - Rougelsum: 22.8242 - Gen Len: 66.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.644 | 1.0 | 1000 | 1.6818 | 25.9199 | 11.2697 | 20.3598 | 22.8242 | 66.44 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "distilbart-cnn-12-6-finetuned-weaksup-1000", "results": []}]}
text2text-generation
cammy/distilbart-cnn-12-6-finetuned-weaksup-1000
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbart-cnn-12-6-finetuned-weaksup-1000 ========================================== This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6818 * Rouge1: 25.9199 * Rouge2: 11.2697 * Rougel: 20.3598 * Rougelsum: 22.8242 * Gen Len: 66.44 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 53, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.07987793534994125, 0.046985235065221786, -0.002355130622163415, 0.0971059799194336, 0.15695132315158844, 0.014871661551296711, 0.1184178814291954, 0.12596090137958527, -0.10868793725967407, 0.012520268559455872, 0.1234457939863205, 0.1533694863319397, 0.017863811925053596, 0.14476968348026276, -0.05240834876894951, -0.26433220505714417, 0.00826821755617857, 0.02028067596256733, -0.0453324168920517, 0.13308142125606537, 0.102516308426857, -0.12283860892057419, 0.06600910425186157, 0.009275822900235653, -0.19166335463523865, 0.02247745916247368, 0.008222349919378757, -0.05709276348352432, 0.15138469636440277, 0.01895424723625183, 0.11298883706331253, 0.0018064077012240887, 0.0815187469124794, -0.21838216483592987, 0.008679749444127083, 0.04956623911857605, 0.017679743468761444, 0.07133131474256516, 0.06903364509344101, -0.013472840189933777, 0.13944050669670105, -0.06241143122315407, 0.0604892261326313, 0.024394484236836433, -0.130136176943779, -0.24396492540836334, -0.1010109931230545, 0.001421879860572517, 0.08060823380947113, 0.10655011981725693, -0.009280252270400524, 0.1491665095090866, -0.09826799482107162, 0.0870925709605217, 0.22255733609199524, -0.28925034403800964, -0.06084764376282692, -0.010797949507832527, 0.016346529126167297, 0.07825056463479996, -0.10231805592775345, -0.026891930028796196, 0.04049380496144295, 0.06351698935031891, 0.1396706998348236, -0.03413176164031029, -0.11249706894159317, 0.015813086181879044, -0.13557812571525574, -0.04845055565237999, 0.13075019419193268, 0.03732340410351753, -0.04293685033917427, -0.04211677238345146, -0.04542238637804985, -0.13544128835201263, -0.038582153618335724, -0.004668103531002998, 0.04485142603516579, -0.018925083801150322, -0.06762470304965973, -0.009198782034218311, -0.10236719250679016, -0.062416329979896545, -0.05924799293279648, 0.14776316285133362, 0.04119115695357323, 0.010716946795582771, -0.02827618084847927, 0.10411249101161957, -0.010192076675593853, -0.13784852623939514, 0.02031351998448372, 0.030406596139073372, -0.01001829281449318, -0.03993140533566475, -0.07748962193727493, -0.055953092873096466, 0.01578151434659958, 0.13574261963367462, -0.05347762256860733, 0.05488021299242973, 0.006892297882586718, 0.03222261741757393, -0.09984823316335678, 0.17815318703651428, -0.008086046203970909, -0.02416224591434002, 0.00735638989135623, 0.046790044754743576, 0.013906139880418777, -0.013785027898848057, -0.10222627967596054, 0.023987136781215668, 0.10524265468120575, 0.025930898264050484, -0.06376203149557114, 0.04559583216905594, -0.05953374132514, -0.016886351630091667, -0.010405255481600761, -0.09954775124788284, 0.04023298621177673, -0.01243395172059536, -0.07932684570550919, -0.02592485398054123, 0.007849497720599174, 0.04241865128278732, -0.029912471771240234, 0.10676757246255875, -0.0647381842136383, 0.044743482023477554, -0.10578638315200806, -0.10615033656358719, 0.01753941923379898, -0.03130415827035904, 0.019854964688420296, -0.09632223844528198, -0.18583790957927704, -0.018751733005046844, 0.06393864750862122, -0.03354773670434952, -0.06350541859865189, -0.04405030980706215, -0.05624288693070412, 0.01631542295217514, -0.031995683908462524, 0.17179296910762787, -0.06785070896148682, 0.10364591330289841, 0.03945433348417282, 0.05142425373196602, -0.05155876278877258, 0.06297039240598679, -0.10815256834030151, 0.003369787475094199, -0.1824648231267929, 0.045885492116212845, -0.0461776964366436, 0.08401273190975189, -0.09863193333148956, -0.0950760617852211, 0.013020849786698818, -0.008007105439901352, 0.09132006764411926, 0.09405830502510071, -0.16419324278831482, -0.06935298442840576, 0.1548135131597519, -0.06422779709100723, -0.11323196440935135, 0.1176578551530838, -0.06323760002851486, 0.045938003808259964, 0.07976151257753372, 0.17751292884349823, 0.04675622656941414, -0.07069998979568481, 0.04427223652601242, -0.039604492485523224, 0.06490820646286011, -0.04653548076748848, 0.07050025463104248, -0.00471024913713336, -0.02037033624947071, 0.03131962940096855, -0.014163130894303322, 0.07649488002061844, -0.09194549918174744, -0.09482750296592712, -0.044527359306812286, -0.0898747518658638, 0.01773991994559765, 0.04785379394888878, 0.08075524121522903, -0.11597979068756104, -0.08129830658435822, 0.0429515466094017, 0.08050233870744705, -0.051015470176935196, 0.039198264479637146, -0.04877939075231552, 0.05357113480567932, -0.03072025068104267, -0.011254268698394299, -0.18830065429210663, -0.004772398620843887, 0.02298174612224102, -0.013434890657663345, 0.036595188081264496, -0.017475437372922897, 0.07023292779922485, 0.05699801817536354, -0.049239013344049454, -0.026807742193341255, -0.0324317142367363, -0.004267905838787556, -0.12887464463710785, -0.19543126225471497, -0.01980116404592991, -0.024990594014525414, 0.13114655017852783, -0.19278216361999512, 0.020995596423745155, -0.027033142745494843, 0.07966397702693939, 0.005952305626124144, -0.007469885516911745, -0.046392351388931274, 0.09044210612773895, -0.029501304030418396, -0.04938318207859993, 0.06817083060741425, 0.011896790005266666, -0.09537345916032791, -0.009730189107358456, -0.09963935613632202, 0.1551826000213623, 0.12982220947742462, -0.11616544425487518, -0.06872565299272537, -0.018034646287560463, -0.05532758682966232, -0.035050634294748306, -0.05421297624707222, 0.04477884620428085, 0.1974484920501709, 0.0031394376419484615, 0.14780078828334808, -0.06469124555587769, -0.045665618032217026, 0.012876707129180431, -0.03206033259630203, 0.04055333137512207, 0.11198931932449341, 0.09623832255601883, -0.08496633917093277, 0.12883144617080688, 0.17976532876491547, -0.08721253275871277, 0.11310319602489471, -0.046757474541664124, -0.07725135236978531, -0.01652303710579872, -0.016050608828663826, -0.006373531650751829, 0.08314208686351776, -0.11115173250436783, 0.002409372478723526, 0.023119091987609863, 0.04277893900871277, 0.021983779966831207, -0.22944407165050507, -0.03338563069701195, 0.03064233437180519, -0.04873095825314522, -0.02041669748723507, -0.03129518777132034, 0.01116109173744917, 0.10445179045200348, 0.001462876214645803, -0.08531779050827026, 0.03543989360332489, 0.0027419007383286953, -0.07473431527614594, 0.19931095838546753, -0.09773996472358704, -0.14877580106258392, -0.11294525861740112, -0.0831083431839943, -0.042634736746549606, 0.00562753202393651, 0.07468393445014954, -0.08366302400827408, -0.035905394703149796, -0.0650450587272644, 0.022707844153046608, -0.0027450702618807554, 0.020612843334674835, -0.007857592776417732, -0.012851132079958916, 0.07273965328931808, -0.10538823902606964, -0.022597359493374825, -0.03462349623441696, -0.0655999481678009, 0.06026013195514679, 0.04211501032114029, 0.11180576682090759, 0.1401798278093338, -0.015106105245649815, 0.00851227156817913, -0.030712366104125977, 0.23102585971355438, -0.06715735048055649, -0.03547322005033493, 0.12731043994426727, 0.008078658021986485, 0.062426451593637466, 0.11175224930047989, 0.060550957918167114, -0.0985584557056427, 0.02808781899511814, 0.03089614026248455, -0.02541940100491047, -0.21696455776691437, -0.0382516086101532, -0.05695652589201927, -0.05136880278587341, 0.09814058244228363, 0.029430551454424858, 0.04726243019104004, 0.05312535911798477, 0.033448271453380585, 0.06798597425222397, -0.027631647884845734, 0.07338789850473404, 0.12863188982009888, 0.05102907866239548, 0.1333714723587036, -0.04216288402676582, -0.06938790529966354, 0.04878787323832512, -0.00805128924548626, 0.23911353945732117, 0.024439163506031036, 0.12554959952831268, 0.05853443220257759, 0.17334865033626556, -0.0014349686680361629, 0.07607324421405792, 0.01388605311512947, -0.036043815314769745, -0.025877775624394417, -0.04428018629550934, -0.038747772574424744, 0.030353732407093048, -0.05543387308716774, 0.03698481619358063, -0.11938086897134781, -0.04505804926156998, 0.05766483396291733, 0.28561800718307495, 0.026304667815566063, -0.30099615454673767, -0.06588782370090485, 0.019496964290738106, -0.06858646124601364, -0.020392773672938347, 0.023464150726795197, 0.0645468458533287, -0.10843043029308319, 0.04242091625928879, -0.06232747808098793, 0.11551178246736526, -0.013822335749864578, 0.04692653939127922, 0.043721169233322144, 0.08605074137449265, 0.009162761270999908, 0.08082376420497894, -0.3499292731285095, 0.28050169348716736, 0.0014241230674088001, 0.07979751378297806, -0.08105257153511047, 0.006495937239378691, 0.04556916281580925, 0.03145816549658775, 0.03036438301205635, -0.013635829091072083, -0.0798482671380043, -0.18799878656864166, -0.04754455387592316, 0.042273376137018204, 0.08552715182304382, -0.018778996542096138, 0.10461769253015518, -0.03790615126490593, 0.020084286108613014, 0.06878870725631714, -0.00038402967038564384, -0.08991046249866486, -0.089592345058918, -0.012913960963487625, 0.038432419300079346, -0.0022741269785910845, -0.07924630492925644, -0.0994250625371933, -0.08115978538990021, 0.13541391491889954, 0.03589067608118057, -0.019362105056643486, -0.12027330696582794, 0.08043454587459564, 0.08268487453460693, -0.08134397864341736, 0.030416257679462433, 0.01161645632237196, 0.05842709168791771, 0.02763417363166809, -0.059685397893190384, 0.10983990877866745, -0.06016697734594345, -0.15425512194633484, -0.052438054233789444, 0.09531434625387192, 0.021464888006448746, 0.07397585362195969, -0.0075356923043727875, 0.02662208303809166, -0.050898477435112, -0.09611350297927856, 0.01465875469148159, -0.0448116660118103, 0.06613915413618088, 0.027030587196350098, -0.04688785970211029, 0.02720743790268898, -0.07241310924291611, -0.06416016817092896, 0.19284974038600922, 0.25770336389541626, -0.08149126172065735, 0.040248557925224304, 0.04339725896716118, -0.0686953142285347, -0.16943910717964172, 0.01991158537566662, 0.06066073104739189, 0.004150101449340582, 0.05698547139763832, -0.18853794038295746, 0.10962162911891937, 0.10290368646383286, -0.021142635494470596, 0.08864130079746246, -0.31421810388565063, -0.12857754528522491, 0.12258300930261612, 0.14633789658546448, 0.12108675390481949, -0.158264622092247, -0.02184026688337326, -0.04850178211927414, -0.12344583123922348, 0.10115616023540497, -0.0944252759218216, 0.12161635607481003, -0.02012050151824951, 0.12152938544750214, 0.0009433143422938883, -0.04904578626155853, 0.13147896528244019, 0.0026970210019499063, 0.10309725254774094, -0.06174694001674652, 0.018613161519169807, 0.024061447009444237, -0.03549211099743843, 0.016237402334809303, -0.1084757074713707, 0.02365473285317421, -0.11144576221704483, -0.022376378998160362, -0.07542943954467773, 0.036384377628564835, -0.027920575812458992, -0.057390354573726654, -0.018114475533366203, 0.02018159255385399, 0.05585061386227608, -0.013166525401175022, 0.13081596791744232, 0.0027506344486027956, 0.15205127000808716, 0.08838581293821335, 0.06229959800839424, -0.07581877708435059, -0.03697305545210838, -0.021005162969231606, -0.020831000059843063, 0.045240599662065506, -0.13849355280399323, 0.03583391383290291, 0.14008277654647827, 0.005571241024881601, 0.15221571922302246, 0.07428740710020065, -0.03255881741642952, 0.020277617499232292, 0.07085712999105453, -0.14729861915111542, -0.07737544178962708, -0.002365470165386796, 0.008788509294390678, -0.08473649621009827, 0.019638709723949432, 0.09907533973455429, -0.06513790041208267, -0.021508144214749336, -0.014534813351929188, 0.008845476433634758, -0.07531715929508209, 0.20443616807460785, 0.0409654900431633, 0.044762928038835526, -0.10521170496940613, 0.08176403492689133, 0.06878050416707993, -0.07719112187623978, 0.013363627716898918, 0.09830471873283386, -0.06234550103545189, -0.04026215150952339, 0.11267279833555222, 0.1940024197101593, -0.0661342442035675, -0.0550495907664299, -0.13493569195270538, -0.13320261240005493, 0.08596117049455643, 0.13272199034690857, 0.0993867889046669, 0.004588566720485687, -0.05426687374711037, 0.00970635749399662, -0.10250508785247803, 0.07019605487585068, 0.05862471088767052, 0.0598757266998291, -0.1130824163556099, 0.15069441497325897, 0.013442933559417725, 0.035189349204301834, -0.019573654979467392, 0.012455753982067108, -0.09657232463359833, 0.025327514857053757, -0.16347698867321014, -0.03211455047130585, -0.017202632501721382, 0.004582436289638281, 0.0028039298485964537, -0.06804530322551727, -0.06127683445811272, 0.017880305647850037, -0.13177983462810516, -0.03553854674100876, 0.010155288502573967, 0.058124084025621414, -0.12001771479845047, -0.0495116300880909, 0.03571218624711037, -0.06409886479377747, 0.056404005736112595, 0.05787545442581177, 0.01148269698023796, 0.06513742357492447, -0.14974935352802277, -0.004217600915580988, 0.05428488925099373, 0.006397032178938389, 0.05872279033064842, -0.11182287335395813, -0.016470691189169884, 0.01988893188536167, 0.07836714386940002, 0.01737557165324688, 0.07304340600967407, -0.14254415035247803, -0.02886684238910675, -0.020716292783617973, -0.11528792232275009, -0.0539272166788578, 0.020097807049751282, 0.07134455442428589, 0.022171279415488243, 0.20110435783863068, -0.08141637593507767, 0.04328753054141998, -0.2090873271226883, 0.005174827761948109, -0.02798524871468544, -0.11053253710269928, -0.1312161087989807, -0.07337789237499237, 0.0590130016207695, -0.043778251856565475, 0.1402696669101715, 0.02336517721414566, 0.06542045623064041, 0.03555886447429657, -0.024790100753307343, 0.016007162630558014, 0.020474210381507874, 0.21234935522079468, 0.04863865673542023, -0.02972368150949478, 0.0659589096903801, 0.05007832124829292, 0.09022832661867142, 0.1231321319937706, 0.1945609450340271, 0.16557228565216064, 0.03434639051556587, 0.08811172097921371, 0.020062481984496117, -0.058206707239151, -0.13912679255008698, 0.0318458266556263, -0.0203173216432333, 0.10508633404970169, -0.03256147727370262, 0.24320998787879944, 0.06890887767076492, -0.17944476008415222, 0.057209305465221405, -0.06263791769742966, -0.07625717669725418, -0.10929287225008011, -0.039190828800201416, -0.0861162394285202, -0.16004422307014465, -0.005200262647122145, -0.10393116623163223, 0.05334356799721718, 0.10818618535995483, 0.00926473643630743, -0.01696348749101162, 0.1304132044315338, 0.024781877174973488, 0.014122944325208664, 0.05774596333503723, -0.017044449225068092, -0.016293387860059738, -0.08853618800640106, -0.0763154849410057, -0.013517525978386402, -0.018534203991293907, 0.04240099713206291, -0.042754095047712326, -0.08001986891031265, 0.031557776033878326, -0.04313031956553459, -0.10314657539129257, 0.021308913826942444, 0.01176134031265974, 0.0729849562048912, 0.08132915943861008, 0.018148893490433693, 0.015307770110666752, -0.0037666899152100086, 0.2479562908411026, -0.08206625282764435, -0.1098286584019661, -0.10486502945423126, 0.2802375257015228, 0.040344804525375366, -0.015260579995810986, 0.024050027132034302, -0.056462544947862625, -0.00213901256211102, 0.22335630655288696, 0.1717461198568344, -0.10336434841156006, -0.01894977316260338, -0.010018029250204563, -0.015395931899547577, -0.02116723172366619, 0.12359888106584549, 0.14279989898204803, 0.03215833753347397, -0.10509031265974045, -0.010290068574249744, -0.058139048516750336, -0.022700347006320953, -0.06345590204000473, 0.07205557078123093, 0.029937678948044777, -0.0007051957072690129, -0.03531215712428093, 0.06741742789745331, -0.041789472103118896, -0.06873120367527008, 0.012247786857187748, -0.1842682957649231, -0.16274669766426086, -0.009685114026069641, 0.10589658468961716, 0.007419304922223091, 0.05788913369178772, -0.022497674450278282, 0.010656733997166157, 0.06298524141311646, -0.028274675831198692, -0.0670837014913559, -0.10044945031404495, 0.12245626747608185, -0.13291174173355103, 0.18932799994945526, -0.0377073734998703, 0.0635952576994896, 0.12773285806179047, 0.06784679740667343, -0.07753816246986389, 0.08937036246061325, 0.038432151079177856, -0.08302710950374603, 0.03366655111312866, 0.10618113726377487, -0.03831982985138893, 0.052829939872026443, 0.0439646951854229, -0.11149311065673828, 0.02937525324523449, -0.06945309042930603, -0.047715701162815094, -0.0224868506193161, -0.05297228321433067, -0.0592740923166275, 0.12496191263198853, 0.20860423147678375, -0.03411344066262245, 0.023302653804421425, -0.08667068928480148, 0.015429611317813396, 0.04807327315211296, 0.03585776314139366, -0.08434039354324341, -0.23275132477283478, 0.005966778378933668, 0.09773209691047668, -0.0248335599899292, -0.24987974762916565, -0.10108627378940582, -0.002384265884757042, -0.061178095638751984, -0.09681753814220428, 0.10642415285110474, 0.07557204365730286, 0.04107058793306351, -0.05284639447927475, -0.14129118621349335, -0.07639271765947342, 0.16123484075069427, -0.13255375623703003, -0.07872220873832703 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-finetuned-weaksup-1000-pegasus This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1309 - Rouge1: 23.342 - Rouge2: 8.67 - Rougel: 17.2865 - Rougelsum: 19.8228 - Gen Len: 69.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.4526 | 1.0 | 1000 | 2.1309 | 23.342 | 8.67 | 17.2865 | 19.8228 | 69.79 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "pegasus-multi_news-finetuned-weaksup-1000-pegasus", "results": []}]}
text2text-generation
cammy/pegasus-multi_news-finetuned-weaksup-1000-pegasus
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
pegasus-multi\_news-finetuned-weaksup-1000-pegasus ================================================== This model is a fine-tuned version of google/pegasus-multi\_news on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.1309 * Rouge1: 23.342 * Rouge2: 8.67 * Rougel: 17.2865 * Rougelsum: 19.8228 * Gen Len: 69.79 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 47, 98, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08072000741958618, 0.020540650933980942, -0.002114358823746443, 0.10872749239206314, 0.20932795107364655, 0.03579341992735863, 0.12791481614112854, 0.10601146519184113, -0.136414036154747, 0.014564459212124348, 0.12619629502296448, 0.1535966843366623, 0.005048821214586496, 0.1097441166639328, -0.05366487056016922, -0.2691769301891327, -0.01988539844751358, 0.02660062164068222, -0.07774876058101654, 0.1356460005044937, 0.0800938829779625, -0.1419772356748581, 0.08025600016117096, -0.021912386640906334, -0.24742001295089722, 0.021949077025055885, 0.023627307265996933, -0.050084829330444336, 0.15653306245803833, 0.01217875350266695, 0.1539306491613388, -0.0030482413712888956, 0.10070626437664032, -0.1743314117193222, 0.010521388612687588, 0.05204879865050316, 0.02458692528307438, 0.0663803294301033, 0.053861334919929504, -0.018860075622797012, 0.14772596955299377, -0.08927003294229507, 0.05456148833036423, 0.00843045860528946, -0.14566926658153534, -0.21148048341274261, -0.07424447685480118, -0.005554607603698969, 0.05552585795521736, 0.11695392429828644, -0.014147143810987473, 0.144252210855484, -0.1001780778169632, 0.09681900590658188, 0.2490571290254593, -0.25340408086776733, -0.08916722238063812, 0.02469637058675289, 0.005537661723792553, 0.10236821323633194, -0.10773524641990662, -0.01275839563459158, 0.05771135538816452, 0.06796277314424515, 0.11506214737892151, -0.03908437490463257, -0.0941140353679657, 0.018398452550172806, -0.14533275365829468, -0.011116736568510532, 0.08553463220596313, 0.010634735226631165, -0.01991625875234604, -0.009311839938163757, -0.06987438350915909, -0.14155374467372894, -0.035774264484643936, -0.026495926082134247, 0.04199661314487457, -0.05106578767299652, -0.0751727968454361, -0.006172519642859697, -0.09453526139259338, -0.058570440858602524, -0.06363382190465927, 0.17294280230998993, 0.03638609126210213, 0.018420936539769173, -0.04014582931995392, 0.10212748497724533, 0.001574376248754561, -0.13440151512622833, 0.04820400848984718, 0.02566027268767357, -0.0029119679238647223, -0.05698087438941002, -0.08425305038690567, -0.06982006132602692, -0.007049226202070713, 0.08136332035064697, -0.06585969775915146, 0.04513939470052719, 0.04148208349943161, 0.027264783158898354, -0.08656343817710876, 0.18123385310173035, -0.02248539961874485, -0.03594575077295303, 0.001204002881422639, 0.05631955340504646, -0.0013763493625447154, -0.014878528192639351, -0.10434272885322571, 0.0002455507928971201, 0.10987323522567749, 0.0109348613768816, -0.07733344286680222, 0.045104656368494034, -0.036696672439575195, -0.01556613389402628, -0.051351770758628845, -0.10020159184932709, 0.038443293422460556, -0.022822881117463112, -0.08658771216869354, 0.033347878605127335, 0.00894505437463522, 0.01826643757522106, -0.0273683350533247, 0.1573556512594223, -0.08672139793634415, 0.06186559423804283, -0.10787194967269897, -0.11449100822210312, -0.00034487765515223145, -0.04509194567799568, 0.017583560198545456, -0.09541835635900497, -0.16421739757061005, -0.0238910261541605, 0.0532214529812336, -0.03879965469241142, -0.047999944537878036, -0.06304758787155151, -0.0861341804265976, 0.008223448880016804, -0.016426267102360725, 0.15440960228443146, -0.05435483530163765, 0.12344349920749664, 0.06455261260271072, 0.07830194383859634, -0.059903234243392944, 0.053014516830444336, -0.09232354164123535, -0.009836860932409763, -0.22157235443592072, 0.0621236152946949, -0.03477104753255844, 0.05998336151242256, -0.061025720089673996, -0.1182006448507309, 0.01126717310398817, 0.0024546419735997915, 0.09426620602607727, 0.10958538949489594, -0.1645495891571045, -0.0928880050778389, 0.1700829714536667, -0.06340838968753815, -0.10417371988296509, 0.1156429722905159, -0.06251799315214157, 0.04846138879656792, 0.08847372978925705, 0.15789447724819183, 0.030343787744641304, -0.08555318415164948, 0.027816874906420708, -0.03937508538365364, 0.0687887892127037, -0.04473445564508438, 0.051271598786115646, 0.01777961291372776, 0.010410548187792301, 0.026673760265111923, -0.015635503455996513, 0.06447985023260117, -0.129208043217659, -0.0863337442278862, -0.039205096662044525, -0.10603497922420502, 0.05783291533589363, 0.07427068054676056, 0.10382396727800369, -0.11296486854553223, -0.0653289258480072, 0.09787366539239883, 0.05297035351395607, -0.04988999292254448, 0.037087131291627884, -0.0344683863222599, 0.04987940937280655, -0.034663476049900055, -0.015050388872623444, -0.20148618519306183, -0.03414439037442207, -0.000008289280231110752, 0.05050971359014511, 0.03685064986348152, 0.0025780240539461374, 0.08494539558887482, 0.06824882328510284, -0.07159331440925598, 0.002899928716942668, -0.047835204750299454, -0.012522696517407894, -0.1545528620481491, -0.18374750018119812, -0.008739711716771126, -0.006611054763197899, 0.10956768691539764, -0.2009490579366684, 0.03172717243432999, -0.07097931951284409, 0.07557979971170425, -0.00248667411506176, -0.017596464604139328, -0.07240588963031769, 0.1116965264081955, -0.02453518658876419, -0.04421985149383545, 0.07242238521575928, -0.01451217569410801, -0.06054398790001869, -0.06807777285575867, -0.11258894205093384, 0.1871674805879593, 0.14392109215259552, -0.17039668560028076, -0.10028000921010971, 0.029093949124217033, -0.054326824843883514, -0.015695227310061455, -0.07309991866350174, 0.043217893689870834, 0.19519862532615662, -0.0017748069949448109, 0.15058110654354095, -0.056845471262931824, -0.030396925285458565, 0.01751134917140007, -0.03854353353381157, 0.05949195846915245, 0.11710141599178314, 0.12386295944452286, -0.039260685443878174, 0.12500621378421783, 0.15162073075771332, -0.11524378508329391, 0.11999603360891342, -0.023319872096180916, -0.07686988264322281, -0.012365007773041725, -0.04255428910255432, -0.006174235604703426, 0.08074893802404404, -0.11328908801078796, -0.012160295620560646, -0.003910318948328495, 0.03310125321149826, 0.028753358870744705, -0.232314795255661, -0.05832814425230026, 0.03577273711562157, -0.020580759271979332, -0.02022024616599083, -0.01870110258460045, 0.0236074086278677, 0.12303964048624039, 0.0019430844113230705, -0.0566401444375515, 0.014745567925274372, 0.005566297564655542, -0.0738677904009819, 0.20879770815372467, -0.07334969192743301, -0.11480435729026794, -0.10525938123464584, -0.07679688185453415, -0.04577136039733887, 0.021023035049438477, 0.056545503437519073, -0.11640261858701706, -0.00699141388759017, -0.04059740900993347, 0.06697539240121841, -0.011293926276266575, 0.043198708444833755, 0.025028808042407036, -0.008573904633522034, 0.047711629420518875, -0.09363880008459091, -0.014192027039825916, -0.06609794497489929, -0.08528084307909012, 0.05628195405006409, 0.04169755056500435, 0.11327996850013733, 0.16310390830039978, -0.04104527831077576, 0.0069917477667331696, -0.028357576578855515, 0.2628454864025116, -0.07440931349992752, -0.03952157124876976, 0.12826339900493622, 0.002826669253408909, 0.05265124514698982, 0.09177208691835403, 0.07037259638309479, -0.10697071999311447, 0.022291775792837143, 0.035750534385442734, -0.04293280839920044, -0.2126435935497284, -0.03643283620476723, -0.049593955278396606, -0.03740562126040459, 0.07478819042444229, 0.0017939041135832667, 0.009847280569374561, 0.05856645852327347, 0.05458730086684227, 0.09870486706495285, -0.04534874111413956, 0.046011220663785934, 0.12306378781795502, 0.0512009933590889, 0.1288231462240219, -0.03914419934153557, -0.08574045449495316, 0.03426354005932808, -0.052228495478630066, 0.21529734134674072, 0.0017718819435685873, 0.04706647992134094, 0.03713227063417435, 0.1445145159959793, -0.010635646991431713, 0.07994234561920166, 0.027458857744932175, -0.06003266200423241, -0.008932745084166527, -0.03341294080018997, -0.0541452094912529, 0.013208487071096897, -0.05568757653236389, 0.06196337938308716, -0.13976377248764038, -0.004103488754481077, 0.06227268651127815, 0.2290920466184616, 0.027697034180164337, -0.3069114089012146, -0.08106957376003265, 0.007559855934232473, -0.03304717317223549, 0.00013631500769406557, 0.01774423010647297, 0.09778429567813873, -0.11141782999038696, 0.03135683387517929, -0.059212855994701385, 0.09644127637147903, -0.022510241717100143, 0.05911076068878174, 0.04173390939831734, 0.10068321228027344, -0.007455489598214626, 0.05902796983718872, -0.3340977132320404, 0.2789413034915924, 0.0004061554209329188, 0.08818736672401428, -0.06264825910329819, -0.014231119304895401, 0.036031629890203476, 0.04826686531305313, 0.02447628043591976, -0.006739066448062658, -0.021884238347411156, -0.20212404429912567, -0.02842317894101143, 0.044595811516046524, 0.13377663493156433, -0.016902808099985123, 0.10473045706748962, -0.026135332882404327, 0.017844978719949722, 0.07201926410198212, 0.008261661976575851, -0.06974602490663528, -0.07176473736763, -0.028072528541088104, 0.011843834072351456, -0.0528036430478096, -0.04796244576573372, -0.12452251464128494, -0.11791388690471649, 0.1369425356388092, 0.04100785404443741, -0.019909167662262917, -0.11769787967205048, 0.11523385345935822, 0.07149199396371841, -0.08506300300359726, 0.02401459775865078, 0.020109061151742935, 0.043185263872146606, 0.020450031384825706, -0.06076006591320038, 0.10867279022932053, -0.05426923185586929, -0.15527483820915222, -0.06162532418966293, 0.09208828955888748, 0.041275497525930405, 0.07879824936389923, -0.023809392005205154, 0.020880548283457756, -0.032778821885585785, -0.0931079238653183, 0.03434951975941658, -0.018791068345308304, 0.05431187152862549, 0.04408056661486626, -0.05343789979815483, 0.014512799680233002, -0.06438367068767548, -0.034912992268800735, 0.19250115752220154, 0.26017120480537415, -0.08494851738214493, -0.01092921569943428, 0.020336821675300598, -0.0659550353884697, -0.1964995563030243, 0.07867215573787689, 0.08994089812040329, 0.0012980116298422217, 0.041647959500551224, -0.17750486731529236, 0.13746236264705658, 0.11027385294437408, 0.005378220230340958, 0.10497134923934937, -0.346416175365448, -0.13275142014026642, 0.08016759157180786, 0.16288751363754272, 0.18786229193210602, -0.1585657000541687, 0.0002865183923859149, -0.04475436732172966, -0.13680189847946167, 0.08843660354614258, -0.07054125517606735, 0.12294881045818329, -0.021075332537293434, 0.12308317422866821, 0.0020126572344452143, -0.048959456384181976, 0.10973195731639862, 0.023475300520658493, 0.09946702420711517, -0.06227462366223335, -0.027222128584980965, 0.03842275217175484, -0.029115840792655945, -0.018227344378829002, -0.03982989117503166, 0.016950001940131187, -0.0916462242603302, -0.016514763236045837, -0.09849096834659576, 0.02729053981602192, -0.029715145006775856, -0.06319170445203781, -0.020469535142183304, 0.006593214813619852, 0.04749666899442673, -0.016428736969828606, 0.09986485540866852, -0.005136267747730017, 0.1851963996887207, 0.06310899555683136, 0.061893709003925323, -0.0726633220911026, -0.022626962512731552, 0.0011914478382095695, -0.006508755497634411, 0.043645426630973816, -0.14288464188575745, 0.013752162456512451, 0.1571280062198639, 0.024247102439403534, 0.12274952977895737, 0.10089829564094543, -0.005326234735548496, 0.022427108138799667, 0.06572049856185913, -0.1714022159576416, -0.07528642565011978, -0.006038552615791559, -0.06728380918502808, -0.09883036464452744, 0.04725087806582451, 0.09143060445785522, -0.07536818087100983, -0.018335042521357536, -0.026237010955810547, -0.010700293816626072, -0.07694541662931442, 0.22001512348651886, 0.053337447345256805, 0.04730941727757454, -0.09781500697135925, 0.06810557842254639, 0.04443163052201271, -0.08231323212385178, 0.0076261721551418304, 0.11870099604129791, -0.0685001090168953, -0.01826850324869156, 0.12993937730789185, 0.18922699987888336, -0.08721790462732315, 0.0007735809776932001, -0.14378371834754944, -0.12038718909025192, 0.07125640660524368, 0.18635261058807373, 0.11097527295351028, -0.012205476872622967, -0.058840908110141754, 0.03086559660732746, -0.1480809450149536, 0.06064724922180176, 0.05546833574771881, 0.07155343145132065, -0.1126771941781044, 0.19886721670627594, -0.0007139401277527213, 0.04276861250400543, -0.03485245630145073, 0.029207564890384674, -0.11116339266300201, 0.03280352056026459, -0.13687121868133545, -0.0640612542629242, 0.001355147222056985, -0.01828739605844021, -0.007051444612443447, -0.07165304571390152, -0.05920803174376488, 0.0010439984034746885, -0.12881922721862793, -0.026893263682723045, 0.02407211810350418, 0.02427792362868786, -0.12050892412662506, -0.035685356706380844, 0.02281061001121998, -0.05762598291039467, 0.0487230159342289, 0.07706355303525925, 0.009490291588008404, 0.08250129967927933, -0.1589512676000595, -0.023038411512970924, 0.056906964629888535, -0.007879997603595257, 0.08519638329744339, -0.05562599375844002, -0.007057116832584143, -0.00013852753909304738, 0.12211383879184723, 0.039889320731163025, 0.07725697755813599, -0.12398850917816162, 0.01807721145451069, -0.026558086276054382, -0.11267972737550735, -0.04991308972239494, 0.019580993801355362, 0.08170831203460693, 0.017173925414681435, 0.17964228987693787, -0.08950204402208328, 0.06811230629682541, -0.21153827011585236, -0.011232102289795876, -0.019311361014842987, -0.1066860780119896, -0.11000470817089081, -0.07607367634773254, 0.07912303507328033, -0.04048415645956993, 0.12173312157392502, 0.037705615162849426, 0.09679606556892395, 0.03716568648815155, -0.03066438063979149, -0.010986540466547012, 0.029647232964634895, 0.20612099766731262, 0.06187605857849121, -0.051363810896873474, 0.07286418974399567, 0.08246055245399475, 0.11547582596540451, 0.13155408203601837, 0.2523851692676544, 0.13936877250671387, -0.0225332323461771, 0.09649043530225754, 0.009476316161453724, -0.043498337268829346, -0.14853402972221375, -0.010822978802025318, -0.047917746007442474, 0.08124864101409912, -0.03824183717370033, 0.20906971395015717, 0.04749505966901779, -0.15404117107391357, 0.04248123615980148, -0.08354092389345169, -0.0961582213640213, -0.11878921091556549, 0.03775327280163765, -0.07881385087966919, -0.15793459117412567, 0.0066528660245239735, -0.11497557163238525, 0.034709010273218155, 0.12872061133384705, 0.0138904033228755, -0.01843910850584507, 0.17518728971481323, 0.03522271662950516, 0.024632534012198448, 0.06726831197738647, -0.004226475954055786, -0.009316512383520603, -0.09317115694284439, -0.06872565299272537, -0.03689566254615784, -0.01579963229596615, 0.04144149646162987, -0.05195039138197899, -0.11819061636924744, 0.021146662533283234, -0.03670196980237961, -0.10902201384305954, 0.02827608212828636, 0.03273586556315422, 0.07028765976428986, 0.04355218634009361, -0.0006781513802707195, 0.010039178654551506, -0.023853294551372528, 0.25538161396980286, -0.09196674078702927, -0.10380998998880386, -0.08988573402166367, 0.31822165846824646, 0.049118828028440475, 0.007046937942504883, 0.005071199499070644, -0.05892487242817879, -0.014178958721458912, 0.24222560226917267, 0.19551551342010498, -0.1397610306739807, -0.01517537236213684, -0.0002956181124318391, -0.0039021542761474848, -0.012925648130476475, 0.13533110916614532, 0.13583500683307648, 0.0335477851331234, -0.11375895142555237, -0.020350072532892227, -0.06119522824883461, -0.0184511449187994, -0.04103425517678261, 0.057339902967214584, 0.05414169654250145, 0.017782066017389297, -0.05047982558608055, 0.07228689640760422, -0.08557996898889542, -0.09295980632305145, 0.0382392480969429, -0.2285328209400177, -0.15774531662464142, -0.006874511018395424, 0.09639312326908112, -0.004591126460582018, 0.08656536042690277, -0.02082972414791584, -0.008349834941327572, 0.06502192467451096, -0.031180931255221367, -0.06462089717388153, -0.09924527257680893, 0.10313596576452255, -0.14963945746421814, 0.16058349609375, -0.047766003757715225, 0.06586533039808273, 0.11927390843629837, 0.06763778626918793, -0.048064809292554855, 0.06062527373433113, 0.04060478135943413, -0.07794780284166336, 0.006265344563871622, 0.12336265295743942, -0.04322277754545212, 0.037193428725004196, 0.045450013130903244, -0.14071549475193024, 0.02941850572824478, -0.0719962865114212, -0.047387994825839996, -0.024160994216799736, -0.06644005328416824, -0.0586065798997879, 0.11489727348089218, 0.23978205025196075, -0.020146429538726807, 0.041333090513944626, -0.07800066471099854, -0.0002651528047863394, 0.05123996362090111, 0.07559770345687866, -0.09962350875139236, -0.26507315039634705, -0.007949497550725937, 0.091646708548069, -0.030055442824959755, -0.24453385174274445, -0.08340239524841309, -0.0010513090528547764, -0.061924807727336884, -0.09025856107473373, 0.09868020564317703, 0.056585777550935745, 0.04581250622868538, -0.05071486160159111, -0.14246124029159546, -0.07177762687206268, 0.18720464408397675, -0.1404150128364563, -0.09536442905664444 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-weaksup-1000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "roberta-base-finetuned-weaksup-1000", "results": []}]}
text2text-generation
cammy/roberta-base-finetuned-weaksup-1000
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #encoder-decoder #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# roberta-base-finetuned-weaksup-1000 This model is a fine-tuned version of [](URL on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# roberta-base-finetuned-weaksup-1000\n\nThis model is a fine-tuned version of [](URL on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #encoder-decoder #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-base-finetuned-weaksup-1000\n\nThis model is a fine-tuned version of [](URL on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 53, 37, 6, 12, 8, 3, 103, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #encoder-decoder #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-finetuned-weaksup-1000\n\nThis model is a fine-tuned version of [](URL on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.07755163311958313, 0.06545384973287582, -0.0021638788748532534, 0.056101664900779724, 0.16135279834270477, 0.0333092138171196, 0.12040924280881882, 0.11525744199752808, -0.09764226526021957, 0.05049394071102142, 0.0651043951511383, 0.04604959115386009, 0.05065072327852249, 0.11921322345733643, -0.02937786839902401, -0.28645792603492737, 0.024646159261465073, 0.021945176646113396, -0.062354445457458496, 0.0946628600358963, 0.11212559044361115, -0.09596537053585052, 0.049220044165849686, 0.02008126862347126, -0.171295627951622, 0.03564637526869774, -0.01882358454167843, -0.06165323778986931, 0.10964647680521011, 0.027321869507431984, 0.13190829753875732, -0.0074855005368590355, 0.11605015397071838, -0.21860279142856598, 0.016387324780225754, 0.08450128883123398, 0.05154784768819809, 0.08028829842805862, 0.07792988419532776, -0.005298289004713297, 0.10823404043912888, -0.09866078943014145, 0.10260604321956635, 0.03875404968857765, -0.06502726674079895, -0.21540935337543488, -0.07848269492387772, 0.04746972769498825, 0.06490001082420349, 0.09505581110715866, 0.011844009160995483, 0.10849909484386444, -0.08994172513484955, 0.06725490838289261, 0.16604050993919373, -0.23336170613765717, -0.06659822165966034, 0.017529956996440887, 0.05932803079485893, 0.07601896673440933, -0.09398487210273743, -0.03423237428069115, 0.040966182947158813, 0.05538555607199669, 0.09750582277774811, -0.01749812625348568, -0.1312023401260376, -0.01193319819867611, -0.127139613032341, -0.013257480226457119, 0.16437454521656036, 0.0422489307820797, -0.0462278388440609, -0.06953506916761398, -0.03404007852077484, -0.06325994431972504, -0.03716856613755226, -0.01990688219666481, 0.01021277904510498, -0.006207856349647045, -0.08621883392333984, -0.08059579879045486, -0.0869135931134224, -0.07256349921226501, -0.019649820402264595, 0.16266006231307983, 0.05519204959273338, -0.0024278101045638323, -0.0423397533595562, 0.09350594878196716, 0.01359823253005743, -0.09701753407716751, 0.01452629640698433, -0.013094277121126652, -0.061772096902132034, -0.04732527583837509, -0.068398617208004, -0.06290003657341003, 0.016110170632600784, 0.12205707281827927, -0.05421183258295059, 0.08414144814014435, -0.005135319661349058, 0.035492971539497375, -0.02114884741604328, 0.13221250474452972, -0.04067552462220192, 0.005203559063374996, 0.011546113528311253, 0.08704951405525208, -0.009341854602098465, -0.016650335863232613, -0.08458496630191803, -0.03491535410284996, 0.0941270962357521, 0.05059857666492462, -0.0316331684589386, 0.038831256330013275, -0.041334595531225204, -0.027918923646211624, -0.0553085096180439, -0.13217157125473022, 0.037125784903764725, -0.002876708749681711, -0.06517951935529709, 0.013663692399859428, 0.026081528514623642, 0.011263719759881496, -0.04905039072036743, 0.06456169486045837, -0.06984241306781769, 0.0021538494620472193, -0.10927373915910721, -0.09732826799154282, 0.012988784350454807, -0.051564693450927734, 0.00339474412612617, -0.09838070720434189, -0.16358764469623566, -0.04094981774687767, 0.05756343528628349, -0.03560658544301987, -0.028573328629136086, -0.03877507522702217, -0.042787011712789536, 0.03031766414642334, -0.0165400430560112, 0.1264633685350418, -0.046985309571027756, 0.09014912694692612, -0.019313959404826164, 0.0050276173278689384, -0.027695227414369583, 0.058195218443870544, -0.07133050262928009, 0.02284003049135208, -0.10532452911138535, 0.08418793976306915, -0.10115823149681091, 0.035304855555295944, -0.11987960338592529, -0.10371564328670502, -0.040819309651851654, 0.0060674878768622875, 0.10186472535133362, 0.08178456872701645, -0.1560223251581192, -0.035308972001075745, 0.1321735829114914, -0.08217531442642212, -0.060541484504938126, 0.10325104743242264, -0.05175880715250969, 0.06834620237350464, 0.04196084663271904, 0.1551852524280548, 0.12207668274641037, -0.08233606815338135, 0.024350468069314957, 0.0272039957344532, 0.0641239657998085, 0.0075386385433375835, 0.05157872289419174, -0.016806740313768387, -0.0382491871714592, 0.015683917328715324, -0.012739221565425396, 0.05385109782218933, -0.0871199369430542, -0.07222255319356918, -0.04974657669663429, -0.07055171579122543, 0.03360604867339134, 0.02135414443910122, 0.03859006240963936, -0.06816639751195908, -0.10295619815587997, 0.1187983825802803, 0.1443651020526886, -0.08898667991161346, 0.01751629076898098, -0.0713244155049324, 0.013186571188271046, -0.035071440041065216, -0.006669328082352877, -0.2127903252840042, -0.09248270839452744, 0.03433609753847122, -0.028511350974440575, 0.0517101064324379, 0.004074327647686005, 0.06435105949640274, 0.033587440848350525, -0.03457919508218765, -0.040793828666210175, -0.10000649839639664, -0.004187427926808596, -0.10405191034078598, -0.17521914839744568, -0.06008784845471382, -0.04388687387108803, 0.11724752932786942, -0.21037615835666656, 0.015097860246896744, -0.014725914224982262, 0.1278599500656128, 0.033286262303590775, -0.03363240882754326, -0.01595177687704563, 0.07672746479511261, -0.01849612034857273, -0.09094055742025375, 0.04110488295555115, 0.032209981232881546, -0.10752460360527039, -0.008780457079410553, -0.1361490935087204, 0.048218660056591034, 0.09032449126243591, -0.03332573175430298, -0.08737386018037796, -0.04597044736146927, -0.05773583799600601, -0.05147482082247734, -0.060580186545848846, 0.004164521582424641, 0.22199590504169464, 0.014788112603127956, 0.1348007768392563, -0.06056863069534302, -0.042836546897888184, -0.0014792309375479817, -0.010157078504562378, -0.015311513096094131, 0.07411699742078781, 0.06579769402742386, -0.09762225300073624, 0.07441835850477219, 0.09161170572042465, -0.10586840659379959, 0.14599740505218506, -0.05901452153921127, -0.1101660430431366, 0.011438969522714615, 0.021481681615114212, -0.00515236658975482, 0.08583858609199524, -0.10136497765779495, 0.006406199652701616, 0.02343010902404785, 0.03525402024388313, 0.06646768003702164, -0.19464881718158722, 0.015639575198292732, 0.011821900494396687, -0.029312964528799057, -0.006372242234647274, -0.02492409758269787, 0.03834094479680061, 0.08451720327138901, 0.030400386080145836, -0.012571658939123154, 0.03251131251454353, -0.006602115463465452, -0.08889283984899521, 0.19420123100280762, -0.13691022992134094, -0.1539667546749115, -0.142037034034729, 0.017621003091335297, -0.023582546040415764, -0.02701260894536972, 0.02896658331155777, -0.08956893533468246, -0.05678902566432953, -0.07159619778394699, 0.012065618298947811, -0.08945457637310028, -0.008372732438147068, 0.032858654856681824, 0.028571058064699173, 0.08116119354963303, -0.1355203092098236, 0.015719827264547348, -0.010082434862852097, -0.09245337545871735, 0.0152810737490654, 0.030269909650087357, 0.08500774949789047, 0.14261573553085327, -0.02770630083978176, 0.006394152995198965, -0.04493757709860802, 0.1885429322719574, -0.05588046833872795, -0.03015884757041931, 0.1387462317943573, -0.006670806556940079, 0.06392904371023178, 0.0917806625366211, 0.046230439096689224, -0.07255810499191284, 0.04939894378185272, 0.057623229920864105, 0.0018988861702382565, -0.25677722692489624, -0.03521322086453438, -0.04371480643749237, -0.09382132440805435, 0.11231356114149094, 0.05651536583900452, -0.02179177850484848, 0.07496638596057892, -0.025132879614830017, 0.07412738353013992, -0.007816680707037449, 0.096091628074646, 0.11623242497444153, 0.027349308133125305, 0.08933403342962265, -0.041024334728717804, -0.03711697831749916, 0.06656017154455185, 0.026943087577819824, 0.2760258615016937, -0.024563051760196686, 0.09113673120737076, 0.040894582867622375, 0.13374760746955872, 0.0063834358006715775, 0.036664970219135284, 0.005831709131598473, 0.017151158303022385, -0.00634028809145093, -0.050579920411109924, -0.043615248054265976, 0.025853794068098068, -0.01978868432343006, 0.03180219605565071, -0.10859192907810211, 0.0067699141800403595, 0.0053535159677267075, 0.28335943818092346, -0.003830625442788005, -0.291357159614563, -0.08766190707683563, 0.013035565614700317, -0.043604616075754166, -0.09850987046957016, 0.022069739177823067, 0.11675655841827393, -0.12326281517744064, 0.016089996322989464, -0.05959779769182205, 0.11502736061811447, -0.057070452719926834, 0.00047768090735189617, 0.05201433598995209, 0.15912199020385742, -0.0019818893633782864, 0.09260685741901398, -0.2440740466117859, 0.21047864854335785, 0.011934859678149223, 0.11066865175962448, -0.043696027249097824, 0.03944580629467964, 0.039667073637247086, 0.03552823141217232, 0.03269883245229721, -0.007588219828903675, -0.09069877117872238, -0.18636611104011536, -0.046125270426273346, 0.05212591588497162, 0.1456708163022995, 0.01596727780997753, 0.0855194479227066, -0.0733402669429779, 0.039323896169662476, 0.06220721825957298, -0.11672774702310562, -0.20249618589878082, -0.14217805862426758, 0.015076370909810066, 0.059442125260829926, 0.02368173748254776, -0.10243576020002365, -0.10198496282100677, -0.00287434714846313, 0.20467470586299896, 0.010126853361725807, -0.029612816870212555, -0.14959803223609924, 0.08280344307422638, 0.13986916840076447, -0.0632733702659607, 0.0364057794213295, 0.011480648070573807, 0.13185009360313416, 0.025251276791095734, -0.09461881220340729, 0.06397104263305664, -0.06659302115440369, -0.1329026222229004, -0.049676138907670975, 0.08743452280759811, 0.039351098239421844, 0.036837346851825714, -0.005126609466969967, -0.0018810763722285628, -0.017366334795951843, -0.09098362922668457, -0.012666979804635048, 0.09750324487686157, 0.0495651550590992, 0.10321833193302155, -0.1202019527554512, -0.005191306117922068, -0.0325288288295269, -0.01801283471286297, 0.16764308512210846, 0.17619144916534424, -0.07526478171348572, 0.0331086702644825, 0.10319121181964874, -0.08459797501564026, -0.19487342238426208, 0.07246913760900497, 0.12153364717960358, 