sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
This model is pre-trained **XLNET** with 12 layers. It comes with paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models Project Page: [SBERT-WK](https://github.com/BinWang28/SBERT-WK-Sentence-Embedding)
{}
text-generation
binwang/xlnet-base-cased
[ "transformers", "pytorch", "safetensors", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #xlnet #text-generation #autotrain_compatible #endpoints_compatible #region-us
This model is pre-trained XLNET with 12 layers. It comes with paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models Project Page: SBERT-WK
[]
[ "TAGS\n#transformers #pytorch #safetensors #xlnet #text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 42 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #xlnet #text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06216706335544586, 0.04049227014183998, -0.006952002178877592, -0.022902699187397957, 0.12593424320220947, -0.028739485889673233, 0.16516925394535065, 0.10992224514484406, 0.020284533500671387, -0.03208116069436073, 0.12686282396316528, 0.1950623095035553, -0.036491185426712036, 0.1738133281469345, -0.10890424996614456, -0.15534834563732147, 0.09114565700292587, 0.047338176518678665, -0.01360977441072464, 0.11253863573074341, 0.08643124252557755, -0.07993802428245544, 0.055752821266651154, -0.060451678931713104, -0.11164622008800507, 0.03094988316297531, 0.062424805015325546, -0.12433211505413055, 0.10108179599046707, 0.037835899740457535, 0.15584303438663483, 0.05891934037208557, -0.07096296548843384, -0.19018498063087463, 0.038951992988586426, 0.03143744170665741, -0.0851529985666275, 0.03514266759157181, 0.08443792164325714, -0.08436597883701324, 0.03327455371618271, 0.008842416107654572, -0.040754176676273346, 0.040027886629104614, -0.07241697609424591, -0.06299341470003128, 0.0018297446658834815, 0.03756681829690933, 0.0843002051115036, 0.13254179060459137, -0.009978032670915127, 0.25713256001472473, -0.0772021934390068, 0.16531158983707428, 0.1340492069721222, -0.3365802466869354, -0.01207501906901598, 0.07692254334688187, 0.12756018340587616, 0.1104305312037468, -0.012556731700897217, 0.05047596991062164, 0.04140127822756767, -0.006517765112221241, 0.026227930560708046, -0.05957570672035217, -0.1246388778090477, 0.005330250132828951, -0.08743328601121902, -0.03381533548235893, 0.18576288223266602, -0.06311006844043732, 0.0702471137046814, -0.07200174033641815, -0.11983899772167206, -0.03488028421998024, -0.007075457368046045, 0.008290438912808895, -0.047786153852939606, 0.032153986394405365, 0.020583990961313248, -0.03297668695449829, -0.13446544110774994, 0.028592554852366447, -0.17623350024223328, 0.21747563779354095, 0.043278321623802185, 0.06422711163759232, -0.1914921998977661, 0.05203013867139816, 0.12070166319608688, -0.12992854416370392, 0.058904845267534256, -0.10901349782943726, 0.05718604847788811, 0.023963892832398415, -0.02958598919212818, -0.11185000091791153, 0.15615589916706085, 0.08011860400438309, -0.030957307666540146, 0.02083815634250641, -0.05096960440278053, 0.100763238966465, 0.018334228545427322, 0.0602283701300621, 0.008679759688675404, -0.047707971185445786, 0.10393436998128891, -0.04845559969544411, 0.05319372937083244, -0.05766938626766205, -0.11053688824176788, 0.015165344811975956, 0.08958321064710617, 0.14322949945926666, 0.05970923230051994, 0.08487424999475479, -0.01645781099796295, 0.015155166387557983, 0.10419363528490067, -0.08883177489042282, 0.011649846099317074, 0.014982706867158413, 0.023172108456492424, 0.06517408043146133, -0.012194931507110596, 0.018733281642198563, -0.1287817358970642, 0.046595048159360886, -0.047372739762067795, -0.0031180556397885084, -0.03302765265107155, -0.09208884090185165, 0.03174325078725815, -0.05848066881299019, 0.01564311422407627, -0.1838882863521576, -0.1027689203619957, -0.021625516936182976, 0.009057609364390373, 0.03947145864367485, -0.030520858243107796, -0.03921353444457054, -0.05942245200276375, 0.00491336639970541, -0.06753244251012802, -0.07164334505796432, -0.06868945062160492, 0.10727861523628235, -0.028033463284373283, 0.06549487262964249, -0.10633580386638641, 0.032157059758901596, -0.1288289576768875, -0.04919929429888725, -0.04333255812525749, 0.028788939118385315, -0.07761860638856888, 0.16282807290554047, 0.053804121911525726, -0.02855798229575157, -0.04592636972665787, 0.04944070428609848, -0.041393719613552094, 0.1592354029417038, -0.07500309497117996, -0.0839005783200264, 0.2744694650173187, -0.13881205022335052, -0.1872720718383789, 0.1035049706697464, 0.020859116688370705, -0.034927185624837875, 0.10932569950819016, 0.16415220499038696, 0.06779920309782028, -0.06149518862366676, 0.025654414668679237, 0.1196885034441948, -0.12982799112796783, -0.12992869317531586, -0.05205352231860161, 0.0708894282579422, -0.06274919956922531, 0.048476897180080414, 0.02486536279320717, 0.0803413912653923, -0.058041345328092575, -0.06647022813558578, -0.04710940644145012, -0.04669373854994774, 0.05424860119819641, 0.034805651754140854, 0.08315233141183853, -0.08674360066652298, -0.026375049725174904, -0.07524023950099945, 0.008230348117649555, -0.03602324798703194, 0.033780645579099655, -0.06810236722230911, 0.0815015584230423, 0.004964377731084824, 0.05412008985877037, -0.1600935459136963, -0.16931389272212982, 0.005809323862195015, 0.09188728034496307, -0.029794780537486076, 0.08633594214916229, 0.046599436551332474, -0.011590639129281044, 0.017513711005449295, -0.06114934757351875, 0.19505691528320312, 0.0070118047297000885, -0.06943047791719437, -0.0898122563958168, 0.08135590702295303, -0.07017689943313599, 0.019164372235536575, -0.0958024114370346, 0.03429897502064705, -0.016857268288731575, 0.09501682966947556, 0.012503144331276417, 0.05647452548146248, -0.024404771625995636, 0.03335634991526604, -0.09749407321214676, 0.007299173157662153, 0.07584638893604279, 0.016230508685112, -0.1007474884390831, 0.17741499841213226, -0.1842389702796936, 