0.01784464344382286, 0.018883824348449707, -0.2459179013967514, 0.0899374932050705, 0.10767807811498642, -0.018490958958864212, 0.03043602593243122, -0.30522117018699646, -0.10327894985675812, 0.1061033308506012, 0.13848580420017242, 0.0514707937836647, -0.12853258848190308, -0.033694371581077576, -0.05202379822731018, -0.13561449944972992, 0.08845432847738266, -0.089973583817482, 0.11757148802280426, -0.003931081388145685, 0.10069771111011505, 0.02600208856165409, -0.03158201277256012, 0.13940294086933136, -0.023161189630627632, 0.09093005955219269, -0.045166417956352234, 0.06287288665771484, 0.05777345597743988, -0.05578261613845825, 0.03817664086818695, -0.0340232253074646, 0.07088516652584076, -0.13428671658039093, -0.024217678233981133, -0.03982389718294144, 0.0689506083726883, -0.021087784320116043, -0.06641031801700592, -0.03123621642589569, 0.03864100202918053, 0.0429922416806221, -0.019365644082427025, 0.06754228472709656, -0.007790652569383383, 0.11345479637384415, 0.026210524141788483, 0.11610903590917587, -0.02848471701145172, -0.06968872994184494, -0.0033127146307379007, -0.03368525579571724, 0.07746772468090057, -0.11424266546964645, 0.029056215658783913, 0.11864800751209259, 0.020421119406819344, 0.14511744678020477, 0.06715741008520126, -0.05610927566885948, 0.03957327827811241, 0.051108889281749725, -0.08135825395584106, -0.12249401956796646, -0.03002932295203209, 0.04303210228681564, -0.15059933066368103, 0.023507658392190933, 0.11850772798061371, -0.05609651654958725, -0.0204510185867548, -0.015929080545902252, 0.00310915638692677, -0.034017402678728104, 0.15784113109111786, 0.03958738222718239, 0.04404798522591591, -0.06730835139751434, 0.1361997276544571, 0.09280728548765182, -0.10634205490350723, 0.06010616198182106, 0.08912398666143417, -0.06934017688035965, -0.031101273372769356, 0.06734197586774826, 0.1412603259086609, -0.03630688041448593, -0.05782337486743927, -0.07378149777650833, -0.11332742869853973, 0.036763228476047516, 0.0984286516904831, 0.02736968919634819, 0.0025170682929456234, -0.04894637316465378, 0.04319198802113533, -0.1417759358882904, 0.07021745294332504, 0.0612681582570076, 0.08001431822776794, -0.1534825712442398, 0.1198718473315239, 0.016262322664260864, 0.040603816509246826, -0.01820361614227295, -0.014182791113853455, -0.09966596215963364, -0.0024868682958185673, -0.1611298769712448, 0.00842469371855259, -0.031177382916212082, 0.019006388261914253, -0.001015112386085093, -0.047543369233608246, -0.0444803424179554, 0.0470748133957386, -0.07752759009599686, -0.059033848345279694, 0.008181790821254253, 0.0665576308965683, -0.10451986640691757, 0.002366757718846202, 0.03480708226561546, -0.08737339824438095, 0.07981730997562408, 0.06439343094825745, 0.009011966176331043, 0.04189921170473099, -0.15749552845954895, -0.019588595256209373, 0.03923060745000839, 0.031239287927746773, 0.04122404009103775, -0.06315382570028305, -0.005624847020953894, -0.010624526999890804, 0.06254556775093079, -0.0037593573797494173, 0.07848848402500153, -0.13489824533462524, -0.051943130791187286, -0.07192590087652206, -0.06012279540300369, -0.08523392677307129, 0.05500214546918869, 0.09679927676916122, 0.07196367532014847, 0.15742425620555878, -0.08808618038892746, 0.028182296082377434, -0.18052718043327332, -0.004516208078712225, -0.02558085136115551, -0.03565460816025734, -0.07146383076906204, -0.05373616889119148, 0.0715135782957077, -0.05615459010004997, 0.11411377042531967, -0.02194499783217907, 0.0660330057144165, 0.020937496796250343, -0.08623979985713959, -0.004994513466954231, 0.01306420098990202, 0.24408449232578278, 0.07218783348798752, -0.0148551594465971, 0.05741884559392929, -0.0006225339020602405, 0.05432198569178581, 0.0781385749578476, 0.13911427557468414, 0.17061026394367218, 0.01184362918138504, 0.07550300657749176, 0.0716610923409462, -0.08396892994642258, -0.09093290567398071, 0.11062761396169662, 0.006521550007164478, 0.09331275522708893, -0.049125026911497116, 0.21856997907161713, 0.12532486021518707, -0.1366337686777115, 0.041035693138837814, -0.042213790118694305, -0.09088443219661713, -0.11352720111608505, -0.04243628680706024, -0.08545096218585968, -0.1495058238506317, 0.00915248692035675, -0.12409159541130066, 0.01628590188920498, 0.06587832421064377, 0.005439383909106255, 0.014471207745373249, 0.10979611426591873, -0.0029671620577573776, -0.016632409766316414, 0.07101339101791382, -0.008523967117071152, 0.009110075421631336, -0.07441426068544388, -0.11038456112146378, 0.06441166251897812, 0.020799586549401283, 0.08017510920763016, -0.028992338106036186, -0.013976609334349632, 0.04273686558008194, -0.03534255549311638, -0.06799833476543427, 0.02348160743713379, 0.015486231073737144, 0.022074881941080093, 0.05854867771267891, 0.0516519695520401, -0.03564080223441124, -0.038611240684986115, 0.30202677845954895, -0.08345022797584534, -0.1027856394648552, -0.13428978621959686, 0.22748449444770813, 0.01757756434381008, -0.01882926933467388, 0.044493455439805984, -0.10360794514417648, -0.010497525334358215, 0.1586286425590515, 0.1352359801530838, -0.056877221912145615, -0.015554587356746197, -0.002587123541161418, -0.026864564046263695, -0.08057829737663269, 0.1533026248216629, 0.12339290976524353, 0.02786073088645935, -0.060972727835178375, -0.027738291770219803, -0.01632567122578621, -0.0007044808007776737, -0.10155691206455231, 0.04536749795079231, 0.004309475421905518, -0.010832942090928555, -0.040964048355817795, 0.08481068164110184, -0.017978684976696968, -0.11253636330366135, -0.016846200451254845, -0.10538122802972794, -0.15598365664482117, -0.04342653602361679, 0.06560031324625015, -0.021844470873475075, 0.036643076688051224, -0.030234642326831818, 0.011959148570895195, 0.09774652868509293, -0.020340368151664734, -0.03296319395303726, -0.09086897224187851, 0.08440285176038742, -0.06077763810753822, 0.19825325906276703, -0.007992042228579521, 0.055365189909935, 0.1089719608426094, 0.055128589272499084, -0.11659001559019089, 0.05173937976360321, 0.04614785313606262, -0.05446134880185127, 0.04813820868730545, 0.14596955478191376, -0.05121685191988945, 0.1029435396194458, 0.04169197753071785, -0.11899689584970474, 0.003066978184506297, -0.08837529271841049, -0.025746041908860207, -0.0651676207780838, -0.02961031161248684, -0.07069934904575348, 0.14979936182498932, 0.18837270140647888, -0.03332332894206047, -0.010129861533641815, -0.08315086364746094, 0.011397315189242363, 0.04913174733519554, 0.107628233730793, -0.035560593008995056, -0.2120763063430786, -0.008280875161290169, 0.05266851559281349, 0.022084686905145645, -0.2424585521221161, -0.08402382582426071, 0.025753408670425415, -0.039093051105737686, -0.05433744564652443, 0.12102434784173965, 0.08679831027984619, 0.03047867678105831, -0.05070275068283081, -0.17048728466033936, -0.04325370118021965, 0.15431945025920868, -0.15054316818714142, -0.04433803632855415 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-weaksup-1000 This model is a fine-tuned version of [cammy/t5-base-finetuned-weaksup-1000](https://huggingface.co/cammy/t5-base-finetuned-weaksup-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6699 - Rouge1: 22.2079 - Rouge2: 9.54 - Rougel: 19.9593 - Rougelsum: 20.2524 - Gen Len: 18.17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.6257 | 1.0 | 1000 | 1.6699 | 22.2079 | 9.54 | 19.9593 | 20.2524 | 18.17 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-base-finetuned-weaksup-1000", "results": []}]}
text2text-generation
cammy/t5-base-finetuned-weaksup-1000
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-base-finetuned-weaksup-1000 ============================== This model is a fine-tuned version of cammy/t5-base-finetuned-weaksup-1000 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6699 * Rouge1: 22.2079 * Rouge2: 9.54 * Rougel: 19.9593 * Rougelsum: 20.2524 * Gen Len: 18.17 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 63, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.06548257917165756, 0.029242604970932007, -0.002657927107065916, 0.1018490195274353, 0.16052255034446716, 0.017589297145605087, 0.12191512435674667, 0.13103264570236206, -0.12949520349502563, 0.01259427797049284, 0.12226374447345734, 0.152800515294075, 0.01901572197675705, 0.13935844600200653, -0.05387444794178009, -0.2744064927101135, 0.012986287474632263, 0.02424309216439724, -0.048722341656684875, 0.14356178045272827, 0.10096609592437744, -0.1091245636343956, 0.0852152556180954, 0.0008621499291621149, -0.1839739829301834, 0.030384361743927002, 0.009574860334396362, -0.06281392276287079, 0.15066079795360565, 0.04019297659397125, 0.10064377635717392, 0.007104167249053717, 0.07823289185762405, -0.2078622281551361, 0.00743443937972188, 0.06663568317890167, 0.006553834769874811, 0.07673226296901703, 0.07409251481294632, -0.010649529285728931, 0.17360469698905945, -0.07771563529968262, 0.05327842757105827, 0.031506143510341644, -0.1275632232427597, -0.22168779373168945, -0.08169806748628616, 0.019238226115703583, 0.08117792010307312, 0.11823978275060654, -0.017339831218123436, 0.1271422654390335, -0.0777563527226448, 0.10698581486940384, 0.23577038943767548, -0.2906937599182129, -0.06141328439116478, -0.01862921379506588, 0.02742663025856018, 0.08507771044969559, -0.07868781685829163, -0.02615980990231037, 0.04709066078066826, 0.05732443183660507, 0.13857698440551758, -0.03372542932629585, -0.12197117507457733, 0.010380607098340988, -0.14275044202804565, -0.035812534391880035, 0.15357087552547455, 0.0391111858189106, -0.030360810458660126, -0.0364646352827549, -0.06652875244617462, -0.14973264932632446, -0.026708776131272316, -0.014753598719835281, 0.05040161684155464, -0.014404592104256153, -0.07240837812423706, -0.020162109285593033, -0.09918166697025299, -0.05400273576378822, -0.07064411044120789, 0.12859183549880981, 0.04010475426912308, 0.0035285712219774723, -0.03574422746896744, 0.09845750033855438, -0.00786549597978592, -0.12683452665805817, 0.0064809671603143215, 0.03269309923052788, -0.004874214064329863, -0.04946242645382881, -0.07482194155454636, -0.06890186667442322, 0.012200325727462769, 0.1394018828868866, -0.06425049155950546, 0.05530590936541557, -0.0039748805575072765, 0.02985040657222271, -0.09225574135780334, 0.17355211079120636, -0.03452188894152641, -0.017737066373229027, 0.012621440924704075, 0.04055069386959076, 0.02019868977367878, -0.014368816278874874, -0.11153239756822586, 0.009633810259401798, 0.11721532791852951, 0.024709725752472878, -0.06968671828508377, 0.07326001673936844, -0.04310508072376251, -0.017936456948518753, -0.03104616329073906, -0.10285709798336029, 0.027959607541561127, -0.012982305139303207, -0.07912994176149368, -0.00010229305917164311, 0.02559136226773262, 0.021176505833864212, -0.04818189516663551, 0.1006602942943573, -0.07588666677474976, 0.040969204157590866, -0.09369701892137527, -0.1218666285276413, 0.02157703973352909, -0.032350439578294754, 0.013537779450416565, -0.1041884496808052, -0.1861424446105957, -0.016948454082012177, 0.0583222322165966, -0.03623706102371216, -0.06148926541209221, -0.0629909336566925, -0.07418184727430344, 0.022792257368564606, -0.03107399493455887, 0.15090425312519073, -0.07050217688083649, 0.09846745431423187, 0.038504209369421005, 0.05405615270137787, -0.048063091933727264, 0.060674093663692474, -0.10772550851106644, 0.004502115771174431, -0.17155300080776215, 0.05912342295050621, -0.021562732756137848, 0.0750962495803833, -0.10321717709302902, -0.10696269571781158, 0.011979909613728523, 0.003361050272360444, 0.08183789253234863, 0.09217534214258194, -0.1528370976448059, -0.08031755685806274, 0.1664537638425827, -0.06960009038448334, -0.13314856588840485, 0.11896223574876785, -0.058939896523952484, 0.05293464660644531, 0.07354693114757538, 0.16741570830345154, 0.03173946216702461, -0.07048633694648743, 0.03133681043982506, -0.022007830440998077, 0.042231880128383636, -0.028021197766065598, 0.06626944243907928, 0.003291672095656395, -0.008888550102710724, 0.01757473312318325, -0.005447718780487776, 0.06746560335159302, -0.09562017023563385, -0.08172672241926193, -0.049938347190618515, -0.07932289689779282, 0.00868319347500801, 0.040740784257650375, 0.07496152073144913, -0.1191040575504303, -0.09771943837404251, 0.07174663990736008, 0.07468433678150177, -0.07005690038204193, 0.047137852758169174, -0.06215595453977585, 0.04198106378316879, -0.021351244300603867, -0.0011785387760028243, -0.18488194048404694, -0.0174334067851305, 0.012473979964852333, -0.000026954703571391292, 0.040505606681108475, -0.015329056419432163, 0.06792040169239044, 0.05314331501722336, -0.05741432309150696, -0.021822577342391014, -0.03190596029162407, -0.0022760340943932533, -0.11701606959104538, -0.20146042108535767, -0.020014619454741478, -0.009682323783636093, 0.1379508227109909, -0.20898063480854034, 0.031052295118570328, -0.016729364171624184, 0.07564229518175125, 0.008461929857730865, 0.00278282817453146, -0.0493345782160759, 0.08044283837080002, -0.051574841141700745, -0.05097105726599693, 0.06694204360246658, 0.011498385109007359, -0.09675282984972, -0.011218109168112278, -0.1365886777639389, 0.14219287037849426, 0.13423441350460052, -0.14326885342597961, -0.08493910729885101, 0.001853880938142538, -0.053124669939279556, -0.03781699389219284, -0.04227937385439873, 0.015451937913894653, 0.19088837504386902, -0.005686038173735142, 0.16291727125644684, -0.07129146158695221, -0.0480799525976181, 0.01792602427303791, -0.030430223792791367, 0.038971491158008575, 0.11618338525295258, 0.09862131625413895, -0.09791525453329086, 0.1307004988193512, 0.16024275124073029, -0.08558410406112671, 0.12135735899209976, -0.039930813014507294, -0.08303114026784897, -0.01169531513005495, -0.017531313002109528, -0.0070517053827643394, 0.04803445562720299, -0.13636842370033264, -0.0005022089462727308, 0.01834801398217678, 0.039927564561367035, 0.024702996015548706, -0.21558642387390137, -0.02234041877090931, 0.037418775260448456, -0.057216379791498184, -0.019178276881575584, -0.023623518645763397, 0.017319507896900177, 0.1136983186006546, 0.016345810145139694, -0.08150618523359299, 0.0385228767991066, 0.0032098207157105207, -0.09195565432310104, 0.2032255083322525, -0.09848976880311966, -0.16558828949928284, -0.11210449039936066, -0.09221740812063217, -0.044056884944438934, 0.006163004320114851, 0.07772404700517654, -0.08525308221578598, -0.03771974518895149, -0.08723245561122894, 0.04886259511113167, -0.02208467200398445, 0.024784555658698082, 0.004258983768522739, -0.0006192739238031209, 0.07317231595516205, -0.10463698208332062, -0.01671311818063259, -0.030635444447398186, -0.07599974423646927, 0.054449986666440964, 0.025985432788729668, 0.10578520596027374, 0.15582957863807678, -0.01993008330464363, 0.016598500311374664, -0.03980749472975731, 0.2280258983373642, -0.0629190132021904, -0.020547829568386078, 0.13652510941028595, 0.004166718572378159, 0.051109228283166885, 0.11793303489685059, 0.04956704005599022, -0.09636570513248444, 0.03311815485358238, 0.03923111781477928, -0.026760781183838844, -0.22983023524284363, -0.03904180973768234, -0.05361614376306534, -0.015819061547517776, 0.09876883029937744, 0.02837582677602768, 0.05476320534944534, 0.043166302144527435, 0.030396990478038788, 0.07475172728300095, -0.0038712029345333576, 0.07834983617067337, 0.14676326513290405, 0.04983574524521828, 0.13441868126392365, -0.043628133833408356, -0.06353001296520233, 0.05458611994981766, -0.02980799973011017, 0.21893112361431122, 0.01141220610588789, 0.13193263113498688, 0.04867381975054741, 0.1347268968820572, -0.00843821931630373, 0.07538150250911713, 0.012647787109017372, -0.029520057141780853, -0.019508618861436844, -0.048543818295001984, -0.025560470297932625, 0.035516902804374695, -0.08976572006940842, 0.04092789441347122, -0.1276465505361557, -0.012887525372207165, 0.05975712835788727, 0.2793048322200775, 0.04430793225765228, -0.3243790864944458, -0.08387842029333115, 0.007263975217938423, -0.07291513681411743, -0.023600056767463684, 0.03519450128078461, 0.06734567135572433, -0.08866237103939056, 0.05971910431981087, -0.06333233416080475, 0.11640109866857529, -0.02218552678823471, 0.057175565510988235, 0.07366614788770676, 0.10378523916006088, 0.003120637033134699, 0.07965648174285889, -0.3350261449813843, 0.2731652557849884, 0.0017693345434963703, 0.06974320113658905, -0.072193942964077, 0.008188962936401367, 0.03265073522925377, 0.05976274237036705, 0.037384629249572754, -0.015900403261184692, -0.07204760611057281, -0.1698971539735794, -0.04086883366107941, 0.03747086971998215, 0.10498499870300293, -0.00988734234124422, 0.11318358033895493, -0.052395232021808624, 0.012255429290235043, 0.07651969790458679, -0.0017194229876622558, -0.085401251912117, -0.08961904793977737, -0.002749822335317731, 0.036902058869600296, 0.014814299531280994, -0.06422515213489532, -0.09970377385616302, -0.08702028542757034, 0.16859057545661926, 0.008661788888275623, -0.029291586950421333, -0.11113771796226501, 0.08968967944383621, 0.07391908764839172, -0.08189074695110321, 0.03004745952785015, 0.015016907826066017, 0.06262937188148499, 0.042619843035936356, -0.08252958208322525, 0.12601236999034882, -0.055789221078157425, -0.16212224960327148, -0.047137465327978134, 0.10343831777572632, 0.015865987166762352, 0.06567084044218063, -0.014737349934875965, 0.018229873850941658, -0.04793921858072281, -0.08387219905853271, 0.004466813523322344, -0.020853951573371887, 0.0520627535879612, 0.03445954993367195, -0.05822880566120148, 0.02616911008954048, -0.0720769464969635, -0.06059069558978081, 0.1920941025018692, 0.2506609559059143, -0.07984137535095215, 0.022820597514510155, 0.027174606919288635, -0.07456081360578537, -0.169805109500885, 0.024851243942975998, 0.05294395610690117, -0.004006222356110811, 0.030455250293016434, -0.19257503747940063, 0.09791818261146545, 0.11347945034503937, -0.0035319020971655846, 0.08700445294380188, -0.3333369493484497, -0.1371101289987564, 0.10454053431749344, 0.12874437868595123, 0.12042975425720215, -0.15447483956813812, -0.013000136241316795, -0.04968446493148804, -0.10847809910774231, 0.11855854839086533, -0.11031758040189743, 0.12351983785629272, -0.016316665336489677, 0.11144959181547165, 0.0056557562202215195, -0.039678286761045456, 0.10922707617282867, -0.0003582491190172732, 0.09475340694189072, -0.07017534226179123, 0.026952296495437622, 0.03257057070732117, -0.042066965252161026, 0.02829578146338463, -0.10371090471744537, 0.02717273123562336, -0.08502595871686935, -0.025457771494984627, -0.07028556615114212, 0.03132704645395279, -0.026626475155353546, -0.06291869282722473, -0.030570048838853836, 0.0033121234737336636, 0.06812351197004318, -0.019739175215363503, 0.14484803378582, -0.007387214805930853, 0.1494879126548767, 0.10175591707229614, 0.08508440107107162, -0.08547800779342651, -0.022487105801701546, -0.006471242755651474, -0.02020864374935627, 0.048247162252664566, -0.14884695410728455, 0.039812542498111725, 0.14248399436473846, -0.0002172961103497073, 0.16065829992294312, 0.08324111253023148, -0.025560865178704262, 0.006990387104451656, 0.06442934274673462, -0.1567995548248291, -0.09197957068681717, -0.01502044778317213, -0.025732656940817833, -0.0992797240614891, 0.026436643674969673, 0.11995377391576767, -0.07515007257461548, -0.011546825990080833, -0.00461565563455224, 0.016134070232510567, -0.0694199874997139, 0.18679611384868622, 0.027219213545322418, 0.03902055695652962, -0.09997685998678207, 0.08475389331579208, 0.056674860417842865, -0.0903029665350914, 0.02636425755918026, 0.12753553688526154, -0.07270319759845734, -0.04325268790125847, 0.09367381036281586, 0.176483154296875, -0.08473599702119827, -0.053864575922489166, -0.13510315120220184, -0.13444659113883972, 0.09564516693353653, 0.16306965053081512, 0.08709321916103363, 0.017804548144340515, -0.045886896550655365, 0.012332076206803322, -0.11675797402858734, 0.07648083567619324, 0.049659281969070435, 0.058406684547662735, -0.12268296629190445, 0.17292055487632751, 0.007762629073113203, 0.038803063333034515, -0.026935700327157974, 0.016762549057602882, -0.09995181858539581, 0.01641787216067314, -0.16323216259479523, -0.027301769703626633, -0.024700423702597618, 0.00274817761965096, 0.007952578365802765, -0.047616757452487946, -0.06731909513473511, 0.012711008079349995, -0.11878839135169983, -0.037796761840581894, 0.01313041616231203, 0.05616256222128868, -0.11260421574115753, -0.040067292749881744, 0.02022096887230873, -0.07015588879585266, 0.07779095321893692, 0.05524018406867981, -0.003053822321817279, 0.06501228362321854, -0.15523438155651093, 0.007032023277133703, 0.06321180611848831, 0.013396380469202995, 0.053896911442279816, -0.09526247531175613, -0.010695323348045349, 0.011720930226147175, 0.06557620316743851, 0.018988484516739845, 0.06341581046581268, -0.12985050678253174, -0.012582434341311455, -0.025291478261351585, -0.09290169924497604, -0.06003294140100479, 0.030287371948361397, 0.059677526354789734, 0.017177101224660873, 0.19680114090442657, -0.09639565646648407, 0.039914291352033615, -0.21210183203220367, 0.009140840731561184, -0.01256196666508913, -0.10983067750930786, -0.11577973514795303, -0.07955653965473175, 0.06536205857992172, -0.055947691202163696, 0.13632994890213013, 0.021706854924559593, 0.06718123704195023, 0.043279945850372314, -0.034627657383680344, 0.002717170398682356, 0.021580228582024574, 0.22348028421401978, 0.04289596900343895, -0.04364163056015968, 0.048889387398958206, 0.04087766632437706, 0.11131294816732407, 0.12273767590522766, 0.2099093347787857, 0.15134139358997345, 0.008730966597795486, 0.09909744560718536, 0.028123825788497925, -0.06716646999120712, -0.1391948014497757, 0.03542869910597801, -0.022561945021152496, 0.12447503954172134, -0.03137802332639694, 0.22583816945552826, 0.08495474606752396, -0.15301117300987244, 0.04404289647936821, -0.06169544532895088, -0.07413496822118759, -0.12108229100704193, -0.03289666026830673, -0.09326398372650146, -0.17258958518505096, -0.01023862324655056, -0.11968373507261276, 0.05664888769388199, 0.08251343667507172, 0.020963357761502266, -0.020065058022737503, 0.1248769611120224, 0.022890424355864525, -0.006034815218299627, 0.06067219749093056, -0.01284711342304945, -0.012492039240896702, -0.0897069200873375, -0.0790538489818573, -0.00009713398321764544, -0.014583643525838852, 0.03661243990063667, -0.030950026586651802, -0.058957986533641815, 0.03641252592206001, -0.05249413475394249, -0.1015632301568985, 0.0217524915933609, 0.027162309736013412, 0.05906984210014343, 0.05446797236800194, 0.013804000802338123, -0.00715683214366436, -0.004300226457417011, 0.25745293498039246, -0.08973762392997742, -0.1055372878909111, -0.10295619815587997, 0.2941926121711731, 0.041091565042734146, -0.007642935961484909, 0.021264072507619858, -0.060319650918245316, -0.02029094472527504, 0.23461966216564178, 0.18530893325805664, -0.08566746860742569, -0.01736845076084137, -0.01372938510030508, -0.006931709125638008, -0.013823408633470535, 0.11631178110837936, 0.14340521395206451, 0.02921236865222454, -0.0851813554763794, -0.014331568032503128, -0.048601970076560974, -0.003996098879724741, -0.052631035447120667, 0.0706457570195198, 0.035036418586969376, -0.0012547766091302037, -0.021544288843870163, 0.06389443576335907, -0.06365759670734406, -0.06567247211933136, 0.0014446666464209557, -0.18704558908939362, -0.1528479903936386, -0.01080045010894537, 0.10013050585985184, 0.010386615991592407, 0.0632810890674591, -0.019292259588837624, -0.0014659636653959751, 0.07316933572292328, -0.020871441811323166, -0.08276502043008804, -0.08739548176527023, 0.10272302478551865, -0.13969586789608002, 0.1780620515346527, -0.035463761538267136, 0.04892247915267944, 0.12948289513587952, 0.06378190964460373, -0.079871267080307, 0.08786415308713913, 0.034477557986974716, -0.058778781443834305, 0.04424526169896126, 0.10206642001867294, -0.042296044528484344, 0.06117629632353783, 0.05078362673521042, -0.13665029406547546, 0.01265877578407526, -0.06495409458875656, -0.06154422089457512, -0.025035768747329712, -0.06340599805116653, -0.053981415927410126, 0.12442377209663391, 0.23017610609531403, -0.041916623711586, 0.02430240623652935, -0.08752517402172089, -0.0014834143221378326, 0.0488850474357605, 0.04056505113840103, -0.061483126133680344, -0.23478904366493225, -0.0009828858310356736, 0.0823039561510086, -0.013191811740398407, -0.2547994554042816, -0.08486846834421158, -0.004355501849204302, -0.0579303540289402, -0.11333691328763962, 0.10960718244314194, 0.0876099169254303, 0.045952778309583664, -0.05218477174639702, -0.0963837206363678, -0.06374070048332214, 0.17685511708259583, -0.1390802562236786, -0.08454018086194992 ]
null
null
transformers
news generator dummy
{}
text-generation
candra/gpt2-newgen-test
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
news generator dummy
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
small gpt2 headline
{}
text-generation
candra/headline-small-gpt2
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
small gpt2 headline
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
asteroid
## Asteroid model `cankeles/ConvTasNet_WHAMR_enhsingle_16k` Description: This model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify. The initial model was taken from here: https://huggingface.co/JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k This model was trained by M. Can Keles using the WHAM recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the WHAM dataset. Training config: ```yml data: mode: min nondefault_nsrc: null sample_rate: 16000 task: enh_single train_dir: wav16k/min/tr/ valid_dir: wav16k/min/cv/ filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/tmp help: null masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 2 early_stop: true epochs: 10 half_lr: true num_workers: 4 ``` Results: ``` 'sar': 13.612368475881558, 'sar_imp': 9.709316571584433, 'sdr': 13.612368475881558, 'sdr_imp': 9.709316571584433, 'si_sdr': 12.978640274976373, 'si_sdr_imp': 9.161273840297232, 'sir': inf, 'sir_imp': nan, 'stoi': 0.9214516928197306, 'stoi_imp': 0.11657488247668318 ```
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
audio-to-audio
cankeles/ConvTasNet_WHAMR_enhsingle_16k
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us
## Asteroid model 'cankeles/ConvTasNet_WHAMR_enhsingle_16k' Description: This model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify. The initial model was taken from here: URL This model was trained by M. Can Keles using the WHAM recipe in Asteroid. It was trained on the 'enh_single' task of the WHAM dataset. Training config: Results:
[ "## Asteroid model 'cankeles/ConvTasNet_WHAMR_enhsingle_16k'\n\nDescription:\n\nThis model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify.\n\nThe initial model was taken from here: URL\n\nThis model was trained by M. Can Keles using the WHAM recipe in Asteroid.\nIt was trained on the 'enh_single' task of the WHAM dataset.\n\nTraining config:\n\n\n \n\nResults:" ]
[ "TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n", "## Asteroid model 'cankeles/ConvTasNet_WHAMR_enhsingle_16k'\n\nDescription:\n\nThis model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify.\n\nThe initial model was taken from here: URL\n\nThis model was trained by M. Can Keles using the WHAM recipe in Asteroid.\nIt was trained on the 'enh_single' task of the WHAM dataset.\n\nTraining config:\n\n\n \n\nResults:" ]
[ 63, 124 ]
[ "passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'cankeles/ConvTasNet_WHAMR_enhsingle_16k'\n\nDescription:\n\nThis model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify.\n\nThe initial model was taken from here: URL\n\nThis model was trained by M. Can Keles using the WHAM recipe in Asteroid.\nIt was trained on the 'enh_single' task of the WHAM dataset.\n\nTraining config:\n\n\n \n\nResults:" ]
[ -0.03136710822582245, -0.01696581207215786, 0.0013399595627561212, 0.08792046457529068, 0.05082330480217934, -0.04781446233391762, 0.04396326094865799, 0.02207360789179802, -0.07274064421653748, -0.008586633950471878, 0.028772197663784027, 0.06624634563922882, -0.051181647926568985, 0.025926539674401283, 0.02511872723698616, -0.1828829050064087, 0.02608175203204155, -0.0605715811252594, -0.018833665177226067, 0.04840375855565071, 0.006926573347300291, -0.13020680844783783, 0.01703890599310398, -0.004148145206272602, -0.1844446063041687, 0.07898685336112976, -0.08919864892959595, -0.07312986999750137, 0.07408815622329712, -0.057670462876558304, 0.16408152878284454, 0.11763710528612137, 0.12187560647726059, -0.05164217948913574, 0.03682788088917732, -0.1204788014292717, 0.003411253448575735, 0.061843931674957275, 0.015565849840641022, -0.018858760595321655, 0.01791882887482643, 0.11748923361301422, -0.021908273920416832, 0.0039877803064882755, -0.0635356679558754, -0.03744621202349663, -0.09666197001934052, 0.06347722560167313, 0.02931683138012886, 0.08944061398506165, 0.0025395487900823355, 0.02269616723060608, -0.04764843359589577, 0.03193381056189537, 0.15418893098831177, -0.22339296340942383, 0.01268740464001894, 0.15937447547912598, 0.027659744024276733, 0.042685821652412415, -0.03174590691924095, 0.0020950871985405684, 0.09560799598693848, 0.04363512992858887, 0.08383789658546448, -0.0718432292342186, -0.2982167601585388, 0.010862519033253193, -0.08570391684770584, -0.05414772406220436, 0.3107195496559143, 0.01408111397176981, -0.038068678230047226, 0.07979954779148102, -0.010381952859461308, -0.08084265887737274, 0.062089480459690094, 0.011773531325161457, 0.0027425691951066256, -0.06592301279306412, -0.14477458596229553, -0.10861995071172714, -0.11714542657136917, -0.06806303560733795, -0.03982572257518768, 0.17616502940654755, -0.007637913804501295, 0.0047383056953549385, -0.04317610710859299, 0.15736329555511475, 0.07647670060396194, -0.10207854956388474, 0.04529953375458717, -0.06085731461644173, 0.09180732071399689, 0.019695065915584564, -0.05621509999036789, -0.06214418634772301, 0.07108025252819061, -0.10336919128894806, -0.028620265424251556, -0.006084413267672062, 0.05435701832175255, 0.12862256169319153, 0.11983267217874527, -0.044498272240161896, 0.03614142909646034, -0.08696175366640091, 0.03831275552511215, 0.07430807501077652, -0.0023447126150131226, 0.016557708382606506, -0.14196348190307617, -0.002934409072622657, -0.01801351085305214, -0.03177293390035629, 0.003349986393004656, -0.05587553232908249, 0.012400533072650433, -0.006264035124331713, 0.11571423709392548, -0.019197987392544746, -0.05367562174797058, -0.04349673539400101, -0.06892185658216476, -0.019354237243533134, 0.10623762756586075, 0.097990982234478, 0.07925520837306976, 0.004671862348914146, -0.048783525824546814, 0.060418687760829926, -0.03473104536533356, -0.04227357730269432, 0.048527736216783524, 0.029108302667737007, 0.057733286172151566, -0.16680510342121124, -0.07137352228164673, -0.09451073408126831, 0.028697704896330833, 0.028549030423164368, -0.11915156245231628, -0.07228151708841324, -0.0005850420566275716, 0.04192718118429184, -0.04462403804063797, -0.07366549968719482, -0.025560349225997925, 0.0454133003950119, -0.059614215046167374, 0.13522908091545105, -0.07866059243679047, 0.07911163568496704, -0.13373829424381256, 0.03949384763836861, -0.2763822376728058, 0.033797599375247955, -0.06542299687862396, 0.06350152939558029, -0.0470641553401947, -0.04047810286283493, -0.17304717004299164, 0.018661703914403915, 0.05715063586831093, 0.12114832550287247, -0.1341121643781662, -0.03882069140672684, -0.04301460459828377, -0.016078388318419456, -0.04258554428815842, -0.013013147749006748, -0.07866610586643219, 0.15569958090782166, -0.00030406529549509287, 0.2019253671169281, -0.03422488644719124, -0.03142458200454712, -0.10667547583580017, -0.07133518904447556, 0.02945052646100521, -0.054131608456373215, 0.053704969584941864, 0.005357883404940367, -0.13834787905216217, -0.06939015537500381, 0.06468063592910767, 0.03430894389748573, -0.008398357778787613, -0.06391096860170364, -0.02646823041141033, -0.12417811900377274, 0.03425774723291397, -0.029521387070417404, 0.09294474124908447, 0.0007916092872619629, -0.00870966725051403, 0.12588541209697723, 0.13921518623828888, -0.06653575599193573, 0.019569823518395424, 0.022724777460098267, 0.13798560202121735, -0.22584283351898193, -0.0913044661283493, -0.16363470256328583, 0.0636330172419548, -0.019358020275831223, -0.05531108379364014, 0.20202405750751495, 0.09240756928920746, -0.016903752461075783, 0.06208448112010956, 0.010262588039040565, -0.07562114298343658, -0.07489150017499924, 0.07221288979053497, 0.02355840615928173, -0.14721815288066864, -0.06605521589517593, -0.07766356319189072, 0.07195094972848892, -0.1495358943939209, -0.07244737446308136, -0.02685920149087906, -0.05255867913365364, 0.0050856792367994785, 0.045872289687395096, 0.10396607965230942, 0.06517187505960464, -0.05292326211929321, 0.03926427289843559, -0.019422991201281548, 0.051106248050928116, 0.014745418913662434, -0.012616224586963654, -0.02464943751692772, -0.09969708323478699, 0.12697747349739075, -0.16759313642978668, -0.07522416859865189, 0.042712632566690445, -0.010858715511858463, -0.07794615626335144, -0.07646223902702332, 0.04612313583493233, 0.21927320957183838, -0.07602067291736603, 0.11985314637422562, -0.04386933147907257, 0.03474482148885727, 0.015880849212408066, -0.09292112290859222, -0.033985745161771774, 0.049595993012189865, 0.041673000901937485, -0.0550314225256443, 0.01774788834154606, 0.09499168395996094, -0.1440369039773941, 0.22395965456962585, 0.03678970783948898, -0.03620348498225212, -0.04078162461519241, -0.10751983523368835, -0.08190209418535233, 0.11003569513559341, 0.003009622683748603, -0.04107005521655083, 0.015057451091706753, -0.047016214579343796, 0.08933566510677338, -0.13980939984321594, -0.0410875640809536, 0.059963710606098175, 0.059253521263599396, -0.16894693672657013, -0.0010230544721707702, -0.09671732783317566, 0.00860949233174324, -0.06911128759384155, -0.15263350307941437, -0.0037228581495583057, 0.018947845324873924, -0.031319018453359604, 0.017187362536787987, -0.035620346665382385, -0.0737309381365776, -0.16522015631198883, -0.07176048308610916, 0.03243197873234749, 0.0227095615118742, 0.09383183717727661, -0.034589748829603195, 0.05097101256251335, -0.01362310629338026, 0.06377281248569489, -0.04755614697933197, -0.09602118283510208, 0.0645156279206276, 0.00943929236382246, -0.004358856473118067, -0.07051420956850052, 0.007829650305211544, 0.009165209718048573, 0.013809232972562313, 0.05083282291889191, -0.007898985408246517, 0.15117408335208893, 0.220620796084404, 0.013395934365689754, -0.040083371102809906, 0.026107165962457657, 0.13664257526397705, -0.059856075793504715, 0.04682992771267891, 0.0937681570649147, -0.0220545195043087, -0.014782113023102283, 0.10615278780460358, 0.1089276596903801, 0.016151990741491318, 0.0245402529835701, -0.10180802643299103, -0.13225850462913513, -0.20389819145202637, -0.09572489559650421, 0.021680599078536034, -0.11740375310182571, -0.04825960472226143, 0.017852481454610825, 0.20841816067695618, 0.14717936515808105, 0.07709430903196335, 0.060181643813848495, -0.09531457722187042, 0.015712421387434006, 0.0305014755576849, 0.03981035202741623, 0.05549320951104164, -0.06284362077713013, -0.03818846121430397, 0.009402540512382984, 0.07623708248138428, 0.15173368155956268, 0.0676717460155487, -0.1090204045176506, 0.09040453284978867, 0.019490251317620277, 0.07802275568246841, 0.058679141104221344, 0.025262324139475822, 0.015315044671297073, 0.009704331867396832, -0.0954890102148056, 0.03289341181516647, 0.11434884369373322, 0.06253746896982193, 0.014562290161848068, -0.04358787462115288, 0.04349914938211441, -0.056510187685489655, 0.05682042986154556, 0.08386820554733276, -0.20396988093852997, -0.06229371577501297, 0.049257587641477585, -0.010928637348115444, -0.01900453306734562, 0.08653204143047333, 0.11875515431165695, -0.02852567471563816, -0.04985138773918152, 0.054657697677612305, 0.016879968345165253, -0.13794997334480286, 0.0041341292671859264, -0.014719472266733646, -0.0010533767053857446, -0.019016550853848457, -0.00864351075142622, -0.039115484803915024, 0.1517140120267868, 0.007356040179729462, -0.011251041665673256, 0.046066563576459885, -0.003820986021310091, 0.04520672559738159, 0.02145407721400261, 0.12247957289218903, -0.00620539765805006, -0.03216114267706871, -0.07273901998996735, -0.12910856306552887, -0.00210004230029881, -0.025729745626449585, -0.03729477897286415, 0.09965526312589645, 0.10180336236953735, -0.045804113149642944, -0.01996290311217308, 0.04798591136932373, -0.19051343202590942, 0.02519300952553749, -0.043547287583351135, 0.10148265957832336, 0.10913188755512238, -0.017031138762831688, -0.11147677898406982, -0.16744136810302734, -0.07646721601486206, 0.035599734634160995, -0.010845043696463108, -0.010623465292155743, -0.09581351280212402, 0.09787634760141373, 0.007282707840204239, 0.14226412773132324, 0.1076054722070694, -0.099233478307724, 0.010766633786261082, -0.07986699789762497, 0.06963799893856049, -0.10490255802869797, -0.04372062161564827, -0.033512942492961884, 0.034568820148706436, 0.13063742220401764, 0.1515357494354248, -0.0023970170877873898, 0.06479651480913162, -0.050345711410045624, -0.0358784943819046, 0.01685008406639099, -0.017348023131489754, 0.08051051199436188, 0.036376576870679855, -0.001518075354397297, -0.09602588415145874, -0.04790124669671059, -0.041048865765333176, 0.17280682921409607, 0.07452919334173203, -0.08591673523187637, 0.05391532927751541, 0.16926826536655426, -0.04521863907575607, -0.1846616268157959, -0.0066084363497793674, 0.029448818415403366, 0.061667073518037796, -0.006265328731387854, -0.30592620372772217, 0.15013328194618225, 0.014181353151798248, -0.06528651714324951, -0.017452435567975044, -0.2988283932209015, -0.06437085568904877, 0.1439795345067978, -0.027755942195653915, 0.18354223668575287, -0.026275159791111946, -0.02808341383934021, -0.0641842782497406, -0.17532429099082947, 0.02932821214199066, -0.09373960644006729, 0.1360384225845337, 0.022065112367272377, 0.18585379421710968, 0.028434142470359802, -0.01941847614943981, 0.08227907866239548, 0.0986192598938942, 0.04327753931283951, -0.033389586955308914, -0.13738539814949036, 0.04871044307947159, -0.027155859395861626, 0.09164930880069733, 0.1110670194029808, 0.027221664786338806, -0.12969109416007996, -0.02037145383656025, -0.06694820523262024, 0.025688113644719124, 0.040156278759241104, -0.09042702615261078, -0.01703190989792347, 0.023816723376512527, 0.0133235864341259, 0.0583963580429554, 0.17643430829048157, -0.022753721103072166, -0.043752335011959076, 0.15199190378189087, 0.12820908427238464, 0.15176236629486084, -0.05720538645982742, 0.019982440397143364, -0.10683901607990265, 0.057655833661556244, -0.22360213100910187, -0.031733449548482895, 0.09653317928314209, 0.08208364993333817, -0.015303552150726318, 0.06689073890447617, -0.07867772877216339, 0.1214483305811882, 0.10134638100862503, -0.17393773794174194, 0.023162681609392166, -0.0517219640314579, 0.10237578302621841, 0.12978394329547882, 0.043783001601696014, 0.13360562920570374, -0.14695286750793457, -0.045605968683958054, -0.013996684923768044, -0.06969951093196869, -0.08188746869564056, 0.12278859317302704, 0.19809076189994812, -0.00592527911067009, -0.08153089880943298, 0.15571992099285126, 0.11120788007974625, 0.06438729166984558, 0.0064684138633310795, -0.05169471353292465, 0.013736750930547714, -0.07698094844818115, -0.0958947092294693, -0.010991309769451618, -0.12512509524822235, -0.12414562702178955, -0.0007515675970353186, -0.036230746656656265, 0.005472561344504356, 0.13064925372600555, 0.04121449217200279, -0.018755316734313965, -0.10735773295164108, 0.01611567847430706, -0.06632213294506073, 0.04697500169277191, -0.002307720249518752, 0.12666960060596466, -0.20342138409614563, 0.009094285778701305, -0.06670873612165451, 0.09209189563989639, -0.0767587274312973, -0.06080557405948639, 0.017039142549037933, 0.024615077301859856, -0.1615166962146759, 0.00020232796669006348, -0.04181176424026489, -0.04361183941364288, -0.02227463386952877, 0.02137460745871067, -0.04073607176542282, 0.09444034099578857, -0.10440847277641296, 0.046680998057127, -0.006967463530600071, 0.056978460401296616, -0.018891945481300354, 0.02012147381901741, 0.013602767139673233, -0.057027608156204224, 0.031366247683763504, 0.11351744830608368, 0.007188472896814346, 0.007362873759120703, -0.08390461653470993, -0.011117718182504177, 0.0918106883764267, 0.02523190900683403, 0.053069960325956345, -0.07910469174385071, -0.05666682496666908, -0.07806466519832611, 0.01638885773718357, -0.07406341284513474, 0.12976199388504028, 0.0019491929560899734, -0.09712608903646469, 0.014956147409975529, 0.011304041370749474, -0.03642122074961662, 0.019741831347346306, 0.1631111204624176, 0.038288187235593796, 0.139836385846138, 0.011542060412466526, -0.0026805519592016935, -0.07856495678424835, -0.01150163821876049, -0.022905495017766953, -0.12566600739955902, -0.0735662505030632, -0.037500545382499695, 0.020513108000159264, -0.036034371703863144, 0.06531001627445221, -0.0012264982797205448, -0.04179638624191284, -0.09785182029008865, 0.12179787456989288, 0.029494261369109154, -0.004022028762847185, 0.13790732622146606, 0.028309525921940804, -0.029799791052937508, -0.06829223781824112, 0.07238912582397461, 0.12750492990016937, 0.16882815957069397, 0.06943308562040329, 0.031307488679885864, 0.06721141934394836, 0.027427993714809418, 0.17052587866783142, -0.01958557218313217, -0.02003472112119198, 0.020163973793387413, -0.01409655250608921, 0.06446367502212524, -0.06166199967265129, 0.060236986726522446, 0.03855755925178528, 0.004159754607826471, 0.041646361351013184, -0.03186214342713356, -0.00230128294788301, -0.05986425280570984, -0.06037674471735954, -0.03410489112138748, -0.1297663301229477, 0.025071848183870316, -0.07639662176370621, -0.006768210791051388, 0.11909235268831253, -0.051832165569067, 0.014527221210300922, 0.21742507815361023, -0.015821143984794617, -0.026236705482006073, 0.08238982409238815, -0.02618521824479103, -0.08570069074630737, -0.09040835499763489, -0.0018864935263991356, 0.07210968434810638, -0.021260974928736687, -0.020357688888907433, -0.00346244964748621, -0.02339017018675804, 0.01946862041950226, 0.03889160975813866, -0.0728648379445076, -0.0803382396697998, 0.0018651651917025447, 0.02383001148700714, 0.013276135548949242, 0.09394674748182297, -0.0025095322635024786, 0.025817211717367172, 0.20443838834762573, -0.059349458664655685, -0.019219648092985153, -0.017439670860767365, -0.07061643153429031, -0.019024884328246117, 0.07360722869634628, 0.00227547949180007, -0.11964093893766403, -0.005259618628770113, 0.03391901031136513, 0.25305986404418945, -0.026379885151982307, 0.04796209931373596, 0.030007487162947655, 0.0033943478483706713, -0.12562595307826996, 0.01136254146695137, 0.05908005312085152, 0.08150990307331085, -0.06502503901720047, -0.08576137572526932, -0.15697017312049866, -0.000955116527620703, 0.04687059298157692, -0.009411323815584183, -0.014629177749156952, -0.15589813888072968, -0.0069412044249475, 0.0680302157998085, -0.22109322249889374, -0.011921287514269352, -0.09191424399614334, -0.07430505752563477, -0.071094810962677, -0.0063738697208464146, 0.08292990177869797, 0.11998234689235687, 0.010707307606935501, -0.10848686099052429, -0.03173098713159561, 0.0785188302397728, 0.030609246343374252, -0.08550337702035904, 0.052903201431035995, 0.06333896517753601, -0.14225132763385773, 0.1218746230006218, -0.02874279022216797, 0.15718317031860352, -0.013541646301746368, 0.0721605122089386, -0.033276237547397614, 0.15662065148353577, 0.032182224094867706, -0.06921485811471939, -0.019939087331295013, 0.17548330128192902, 0.03262587636709213, 0.17720958590507507, 0.015769539400935173, 0.02448640763759613, 0.06622426956892014, 0.1111907884478569, 0.04633093625307083, -0.02915079891681671, -0.05666182190179825, -0.04694993048906326, 0.11776786297559738, 0.00808826182037592, -0.0865299180150032, -0.010152764618396759, 0.03905784711241722, 0.03598301112651825, 0.09535595029592514, 0.05023801699280739, -0.02321954257786274, -0.10642088949680328, 0.026457706466317177, -0.249637171626091, 0.014785759150981903, -0.17256781458854675, -0.07926412671804428, -0.08235876262187958, -0.058391645550727844, -0.005890957545489073, -0.010408837348222733, 0.1648399382829666, 0.002470199251547456, -0.017105842009186745, 0.2953048646450043, -0.046256959438323975, 0.10347805917263031, -0.18664434552192688, -0.12077079713344574 ]
null
null
asteroid
## Asteroid model `cankeles/DPTNet_WHAMR_enhsignle_16k` Description: This model was trained by M. Can Keleş using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: mode: min nondefault_nsrc: null sample_rate: 16000 segment: 2.0 task: enh_single train_dir: wav16k/min/tr/ valid_dir: wav16k/min/cv/ filterbank: kernel_size: 16 n_filters: 64 stride: 8 main_args: exp_dir: exp/tmp help: null masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 positional arguments: {} scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 60 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On custom min test set : ```yml 'sar': 12.853384266251018, 'sar_imp': 8.950332361953906, 'sdr': 12.853384266251018, 'sdr_imp': 8.950332361953906, 'si_sdr': 12.247012621312548, 'si_sdr_imp': 8.429646186633407, 'sir': inf, 'sir_imp': nan, 'stoi': 0.9022338865380519, 'stoi_imp': 0.09735707619500522 ```
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPTNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
audio-to-audio
cankeles/DPTNet_WHAMR_enhsingle_16k
[ "asteroid", "pytorch", "audio", "DPTNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us
## Asteroid model 'cankeles/DPTNet_WHAMR_enhsignle_16k' Description: This model was trained by M. Can Keleş using the librimix recipe in Asteroid. It was trained on the 'enh_single' task of the Libri1Mix dataset. Training config: Results: On custom min test set :
[ "## Asteroid model 'cankeles/DPTNet_WHAMR_enhsignle_16k'\n\nDescription:\n\nThis model was trained by M. Can Keleş using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn custom min test set :" ]
[ "TAGS\n#asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us \n", "## Asteroid model 'cankeles/DPTNet_WHAMR_enhsignle_16k'\n\nDescription:\n\nThis model was trained by M. Can Keleş using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn custom min test set :" ]
[ 57, 82 ]
[ "passage: TAGS\n#asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'cankeles/DPTNet_WHAMR_enhsignle_16k'\n\nDescription:\n\nThis model was trained by M. Can Keleş using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn custom min test set :" ]
[ -0.02021075412631035, -0.032924387603998184, -0.00048421864630654454, 0.13192830979824066, 0.05728849023580551, -0.013835953548550606, 0.08580617606639862, 0.04286611080169678, -0.0014308994868770242, -0.002655029995366931, 0.08733757585287094, 0.10038229078054428, -0.08785909414291382, 0.06798684597015381, -0.007201036438345909, -0.13871918618679047, -0.005964153446257114, -0.04383755847811699, -0.01194517221301794, 0.01930638588964939, 0.007369382306933403, -0.12626056373119354, 0.018739236518740654, -0.05255516245961189, -0.10749592632055283, 0.10338571667671204, -0.08179255574941635, -0.04333391785621643, 0.08917365968227386, -0.09669703245162964, 0.1500263512134552, 0.08362778276205063, 0.08015011250972748, -0.09527833014726639, 0.01719643734395504, -0.16217230260372162, -0.005415948107838631, 0.04045257344841957, -0.0028815390542149544, -0.025629201903939247, 0.06096656993031502, 0.04590050131082535, 0.01792892813682556, -0.06247328221797943, -0.04285836219787598, -0.045710355043411255, -0.1266414076089859, 0.03132222965359688, -0.004461260046809912, 0.08290917426347733, 0.01742243394255638, 0.04499872401356697, -0.11214172095060349, 0.01502867043018341, 0.1622140109539032, -0.1925189048051834, 0.02613469399511814, 0.10331375151872635, 0.025000348687171936, 0.06422276049852371, 0.00301893032155931, -0.0164318960160017, 0.13319605588912964, 0.05635815113782883, 0.07633288204669952, -0.08694685250520706, -0.3181307315826416, 0.06290081143379211, -0.04396773874759674, -0.05165354534983635, 0.367130845785141, -0.011339409276843071, -0.028342394158244133, 0.07202986627817154, 0.028970938175916672, -0.08963587880134583, 0.07708439230918884, -0.0028265200089663267, 0.03484679386019707, -0.11530192196369171, -0.1282353550195694, -0.07521934062242508, -0.11047548055648804, -0.07538487017154694, -0.019011061638593674, 0.16539183259010315, 0.011471054516732693, -0.016441797837615013, -0.0390365906059742, 0.12665322422981262, 0.10826889425516129, -0.07908149063587189, 0.027605166658759117, -0.032433927059173584, 0.11803961545228958, -0.0005365437245927751, -0.05958719179034233, -0.04075279459357262, 0.12843547761440277, 0.0024343226104974747, -0.08197852224111557, 0.013076136820018291, 0.046324897557497025, 0.11771903932094574, 0.08003752678632736, -0.08736372739076614, 0.11989670991897583, -0.05546313896775246, 0.02940148301422596, 0.05944638326764107, 0.05285647138953209, 0.050088733434677124, -0.1369083970785141, 0.001973093720152974, 0.047117773443460464, 0.0275785643607378, 0.010363700799643993, -0.13687856495380402, -0.022339729592204094, 0.04191451519727707, 0.08953806757926941, -0.034213364124298096, -0.056415658444166183, -0.0762692466378212, -0.10874812304973602, -0.1804058700799942, 0.029613524675369263, 0.02645319141447544, 0.11368915438652039, 0.0670187771320343, -0.05766604468226433, 0.1080489456653595, -0.04217524826526642, -0.02307894639670849, 0.05505681037902832, 0.0603305920958519, 0.08129231631755829, -0.16409243643283844, -0.10324122756719589, -0.054519835859537125, 0.04476345703005791, -0.020716052502393723, -0.0906798243522644, -0.058782998472452164, 0.011264762841165066, 0.04264633357524872, -0.06113722547888756, -0.0748046264052391, -0.04332925006747246, 0.0596359483897686, 0.06947343051433563, 0.10980477929115295, -0.032750796526670456, 0.0500403493642807, -0.15512534976005554, 0.041642624884843826, -0.2435116469860077, -0.004939141683280468, -0.06017307564616203, 0.03419750556349754, 0.0010064882226288319, -0.05918615683913231, -0.11631975322961807, 0.004057718440890312, 0.08412144333124161, 0.1304057240486145, -0.10473740845918655, -0.0453471876680851, -0.08630908280611038, -0.01245175115764141, -0.06647239625453949, -0.049000173807144165, -0.07577607035636902, 0.03381442278623581, -0.02112685702741146, 0.1933743953704834, -0.10027831792831421, 0.011155442334711552, -0.1579456925392151, -0.054383959621191025, 0.02291938289999962, -0.10832490026950836, 0.11683134734630585, 0.0624370239675045, -0.1335499882698059, -0.05585318058729172, 0.008867137134075165, 0.051570549607276917, -0.017449568957090378, -0.07573524862527847, -0.04960579052567482, -0.09280861914157867, 0.0755564346909523, -0.021433254703879356, 0.08981326222419739, -0.0839696079492569, 0.026778655126690865, 0.16880859434604645, 0.1417497843503952, -0.052614547312259674, 0.014802954159677029, 0.047948695719242096, 0.1635109931230545, -0.2384869009256363, -0.11779806762933731, -0.18053506314754486, -0.002827154705300927, 0.004839026834815741, -0.04029131308197975, 0.20568645000457764, 0.060514096170663834, -0.03742426633834839, 0.06953425705432892, -0.03961384296417236, -0.09553646296262741, -0.10122736543416977, 0.03664065897464752, 0.05217062681913376, -0.15129096806049347, -0.06562760472297668, -0.08821228891611099, 0.036992158740758896, -0.17803604900836945, -0.06676112115383148, -0.062278054654598236, -0.10112562775611877, 0.008982320316135883, 0.06353529542684555, 0.050967004150152206, 0.08929885178804398, -0.10192123800516129, 0.03938565030694008, 0.007165377959609032, 0.026368994265794754, 0.0112910820171237, -0.085336834192276, 0.04473372548818588, -0.09544999152421951, 0.1086205467581749, -0.14970724284648895, -0.12767022848129272, -0.009383526630699635, -0.01542558241635561, -0.06583185493946075, -0.1049066111445427, 0.07181895524263382, 0.18124224245548248, -0.08133883029222488, 0.1310722827911377, -0.061516761779785156, -0.016535447910428047, -0.02957898937165737, -0.11206935346126556, -0.09229084104299545, 0.10387913137674332, 0.08808053284883499, 0.024032996967434883, 0.06492481380701065, 0.06340499222278595, -0.19262921810150146, 0.2038360834121704, 0.06645112484693527, -0.07491827011108398, -0.052948109805583954, -0.028074631467461586, -0.03751654550433159, 0.1333579570055008, 0.012608894146978855, -0.05998748913407326, 0.010649502277374268, -0.06605056673288345, 0.10827184468507767, -0.13644033670425415, -0.11144432425498962, 0.037942372262477875, 0.056018367409706116, -0.12982147932052612, -0.016218218952417374, -0.07102074474096298, 0.030246440321207047, -0.08162432163953781, -0.16376438736915588, 0.025014232844114304, 0.04740666598081589, -0.011359489522874355, 0.06465725600719452, -0.0476832315325737, -0.1091248169541359, -0.13308995962142944, -0.06927655637264252, -0.01904044859111309, 0.00980067253112793, 0.1119905337691307, -0.1001376062631607, 0.0945630744099617, -0.014177870936691761, 0.019737521186470985, -0.09957654774188995, -0.0982927605509758, 0.011500915512442589, 0.06416279822587967, -0.007227013818919659, -0.05542205646634102, -0.044206444174051285, -0.007738401647657156, 0.06733644008636475, 0.12309078127145767, 0.03567301854491234, 0.1219257116317749, 0.12253732234239578, 0.004339474719017744, -0.026915837079286575, 0.03308909758925438, 0.09879414737224579, -0.029365353286266327, -0.04430606961250305, 0.15424831211566925, 0.0636269673705101, -0.028401894494891167, 0.10700833797454834, 0.13561102747917175, -0.009740286506712437, 0.051017727702856064, -0.10782226175069809, -0.10444054007530212, -0.22638480365276337, -0.10838624835014343, -0.026577915996313095, -0.10794529318809509, -0.088690847158432, 0.047445472329854965, 0.16054056584835052, 0.12328210473060608, 0.09582532942295074, 0.05446291342377663, -0.13013893365859985, 0.06199062988162041, 0.11683421581983566, 0.028722289949655533, 0.04798425734043121, -0.029980063438415527, -0.07956311106681824, 0.006725964602082968, 0.08508875221014023, 0.20606625080108643, 0.06258869916200638, -0.13723057508468628, 0.07058283686637878, 0.010035968385636806, 0.011693553067743778, 0.029339971020817757, 0.052830424159765244, 0.002035789657384157, 0.01602873206138611, -0.10201910883188248, 0.027879580855369568, 0.08773474395275116, 0.025699453428387642, 0.05167115479707718, -0.03937221318483353, 0.03267492353916168, -0.04793630167841911, -0.03263550624251366, 0.12493199110031128, -0.2516323924064636, -0.00842551700770855, 0.0510069876909256, 0.006466052960604429, 0.027557309716939926, 0.045264340937137604, 0.12247692793607712, -0.018313731998205185, -0.04234366863965988, 0.04169555380940437, -0.038122206926345825, -0.11861387640237808, -0.021877137944102287, -0.026803717017173767, 0.0039186845533549786, -0.0005375510663725436, 0.03288992866873741, -0.1253964751958847, 0.1531348079442978, -0.014161987230181694, -0.020813241600990295, 0.06779713928699493, 0.03606756031513214, 0.042342495173215866, 0.014823385514318943, 0.12583041191101074, -0.024658242240548134, 0.03731784224510193, -0.15100879967212677, -0.10407208651304245, -0.0012797642266377807, -0.018615053966641426, -0.03495167940855026, 0.09526783227920532, 0.09670019149780273, -0.028334680944681168, -0.03422513231635094, 0.01640300266444683, -0.20888476073741913, 0.008832577615976334, -0.055026162415742874, 0.04134281724691391, 0.05141505226492882, -0.03278912603855133, -0.11156865209341049, -0.03533681109547615, -0.010394669137895107, 0.05514230579137802, -0.045230865478515625, 0.007918625138700008, -0.04846743121743202, 0.11219532787799835, -0.006638496648520231, 0.07771936804056168, 0.11373307555913925, -0.1031045988202095, -0.007386954501271248, -0.05340221896767616, 0.0012147282250225544, -0.11853393167257309, -0.021269001066684723, -0.09250418841838837, 0.022265616804361343, 0.0825517326593399, 0.15795306861400604, -0.010482998564839363, 0.07361812144517899, -0.048360712826251984, -0.02394264191389084, -0.004728867206722498, -0.11652080714702606, 0.2085171937942505, 0.056538816541433334, -0.04394064471125603, 0.005669961217790842, -0.020846989005804062, -0.07405903190374374, 0.19945405423641205, 0.14653144776821136, -0.03963012620806694, 0.015729043632745743, 0.16347244381904602, -0.04104636609554291, -0.10484723746776581, -0.012066527269780636, 0.023309238255023956, 0.029424704611301422, 0.007190923672169447, -0.34742528200149536, 0.17918099462985992, 0.08602076768875122, -0.037852492183446884, 0.050528522580862045, -0.29152336716651917, -0.025635529309511185, 0.09562496095895767, 0.015990732237696648, 0.14152105152606964, -0.016722623258829117, -0.032376401126384735, -0.10423510521650314, -0.10086044669151306, 0.017342127859592438, 0.06698226928710938, 0.14945366978645325, -0.06435508280992508, 0.11813078075647354, 0.03334474936127663, -0.016669364646077156, 0.11859709769487381, 0.0444289930164814, 0.07385425269603729, -0.0321781300008297, -0.18362624943256378, 0.019024409353733063, -0.05674884468317032, 0.12815815210342407, -0.00468860287219286, 0.014616033993661404, -0.15586541593074799, -0.04055434837937355, -0.01572122424840927, 0.058528900146484375, 0.054395757615566254, -0.08231466263532639, -0.048396095633506775, 0.05072827637195587, -0.06239239498972893, 0.04808426275849342, 0.19441966712474823, 0.02549648843705654, -0.09160532802343369, 0.0021711643785238266, 0.10420448333024979, 0.09683109074831009, -0.06505770981311798, 0.02014113776385784, -0.07070793211460114, 0.008502851240336895, -0.17335423827171326, -0.06326715648174286, 0.10532212257385254, 0.0818662941455841, 0.031323689967393875, 0.0852774977684021, -0.020894188433885574, 0.1428222507238388, 0.11265471577644348, -0.13749279081821442, 0.07011321187019348, -0.0527055487036705, 0.024363212287425995, 0.11528744548559189, 0.02503941021859646, 0.09514638781547546, -0.14302988350391388, -0.05699571967124939, -0.033304087817668915, -0.07263810932636261, -0.07734090089797974, 0.13126325607299805, 0.18782353401184082, -0.021099448204040527, -0.06801851838827133, 0.13202433288097382, 0.12329898029565811, 0.10206382721662521, -0.004909271374344826, -0.025380456820130348, 0.0734032616019249, -0.06825444102287292, -0.07318118959665298, 0.07974093407392502, -0.07426179200410843, -0.11837292462587357, -0.09046998620033264, -0.023282550275325775, 0.02281157486140728, 0.05195729807019234, 0.0667107105255127, -0.05531331151723862, -0.11271701008081436, 0.018609801307320595, -0.06093089282512665, 0.0785365179181099, -0.024652794003486633, 0.15413716435432434, -0.17335762083530426, 0.006457608193159103, -0.06735105812549591, 0.08763425052165985, -0.04876287654042244, -0.054768841713666916, -0.017904536798596382, 0.04153162240982056, -0.14173045754432678, 0.012941977009177208, -0.043413061648607254, -0.04795833304524422, -0.02476910501718521, 0.06518455594778061, -0.05400937795639038, 0.09718941897153854, -0.11546376347541809, 0.04334494471549988, 0.014324549585580826, 0.1265638768672943, -0.06323608011007309, -0.0009011644870042801, 0.005930045153945684, -0.06759671866893768, 0.025040708482265472, 0.08277852088212967, 0.06044991314411163, -0.0012587669771164656, -0.06559951603412628, -0.006910151336342096, 0.0881538912653923, 0.043348297476768494, 0.05545534938573837, -0.14395080506801605, -0.01149208564311266, -0.04160233587026596, 0.009613114409148693, -0.026847967877984047, 0.109654501080513, -0.03425110876560211, -0.13790301978588104, -0.04101003706455231, -0.12229350209236145, -0.029828855767846107, 0.03250696510076523, 0.19263559579849243, 0.03018968179821968, 0.1628003716468811, 0.020069971680641174, -0.04613100364804268, -0.10390844941139221, -0.026974773034453392, -0.010303855873644352, -0.10309907793998718, -0.13823412358760834, 0.006946862209588289, 0.04798804968595505, -0.00824683252722025, 0.06380992382764816, 0.03333671763539314, -0.06581317633390427, -0.11193367838859558, 0.1454334259033203, 0.0626969262957573, -0.004264026880264282, 0.12878118455410004, 0.02598312310874462, -0.03165401890873909, -0.08493742346763611, 0.09402424842119217, 0.16717968881130219, 0.16713151335716248, 0.12864702939987183, 0.11610964685678482, 0.035513777285814285, -0.004635656718164682, 0.10080976784229279, -0.035778265446424484, -0.018305469304323196, -0.0474529042840004, 0.006944927386939526, 0.027845075353980064, 0.01123310811817646, 0.2522619068622589, 0.0001645175798330456, -0.026172691956162453, 0.0749659538269043, -0.028245436027646065, -0.021373601630330086, -0.027895210310816765, -0.03182131052017212, -0.029217205941677094, -0.11825697869062424, 0.06555876135826111, -0.11795651912689209, -0.014096688479185104, 0.18945008516311646, -0.06656642258167267, -0.021731382235884666, 0.1283457726240158, 0.0076418789103627205, 0.015845676884055138, 0.023146716877818108, -0.007620236370712519, -0.05783557891845703, -0.0549456886947155, -0.04332500323653221, 0.031938422471284866, -0.10016684979200363, -0.029819468036293983, -0.0056772297248244286, -0.016110120341181755, -0.023779287934303284, 0.04008708521723747, -0.04621722549200058, -0.051935963332653046, -0.023618053644895554, 0.05434340983629227, 0.07680767774581909, 0.05544138327240944, 0.024611543864011765, 0.0383322536945343, 0.2177295982837677, -0.04483643174171448, 0.009567709639668465, 0.027397170662879944, -0.014959772117435932, 0.015285268425941467, 0.09137080609798431, 0.028369029983878136, -0.12411665916442871, -0.04627365991473198, -0.05240839347243309, 0.2057347297668457, 0.027732262387871742, 0.023652223870158195, 0.03402912989258766, -0.013715348206460476, -0.12017157673835754, 0.015007886104285717, 0.07396761327981949, 0.09137651324272156, -0.05910901352763176, -0.07118251919746399, -0.19110092520713806, 0.0576750673353672, 0.01940242014825344, -0.013033655472099781, 0.02149989828467369, -0.16845181584358215, -0.03635580837726593, 0.040719594806432724, -0.10720250010490417, 0.07357043027877808, 0.044092901051044464, -0.10876713693141937, -0.11639608442783356, 0.01013038121163845, 0.08203521370887756, 0.010938014835119247, -0.004346267320215702, -0.09917479008436203, -0.034481968730688095, -0.008708417415618896, 0.010282693430781364, -0.15277746319770813, -0.018728943541646004, 0.09571237117052078, -0.04891439899802208, 0.18203189969062805, -0.03493784740567207, 0.25780659914016724, 0.008102805353701115, 0.06657801568508148, 0.0035539898090064526, 0.19920024275779724, 0.06656549125909805, -0.03560763970017433, 0.0707908645272255, 0.11158880591392517, 0.044452302157878876, 0.14605176448822021, 0.05895256996154785, 0.10855599492788315, 0.04339555650949478, 0.17077438533306122, 0.055571358650922775, -0.06945937126874924, 0.009368994273245335, -0.08182503283023834, 0.0890946015715599, 0.05308537930250168, -0.0633431226015091, -0.015858933329582214, -0.008896254003047943, 0.03332168608903885, 0.13215813040733337, 0.08293521404266357, -0.015392073430120945, -0.08024690300226212, 0.03308844566345215, -0.13948406279087067, 0.008727769367396832, -0.21524584293365479, -0.12720030546188354, -0.10476598888635635, -0.056729841977357864, 0.010153278708457947, -0.04585061967372894, 0.13071805238723755, 0.008265993557870388, -0.03136264160275459, 0.2626779079437256, -0.046897999942302704, 0.08666536211967468, -0.17107702791690826, -0.09024148434400558 ]
null
null
transformers
# BERT-of-Theseus See our paper ["BERT-of-Theseus: Compressing BERT by Progressive Module Replacing"](http://arxiv.org/abs/2002.02925). BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT. ![BERT of Theseus](https://github.com/JetRunner/BERT-of-Theseus/blob/master/bert-of-theseus.png?raw=true) ## Load Pretrained Model on MNLI We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set). | Method | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | |-----------------|------|------|------|------|------|-------|-------| | BERT-base | 83.5 | 89.5 | 91.2 | 89.8 | 71.1 | 91.5 | 88.9 | | DistillBERT | 79.0 | 87.5 | 85.3 | 84.9 | 59.9 | 90.7 | 81.2 | | BERT-of-Theseus | 82.1 | 87.5 | 88.8 | 88.8 | 70.1 | 91.8 | 87.8 | Please Note: this checkpoint is for [Intermediate-Task Transfer Learning](https://arxiv.org/abs/2005.00628) so it does not include the classification head for MNLI! Please fine-tune it before use (like DistilBERT).
{"datasets": ["multi_nli"], "thumbnail": "https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png"}
feature-extraction
canwenxu/BERT-of-Theseus-MNLI
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "dataset:multi_nli", "arxiv:2002.02925", "arxiv:2005.00628", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2002.02925", "2005.00628" ]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #dataset-multi_nli #arxiv-2002.02925 #arxiv-2005.00628 #endpoints_compatible #region-us
BERT-of-Theseus =============== See our paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT. !BERT of Theseus Load Pretrained Model on MNLI ----------------------------- We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set). Please Note: this checkpoint is for Intermediate-Task Transfer Learning so it does not include the classification head for MNLI! Please fine-tune it before use (like DistilBERT).
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #dataset-multi_nli #arxiv-2002.02925 #arxiv-2005.00628 #endpoints_compatible #region-us \n" ]
[ 56 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #dataset-multi_nli #arxiv-2002.02925 #arxiv-2005.00628 #endpoints_compatible #region-us \n" ]
[ -0.13883589208126068, 0.10390876233577728, -0.005467841401696205, 0.0368952676653862, 0.10188600420951843, 0.050224419683218, 0.048780497163534164, 0.11139379441738129, 0.05823761224746704, 0.01385168731212616, 0.14247001707553864, 0.2430528849363327, 0.0001217417448060587, 0.08521462231874466, -0.09436977654695511, -0.17956706881523132, 0.06110597029328346, 0.10538376867771149, -0.05276232212781906, 0.08717093616724014, 0.07535862177610397, -0.10982370376586914, 0.06608787924051285, -0.024659322574734688, -0.18442992866039276, 0.04267348349094391, 0.04529150202870369, -0.08683614432811737, 0.1038706824183464, 0.045259229838848114, 0.124607153236866, 0.034608688205480576, -0.041531797498464584, -0.17110802233219147, 0.009562154300510883, 0.00011858045763801783, -0.049529243260622025, 0.07259415835142136, 0.10796011239290237, -0.039496030658483505, 0.041563909500837326, 0.05981096252799034, -0.009392056614160538, 0.02602407895028591, -0.1536692976951599, -0.18436643481254578, -0.09326159209012985, 0.0663219541311264, 0.05133063718676567, 0.08057750016450882, 0.04044990986585617, 0.14593130350112915, -0.09334896504878998, 0.0905873253941536, 0.20015114545822144, -0.3197541832923889, -0.00027390121249482036, 0.07327628135681152, 0.0490463525056839, -0.008184144273400307, -0.009773985482752323, 0.03796370327472687, 0.03910287097096443, 0.01374195609241724, 0.0022348740603774786, -0.0825735554099083, -0.13453540205955505, 0.08701910823583603, -0.08877670019865036, -0.05988260731101036, 0.27264052629470825, 0.01771167479455471, 0.06174382194876671, 0.03792303428053856, -0.08029966801404953, -0.034032151103019714, -0.0332384817302227, -0.007002211641520262, -0.013947542756795883, 0.010243769735097885, 0.0008739521144889295, 0.013419081456959248, -0.10638727992773056, -0.001315101981163025, -0.1841985434293747, 0.1732538491487503, -0.0024449224583804607, 0.1056426540017128, -0.1952633410692215, 0.02321147359907627, -0.07389231026172638, -0.08397821336984634, 0.036160700023174286, -0.07921795547008514, -0.00043522517080418766, 0.01945694349706173, -0.06192470341920853, -0.011077423579990864, 0.06977047771215439, 0.1142834946513176, 0.014211860485374928, 0.027906978502869606, 0.024920614436268806, 0.06787101924419403, 0.03823885694146156, 0.05619942769408226, -0.07725115120410919, -0.07494950294494629, 0.030483603477478027, -0.08773503452539444, -0.01728835515677929, -0.046541668474674225, -0.09307985007762909, -0.053796347230672836, 0.04807416722178459, 0.07178114354610443, 0.07829070091247559, -0.011141614057123661, -0.09344696998596191, -0.03853350505232811, 0.056222014129161835, -0.061611421406269073, 0.01689949817955494, -0.02021089382469654, 0.011875750496983528, 0.1293625682592392, -0.03891024738550186, 0.001644587959162891, -0.038797397166490555, 0.03444136306643486, -0.10890758037567139, 0.01167688425630331, -0.029816949740052223, -0.0903928279876709, 0.06240867078304291, -0.11203911155462265, 0.05079882964491844, -0.14289525151252747, -0.08772300183773041, 0.029864581301808357, 0.046884503215551376, -0.04088912531733513, 0.010659622959792614, 0.00252364668995142, -0.005635999143123627, 0.03041149117052555, -0.06515060365200043, -0.02340218424797058, -0.06294944137334824, 0.05637070909142494, 0.024421151727437973, 0.07610131055116653, -0.08787482231855392, 0.05430815368890762, -0.06440319865942001, 0.016984520480036736, -0.0444653257727623, -0.00965804047882557, -0.04971705377101898, 0.09374500811100006, -0.06852494180202484, -0.05776875093579292, -0.06911633908748627, 0.004925241228193045, 0.034056197851896286, 0.15826033055782318, -0.10556817054748535, -0.08440675586462021, 0.15481187403202057, -0.0947217121720314, -0.19089701771736145, 0.0488310307264328, 0.004069276619702578, -0.061639122664928436, 0.05578501522541046, 0.16202808916568756, 0.05818001180887222, -0.038085635751485825, -0.0007180094835348427, 0.1279454380273819, -0.06035884842276573, -0.2281961739063263, 0.05184995010495186, 0.014775714837014675, -0.09624581784009933, 0.04757861793041229, 0.03651823103427887, 0.09638898819684982, -0.09958069771528244, -0.05127697065472603, -0.04295473173260689, -0.05386100709438324, 0.03795180842280388, 0.052928626537323, 0.0939551293849945, -0.034545931965112686, 0.03592837229371071, -0.0018689557909965515, 0.044520847499370575, 0.003436389146372676, 0.022334514185786247, -0.06753113865852356, 0.16826966404914856, -0.2051270455121994, -0.009871557354927063, -0.24460765719413757, -0.0865124762058258, -0.013301294296979904, 0.042122982442379, -0.07891272753477097, 0.1160954162478447, 0.07205080986022949, -0.06510693579912186, 0.007740989327430725, -0.016902197152376175, 0.10921813547611237, 0.0487736314535141, -0.05733738839626312, -0.09424339979887009, -0.037487439811229706, -0.08763942867517471, -0.04040104150772095, -0.061186883598566055, -0.0369107648730278, -0.004717111121863127, 0.12811864912509918, 0.004425791557878256, 0.02907402068376541, -0.015045234933495522, 0.061994824558496475, -0.04313897714018822, 0.01005358062684536, 0.10247840732336044, -0.005892994813621044, -0.033144813030958176, 0.11501140892505646, -0.020645854994654655, 0.34154075384140015, 0.13428889214992523, -0.23048408329486847, 0.03794005885720253, 0.0023936911020427942, -0.0028775185346603394, 0.009250824339687824, 0.04788905754685402, 0.03491814061999321, 0.02020820789039135, 0.0074651786126196384, 0.12248536199331284, -0.042794059962034225, -0.01876080594956875, 0.0368654727935791, -0.048771269619464874, -0.07615011185407639, 0.10061419010162354, 0.09214247018098831, -0.22727186977863312, 0.1516452133655548, 0.20281746983528137, 0.028340615332126617, 0.04146365076303482, -0.03800350800156593, -0.07090768963098526, -0.029283126816153526, -0.028773058205842972, -0.03287533298134804, 0.07844651490449905, -0.16768433153629303, -0.017497630789875984, 0.09655528515577316, 0.012875924818217754, 0.07905759662389755, -0.12666858732700348, -0.056075308471918106, 0.020955948159098625, 0.02278980240225792, -0.11184045672416687, 0.07112714648246765, 0.03290422633290291, 0.10680631548166275, -0.002834498882293701, -0.03905735909938812, 0.07179679721593857, 0.010349821299314499, -0.06344769895076752, 0.20995619893074036, -0.11722706258296967, -0.276853084564209, -0.08383545279502869, -0.13330084085464478, -0.03686898574233055, -0.022468356415629387, 0.05040939897298813, -0.07400104403495789, -0.04952365159988403, 0.04378298297524452, -0.02559959888458252, -0.14661388099193573, 0.016725607216358185, 0.004064806271344423, 0.030647462233901024, -0.031727664172649384, -0.0912400335073471, -0.04223502427339554, -0.048001594841480255, 0.062299929559230804, 0.0890735313296318, -0.07517625391483307, 0.11520884931087494, 0.0982685312628746, 0.037614431232213974, 0.0669746845960617, 0.018618393689393997, 0.17294341325759888, -0.008737442083656788, -0.08771631121635437, 0.1923181563615799, 0.0029015878681093454, 0.056465327739715576, 0.073649562895298, 0.05589352548122406, -0.06880255788564682, -0.07328092306852341, -0.0467953160405159, -0.0645434707403183, -0.23845846951007843, -0.1126532107591629, -0.13813461363315582, 0.011867583729326725, 0.04778105393052101, 0.0285023283213377, 0.020909825339913368, 0.06609410792589188, 0.06676481664180756, -0.01039267610758543, -0.10159336775541306, 0.025967402383685112, 0.22886912524700165, -0.013492947444319725, 0.10610775649547577, -0.06555531173944473, -0.043135643005371094, 0.07685510814189911, 0.046991463750600815, 0.22948309779167175, 0.05893094092607498, -0.0029884011019021273, 0.029800226911902428, 0.19981400668621063, 0.09919868409633636, 0.16074110567569733, 0.00495287636294961, -0.05590975657105446, 0.008801338262856007, 0.009531944990158081, -0.04755028709769249, 0.020932720974087715, 0.11107826232910156, -0.10182593762874603, -0.06079517677426338, -0.1602209061384201, 0.027762385085225105, 0.05276065319776535, 0.11944890767335892, -0.28017908334732056, -0.018087061122059822, 0.0332518070936203, 0.023786036297678947, -0.07947275042533875, 0.04308488592505455, 0.0007527719135396183, -0.08182422816753387, 0.054347917437553406, -0.06537924706935883, 0.10138420760631561, -0.03612426295876503, 0.014227761887013912, -0.023648595437407494, -0.06940344721078873, 0.051710162311792374, 0.0823478251695633, -0.2112584412097931, 0.281010240316391, 0.01402012538164854, -0.06426101177930832, -0.05064667761325836, -0.0008137742406688631, -0.03627747669816017, 0.11445280909538269, 0.14174576103687286, 0.037686482071876526, -0.09067468345165253, -0.15095005929470062, -0.011929001659154892, 0.039656784385442734, 0.07446637004613876, 0.016711128875613213, -0.006842934992164373, -0.0014119818806648254, -0.018494389951229095, -0.000960400968324393, 0.022723613306879997, -0.0006323715206235647, -0.15528684854507446, 0.08230426907539368, 0.010932757519185543, -0.024502165615558624, -0.000337086123181507, -0.05993873253464699, -0.04179517552256584, 0.16513186693191528, 0.013761299662292004, -0.03991818428039551, -0.1254918873310089, -0.008768781088292599, 0.18134991824626923, -0.08075161278247833, 0.07138184458017349, -0.045342519879341125, -0.02540828473865986, -0.02734973654150963, -0.20376531779766083, 0.12019936740398407, -0.1344270408153534, 0.0499873012304306, -0.05175190046429634, 0.12560656666755676, -0.05012055113911629, 0.014288047328591347, 0.010537033900618553, 0.03807443380355835, -0.0988103374838829, -0.07253346592187881, 0.009263267740607262, 0.04050412401556969, 0.11142712086439133, 0.04463786631822586, -0.03578498587012291, 0.020685037598013878, 0.012792334891855717, 0.02089800499379635, 0.23958329856395721, 0.17785294353961945, -0.08764011412858963, 0.09593164175748825, 0.13905422389507294, -0.03236234933137894, -0.23160944879055023, -0.06220559403300285, -0.091326504945755, -0.012218412011861801, -0.014897221699357033, -0.11511704325675964, 0.1333046406507492, 0.05422750860452652, -0.022199105471372604, 0.12023678421974182, -0.2726247012615204, -0.04282154515385628, 0.15575215220451355, 0.028429564088582993, 0.42258352041244507, -0.10688304156064987, -0.07702608406543732, -0.016224287450313568, -0.2625088095664978, 0.12452982366085052, 0.07475648075342178, 0.05931387096643448, -0.0697372704744339, 0.009345362894237041, 0.03129292279481888, -0.07854387909173965, 0.13378697633743286, 0.0225790124386549, 0.026793358847498894, -0.053361352533102036, -0.09371490776538849, 0.05311388894915581, -0.0326681062579155, 0.02625751495361328, 0.0555691123008728, 0.06340761482715607, -0.16144122183322906, -0.02072613313794136, -0.1070733591914177, 0.03762450069189072, 0.041721947491168976, -0.01867867261171341, -0.0009904290782287717, -0.021154941990971565, 0.016798067837953568, -0.018010225147008896, 0.24579426646232605, 0.018049336969852448, 0.12663187086582184, 0.04294208064675331, 0.04112757742404938, -0.1853204369544983, -0.14296932518482208, -0.07144235074520111, -0.0580914206802845, 0.08172299712896347, -0.12285006046295166, 0.056134145706892014, 0.15084367990493774, 0.015099841170012951, 0.03205355256795883, 0.10824785381555557, 0.008260105736553669, -0.023198217153549194, 0.13861683011054993, -0.18739928305149078, 0.002886852715164423, -0.018932882696390152, -0.04248807951807976, 0.027383293956518173, 0.09866075962781906, 0.11053495109081268, 0.022021640092134476, -0.029464304447174072, -0.04053587093949318, 0.003077922621741891, -0.0696147233247757, 0.12249591946601868, 0.06116046383976936, 0.030621880665421486, -0.14829926192760468, 0.08074931055307388, -0.01661299355328083, -0.2175014764070511, -0.04245739057660103, 0.03812756761908531, -0.1009221225976944, -0.10224304348230362, -0.016161102801561356, 0.1176595613360405, -0.17084874212741852, -0.055911678820848465, -0.0583573542535305, -0.07607460767030716, 0.10102149099111557, 0.17024455964565277, 0.06209496036171913, 0.07648859173059464, -0.043276648968458176, -0.0725172683596611, -0.035926930606365204, -0.0268634632229805, 0.04940621554851532, 0.025012556463479996, -0.13958795368671417, -0.047331683337688446, -0.033430974930524826, 0.14976312220096588, -0.05229063332080841, -0.027115393429994583, -0.1273614764213562, 0.04494340345263481, -0.07824108004570007, -0.05106177181005478, -0.14316357672214508, -0.025227947160601616, -0.0075685856863856316, -0.07407268136739731, -0.07158263027667999, -0.001957277301698923, -0.12128348648548126, 0.014681994915008545, -0.003880835138261318, 0.019468549638986588, -0.06634732335805893, -0.04851942136883736, 0.04219912737607956, -0.03495561331510544, 0.07511445134878159, 0.16999123990535736, -0.03413437306880951, 0.09658674150705338, -0.09557785838842392, -0.1380244940519333, 0.09010179340839386, 0.042893972247838974, 0.09575789421796799, -0.04098927974700928, 0.04584543779492378, 0.10587121546268463, -0.010591781698167324, 0.021829931065440178, -0.004732791800051928, -0.10123565793037415, -0.07893513143062592, -0.06786663830280304, -0.1396191269159317, -0.04508300498127937, -0.063029445707798, 0.16197161376476288, 0.04990323260426521, 0.09811875224113464, 0.00618626968935132, 0.07617828994989395, -0.08639756590127945, -0.014148139394819736, -0.024183232337236404, -0.16380198299884796, 0.006591382436454296, -0.04267125204205513, 0.04618319123983383, -0.014339124783873558, 0.23160701990127563, -0.04629414156079292, 0.015387747436761856, -0.0028655086643993855, 0.022085512056946754, 0.012142139486968517, 0.012592838145792484, 0.25494128465652466, 0.089696504175663, -0.04293014854192734, -0.048692718148231506, 0.1410784125328064, -0.0004680514393839985, 0.13704122602939606, 0.10348852723836899, 0.12820610404014587, 0.053720779716968536, 0.09962369501590729, 0.038233209401369095, -0.052791424095630646, -0.059430286288261414, -0.12944917380809784, -0.07668275386095047, 0.07972725480794907, 0.04140898957848549, 0.10147068649530411, 0.12255800515413284, -0.061860766261816025, 0.04405535012483597, -0.033517565578222275, -0.042853377759456635, -0.12884564697742462, -0.08176558464765549, -0.08718695491552353, -0.12813188135623932, 0.004163708537817001, -0.10613439232110977, 0.042128704488277435, 0.1837777942419052, 0.03749893978238106, -0.002500419970601797, 0.041513171046972275, 0.09806802868843079, -0.05588637292385101, 0.046657729893922806, 0.011214712634682655, 0.004170236177742481, 0.028778718784451485, 0.021641312167048454, -0.06577523052692413, -0.09231887012720108, -0.03314859792590141, 0.0032113443594425917, -0.041074976325035095, 0.056557849049568176, -0.07732260972261429, -0.11570017784833908, -0.05071476474404335, 0.04602617397904396, -0.0004521439550444484, 0.12192127108573914, 0.010009060613811016, 0.022099314257502556, 0.026292674243450165, 0.18907880783081055, -0.07499329745769501, 0.013676951639354229, -0.058124151080846786, 0.1862035095691681, 0.061683811247348785, 0.06406262516975403, 0.014648828655481339, 0.013543677516281605, -0.030765952542424202, 0.22388099133968353, 0.23015020787715912, -0.01107090525329113, 0.015744425356388092, 0.05771343782544136, 0.01840849034488201, 0.04799278452992439, 0.08949185162782669, 0.09711084514856339, 0.2830193340778351, -0.08165155351161957, -0.06799688190221786, -0.07116544246673584, 0.019690973684191704, -0.052415881305933, 0.07530727237462997, 0.05211538448929787, -0.0743594542145729, -0.042226456105709076, 0.12218751758337021, -0.07923909276723862, 0.10780546069145203, 0.10634797066450119, -0.20368792116641998, -0.1098894253373146, -0.046310778707265854, 0.1307903230190277, -0.0046338289976119995, 0.09550603479146957, -0.07309894263744354, -0.06999338418245316, 0.07976999133825302, 0.028736282140016556, -0.24758167564868927, -0.1188000813126564, 0.0800335481762886, 0.04097991809248924, -0.0026510516181588173, -0.008616814389824867, 0.08687179535627365, 0.10142593830823898, 0.0708666518330574, -0.09186709672212601, 0.033767953515052795, 0.008515356108546257, -0.0719313696026802, -0.005629556253552437, -0.003945998381823301, 0.0016112446319311857, -0.01714344508945942, 0.04419120028614998, -0.1259527951478958, 0.03307980298995972, -0.015312721021473408, 0.0011768062831833959, -0.013086853548884392, -0.0073958514258265495, -0.040871746838092804, 0.08824440836906433, 0.07001197338104248, -0.020829681307077408, -0.05651088058948517, -0.050262317061424255, 0.03928188979625702, 0.057368140667676926, 0.0006928662187419832, -0.12453483045101166, -0.09838773310184479, -0.029737312346696854, 0.05095664784312248, -0.0022232939954847097, -0.07920542359352112, -0.029159897938370705, -0.03601139038801193, -0.013937372714281082, -0.07571260631084442, 0.057954054325819016, 0.053666744381189346, 0.00810329895466566, -0.009266766719520092, -0.07233710587024689, 0.0458836629986763, 0.06572225689888, -0.10133382678031921, -0.10378209501504898 ]
null
null
transformers
#Chris DialoGPT Model
{"tags": ["conversational"]}
text-generation
caps1994/DialoGPT-small-chrisbot-caps1994
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Chris DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
#Chris DialoGPT Model
{"tags": ["conversational"]}
text-generation
caps1994/DialoGPT-small-chrisbot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Chris DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
caps1994/DialoGPT-small-harrypotter-caps1994
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
# Twitter 2021 90M (RoBERTa-base) This is a RoBERTa-base model trained on 90M tweets until the end of 2019. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.28870 getting 2) 0.28611 not 3) 0.15485 fully 4) 0.07357 self 5) 0.01812 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.12194 book 2) 0.04396 pillow 3) 0.04202 bag 4) 0.03038 wallet 5) 0.02729 charger ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.65505 End 2) 0.19230 The 3) 0.03856 the 4) 0.01223 end 5) 0.00978 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99078 The movie was great 2) 0.96701 Just finished reading 'Embeddings in NLP' 3) 0.96037 I just ordered fried chicken 🐣 4) 0.95919 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-2019-90m
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter 2021 90M (RoBERTa-base) This is a RoBERTa-base model trained on 90M tweets until the end of 2019. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter 2021 90M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 90M tweets until the end of 2019.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter 2021 90M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 90M tweets until the end of 2019.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 70, 115, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter 2021 90M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 90M tweets until the end of 2019.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.05289408564567566, 0.03195355832576752, -0.0018804902210831642, 0.017567981034517288, 0.12214621156454086, 0.009557929821312428, 0.150699183344841, 0.050176993012428284, -0.03590339049696922, 0.02203807793557644, 0.06663438677787781, -0.028884178027510643, 0.011405396275222301, 0.07029292732477188, -0.015117770060896873, -0.20696163177490234, 0.008075694553554058, -0.0017858820501714945, 0.040098726749420166, 0.1417912244796753, 0.125740647315979, -0.07924975454807281, 0.09029950946569443, 0.028131939470767975, -0.10149401426315308, -0.0011331011774018407, 0.029681624844670296, -0.1309000700712204, 0.17525546252727509, -0.004478005226701498, 0.0955391526222229, 0.009014756418764591, 0.03687775507569313, -0.040727339684963226, 0.03598519787192345, 0.10397765040397644, -0.02383081428706646, 0.033763330429792404, -0.04259675368666649, -0.08940940350294113, 0.07559212297201157, 0.06954644620418549, 0.06218715384602547, 0.03888975456357002, -0.15011529624462128, -0.06011872738599777, -0.11197234690189362, 0.011313458904623985, 0.04936855658888817, 0.08274733275175095, -0.022058075293898582, 0.20354467630386353, -0.14293590188026428, 0.0706663504242897, 0.10636653751134872, -0.23537863790988922, -0.02293177880346775, 0.060618285089731216, 0.12905697524547577, 0.006054422352463007, -0.011445616371929646, 0.05561894550919533, 0.033341072499752045, 0.011046643368899822, 0.09129520505666733, -0.02843870222568512, -0.038232553750276566, -0.008426353335380554, -0.09970984607934952, -0.05696489289402962, 0.18262559175491333, 0.03580118715763092, -0.06295626610517502, -0.13380084931850433, -0.0805564746260643, 0.06387341767549515, 0.011713942512869835, -0.05352983623743057, 0.03621894121170044, -0.011146169155836105, -0.046915873885154724, -0.039106424897909164, -0.10569038987159729, -0.05544735863804817, -0.10164657980203629, 0.02623845636844635, 0.04851268604397774, 0.04654676094651222, -0.13919609785079956, 0.08902111649513245, -0.11890813708305359, -0.11302178353071213, -0.07679854333400726, -0.07452976703643799, -0.05883049592375755, -0.024870602414011955, -0.09645017981529236, -0.11446776241064072, -0.01562589220702648, 0.24840399622917175, 0.05007338151335716, 0.0076605770736932755, -0.04192415252327919, 0.02615523338317871, 0.07766188681125641, 0.12045783549547195, -0.08144371956586838, -0.05248969420790672, 0.06709322333335876, -0.04451029747724533, -0.04701652377843857, -0.018401287496089935, -0.044089220464229584, -0.03369052708148956, 0.17266598343849182, 0.020822858437895775, 0.01853044331073761, 0.11892116069793701, 0.028950706124305725, -0.01646190695464611, 0.06673655658960342, -0.08862216770648956, -0.04968004301190376, -0.01628902181982994, -0.11128362268209457, -0.00880085863173008, 0.10222543776035309, -0.01126026175916195, -0.06863898038864136, -0.020333049818873405, -0.0770028680562973, -0.06003803387284279, -0.07835578173398972, -0.17409658432006836, 0.01904122717678547, -0.18217238783836365, 0.006023073568940163, -0.19602279365062714, -0.3118719160556793, -0.051846686750650406, 0.03367619961500168, -0.017348095774650574, 0.07661491632461548, 0.01643046922981739, -0.006657413672655821, 0.01681836135685444, -0.058157194405794144, -0.039043720811605453, -0.04622849076986313, 0.057898782193660736, 0.05143286660313606, 0.09615933150053024, 0.023584524169564247, 0.04819279536604881, -0.14322462677955627, -0.04051893949508667, -0.09080719202756882, 0.02650822512805462, -0.014203020371496677, 0.03595821559429169, -0.09241679310798645, -0.04959239438176155, -0.025549037382006645, 0.05715107172727585, 0.010390127077698708, 0.0652865320444107, -0.16462747752666473, -0.030932573601603508, 0.2549784481525421, -0.12589985132217407, -0.14815592765808105, 0.09592993557453156, -0.04692303016781807, 0.09703179448843002, 0.11503630131483078, 0.04247846454381943, 0.07986171543598175, -0.1420825570821762, -0.00026959774550050497, -0.1332143396139145, -0.09663191437721252, 0.04383647441864014, 0.014600816182792187, 0.0781860202550888, 0.10241048783063889, 0.03627435117959976, -0.02085007354617119, -0.03733791410923004, -0.053189679980278015, -0.025071412324905396, -0.0071931034326553345, -0.0565597265958786, 0.10333189368247986, 0.008774256333708763, 0.06270875781774521, -0.07479635626077652, -0.12370450794696808, 0.09772762656211853, 0.07613802701234818, 0.002555773826315999, 0.004256309010088444, -0.1367987096309662, 0.0754321962594986, 0.08121795207262039, -0.017754726111888885, -0.19828630983829498, -0.03108668327331543, 0.00850997306406498, 0.098045215010643, 0.05733170732855797, 0.13060209155082703, 0.06354039907455444, 0.013916083611547947, 0.0009325011633336544, -0.004234477411955595, -0.025163279846310616, -0.04044319689273834, -0.030145810917019844, -0.049384552985429764, 0.04529639333486557, -0.06996732205152512, 0.07201795279979706, -0.04667436331510544, 0.0329621396958828, -0.026691962033510208, 0.11227639764547348, 0.015381623059511185, -0.027314143255352974, -0.010092009790241718, 0.03517928346991539, -0.05297514796257019, -0.05378713086247444, 0.004917731508612633, -0.03866075724363327, 0.043853603303432465, 0.16294285655021667, -0.17713876068592072, 0.033458102494478226, 0.12617288529872894, 0.08291510492563248, -0.12034425139427185, 0.0017535662045702338, 0.008216635324060917, 0.0033920102287083864, -0.05652029812335968, -0.05698174610733986, 0.293319433927536, 0.009037641808390617, 0.13789591193199158, -0.08208799362182617, -0.02100526914000511, -0.0018395381048321724, -0.06676388531923294, -0.03521910309791565, 0.005565971601754427, -0.008048534393310547, -0.23870570957660675, 0.06962183117866516, -0.0497918426990509, -0.007021571509540081, 0.11348218470811844, 0.012555944733321667, -0.05757953226566315, -0.04920390248298645, -0.0631304606795311, 0.011095913127064705, 0.08507098257541656, -0.11252088844776154, -0.09310216456651688, 0.037878114730119705, 0.017374565824866295, 0.006628651637583971, -0.05463866516947746, 0.029501235112547874, 0.061436641961336136, 0.009524889290332794, -0.12294959276914597, 0.09148886054754257, 0.03452839329838753, 0.05898125469684601, 0.02165905386209488, 0.01879695989191532, -0.056697409600019455, -0.0336914099752903, -0.09978586435317993, 0.20470720529556274, -0.11411423236131668, -0.305608868598938, -0.12200728058815002, -0.040539924055337906, 0.007641348987817764, 0.008424266241490841, 0.09613616019487381, -0.015516633167862892, -0.03561919182538986, -0.03817285597324371, 0.02937452308833599, 0.025587601587176323, 0.002803661860525608, -0.039312392473220825, 0.009088096208870411, -0.006117265205830336, -0.1591997742652893, -0.002080356003716588, -0.045286718755960464, -0.10901352018117905, 0.16938461363315582, 0.04693349450826645, 0.0750560462474823, 0.03388787806034088, -0.06953156739473343, -0.005745489150285721, -0.034189388155937195, 0.20293040573596954, -0.08282565325498581, 0.03819931671023369, 0.26398080587387085, 0.061974868178367615, 0.05486874654889107, 0.018273357301950455, -0.028610849753022194, -0.07440534979104996, 0.0667099580168724, 0.04104352742433548, -0.037012748420238495, -0.15727967023849487, -0.07303769886493683, 0.015570323914289474, -0.062414705753326416, 0.08612695336341858, -0.006872172467410564, 0.13825492560863495, 0.03201515972614288, -0.0332544781267643, -0.025351878255605698, 0.003496082266792655, 0.036460526287555695, 0.018411684781312943, -0.013587490655481815, 0.10604231804609299, 0.018255308270454407, 0.03084665909409523, 0.06403329968452454, -0.07748027890920639, 0.17402997612953186, -0.054194219410419464, -0.036505743861198425, 0.11732027679681778, 0.04840719327330589, 0.06198824569582939, 0.06054646149277687, -0.051098838448524475, 0.01329888217151165, -0.037426676601171494, -0.013292601332068443, -0.0785495713353157, 0.0345047228038311, 0.0406036414206028, -0.056413888931274414, -0.11562695354223251, -0.07319110631942749, 0.05418255180120468, 0.20234982669353485, 0.04865729808807373, -0.2541005313396454, -0.13349835574626923, -0.01323853898793459, -0.10673122107982635, -0.07397668808698654, -0.010876038111746311, 0.03879488259553909, -0.15577735006809235, 0.025465235114097595, -0.03626310080289841, 0.10953005403280258, 0.0027624901849776506, 0.028688019141554832, -0.08286552876234055, 0.042260076850652695, -0.020880261436104774, 0.06605634093284607, -0.21342067420482635, 0.24162431061267853, 0.004333621822297573, 0.06204790994524956, -0.06817185878753662, -0.007545943837612867, 0.0038369318936020136, 0.0046567958779633045, 0.025928279384970665, -0.011488277465105057, 0.015456411056220531, -0.051537130028009415, -0.04445187747478485, 0.0011952946661040187, 0.06557221710681915, -0.02537645399570465, 0.11127851158380508, 0.005798976868391037, 0.03918669745326042, 0.00536666763946414, -0.031815819442272186, -0.13517455756664276, -0.0265642236918211, 0.003271623281762004, -0.1007654145359993, 0.05842176824808121, -0.05685947835445404, -0.02069196291267872, -0.09877709299325943, 0.0609661266207695, -0.023627998307347298, -0.0048032826744019985, -0.1292874962091446, -0.008010054007172585, 0.07331404089927673, -0.10657186806201935, 0.0574665404856205, 0.03909972682595253, 0.11224362999200821, -0.03759551793336868, -0.09724496304988861, 0.03038669563829899, -0.07982528209686279, -0.06311856955289841, -0.048687390983104706, 0.009036006405949593, 0.1021169126033783, 0.003322012024000287, 0.05155806243419647, 0.018870588392019272, -0.07597662508487701, -0.029950378462672234, 0.015916209667921066, 0.08494596183300018, 0.11964862793684006, 0.02317575365304947, -0.03900563716888428, 0.0017164270393550396, -0.0456835962831974, 0.03330758586525917, 0.10003183037042618, 0.14811751246452332, -0.0667862594127655, 0.1298583596944809, 0.18074201047420502, -0.017213575541973114, -0.25300389528274536, -0.006276934873312712, 0.007887880317866802, 0.07360377907752991, 0.004153228830546141, -0.12415782362222672, 0.01875627227127552, 0.05743475630879402, 0.01686711236834526, -0.024708302691578865, -0.16695547103881836, -0.13206270337104797, 0.13787320256233215, 0.02336319163441658, 0.1339915692806244, -0.04107707738876343, 0.023211032152175903, 0.00876487884670496, -0.10976191610097885, -0.023169301450252533, -0.10136572271585464, 0.10258471965789795, -0.02588687650859356, 0.127768412232399, 0.0036919161211699247, -0.0612231120467186, 0.06385023146867752, -0.08226913958787918, 0.07557900249958038, -0.1127774715423584, 0.020622121170163155, 0.16761142015457153, -0.07586826384067535, 0.10890648514032364, -0.0006289378507062793, 0.09174884110689163, -0.08420545607805252, -0.04284580424427986, -0.060029175132513046, 0.09432413429021835, -0.0019589532166719437, -0.05420558527112007, -0.041822098195552826, 0.09418432414531708, 0.03318684548139572, -0.07676279544830322, -0.08215774595737457, -0.01574268378317356, 0.06648720800876617, 0.10878785699605942, 0.10543297231197357, -0.1186840608716011, -0.10280245542526245, -0.026200279593467712, 0.0008319101762026548, 0.10774070769548416, -0.1089586615562439, 0.017398349940776825, 0.0629405826330185, 0.050163887441158295, 0.10388187319040298, 0.02087828703224659, -0.10072028636932373, 0.05413695052266121, 0.06050792708992958, -0.08661643415689468, -0.004903306718915701, -0.01575680449604988, -0.08522038906812668, -0.04471105337142944, 0.023644031956791878, 0.14241094887256622, -0.07505640387535095, -0.03333291411399841, -0.008676581084728241, 0.04613179713487625, 0.023106468841433525, 0.14436432719230652, -0.030509747564792633, 0.07676982134580612, -0.07448382675647736, 0.10796430706977844, 0.053298674523830414, -0.0030336719937622547, 0.07858322560787201, -0.039563171565532684, -0.10485668480396271, -0.09353527426719666, -0.021032284945249557, 0.0004656674573197961, -0.04053471237421036, -0.013617844320833683, -0.05617961660027504, -0.01272876188158989, 0.016955338418483734, 0.35426104068756104, 0.046799734234809875, 0.033926818519830704, -0.042352672666311264, 0.001589249586686492, -0.0544077605009079, 0.014339055866003036, 0.11671727895736694, 0.04190806671977043, -0.09085486084222794, 0.21808549761772156, 0.02614343725144863, 0.03715704381465912, -0.06066485494375229, -0.09042317420244217, -0.12439659982919693, -0.0005881974357180297, -0.10943175852298737, -0.04231476038694382, -0.04869072884321213, -0.018585743382573128, 0.00443263677880168, -0.048228487372398376, -0.025713400915265083, 0.031196491792798042, -0.04850766062736511, 0.009820218198001385, 0.0015916626434773207, 0.05451305955648422, -0.12278957664966583, -0.018803386017680168, 0.11077067255973816, -0.03352561220526695, 0.07592949271202087, 0.1030237227678299, -0.04526817053556442, 0.04489818960428238, -0.09879639744758606, -0.04759377986192703, 0.024865111336112022, 0.06404519826173782, 0.03358577936887741, -0.1162467822432518, 0.05967750400304794, -0.02476910874247551, 0.010993711650371552, 0.03374917060136795, 0.04357760772109032, -0.08450545370578766, 0.015280721709132195, 0.01620539091527462, 0.01979125291109085, -0.09437902271747589, 0.014847137965261936, 0.12277362495660782, 0.0679175928235054, 0.13329394161701202, -0.09135934710502625, 0.03031151369214058, -0.12089859694242477, 0.014353765174746513, -0.014156856574118137, -0.056428540498018265, -0.008438536897301674, -0.004694766830652952, 0.037718143314123154, -0.022856689989566803, 0.18236400187015533, 0.054316628724336624, -0.00601096311584115, 0.04275559261441231, 0.03523353859782219, -0.11086559295654297, -0.01653483510017395, 0.04114246368408203, 0.02278934046626091, 0.0003887683851644397, -0.016943885013461113, 0.08153190463781357, 0.0028059487231075764, -0.16884900629520416, 0.12113486975431442, 0.1404895782470703, 0.017933735623955727, 0.02724216878414154, 0.05332180857658386, 0.008478737436234951, -0.09704121202230453, -0.13243673741817474, -0.05983932688832283, 0.028435995802283287, -0.0555340051651001, 0.06444139033555984, 0.17997242510318756, -0.06109917536377907, 0.10488424450159073, 0.004864512477070093, -0.024131545796990395, -0.07219763845205307, -0.0832541212439537, -0.0568116270005703, -0.05112172290682793, 0.02288811467587948, -0.09898263961076736, 0.0231956634670496, 0.043544065207242966, 0.046800002455711365, -0.01639031060039997, 0.03831314668059349, -0.09690766781568527, -0.10400600731372833, 0.027227602899074554, -0.016162751242518425, -0.02556096389889717, 0.049627337604761124, 0.012443073093891144, 0.0036706323735415936, 0.057700060307979584, 0.03343578055500984, -0.014707990922033787, 0.040137361735105515, 0.05736295506358147, -0.09483814984560013, -0.05794390290975571, 0.011226505972445011, 0.05482620373368263, 0.004834318533539772, 0.027356311678886414, 0.10439388453960419, -0.048165734857320786, -0.007476485334336758, 0.2983928620815277, -0.03605418652296066, -0.13231393694877625, -0.19372284412384033, 0.2137613594532013, 0.06738384813070297, -0.009065435267984867, -0.015274276956915855, -0.08724692463874817, 0.026976974681019783, 0.2723947763442993, 0.17863021790981293, 0.03175168111920357, 0.030468398705124855, -0.05646226927638054, -0.010821790434420109, 0.00209373002871871, 0.061278559267520905, 0.05158158391714096, 0.17869511246681213, 0.004413904156535864, -0.010243653319776058, 0.019174881279468536, -0.03084896132349968, -0.10605496913194656, 0.03899380937218666, -0.05032160505652428, -0.02036939188838005, -0.04012202471494675, 0.06943018734455109, -0.008140486665070057, -0.20683658123016357, -0.0009120995528064668, -0.0440497025847435, -0.09724649041891098, -0.0043888879008591175, 0.0151281813159585, 0.007909509353339672, 0.11962941288948059, 0.04254155978560448, 0.016527699306607246, 0.07221391052007675, 0.04409579932689667, -0.06116386502981186, -0.1294843703508377, 0.08967716991901398, 0.07948784530162811, 0.18274234235286713, -0.0645512118935585, -0.006759860552847385, 0.11383834481239319, 0.049482811242341995, -0.03443194180727005, 0.04334382340312004, 0.018543457612395287, -0.08184079825878143, 0.0606706477701664, 0.09258013218641281, -0.027361009269952774, 0.061424341052770615, 0.06802605837583542, -0.17395858466625214, 0.021398115903139114, -0.06849120557308197, 0.012870396487414837, -0.08520855754613876, 0.10499269515275955, 0.014894142746925354, 0.12033852189779282, 0.13604629039764404, -0.023075511679053307, 0.0035303642507642508, -0.10024484246969223, 0.011838698759675026, -0.0006513266125693917, -0.06959753483533859, -0.0958513543009758, -0.14995510876178741, -0.016035158187150955, -0.032754071056842804, -0.013714856468141079, -0.23721693456172943, -0.05465000495314598, 0.058098096400499344, -0.03793717920780182, 0.03668082877993584, 0.10562384873628616, 0.1571934074163437, 0.032905593514442444, -0.010885459370911121, -0.016194265335798264, 0.00750751793384552, 0.1450221985578537, -0.1940603107213974, -0.06165819242596626 ]
null
null
transformers
# Twitter 2021 124M (RoBERTa-base) This is a RoBERTa-base model trained on 123.86M tweets until the end of 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.39613 fully 2) 0.26333 getting 3) 0.18988 not 4) 0.02312 still 5) 0.02099 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.08356 mask 2) 0.05696 book 3) 0.03505 bag 4) 0.02983 backpack 5) 0.02847 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.46618 the 2) 0.24042 The 3) 0.03216 End 4) 0.02925 Squid 5) 0.02610 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.98969 The movie was great 2) 0.96102 Just finished reading 'Embeddings in NLP' 3) 0.95565 I just ordered fried chicken 🐣 4) 0.95041 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-2021-124m
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter 2021 124M (RoBERTa-base) This is a RoBERTa-base model trained on 123.86M tweets until the end of 2021. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter 2021 124M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter 2021 124M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 118, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter 2021 124M (RoBERTa-base)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.05371378734707832, 0.05298104137182236, -0.0024398635141551495, 0.028316128998994827, 0.1358708143234253, 0.009105178527534008, 0.15585105121135712, 0.0496915765106678, -0.03941721469163895, 0.023001646623015404, 0.06895151734352112, -0.026621617376804352, 0.011360627599060535, 0.06009812653064728, -0.013731395825743675, -0.20647737383842468, 0.007257944904267788, -0.007237551733851433, 0.04776625335216522, 0.14062362909317017, 0.1158381998538971, -0.06793266534805298, 0.09256253391504288, 0.023238563910126686, -0.10326188802719116, 0.0009620829951018095, 0.040000539273023605, -0.13858558237552643, 0.18030978739261627, -0.00034383535967208445, 0.08239763230085373, 0.00642182445153594, 0.03591864928603172, -0.03262189030647278, 0.03476131707429886, 0.09908079355955124, -0.018076222389936447, 0.031273577362298965, -0.050424955785274506, -0.09158667922019958, 0.06548953801393509, 0.10150334984064102, 0.06177547574043274, 0.033064667135477066, -0.15904492139816284, -0.053997959941625595, -0.10832300037145615, 0.007803053129464388, 0.04181348532438278, 0.08410392701625824, -0.01939256675541401, 0.19962896406650543, -0.1281331479549408, 0.07454831153154373, 0.10622089356184006, -0.25601398944854736, -0.024609839543700218, 0.07486362010240555, 0.11551052331924438, 0.031393226236104965, -0.0021744228433817625, 0.051263559609651566, 0.04339919611811638, 0.0187161136418581, 0.07394430041313171, -0.029734347015619278, -0.05195212364196777, -0.0009074439876712859, -0.10206974297761917, -0.062108755111694336, 0.18199148774147034, 0.031403798609972, -0.0721399262547493, -0.10771027952432632, -0.07992320507764816, 0.06592339277267456, 0.015502562746405602, -0.05190430209040642, 0.03330329805612564, -0.007370195351541042, -0.05281396955251694, -0.031839411705732346, -0.0974590927362442, -0.06042429432272911, -0.10414253175258636, 0.029739663004875183, 0.04570646956562996, 0.055246882140636444, -0.1443977952003479, 0.09039347618818283, -0.123505599796772, -0.11261475086212158, -0.08583277463912964, -0.07563773542642593, -0.05454937368631363, -0.019543606787919998, -0.09658870846033096, -0.0947529599070549, 0.0018488101195544004, 0.2583017349243164, 0.04204235598444939, 0.009487966075539589, -0.057433728128671646, 0.026649100705981255, 0.06715010106563568, 0.1287970244884491, -0.07862791419029236, -0.05487993359565735, 0.07640422135591507, -0.05425450950860977, -0.050071123987436295, -0.009885856881737709, -0.04482041299343109, -0.03416182100772858, 0.16268199682235718, 0.022281788289546967, -0.00021188899700064212, 0.11911390721797943, 0.026049448177218437, -0.007915850728750229, 0.05697657912969589, -0.08532082289457321, -0.05598973482847214, -0.019045842811465263, -0.11811994016170502, -0.014963222667574883, 0.10914068669080734, -0.017525142058730125, -0.07172340154647827, -0.03408851474523544, -0.07317771017551422, -0.06750627607107162, -0.07363069802522659, -0.17884813249111176, 0.01542150042951107, -0.1702682077884674, 0.012218077667057514, -0.20523622632026672, -0.3261893689632416, -0.04999811202287674, 0.03492053225636482, -0.02400624006986618, 0.06796019524335861, 0.005105891264975071, -0.005226516164839268, 0.010468673892319202, -0.05732377618551254, -0.04796326905488968, -0.04840823635458946, 0.0641866996884346, 0.05851755291223526, 0.1080159991979599, 0.025428468361496925, 0.044894639402627945, -0.15510408580303192, -0.04732464253902435, -0.0800735130906105, 0.02610919252038002, -0.011773573234677315, 0.03155225142836571, -0.09249233454465866, -0.04093137010931969, -0.034988876432180405, 0.05796149745583534, 0.025080952793359756, 0.07272010296583176, -0.13240505754947662, -0.03403989598155022, 0.26012176275253296, -0.12678277492523193, -0.14777803421020508, 0.10485219955444336, -0.04694077745079994, 0.10734660923480988, 0.11823929846286774, 0.03666709363460541, 0.08083797991275787, -0.12123585492372513, 0.01441167015582323, -0.13055706024169922, -0.1057661771774292, 0.035457391291856766, 0.0003621759242378175, 0.0903877466917038, 0.06283047050237656, 0.04427133500576019, -0.0015669841086491942, -0.030395355075597763, -0.06453284621238708, -0.015554686076939106, -0.004995484836399555, -0.06146962195634842, 0.10502900183200836, -0.0001886270329123363, 0.06037474051117897, -0.07704167068004608, -0.11550373584032059, 0.07928896695375443, 0.07054565101861954, 0.008054517209529877, -0.005649494472891092, -0.13993190228939056, 0.0868305042386055, 0.06406994163990021, -0.020169932395219803, -0.20359092950820923, -0.0253997091203928, 0.009355371817946434, 0.13944311439990997, 0.06502408534288406, 0.12744495272636414, 0.06524521857500076, 0.010634349659085274, 0.0046290443278849125, 0.004420765675604343, -0.004268846940249205, -0.04787677899003029, -0.03185969218611717, -0.03327600657939911, 0.06080636754631996, -0.07898300886154175, 0.06774576008319855, -0.06523412466049194, 0.028200585395097733, -0.044853709638118744, 0.09973037987947464, 0.019336294382810593, -0.02155980095267296, -0.00921754352748394, 0.03838992118835449, -0.05527203530073166, -0.05107232928276062, -0.00018172147974837571, -0.027407651767134666, 0.055755313485860825, 0.16486112773418427, -0.16510535776615143, 0.04090392589569092, 0.1212833821773529, 0.0980333462357521, -0.12856170535087585, 0.006106837652623653, 0.008081943728029728, 0.00903485156595707, -0.05885322764515877, -0.04233662039041519, 0.2952217757701874, 0.0023438960779458284, 0.14407441020011902, -0.07764831185340881, -0.004028744995594025, 0.010205576196312904, -0.07388153672218323, -0.029701488092541695, 0.010916112922132015, 0.010389708913862705, -0.23512305319309235, 0.06214747950434685, -0.08469186723232269, -0.009770792908966541, 0.10511326044797897, 0.014957581646740437, -0.051915816962718964, -0.040216345340013504, -0.04785339906811714, 0.015503603965044022, 0.07563459128141403, -0.10240489989519119, -0.09012173861265182, 0.035909395664930344, 0.019442837685346603, -0.001974687911570072, -0.0567614920437336, 0.03263721987605095, 0.061404038220644, 0.0016768940258771181, -0.12693174183368683, 0.09303273260593414, 0.035154975950717926, 0.06682606786489487, 0.017290882766246796, -0.006561564281582832, -0.05091731995344162, -0.02613683231174946, -0.10452701151371002, 0.21230463683605194, -0.10350877791643143, -0.29530254006385803, -0.12936949729919434, -0.05903509259223938, 0.013764563947916031, 0.010124157182872295, 0.10490614175796509, -0.008237677626311779, -0.02986547350883484, -0.03422338888049126, 0.027209345251321793, 0.0402211919426918, 0.005842349957674742, -0.03681325912475586, -0.0043181926012039185, -0.006191349122673273, -0.15748906135559082, -0.002827432006597519, -0.044532258063554764, -0.1122710183262825, 0.1800236999988556, 0.02463947795331478, 0.07085360586643219, 0.029429400339722633, -0.07615567743778229, 0.0028553414158523083, -0.03591827303171158, 0.21844112873077393, -0.07431654632091522, 0.030340688303112984, 0.25462815165519714, 0.06540263444185257, 0.053142473101615906, 0.01521141454577446, -0.03374176844954491, -0.0812462568283081, 0.07416652143001556, 0.04027017205953598, -0.04673372954130173, -0.15193423628807068, -0.06835679709911346, 0.028616098687052727, -0.04336996376514435, 0.08362840861082077, -0.002023696433752775, 0.12960265576839447, 0.037806130945682526, -0.021203236654400826, -0.013802636414766312, 0.002383901970461011, 0.03562687709927559, 0.003555803094059229, -0.013118180446326733, 0.1014108955860138, 0.015657952055335045, 0.027143098413944244, 0.06410230696201324, -0.07106078416109085, 0.17119595408439636, -0.05807084962725639, -0.06066366285085678, 0.10356862843036652, 0.051332008093595505, 0.06823026388883591, 0.06934855133295059, -0.05699266493320465, 0.009348888881504536, -0.03742274269461632, -0.008842216804623604, -0.07593194395303726, 0.033591944724321365, 0.026679545640945435, -0.050857897847890854, -0.12032720446586609, -0.0701463595032692, 0.04104405269026756, 0.20785540342330933, 0.0545831099152565, -0.2830631732940674, -0.13622626662254333, -0.025633329525589943, -0.10174930095672607, -0.0827200636267662, 0.006444761995226145, 0.034914106130599976, -0.15308129787445068, 0.0130454171448946, -0.03592061251401901, 0.10806969553232193, 0.005567769519984722, 0.027102192863821983, -0.07514927536249161, 0.035059962421655655, -0.03459696099162102, 0.06534186005592346, -0.21395035088062286, 0.2368118017911911, -0.0008716729935258627, 0.05792464688420296, -0.06624306738376617, -0.01425064355134964, 0.004828679841011763, -0.00419260561466217, 0.03227592632174492, -0.016027910634875298, 0.012028776109218597, -0.06776019930839539, -0.03221689537167549, 0.009553351439535618, 0.06078274920582771, -0.01654839515686035, 0.12113571166992188, 0.014014904387295246, 0.03651206195354462, -0.003975641913712025, -0.05932554230093956, -0.12621451914310455, -0.012376352213323116, -0.009338174015283585, -0.07943145185709, 0.0649082288146019, -0.04288313910365105, -0.01550921518355608, -0.10047628730535507, 0.05804452672600746, -0.012605746276676655, -0.012175905518233776, -0.1233968660235405, 0.002283914480358362, 0.06930571794509888, -0.10603715479373932, 0.05864853039383888, 0.03989652916789055, 0.10011664032936096, -0.03212212398648262, -0.10768354684114456, 0.034953415393829346, -0.07525250315666199, -0.05250844731926918, -0.04304276034235954, 0.0010321399895474315, 0.1063871905207634, -0.0058848368935287, 0.05016221106052399, 0.014730081893503666, -0.06835342943668365, -0.02470167726278305, 0.013937313109636307, 0.07556892186403275, 0.10248193889856339, 0.02487686276435852, -0.04472854360938072, 0.019259309396147728, -0.047380078583955765, 0.03827855363488197, 0.09686770290136337, 0.15123844146728516, -0.0699448511004448, 0.11899977922439575, 0.18121255934238434, -0.022755108773708344, -0.24737460911273956, -0.011079199612140656, 0.006668380461633205, 0.08158259838819504, 0.0026648128405213356, -0.1293739229440689, 0.025589633733034134, 0.05690110847353935, 0.018025772646069527, -0.0017230483936145902, -0.161777064204216, -0.11809833347797394, 0.1328648328781128, 0.026738740503787994, 0.17841102182865143, -0.037201978266239166, 0.021688729524612427, 0.023040227591991425, -0.11312860995531082, -0.03666718304157257, -0.09103561192750931, 0.108331598341465, -0.022350192070007324, 0.14891311526298523, 0.008755233138799667, -0.054730579257011414, 0.05478931963443756, -0.08693581819534302, 0.0734017938375473, -0.1111670583486557, 0.017983822152018547, 0.1592598706483841, -0.06939335912466049, 0.11930909007787704, 0.007434111088514328, 0.10087910294532776, -0.08167719841003418, -0.04695149138569832, -0.05872900038957596, 0.07726659625768661, 0.007300138473510742, -0.04856649413704872, -0.036423880606889725, 0.08946113288402557, 0.024834856390953064, -0.07922361046075821, -0.09340725839138031, -0.013601924292743206, 0.06946393102407455, 0.11981116235256195, 0.0922650396823883, -0.11172375082969666, -0.07814177125692368, -0.028177818283438683, -0.008860000409185886, 0.11380500346422195, -0.11276859790086746, 0.023768240585923195, 0.06868112832307816, 0.04828041419386864, 0.0970938503742218, 0.022598309442400932, -0.1009141206741333, 0.05782382935285568, 0.05901411175727844, -0.09496798366308212, 0.011541645042598248, -0.020988063886761665, -0.0941593274474144, -0.037269674241542816, 0.0369931124150753, 0.16275358200073242, -0.08437852561473846, -0.03702492266893387, -0.010734503157436848, 0.04515569284558296, 0.022569777444005013, 0.14979590475559235, -0.03964906930923462, 0.07517296075820923, -0.07514563202857971, 0.1145111471414566, 0.049302008002996445, 0.0018838383257389069, 0.0769437924027443, -0.04229198023676872, -0.10991524904966354, -0.09020690619945526, -0.020115675404667854, 0.00966611411422491, -0.05937037989497185, -0.01596376858651638, -0.07394067943096161, -0.012818977236747742, 0.02033892087638378, 0.37266847491264343, 0.042444221675395966, 0.03802579268813133, -0.0406850166618824, -0.0018103753682225943, -0.05962616205215454, 0.011867472901940346, 0.13166803121566772, 0.039649270474910736, -0.09211579710245132, 0.20770086348056793, 0.015244683250784874, 0.036356598138809204, -0.061707545071840286, -0.1026366800069809, -0.132273867726326, 0.012851246632635593, -0.11884859204292297, -0.03338707983493805, -0.03368696942925453, -0.01922512985765934, 0.006414651870727539, -0.040936216711997986, -0.020175615325570107, 0.034305550158023834, -0.051911693066358566, 0.02059505693614483, -0.0030324652325361967, 0.05313441902399063, -0.11647125333547592, -0.02482425794005394, 0.09977082908153534, -0.03021160326898098, 0.07941321283578873, 0.11200504750013351, -0.05811431258916855, 0.044230539351701736, -0.10496164113283157, -0.039753373712301254, 0.03613360598683357, 0.05651022493839264, 0.039101820439100266, -0.11325986683368683, 0.07246972620487213, -0.02594497986137867, 0.008547241799533367, 0.03299493342638016, 0.037622224539518356, -0.08394167572259903, 0.013392779044806957, 0.012155593372881413, 0.021903149783611298, -0.09830861538648605, 0.006778689566999674, 0.10997532308101654, 0.07576338201761246, 0.12518297135829926, -0.10254744440317154, 0.019848978146910667, -0.11590109020471573, 0.008308670483529568, -0.012040632776916027, -0.058214060962200165, -0.022537391632795334, -0.0009571584523655474, 0.03565134108066559, -0.014303161762654781, 0.17232078313827515, 0.05152956768870354, -0.0031575688626617193, 0.031967852264642715, 0.0175910796970129, -0.10006516426801682, -0.020090240985155106, 0.031456075608730316, 0.026171226054430008, -0.0056147100403904915, -0.02692444622516632, 0.08950292319059372, 0.007208957802504301, -0.15509450435638428, 0.11332845687866211, 0.12694762647151947, 0.035062383860349655, 0.02968512289226055, 0.05466105788946152, 0.018358316272497177, -0.07789285480976105, -0.15726912021636963, -0.0625925362110138, 0.032266758382320404, -0.0510559007525444, 0.05045558884739876, 0.1910882145166397, -0.04366674646735191, 0.09316037595272064, -0.0012180854100733995, -0.017901189625263214, -0.07420329004526138, -0.09118132293224335, -0.06260055303573608, -0.059307996183633804, 0.0271245576441288, -0.10068729519844055, 0.014935753308236599, 0.05691559240221977, 0.0526532419025898, -0.01273388136178255, 0.018902838230133057, -0.08924613147974014, -0.10198145359754562, 0.028641419485211372, -0.0302541796118021, -0.020977018401026726, 0.059040531516075134, 0.0031744155567139387, 0.0022016132716089487, 0.05465290695428848, 0.028218168765306473, -0.009512211196124554, 0.055338598787784576, 0.06775332242250443, -0.09952537715435028, -0.0529327392578125, 0.009000013582408428, 0.0601845346391201, 0.0031425587367266417, 0.015274224802851677, 0.10886063426733017, -0.05188576132059097, 0.0008730240515433252, 0.3016708791255951, -0.04574304819107056, -0.13028313219547272, -0.20520924031734467, 0.2465846836566925, 0.07025852799415588, 0.00013688769831787795, -0.021906182169914246, -0.08456810563802719, 0.02575651742517948, 0.27647286653518677, 0.16025441884994507, 0.03223761171102524, 0.019786320626735687, -0.05957118049263954, -0.013051256537437439, 0.0024079240392893553, 0.06579223275184631, 0.05483826622366905, 0.18779638409614563, 0.002249151235446334, -0.02794055826961994, 0.018955860286951065, -0.019401390105485916, -0.10302110761404037, 0.03352751210331917, -0.05767066776752472, -0.012115629389882088, -0.045069269835948944, 0.0731460452079773, -0.028910089284181595, -0.19302670657634735, -0.006360847037285566, -0.031666211783885956, -0.10158444195985794, -0.00801993440836668, -0.012640091590583324, 0.0132259177044034, 0.12641851603984833, 0.0327935665845871, 0.016736973077058792, 0.0643528625369072, 0.03931407630443573, -0.06074374169111252, -0.14067257940769196, 0.07398764789104462, 0.09422636777162552, 0.18156889081001282, -0.058386851102113724, -0.007814943790435791, 0.11190833896398544, 0.050429049879312515, -0.03903665393590927, 0.042106665670871735, 0.01277006696909666, -0.08816579729318619, 0.055008914321660995, 0.07536435127258301, -0.02610357478260994, 0.0803612470626831, 0.05922364443540573, -0.15806008875370026, 0.022304369136691093, -0.06498248130083084, 0.020017385482788086, -0.0946606919169426, 0.08973393589258194, 0.021518629044294357, 0.11425816267728806, 0.13597646355628967, -0.021092412993311882, 0.01740599423646927, -0.09478055685758591, 0.015196319669485092, 0.00007845883374102414, -0.08965348452329636, -0.09056307375431061, -0.1485455185174942, -0.020820345729589462, -0.032903000712394714, -0.020266946405172348, -0.25183647871017456, -0.04927927255630493, 0.05236190930008888, -0.02723856270313263, 0.03840910643339157, 0.11016561836004257, 0.1673067957162857, 0.03848422318696976, -0.008855711668729782, -0.027415497228503227, 0.007653059903532267, 0.15620660781860352, -0.19569982588291168, -0.07990969717502594 ]
null
null
transformers
# Twitter December 2020 (RoBERTa-base, 107M) This is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-dec2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.42239 not 2) 0.23834 getting 3) 0.10684 fully 4) 0.07550 being 5) 0.02097 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.08145 mask 2) 0.05051 laptop 3) 0.04620 book 4) 0.03910 bag 5) 0.03824 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.57602 the 2) 0.25120 The 3) 0.02610 End 4) 0.02324 this 5) 0.00690 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-dec2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99084 The movie was great 2) 0.96618 Just finished reading 'Embeddings in NLP' 3) 0.96127 I just ordered fried chicken 🐣 4) 0.95315 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-dec2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-dec2020
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter December 2020 (RoBERTa-base, 107M) This is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter December 2020 (RoBERTa-base, 107M)\n\nThis is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter December 2020 (RoBERTa-base, 107M)\n\nThis is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 120, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter December 2020 (RoBERTa-base, 107M)\n\nThis is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.07254505157470703, 0.045448947697877884, -0.0024367093574255705, 0.02473600022494793, 0.11942420154809952, 0.0170337725430727, 0.15327054262161255, 0.04850929602980614, -0.007501332089304924, 0.029632937163114548, 0.07704323530197144, -0.01510155200958252, 0.025701208040118217, 0.06556019932031631, -0.02110474929213524, -0.19702062010765076, 0.005847360007464886, 0.00041329191299155354, 0.06838817149400711, 0.14254172146320343, 0.12097245454788208, -0.07964828610420227, 0.08606325834989548, 0.022023802623152733, -0.09978283196687698, -0.006717002484947443, 0.037151023745536804, -0.13517408072948456, 0.16660095751285553, -0.008375940844416618, 0.0892975777387619, 0.013496474362909794, 0.0337219275534153, -0.021558012813329697, 0.034703586250543594, 0.09389867633581161, -0.02330579236149788, 0.029811592772603035, -0.041887253522872925, -0.08170077949762344, 0.08757918328046799, 0.06462015956640244, 0.06399672478437424, 0.034300483763217926, -0.14795927703380585, -0.050189558416604996, -0.10813601315021515, 0.019741488620638847, 0.056745193898677826, 0.08186603337526321, -0.021166473627090454, 0.19930176436901093, -0.13533729314804077, 0.08112361282110214, 0.097540944814682, -0.23913072049617767, -0.028159508481621742, 0.07244149595499039, 0.1136392131447792, 0.004760310053825378, 0.006407896988093853, 0.04520091786980629, 0.03859735652804375, 0.011229266412556171, 0.060152728110551834, -0.019292540848255157, -0.022860165685415268, -0.014251511543989182, -0.11414069682359695, -0.0714964047074318, 0.18848368525505066, 0.021148623898625374, -0.07159358263015747, -0.11775141954421997, -0.08139286190271378, 0.05702957138419151, 0.011706617660820484, -0.048488907516002655, 0.027500344440340996, -0.011535149067640305, -0.04756317660212517, -0.031645458191633224, -0.09614638984203339, -0.05888132378458977, -0.10630965232849121, 0.024793924763798714, 0.05597734823822975, 0.05953364446759224, -0.1472802758216858, 0.08711371570825577, -0.12390588223934174, -0.11851625144481659, -0.08912685513496399, -0.07773245126008987, -0.05293158069252968, -0.027524664998054504, -0.09819621592760086, -0.12718795239925385, -0.006670298986136913, 0.24805504083633423, 0.058708492666482925, 0.0028518845792859793, -0.053288981318473816, 0.030777230858802795, 0.07669611275196075, 0.12573158740997314, -0.0709712877869606, -0.06223985552787781, 0.07686381042003632, -0.05581970885396004, -0.03201522305607796, -0.01781918667256832, -0.037935949862003326, -0.03280126303434372, 0.15885958075523376, 0.03038175404071808, 0.014359237626194954, 0.1044817864894867, 0.01735232211649418, -0.019341671839356422, 0.07707198709249496, -0.09275373071432114, -0.06126810610294342, -0.025069594383239746, -0.12072170525789261, 0.005469375755637884, 0.09139542281627655, -0.017767082899808884, -0.07024041563272476, -0.021051747724413872, -0.07195691764354706, -0.05667503923177719, -0.07568103820085526, -0.17098954319953918, 0.02081882581114769, -0.18090105056762695, 0.006819925270974636, -0.1815830022096634, -0.32931751012802124, -0.04670211300253868, 0.03202292323112488, -0.018127411603927612, 0.06347885727882385, 0.0059584565460681915, -0.0036651368718594313, -0.0036137232091277838, -0.054271213710308075, -0.04952016845345497, -0.048771973699331284, 0.06482236087322235, 0.06113138049840927, 0.11052292585372925, 0.017462192103266716, 0.03875872865319252, -0.1495078057050705, -0.04676857590675354, -0.09222549945116043, 0.035585738718509674, -0.022933395579457283, 0.020362315699458122, -0.08379840105772018, -0.04990687966346741, -0.008028444834053516, 0.04730578511953354, 0.024892522022128105, 0.07606416195631027, -0.17034174501895905, -0.03045869991183281, 0.2731713056564331, -0.1485261470079422, -0.14805059134960175, 0.1060602068901062, -0.05015980824828148, 0.09895985573530197, 0.1236272007226944, 0.02281501330435276, 0.07767676562070847, -0.1343541294336319, 0.002165070502087474, -0.1354108601808548, -0.1087116152048111, 0.028894832357764244, 0.008052026852965355, 0.09405507892370224, 0.06753981858491898, 0.04303360357880592, -0.01304768305271864, -0.03610745444893837, -0.0635775551199913, -0.024416044354438782, -0.00946740061044693, -0.06941753625869751, 0.12435060739517212, 0.010576953180134296, 0.058008622378110886, -0.07533655315637589, -0.10893436521291733, 0.06456074863672256, 0.07138781249523163, 0.016374073922634125, -0.00484736543148756, -0.14132416248321533, 0.08105356246232986, 0.06779402494430542, -0.02267342619597912, -0.2007271945476532, -0.02328089065849781, 0.014020182192325592, 0.12828931212425232, 0.05967412143945694, 0.10614565014839172, 0.05798919126391411, 0.016655661165714264, 0.0036404882557690144, -0.0013079005293548107, -0.01268655713647604, -0.046784643083810806, -0.031356748193502426, -0.03466280922293663, 0.047795046120882034, -0.06949327141046524, 0.0664740800857544, -0.03912116587162018, 0.028625600039958954, -0.03517935425043106, 0.11793456226587296, 0.014323673211038113, -0.029353981837630272, -0.011265094392001629, 0.039540208876132965, -0.03991854563355446, -0.050877541303634644, 0.002292050514370203, -0.03695922717452049, 0.043080538511276245, 0.14608119428157806, -0.1352936178445816, 0.016857663169503212, 0.12563559412956238, 0.090187668800354, -0.11177364736795425, 0.012835389003157616, 0.005751197692006826, 0.005832603666931391, -0.06096325069665909, -0.0410115048289299, 0.30573904514312744, 0.007263943087309599, 0.12111090123653412, -0.08226224035024643, -0.01345403864979744, 0.008788966573774815, -0.06167740002274513, -0.022525250911712646, 0.009707532823085785, 0.018675409257411957, -0.2489481270313263, 0.05503980442881584, -0.08308366686105728, -0.009444969706237316, 0.10637196898460388, 0.006426149047911167, -0.05972948670387268, -0.04448167234659195, -0.049932170659303665, 0.01771768368780613, 0.09005372226238251, -0.12191371619701385, -0.08883737772703171, 0.04021231830120087, -0.003709416603669524, 0.0041550821624696255, -0.06291995942592621, 0.03287122771143913, 0.05045045167207718, 0.007221019361168146, -0.13798190653324127, 0.09706360101699829, 0.03960512951016426, 0.05682671070098877, 0.009652890264987946, 0.003695437917485833, -0.043759752064943314, -0.02796483226120472, -0.09223092347383499, 0.19818171858787537, -0.10602371394634247, -0.3052620589733124, -0.1262456625699997, -0.034438762813806534, -0.011756444349884987, 0.004902686923742294, 0.10220053791999817, -0.013045426458120346, -0.03750546649098396, -0.03473927453160286, 0.019345495849847794, 0.03171159327030182, 0.005057590082287788, -0.04979458451271057, -0.004213083069771528, -0.020495235919952393, -0.15401655435562134, -0.00038452926673926413, -0.04957737773656845, -0.098472960293293, 0.1729394495487213, 0.038177624344825745, 0.06589064002037048, 0.026713792234659195, -0.07357592135667801, 0.008290733210742474, -0.035992927849292755, 0.21236029267311096, -0.07633800804615021, 0.029177002608776093, 0.27148309350013733, 0.06451913714408875, 0.0556030198931694, 0.014773966744542122, -0.031507670879364014, -0.0801764577627182, 0.06293221563100815, 0.030131256207823753, -0.049242813140153885, -0.16355690360069275, -0.07818873226642609, 0.021077893674373627, -0.04550554230809212, 0.08335836231708527, -0.012803501449525356, 0.1313972771167755, 0.044673219323158264, -0.030811769887804985, -0.022026587277650833, -0.0010496116010472178, 0.03523591160774231, 0.012238834984600544, -0.015103538520634174, 0.10433609038591385, 0.01899654045701027, 0.03719226270914078, 0.06267600506544113, -0.10089366137981415, 0.17741641402244568, -0.06577249616384506, -0.06905229389667511, 0.11077159643173218, 0.0672425627708435, 0.06720256060361862, 0.07175393402576447, -0.04822300001978874, 0.017390739172697067, -0.027089254930615425, -0.009138657711446285, -0.09757822751998901, 0.034823961555957794, 0.046825721859931946, -0.05007928982377052, -0.11864490807056427, -0.05834163725376129, 0.03357230871915817, 0.20665504038333893, 0.04131132364273071, -0.26059356331825256, -0.1382841318845749, -0.029585648328065872, -0.09189332276582718, -0.07830295711755753, 0.006226601544767618, 0.02475760318338871, -0.14837872982025146, 0.017195286229252815, -0.04736451059579849, 0.105229951441288, -0.000995954847894609, 0.01841416023671627, -0.08035929501056671, 0.05017964169383049, -0.013832243159413338, 0.06021695211529732, -0.20131456851959229, 0.23189741373062134, 0.0021052926313132048, 0.06567460298538208, -0.08494763821363449, -0.006068374961614609, 0.008829591795802116, -0.005083475727587938, 0.036341968923807144, -0.01613536849617958, 0.008166735991835594, -0.05586223304271698, -0.05514686554670334, 0.001584486337378621, 0.06485233455896378, -0.02862432226538658, 0.11126168817281723, 0.021914497017860413, 0.03925865516066551, -0.010652956552803516, -0.04421321302652359, -0.14110763370990753, -0.024197958409786224, 0.009350181557238102, -0.08041456341743469, 0.058993831276893616, -0.05115269124507904, -0.03340142220258713, -0.08722824603319168, 0.06746065616607666, -0.021579472348093987, -0.02186744287610054, -0.12412016838788986, -0.0024635030422359705, 0.08759932219982147, -0.10638222843408585, 0.06334226578474045, 0.04529324918985367, 0.10506361722946167, -0.03805650398135185, -0.1001758724451065, 0.03161722421646118, -0.07458821684122086, -0.06116505339741707, -0.04055440425872803, 0.01679622195661068, 0.11494279652833939, 0.003700451459735632, 0.053460706025362015, 0.025901617482304573, -0.06720679253339767, -0.025005048140883446, 0.01396731287240982, 0.08614474534988403, 0.10969995707273483, 0.03418685123324394, -0.02720458060503006, 0.006494327448308468, -0.048985641449689865, 0.03945615142583847, 0.09551066160202026, 0.14790907502174377, -0.06031140685081482, 0.1336236149072647, 0.15896658599376678, -0.013060166500508785, -0.24849563837051392, -0.017477674409747124, 0.016699643805623055, 0.07885315269231796, 0.0008701099432073534, -0.12422105669975281, 0.029258819296956062, 0.05760478228330612, 0.015905454754829407, 0.0011681129690259695, -0.16906563937664032, -0.11701992899179459, 0.13189509510993958, 0.03368986025452614, 0.16010171175003052, -0.029754726216197014, 0.01602036878466606, 0.032264795154333115, -0.09644049406051636, -0.031857170164585114, -0.10256139189004898, 0.1052979901432991, -0.021284956485033035, 0.13677936792373657, 0.011812389828264713, -0.06242392212152481, 0.05696440488100052, -0.08379944413900375, 0.06896728277206421, -0.10439129173755646, 0.02195431850850582, 0.16347351670265198, -0.07382923364639282, 0.11422311514616013, 0.0036361124366521835, 0.10696543753147125, -0.07230691611766815, -0.05018600448966026, -0.054299503564834595, 0.09077335149049759, 0.0016529669519513845, -0.04708471521735191, -0.03397323191165924, 0.08853022009134293, 0.035352855920791626, -0.0719359964132309, -0.07363457977771759, -0.007331762462854385, 0.0646212175488472, 0.11357288062572479, 0.10417959094047546, -0.11898654699325562, -0.09231991320848465, -0.04533624276518822, -0.007388981990516186, 0.11129647493362427, -0.09855150431394577, 0.01663927733898163, 0.06862810254096985, 0.05788545310497284, 0.08542829751968384, 0.01974404789507389, -0.0962533950805664, 0.05388583987951279, 0.04953955113887787, -0.09863726049661636, 0.013872796669602394, -0.02272259071469307, -0.08754267543554306, -0.03157849237322807, 0.03922136127948761, 0.15070873498916626, -0.07581160962581635, -0.03631601482629776, -0.014350668527185917, 0.0493662990629673, 0.03214285895228386, 0.1464163064956665, -0.051382921636104584, 0.07745996862649918, -0.08963670581579208, 0.09464100003242493, 0.05353478714823723, -0.014985213987529278, 0.07739710807800293, -0.04745439067482948, -0.10079220682382584, -0.09291670471429825, -0.03599374741315842, -0.0010444987565279007, -0.05090487748384476, -0.01155729778110981, -0.07551275938749313, -0.009165521711111069, 0.014588768593966961, 0.3733048439025879, 0.047089189291000366, 0.035513944923877716, -0.042026009410619736, -0.0029993136413395405, -0.0569022074341774, 0.015142444521188736, 0.13949988782405853, 0.039934221655130386, -0.08102516829967499, 0.21705204248428345, 0.021892108023166656, 0.02617013081908226, -0.06343179941177368, -0.08510345220565796, -0.11152803152799606, 0.007529662922024727, -0.11522820591926575, -0.02873915061354637, -0.03940249979496002, -0.012998086400330067, 0.007457830477505922, -0.04039653763175011, -0.01718161068856716, 0.03943871334195137, -0.048870544880628586, 0.019337346777319908, -0.001719171297736466, 0.05077429860830307, -0.11282385140657425, -0.020048238337039948, 0.09712419658899307, -0.03204289823770523, 0.07031681388616562, 0.10840550810098648, -0.05432556942105293, 0.045264892280101776, -0.08097459375858307, -0.04459501802921295, 0.027461543679237366, 0.06696180999279022, 0.042396727949380875, -0.10043606162071228, 0.06837781518697739, -0.014041421003639698, -0.00876373890787363, 0.03958453610539436, 0.027548396959900856, -0.08593998104333878, 0.008739090524613857, 0.026763612404465675, 0.018585054203867912, -0.09196732938289642, -0.003010884393006563, 0.11813630908727646, 0.07835263013839722, 0.1301482766866684, -0.103049136698246, 0.03898092731833458, -0.10427133738994598, 0.011899402365088463, -0.014141309075057507, -0.044736891984939575, -0.015099139884114265, -0.006731996778398752, 0.04640587791800499, -0.020833173766732216, 0.19042181968688965, 0.05479355901479721, 0.014757228083908558, 0.032610245048999786, 0.03853011503815651, -0.09477926790714264, -0.02822401374578476, 0.048613835126161575, 0.031657371670007706, 0.0030343267135322094, -0.01223293598741293, 0.08808588981628418, -0.0070553929544985294, -0.18556571006774902, 0.1298907995223999, 0.11557647585868835, 0.03114978037774563, 0.03327454999089241, 0.046297091990709305, 0.027115171775221825, -0.06872599571943283, -0.15748503804206848, -0.04940043017268181, 0.021134421229362488, -0.03419063985347748, 0.0712462067604065, 0.1643386036157608, -0.04723039269447327, 0.09533306211233139, 0.019239606335759163, -0.026695283129811287, -0.06653743237257004, -0.08825669437646866, -0.057825565338134766, -0.049918144941329956, 0.028130395337939262, -0.09918639808893204, 0.013196729123592377, 0.025108041241765022, 0.046022024005651474, -0.021996526047587395, 0.02281835488975048, -0.09329764544963837, -0.0872378796339035, 0.037112172693014145, -0.020970212295651436, -0.030940743163228035, 0.050002653151750565, -0.008100563660264015, -0.0016622170805931091, 0.059219032526016235, 0.03168405592441559, -0.018976524472236633, 0.04417095705866814, 0.05559651926159859, -0.0768762081861496, -0.061581458896398544, 0.01344111654907465, 0.052948810160160065, 0.01750570721924305, 0.03254805877804756, 0.10438671708106995, -0.03969792649149895, -0.007003640290349722, 0.26212650537490845, -0.040809109807014465, -0.12618909776210785, -0.2002764493227005, 0.23896700143814087, 0.067530058324337, -0.014703414402902126, -0.007582224439829588, -0.0916985347867012, 0.019741535186767578, 0.2696177065372467, 0.15059399604797363, 0.05120096355676651, 0.02125169150531292, -0.05739802494645119, -0.011775128543376923, -0.009826220571994781, 0.05072588846087456, 0.046067897230386734, 0.20160138607025146, 0.008135761134326458, -0.025036856532096863, 0.007189875468611717, -0.029761426150798798, -0.11018743366003036, 0.015064972452819347, -0.04726521670818329, -0.02499273791909218, -0.04004034772515297, 0.08970519155263901, -0.039569154381752014, -0.19526875019073486, 0.015143068507313728, -0.03596389293670654, -0.10209554433822632, -0.009136365726590157, 0.00948752835392952, 0.019057583063840866, 0.12650024890899658, 0.03863191977143288, 0.02373596653342247, 0.082552969455719, 0.04037267714738846, -0.06921891123056412, -0.12740576267242432, 0.07488749176263809, 0.06731623411178589, 0.18617084622383118, -0.058214034885168076, 0.015966234728693962, 0.10817617177963257, 0.05139642208814621, -0.03709835559129715, 0.03831305354833603, 0.014558983966708183, -0.10976654291152954, 0.05943211913108826, 0.10171947628259659, -0.031229019165039062, 0.06482810527086258, 0.06341877579689026, -0.16425436735153198, 0.00951287243515253, -0.0584714375436306, 0.025239955633878708, -0.09336666762828827, 0.10955630987882614, 0.012294837273657322, 0.11457160860300064, 0.13856512308120728, -0.020995929837226868, 0.005161006934940815, -0.09737136960029602, 0.026941020041704178, -0.0033639073371887207, -0.0901845321059227, -0.09150052815675735, -0.15399429202079773, -0.016973599791526794, -0.03857514262199402, -0.023916246369481087, -0.23531942069530487, -0.04502272233366966, 0.048242077231407166, -0.03686145693063736, 0.03317034989595413, 0.09698057174682617, 0.15476657450199127, 0.03259076923131943, -0.003251545364037156, -0.02230352722108364, 0.007079701405018568, 0.13988517224788666, -0.19929595291614532, -0.06708958745002747 ]
null
null
transformers
# Twitter December 2021 (RoBERTa-base, 124M) This is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-dec2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.33211 fully 2) 0.26205 not 3) 0.22305 getting 4) 0.03790 still 5) 0.01817 all ------------------------------ I keep forgetting to bring a <mask>. 1) 0.04808 mask 2) 0.04628 book 3) 0.03597 lighter 4) 0.03391 pen 5) 0.02982 knife ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.34191 Squid 2) 0.23768 the 3) 0.15699 The 4) 0.02766 End 5) 0.01233 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-dec2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99004 The movie was great 2) 0.96320 Just finished reading 'Embeddings in NLP' 3) 0.95858 I just ordered fried chicken 🐣 4) 0.95356 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-dec2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-dec2021
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter December 2021 (RoBERTa-base, 124M) This is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter December 2021 (RoBERTa-base, 124M)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter December 2021 (RoBERTa-base, 124M)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 121, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter December 2021 (RoBERTa-base, 124M)\n\nThis is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.07722602039575577, 0.07870616763830185, -0.0026660487055778503, 0.037353869527578354, 0.12772811949253082, 0.01618807390332222, 0.1378592848777771, 0.051046136766672134, -0.03135015442967415, 0.033907946199178696, 0.07885940372943878, -0.025279970839619637, 0.024785978719592094, 0.061322975903749466, -0.016970539465546608, -0.19078227877616882, 0.0037633199244737625, 0.0020021989475935698, 0.049905695021152496, 0.14325430989265442, 0.11695504933595657, -0.0713910162448883, 0.09027491509914398, 0.023644691333174706, -0.09929259121417999, -0.0032078621443361044, 0.034665364772081375, -0.1337486058473587, 0.16192346811294556, -0.012317798100411892, 0.09297657757997513, 0.011452863924205303, 0.031611476093530655, -0.012641659937798977, 0.03455260768532753, 0.08736619353294373, -0.01711777225136757, 0.03805489465594292, -0.04203207790851593, -0.09203793853521347, 0.06338584423065186, 0.08416692912578583, 0.0621708445250988, 0.03309758007526398, -0.15184283256530762, -0.03642640262842178, -0.1103753075003624, 0.013611556962132454, 0.048991672694683075, 0.08612999320030212, -0.018190739676356316, 0.19171443581581116, -0.12683583796024323, 0.07456627488136292, 0.09861566871404648, -0.2201034277677536, -0.021738816052675247, 0.06532296538352966, 0.09512368589639664, -0.003985485062003136, 0.00418026652187109, 0.027063928544521332, 0.04206307604908943, 0.022714946419000626, 0.06025861203670502, -0.013085524551570415, -0.03215527534484863, -0.010351315140724182, -0.10955973714590073, -0.06991016864776611, 0.17194582521915436, 0.013806753791868687, -0.0744929239153862, -0.09882070124149323, -0.07886412739753723, 0.038877781480550766, 0.02073010802268982, -0.04483155906200409, 0.033305175602436066, -0.015926925465464592, -0.058603446930646896, -0.027727259323000908, -0.09305928647518158, -0.06059823930263519, -0.11423784494400024, 0.0211209524422884, 0.056631505489349365, 0.06112825870513916, -0.14015555381774902, 0.09385961294174194, -0.13163875043392181, -0.11943157762289047, -0.08885086327791214, -0.07593873143196106, -0.04781397432088852, -0.021467627957463264, -0.10128150135278702, -0.1086399257183075, -0.010251503437757492, 0.2689600884914398, 0.024626821279525757, -0.0014361330540850759, -0.032879188656806946, 0.028067855164408684, 0.0720372125506401, 0.12122047692537308, -0.07365275174379349, -0.03863050043582916, 0.07250913232564926, -0.04960604012012482, -0.039436329156160355, -0.011119961738586426, -0.03556183725595474, -0.030467217788100243, 0.16041874885559082, 0.020885247737169266, 0.0054555656388401985, 0.09849488735198975, 0.015025903470814228, -0.016305189579725266, 0.09172871708869934, -0.0941091999411583, -0.07052706182003021, -0.030869778245687485, -0.13082385063171387, -0.002185329794883728, 0.10212113708257675, -0.019199706614017487, -0.06704983860254288, -0.015887003391981125, -0.07589346170425415, -0.06073467433452606, -0.08181677013635635, -0.16137318313121796, 0.01892605796456337, -0.19336721301078796, 0.012242094613611698, -0.18568651378154755, -0.33848100900650024, -0.04132894054055214, 0.03388514369726181, -0.01994490623474121, 0.05891665816307068, 0.008475304581224918, -0.009280332364141941, -0.004722389858216047, -0.05639331042766571, -0.04067910090088844, -0.04371579363942146, 0.07040651142597198, 0.07684247195720673, 0.10701395571231842, 0.013011114671826363, 0.04911832883954048, -0.16343247890472412, -0.04655599966645241, -0.10075002163648605, 0.03673826903104782, -0.013187327422201633, 0.011147310957312584, -0.08003140985965729, -0.053186122328042984, -0.022403918206691742, 0.04782579466700554, 0.03434338420629501, 0.07792887091636658, -0.1542201191186905, -0.031853046268224716, 0.2536277174949646, -0.151091530919075, -0.1389445811510086, 0.10368876904249191, -0.057007819414138794, 0.08546830713748932, 0.119219571352005, 0.028306784108281136, 0.07457972317934036, -0.11827138811349869, -0.01228956039994955, -0.13394804298877716, -0.11219754815101624, 0.013681264594197273, 0.014692701399326324, 0.09695663303136826, 0.07217566668987274, 0.0480472706258297, -0.02143777348101139, -0.026284174993634224, -0.0655093789100647, -0.02193305268883705, -0.00408486882224679, -0.07364419847726822, 0.12988217175006866, 0.006966572254896164, 0.06302547454833984, -0.06972815841436386, -0.10954171419143677, 0.07130304723978043, 0.07286586612462997, 0.020166626200079918, -0.011120719835162163, -0.1308458149433136, 0.097077377140522, 0.04918131232261658, -0.032185476273298264, -0.20592938363552094, -0.020596332848072052, 0.010388288646936417, 0.1298249065876007, 0.06656655669212341, 0.09695594012737274, 0.05998462811112404, 0.02208353951573372, 0.003579901996999979, -0.0008203705656342208, -0.014589021913707256, -0.0531395822763443, -0.02659931778907776, -0.016419820487499237, 0.04703903943300247, -0.06938287615776062, 0.0677289068698883, -0.03849257156252861, 0.02837221324443817, -0.05731923505663872, 0.10809055715799332, 0.010786286555230618, -0.03268010914325714, -0.008056125603616238, 0.03483588248491287, -0.042958684265613556, -0.04811582341790199, 0.0007374898414127529, -0.027483155950903893, 0.054221007972955704, 0.15226128697395325, -0.13203975558280945, 0.017036015167832375, 0.12284884601831436, 0.0955335795879364, -0.12461193650960922, 0.014130672439932823, 0.006323030684143305, 0.0036669380497187376, -0.06063513830304146, -0.03606772795319557, 0.32584717869758606, 0.0013131499290466309, 0.1311296820640564, -0.08664297312498093, -0.009368530474603176, 0.00924444105476141, -0.06962075084447861, -0.02052386663854122, 0.01555505022406578, 0.03512595221400261, -0.21747781336307526, 0.06354953348636627, -0.09531483799219131, -0.021079331636428833, 0.10139063000679016, 0.006653797812759876, -0.06303690373897552, -0.03927949443459511, -0.055502891540527344, 0.011185163632035255, 0.08863095939159393, -0.08903703838586807, -0.07376239448785782, 0.04280254617333412, 0.008214126341044903, 0.013079429045319557, -0.06640086323022842, 0.03097793646156788, 0.05682637169957161, 0.006726291961967945, -0.143874391913414, 0.08881509304046631, 0.03980747610330582, 0.055822860449552536, 0.006296325474977493, 0.004291860852390528, -0.042674195021390915, -0.019637368619441986, -0.09151515364646912, 0.20266003906726837, -0.10143744945526123, -0.29998162388801575, -0.14370088279247284, -0.03812156617641449, -0.002781754359602928, 0.008460025303065777, 0.09481477737426758, -0.009818026795983315, -0.029463935643434525, -0.03215470537543297, 0.024037038907408714, 0.026718534529209137, -0.00007758319407003, -0.05280454456806183, -0.00592827470973134, -0.013377540744841099, -0.15078595280647278, -0.0006544628413394094, -0.05422724038362503, -0.09725028276443481, 0.17797312140464783, 0.040728092193603516, 0.06776747107505798, 0.019895236939191818, -0.08288281410932541, 0.005292967893183231, -0.033739760518074036, 0.21678504347801208, -0.06707627326250076, 0.022799821570515633, 0.2764202952384949, 0.0625297874212265, 0.05802122503519058, -0.00016077261534519494, -0.03747029975056648, -0.07334235310554504, 0.06551790237426758, 0.0330740287899971, -0.0521065816283226, -0.1623418927192688, -0.06679394841194153, 0.03360888734459877, -0.05404762178659439, 0.07838746905326843, -0.015079863369464874, 0.1214853897690773, 0.05114268884062767, -0.021007588133215904, -0.027476325631141663, -0.017094984650611877, 0.029213786125183105, -0.010149325244128704, -0.008969845250248909, 0.10400678217411041, 0.019274543970823288, 0.03316169232130051, 0.06437896937131882, -0.0877286046743393, 0.18687237799167633, -0.07866182178258896, -0.06416255980730057, 0.10417397320270538, 0.07151111215353012, 0.07636480033397675, 0.07863815128803253, -0.0629369467496872, 0.018569210544228554, -0.03119409643113613, -0.0049802763387560844, -0.09313645213842392, 0.02538977563381195, 0.03596870228648186, -0.0374935157597065, -0.12389975786209106, -0.05554937943816185, 0.022741664201021194, 0.20668527483940125, 0.03904687613248825, -0.2845657169818878, -0.1377713531255722, -0.03752966970205307, -0.0873095914721489, -0.07401208579540253, 0.009716438129544258, 0.014581598341464996, -0.14472143352031708, 0.008975422941148281, -0.04505828022956848, 0.1015949547290802, -0.0027478053234517574, 0.014631305821239948, -0.06705214083194733, 0.053772933781147, -0.0175928995013237, 0.06262975931167603, -0.19539065659046173, 0.22659608721733093, -0.0024884811136871576, 0.05788803845643997, -0.06650281697511673, -0.004230830352753401, 0.01399701926857233, -0.02191779762506485, 0.03236054629087448, -0.015638964250683784, 0.020333506166934967, -0.06832832843065262, -0.0638667494058609, 0.006847180426120758, 0.05537007376551628, -0.03220563009381294, 0.1178480014204979, 0.023938486352562904, 0.043092992156744, -0.010175056755542755, -0.06311992555856705, -0.12224222719669342, -0.01882188580930233, 0.005701572634279728, -0.09600403159856796, 0.05336149036884308, -0.04424692690372467, -0.03959614410996437, -0.09557056427001953, 0.04990502819418907, -0.02994648739695549, -0.02938070334494114, -0.11938982456922531, 0.001972050406038761, 0.09327705204486847, -0.10884258896112442, 0.0634407177567482, 0.03919420763850212, 0.09738796204328537, -0.034853313118219376, -0.10789506882429123, 0.024699533358216286, -0.07010575383901596, -0.05612039938569069, -0.034949131309986115, 0.0034630552399903536, 0.11445588618516922, 0.0050125434063375, 0.03989120572805405, 0.03236694633960724, -0.07313425838947296, -0.020462723448872566, 0.013434949330985546, 0.06329034268856049, 0.125553697347641, 0.042947206646203995, -0.03226105868816376, 0.01672740839421749, -0.05093631148338318, 0.048601482063531876, 0.08910445868968964, 0.15044239163398743, -0.06425434350967407, 0.12344153225421906, 0.16835550963878632, -0.013628088869154453, -0.2484647035598755, -0.012063704431056976, 0.019742541015148163, 0.0849604606628418, 0.0011376013280823827, -0.12793922424316406, 0.03223757445812225, 0.06732680648565292, 0.015616083517670631, 0.012910659424960613, -0.15615291893482208, -0.11273892223834991, 0.12094219774007797, 0.02518179826438427, 0.15527395904064178, -0.027908293530344963, 0.01568800024688244, 0.04319407418370247, -0.09312494099140167, -0.04008934646844864, -0.07189960777759552, 0.1102590337395668, -0.02591063268482685, 0.1459798961877823, 0.009712434373795986, -0.06414379179477692, 0.05675020441412926, -0.07684896141290665, 0.07063980400562286, -0.09736514836549759, 0.013826772570610046, 0.14865942299365997, -0.07310037314891815, 0.12404737621545792, 0.008217749185860157, 0.11322960257530212, -0.0735546424984932, -0.050458747893571854, -0.05632665753364563, 0.08764030039310455, 0.007066745311021805, -0.04133356362581253, -0.03238110989332199, 0.09058233350515366, 0.02475246787071228, -0.07296593487262726, -0.09264703840017319, -0.0025664339773356915, 0.055030904710292816, 0.11803296208381653, 0.08049822598695755, -0.11240657418966293, -0.10209587961435318, -0.042802661657333374, -0.003606016980484128, 0.104556605219841, -0.10366906970739365, 0.010493345558643341, 0.07358565926551819, 0.058578189462423325, 0.08647717535495758, 0.021727358922362328, -0.09703099727630615, 0.0590926855802536, 0.042522087693214417, -0.09961731731891632, 0.03466079756617546, -0.026855308562517166, -0.1009635329246521, -0.03685705363750458, 0.03800279274582863, 0.1501653790473938, -0.08338483422994614, -0.0376201793551445, -0.014805316925048828, 0.05504005029797554, 0.026718519628047943, 0.1498207002878189, -0.04414308816194534, 0.07432704418897629, -0.09056847542524338, 0.10944405198097229, 0.0541132315993309, -0.011679643765091896, 0.07543564587831497, -0.05447915196418762, -0.09793402254581451, -0.08477364480495453, -0.035799723118543625, 0.007494252175092697, -0.06494320929050446, -0.01325912680476904, -0.09100966900587082, 0.0012967534130439162, 0.02031834051012993, 0.36471113562583923, 0.056998249143362045, 0.032967615872621536, -0.04091203957796097, -0.0034400264266878366, -0.0627933070063591, 0.013517710380256176, 0.1469409316778183, 0.049333978444337845, -0.07569063454866409, 0.20807011425495148, 0.025955690070986748, 0.032173652201890945, -0.06086873635649681, -0.08449974656105042, -0.10943819582462311, 0.013465122319757938, -0.1045999750494957, -0.022791387513279915, -0.029338693246245384, -0.017168091610074043, 0.0033049238845705986, -0.03584488853812218, -0.016891291365027428, 0.04203922301530838, -0.04624828323721886, 0.021714551374316216, -0.006486025173217058, 0.043552935123443604, -0.11325706541538239, -0.017442993819713593, 0.09918137639760971, -0.028217803686857224, 0.06775546073913574, 0.11098165065050125, -0.051923129707574844, 0.04236095771193504, -0.0792858749628067, -0.04792720079421997, 0.02523653581738472, 0.060482896864414215, 0.03760384023189545, -0.11050843447446823, 0.07421941310167313, -0.019397685304284096, -0.006325367838144302, 0.03225691244006157, 0.030139511451125145, -0.0893712043762207, 0.01488188374787569, 0.028519337996840477, 0.019800355657935143, -0.09892354160547256, -0.0076964301988482475, 0.11674302816390991, 0.08379761129617691, 0.13373883068561554, -0.09434241056442261, 0.03350286930799484, -0.10679725557565689, 0.011132573708891869, -0.013611932285130024, -0.04570222645998001, -0.03383558616042137, 0.00046723190462216735, 0.04263535141944885, -0.01636800728738308, 0.1840858906507492, 0.05459575727581978, 0.007611004635691643, 0.024774985387921333, 0.04333871603012085, -0.08489762246608734, -0.023740557953715324, 0.02889922633767128, 0.029910877346992493, -0.0016683614812791348, -0.016141973435878754, 0.10027965903282166, -0.004423392936587334, -0.18912342190742493, 0.13048052787780762, 0.13367129862308502, 0.029006727039813995, 0.030538786202669144, 0.048884447664022446, 0.030151307582855225, -0.06222659349441528, -0.15199297666549683, -0.04939638450741768, 0.009185582399368286, -0.021405966952443123, 0.07934305816888809, 0.16527943313121796, -0.047250259667634964, 0.10154692083597183, 0.015750091522932053, -0.02408733405172825, -0.06315331906080246, -0.08384575694799423, -0.0524008609354496, -0.04191608726978302, 0.031302712857723236, -0.0982273519039154, 0.008560944348573685, 0.07029348611831665, 0.04277162253856659, -0.02651864103972912, 0.020806413143873215, -0.0908229872584343, -0.08921946585178375, 0.023128150030970573, -0.025927193462848663, -0.02504478022456169, 0.05888708308339119, -0.010083580389618874, 0.012621011584997177, 0.06870824843645096, 0.03870498389005661, -0.02269425429403782, 0.05273892730474472, 0.059648267924785614, -0.07473768293857574, -0.06072985380887985, 0.010589702054858208, 0.05312090367078781, 0.015234089456498623, 0.02514781802892685, 0.09588917344808578, -0.03327305242419243, -0.006465822923928499, 0.26091209053993225, -0.03981178626418114, -0.11523723602294922, -0.20648807287216187, 0.23324955999851227, 0.06825307011604309, -0.012571451254189014, -0.0012651444412767887, -0.09685467183589935, 0.016047222539782524, 0.26812979578971863, 0.15731827914714813, 0.03778117895126343, 0.01142246462404728, -0.053587548434734344, -0.01161448284983635, -0.0021108794026076794, 0.0544360913336277, 0.05243195965886116, 0.19878795742988586, -0.0017128261970356107, -0.03911970928311348, -0.0028721403796225786, -0.0212247334420681, -0.09845779836177826, 0.01817166991531849, -0.05069848150014877, -0.014757994562387466, -0.0443330816924572, 0.08139259368181229, -0.0425027459859848, -0.19563588500022888, -0.0038957546930760145, -0.041480910032987595, -0.10666003078222275, -0.008026096038520336, 0.0010051915887743235, 0.011980387382209301, 0.12543408572673798, 0.03665436431765556, 0.02527351677417755, 0.07294894009828568, 0.03776100277900696, -0.0681106373667717, -0.12658502161502838, 0.07028863579034805, 0.09644747525453568, 0.17701223492622375, -0.05526149272918701, 0.011385428719222546, 0.10358881950378418, 0.05953185632824898, -0.03386254236102104, 0.0390300378203392, 0.009680427610874176, -0.1001974567770958, 0.05819978564977646, 0.09772133827209473, -0.023320099338889122, 0.05979035049676895, 0.05491270869970322, -0.16250447928905487, 0.010088593699038029, -0.06330138444900513, 0.016292143613100052, -0.09548234939575195, 0.10147782415151596, 0.01470501720905304, 0.11352089792490005, 0.14365102350711823, -0.014231792651116848, 0.009872033260762691, -0.10122637450695038, 0.02817434072494507, -0.0008549599442631006, -0.09572294354438782, -0.08674094080924988, -0.1555352658033371, -0.01586536504328251, -0.036480896174907684, -0.028315654024481773, -0.26325535774230957, -0.03838992118835449, 0.04305608943104744, -0.039550989866256714, 0.04233572259545326, 0.0969121977686882, 0.14304105937480927, 0.04677247628569603, -0.004308274947106838, 0.012319065630435944, 0.003246207954362035, 0.1349542886018753, -0.20257163047790527, -0.07425550371408463 ]
null
null
transformers
# Twitter-roBERTa-base for Emoji prediction This is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emoji' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Looking forward to Christmas" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Looking forward to Christmas" # text = preprocess(text) # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 🎄 0.5457 2) 😊 0.1417 3) 😁 0.0649 4) 😍 0.0395 5) ❤️ 0.03 6) 😜 0.028 7) ✨ 0.0263 8) 😉 0.0237 9) 😂 0.0177 10) 😎 0.0166 11) 😘 0.0143 12) 💕 0.014 13) 💙 0.0076 14) 💜 0.0068 15) 🔥 0.0065 16) 💯 0.004 17) 🇺🇸 0.0037 18) 📷 0.0034 19) ☀ 0.0033 20) 📸 0.0021 ```
{}
text-classification
cardiffnlp/twitter-roberta-base-emoji
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.12421" ]
[]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter-roBERTa-base for Emoji prediction This is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark. - Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). - Git Repo: Tweeteval official repository. ## Example of classification Output:
[ "# Twitter-roBERTa-base for Emoji prediction\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter-roBERTa-base for Emoji prediction\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ 55, 80, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter-roBERTa-base for Emoji prediction\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.## Example of classification\n\n\n\nOutput:" ]
[ 0.03984452784061432, -0.060691192746162415, -0.002531054662540555, -0.01259704865515232, 0.09568382799625397, -0.001203435705974698, 0.023873712867498398, 0.09335892647504807, 0.027800213545560837, 0.018396496772766113, 0.19641683995723724, 0.17937825620174408, -0.0391392856836319, 0.18828067183494568, -0.060314882546663284, -0.27013206481933594, 0.019938327372074127, 0.013505030423402786, 0.08401282876729965, 0.1501174420118332, 0.12660053372383118, -0.057995475828647614, 0.13007818162441254, 0.0339004285633564, -0.1290293186903, 0.04097466915845871, 0.03464450314640999, -0.16944587230682373, 0.05799707770347595, 0.015301024541258812, 0.027938151732087135, -0.0013201808324083686, -0.0037503433413803577, -0.006223598029464483, 0.033122286200523376, 0.06071893870830536, -0.06755366176366806, 0.03576084226369858, 0.048626720905303955, -0.19400465488433838, 0.1609063595533371, -0.026165418326854706, 0.12717972695827484, 0.044139161705970764, -0.09942308813333511, -0.00027055328246206045, -0.0019606954883784056, -0.07787059247493744, 0.12940147519111633, 0.057404447346925735, -0.043349191546440125, 0.25190645456314087, -0.13359200954437256, 0.09764190018177032, 0.13316850364208221, -0.2648988366127014, -0.03877582028508186, -0.04894408956170082, 0.05185559391975403, 0.022827982902526855, 0.01791474036872387, 0.05023178458213806, 0.10245949029922485, 0.06496262550354004, 0.0907830074429512, -0.04631748050451279, 0.0024287544656544924, 0.0034989486448466778, -0.13899198174476624, 0.012824890203773975, 0.23866121470928192, 0.07010126113891602, -0.012841182760894299, -0.058993857353925705, -0.027728762477636337, -0.012187156826257706, 0.0015358696691691875, -0.08342420309782028, -0.0242318082600832, -0.012017584405839443, -0.08927339315414429, 0.0941174253821373, -0.08263715356588364, 0.0023652242962270975, -0.16979555785655975, 0.1576305627822876, -0.004704720806330442, 0.054126445204019547, -0.1754784882068634, 0.04502653703093529, -0.05357259884476662, -0.1050812304019928, 0.020141655579209328, -0.08860347419977188, -0.04678111895918846, -0.051572203636169434, -0.101880744099617, -0.14548072218894958, 0.048382263630628586, 0.22682438790798187, 0.12030519545078278, 0.025718331336975098, 0.10899510234594345, 0.003553244052454829, 0.13670781254768372, 0.13199710845947266, -0.1895202249288559, -0.11681555211544037, 0.036798011511564255, -0.12189754843711853, -0.045324087142944336, -0.022466616705060005, -0.08210361748933792, -0.033223215490579605, 0.14723268151283264, -0.027696583420038223, -0.005994889419525862, 0.092157743871212, -0.04881031811237335, -0.05072003975510597, 0.007835566997528076, -0.07161938399076462, -0.05914515256881714, -0.08499869704246521, -0.12707531452178955, 0.05804822966456413, -0.02328791655600071, 0.06768857687711716, -0.037564098834991455, 0.05012069642543793, -0.09494327753782272, -0.07018854469060898, 0.002417660551145673, -0.09800704568624496, 0.00034552617580629885, -0.13681672513484955, 0.05278928577899933, -0.23355098068714142, -0.1335846185684204, -0.042712632566690445, 0.01580014079809189, -0.035846833139657974, 0.017155054956674576, -0.04984453693032265, -0.02647630125284195, 0.056519437581300735, 0.0008280843030661345, 0.07776818424463272, -0.07213224470615387, 0.05762505531311035, -0.09114818274974823, 0.0712733268737793, -0.12092927098274231, 0.0411062091588974, -0.17931197583675385, -0.04214579612016678, -0.18576785922050476, 0.12655195593833923, 0.033903613686561584, 0.22495101392269135, -0.11274364590644836, -0.04880998656153679, -0.08974365144968033, 0.044731348752975464, 0.025800839066505432, 0.08117994666099548, -0.1581345498561859, -0.07294158637523651, 0.013185935094952583, -0.016886906698346138, -0.1622825413942337, 0.14848573505878448, -0.0526735782623291, 0.07797195762395859, 0.1406952142715454, 0.23272138833999634, 0.052599046379327774, 0.03448066860437393, 0.007422329392284155, -0.04589122533798218, -0.16713665425777435, -0.00024875058443285525, 0.03840020298957825, 0.11627862602472305, -0.13491606712341309, 0.03395859897136688, 0.07986297458410263, 0.055436186492443085, -0.100446917116642, 0.02966553345322609, 0.014643142931163311, -0.06964068114757538, 0.003508108900859952, -0.06623794138431549, 0.04803449660539627, -0.1665654331445694, -0.13426321744918823, -0.05540532246232033, 0.04533538967370987, 0.04418276250362396, -0.03210809826850891, -0.11439643800258636, 0.08005101978778839, 0.025584561750292778, -0.011965634301304817, -0.15073290467262268, 0.05011889711022377, -0.00003753862620214932, 0.11841119825839996, 0.11936080455780029, -0.07102381438016891, 0.024215439334511757, -0.07038591802120209, 0.055831097066402435, -0.03943195566534996, 0.08821044862270355, 0.03176705539226532, -0.10297641158103943, -0.062301602214574814, 0.0798991248011589, -0.08719383925199509, -0.0982733890414238, 0.012272283434867859, -0.03269191458821297, 0.0299764983355999, 0.13278360664844513, 0.038898155093193054, 0.06293841451406479, 0.013901889324188232, -0.030486177653074265, -0.060122232884168625, -0.04265155270695686, -0.02337755635380745, -0.04228643700480461, -0.0913010761141777, 0.2099321186542511, -0.1464427262544632, 0.1672050952911377, 0.19607847929000854, -0.11683347821235657, -0.11782471835613251, 0.09429891407489777, -0.04759873449802399, 0.041599612683057785, 0.023709585890173912, -0.045933257788419724, 0.22649362683296204, -0.052519433200359344, 0.0634133443236351, -0.07944522798061371, -0.09113522619009018, 0.06940648704767227, -0.03727344796061516, -0.09733551740646362, 0.10216289013624191, 0.05462270230054855, -0.29570645093917847, 0.06535463780164719, 0.18726906180381775, 0.04039423540234566, 0.14099231362342834, 0.035165391862392426, -0.016239052638411522, 0.0024098732974380255, -0.13167640566825867, -0.078696109354496, -0.05142058804631233, -0.1582621932029724, -0.08926790952682495, 0.025582002475857735, -0.010399979539215565, 0.03155743330717087, -0.013082054443657398, -0.05438075587153435, 0.02834818698465824, 0.09305796772241592, 0.013275180011987686, 0.11228630691766739, 0.04303836077451706, 0.16182027757167816, -0.006921675521880388, -0.07853541523218155, -0.008251330815255642, 0.014955023303627968, -0.13197706639766693, 0.18366122245788574, -0.13452452421188354, -0.2905315160751343, 0.024363353848457336, -0.0019816486164927483, 0.06428290903568268, 0.023010093718767166, 0.1042836606502533, -0.17915567755699158, -0.041133005172014236, -0.08377884328365326, -0.01924276165664196, -0.09900645166635513, 0.1256537139415741, -0.03004422038793564, -0.035352494567632675, -0.07258253544569016, -0.08453147858381271, -0.0674273744225502, -0.09330355376005173, -0.06094357743859291, 0.13884484767913818, -0.09630010277032852, 0.05040424317121506, 0.12568655610084534, -0.07849141955375671, 0.060484129935503006, -0.10761357098817825, 0.2072063833475113, -0.08736655861139297, 0.04319029673933983, 0.10427851974964142, 0.06664709746837616, 0.024336373433470726, 0.042264390736818314, -0.05716428905725479, -0.13050828874111176, 0.12216926366090775, 0.007277542259544134, -0.05869786813855171, -0.16420090198516846, -0.12187562137842178, 0.008995404466986656, 0.019866546615958214, 0.10431763529777527, 0.021435873582959175, 0.09304860234260559, 0.05558015778660774, 0.021949127316474915, 0.026959482580423355, -0.02111220732331276, 0.07836484163999557, -0.03125932812690735, 0.03322237730026245, 0.12190640717744827, -0.00009492894605500624, -0.07874397933483124, 0.16212324798107147, -0.17424243688583374, 0.08615962415933609, 0.014641048386693, -0.0819842517375946, 0.031270336359739304, 0.017134539783000946, 0.06834880262613297, 0.03805425018072128, -0.02700386755168438, 0.007427015341818333, -0.07502122968435287, -0.023746974766254425, -0.025272633880376816, 0.07369557023048401, 0.02453824132680893, -0.09423788636922836, -0.08733071386814117, 0.04420618712902069, 0.12798920273780823, 0.11608064919710159, 0.08676532655954361, -0.3771868944168091, -0.017299162223935127, -0.024478357285261154, -0.11458181589841843, 0.0021368572488427162, 0.1255582571029663, 0.042889561504125595, -0.04214699938893318, 0.12318853288888931, 0.06513340026140213, 0.0796201080083847, 0.08543556928634644, 0.028022462502121925, 0.0037868034560233355, 0.017825916409492493, -0.07681484520435333, 0.07593685388565063, -0.2939222753047943, 0.1433674842119217, -0.03683098405599594, -0.010277964174747467, -0.08841387182474136, -0.09017486125230789, 0.026751898229122162, -0.021956922486424446, 0.11971088498830795, 0.014571056701242924, 0.07726497948169708, -0.03132101520895958, -0.0660758912563324, 0.014752975665032864, 0.08649827539920807, -0.0876920074224472, 0.05353172495961189, 0.006623329594731331, 0.013942520134150982, 0.038049787282943726, -0.08199185878038406, -0.08820997178554535, -0.02715960517525673, -0.05164921656250954, 0.013900344260036945, -0.016865471377968788, 0.029176142066717148, -0.05484257638454437, 0.009453871287405491, -0.03107692115008831, 0.06716500967741013, -0.02961817942559719, -0.13770952820777893, 0.09694110602140427, 0.10748927295207977, -0.0780780166387558, 0.02629317343235016, 0.018192727118730545, -0.0006396300159394741, 0.021249346435070038, -0.19145117700099945, 0.12931407988071442, -0.09397774189710617, -0.0440828874707222, -0.044575035572052, 0.11191170662641525, 0.0832076445221901, -0.0019990094006061554, 0.07790162414312363, 0.03032670170068741, -0.10500223189592361, -0.0864049643278122, 0.07049258053302765, -0.03164951130747795, 0.07871902734041214, 0.036062292754650116, 0.06979452073574066, -0.1390884667634964, -0.09357074648141861, 0.053000230342149734, 0.10057683289051056, 0.05811511352658272, -0.06123514100909233, 0.051499802619218826, 0.07956042140722275, 0.007316720671951771, -0.1348278969526291, -0.06400375068187714, 0.04669615998864174, 0.000014228108739189338, -0.01327909529209137, -0.04154419153928757, 0.173056960105896, 0.0641481876373291, 0.06134939566254616, -0.018735064193606377, -0.19011056423187256, -0.13652575016021729, 0.16452690958976746, 0.013699148781597614, 0.361677885055542, -0.07972103357315063, 0.015275873243808746, -0.03716541454195976, 0.04030147194862366, 0.2755492925643921, -0.078896664083004, 0.02669236622750759, 0.01253470592200756, 0.13169899582862854, 0.012107866816222668, 0.010090717114508152, -0.009736500680446625, 0.04617314413189888, 0.052093278616666794, -0.10368327051401138, -0.13516896963119507, 0.07177934795618057, -0.03093063086271286, 0.09201332926750183, -0.009685485623776913, 0.07117918878793716, -0.19443780183792114, -0.04001874476671219, -0.07326439768075943, 0.06730210036039352, 0.06357623636722565, -0.05945544317364693, -0.08414337038993835, 0.0136526795104146, 0.0165597852319479, -0.053288787603378296, 0.024460773915052414, 0.0063544525764882565, 0.01157110370695591, -0.058269403874874115, 0.09660191833972931, -0.15939532220363617, 0.06730704009532928, -0.02268134616315365, -0.03431462123990059, 0.0638730451464653, -0.1536615937948227, 0.012708269990980625, 0.07806020975112915, -0.003331270767375827, 0.06527724117040634, 0.04633132368326187, -0.07244038581848145, 0.040674056857824326, 0.1156608909368515, -0.1702033132314682, 0.06606438755989075, -0.04680555313825607, 0.030541902408003807, 0.12217603623867035, 0.06457296758890152, 0.13215135037899017, -0.05828822776675224, -0.06891415268182755, -0.020356616005301476, 0.03234216198325157, -0.036342088133096695, 0.14797358214855194, 0.0608941987156868, -0.04726567491889, -0.10573223233222961, 0.03805576637387276, 0.04808179289102554, -0.01046534813940525, 0.11339438706636429, 0.07702808827161789, -0.12411609292030334, -0.04926653206348419, -0.040392205119132996, 0.08792030811309814, -0.06123780831694603, 0.005820986349135637, 0.012363307178020477, -0.06039303168654442, 0.10762844234704971, 0.32400867342948914, 0.08451353758573532, 0.04524960368871689, -0.014075239188969135, -0.023713774979114532, 0.021883292123675346, 0.03147697076201439, 0.148577019572258, -0.0047710854560136795, -0.13333943486213684, 0.07889913022518158, 0.016505928710103035, 0.07051242142915726, -0.09630889445543289, -0.05114465951919556, -0.11415000259876251, -0.004101651720702648, -0.04027942195534706, 0.038094621151685715, -0.03870285302400589, -0.01452465821057558, 0.015896307304501534, -0.07859741151332855, -0.08123036473989487, -0.04200441390275955, -0.07000940293073654, 0.007609968073666096, 0.026558134704828262, 0.05081252008676529, -0.08737944811582565, -0.06374672800302505, 0.03585687279701233, -0.00324953137896955, 0.11370017379522324, 0.12009786069393158, -0.06304004788398743, 0.030770262703299522, -0.19182662665843964, -0.10050957649946213, 0.10454884171485901, 0.0014465437270700932, 0.054108165204524994, -0.0018413150683045387, 0.05278819799423218, 0.04394275322556496, 0.0489315390586853, 0.01214082445949316, 0.06470886617898941, -0.11983778327703476, 0.016388483345508575, 0.026132620871067047, -0.14244487881660461, -0.08948875218629837, -0.05541625991463661, 0.03405078127980232, 0.05260096490383148, 0.1508331149816513, -0.03735485300421715, -0.014208790846168995, -0.1375015825033188, -0.012862158939242363, -0.00999829825013876, -0.053962912410497665, -0.020300772041082382, 0.030344227328896523, 0.043515320867300034, -0.04069247096776962, 0.19244354963302612, 0.13636693358421326, -0.016604885458946228, 0.041967470198869705, 0.1247045174241066, -0.045000381767749786, 0.04215574637055397, 0.07627342641353607, 0.0014528098981827497, -0.01111871749162674, -0.16518035531044006, 0.025146743282675743, 0.11710134893655777, -0.11180626600980759, 0.06256508082151413, 0.0879821702837944, 0.025882259011268616, 0.01693623512983322, 0.007475320249795914, 0.028876911848783493, 0.016625450924038887, -0.06222788244485855, -0.054544597864151, 0.0559450127184391, 0.0951557606458664, 0.12006720900535583, 0.20942991971969604, -0.004839042201638222, -0.03316109627485275, 0.02853880263864994, 0.006236993707716465, -0.0617232546210289, -0.23264425992965698, -0.1000475212931633, -0.1281709522008896, -0.001966317882761359, -0.10962694883346558, -0.0010761492885649204, 0.04227680712938309, 0.12551771104335785, -0.02203892171382904, -0.018750296905636787, -0.06156092509627342, -0.09781535714864731, 0.16913291811943054, -0.004866945091634989, -0.04585031047463417, 0.07661426812410355, -0.03013160638511181, -0.03815639019012451, 0.07796784490346909, -0.034846965223550797, -0.016699986532330513, -0.08548035472631454, 0.03431985527276993, -0.09751719236373901, -0.08536870032548904, -0.028942488133907318, 0.0017792501021176577, -0.10014711320400238, -0.1385970115661621, 0.05585725978016853, -0.025885026901960373, 0.03044840507209301, 0.2615514397621155, 0.005468402057886124, 0.014117993414402008, -0.13248738646507263, 0.08673138916492462, 0.04586818441748619, 0.04296335577964783, 0.0010435394942760468, -0.0805487185716629, -0.05843483284115791, 0.20285943150520325, 0.20412570238113403, -0.011758136563003063, -0.017117567360401154, -0.0852997675538063, 0.014820907264947891, 0.0990961417555809, 0.10396875441074371, 0.07740345597267151, 0.1999375969171524, 0.013956831768155098, 0.02281799167394638, -0.07309526205062866, 0.012497338466346264, 0.020207257941365242, 0.009289715439081192, 0.07281193882226944, -0.06853135675191879, -0.024425499141216278, 0.15367670357227325, -0.09254911541938782, -0.09629078954458237, -0.08572450280189514, -0.13215096294879913, -0.09924454241991043, -0.016468588262796402, -0.02433893084526062, 0.05360245704650879, 0.16276243329048157, -0.0009096910944208503, -0.043684221804142, -0.10932417958974838, 0.08510860055685043, -0.23709285259246826, -0.055461812764406204, 0.07118110358715057, -0.018507733941078186, 0.07723408937454224, -0.031879741698503494, 0.0794772356748581, 0.06952956318855286, 0.03669238090515137, -0.020193200558423996, 0.05519825965166092, -0.02257603593170643, 0.13788990676403046, 0.12519152462482452, 0.025888333097100258, 0.03169208765029907, -0.030552266165614128, 0.07177737355232239, -0.15946269035339355, -0.03284526616334915, -0.07070570439100266, 0.005353030748665333, -0.07565582543611526, 0.1032150462269783, -0.06673402339220047, 0.08170861750841141, 0.07592060416936874, -0.09636766463518143, 0.048860788345336914, -0.05713731795549393, 0.0029877086635679007, -0.023751303553581238, -0.17424756288528442, -0.04710766300559044, -0.1336381584405899, -0.053770557045936584, 0.002829822013154626, -0.023933786898851395, -0.14691179990768433, 0.08405278623104095, -0.16052523255348206, -0.025603199377655983, -0.03388750180602074, 0.12930433452129364, 0.04367224499583244, 0.03766978532075882, -0.04305599629878998, 0.18155817687511444, 0.06734605878591537, 0.13447348773479462, -0.13498404622077942, -0.06970898061990738 ]
null
null
transformers
# Twitter-roBERTa-base for Emotion Recognition This is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). <b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. See [twitter-roberta-base-emotion-multilabel-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion-multilabel-latest) and [TweetNLP](https://github.com/cardiffnlp/tweetnlp) for more details. ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emotion' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Celebrating my promotion 😎" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Celebrating my promotion 😎" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) joy 0.9382 2) optimism 0.0362 3) anger 0.0145 4) sadness 0.0112 ```
{}
text-classification
cardiffnlp/twitter-roberta-base-emotion
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.12421" ]
[]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter-roBERTa-base for Emotion Recognition This is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark. - Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). - Git Repo: Tweeteval official repository. <b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. See twitter-roberta-base-emotion-multilabel-latest and TweetNLP for more details. ## Example of classification Output:
[ "# Twitter-roBERTa-base for Emotion Recognition\n\nThis is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.\n\n<b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. \nSee twitter-roberta-base-emotion-multilabel-latest and TweetNLP for more details.", "## Example of classification\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter-roBERTa-base for Emotion Recognition\n\nThis is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.\n\n<b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. \nSee twitter-roberta-base-emotion-multilabel-latest and TweetNLP for more details.", "## Example of classification\n\n\n\nOutput:" ]
[ 55, 137, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter-roBERTa-base for Emotion Recognition\n\nThis is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.\n\n<b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. \nSee twitter-roberta-base-emotion-multilabel-latest and TweetNLP for more details.## Example of classification\n\n\n\nOutput:" ]
[ -0.006677563302218914, -0.06411441415548325, -0.003505260683596134, 0.03606069087982178, 0.10569944977760315, 0.023951394483447075, -0.04472072049975395, 0.1072755753993988, 0.020965252071619034, 0.012926913797855377, 0.037213582545518875, 0.14848683774471283, -0.03931652382016182, 0.14089424908161163, -0.015040338970720768, -0.3058331310749054, -0.03715350851416588, 0.046359457075595856, 0.2713416516780853, 0.14722193777561188, 0.14041998982429504, -0.03319645673036575, 0.13392427563667297, 0.023734666407108307, -0.11419468373060226, 0.06645919382572174, 0.010919219814240932, -0.06956921517848969, 0.12530794739723206, -0.03299175575375557, -0.04199616238474846, 0.026025570929050446, 0.0052795070223510265, -0.1477658748626709, 0.038767922669649124, 0.023388946428894997, 0.001893846783787012, 0.04696791246533394, 0.017810337245464325, -0.21543999016284943, 0.24461735785007477, -0.06513114273548126, 0.09959136694669724, 0.07060287147760391, -0.06565552949905396, -0.16117066144943237, -0.05895683169364929, 0.06046662852168083, 0.040315113961696625, 0.0722319632768631, -0.03717169165611267, 0.26451581716537476, -0.06827522814273834, 0.10484497249126434, 0.23962628841400146, -0.1783360242843628, -0.06743358075618744, -0.1172921434044838, 0.10165190696716309, -0.10141108185052872, -0.07591638714075089, 0.04140779376029968, 0.05978512018918991, 0.082722507417202, 0.10578758269548416, -0.09680073708295822, 0.005030293483287096, -0.009489394724369049, -0.09449870884418488, 0.045022282749414444, 0.0853038877248764, 0.10402344912290573, -0.07228894531726837, -0.09114784002304077, 0.009488926269114017, -0.0022090361453592777, -0.022546160966157913, -0.10226575285196304, 0.012749940156936646, -0.032142821699380875, -0.17545828223228455, -0.004477911628782749, -0.08195345848798752, 0.0642256960272789, -0.08321240544319153, 0.11560390889644623, -0.028065387159585953, 0.01629076898097992, -0.016350513324141502, 0.027592672035098076, -0.13072624802589417, -0.04000379145145416, -0.04022282361984253, -0.07800383120775223, -0.009605083614587784, -0.023347485810518265, -0.14294089376926422, -0.0740206390619278, -0.02309129387140274, 0.14688925445079803, 0.05499735474586487, -0.0389724038541317, 0.041506581008434296, -0.06291231513023376, 0.1663820594549179, 0.21027563512325287, -0.12386040389537811, -0.09770020097494125, -0.01615193858742714, -0.07936808466911316, -0.047591377049684525, 0.023481817916035652, 0.008870084770023823, -0.03576149046421051, 0.05698349326848984, -0.030044686049222946, -0.06532609462738037, 0.14990006387233734, -0.09814400225877762, -0.02679758332669735, -0.09565384685993195, -0.07493414729833603, -0.019243119284510612, -0.03806820139288902, -0.049428790807724, 0.16526837646961212, 0.029013101011514664, -0.010534543544054031, -0.0018744979752227664, -0.0694352388381958, -0.04127809777855873, -0.035521142184734344, 0.01550903171300888, -0.039682067930698395, 0.060972340404987335, -0.1177043616771698, 0.04953434318304062, -0.20874083042144775, -0.20046575367450714, -0.032457977533340454, 0.005280360579490662, -0.05232924968004227, 0.023309871554374695, -0.07470005750656128, 0.05597657710313797, 0.02529848739504814, -0.01033726241439581, -0.05933889374136925, 0.01646226830780506, 0.04105724021792412, -0.024308908730745316, 0.1427430659532547, -0.0839155912399292, 0.004440933000296354, -0.22486470639705658, -0.029761355370283127, -0.07400094717741013, 0.14935246109962463, -0.019033674150705338, 0.19168876111507416, -0.07033733278512955, -0.06345139443874359, 0.03982129693031311, 0.019191619008779526, -0.016391074284911156, 0.08708763122558594, -0.115545354783535, -0.14534983038902283, 0.07532288879156113, -0.006992304231971502, -0.041798803955316544, 0.14021940529346466, -0.06867344677448273, 0.16180501878261566, 0.17349566519260406, 0.22583085298538208, 0.050102896988391876, -0.008666673675179482, -0.08617842197418213, 0.011749420315027237, -0.17448517680168152, 0.05910094827413559, 0.00768934516236186, 0.15676239132881165, -0.04571548104286194, 0.06751973927021027, 0.08412453532218933, 0.04778965562582016, -0.12185657024383545, -0.01177448220551014, -0.011945060454308987, -0.09901822358369827, 0.0831974521279335, -0.015114248730242252, -0.023229237645864487, -0.12329832464456558, -0.1164039894938469, -0.09293469786643982, 0.08918635547161102, 0.005989246070384979, 0.01580074056982994, -0.14393743872642517, 0.04748835042119026, 0.130257710814476, 0.012690518982708454, -0.1381228268146515, 0.1231987252831459, -0.026611441746354103, 0.1171514019370079, 0.15276490151882172, -0.10041186958551407, 0.07660987973213196, -0.11250949651002884, -0.01638951525092125, 0.014625510200858116, 0.005983578506857157, 0.00977777037769556, -0.0010846335208043456, -0.1342172622680664, 0.028300972655415535, -0.09940671175718307, 0.010638581588864326, 0.04890602454543114, 0.02292671799659729, 0.03862440586090088, 0.06061337888240814, 0.022093376144766808, 0.031226547434926033, 0.030971849337220192, -0.023299477994441986, -0.0263832937926054, -0.04262823611497879, 0.03528155758976936, -0.007511251140385866, -0.05581438168883324, 0.206966370344162, -0.031689491122961044, 0.019412631168961525, 0.14303338527679443, -0.09716209024190903, -0.17828598618507385, 0.11549954861402512, -0.06905287504196167, 0.05764469876885414, 0.10647378116846085, -0.007350205443799496, 0.2062840461730957, -0.05438843369483948, 0.039352092891931534, -0.028390519320964813, -0.023276537656784058, 0.04435694217681885, -0.0801776871085167, -0.13319112360477448, 0.06966112554073334, -0.13438428938388824, -0.22551637887954712, -0.006531780585646629, 0.15634262561798096, 0.030939092859625816, 0.14427587389945984, 0.05211872234940529, -0.015440856106579304, -0.050638023763895035, -0.13227562606334686, -0.11669842898845673, -0.04596790298819542, -0.10120358318090439, -0.06964966654777527, 0.05043819174170494, -0.1324484795331955, -0.0061692665331065655, 0.00709068588912487, -0.029536647722125053, 0.07701016962528229, 0.043186284601688385, 0.02193124033510685, 0.10207145661115646, 0.04717327281832695, 0.09118269383907318, 0.020334070548415184, 0.011556633748114109, -0.03875583037734032, 0.043476708233356476, -0.11010861396789551, 0.125116765499115, -0.14087951183319092, -0.3306913673877716, -0.00009051420784089714, -0.056867584586143494, 0.02972879260778427, 0.0228559710085392, 0.06227623298764229, -0.2132483720779419, 0.0036515628453344107, -0.050906695425510406, 0.09377582371234894, -0.005674727261066437, 0.07595373690128326, 0.07633804529905319, -0.07284297049045563, -0.03720874711871147, -0.05313163623213768, -0.023523882031440735, -0.09896381944417953, -0.15124426782131195, 0.11365505307912827, -0.05092035233974457, 0.1105327233672142, 0.11476155370473862, -0.10421048104763031, 0.05521545186638832, -0.12648901343345642, 0.1274026483297348, -0.07130187004804611, -0.01908479444682598, 0.07522841542959213, 0.0021966062486171722, 0.021526221185922623, 0.005334278102964163, -0.05969540402293205, -0.1180110052227974, 0.07657710462808609, 0.0907490998506546, -0.06563267856836319, -0.17087972164154053, -0.06355118751525879, 0.08778439462184906, 0.1190229281783104, -0.033008016645908356, 0.010796885006129742, 0.12989087402820587, 0.04163710027933121, 0.017111359164118767, -0.11382587254047394, -0.11527141183614731, 0.0678822472691536, 0.11882805079221725, -0.05338425934314728, 0.04105149954557419, 0.014061754569411278, -0.05434199050068855, 0.19198347628116608, -0.1497616171836853, 0.03454982489347458, -0.0070623657666146755, -0.07518616318702698, 0.019595321267843246, 0.07900454849004745, -0.0007405931828543544, 0.07833801954984665, -0.09458836168050766, 0.01540148351341486, -0.08601436764001846, -0.009037151001393795, -0.032633040100336075, 0.03407416120171547, 0.03571837767958641, 0.03486521169543266, -0.16204018890857697, -0.04092513397336006, 0.1559825986623764, 0.22851799428462982, 0.024906838312745094, -0.2713083326816559, -0.0720117911696434, -0.10494700819253922, -0.10425087064504623, 0.05301811918616295, 0.024697735905647278, -0.05839267373085022, -0.10598663985729218, 0.155034139752388, 0.0651773139834404, 0.00684164697304368, -0.04543253034353256, 0.06725648045539856, -0.06004791334271431, -0.004241456277668476, -0.026271630078554153, 0.023989399895071983, -0.1954985111951828, 0.11881568282842636, 0.006140675861388445, -0.007838836871087551, -0.05744846910238266, -0.0747363269329071, 0.10061182826757431, -0.016399899497628212, 0.06893237680196762, 0.006523526273667812, 0.19277939200401306, -0.05485294386744499, -0.025875186547636986, 0.0506761334836483, 0.08547540009021759, -0.04884810745716095, 0.09476539492607117, 0.01991920731961727, -0.03250627964735031, 0.01668054424226284, 0.1238781064748764, -0.09547059237957001, 0.006012950092554092, -0.052168406546115875, 0.07162607461214066, -0.04625839367508888, 0.06692911684513092, -0.0822739377617836, 0.031174859032034874, 0.11239219456911087, 0.19819112122058868, 0.032365430146455765, -0.13799241185188293, 0.08432257175445557, 0.04641639441251755, -0.059182848781347275, -0.01961980015039444, 0.03782569617033005, 0.024827564135193825, -0.0009810978081077337, -0.20684275031089783, 0.0827779695391655, -0.038606029003858566, -0.07024192065000534, 0.024726636707782745, 0.06142285093665123, 0.08024071156978607, 0.03037204034626484, 0.07936088740825653, -0.051594413816928864, -0.08140656352043152, -0.04747414216399193, 0.12806130945682526, 0.09796478599309921, -0.13481749594211578, 0.05769161134958267, 0.03414579853415489, -0.17880558967590332, -0.13163740932941437, 0.05457368493080139, 0.12119399011135101, 0.12270510941743851, -0.0486222505569458, 0.06795094162225723, 0.09956306219100952, -0.029351169243454933, -0.17552588880062103, 0.009958602488040924, 0.006432566791772842, 0.011393003165721893, 0.06963568925857544, -0.10312587022781372, 0.05121935158967972, -0.03195711597800255, 0.0540800504386425, -0.05310890078544617, 0.05786677822470665, -0.0607520155608654, 0.20872217416763306, -0.0299802478402853, 0.3160427510738373, -0.032382771372795105, 0.023215847089886665, -0.03824067860841751, 0.022985652089118958, 0.21938833594322205, -0.12757830321788788, 0.07004201412200928, -0.02050294727087021, 0.24997961521148682, 0.03513028472661972, 0.070707306265831, -0.02609887905418873, 0.03881094604730606, 0.04873281717300415, -0.11825085431337357, -0.00869628507643938, 0.08716746419668198, -0.026203013956546783, 0.12306347489356995, 0.021110791712999344, 0.05946556478738785, -0.15716825425624847, -0.07131003588438034, -0.16236695647239685, 0.06228723004460335, 0.06197504699230194, -0.06404648721218109, -0.13463112711906433, 0.05151420831680298, 0.05517645180225372, -0.054384663701057434, -0.20701128244400024, -0.03423475846648216, -0.0392427034676075, 0.06278801709413528, 0.12138150632381439, 0.0002854229824151844, 0.02518881857395172, -0.05700061097741127, -0.041864000260829926, 0.04975975304841995, -0.13124772906303406, -0.036205049604177475, 0.04684406518936157, 0.017648885026574135, 0.06311794370412827, 0.04503803700208664, -0.15816281735897064, 0.057808760553598404, 0.10994868725538254, -0.12265074998140335, 0.03402504324913025, -0.09447114169597626, -0.18171575665473938, 0.011078983545303345, 0.038446784019470215, 0.14157330989837646, -0.08211783319711685, -0.07519187033176422, -0.04931403696537018, -0.02594560757279396, -0.05954492837190628, 0.012545381672680378, 0.03434242680668831, -0.08278080075979233, -0.07275766879320145, 0.02459484338760376, -0.05670801177620888, -0.11364348977804184, 0.12350646406412125, 0.07165444642305374, -0.06971762329339981, -0.0509047731757164, -0.008575111627578735, 0.13394227623939514, -0.1942160576581955, 0.03361741080880165, -0.0025559484492987394, -0.04748118668794632, 0.10759417712688446, 0.28958967328071594, 0.052739351987838745, 0.08146915584802628, -0.07855916023254395, 0.06949202716350555, 0.001765530789270997, 0.025687549263238907, 0.11087463051080704, -0.05111843720078468, -0.0709976851940155, 0.03865810111165047, -0.06016691401600838, 0.1326267272233963, -0.06919098645448685, -0.05702447518706322, -0.035140033811330795, -0.05246060714125633, -0.10757526010274887, -0.04835289344191551, -0.037157054990530014, 0.0021633615251630545, 0.06371220201253891, 0.006422840058803558, 0.015770146623253822, -0.04164370149374008, -0.04475674033164978, 0.0008503043791279197, 0.03894435241818428, 0.03262295201420784, -0.11646232008934021, -0.04661087319254875, 0.03656676411628723, -0.0013415520079433918, 0.19406335055828094, 0.10526587069034576, -0.05448637530207634, 0.08571906387805939, -0.21008948981761932, -0.11208527535200119, 0.11509731411933899, -0.08665388822555542, 0.028342625126242638, 0.10123154520988464, 0.020530013367533684, -0.006395943928509951, 0.07160940766334534, 0.04243728891015053, 0.12657296657562256, -0.05393250659108162, 0.05178690329194069, 0.11595826596021652, -0.06559145450592041, -0.07514027506113052, -0.08130400627851486, -0.027296096086502075, 0.06802354007959366, 0.08470868319272995, -0.07119932770729065, -0.008461344987154007, -0.15221953392028809, 0.0034678028896450996, -0.00488313427194953, -0.018226150423288345, -0.10237132757902145, -0.01673346757888794, 0.03646732121706009, -0.010536350309848785, 0.11501645296812057, 0.09235507994890213, -0.05420154333114624, -0.034176647663116455, 0.08132020384073257, -0.03285221755504608, -0.036087650805711746, 0.04278029128909111, 0.03531874343752861, -0.08588377386331558, -0.04261592775583267, 0.04929714649915695, 0.08162684738636017, -0.07218119502067566, 0.0531156025826931, 0.06988614797592163, 0.21063880622386932, 0.07358347624540329, 0.06555886566638947, 0.1443597376346588, 0.025655338540673256, -0.14874061942100525, -0.024408046156167984, 0.11338687688112259, 0.05009433999657631, 0.17095696926116943, 0.15944908559322357, 0.03606163337826729, 0.10369045287370682, 0.015712920576334, 0.00832338910549879, -0.0707990899682045, -0.19149552285671234, -0.07497403025627136, -0.15102681517601013, 0.018589988350868225, -0.10970691591501236, 0.004023680929094553, -0.10792400687932968, 0.10136421024799347, -0.06885833293199539, 0.03444002568721771, -0.103026382625103, -0.09093973785638809, 0.3033994436264038, -0.022692563012242317, -0.1061302125453949, 0.05174864083528519, -0.017312971875071526, 0.018953315913677216, 0.13079088926315308, 0.03860456123948097, -0.012390228919684887, -0.07194514572620392, 0.008115665055811405, -0.12491383403539658, -0.09681938588619232, 0.0034654573537409306, 0.016358986496925354, -0.013899987563490868, -0.179007887840271, -0.015247348695993423, -0.0516575463116169, 0.0007318472489714622, 0.15591084957122803, 0.0020498624071478844, 0.09424728900194168, -0.10449929535388947, 0.1534963846206665, -0.07011651992797852, -0.022434618324041367, -0.03139948099851608, -0.052797891199588776, -0.06300892680883408, 0.1967056393623352, 0.20271506905555725, 0.005867262836545706, -0.005371022038161755, -0.10100745409727097, 0.05138980969786644, -0.025109704583883286, 0.06176860257983208, 0.10717155039310455, 0.028904369100928307, -0.013080758973956108, 0.051232848316431046, -0.016435429453849792, -0.02151966467499733, 0.10008438676595688, -0.049862951040267944, 0.08396147936582565, 0.01986650563776493, -0.015413951128721237, 0.09482326358556747, -0.14108186960220337, -0.088196761906147, 0.06382553279399872, -0.13489601016044617, -0.08708155900239944, -0.05951562151312828, -0.06696070730686188, 0.16259291768074036, 0.1449805200099945, 0.037763915956020355, 0.008893507532775402, 0.05852247029542923, 0.035491179674863815, -0.28510066866874695, -0.05443362519145012, 0.1527077555656433, -0.10991580039262772, 0.05271961912512779, -0.05865371599793434, -0.01982290856540203, 0.07132552564144135, 0.0053881509229540825, -0.01609031669795513, 0.03267741948366165, -0.04204130917787552, 0.01250450313091278, 0.04932273179292679, 0.20329684019088745, 0.026780173182487488, 0.00805184617638588, 0.014300089329481125, -0.19099552929401398, -0.037609733641147614, -0.0064466544426977634, 0.011129258200526237, -0.08500800281763077, 0.09713923931121826, -0.0908818319439888, 0.03013278730213642, 0.16929106414318085, -0.08188658207654953, 0.0583883672952652, -0.08732262253761292, -0.04618209972977638, 0.009209408424794674, -0.14399641752243042, -0.003419639775529504, -0.06277947872877121, -0.05710410699248314, 0.12208504974842072, -0.0225208792835474, -0.2630642354488373, 0.005989424418658018, -0.04521072655916214, -0.012009778060019016, -0.008396681398153305, 0.11819705367088318, 0.015816805884242058, 0.0793786272406578, 0.05285593494772911, -0.029798051342368126, 0.08957476168870926, 0.1820133924484253, -0.13813447952270508, -0.007806919515132904 ]
null
null
transformers
# Twitter-roBERTa-base for Hate Speech Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. This model is specialized to detect hate speech against women and immigrants. **NEW!** We have made available a more recent and robust hate speech detection model here: [https://huggingface.co/cardiffnlp/twitter-roberta-base-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-hate-latest) - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='hate' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-hate 0.9168 2) hate 0.0832 ```
{}
text-classification
cardiffnlp/twitter-roberta-base-hate
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.12421" ]
[]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter-roBERTa-base for Hate Speech Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. This model is specialized to detect hate speech against women and immigrants. NEW! We have made available a more recent and robust hate speech detection model here: URL - Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). - Git Repo: Tweeteval official repository. ## Example of classification Output:
[ "# Twitter-roBERTa-base for Hate Speech Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. \nThis model is specialized to detect hate speech against women and immigrants.\n\nNEW! We have made available a more recent and robust hate speech detection model here: URL\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter-roBERTa-base for Hate Speech Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. \nThis model is specialized to detect hate speech against women and immigrants.\n\nNEW! We have made available a more recent and robust hate speech detection model here: URL\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ 55, 115, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter-roBERTa-base for Hate Speech Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. \nThis model is specialized to detect hate speech against women and immigrants.\n\nNEW! We have made available a more recent and robust hate speech detection model here: URL\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.## Example of classification\n\n\n\nOutput:" ]
[ -0.030027639120817184, 0.008563680574297905, -0.003812652314081788, 0.03594675660133362, 0.08167659491300583, -0.024321213364601135, 0.08357803523540497, 0.10696347057819366, 0.05759091302752495, -0.05131223797798157, 0.14093469083309174, 0.1264883279800415, -0.05762929469347, 0.11250811070203781, -0.09241008758544922, -0.1629931777715683, 0.023243825882673264, 0.05059370771050453, 0.07210953533649445, 0.15572862327098846, 0.23140697181224823, 0.00338801764883101, 0.07270584255456924, 0.06680469214916229, -0.15276651084423065, 0.09226814657449722, 0.06330574303865433, -0.15102282166481018, 0.12301748991012573, 0.038285497575998306, 0.04130607098340988, -0.0011639209697023034, 0.014728119596838951, 0.01963643729686737, 0.04163974151015282, 0.03915797546505928, -0.014121171087026596, 0.027928968891501427, 0.04965507611632347, -0.27363255620002747, 0.2313898503780365, -0.05270767584443092, 0.054353266954422, 0.11850044876337051, -0.07450996339321136, -0.046958595514297485, -0.05747033655643463, 0.06324273347854614, 0.12200683355331421, 0.08493544906377792, -0.05198133364319801, 0.21475838124752045, 0.013655188493430614, 0.15414075553417206, 0.10179998725652695, -0.10644993931055069, -0.06719151884317398, -0.21520984172821045, 0.04877472296357155, -0.00801326148211956, -0.011330954730510712, 0.06896135956048965, 0.08644381165504456, 0.050276607275009155, 0.06941939890384674, -0.11559657752513885, -0.10706646740436554, -0.060046471655368805, -0.11874379962682724, 0.05557171255350113, 0.0003012407396454364, 0.12510043382644653, -0.03277614340186119, -0.0920119360089302, -0.04323146864771843, 0.013622300699353218, 0.004617116879671812, -0.07963858544826508, -0.09685772657394409, -0.020133258774876595, -0.045438528060913086, -0.04774944856762886, -0.02789323776960373, 0.04553049057722092, -0.11514035612344742, 0.27685099840164185, -0.003033834043890238, 0.016598934307694435, -0.0992903932929039, -0.05535805597901344, -0.018791379407048225, -0.07776939868927002, 0.03710343688726425, -0.06148136034607887, -0.062321703881025314, -0.022475607693195343, -0.048179902136325836, -0.12364879995584488, 0.04758249223232269, 0.07526089251041412, 0.03490832448005676, 0.03123774565756321, -0.05292771756649017, -0.003459095722064376, 0.16712422668933868, 0.07847422361373901, -0.09522620588541031, -0.06892003864049911, 0.07140052318572998, -0.08916562795639038, -0.0010796363931149244, 0.07188423722982407, -0.016486603766679764, -0.0990857258439064, 0.05745575577020645, 0.12464094161987305, 0.02209918387234211, 0.16087175905704498, -0.024409806355834007, -0.028010698035359383, -0.05636931583285332, -0.09784112125635147, 0.03309264034032822, 0.032763928174972534, -0.017301008105278015, 0.020080721005797386, -0.006546181160956621, -0.012102097272872925, -0.06502704322338104, -0.11890759319067001, -0.07491038739681244, 0.042469725012779236, 0.02013375051319599, -0.12349092215299606, 0.013905677013099194, -0.14442217350006104, 0.029190972447395325, -0.2501124441623688, -0.059847939759492874, -0.028722990304231644, -0.09029341489076614, -0.06904446333646774, 0.0369274728000164, -0.10774445533752441, 0.07204712182283401, 0.06608723849058151, -0.03581218793988228, -0.09058957546949387, -0.00726567255333066, 0.07363193482160568, -0.08683619648218155, 0.0772518515586853, -0.06527100503444672, 0.015025421045720577, -0.09249663352966309, 0.056671641767024994, -0.022725623100996017, 0.10689562559127808, -0.06297337263822556, 0.16004766523838043, -0.1252640336751938, -0.05716010928153992, -0.0920441672205925, 0.07996559888124466, 0.051629018038511276, 0.19439765810966492, -0.11384330689907074, 0.031139042228460312, -0.02187051810324192, -0.07585643231868744, -0.07062437385320663, 0.14437448978424072, -0.05889786407351494, 0.08446341753005981, 0.13072741031646729, 0.28143471479415894, -0.08559281378984451, -0.011396778747439384, 0.03556196764111519, 0.00635373592376709, -0.29386696219444275, 0.02029411867260933, -0.028584977611899376, -0.03602660819888115, -0.1053728461265564, -0.07292500883340836, 0.17214159667491913, 0.10162282735109329, -0.026660103350877762, -0.02439664676785469, 0.0159311443567276, -0.03967580199241638, 0.08937723934650421, -0.1220293864607811, -0.07029642164707184, -0.13369649648666382, -0.0682012289762497, -0.0703410729765892, 0.10426086187362671, 0.0026697914581745863, 0.004458962939679623, -0.2159823179244995, 0.03421949967741966, 0.01710924692451954, -0.03425818309187889, -0.13723956048488617, 0.04950064793229103, -0.13070517778396606, 0.047793637961149216, 0.15523505210876465, -0.07140781730413437, 0.0482131764292717, -0.11103751510381699, 0.02378993108868599, 0.04697411507368088, 0.12153792381286621, 0.05684015899896622, -0.09302075207233429, 0.007986065931618214, 0.06923015415668488, -0.0157358106225729, -0.021139100193977356, -0.12126058340072632, -0.03645898029208183, 0.16581112146377563, 0.07522089779376984, 0.010010200552642345, 0.07831036299467087, 0.08211686462163925, 0.03204862028360367, 0.024978388100862503, -0.11105237901210785, 0.02509610541164875, 0.0016169911250472069, -0.062120161950588226, 0.28809455037117004, -0.10945507884025574, 0.041996899992227554, 0.1422388106584549, -0.08681326359510422, -0.16013605892658234, 0.19757801294326782, -0.017119992524385452, 0.05831529200077057, 0.10905876010656357, -0.03407573327422142, 0.1052064299583435, -0.07221781462430954, 0.07820337265729904, -0.049231745302677155, -0.07365849614143372, 0.037826910614967346, -0.017617834731936455, -0.14752724766731262, 0.11582180857658386, 0.036181628704071045, -0.43696191906929016, 0.07529612630605698, 0.18090161681175232, -0.08141273260116577, 0.15865376591682434, 0.042853131890296936, 0.03688078001141548, -0.012930266559123993, -0.0827358216047287, -0.054590899497270584, 0.01665749028325081, -0.11261801421642303, -0.09366573393344879, -0.022381827235221863, -0.05813247337937355, 0.08081309497356415, 0.037786077708005905, -0.004958075471222401, 0.020493952557444572, 0.049538590013980865, -0.14467425644397736, 0.14450235664844513, 0.031714510172605515, 0.13103851675987244, -0.04120564088225365, -0.14469178020954132, -0.002784854033961892, 0.014803333207964897, -0.18102292716503143, 0.08634863048791885, -0.13384467363357544, -0.2519020140171051, 0.05414293706417084, -0.034803133457899094, 0.047110628336668015, 0.015225721523165703, 0.06342165917158127, -0.15408872067928314, -0.01470581628382206, -0.06503751873970032, 0.013890563510358334, -0.06309939920902252, 0.12227299064397812, 0.05120633915066719, -0.009436437860131264, 0.03508094698190689, -0.10773003846406937, -0.02603486366569996, -0.06997192651033401, -0.03084697388112545, 0.07109695672988892, -0.08683755248785019, 0.08038461208343506, 0.11100732535123825, -0.04179130122065544, -0.016570119187235832, -0.13607993721961975, 0.16238276660442352, -0.15655846893787384, -0.012445827014744282, 0.0335250198841095, -0.1400497406721115, -0.021560994908213615, -0.008300858549773693, -0.08452131599187851, -0.09595981985330582, 0.026697445660829544, 0.030731864273548126, 0.002857217099517584, -0.1242440864443779, -0.12852346897125244, 0.015521080233156681, 0.025584159418940544, 0.10509838163852692, 0.0938263013958931, -0.014563246630132198, 0.04112257435917854, 0.06952168792486191, -0.09746170043945312, 0.037762757390737534, 0.05891076847910881, 0.11948686093091965, -0.029201170429587364, 0.05541011691093445, -0.03467053547501564, -0.08944471180438995, 0.115204356610775, -0.14654721319675446, 0.04845096915960312, 0.009831066243350506, -0.02922375500202179, 0.07580969482660294, 0.026993395760655403, 0.0987342968583107, 0.05407216399908066, -0.02262922003865242, -0.0034429081715643406, -0.04379401355981827, 0.007880855351686478, -0.03108087368309498, -0.044387105852365494, 0.0899127870798111, -0.06284728646278381, -0.028420627117156982, -0.13599206507205963, 0.18230630457401276, 0.11029510945081711, 0.05388690158724785, -0.22052058577537537, 0.005306487437337637, -0.02459642104804516, -0.1430194228887558, 0.0355055145919323, 0.08625433593988419, 0.02415119856595993, -0.06559722125530243, 0.12749406695365906, 0.04593081399798393, 0.0639992505311966, -0.011197698302567005, -0.016947779804468155, -0.07881657779216766, -0.008710863068699837, -0.056200236082077026, 0.0500231496989727, -0.2315140813589096, 0.21472564339637756, 0.021143577992916107, 0.014245966449379921, -0.12827594578266144, -0.14460507035255432, 0.03894273191690445, 0.004810920916497707, 0.14079517126083374, 0.023039089515805244, -0.015311973169445992, -0.10487718135118484, -0.015461188741028309, 0.042216572910547256, 0.07148487120866776, 0.06579338014125824, 0.01479879580438137, 0.0060404203832149506, -0.006009211298078299, 0.03719297796487808, -0.1529691219329834, -0.1261867731809616, -0.05774608999490738, -0.09716656804084778, 0.0780254527926445, -0.033409178256988525, 0.055938296020030975, -0.06278633326292038, 0.05595105141401291, 0.1282617151737213, -0.03025047667324543, -0.06765717267990112, -0.19477230310440063, 0.07360294461250305, 0.07269282639026642, -0.07069702446460724, 0.01813993975520134, 0.08409298211336136, 0.014283660799264908, -0.029355056583881378, -0.12938623130321503, 0.13282032310962677, -0.07897733896970749, 0.021151069551706314, -0.0006528698140755296, 0.15596933662891388, 0.09477647393941879, 0.04979182779788971, 0.12070539593696594, 0.0025716887321323156, 0.0021796568762511015, -0.11611375957727432, 0.040922217071056366, -0.02432156912982464, -0.14499405026435852, 0.049968279898166656, 0.06012670323252678, -0.20380853116512299, -0.09994788467884064, 0.011623085476458073, 0.17544683814048767, 0.1196317970752716, -0.033567339181900024, 0.055005621165037155, 0.10501255095005035, -0.043979234993457794, -0.23668374121189117, -0.07062534242868423, 0.014935295097529888, 0.04039900749921799, 0.0665075033903122, 0.031648900359869, -0.05302882194519043, 0.024002129212021828, 0.06439423561096191, 0.05214906856417656, -0.11825598031282425, -0.08217670768499374, 0.2863759696483612, -0.01147089060395956, 0.37622198462486267, 0.009896602481603622, -0.008707573637366295, -0.05894673243165016, 0.0709732249379158, 0.221826434135437, -0.13305413722991943, 0.02414334937930107, 0.04755808040499687, 0.12489337474107742, 0.04692983254790306, 0.04163730517029762, 0.028910817578434944, 0.03898504376411438, 0.08544279634952545, -0.15403996407985687, -0.18570591509342194, 0.03407444432377815, 0.008984524756669998, 0.07551278918981552, -0.04060773178935051, 0.0441146157681942, -0.09885165840387344, -0.10155636072158813, -0.0946292132139206, 0.09979300945997238, 0.058599457144737244, -0.007606347091495991, -0.04688217490911484, -0.04893716424703598, -0.019020631909370422, -0.08388318121433258, 0.04138078913092613, -0.09933635592460632, 0.018586020916700363, 0.0032000592909753323, 0.2027530074119568, -0.03458520770072937, 0.06729375571012497, -0.020724009722471237, -0.07047291100025177, 0.054143160581588745, -0.052932754158973694, -0.011331862770020962, 0.004388404544442892, 0.005160457454621792, 0.06937184929847717, 0.014094878919422626, -0.03844648599624634, 0.13459742069244385, 0.11088390648365021, -0.06739334762096405, -0.03242743760347366, -0.037598103284835815, -0.18255817890167236, 0.014251218177378178, -0.009354782290756702, 0.2656880021095276, -0.01031569018959999, -0.048459552228450775, 0.00596978422254324, 0.03241787105798721, -0.10108884423971176, 0.08292078971862793, 0.12969665229320526, -0.03477126732468605, -0.033782441169023514, 0.04016922786831856, 0.01059186551719904, -0.01634974777698517, 0.15656231343746185, 0.18559150397777557, -0.18483081459999084, -0.10556287318468094, -0.14910300076007843, -0.010749024339020252, -0.06332708895206451, -0.009567349217832088, 0.0013303213054314256, -0.030543876811861992, 0.0005181957967579365, 0.2700866162776947, -0.0031756884418427944, 0.17685842514038086, -0.04190612956881523, -0.03290127217769623, 0.041308365762233734, -0.019565362483263016, 0.04876311495900154, -0.06927620619535446, -0.060143738985061646, 0.14894415438175201, -0.018842320889234543, 0.14351879060268402, -0.06403280794620514, -0.030779242515563965, -0.1008768156170845, -0.0017218689899891615, -0.1155426949262619, 0.002748380647972226, -0.08932666480541229, 0.05918147787451744, 0.043599337339401245, -0.06804002076387405, -0.06433223932981491, 0.01962457410991192, -0.06240999698638916, 0.019947536289691925, 0.05645114928483963, -0.0025052500423043966, -0.08173083513975143, 0.0093520013615489, 0.07161115109920502, 0.053903937339782715, 0.16244974732398987, 0.13566334545612335, -0.1552242785692215, 0.04494525119662285, -0.20438823103904724, -0.15182027220726013, 0.08116361498832703, -0.08652295917272568, 0.023836392909288406, -0.01480840053409338, 0.03185098245739937, 0.09890510886907578, 0.12603126466274261, 0.09066838026046753, 0.10985117405653, -0.03882994502782822, 0.08625330775976181, 0.07184438407421112, -0.07779023051261902, -0.004087174776941538, -0.06622333079576492, 0.07125257700681686, 0.031579602509737015, 0.10348288714885712, -0.07755318284034729, -0.03236190229654312, -0.11077509820461273, 0.04622260853648186, -0.013865291140973568, 0.0014110369374975562, -0.06241053715348244, -0.012762563303112984, 0.07447516173124313, -0.08049504458904266, 0.13551577925682068, 0.08483900129795074, -0.12959901988506317, 0.10522198677062988, 0.06203777715563774, -0.14988060295581818, 0.0020272883120924234, 0.10318370163440704, -0.06597191095352173, -0.05434016138315201, -0.12712576985359192, -0.07133685797452927, 0.04499043524265289, -0.13340739905834198, -0.027522161602973938, 0.09372809529304504, 0.1542191505432129, 0.0451173409819603, 0.03979244828224182, 0.010111240670084953, 0.07561618834733963, -0.047678008675575256, -0.0764053463935852, 0.007048310246318579, -0.047782156616449356, 0.03922341763973236, 0.19266951084136963, 0.09820494800806046, -0.06911478191614151, -0.023111706599593163, -0.048198651522397995, -0.13103114068508148, -0.30682259798049927, -0.09338092803955078, -0.08094114065170288, 0.039908260107040405, 0.010405785404145718, 0.022762108594179153, -0.05680926889181137, 0.13794560730457306, -0.05594359710812569, 0.001280717900954187, -0.03607390075922012, -0.17866337299346924, 0.1281501203775406, -0.0011018026852980256, 0.04254251718521118, 0.027006661519408226, -0.00602323841303587, 0.01828700676560402, 0.04320596158504486, 0.03967895358800888, -0.03222920000553131, -0.00525293592363596, 0.05830693244934082, -0.2376672327518463, -0.026929697021842003, -0.005100485868752003, 0.1114577203989029, -0.014529969543218613, 0.05722998082637787, 0.11434546858072281, 0.002723976271227002, -0.007400312460958958, 0.18382465839385986, 0.08615291863679886, -0.1175365149974823, -0.13361260294914246, 0.1740456074476242, 0.0055297971703112125, 0.011650975793600082, -0.08229135721921921, -0.07429338246583939, 0.029196329414844513, 0.18342125415802002, 0.2926873564720154, -0.13938139379024506, 0.05595114454627037, -0.19270305335521698, 0.03236309438943863, 0.0675366073846817, -0.003653049236163497, 0.03248598426580429, 0.18598635494709015, 0.010410204529762268, 0.014227695763111115, 0.05614372342824936, 0.04333936423063278, 0.014974093064665794, 0.058725353330373764, -0.07618912309408188, 0.006141234189271927, -0.027945486828684807, 0.1785631626844406, -0.0027697873301804066, -0.10868912190198898, -0.19907987117767334, -0.07746537029743195, -0.13538748025894165, 0.07082521915435791, -0.1432168334722519, 0.16337871551513672, 0.11109955608844757, 0.00003074081178056076, -0.07751096040010452, -0.0017100052209571004, 0.035311635583639145, -0.18588915467262268, -0.09541505575180054, 0.08140711486339569, -0.018913855776190758, 0.09096477180719376, 0.008109557442367077, 0.07790329307317734, 0.06848206371068954, 0.04812604561448097, -0.10199727863073349, 0.07836651057004929, -0.0019479058682918549, 0.11824821680784225, 0.09435095638036728, 0.06741190701723099, 0.023361098021268845, -0.06333617120981216, 0.06172912195324898, -0.019931549206376076, 0.032146066427230835, -0.11726148426532745, -0.02987835183739662, -0.0767422690987587, 0.05995127558708191, -0.06838361918926239, 0.051896125078201294, 0.07863299548625946, -0.07336273789405823, 0.04975028708577156, -0.022573426365852356, -0.09215115755796432, -0.04717486724257469, -0.15700912475585938, -0.01894770935177803, -0.15689171850681305, -0.07546661049127579, -0.0567130520939827, -0.01278635486960411, -0.05641648918390274, 0.0837581679224968, -0.14427882432937622, -0.03323926776647568, 0.05216001346707344, 0.04954734072089195, -0.006554553750902414, 0.02338416874408722, -0.004488631151616573, -0.014183701016008854, 0.09310626238584518, 0.07324054092168808, -0.0560481920838356, -0.04950667917728424 ]
null
null
transformers
# Twitter-roBERTa-base for Irony Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. This model has integrated into the [TweetNLP Python library](https://github.com/cardiffnlp/tweetnlp/). - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [ ] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='irony' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Great, it broke the first day..." text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Great, it broke the first day..." # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) irony 0.914 2) non_irony 0.086 ``` ### Reference Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model. ```bibtex @inproceedings{barbieri-etal-2020-tweeteval, title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification", author = "Barbieri, Francesco and Camacho-Collados, Jose and Espinosa Anke, Luis and Neves, Leonardo", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.148", doi = "10.18653/v1/2020.findings-emnlp.148", pages = "1644--1650" } ```
{"language": ["en"], "datasets": ["tweet_eval"]}
text-classification
cardiffnlp/twitter-roberta-base-irony
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:tweet_eval", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.12421" ]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #en #dataset-tweet_eval #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter-roBERTa-base for Irony Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. This model has integrated into the TweetNLP Python library. - Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). - Git Repo: Tweeteval official repository. ## Example of classification Output: ### Reference Please cite the reference paper if you use this model.
[ "# Twitter-roBERTa-base for Irony Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. \nThis model has integrated into the TweetNLP Python library.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:", "### Reference\n\nPlease cite the reference paper if you use this model." ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #en #dataset-tweet_eval #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter-roBERTa-base for Irony Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. \nThis model has integrated into the TweetNLP Python library.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:", "### Reference\n\nPlease cite the reference paper if you use this model." ]
[ 65, 94, 9, 14 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #en #dataset-tweet_eval #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter-roBERTa-base for Irony Detection\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. \nThis model has integrated into the TweetNLP Python library.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.## Example of classification\n\n\n\nOutput:### Reference\n\nPlease cite the reference paper if you use this model." ]
[ 0.05758773162961006, -0.06067405268549919, -0.0037024125922471285, 0.07341699302196503, 0.053371742367744446, 0.007883459329605103, 0.005617684684693813, 0.13079309463500977, -0.004893796052783728, -0.01638185791671276, 0.2133488804101944, 0.2916739583015442, -0.03636191040277481, 0.12988728284835815, -0.025864554569125175, -0.22219397127628326, -0.005275123752653599, 0.0254889614880085, 0.13383421301841736, 0.1650392711162567, 0.14507588744163513, -0.006743778008967638, 0.13225945830345154, 0.006984335836023092, -0.1026899665594101, 0.05162707716226578, 0.06769722700119019, -0.12074587494134903, 0.10713494569063187, 0.042018286883831024, 0.004672960378229618, 0.011447791010141373, -0.05748891830444336, -0.03465759754180908, 0.03744295611977577, 0.031336840242147446, -0.056809693574905396, 0.03120686486363411, -0.01724346913397312, -0.17987725138664246, 0.1875026524066925, -0.029832957312464714, 0.08707544952630997, 0.03589589521288872, -0.09500939399003983, -0.0034404033794999123, -0.05198466777801514, -0.022353939712047577, 0.09355553239583969, 0.08769649267196655, -0.03450631722807884, 0.3204473853111267, -0.0872076004743576, 0.11643333733081818, 0.14697480201721191, -0.3029773533344269, -0.029092248529195786, -0.04382319748401642, 0.002107282169163227, -0.012818594463169575, 0.009795254096388817, 0.029720796272158623, 0.07527335733175278, 0.11002200096845627, 0.09284908324480057, -0.07081484794616699, -0.07232397049665451, 0.005066913086920977, -0.12901051342487335, -0.01973382569849491, 0.16273976862430573, 0.05606072396039963, -0.057535264641046524, -0.027040977030992508, -0.03502827137708664, 0.019705986604094505, 0.011623679660260677, -0.05622073635458946, -0.050438884645700455, 0.0029570800252258778, -0.07633437216281891, 0.05069108307361603, -0.08765982836484909, 0.03228428214788437, -0.14581142365932465, 0.11623963713645935, 0.0016665671719238162, 0.04289624094963074, -0.16418014466762543, 0.04155365750193596, -0.08483805507421494, -0.1021563932299614, 0.02717766910791397, -0.0692187026143074, 0.03910283371806145, -0.026622138917446136, -0.05291115865111351, -0.11261909455060959, 0.05880074203014374, 0.22031168639659882, 0.09892551600933075, 0.017474588006734848, -0.0008858376531861722, 0.04765020310878754, 0.09736640751361847, 0.1279296875, -0.1369779407978058, -0.11457396298646927, 0.04812914878129959, -0.1278008371591568, 0.030178438872098923, -0.0019270486664026976, -0.027765745297074318, -0.046029333025217056, 0.08656708151102066, -0.02355360984802246, 0.07155716419219971, 0.1607336550951004, -0.048666805028915405, -0.041422467678785324, 0.040778350085020065, -0.0658620074391365, -0.06672823429107666, -0.08997804671525955, -0.05664464831352234, 0.07633023709058762, 0.04642850160598755, 0.050588998943567276, -0.10524000227451324, 0.01825673319399357, -0.09521631896495819, -0.02769334428012371, 0.04218393936753273, -0.12981943786144257, 0.0336843803524971, -0.023161668330430984, 0.02402002550661564, -0.2603440582752228, -0.1747501939535141, -0.0224006325006485, -0.0014675616985186934, -0.000514099607244134, 0.000026891508241533302, -0.05848470702767372, -0.057308536022901535, 0.0460161454975605, -0.004886975046247244, 0.03811285272240639, -0.06014019623398781, 0.08631572127342224, -0.1420918107032776, 0.06960625946521759, -0.12451670318841934, 0.018879152834415436, -0.1985720992088318, -0.02565125934779644, -0.22715453803539276, 0.1264224648475647, 0.014065433293581009, 0.15639276802539825, -0.12320137023925781, -0.0552109032869339, -0.12341082841157913, 0.020821204409003258, 0.011522116139531136, 0.1472935974597931, -0.1263582408428192, -0.04705807566642761, -0.040312185883522034, -0.03795810043811798, -0.11041970551013947, 0.1543966382741928, -0.05824042856693268, 0.1148943230509758, 0.11179167032241821, 0.17892630398273468, 0.06930030882358551, -0.014487187378108501, -0.037851203233003616, -0.04219890013337135, -0.2167797088623047, 0.10758092254400253, 0.03801289573311806, 0.06555601954460144, -0.18258371949195862, -0.002208501799032092, 0.03726862743496895, 0.0982222929596901, -0.05933409184217453, 0.02723020128905773, 0.004721600562334061, -0.026267070323228836, 0.08927956223487854, -0.06084137409925461, 0.00699072889983654, -0.13663974404335022, -0.1296270787715912, -0.06539035588502884, 0.024667108431458473, 0.039146099239587784, 0.0016906072851270437, -0.1321968138217926, 0.025035236030817032, 0.003634021384641528, 0.003434844547882676, -0.1295914649963379, 0.06776860356330872, -0.038638725876808167, 0.14956416189670563, 0.125343918800354, -0.13783344626426697, 0.025379521772265434, -0.09428462386131287, 0.023723425343632698, -0.00561680318787694, 0.06816357374191284, 0.02896198071539402, -0.0741041749715805, -0.06833391636610031, 0.08828321099281311, -0.053553760051727295, -0.06702101230621338, 0.04896946996450424, -0.02273569628596306, -0.02377750352025032, 0.09003688395023346, 0.02096681110560894, 0.06779807060956955, 0.021710935980081558, -0.02267267554998398, -0.042967863380908966, -0.05825404077768326, -0.015577753074467182, -0.008470069617033005, -0.044982101768255234, 0.25430089235305786, -0.09235747903585434, 0.0638054758310318, 0.1996230036020279, -0.20468564331531525, -0.16124612092971802, 0.14818690717220306, -0.04082874581217766, -0.001850690576247871, 0.008759897202253342, -0.06912289559841156, 0.2522875964641571, -0.10520365834236145, 0.045941948890686035, -0.06495050340890884, -0.10253428667783737, 0.05461101606488228, -0.03446973115205765, -0.10241539031267166, 0.11022323369979858, -0.015454411506652832, -0.3229350745677948, 0.06371679157018661, 0.1811051070690155, 0.003201720304787159, 0.10678248107433319, 0.06119697168469429, 0.005605700891464949, -0.015300367027521133, -0.0576239675283432, -0.0456114336848259, -0.028731046244502068, -0.106219083070755, -0.004166521597653627, 0.04460127651691437, -0.04074925556778908, 0.028692761436104774, -0.003590232692658901, -0.03371353819966316, 0.03189444914460182, 0.08925095200538635, -0.04882722347974777, 0.10256870836019516, 0.046308327466249466, 0.13696183264255524, 0.016339287161827087, -0.05754717439413071, 0.015939924865961075, 0.03614741936326027, -0.17195792496204376, 0.17624320089817047, -0.14157825708389282, -0.29179683327674866, -0.009710872545838356, -0.016386855393648148, 0.08442326635122299, 0.014995858073234558, 0.11308255046606064, -0.1186642050743103, -0.030516909435391426, -0.07965997606515884, 0.058974675834178925, -0.0428781732916832, 0.11237545311450958, -0.009912129491567612, -0.06778453290462494, -0.046778012067079544, -0.05607989430427551, -0.05408564954996109, -0.04696882888674736, -0.00259187794290483, 0.13288377225399017, -0.12625709176063538, 0.04454043507575989, 0.09502362459897995, -0.06630564481019974, 0.026554550975561142, -0.10831128060817719, 0.26129257678985596, -0.06389406323432922, 0.08422504365444183, 0.11322940140962601, -0.018166683614253998, 0.02908850461244583, 0.0048142364248633385, -0.057151030749082565, -0.06558933854103088, 0.11299411207437515, -0.004110176116228104, -0.06985388696193695, -0.15678423643112183, -0.10006939619779587, 0.008846412412822247, 0.0726003348827362, 0.1215309426188469, 0.03605607897043228, 0.06708647310733795, 0.03965768963098526, -0.0012340366374701262, 0.09776068478822708, 0.027175134047865868, 0.09814529120922089, 0.12024764716625214, 0.025236638262867928, 0.08163607120513916, -0.031596291810274124, -0.08234145492315292, 0.11086596548557281, -0.1378616988658905, -0.007121450733393431, -0.005557472351938486, -0.09076398611068726, 0.07092065364122391, 0.04178963229060173, 0.05920630693435669, 0.044490110129117966, -0.07509081065654755, 0.026891591027379036, -0.05038514733314514, -0.05472351238131523, -0.03129233419895172, 0.04502689093351364, -0.016623422503471375, -0.015560109168291092, -0.003817774821072817, -0.02566732093691826, 0.1512426733970642, 0.08590848743915558, 0.1035332903265953, -0.3075696527957916, -0.0909232497215271, -0.04507451504468918, -0.13086816668510437, 0.002239788183942437, 0.10799770802259445, 0.0005938357790000737, -0.061888501048088074, 0.08958233892917633, 0.04511687904596329, 0.06514672935009003, 0.056134771555662155, 0.029176732525229454, -0.027729839086532593, -0.06783603131771088, -0.07879157364368439, 0.05582527443766594, -0.33077123761177063, 0.11131700873374939, -0.0050322385504841805, -0.0032236753031611443, -0.0818774476647377, -0.083092600107193, 0.044831857085227966, -0.03051677532494068, 0.12631377577781677, 0.04475153237581253, 0.07930036634206772, -0.009995836764574051, -0.0413498654961586, 0.03709949925541878, 0.029689235612750053, -0.02395383082330227, 0.07137686014175415, -0.009452209807932377, 0.017052065581083298, 0.02072635479271412, 0.006988603621721268, -0.08541262894868851, -0.002766943071037531, -0.023034362122416496, 0.0273912213742733, -0.069449782371521, 0.05388495698571205, -0.04807603359222412, -0.006693833041936159, 0.04636912792921066, -0.0906415730714798, -0.07626662403345108, -0.13357774913311005, 0.09266875684261322, 0.06348979473114014, -0.0752243921160698, 0.025506341829895973, 0.03307856619358063, -0.012324608862400055, -0.002139461226761341, -0.22564414143562317, 0.10309857875108719, -0.07626961916685104, -0.037700898945331573, -0.023577023297548294, 0.09181088954210281, 0.06072087958455086, 0.044925104826688766, 0.0783163532614708, 0.04139040783047676, -0.09260303527116776, -0.08184360712766647, 0.03401819244027138, -0.07844977080821991, 0.07638256251811981, 0.028590619564056396, 0.07643116265535355, -0.14882631599903107, -0.1393888294696808, 0.07324857264757156, 0.11882533133029938, 0.07917042076587677, -0.09016742557287216, 0.049902670085430145, -0.000153395434608683, -0.01145611796528101, -0.1874057799577713, -0.0939158946275711, -0.014027731493115425, -0.02186761051416397, -0.00012294243788346648, 0.03015616163611412, 0.12716883420944214, 0.00816540140658617, 0.049824416637420654, 0.008907652460038662, -0.19436627626419067, -0.12880411744117737, 0.19683800637722015, -0.017180737107992172, 0.35525786876678467, -0.026636987924575806, -0.01931735686957836, -0.01374722644686699, -0.09659970551729202, 0.2537011206150055, -0.09855915606021881, 0.0402979776263237, 0.008483790792524815, 0.16083593666553497, -0.00521474052220583, 0.01883632317185402, -0.015085721388459206, 0.02205292321741581, 0.027981920167803764, -0.09106451272964478, -0.16788308322429657, 0.0024006469175219536, -0.02997042052447796, 0.11123640835285187, 0.011576522141695023, 0.09652704000473022, -0.20912517607212067, -0.02177252806723118, -0.14118874073028564, 0.10429471731185913, 0.03492521122097969, -0.06633491814136505, -0.11724483221769333, -0.026794493198394775, 0.051675837486982346, -0.058845315128564835, 0.029613059014081955, -0.01817435584962368, 0.07673099637031555, -0.03877463564276695, 0.10465463995933533, -0.03646991401910782, 0.030911071226000786, -0.025196382775902748, -0.06996557116508484, 0.05292081460356712, -0.18219566345214844, 0.0077072624117136, 0.06589529663324356, 0.020189393311738968, 0.06772111356258392, 0.05925436317920685, -0.06915026158094406, 0.049835432320833206, 0.09191287308931351, -0.19282560050487518, 0.14786821603775024, -0.040935833007097244, -0.03239040449261665, 0.13571365177631378, -0.000893274846021086, 0.19394612312316895, -0.11316554993391037, -0.07219871878623962, 0.026880474761128426, 0.03389083966612816, -0.054701291024684906, 0.08791640400886536, 0.08732618391513824, -0.03141842409968376, -0.08052510768175125, 0.05302934721112251, 0.03744712099432945, -0.044652488082647324, 0.09246450662612915, 0.09725706279277802, -0.12686839699745178, -0.05937796086072922, -0.07530142366886139, 0.0036437443923205137, -0.11361745744943619, 0.03954760357737541, -0.004219944588840008, 0.003034018911421299, 0.07910188287496567, 0.29731741547584534, 0.0630289688706398, 0.0996323674917221, -0.0025498783215880394, -0.049666840583086014, 0.0196189284324646, 0.03110322169959545, 0.05401280149817467, 0.006638068240135908, -0.06876163184642792, 0.10450523346662521, 0.0017132196808233857, 0.12867127358913422, -0.08685076981782913, -0.0010504692327231169, -0.11345991492271423, -0.015341874212026596, 0.01850329339504242, 0.07599708437919617, -0.040817197412252426, -0.014663703739643097, 0.010243388824164867, -0.0865095928311348, -0.07634343206882477, -0.008099965751171112, -0.03988439217209816, -0.016505075618624687, 0.02419751137495041, 0.04015694931149483, -0.07722292840480804, -0.05098351463675499, 0.08165797591209412, -0.003219800302758813, 0.10795958340167999, 0.13198937475681305, -0.09875479340553284, 0.08210275322198868, -0.1881408840417862, -0.0987706333398819, 0.07081478089094162, -0.041588302701711655, 0.04999316483736038, 0.01050869096070528, 0.017440026625990868, 0.014793088659644127, 0.025270823389291763, 0.02978162094950676, 0.15364974737167358, -0.09125303477048874, -0.008923623710870743, 0.052982497960329056, -0.11097199469804764, -0.06768831610679626, -0.06585025042295456, 0.02956971526145935, 0.005843534134328365, 0.14535242319107056, -0.07766225934028625, -0.009750982746481895, -0.15256613492965698, -0.008673716336488724, -0.004516532178968191, -0.0509185828268528, 0.006914803292602301, 0.06171608343720436, 0.030187273398041725, -0.034640513360500336, 0.13625004887580872, 0.05378521606326103, -0.05473620444536209, 0.08584114164113998, 0.06720834225416183, -0.08690033107995987, 0.02136196754872799, 0.055208779871463776, -0.08202262222766876, -0.05135837197303772, -0.1831216663122177, -0.006945130415260792, 0.06975219398736954, -0.08492911607027054, 0.08523329347372055, 0.11108864843845367, 0.12078843265771866, 0.04569830000400543, 0.008632400073111057, 0.07706532627344131, -0.004190558567643166, -0.12113837897777557, -0.016567453742027283, 0.09372361749410629, 0.08375349640846252, 0.0816686600446701, 0.2152249664068222, -0.01879039965569973, -0.014612019993364811, -0.044078122824430466, 0.014453662559390068, -0.046672578901052475, -0.1994694173336029, -0.07956425845623016, -0.0969550609588623, -0.02167327143251896, -0.08300619572401047, 0.011262533254921436, 0.05096454173326492, 0.10722953826189041, -0.023913415148854256, 0.029004288837313652, -0.05553320795297623, -0.12980788946151733, 0.15314993262290955, -0.007837683893740177, -0.030671097338199615, 0.0675906240940094, 0.0018993244739249349, 0.0031679715029895306, 0.07909855991601944, -0.01661699451506138, -0.018938083201646805, -0.0010893596336245537, 0.019325122237205505, -0.11094360798597336, -0.0896071121096611, 0.005120472516864538, 0.037278223782777786, -0.06523206830024719, -0.10227397084236145, 0.07090825587511063, 0.015563281252980232, 0.026689106598496437, 0.2371186912059784, 0.03152703866362572, -0.03495755419135094, -0.16435252130031586, 0.19546246528625488, 0.006644395180046558, 0.03150460869073868, -0.0379737950861454, -0.07774046063423157, -0.01222462672740221, 0.19511336088180542, 0.20618726313114166, -0.01403561420738697, 0.01474037766456604, -0.06458495557308197, 0.01800665631890297, 0.11114722490310669, 0.05496281012892723, 0.08922514319419861, 0.1862494796514511, -0.013474958948791027, -0.007247342728078365, -0.07392486929893494, 0.030044257640838623, 0.028978880494832993, 0.02357126772403717, 0.026026492938399315, -0.05600973218679428, -0.03350575640797615, 0.15749716758728027, -0.07777170836925507, -0.13360463082790375, -0.10161086916923523, -0.11604898422956467, -0.08398043364286423, -0.008142798207700253, -0.10080300271511078, 0.010611782781779766, 0.13713876903057098, 0.000869531708303839, -0.013596983626484871, -0.132593035697937, 0.07255317270755768, -0.18969334661960602, -0.002614428522065282, 0.05209755152463913, -0.022273274138569832, 0.10100056231021881, -0.005296468269079924, 0.08093847334384918, 0.09727355092763901, 0.0340101458132267, -0.05154920369386673, 0.05865107849240303, -0.006643041968345642, 0.11245071142911911, 0.07273142784833908, 0.0510268360376358, 0.03966493904590607, -0.015923790633678436, 0.08529902249574661, -0.10051590949296951, 0.019097551703453064, -0.007912377826869488, -0.0033290795981884003, -0.06555143743753433, 0.06146788224577904, -0.05396931990981102, 0.08076407015323639, 0.12973429262638092, -0.083206906914711, 0.04497164487838745, -0.061909209936857224, -0.04287419095635414, -0.01479417271912098, -0.1257765144109726, -0.05798306688666344, -0.10838570445775986, -0.013239087536931038, -0.06808319687843323, -0.018964644521474838, -0.21142862737178802, 0.05098796263337135, -0.1521330028772354, -0.04600000008940697, -0.03446733579039574, 0.1256677508354187, -0.004546201787889004, 0.03056398220360279, -0.018422206863760948, 0.09500836580991745, 0.053566910326480865, 0.1195823922753334, -0.10332273691892624, -0.09673783928155899 ]
null
null
transformers
# Twitter June 2020 (RoBERTa-base, 99M) This is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-jun2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.52684 not 2) 0.18349 getting 3) 0.07971 fully 4) 0.05598 being 5) 0.02347 self ------------------------------ I keep forgetting to bring a <mask>. 1) 0.13266 mask 2) 0.04859 book 3) 0.04851 laptop 4) 0.03123 pillow 5) 0.02747 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.35750 The 2) 0.32703 the 3) 0.13048 End 4) 0.02261 this 5) 0.01066 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-jun2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99078 The movie was great 2) 0.96610 Just finished reading 'Embeddings in NLP' 3) 0.96095 What time is the next game? 4) 0.95855 I just ordered fried chicken 🐣 ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-jun2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-jun2020
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter June 2020 (RoBERTa-base, 99M) This is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter June 2020 (RoBERTa-base, 99M)\n\nThis is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter June 2020 (RoBERTa-base, 99M)\n\nThis is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 70, 120, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter June 2020 (RoBERTa-base, 99M)\n\nThis is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.05526076629757881, 0.058862458914518356, -0.0026787116657942533, 0.02384926751255989, 0.11072748154401779, 0.0009210999705828726, 0.12573137879371643, 0.06570234149694443, -0.03458081930875778, 0.03464151546359062, 0.07760421931743622, -0.008849747478961945, 0.02656598761677742, 0.08316229283809662, -0.012565051205456257, -0.19415992498397827, -0.006539564114063978, -0.0007975902408361435, 0.025214839726686478, 0.14941447973251343, 0.13142183423042297, -0.07789645344018936, 0.09913128614425659, 0.028320619836449623, -0.10423041135072708, 0.01707068830728531, 0.03486638888716698, -0.13273435831069946, 0.14162644743919373, -0.0015323078259825706, 0.08985087275505066, -0.0018474094104021788, 0.027521323412656784, -0.04358276352286339, 0.03652772307395935, 0.09487616270780563, -0.01828456111252308, 0.04750566929578781, -0.015676964074373245, -0.09131860733032227, 0.060966748744249344, 0.055507633835077286, 0.0649004727602005, 0.04743923991918564, -0.13987115025520325, -0.04914673790335655, -0.11119908094406128, 0.04039272293448448, 0.07251571863889694, 0.0820763111114502, -0.028379235416650772, 0.19867582619190216, -0.12453129142522812, 0.0698634460568428, 0.09788352251052856, -0.19408884644508362, -0.03457912802696228, 0.03863336890935898, 0.11738455295562744, -0.02557467296719551, -0.009030898101627827, 0.037997011095285416, 0.024828823283314705, 0.0077267116867005825, 0.09203790873289108, -0.014614969491958618, -0.017711052671074867, -0.007327656727284193, -0.11246247589588165, -0.0486067570745945, 0.16579382121562958, 0.034663259983062744, -0.06827006489038467, -0.10559144616127014, -0.079705610871315, 0.07356829941272736, 0.008897221647202969, -0.056101005524396896, 0.0447051078081131, 0.0009779140818864107, -0.05556826665997505, -0.05022357031702995, -0.10244948416948318, -0.045977771282196045, -0.11657016724348068, 0.014922323636710644, 0.05032162368297577, 0.05237092450261116, -0.13296997547149658, 0.08693601191043854, -0.1135546863079071, -0.11356605589389801, -0.0788097232580185, -0.07699055224657059, -0.058871351182460785, -0.031849026679992676, -0.07809478044509888, -0.14997868239879608, -0.025294721126556396, 0.2558774948120117, 0.06787870079278946, 0.00032986243604682386, -0.02924928441643715, 0.029921114444732666, 0.07347165793180466, 0.11088870465755463, -0.07787378877401352, -0.05633704364299774, 0.08108722418546677, -0.03613198176026344, -0.037390634417533875, -0.011381455697119236, -0.03226018324494362, -0.022238457575440407, 0.13964849710464478, 0.01924574375152588, 0.05692373961210251, 0.09283118695020676, 0.018397249281406403, -0.02989093028008938, 0.09489530324935913, -0.10293823480606079, -0.05547225847840309, -0.029370704665780067, -0.1262727528810501, 0.0050090281292796135, 0.09060493111610413, -0.011201438494026661, -0.06825467944145203, -0.04997721314430237, -0.09700394421815872, -0.04351325333118439, -0.08180610090494156, -0.14900293946266174, 0.020158078521490097, -0.12543070316314697, -0.000885979738086462, -0.17646494507789612, -0.3057728409767151, -0.045753758400678635, 0.05243386700749397, -0.03278379514813423, 0.05717119947075844, 0.009608091786503792, -0.011854425072669983, 0.00933566503226757, -0.051381755620241165, -0.007121183443814516, -0.04017367959022522, 0.06400635093450546, 0.05408147722482681, 0.09241338074207306, 0.019585147500038147, 0.05744870752096176, -0.14607356488704681, -0.04041874036192894, -0.12519913911819458, 0.05659725144505501, -0.011387708596885204, 0.009323235601186752, -0.10805028676986694, -0.04503444954752922, -0.015459828078746796, 0.050234049558639526, 0.012741250917315483, 0.07981646060943604, -0.14556801319122314, -0.04847034811973572, 0.2622712254524231, -0.12379374355077744, -0.12962988018989563, 0.08899082988500595, -0.05842489376664162, 0.09027042239904404, 0.1242963969707489, 0.027227066457271576, 0.08566822856664658, -0.13327433168888092, -0.028199071064591408, -0.11930613219738007, -0.11084052175283432, 0.019923437386751175, 0.029869023710489273, 0.07893391698598862, 0.10074977576732635, 0.038632798939943314, -0.03686593845486641, -0.004788692574948072, -0.055158257484436035, -0.026588471606373787, -0.0019822821486741304, -0.05613480508327484, 0.1299026906490326, -0.0021944227628409863, 0.06855634599924088, -0.0589117668569088, -0.14435076713562012, 0.08004670590162277, 0.07412749528884888, 0.013295412063598633, -0.0038132586050778627, -0.12236058712005615, 0.07754765450954437, 0.04522193595767021, -0.025426464155316353, -0.1963651478290558, -0.03385224938392639, 0.0025776547845453024, 0.0739775151014328, 0.07423048466444016, 0.08471447974443436, 0.05192487686872482, 0.012649215757846832, -0.008819996379315853, -0.00008387151319766417, -0.03193936124444008, -0.04926923289895058, -0.03782888129353523, -0.03641195222735405, 0.026786280795931816, -0.06231428310275078, 0.0521727092564106, -0.04044048860669136, 0.03289404883980751, -0.03801783174276352, 0.11794406920671463, 0.015971165150403976, -0.03784488886594772, -0.011603773571550846, 0.01082273107022047, -0.041955966502428055, -0.05345797911286354, -0.0014212621608749032, -0.042436420917510986, 0.050062842667102814, 0.16465675830841064, -0.14254668354988098, 0.00002522982504160609, 0.13600534200668335, 0.06086701899766922, -0.12124546617269516, 0.009674268774688244, 0.00333607941865921, -0.0037533363793045282, -0.055265020579099655, -0.05034251883625984, 0.2914571464061737, 0.008145580068230629, 0.1275477409362793, -0.08320162445306778, -0.040211353451013565, 0.0015121119795367122, -0.0628032311797142, -0.025812484323978424, 0.002104218117892742, 0.022699600085616112, -0.25417742133140564, 0.07299391180276871, -0.045137930661439896, -0.008118215017020702, 0.10826952755451202, 0.016655435785651207, -0.0733904168009758, -0.05039730668067932, -0.060074903070926666, -0.0004350590461399406, 0.08369540423154831, -0.10190360993146896, -0.0754002258181572, 0.041379693895578384, 0.00414216099306941, 0.017493722960352898, -0.05231986567378044, 0.039680469781160355, 0.04916040971875191, 0.007730928249657154, -0.13133803009986877, 0.07806742191314697, 0.04042501747608185, 0.05230002850294113, 0.021611487492918968, 0.0359543040394783, -0.03891580179333687, -0.023412147536873817, -0.09364857524633408, 0.19498369097709656, -0.11093087494373322, -0.3025148808956146, -0.14039936661720276, -0.03551770746707916, 0.00032532840850763023, 0.00601597735658288, 0.07913371175527573, -0.020769871771335602, -0.04402158409357071, -0.03996187448501587, 0.02927587367594242, 0.006913354154676199, 0.010068102739751339, -0.07173632085323334, 0.02476169727742672, 0.0014830862637609243, -0.15266075730323792, 0.004617035388946533, -0.04123721271753311, -0.0881190225481987, 0.14283716678619385, 0.05645255744457245, 0.05523372069001198, 0.03211933746933937, -0.06856203079223633, -0.0013480602065101266, -0.028892315924167633, 0.19430193305015564, -0.07779543101787567, 0.035520054399967194, 0.26941442489624023, 0.0593370646238327, 0.0618441067636013, 0.0033805370330810547, -0.03263802453875542, -0.06653742492198944, 0.07024053484201431, 0.04248368740081787, -0.03771110624074936, -0.1770588904619217, -0.06489311158657074, 0.020801514387130737, -0.07953449338674545, 0.07818777859210968, -0.008366825990378857, 0.11205288022756577, 0.03475707769393921, -0.03940325975418091, -0.023176420480012894, 0.0003126454830635339, 0.030653245747089386, 0.016353070735931396, -0.019337821751832962, 0.11239447444677353, 0.026137864217162132, 0.029573488980531693, 0.07296277582645416, -0.1017112284898758, 0.18471568822860718, -0.06800509989261627, -0.07131879031658173, 0.10280337929725647, 0.07397035509347916, 0.06138104945421219, 0.061542291194200516, -0.04195661097764969, 0.022175097838044167, -0.03642559051513672, -0.010338356718420982, -0.06635058671236038, 0.04105939716100693, 0.06677704304456711, -0.04761718586087227, -0.10939092934131622, -0.05602819845080376, 0.0367642380297184, 0.20965084433555603, 0.04409053921699524, -0.2641063630580902, -0.12847788631916046, -0.02348330058157444, -0.11795171350240707, -0.06379596143960953, -0.009974009357392788, 0.021618517115712166, -0.13735100626945496, 0.016134317964315414, -0.0487559549510479, 0.0969032570719719, 0.005967262666672468, 0.007786219473928213, -0.0577714666724205, 0.06365053355693817, -0.01427429635077715, 0.05989910289645195, -0.15499436855316162, 0.2220514565706253, 0.010750357061624527, 0.055092405527830124, -0.061182901263237, 0.01305802445858717, 0.024742091074585915, -0.03974497318267822, 0.0315312035381794, -0.009799281135201454, -0.004686188418418169, -0.06194117292761803, -0.09026429802179337, 0.0020336725283414125, 0.06710507720708847, -0.042522408068180084, 0.12107826769351959, -0.0021417089737951756, 0.032852575182914734, 0.008886061608791351, -0.01968732289969921, -0.12388135492801666, -0.038937561213970184, 0.012297929264605045, -0.11376898735761642, 0.0595768578350544, -0.06263171136379242, -0.03143174573779106, -0.029234951362013817, 0.08631467819213867, -0.06175883486866951, -0.018494583666324615, -0.1280970573425293, 0.03698957338929176, 0.10128684341907501, -0.11375327408313751, 0.0707569569349289, 0.04033815860748291, 0.10750064253807068, -0.015275253914296627, -0.11476346105337143, 0.043325770646333694, -0.07164748013019562, -0.047816574573516846, -0.04233219474554062, 0.010175859555602074, 0.11465597152709961, 0.00827854685485363, 0.04935843124985695, 0.026159441098570824, -0.08123772591352463, -0.027768965810537338, 0.020610105246305466, 0.0787576213479042, 0.12420683354139328, 0.049661148339509964, -0.026514573022723198, -0.0366971418261528, -0.04620802029967308, 0.04019555449485779, 0.07769273966550827, 0.1543625146150589, -0.05800027400255203, 0.1286230832338333, 0.15365080535411835, -0.019870197400450706, -0.2500442564487457, -0.00413301819935441, 0.0195888914167881, 0.0730544775724411, 0.02636846899986267, -0.11674268543720245, 0.05001652240753174, 0.06427884101867676, 0.007480258587747812, -0.005283654667437077, -0.14674952626228333, -0.12235083431005478, 0.11547074466943741, 0.0035790042020380497, 0.14401748776435852, -0.0299737136811018, 0.007264245301485062, 0.03702259063720703, -0.04933856427669525, -0.009899284690618515, -0.110831618309021, 0.10599452257156372, -0.01955927535891533, 0.10723547637462616, 0.004753999877721071, -0.05810915306210518, 0.055999573320150375, -0.08930589258670807, 0.06633900105953217, -0.08680715411901474, -0.0019429863896220922, 0.16426867246627808, -0.07363714277744293, 0.11304648220539093, 0.0041390834376215935, 0.10237614065408707, -0.07467732578516006, -0.04836122319102287, -0.05822252109646797, 0.10846716165542603, 0.004172120243310928, -0.04471953585743904, -0.03790074586868286, 0.08115053176879883, 0.04410042613744736, -0.062122758477926254, -0.06094611808657646, 0.0016606576973572373, 0.05056610703468323, 0.14799359440803528, 0.0742616131901741, -0.10427361726760864, -0.11685570329427719, -0.045725613832473755, -0.0015884360764175653, 0.09468664228916168, -0.13262946903705597, 0.018933376297354698, 0.0472925566136837, 0.05713033676147461, 0.09025625139474869, 0.02298232726752758, -0.09940629452466965, 0.0718742087483406, 0.05123431608080864, -0.08412647992372513, 0.021393071860074997, -0.035310883074998856, -0.0961926206946373, -0.07392926514148712, -0.003114053513854742, 0.1564912647008896, -0.07362101972103119, -0.04140676185488701, -0.004784496035426855, 0.062101904302835464, 0.013390189968049526, 0.14820405840873718, -0.015917660668492317, 0.06537849456071854, -0.07102804630994797, 0.09996085613965988, 0.05624101310968399, -0.02284705825150013, 0.07468293607234955, -0.044290218502283096, -0.08420322835445404, -0.08594290912151337, -0.023078475147485733, -0.02204396016895771, -0.05404205992817879, 0.0073082284070551395, -0.07440948486328125, 0.008465582504868507, 0.02583438903093338, 0.30828332901000977, 0.04897864907979965, 0.03528027981519699, -0.03579676151275635, 0.016653722152113914, -0.04622712358832359, 0.030993502587080002, 0.13232730329036713, 0.03475678712129593, -0.0780935138463974, 0.20441998541355133, 0.022204164415597916, 0.024975379928946495, -0.06630489975214005, -0.06854303181171417, -0.10456191748380661, 0.002427676459774375, -0.1075836643576622, -0.03406277671456337, -0.04797041416168213, -0.026390204206109047, -0.005249451845884323, -0.05072436109185219, -0.027284670621156693, 0.039210524410009384, -0.0546165369451046, 0.0027440297417342663, -0.010333660058677197, 0.062215112149715424, -0.13414356112480164, -0.013045225292444229, 0.11765843629837036, -0.03740198537707329, 0.07144015282392502, 0.10658138245344162, -0.03942390903830528, 0.05031316354870796, -0.09351791441440582, -0.06311870366334915, 0.013797870837152004, 0.06128459796309471, 0.03569251298904419, -0.1114201545715332, 0.05816660821437836, -0.023220492526888847, 0.008029930293560028, 0.029219575226306915, 0.024054547771811485, -0.08840501308441162, -0.009053712710738182, 0.009897291660308838, 0.009358614683151245, -0.08957891911268234, 0.0090183075517416, 0.12149494141340256, 0.07066137343645096, 0.13478894531726837, -0.0892425924539566, 0.03730503097176552, -0.13832545280456543, 0.026324661448597908, -0.01838153414428234, -0.039108775556087494, 0.0036486973986029625, -0.009690136648714542, 0.04327008128166199, -0.029467137530446053, 0.17597728967666626, 0.06933470815420151, 0.01632825843989849, 0.049665696918964386, 0.02644684910774231, -0.06861472874879837, 0.0004595691862050444, 0.044550396502017975, 0.032807607203722, -0.0014892419567331672, -0.0013985598925501108, 0.08788591623306274, 0.011667342856526375, -0.2121766060590744, 0.10875736176967621, 0.14936034381389618, 0.021230805665254593, 0.03199233114719391, 0.048640381544828415, 0.010177457705140114, -0.10143236815929413, -0.11177586764097214, -0.04689294099807739, 0.016424600034952164, -0.04014737904071808, 0.07742053270339966, 0.16192662715911865, -0.07213970273733139, 0.09467813372612, 0.029752423986792564, -0.022842295467853546, -0.071578748524189, -0.08026813715696335, -0.052870094776153564, -0.06743786484003067, 0.021783003583550453, -0.08696680516004562, 0.024601398035883904, 0.04425905644893646, 0.031045755371451378, -0.020709730684757233, 0.022012898698449135, -0.07462390512228012, -0.1087975800037384, 0.04478469863533974, -0.018659666180610657, -0.045721061527729034, 0.044532470405101776, 0.0007110438891686499, 0.006144226063042879, 0.07259981334209442, 0.0390181764960289, -0.015181646682322025, 0.02244671620428562, 0.056494973599910736, -0.09041757136583328, -0.07315605878829956, 0.006170229054987431, 0.04936568811535835, 0.002852515783160925, 0.002524189418181777, 0.08768274635076523, -0.0506807379424572, -0.012709120288491249, 0.2829676568508148, -0.04472111538052559, -0.08636590838432312, -0.20023202896118164, 0.18896743655204773, 0.07464778423309326, -0.012049252167344093, -0.002113570459187031, -0.09932383894920349, 0.01000942476093769, 0.25771695375442505, 0.161888986825943, 0.042912185192108154, 0.026030439883470535, -0.032472919672727585, -0.0163546334952116, -0.009152128361165524, 0.04125642031431198, 0.04859473928809166, 0.1859227418899536, -0.00977170467376709, -0.0033031615894287825, 0.021282870322465897, -0.04498298093676567, -0.08175783604383469, 0.025360936298966408, -0.04903562739491463, -0.0042738826014101505, -0.040120746940374374, 0.08972649276256561, -0.029053861275315285, -0.21900784969329834, 0.005541074089705944, -0.047535452991724014, -0.10289080440998077, -0.001308928825892508, 0.009497244842350483, 0.019279303029179573, 0.12568718194961548, 0.04590800032019615, 0.027454620227217674, 0.08352923393249512, 0.040486883372068405, -0.08479060232639313, -0.13649354875087738, 0.09697117656469345, 0.05598970875144005, 0.19168032705783844, -0.057753510773181915, -0.005021378863602877, 0.10805324465036392, 0.04409303143620491, -0.04050050675868988, 0.0070743500255048275, 0.012356985360383987, -0.08937560766935349, 0.07672565430402756, 0.11481383442878723, -0.02632039785385132, 0.0686606913805008, 0.05891627073287964, -0.1438611000776291, 0.007436391431838274, -0.08937669545412064, -0.00020401293295435607, -0.09075229614973068, 0.09132829308509827, 0.001723729190416634, 0.12294629961252213, 0.15087032318115234, -0.030566871166229248, 0.010180287063121796, -0.1007925420999527, 0.02087624929845333, 0.0012528578517958522, -0.05849364027380943, -0.0834062471985817, -0.1670045554637909, -0.011521107517182827, -0.012289561331272125, -0.014466126449406147, -0.2570827901363373, -0.04731227830052376, 0.04709318280220032, -0.03998604044318199, 0.037678927183151245, 0.11315535753965378, 0.1548541784286499, 0.02976888418197632, -0.008520993404090405, 0.005355630069971085, -0.0008163008606061339, 0.1212681457400322, -0.19827497005462646, -0.0525234080851078 ]
null
null
transformers
# Twitter June 2021 (RoBERTa-base, 115M) This is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-jun2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.45169 fully 2) 0.22353 getting 3) 0.18540 not 4) 0.02392 still 5) 0.02231 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.06331 mask 2) 0.05423 book 3) 0.04505 knife 4) 0.03742 laptop 5) 0.03456 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.69811 the 2) 0.14435 The 3) 0.02396 this 4) 0.00932 Championship 5) 0.00785 End ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-jun2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99014 The movie was great 2) 0.96346 Just finished reading 'Embeddings in NLP' 3) 0.95836 I just ordered fried chicken 🐣 4) 0.95051 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-jun2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-jun2021
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter June 2021 (RoBERTa-base, 115M) This is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter June 2021 (RoBERTa-base, 115M)\n\nThis is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter June 2021 (RoBERTa-base, 115M)\n\nThis is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 121, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter June 2021 (RoBERTa-base, 115M)\n\nThis is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.06891685724258423, 0.056599393486976624, -0.0027039400301873684, 0.022731667384505272, 0.13009828329086304, 0.012008368968963623, 0.13391366600990295, 0.05253010243177414, -0.02053343877196312, 0.0324825644493103, 0.07995644956827164, -0.015789605677127838, 0.02451922558248043, 0.06918715685606003, -0.017909904941916466, -0.20468689501285553, 0.004251799546182156, 0.0059150271117687225, 0.043538499623537064, 0.1475316882133484, 0.12343670427799225, -0.07931841909885406, 0.0908544510602951, 0.031117450445890427, -0.1096443235874176, -0.003029151586815715, 0.03328956291079521, -0.13641665875911713, 0.15874384343624115, -0.016656972467899323, 0.08833381533622742, 0.011563731357455254, 0.034202512353658676, -0.014831984415650368, 0.03389967978000641, 0.09689466655254364, -0.011795613914728165, 0.03902127221226692, -0.03502418100833893, -0.08202182501554489, 0.06503178924322128, 0.07527260482311249, 0.05344396457076073, 0.03187423199415207, -0.1485721468925476, -0.04073524475097656, -0.10342758893966675, 0.006361724343150854, 0.05902682989835739, 0.07645845413208008, -0.025259600952267647, 0.19802555441856384, -0.1286429464817047, 0.0675927922129631, 0.09951149672269821, -0.22470389306545258, -0.025792313739657402, 0.0542977899312973, 0.10447075217962265, -0.009631045162677765, 0.0001509160065324977, 0.03263917937874794, 0.0355253592133522, 0.019026700407266617, 0.07409348338842392, -0.014517761766910553, -0.04334147274494171, -0.014536591246724129, -0.11293460428714752, -0.060847196727991104, 0.1773299276828766, 0.020347585901618004, -0.07638850063085556, -0.10227233171463013, -0.08168382942676544, 0.07287847250699997, 0.019780129194259644, -0.06186862662434578, 0.04195759817957878, -0.011877954006195068, -0.04552412033081055, -0.037033822387456894, -0.10238216817378998, -0.06700938940048218, -0.11722435057163239, 0.0174100324511528, 0.0556306466460228, 0.05778755620121956, -0.14797581732273102, 0.0945846438407898, -0.12479621171951294, -0.11606031656265259, -0.08871302008628845, -0.08147843182086945, -0.04410811886191368, -0.02151131071150303, -0.09000209718942642, -0.13194037973880768, -0.01514202170073986, 0.2241344451904297, 0.04616592451930046, -0.002265606541186571, -0.03608547896146774, 0.030371641740202904, 0.07219885289669037, 0.1144997626543045, -0.07224763184785843, -0.03356044366955757, 0.0740656852722168, -0.05052678659558296, -0.04751361161470413, -0.007169745862483978, -0.03134646266698837, -0.03502912074327469, 0.16345517337322235, 0.017787368968129158, 0.011956045404076576, 0.10034666955471039, 0.014021278358995914, -0.01939246989786625, 0.08256220072507858, -0.08918383717536926, -0.06980820745229721, -0.03090449795126915, -0.13773992657661438, -0.007630201522260904, 0.09896045178174973, -0.017805151641368866, -0.07316651195287704, -0.02674713358283043, -0.08650082349777222, -0.05695648118853569, -0.07700499147176743, -0.1624075472354889, 0.016556482762098312, -0.18540959060192108, 0.00838162750005722, -0.18212470412254333, -0.3482005000114441, -0.04289472848176956, 0.034433893859386444, -0.02507634274661541, 0.05929923802614212, 0.01004681084305048, -0.0023418928030878305, -0.001799495192244649, -0.05831719934940338, -0.023427823558449745, -0.04123976454138756, 0.07149825245141983, 0.0719308853149414, 0.10573406517505646, 0.02578452229499817, 0.05340154096484184, -0.16514424979686737, -0.045744020491838455, -0.09986723214387894, 0.0414571650326252, -0.0053723156452178955, 0.004742672201246023, -0.09651408344507217, -0.056908488273620605, -0.033502183854579926, 0.04692161828279495, 0.028698109090328217, 0.0825798362493515, -0.15910066664218903, -0.04035305604338646, 0.2677832245826721, -0.14077043533325195, -0.141320139169693, 0.09678851813077927, -0.050446201115846634, 0.10324874520301819, 0.1176074966788292, 0.034315045922994614, 0.06974896043539047, -0.1329445242881775, -0.01058414950966835, -0.13049644231796265, -0.10970470309257507, 0.009269874542951584, 0.01744561828672886, 0.0922849252820015, 0.07555713504552841, 0.05027079954743385, -0.030438028275966644, -0.030160553753376007, -0.0692792609333992, -0.01968608982861042, -0.009086867794394493, -0.06856199353933334, 0.13611164689064026, 0.009002725593745708, 0.07099555432796478, -0.06802457571029663, -0.10843133181333542, 0.08437849581241608, 0.07134496420621872, 0.01832365058362484, -0.01308476272970438, -0.1288796067237854, 0.08950155973434448, 0.04722163826227188, -0.02635849453508854, -0.2090492695569992, -0.022441141307353973, 0.013323054648935795, 0.11397389322519302, 0.06593908369541168, 0.11111551523208618, 0.05691452696919441, 0.022063560783863068, 0.000559084175620228, -0.0024675484746694565, -0.013346007093787193, -0.05536799877882004, -0.030019637197256088, -0.020556995645165443, 0.04633277282118797, -0.07103733718395233, 0.062407296150922775, -0.054926548153162, 0.024786056950688362, -0.06095230206847191, 0.11058415472507477, 0.013154089450836182, -0.028128793463110924, -0.00693208584561944, 0.026459278538823128, -0.03976927697658539, -0.047628916800022125, 0.0062829237431287766, -0.03188726678490639, 0.055701542645692825, 0.15765036642551422, -0.13041652739048004, 0.014992534182965755, 0.12186791002750397, 0.09687040746212006, -0.11709991842508316, 0.0026174483355134726, 0.0017826220719143748, -0.0014670550590381026, -0.07076121866703033, -0.0300328116863966, 0.30005332827568054, 0.0038309944793581963, 0.12949404120445251, -0.08649538457393646, -0.007914391346275806, 0.011704989708960056, -0.07524973899126053, -0.031948067247867584, 0.009457961656153202, 0.028437551110982895, -0.2584260404109955, 0.06113296374678612, -0.073441281914711, -0.01588278077542782, 0.1111607626080513, 0.010379602201282978, -0.06677735596895218, -0.04333678260445595, -0.05958873778581619, 0.0043442873284220695, 0.08298154175281525, -0.09812033921480179, -0.07462886720895767, 0.0452437624335289, 0.010558103211224079, 0.00926299300044775, -0.06562337279319763, 0.034759242087602615, 0.048748910427093506, 0.007140675093978643, -0.14428897202014923, 0.10040132701396942, 0.03913665562868118, 0.06176311895251274, 0.0031677712686359882, 0.018200524151325226, -0.04768621176481247, -0.020638421177864075, -0.09217610955238342, 0.2077309936285019, -0.10367776453495026, -0.2938178777694702, -0.12694942951202393, -0.025199608877301216, -0.0018092605751007795, 0.011106262914836407, 0.09335640072822571, -0.011469156481325626, -0.028064029291272163, -0.02824326604604721, 0.02422381192445755, 0.03258763626217842, 0.005183821078389883, -0.05548075959086418, -0.0015734523767605424, -0.0070802317932248116, -0.154283344745636, -0.002854298334568739, -0.05483640730381012, -0.09802398830652237, 0.17397476732730865, 0.040949296206235886, 0.06413956731557846, 0.025928569957613945, -0.07833603769540787, 0.003074761014431715, -0.031005796045064926, 0.2166757583618164, -0.06395404040813446, 0.020140521228313446, 0.27917128801345825, 0.0712030678987503, 0.05681730434298515, -0.002014711033552885, -0.04200504720211029, -0.07520204782485962, 0.07078313827514648, 0.0346866175532341, -0.04653333127498627, -0.1660325825214386, -0.06870634108781815, 0.03173922002315521, -0.06481171399354935, 0.07986556738615036, -0.01349684875458479, 0.11629267781972885, 0.048916034400463104, -0.023431595414876938, -0.028207989409565926, -0.010912821628153324, 0.025309456512331963, -0.00525473989546299, -0.013957353308796883, 0.10462404042482376, 0.02259526401758194, 0.03170150890946388, 0.058416835963726044, -0.08649053424596786, 0.19415904581546783, -0.07905809581279755, -0.07417728006839752, 0.1083248034119606, 0.06690856069326401, 0.06962900608778, 0.07856805622577667, -0.05932662636041641, 0.016726549714803696, -0.03611351549625397, -0.00420758593827486, -0.08766254782676697, 0.029864346608519554, 0.052653394639492035, -0.04379827901721001, -0.12620796263217926, -0.04843290150165558, 0.03207885101437569, 0.207047700881958, 0.051033757627010345, -0.28021034598350525, -0.13583390414714813, -0.029236461967229843, -0.09140418469905853, -0.08028744161128998, -0.0020553572103381157, 0.02145354263484478, -0.1476438045501709, 0.016147375106811523, -0.04760577902197838, 0.1013287827372551, 0.010526647791266441, 0.0173025019466877, -0.07233167439699173, 0.060457054525613785, -0.014478371478617191, 0.06464480608701706, -0.19278714060783386, 0.2374497801065445, -0.0004386172513477504, 0.06197938323020935, -0.0729324147105217, -0.008331572636961937, 0.00888163410127163, -0.026548277586698532, 0.041653212159872055, -0.015472487546503544, 0.011929353699088097, -0.05414929240942001, -0.05699794366955757, 0.005622266326099634, 0.060124918818473816, -0.027594521641731262, 0.11554989963769913, 0.017282355576753616, 0.04222183674573898, -0.002811701036989689, -0.050102464854717255, -0.13548754155635834, -0.009353859350085258, 0.007551056798547506, -0.09971603006124496, 0.05360183119773865, -0.04856055602431297, -0.033429548144340515, -0.05874364823102951, 0.04944023862481117, -0.029186397790908813, -0.01836543343961239, -0.11592990905046463, 0.0187336765229702, 0.09166531264781952, -0.11218436062335968, 0.062070127576589584, 0.04075753688812256, 0.10636335611343384, -0.021993588656187057, -0.1037074476480484, 0.0295119546353817, -0.07498084008693695, -0.05422709509730339, -0.04337817803025246, -0.005362747702747583, 0.11510955542325974, 0.004703952930867672, 0.050158169120550156, 0.023503515869379044, -0.0699147954583168, -0.01936306059360504, 0.030112765729427338, 0.06802055984735489, 0.1305922120809555, 0.03627965599298477, -0.03655601665377617, 0.009973186068236828, -0.04825326055288315, 0.03926178812980652, 0.09205881506204605, 0.1502252072095871, -0.05980604887008667, 0.11946343630552292, 0.18255729973316193, -0.020444855093955994, -0.2516302466392517, -0.0021639906335622072, 0.029080312699079514, 0.08479747921228409, -0.0021219193004071712, -0.12704768776893616, 0.03568371757864952, 0.06563522666692734, 0.010305902920663357, 0.0018482867162674665, -0.16231895983219147, -0.12172595411539078, 0.13489829003810883, 0.025702232494950294, 0.16894254088401794, -0.026067111641168594, 0.015334123745560646, 0.037630848586559296, -0.08268791437149048, -0.020434364676475525, -0.09394429624080658, 0.11008443683385849, -0.030321476981043816, 0.13105490803718567, 0.010804320685565472, -0.060654524713754654, 0.05880177766084671, -0.0817350372672081, 0.067886121571064, -0.09395885467529297, 0.014567744918167591, 0.15802565217018127, -0.07193779945373535, 0.1254228949546814, 0.01798093505203724, 0.1107257679104805, -0.0625038743019104, -0.04967551305890083, -0.06609772890806198, 0.09576191753149033, 0.012358782812952995, -0.04711021110415459, -0.02423456683754921, 0.09460999071598053, 0.02467753179371357, -0.07557829469442368, -0.09766183793544769, 0.0029576963279396296, 0.05674973130226135, 0.1324293464422226, 0.08076795190572739, -0.10375230759382248, -0.0941857174038887, -0.04078451171517372, 0.0027892261277884245, 0.10708986967802048, -0.0988679975271225, 0.009975267574191093, 0.06828805804252625, 0.05880144238471985, 0.09206657856702805, 0.022650379687547684, -0.09702522307634354, 0.06335072964429855, 0.0467582531273365, -0.0995415598154068, 0.008970188908278942, -0.024490276351571083, -0.08648623526096344, -0.04885265231132507, 0.029552219435572624, 0.14638999104499817, -0.08234374970197678, -0.0396953746676445, -0.014915470033884048, 0.05620685592293739, 0.022668709978461266, 0.16296525299549103, -0.039461564272642136, 0.07317575812339783, -0.08344734460115433, 0.1160181388258934, 0.0541747622191906, -0.017182016745209694, 0.07139190286397934, -0.06184803694486618, -0.09596208482980728, -0.08735037595033646, -0.02162165753543377, -0.003937514033168554, -0.04998772591352463, -0.01037328690290451, -0.07419659942388535, -0.004767084028571844, 0.01845940575003624, 0.35054826736450195, 0.05266547203063965, 0.03219740092754364, -0.04518715664744377, 0.002182295545935631, -0.06103399768471718, 0.014926319941878319, 0.15405330061912537, 0.044798776507377625, -0.08523896336555481, 0.20805723965168, 0.01927076280117035, 0.04349932447075844, -0.06378968805074692, -0.084638811647892, -0.10874469578266144, 0.009702896699309349, -0.10489572584629059, -0.028884924948215485, -0.03093859553337097, -0.026063088327646255, 0.004226190969347954, -0.04339894652366638, -0.018162572756409645, 0.03885263577103615, -0.051748085767030716, 0.02260858193039894, -0.004146124701946974, 0.05623916536569595, -0.12125682085752487, -0.02518768236041069, 0.1104104071855545, -0.031193051487207413, 0.06751737743616104, 0.12238508462905884, -0.04885002598166466, 0.05206870287656784, -0.0801185593008995, -0.05224209651350975, 0.037587184458971024, 0.059451330453157425, 0.03741545230150223, -0.11500760167837143, 0.07268330454826355, -0.01861230656504631, -0.00037237367359921336, 0.02813231199979782, 0.029791241511702538, -0.08339417725801468, 0.003313448280096054, 0.014965899288654327, 0.01634073629975319, -0.1015341728925705, 0.0014909993624314666, 0.11651816964149475, 0.08915054053068161, 0.13420474529266357, -0.09407372027635574, 0.031015658751130104, -0.11393691599369049, 0.0159418024122715, -0.016809752210974693, -0.055498331785202026, -0.009975146502256393, 0.0016312029911205173, 0.04241150990128517, -0.018915176391601562, 0.16798262298107147, 0.060412075370550156, 0.014325314201414585, 0.02914288267493248, 0.04009435698390007, -0.10353456437587738, -0.015998858958482742, 0.026459934189915657, 0.02898247167468071, 0.0010395236313343048, -0.011920605786144733, 0.09958930313587189, 0.0005813761381432414, -0.16659288108348846, 0.14041908085346222, 0.13230463862419128, 0.023506207391619682, 0.03266504406929016, 0.04391825199127197, 0.01940745860338211, -0.08892188966274261, -0.14030644297599792, -0.04841700568795204, 0.01893528178334236, -0.02735293284058571, 0.08503902703523636, 0.16235031187534332, -0.05977274850010872, 0.09504195302724838, 0.009216220118105412, -0.027851654216647148, -0.0753118172287941, -0.08813972026109695, -0.05385901778936386, -0.04639634117484093, 0.03231121972203255, -0.0947095975279808, 0.020578229799866676, 0.04130362346768379, 0.038948580622673035, -0.02532535418868065, 0.02504059672355652, -0.07787894457578659, -0.10079538822174072, 0.03255026414990425, -0.026706751435995102, -0.03281768411397934, 0.04669806361198425, 0.003052195068448782, 0.008180183358490467, 0.06879174709320068, 0.035236719995737076, -0.022776924073696136, 0.03290592506527901, 0.05885102599859238, -0.08420812338590622, -0.061631519347429276, 0.0073063489980995655, 0.05671483650803566, 0.005445537623018026, 0.008636699989438057, 0.09766494482755661, -0.04263303428888321, -0.0041356985457241535, 0.2769300043582916, -0.04057903587818146, -0.10844077169895172, -0.19534537196159363, 0.22490163147449493, 0.07594002783298492, -0.009648820385336876, 0.00666517810896039, -0.09209837019443512, 0.012960578314960003, 0.25184759497642517, 0.1537257581949234, 0.03629893809556961, 0.016278227791190147, -0.05013812705874443, -0.013406080193817616, -0.008973093703389168, 0.05016205832362175, 0.05393031984567642, 0.2038407325744629, -0.010124423541128635, -0.010952390730381012, 0.008328922092914581, -0.023720478639006615, -0.08862859010696411, 0.028238018974661827, -0.04709038510918617, -0.009660244919359684, -0.043451905250549316, 0.07654087245464325, -0.04334824159741402, -0.20419080555438995, -0.011696944944560528, -0.0346623957157135, -0.10564376413822174, -0.008183327503502369, -0.007850442081689835, 0.014674422331154346, 0.1285700798034668, 0.02740863524377346, 0.027343565598130226, 0.0694948136806488, 0.040258485823869705, -0.06533221900463104, -0.13273170590400696, 0.08453944325447083, 0.09987497329711914, 0.18463891744613647, -0.05717655271291733, 0.00890585407614708, 0.09883253276348114, 0.054919831454753876, -0.04196653515100479, 0.030508069321513176, 0.007016786839812994, -0.08473782986402512, 0.06809069961309433, 0.10040252655744553, -0.02820192091166973, 0.05058520287275314, 0.06008239835500717, -0.1695563942193985, 0.011627457104623318, -0.07287291437387466, 0.01238952949643135, -0.09389090538024902, 0.10599028319120407, 0.013497265055775642, 0.11353051662445068, 0.139368936419487, -0.018986882641911507, 0.011603421531617641, -0.105770543217659, 0.031239548698067665, 0.0017761538038030267, -0.07479070127010345, -0.07993026822805405, -0.15173032879829407, -0.013599314726889133, -0.021589098498225212, -0.024899650365114212, -0.2582511305809021, -0.05004990100860596, 0.04946101829409599, -0.04536545276641846, 0.04365532472729683, 0.09937981516122818, 0.15003052353858948, 0.04101761057972908, -0.008815421722829342, 0.0007574407500214875, -0.0035725589841604233, 0.1334441900253296, -0.20073507726192474, -0.07271243631839752 ]
null
null
transformers
# Twitter March 2020 (RoBERTa-base, 94M) This is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-mar2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.57291 not 2) 0.14380 getting 3) 0.06983 self 4) 0.06813 fully 5) 0.02965 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.05637 book 2) 0.04557 laptop 3) 0.03842 wallet 4) 0.03824 pillow 5) 0.03485 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.59311 the 2) 0.18969 The 3) 0.04493 this 4) 0.02133 End 5) 0.00796 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-mar2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.98956 The movie was great 2) 0.96389 Just finished reading 'Embeddings in NLP' 3) 0.95678 I just ordered fried chicken 🐣 4) 0.95588 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-mar2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-mar2020
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter March 2020 (RoBERTa-base, 94M) This is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter March 2020 (RoBERTa-base, 94M)\n\nThis is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter March 2020 (RoBERTa-base, 94M)\n\nThis is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 120, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter March 2020 (RoBERTa-base, 94M)\n\nThis is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.06657042354345322, 0.04632191359996796, -0.0023556891828775406, 0.025278523564338684, 0.12320669740438461, 0.015986720100045204, 0.145913764834404, 0.05163558945059776, 0.007406133227050304, 0.03096499852836132, 0.07962056994438171, -0.0071616265922784805, 0.014943832531571388, 0.07115104049444199, -0.015556788071990013, -0.19197961688041687, -0.0015853975201025605, 0.003183856140822172, 0.05106428638100624, 0.14706169068813324, 0.12004769593477249, -0.07683242112398148, 0.0889219343662262, 0.024762501940131187, -0.09884585440158844, 0.0013395483838394284, 0.03559416905045509, -0.12864713370800018, 0.1661202311515808, -0.016305623576045036, 0.08572225272655487, 0.010543767362833023, 0.035088613629341125, -0.019099652767181396, 0.03694269806146622, 0.09196466207504272, -0.01533769816160202, 0.03422725573182106, -0.041718047112226486, -0.08315173536539078, 0.04816689342260361, 0.07135862112045288, 0.060433611273765564, 0.04180553928017616, -0.14777995645999908, -0.05803962051868439, -0.10509560257196426, 0.005387361627072096, 0.05313269793987274, 0.08369309455156326, -0.026597997173666954, 0.1930018663406372, -0.1281311959028244, 0.07009849697351456, 0.08235333859920502, -0.2349299192428589, -0.02166788838803768, 0.07871942967176437, 0.11427181959152222, 0.0024696942418813705, 0.002449530176818371, 0.0525398813188076, 0.03329027444124222, 0.011515545658767223, 0.08051344007253647, -0.023570921272039413, -0.01581377536058426, -0.014181815087795258, -0.10883836448192596, -0.061436090618371964, 0.1737208515405655, 0.029453719034790993, -0.06774736940860748, -0.12078172713518143, -0.07488125562667847, 0.0774565115571022, 0.0045232465490698814, -0.05414051190018654, 0.03583121299743652, -0.005368740763515234, -0.05241759493947029, -0.04651786386966705, -0.09840261936187744, -0.06314167380332947, -0.10623794794082642, 0.014186297543346882, 0.05583363398909569, 0.053904641419649124, -0.13686324656009674, 0.08435720205307007, -0.11491371691226959, -0.11321264505386353, -0.0818525105714798, -0.07276659458875656, -0.056530460715293884, -0.019080113619565964, -0.08846323937177658, -0.11095310002565384, -0.005352269858121872, 0.23750276863574982, 0.06258003413677216, 0.008783601224422455, -0.04370204731822014, 0.03223421052098274, 0.0697517916560173, 0.11768956482410431, -0.07745662331581116, -0.04840143769979477, 0.0763261467218399, -0.05066990852355957, -0.04033498466014862, -0.009494757279753685, -0.042411383241415024, -0.0250327717512846, 0.15509362518787384, 0.025307467207312584, 0.012791626155376434, 0.1185755729675293, 0.022052757441997528, -0.017305808141827583, 0.06990660727024078, -0.09200957417488098, -0.06151542812585831, -0.022964201867580414, -0.12137740105390549, -0.01411360315978527, 0.10048338770866394, -0.016747629269957542, -0.06773599982261658, -0.03901807218790054, -0.08019614964723587, -0.06352850049734116, -0.07196743041276932, -0.1645466834306717, 0.014920921996235847, -0.18761751055717468, 0.0016202100086957216, -0.18754731118679047, -0.3392183780670166, -0.04615512117743492, 0.03602570667862892, -0.021553069353103638, 0.06464450806379318, 0.006621694192290306, -0.0005508598987944424, -0.004216665867716074, -0.05285652354359627, -0.03209700435400009, -0.04455159604549408, 0.06548678874969482, 0.06426817178726196, 0.10623893141746521, 0.027521571144461632, 0.04993782937526703, -0.15022683143615723, -0.04581212252378464, -0.08555106818675995, 0.040393196046352386, -0.021587161347270012, 0.011469539254903793, -0.09787317365407944, -0.04920634627342224, -0.016906023025512695, 0.054967254400253296, 0.019745370373129845, 0.07575945556163788, -0.1541374772787094, -0.03988506644964218, 0.26380762457847595, -0.131537064909935, -0.14461451768875122, 0.10182712972164154, -0.049977391958236694, 0.11502385884523392, 0.12075449526309967, 0.04212770611047745, 0.07502634078264236, -0.14339743554592133, 0.016940975561738014, -0.12916387617588043, -0.11111551523208618, 0.024883082136511803, 0.011632426641881466, 0.07911664992570877, 0.06143263354897499, 0.04894881322979927, -0.018865738064050674, -0.028454303741455078, -0.06439435482025146, -0.0224186722189188, -0.007101675495505333, -0.07066617161035538, 0.12140519171953201, 0.009716669097542763, 0.06486895680427551, -0.07200885564088821, -0.1138341948390007, 0.07499294728040695, 0.06845171749591827, 0.002666519023478031, -0.01262078620493412, -0.1413019299507141, 0.08569370955228806, 0.05945993959903717, -0.019679799675941467, -0.1988781988620758, -0.022604569792747498, 0.013472780585289001, 0.1080651506781578, 0.06373953819274902, 0.1267509013414383, 0.06201256066560745, 0.012879990972578526, 0.00005553306618821807, 0.0011021355167031288, -0.006611873395740986, -0.048680953681468964, -0.03182613104581833, -0.03204040601849556, 0.049521639943122864, -0.0711379125714302, 0.07159007340669632, -0.04394496604800224, 0.029967231675982475, -0.05708710476756096, 0.10263802856206894, 0.008792071603238583, -0.03281958028674126, -0.004483746364712715, 0.030420320108532906, -0.03579215705394745, -0.049451202154159546, 0.012746606022119522, -0.03612734004855156, 0.04734566807746887, 0.15812525153160095, -0.14949394762516022, 0.018813466653227806, 0.1242755576968193, 0.08882196992635727, -0.11819176375865936, 0.016925865784287453, 0.0014257044531404972, 0.0034594594035297632, -0.055146023631095886, -0.048090610653162, 0.29917487502098083, 0.002836767351254821, 0.13475251197814941, -0.08544623851776123, -0.020853295922279358, 0.011409175582230091, -0.06638211756944656, -0.026257852092385292, 0.014970083720982075, 0.019144369289278984, -0.24510252475738525, 0.06427875906229019, -0.07084038853645325, -0.010301372967660427, 0.10768959671258926, 0.011481775902211666, -0.05824868753552437, -0.04223432019352913, -0.056754790246486664, 0.00990761537104845, 0.08567744493484497, -0.12148340791463852, -0.08245013654232025, 0.043597262352705, 0.007061838638037443, 0.008859016001224518, -0.054769985377788544, 0.031141579151153564, 0.04899614676833153, -0.00224513141438365, -0.12587867677211761, 0.10323313623666763, 0.03433552384376526, 0.06214122101664543, 0.011500810272991657, 0.010393760167062283, -0.04683786258101463, -0.02499164640903473, -0.09899391978979111, 0.20154400169849396, -0.10646158456802368, -0.30924421548843384, -0.12114709615707397, -0.042083170264959335, 0.0033326055854558945, 0.010047714225947857, 0.09819134324789047, -0.017809109762310982, -0.03375244140625, -0.0371989905834198, 0.023161228746175766, 0.033318016678094864, -0.0013812717515975237, -0.03605549409985542, -0.003945089876651764, -0.005778685212135315, -0.1593075841665268, -0.00426470348611474, -0.05494605377316475, -0.10921771824359894, 0.16671796143054962, 0.034474994987249374, 0.0667015090584755, 0.03507375344634056, -0.06898223608732224, 0.005657773464918137, -0.034620121121406555, 0.21439845860004425, -0.06865818053483963, 0.031889524310827255, 0.27875250577926636, 0.060581453144550323, 0.05186294764280319, 0.012523593381047249, -0.0307699516415596, -0.08241003751754761, 0.06320188194513321, 0.04236882925033569, -0.04593737795948982, -0.15897877514362335, -0.0740700215101242, 0.02138671465218067, -0.0537848174571991, 0.08150272816419601, -0.009726012125611305, 0.12301583588123322, 0.04188307002186775, -0.02421785704791546, -0.03553666174411774, 0.0002637480210978538, 0.030165549367666245, 0.01786644011735916, -0.023249872028827667, 0.10476991534233093, 0.020164288580417633, 0.029608113691210747, 0.06176741048693657, -0.08533282577991486, 0.17589588463306427, -0.05577841401100159, -0.06065540388226509, 0.11715693026781082, 0.05730822682380676, 0.061397917568683624, 0.05987970903515816, -0.05303630977869034, 0.020139852538704872, -0.0363643504679203, -0.009289205074310303, -0.08050519973039627, 0.02346907928586006, 0.047668371349573135, -0.055228620767593384, -0.11933144181966782, -0.06888855993747711, 0.03983232378959656, 0.19330447912216187, 0.05182410776615143, -0.2690046727657318, -0.14004917442798615, -0.02771262638270855, -0.09343454986810684, -0.0732128769159317, -0.004651215858757496, 0.027649302035570145, -0.14895738661289215, 0.013722051866352558, -0.04268317297101021, 0.10619688779115677, 0.0044940318912267685, 0.024791136384010315, -0.06992577761411667, 0.056069593876600266, -0.012609744444489479, 0.06113561615347862, -0.19050955772399902, 0.24173250794410706, 0.0037418038118630648, 0.06726190447807312, -0.07756660878658295, -0.009549415670335293, 0.008805643767118454, -0.018479861319065094, 0.04347876459360123, -0.015029330737888813, 0.02256031334400177, -0.06261187791824341, -0.05404236540198326, 0.011570882983505726, 0.06215678155422211, -0.03751543164253235, 0.10901989042758942, 0.014229858294129372, 0.03418745473027229, -0.00040066655492410064, -0.05764611437916756, -0.14614929258823395, -0.021929487586021423, 0.0077047329396009445, -0.09019109606742859, 0.04879766330122948, -0.04388352856040001, -0.02600422129034996, -0.09731131792068481, 0.0886298269033432, -0.0306515134871006, -0.024406133219599724, -0.12478014826774597, 0.009551872499287128, 0.08445140719413757, -0.10762855410575867, 0.06255760043859482, 0.03982925787568092, 0.1073063537478447, -0.03085159882903099, -0.10888416320085526, 0.02692301571369171, -0.07915893197059631, -0.05903185158967972, -0.04371572285890579, 0.009270651265978813, 0.11258769035339355, -0.002509534126147628, 0.05886475369334221, 0.01909611187875271, -0.06797069311141968, -0.026883156970143318, 0.0342804454267025, 0.07445608824491501, 0.12698540091514587, 0.02154935896396637, -0.041171323508024216, 0.004026531241834164, -0.05078129097819328, 0.041764818131923676, 0.09430042654275894, 0.15231281518936157, -0.06203466281294823, 0.12674395740032196, 0.18197590112686157, -0.019495289772748947, -0.25446343421936035, -0.007528114132583141, 0.019477257505059242, 0.07279299944639206, 0.00241097598336637, -0.12928713858127594, 0.0244328323751688, 0.061504632234573364, 0.009206123650074005, 0.00034987181425094604, -0.16859731078147888, -0.12422067672014236, 0.13193102180957794, 0.03427262604236603, 0.17230361700057983, -0.03274141252040863, 0.016483167186379433, 0.03406401351094246, -0.0951615497469902, -0.029916271567344666, -0.07695701718330383, 0.10934652388095856, -0.02648087963461876, 0.1376274675130844, 0.00882425345480442, -0.06298785656690598, 0.057786304503679276, -0.08866778761148453, 0.06813658773899078, -0.10189660638570786, 0.0239234771579504, 0.14821724593639374, -0.07195793092250824, 0.11934266239404678, 0.004726600833237171, 0.1074347198009491, -0.06244112551212311, -0.05188607797026634, -0.060112763196229935, 0.09591938555240631, 0.004948826041072607, -0.05093858391046524, -0.027139119803905487, 0.09167572855949402, 0.02807404287159443, -0.07637400180101395, -0.09543587267398834, -0.015489381738007069, 0.06272581964731216, 0.10698524862527847, 0.0942930206656456, -0.10796038061380386, -0.10441935807466507, -0.03741586580872536, -0.010736891999840736, 0.10638648271560669, -0.10038013011217117, 0.015427929349243641, 0.06095550209283829, 0.051121246069669724, 0.09522522240877151, 0.02135186642408371, -0.09743502736091614, 0.05858888849616051, 0.04940617084503174, -0.09539017826318741, 0.0018288837745785713, -0.015677092596888542, -0.10169359296560287, -0.04107805714011192, 0.02682875283062458, 0.14727094769477844, -0.0686558336019516, -0.037139296531677246, -0.009673028253018856, 0.05516275018453598, 0.031236490234732628, 0.14896954596042633, -0.03444264084100723, 0.07332414388656616, -0.08251219987869263, 0.09838364273309708, 0.047389574348926544, -0.009740564972162247, 0.07857421785593033, -0.05661667883396149, -0.10506147146224976, -0.09470121562480927, -0.02532808668911457, 0.017062921077013016, -0.0380953811109066, -0.007368103601038456, -0.06838571280241013, -0.008285727351903915, 0.0199322197586298, 0.3608943521976471, 0.048792559653520584, 0.03122926875948906, -0.040389712899923325, 0.0014889361336827278, -0.05487730726599693, 0.020279865711927414, 0.13447701930999756, 0.032496023923158646, -0.07799829542636871, 0.20386511087417603, 0.025145331397652626, 0.04130372032523155, -0.0667124092578888, -0.08693722635507584, -0.12334153056144714, 0.003809775924310088, -0.1118256002664566, -0.03200487047433853, -0.041484978049993515, -0.024864664301276207, 0.0061073629185557365, -0.050919026136398315, -0.019829535856842995, 0.0378597229719162, -0.05071485415101051, 0.016026245430111885, 0.0038359989412128925, 0.05499633401632309, -0.1175353080034256, -0.025030242279171944, 0.1072634682059288, -0.03150603175163269, 0.0758669301867485, 0.10924860090017319, -0.055010609328746796, 0.04549717530608177, -0.10130518674850464, -0.045699287205934525, 0.03205976262688637, 0.06454053521156311, 0.03516249731183052, -0.1107652559876442, 0.069111168384552, -0.019948730245232582, -0.0011602254817262292, 0.033700328320264816, 0.048199255019426346, -0.08398950099945068, 0.021482139825820923, 0.02054513804614544, 0.028847916051745415, -0.09443145245313644, 0.002548405434936285, 0.11118800193071365, 0.08373748511075974, 0.12387590110301971, -0.10172222554683685, 0.03519706055521965, -0.11758565902709961, 0.010956100188195705, -0.01349850744009018, -0.05139046162366867, -0.0188712477684021, -0.004910554736852646, 0.04392644762992859, -0.022796474397182465, 0.1854931265115738, 0.059166986495256424, 0.0002627165522426367, 0.030758587643504143, 0.034562382847070694, -0.08478735387325287, -0.026342259719967842, 0.036499571055173874, 0.021522125229239464, 0.0021521393209695816, -0.010794452391564846, 0.08919163048267365, -0.0030552600510418415, -0.19258609414100647, 0.12043042480945587, 0.13102996349334717, 0.02080680988729, 0.024731488898396492, 0.05353181064128876, 0.01867242157459259, -0.07913436740636826, -0.14345507323741913, -0.0579928457736969, 0.025438260287046432, -0.04123338311910629, 0.07215844094753265, 0.16050195693969727, -0.04787294939160347, 0.09981870651245117, 0.014523698017001152, -0.022444747388362885, -0.07503894716501236, -0.09511187672615051, -0.05845190957188606, -0.04088790714740753, 0.028963668271899223, -0.09289884567260742, 0.01497237104922533, 0.028926508501172066, 0.044862207025289536, -0.02093522995710373, 0.016809944063425064, -0.09153033047914505, -0.09497269988059998, 0.027861420065164566, -0.02477714605629444, -0.036969684064388275, 0.0401330403983593, 0.0026527405716478825, 0.004430838394910097, 0.07569988816976547, 0.03556620702147484, -0.01590888760983944, 0.033721864223480225, 0.056693773716688156, -0.09336000680923462, -0.05918721482157707, 0.0031108022667467594, 0.059065207839012146, 0.013133271597325802, 0.020554058253765106, 0.10004055500030518, -0.05004643276333809, -0.006830759812146425, 0.27200475335121155, -0.03517993167042732, -0.12358202785253525, -0.1913023293018341, 0.2397911101579666, 0.061683766543865204, -0.013589317910373211, -0.009026948362588882, -0.08655548095703125, 0.0244113951921463, 0.3010690212249756, 0.16736149787902832, 0.04275592043995857, 0.022936031222343445, -0.04992125183343887, -0.011754320934414864, 0.0027995076961815357, 0.05848253145813942, 0.04576945677399635, 0.19876377284526825, 0.000835663580801338, -0.023641183972358704, 0.015873173251748085, -0.02901020273566246, -0.10673244297504425, 0.02683078870177269, -0.04889556020498276, -0.018536802381277084, -0.039289359003305435, 0.0788155198097229, -0.03574812412261963, -0.207070991396904, 0.0068183778785169125, -0.0299313273280859, -0.0988830178976059, -0.006321579217910767, 0.002529748948290944, 0.00976117979735136, 0.12142475694417953, 0.03379763290286064, 0.027561068534851074, 0.06634718179702759, 0.03826608881354332, -0.063407763838768, -0.1269475817680359, 0.07509330660104752, 0.08891881257295609, 0.1903512179851532, -0.057794470340013504, 0.011640653945505619, 0.10610655695199966, 0.04803004860877991, -0.039814263582229614, 0.04019680246710777, 0.011921435594558716, -0.08789770305156708, 0.06572240591049194, 0.0901620090007782, -0.030720636248588562, 0.04708334431052208, 0.061978016048669815, -0.15696142613887787, 0.015154153108596802, -0.0808413103222847, 0.007236547768115997, -0.08683929592370987, 0.10471384227275848, 0.01129839476197958, 0.11668547242879868, 0.13379111886024475, -0.022098122164607048, 0.004716698545962572, -0.10073371231555939, 0.02627289481461048, 0.0019003128400072455, -0.08817129582166672, -0.08986227214336395, -0.16137027740478516, -0.01609313301742077, -0.02833048440515995, -0.02798793464899063, -0.24982483685016632, -0.04969436302781105, 0.04687948524951935, -0.03273782134056091, 0.040051668882369995, 0.10148459672927856, 0.15771494805812836, 0.0375552624464035, -0.005115467123687267, -0.013691126368939877, 0.00939816702157259, 0.13948750495910645, -0.19851624965667725, -0.06534580141305923 ]
null
null
transformers
# Twitter March 2021 (RoBERTa-base, 111M) This is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-mar2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.42688 getting 2) 0.30230 not 3) 0.07375 fully 4) 0.03619 already 5) 0.03055 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.07603 mask 2) 0.04933 book 3) 0.04029 knife 4) 0.03461 laptop 5) 0.03069 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.53945 the 2) 0.27647 The 3) 0.03881 End 4) 0.01711 this 5) 0.00831 Championship ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-mar2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99106 The movie was great 2) 0.96662 Just finished reading 'Embeddings in NLP' 3) 0.96150 I just ordered fried chicken 🐣 4) 0.95560 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-mar2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
fill-mask
cardiffnlp/twitter-roberta-base-mar2021
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2202.03829" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Twitter March 2021 (RoBERTa-base, 111M) This is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021. More details and performance scores are available in the TimeLMs paper. Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository. For other models trained until different periods, check this table. ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here. ## Example Masked Language Model Output: ## Example Tweet Embeddings Output: ## Example Feature Extraction
[ "# Twitter March 2021 (RoBERTa-base, 111M)\n\nThis is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Twitter March 2021 (RoBERTa-base, 111M)\n\nThis is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.", "## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.", "## Example Masked Language Model \n\n\n\nOutput:", "## Example Tweet Embeddings\n\nOutput:", "## Example Feature Extraction" ]
[ 66, 121, 51, 10, 11, 6 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #fill-mask #timelms #twitter #en #dataset-twitter-api #arxiv-2202.03829 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Twitter March 2021 (RoBERTa-base, 111M)\n\nThis is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021.\nMore details and performance scores are available in the TimeLMs paper.\n\nBelow, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.\n\nFor other models trained until different periods, check this table.## Preprocess Text \nReplace usernames and links for placeholders: \"@user\" and \"http\".\nIf you're interested in retaining verified users which were also retained during training, you may keep the users listed here.## Example Masked Language Model \n\n\n\nOutput:## Example Tweet Embeddings\n\nOutput:## Example Feature Extraction" ]
[ -0.06849898397922516, 0.05501927062869072, -0.002461222466081381, 0.032236579805612564, 0.12774641811847687, 0.014049463905394077, 0.1376587152481079, 0.05121546983718872, -0.007222436834126711, 0.03406937047839165, 0.08380697667598724, -0.010393138974905014, 0.022914908826351166, 0.07758021354675293, -0.018073860555887222, -0.20340266823768616, 0.0034160742070525885, 0.005892589222639799, 0.05675772204995155, 0.1463504582643509, 0.12022116035223007, -0.07611794024705887, 0.0913398340344429, 0.027835234999656677, -0.0931953489780426, -0.0010921105276793242, 0.031901173293590546, -0.13242129981517792, 0.15770632028579712, -0.01695696823298931, 0.08687851577997208, 0.0030207056552171707, 0.03726722672581673, -0.019620873034000397, 0.03543120622634888, 0.0913916677236557, -0.009600182995200157, 0.04117979854345322, -0.03732508793473244, -0.09075894206762314, 0.0634160116314888, 0.0740409642457962, 0.05586973950266838, 0.03605426847934723, -0.1485014259815216, -0.044176600873470306, -0.11392128467559814, 0.009767858311533928, 0.05676817521452904, 0.07979509979486465, -0.024136725813150406, 0.19146127998828888, -0.118927963078022, 0.06818827241659164, 0.10528356581926346, -0.23227053880691528, -0.023378970101475716, 0.05938572436571121, 0.11204200983047485, -0.00979820266366005, 0.005626046564429998, 0.03555572032928467, 0.0371776819229126, 0.020291326567530632, 0.07639871537685394, -0.016678806394338608, -0.04223313555121422, -0.016173433512449265, -0.11386791616678238, -0.057710081338882446, 0.17042548954486847, 0.022102154791355133, -0.07298914343118668, -0.10876625776290894, -0.07661091536283493, 0.0583077035844326, 0.0199220422655344, -0.056872762739658356, 0.041563671082258224, -0.01183213572949171, -0.044550035148859024, -0.04366026073694229, -0.0963854119181633, -0.06469590961933136, -0.11578411608934402, 0.025586113333702087, 0.059369951486587524, 0.057825811207294464, -0.13868045806884766, 0.09526124596595764, -0.11282293498516083, -0.11569651961326599, -0.08435428142547607, -0.08085274696350098, -0.048513151705265045, -0.02106628380715847, -0.08731122314929962, -0.11866338551044464, -0.014201967976987362, 0.2352439910173416, 0.05597427859902382, -0.0008700340404175222, -0.03561722859740257, 0.03317728638648987, 0.07328619062900543, 0.12226033210754395, -0.07864252477884293, -0.03587348759174347, 0.07462625205516815, -0.0474398247897625, -0.040232494473457336, -0.003693265374749899, -0.032541319727897644, -0.027278782799839973, 0.1576908677816391, 0.023895934224128723, 0.008618514984846115, 0.1078081727027893, 0.014100592583417892, -0.014399951323866844, 0.0802813321352005, -0.09415173530578613, -0.06868188828229904, -0.033755864948034286, -0.1377982497215271, -0.003921385854482651, 0.1002700924873352, -0.016571125015616417, -0.06820300221443176, -0.030995193868875504, -0.08476532250642776, -0.05632084235548973, -0.07515513151884079, -0.16383787989616394, 0.011709356680512428, -0.18369415402412415, 0.005204429849982262, -0.18410640954971313, -0.3521704375743866, -0.0422196201980114, 0.03871874138712883, -0.022901659831404686, 0.0681779608130455, 0.007484784349799156, 0.0012468378990888596, -0.009022321552038193, -0.05569334328174591, -0.0258953720331192, -0.04292939603328705, 0.07270612567663193, 0.06679145246744156, 0.10336346924304962, 0.020678747445344925, 0.054352834820747375, -0.16738338768482208, -0.045268502086400986, -0.09414011985063553, 0.04000580310821533, -0.01163005456328392, 0.003458637511357665, -0.09502974897623062, -0.05467060208320618, -0.02428543195128441, 0.04935438558459282, 0.028545252978801727, 0.07559273391962051, -0.1524011492729187, -0.0354502834379673, 0.26333385705947876, -0.13546611368656158, -0.13756299018859863, 0.09959342330694199, -0.05292983725667, 0.09974963963031769, 0.12326563894748688, 0.03615017607808113, 0.07044139504432678, -0.1349976807832718, -0.007513522170484066, -0.1277346909046173, -0.1159484013915062, 0.01719835214316845, 0.01989840343594551, 0.08795864135026932, 0.06941381096839905, 0.051056791096925735, -0.022418003529310226, -0.02664331905543804, -0.06814277917146683, -0.01986616477370262, -0.006039362866431475, -0.06969593465328217, 0.12983199954032898, 0.005857288837432861, 0.06524781137704849, -0.06964227557182312, -0.11568137258291245, 0.06811746954917908, 0.07157596200704575, 0.009288206696510315, -0.01440274715423584, -0.128197580575943, 0.09426289051771164, 0.04639463126659393, -0.03030412271618843, -0.20136143267154694, -0.020846648141741753, 0.014707048423588276, 0.11799505352973938, 0.06588372588157654, 0.11537988483905792, 0.05800886079668999, 0.02177117019891739, 0.0011562443105503917, 0.0005437468062154949, -0.006001248490065336, -0.057076312601566315, -0.03355502337217331, -0.01596192829310894, 0.038764405995607376, -0.07337521016597748, 0.060448721051216125, -0.0511457659304142, 0.026867123320698738, -0.07106518000364304, 0.10230283439159393, 0.011012017726898193, -0.03047625534236431, -0.00239976542070508, 0.028183745220303535, -0.039616767317056656, -0.05151534825563431, 0.007562561426311731, -0.03311767056584358, 0.05374482274055481, 0.1569063663482666, -0.1418284922838211, 0.005829695612192154, 0.11978379637002945, 0.10100853443145752, -0.1190984845161438, -0.0002716015442274511, -0.000051963364967377856, 0.00011783401714637876, -0.06026379019021988, -0.03919889032840729, 0.30826759338378906, 0.0017985268495976925, 0.13152919709682465, -0.08672918379306793, -0.013292541727423668, 0.007354340050369501, -0.07394422590732574, -0.029302194714546204, 0.011682570911943913, 0.029267989099025726, -0.24869297444820404, 0.06384315341711044, -0.08352634310722351, -0.013995717279613018, 0.10834129899740219, 0.01452754158526659, -0.06742595136165619, -0.038833413273096085, -0.06138012185692787, 0.0029554544016718864, 0.08434244990348816, -0.09070383012294769, -0.07418877631425858, 0.04585334286093712, 0.013963500037789345, 0.012955118902027607, -0.0625990703701973, 0.030549950897693634, 0.04953615739941597, 0.0025140107609331608, -0.12917721271514893, 0.10153622925281525, 0.03853244334459305, 0.06204615533351898, 0.001968702068552375, 0.014717629179358482, -0.048781655728816986, -0.019920852035284042, -0.09539902210235596, 0.20259350538253784, -0.1039746031165123, -0.29703670740127563, -0.12415685504674911, -0.045387450605630875, 0.00762436306104064, 0.011654898524284363, 0.09553492069244385, -0.009171863086521626, -0.02882268838584423, -0.0373685359954834, 0.029597027227282524, 0.03213297575712204, -0.0029940346721559763, -0.04858649522066116, -0.006695895921438932, -0.014938214793801308, -0.16027890145778656, -0.005925372708588839, -0.05851730331778526, -0.10579293221235275, 0.169514462351799, 0.036295775324106216, 0.060821469873189926, 0.03079410456120968, -0.07695931196212769, 0.004709200467914343, -0.037583429366350174, 0.20694105327129364, -0.05916895717382431, 0.02469668723642826, 0.2808898389339447, 0.06633004546165466, 0.05698784813284874, -0.0019283866276964545, -0.041699185967445374, -0.07751929759979248, 0.07001318037509918, 0.03397727385163307, -0.04910385236144066, -0.16635270416736603, -0.07129653543233871, 0.03392960876226425, -0.054247163236141205, 0.07942447066307068, -0.013063950464129448, 0.1037956103682518, 0.051013026386499405, -0.024341726675629616, -0.030056366696953773, -0.007453599479049444, 0.025258727371692657, -0.01559808012098074, -0.018102262169122696, 0.10231625288724899, 0.022033313289284706, 0.035415153950452805, 0.06019869074225426, -0.08074039965867996, 0.18958429992198944, -0.07424723356962204, -0.07989927381277084, 0.10974252223968506, 0.056579332798719406, 0.06251222640275955, 0.07470878213644028, -0.057106468826532364, 0.020180117338895798, -0.03698659688234329, -0.00614255852997303, -0.08548790216445923, 0.021389190107584, 0.048452045768499374, -0.03601803630590439, -0.12224521487951279, -0.04904991760849953, 0.033438120037317276, 0.19869385659694672, 0.05433572456240654, -0.2817685604095459, -0.13161423802375793, -0.031640633940696716, -0.09537257999181747, -0.07569113373756409, 0.0027962406165897846, 0.018383294343948364, -0.1516820788383484, 0.009723068214952946, -0.047108303755521774, 0.09865199774503708, 0.001034994376823306, 0.015131950378417969, -0.061888307332992554, 0.06349442899227142, -0.013320914469659328, 0.06370961666107178, -0.19112591445446014, 0.24027517437934875, -0.0011982136638835073, 0.06619817018508911, -0.07258039712905884, -0.0061264424584805965, 0.013558336533606052, -0.03962703421711922, 0.04175553470849991, -0.01766500435769558, 0.03471881523728371, -0.06338474154472351, -0.06329262256622314, 0.011407476849853992, 0.05970882996916771, -0.03156944736838341, 0.11628144979476929, 0.01443641446530819, 0.04178432747721672, -0.006304453127086163, -0.05792749300599098, -0.14296866953372955, -0.016142550855875015, 0.004205294884741306, -0.1003103256225586, 0.06049669161438942, -0.04541735723614693, -0.034075040370225906, -0.09315242618322372, 0.0645456314086914, -0.020739857107400894, -0.026947569102048874, -0.11308339238166809, 0.014326022937893867, 0.08987042307853699, -0.10889139026403427, 0.06217188015580177, 0.039414361119270325, 0.09693575650453568, -0.028010398149490356, -0.1085297241806984, 0.02540799044072628, -0.07354035973548889, -0.05784161016345024, -0.04406477510929108, 0.002352992305532098, 0.11785829812288284, 0.0036634542047977448, 0.05162649601697922, 0.0251262616366148, -0.06811781227588654, -0.021863926202058792, 0.0269557423889637, 0.07193784415721893, 0.13257507979869843, 0.04450834169983864, -0.04110970348119736, 0.00586716178804636, -0.053674936294555664, 0.043821923434734344, 0.09698809683322906, 0.15682193636894226, -0.062119074165821075, 0.11832421272993088, 0.17493806779384613, -0.022466568276286125, -0.24924753606319427, -0.004555553663522005, 0.024815894663333893, 0.08225701004266739, 0.007371292915195227, -0.12620940804481506, 0.028167208656668663, 0.07936394214630127, 0.011180063709616661, 0.012939752079546452, -0.1682901680469513, -0.11872458457946777, 0.13041728734970093, 0.03303340822458267, 0.15570366382598877, -0.030896369367837906, 0.01885599084198475, 0.036990970373153687, -0.09843036532402039, -0.029677366837859154, -0.06627470999956131, 0.11477936059236526, -0.032025206834077835, 0.13064442574977875, 0.00819332618266344, -0.06272939592599869, 0.05957777425646782, -0.08714286237955093, 0.07109634578227997, -0.09377951174974442, 0.00978797022253275, 0.16031508147716522, -0.07194218784570694, 0.1296820342540741, 0.005299425683915615, 0.10826090723276138, -0.06279167532920837, -0.052186910063028336, -0.06136211007833481, 0.09305880963802338, 0.011669956147670746, -0.050301067531108856, -0.027626419439911842, 0.09200920164585114, 0.025173312053084373, -0.07485231757164001, -0.09800305217504501, -0.0060807885602116585, 0.05611034482717514, 0.10246282815933228, 0.0842597708106041, -0.09545736014842987, -0.09580545127391815, -0.04622423276305199, -0.0018725006375461817, 0.10242103785276413, -0.09564875066280365, 0.008764118887484074, 0.07059376686811447, 0.054920744150877, 0.09487158805131912, 0.022420624271035194, -0.09370485693216324, 0.06948217749595642, 0.041396353393793106, -0.09317369759082794, 0.013714933767914772, -0.02095828205347061, -0.09590160846710205, -0.048376280814409256, 0.03588880971074104, 0.1421584039926529, -0.07651583105325699, -0.04487733170390129, -0.011392944492399693, 0.05864003673195839, 0.019938381388783455, 0.15421077609062195, -0.03865048289299011, 0.07075224816799164, -0.08282788097858429, 0.1148018017411232, 0.05052749812602997, -0.0030684112571179867, 0.07470622658729553, -0.060655348002910614, -0.09264855086803436, -0.08600398153066635, -0.03186560794711113, 0.0009647643892094493, -0.03605689853429794, -0.005219769664108753, -0.072642982006073, -0.0019219727255403996, 0.01816551573574543, 0.3590303659439087, 0.054951075464487076, 0.03384193032979965, -0.04537046700716019, 0.0023106022272258997, -0.060751065611839294, 0.016988739371299744, 0.149344339966774, 0.04271434247493744, -0.08345407992601395, 0.20747531950473785, 0.021696601063013077, 0.04169545695185661, -0.06383563578128815, -0.0881425216794014, -0.11305641382932663, 0.008978372439742088, -0.11602412909269333, -0.027747537940740585, -0.040814924985170364, -0.028793925419449806, 0.004303466062992811, -0.04243195429444313, -0.016789177432656288, 0.03846775367856026, -0.047614872455596924, 0.01999083161354065, -0.00013929397391621023, 0.054931871592998505, -0.11960911750793457, -0.02603890746831894, 0.10632606595754623, -0.02947922609746456, 0.06916356831789017, 0.11355552822351456, -0.05025140941143036, 0.04539026319980621, -0.10027464479207993, -0.04958562180399895, 0.03712211549282074, 0.059707123786211014, 0.03318443149328232, -0.11467187851667404, 0.06956068426370621, -0.021153835579752922, -0.00025540284696035087, 0.030371809378266335, 0.0424339734017849, -0.08601677417755127, 0.015902390703558922, 0.018512126058340073, 0.02550598606467247, -0.0983157679438591, -0.0018636808963492513, 0.1112583726644516, 0.08756846189498901, 0.13054557144641876, -0.09412016719579697, 0.033763688057661057, -0.11547225713729858, 0.014493432827293873, -0.01662789098918438, -0.051333777606487274, -0.02032323367893696, 0.005135962273925543, 0.04173237085342407, -0.016430363059043884, 0.18184499442577362, 0.06365600973367691, -0.00510122487321496, 0.025667471811175346, 0.04302775114774704, -0.08922363072633743, -0.019928093999624252, 0.026132244616746902, 0.020286925137043, 0.0005707797245122492, -0.011542970314621925, 0.09725368767976761, 0.0005557146505452693, -0.18073715269565582, 0.1416497677564621, 0.13268937170505524, 0.026137756183743477, 0.031691309064626694, 0.044167689979076385, 0.019184669479727745, -0.082110695540905, -0.16071495413780212, -0.04320143535733223, 0.016149790957570076, -0.026248401030898094, 0.08994072675704956, 0.15499143302440643, -0.054028891026973724, 0.09499403089284897, 0.016644438728690147, -0.025838449597358704, -0.07410186529159546, -0.1033744215965271, -0.05057358369231224, -0.03271880000829697, 0.033634964376688004, -0.09363710135221481, 0.018260454759001732, 0.058202408254146576, 0.04079131409525871, -0.02352132275700569, 0.017650730907917023, -0.09342288225889206, -0.09900123625993729, 0.025979802012443542, -0.02765771374106407, -0.03160111978650093, 0.040227923542261124, -0.00019700727716553956, 0.005945545621216297, 0.06718134880065918, 0.03986312821507454, -0.02147345058619976, 0.03381264954805374, 0.057356152683496475, -0.08733316510915756, -0.06104052811861038, 0.003146936185657978, 0.0573873296380043, 0.011623059399425983, 0.01618708297610283, 0.09732100367546082, -0.04285731911659241, -0.0038744609337300062, 0.275149405002594, -0.03914659470319748, -0.11311084777116776, -0.194630965590477, 0.24044455587863922, 0.06759197264909744, -0.013019762933254242, 0.00195603771135211, -0.09222255647182465, 0.019266624003648758, 0.2702172100543976, 0.165097177028656, 0.039345838129520416, 0.018046004697680473, -0.051957812160253525, -0.013835014775395393, -0.005607704631984234, 0.05264735594391823, 0.052739325910806656, 0.19661884009838104, -0.01195147167891264, -0.02032051794230938, 0.008254424668848515, -0.023995209485292435, -0.09537223726511002, 0.017937656491994858, -0.051415134221315384, -0.011004422791302204, -0.039488598704338074, 0.07382196187973022, -0.046027157455682755, -0.1990690529346466, -0.01289842464029789, -0.028526674956083298, -0.10487273335456848, -0.007715687155723572, -0.006379240192472935, 0.013221917673945427, 0.1291065216064453, 0.032505106180906296, 0.027935823425650597, 0.07024860382080078, 0.03818204626441002, -0.06521018594503403, -0.12770938873291016, 0.07572348415851593, 0.09179968386888504, 0.1903485804796219, -0.05496511608362198, 0.010707692243158817, 0.09829266369342804, 0.057464610785245895, -0.037582412362098694, 0.035021692514419556, 0.008276449516415596, -0.08262132108211517, 0.06638508290052414, 0.08546368032693863, -0.025414731353521347, 0.05849188193678856, 0.057321611791849136, -0.16043345630168915, 0.017110347747802734, -0.07000524550676346, 0.006418786942958832, -0.09152613580226898, 0.10304027050733566, 0.014981580898165703, 0.11845986545085907, 0.14014266431331635, -0.019309088587760925, 0.008487154729664326, -0.10278120636940002, 0.02543378435075283, 0.005484218709170818, -0.07699781656265259, -0.0819905549287796, -0.15669287741184235, -0.017374901100993156, -0.018547549843788147, -0.028478065505623817, -0.25640732049942017, -0.047744084149599075, 0.040356893092393875, -0.046280838549137115, 0.04392072185873985, 0.0962652936577797, 0.15196043252944946, 0.04502611979842186, -0.006150601897388697, 0.00434262678027153, 0.0003376636013854295, 0.13566544651985168, -0.20779170095920563, -0.07010238617658615 ]
null
null
transformers
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-offensive 0.9073 2) offensive 0.0927 ```
{}
text-classification
cardiffnlp/twitter-roberta-base-offensive
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.12421" ]
[]
TAGS #transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). - Git Repo: Tweeteval official repository. ## Example of classification Output:
[ "# Twitter-roBERTa-base for Offensive Language Identification\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Twitter-roBERTa-base for Offensive Language Identification\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.", "## Example of classification\n\n\n\nOutput:" ]
[ 55, 83, 9 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #text-classification #arxiv-2010.12421 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Twitter-roBERTa-base for Offensive Language Identification\n\nThis is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark.\n\n- Paper: _TweetEval_ benchmark (Findings of EMNLP 2020). \n- Git Repo: Tweeteval official repository.## Example of classification\n\n\n\nOutput:" ]
[ 0.0211018193513155, -0.034612834453582764, -0.005112718790769577, 0.05947387218475342, 0.07556597888469696, -0.018309127539396286, 0.05106532946228981, 0.11017098277807236, -0.038853999227285385, -0.0370575375854969, 0.1859763264656067, 0.20061013102531433, -0.0466749407351017, 0.12351709604263306, -0.030942339450120926, -0.20346899330615997, 0.03002331219613552, 0.03960946947336197, 0.08462715893983841, 0.16419939696788788, 0.2008102536201477, -0.0008185639162547886, 0.08616414666175842, 0.01510072685778141, -0.11315734684467316, 0.06605462729930878, 0.08603880554437637, -0.17080549895763397, 0.13306905329227448, 0.026567257940769196, 0.04219554364681244, 0.001038774149492383, -0.014244652353227139, -0.03236415609717369, 0.03237477317452431, 0.08449355512857437, -0.07946977764368057, -0.002921169623732567, 0.056188613176345825, -0.1519773155450821, 0.18028485774993896, -0.03673411160707474, 0.0462975837290287, 0.07750586420297623, -0.1032976359128952, -0.10920097678899765, -0.030063610523939133, 0.033214010298252106, 0.08226431161165237, 0.08996915817260742, -0.05121075361967087, 0.20613369345664978, -0.08029378205537796, 0.16128747165203094, 0.11842010915279388, -0.25971347093582153, -0.06138234958052635, -0.07942044734954834, 0.04031414911150932, 0.07581666111946106, 0.002200250281020999, 0.02875063382089138, 0.08853469043970108, 0.07971568405628204, 0.02110128104686737, -0.08331409841775894, -0.08742884546518326, 0.02630680799484253, -0.10282137244939804, 0.011103561148047447, 0.11138637363910675, 0.06239859014749527, -0.02612096257507801, -0.05061805993318558, -0.04695573076605797, -0.05912257358431816, 0.05000276491045952, -0.07477468252182007, -0.07323211431503296, 0.0033268388360738754, -0.0925820842385292, 0.01104065217077732, -0.058770958334207535, 0.022384697571396828, -0.14802108705043793, 0.1196756586432457, -0.002322463784366846, 0.03498784452676773, -0.12212257832288742, -0.02576635219156742, -0.06827261298894882, -0.08346156775951385, 0.004492290783673525, -0.09225887060165405, -0.02756061591207981, -0.016922997310757637, -0.08249897509813309, -0.14060170948505402, 0.10047683864831924, 0.15000799298286438, 0.07737239450216293, 0.008216305635869503, -0.061649423092603683, 0.01567462645471096, 0.06377633661031723, 0.14266948401927948, -0.12611174583435059, -0.04197990894317627, 0.06423956900835037, -0.07967226207256317, -0.014475499279797077, -0.013981071300804615, -0.08292069286108017, -0.06901619583368301, 0.14874795079231262, 0.04129144176840782, 0.04057769104838371, 0.15282540023326874, -0.030024735257029533, -0.05060369521379471, -0.06436123698949814, -0.09472388029098511, -0.019421394914388657, -0.025136444717645645, 0.0003943372576031834, 0.01806834526360035, -0.020066069439053535, 0.025794750079512596, -0.09535577893257141, -0.05682586506009102, -0.06232072785496712, -0.009324470534920692, 0.009137861430644989, -0.1447031944990158, 0.0110781230032444, -0.09354753792285919, -0.033439911901950836, -0.24538321793079376, -0.14406056702136993, -0.017779797315597534, -0.019719474017620087, 0.012447984889149666, -0.007642305921763182, -0.08922094106674194, -0.021032726392149925, 0.030841991305351257, -0.021267268806695938, -0.0783042162656784, -0.04816694185137749, 0.10726224631071091, -0.12998425960540771, 0.06556662917137146, -0.08919168263673782, 0.03283286094665527, -0.15891024470329285, -0.03351408243179321, -0.12820637226104736, 0.12595514953136444, -0.025965027511119843, 0.1736356019973755, -0.11219120025634766, -0.05953260511159897, -0.09606976062059402, 0.06012094020843506, 0.017623629420995712, 0.12345495074987411, -0.16415943205356598, -0.054801344871520996, 0.002659408375620842, -0.049308668822050095, -0.06227327510714531, 0.2053225189447403, -0.041411034762859344, 0.03718503192067146, 0.14496566355228424, 0.21511685848236084, -0.0033771160524338484, -0.005202114582061768, 0.035438187420368195, 0.016442522406578064, -0.21927642822265625, 0.06812578439712524, 0.021651461720466614, 0.019652072340250015, -0.11965277045965195, -0.022948119789361954, 0.10142160952091217, 0.09844814985990524, -0.05017121508717537, 0.0005046357400715351, -0.005244075320661068, -0.014061189256608486, 0.09736809879541397, -0.0693347305059433, -0.02458450198173523, -0.12685619294643402, -0.1274435669183731, -0.12495113909244537, 0.03247592970728874, 0.0172265637665987, 0.016006797552108765, -0.14995133876800537, 0.020725015550851822, 0.07181873172521591, 0.007479497697204351, -0.1403917521238327, 0.029880207031965256, -0.060378026217222214, 0.16224709153175354, 0.1750544160604477, -0.07883501797914505, 0.02356419526040554, -0.10438229888677597, 0.01405472680926323, -0.0007437157910317183, 0.04760633781552315, 0.04694375395774841, -0.06671096384525299, -0.05409850552678108, 0.08803803473711014, -0.043254777789115906, -0.07851936668157578, -0.05918866768479347, -0.02165204845368862, 0.11398440599441528, 0.06029338762164116, 0.010687672533094883, 0.08313152939081192, 0.03682669997215271, 0.025927210226655006, -0.05722004547715187, -0.0990259051322937, 0.015542447566986084, -0.022111084312200546, -0.0294121652841568, 0.20430688560009003, -0.05183258652687073, 0.1915595829486847, 0.19585967063903809, -0.11320057511329651, -0.12335985898971558, 0.14845184981822968, -0.028306061401963234, 0.053021542727947235, 0.04991800710558891, -0.04717846214771271, 0.13253144919872284, -0.05046653375029564, 0.07411886751651764, -0.08791642636060715, -0.05728645622730255, 0.024092353880405426, -0.03790763393044472, -0.09527696669101715, 0.12481822818517685, -0.03671826422214508, -0.39185774326324463, 0.10725046694278717, 0.20804600417613983, -0.05931606516242027, 0.1436377614736557, 0.01786884106695652, 0.03689008578658104, 0.007209749426692724, -0.06594093143939972, -0.03868531063199043, -0.04948154836893082, -0.05097709968686104, -0.06866423040628433, 0.02382359281182289, -0.025575920939445496, 0.02165260538458824, 0.003068673424422741, -0.05305289104580879, 0.02598627842962742, 0.04648543894290924, -0.06696456670761108, 0.09288136661052704, 0.09700088948011398, 0.16328586637973785, -0.025183741003274918, -0.1312495917081833, 0.059874679893255234, 0.023781243711709976, -0.1368209570646286, 0.1710558384656906, -0.2036268264055252, -0.3466729521751404, 0.015631472691893578, -0.08439802378416061, -0.018107444047927856, 0.02211323380470276, 0.0914977416396141, -0.25517538189888, 0.013381852768361568, -0.039555810391902924, 0.022646969184279442, -0.0588168203830719, 0.1114262044429779, -0.010953990742564201, -0.0017713336274027824, -0.046035170555114746, -0.11870136857032776, -0.048696815967559814, -0.05492885410785675, -0.11757364869117737, 0.1444847136735916, -0.1527658849954605, 0.04086974263191223, 0.15733231604099274, -0.04392005875706673, 0.05235728994011879, -0.1298988312482834, 0.18098635971546173, -0.08715888112783432, 0.01384639274328947, 0.07600165158510208, -0.042044226080179214, 0.020904196426272392, 0.039649635553359985, -0.04984438046813011, -0.0638665035367012, 0.09911660104990005, -0.009959700517356396, -0.032742392271757126, -0.16806133091449738, -0.09050028026103973, -0.00840279832482338, 0.06777230650186539, 0.10950229316949844, 0.056630391627550125, 0.1431366205215454, 0.00152760895434767, 0.047795724123716354, 0.029503589496016502, 0.09494796395301819, 0.085729219019413, 0.12856853008270264, 0.02066626586019993, 0.10468447208404541, -0.02927420660853386, -0.0799129456281662, 0.14189764857292175, -0.12985460460186005, 0.09408178180456161, 0.01915551722049713, -0.07455841451883316, 0.04179216921329498, 0.06708503514528275, 0.08528333902359009, 0.0533052422106266, -0.05493505299091339, 0.015176663175225258, -0.044479724019765854, -0.03668619319796562, -0.023325813934206963, 0.022942496463656425, 0.01979082264006138, -0.10710962116718292, 0.024911604821681976, -0.05521760508418083, 0.17396202683448792, 0.12167162448167801, 0.05393490195274353, -0.2991139888763428, -0.004977874923497438, -0.04131152480840683, -0.10523979365825653, 0.00002012313598243054, 0.1309586465358734, 0.017256781458854675, -0.04096335917711258, 0.13429327309131622, 0.021929746493697166, 0.07469678670167923, 0.10044080018997192, 0.049073588103055954, -0.010156087577342987, -0.019361283630132675, -0.08678358793258667, 0.0811510682106018, -0.3533698320388794, 0.20514237880706787, 0.003225588472560048, -0.00871217343956232, -0.11598402261734009, -0.09714329987764359, 0.039403390139341354, 0.036582980304956436, 0.14215296506881714, 0.02317231521010399, 0.016846299171447754, -0.07099667936563492, -0.002687121042981744, 0.026242682710289955, 0.09018846601247787, 0.06143243610858917, 0.02708258666098118, 0.0046584708616137505, 0.013491550460457802, 0.03361162543296814, -0.016257159411907196, -0.14314162731170654, -0.05687922611832619, -0.02975604124367237, 0.0636066421866417, -0.021872330456972122, 0.0021363478153944016, -0.06613018363714218, 0.027892455458641052, 0.13701270520687103, -0.0277677234262228, -0.06671979278326035, -0.15549717843532562, 0.06565850973129272, 0.06460130959749222, -0.07653548568487167, 0.03194529563188553, 0.0031239644158631563, 0.004708355758339167, -0.07202818244695663, -0.2062062919139862, 0.13252167403697968, -0.0679045021533966, -0.017276862636208534, -0.004664225038141012, 0.11802709847688675, 0.08232474327087402, 0.02717941626906395, 0.11749124526977539, 0.04032186418771744, -0.06105789914727211, -0.08950990438461304, 0.007754344027489424, -0.10133601725101471, -0.017653442919254303, 0.022470563650131226, 0.05854913964867592, -0.24332137405872345, -0.12477225065231323, 0.03622187674045563, 0.1877426952123642, 0.06872770190238953, -0.06606096774339676, 0.05368809401988983, 0.03411905840039253, -0.033463966101408005, -0.2148563414812088, -0.08399514853954315, 0.018447792157530785, -0.02490939199924469, -0.020341262221336365, -0.029085218906402588, 0.07543172687292099, 0.05099049583077431, 0.044968124479055405, -0.016848847270011902, -0.10218050330877304, -0.13591337203979492, 0.24669107794761658, -0.03283931687474251, 0.3098303973674774, -0.08239513635635376, -0.02614273875951767, -0.06429171562194824, 0.04212823137640953, 0.3073480725288391, -0.11304137855768204, 0.02586531825363636, 0.05446562170982361, 0.09827621281147003, 0.020514290779829025, 0.05187704786658287, -0.02181612327694893, 0.060141194611787796, 0.0632108524441719, -0.10485158115625381, -0.18040430545806885, 0.06074884161353111, 0.023192884400486946, 0.04602299630641937, 0.03258879855275154, 0.03886501491069794, -0.2118678092956543, -0.04098663479089737, -0.1284080296754837, 0.09637083858251572, 0.064150370657444, -0.05734213441610336, -0.0761171206831932, 0.006227254401892424, -0.019192764535546303, -0.07047152519226074, 0.13183975219726562, -0.053216733038425446, 0.13792015612125397, -0.000044751323002856225, 0.13652336597442627, -0.0755859762430191, 0.07039318233728409, -0.02434898167848587, -0.0648806095123291, 0.044946931302547455, -0.1064167246222496, -0.0036778461653739214, 0.02314121089875698, 0.011313386261463165, 0.0835912749171257, 0.058624036610126495, -0.016708025708794594, 0.05769362673163414, 0.11985109001398087, -0.1049945205450058, 0.05558265000581741, -0.04504290595650673, -0.037392836064100266, 0.0996791273355484, 0.03884993866086006, 0.21005789935588837, -0.03617287054657936, -0.07660774141550064, -0.009306073188781738, 0.03653461113572121, -0.07135888934135437, 0.04441570118069649, 0.15321902930736542, -0.03364710882306099, -0.06824858486652374, 0.05553273856639862, 0.08759656548500061, -0.040976155549287796, 0.08567742258310318, 0.15991485118865967, -0.11914253234863281, -0.07100589573383331, -0.08843881636857986, -0.01163250207901001, -0.028025275096297264, 0.002509732497856021, 0.030298715457320213, -0.06205756962299347, 0.06031404063105583, 0.30499467253685, 0.04595811292529106, 0.09343677759170532, -0.02845972776412964, -0.04885091632604599, 0.06640977412462234, 0.022182179614901543, 0.08120054006576538, -0.04665577784180641, -0.07314698398113251, 0.1360258311033249, -0.018751781433820724, 0.1517065018415451, -0.08010856062173843, -0.016433224081993103, -0.12427491694688797, 0.014596248976886272, 0.0016086065443232656, 0.024633608758449554, -0.030412591993808746, 0.010231435298919678, 0.0076220217160880566, -0.1132829412817955, -0.05122184380888939, -0.003480785060673952, -0.08741489797830582, 0.020887816324830055, 0.03693268448114395, 0.02395518310368061, -0.13180164992809296, -0.06534486263990402, 0.051366325467824936, -0.00414926465600729, 0.15075163543224335, 0.12030074745416641, -0.16210810840129852, 0.07445963472127914, -0.24016058444976807, -0.13202376663684845, 0.08058801293373108, -0.029574541375041008, 0.019636770710349083, 0.02740754932165146, 0.0730217769742012, 0.06312040239572525, 0.07741859555244446, 0.06506810337305069, 0.08770091086626053, -0.06643671542406082, 0.06108952686190605, 0.01904088258743286, -0.12289196252822876, -0.029581092298030853, -0.04291575774550438, 0.05366785451769829, 0.006462892983108759, 0.14233814179897308, -0.08939271420240402, -0.0068033854477107525, -0.15906858444213867, -0.005732264369726181, -0.012246713973581791, -0.08850795030593872, -0.07703890651464462, 0.01682979427278042, 0.06597313284873962, -0.03964497894048691, 0.13060180842876434, 0.07200447469949722, -0.10241589695215225, 0.09096020460128784, 0.09534262865781784, -0.1172819659113884, 0.021252211183309555, 0.06846926361322403, -0.037540365010499954, -0.03258785232901573, -0.14123566448688507, -0.06954121589660645, 0.04590780660510063, -0.07211527973413467, 0.047786079347133636, 0.11445894837379456, 0.1305955946445465, 0.022127224132418633, 0.021552368998527527, 0.039386216551065445, 0.06711657345294952, -0.021863514557480812, -0.03456127643585205, 0.06754312664270401, 0.017982807010412216, 0.10744678229093552, 0.21841761469841003, 0.01744641736149788, -0.030985217541456223, -0.023257946595549583, -0.026485640555620193, -0.10493096709251404, -0.23603911697864532, -0.10764452069997787, -0.1303323209285736, 0.010452491231262684, -0.09811288118362427, 0.03834820166230202, 0.010764825157821178, 0.14349043369293213, -0.015896642580628395, 0.0032075894996523857, -0.04622653126716614, -0.13969504833221436, 0.1819741278886795, -0.02987908385694027, 0.038977786898612976, 0.06269922107458115, -0.011905252002179623, -0.01291560847312212, 0.010305630974471569, 0.009177404455840588, -0.002381187165156007, 0.008252236992120743, 0.05570917949080467, -0.1828702688217163, -0.04649825021624565, -0.0016940239584073424, 0.04818027839064598, -0.0679975301027298, 0.0032395245507359505, 0.08531700819730759, -0.0211458932608366, 0.0641251876950264, 0.1885296106338501, 0.03550933673977852, -0.14713376760482788, -0.10245916247367859, 0.21415738761425018, -0.016474280506372452, 0.024389401078224182, -0.05528764799237251, -0.053336601704359055, 0.018570072948932648, 0.19236932694911957, 0.21089418232440948, -0.06387118250131607, 0.01852812059223652, -0.1172986626625061, 0.032668691128492355, 0.10521332919597626, 0.05558454245328903, 0.1031547337770462, 0.22285597026348114, 0.012241683900356293, -0.01560702733695507, -0.02586102858185768, 0.04003163054585457, -0.059966791421175, 0.019987763836979866, 0.029323330149054527, -0.045057713985443115, -0.013393700122833252, 0.18400368094444275, -0.04708864167332649, -0.03120606206357479, -0.14035046100616455, -0.11598844081163406, -0.1264667510986328, 0.010015344247221947, -0.0477151945233345, 0.04917777702212334, 0.12760338187217712, -0.0005924644647166133, -0.06166435405611992, -0.12114207446575165, 0.04662292078137398, -0.19187337160110474, -0.03310050442814827, 0.09052491188049316, 0.011871280148625374, 0.055368535220623016, 0.0008626980124972761, 0.11741776019334793, 0.088643878698349, 0.01177141536027193, -0.04602570831775665, 0.08247659355401993, -0.0010487072868272662, 0.14519722759723663, 0.05840348079800606, -0.04754530265927315, 0.034335631877183914, -0.034552183002233505, 0.07150528579950333, -0.08299792557954788, 0.028654679656028748, 0.0674675703048706, -0.036094631999731064, -0.07134053856134415, 0.08679455518722534, -0.0927690714597702, 0.05006559565663338, 0.08508395403623581, -0.06631328165531158, 0.020217254757881165, -0.0816221833229065, -0.06343869119882584, -0.027654603123664856, -0.15258179605007172, -0.052019331604242325, -0.08549624681472778, -0.05534004420042038, -0.03345427289605141, -0.00270653935149312, -0.10387922078371048, 0.06208781152963638, -0.16029535233974457, -0.000011314098628645297, -0.09329116344451904, 0.1234886646270752, 0.005997201893478632, -0.0016010779654607177, 0.02135441266000271, 0.12181269377470016, 0.09112044423818588, 0.07898860424757004, -0.08321159332990646, -0.04476180300116539 ]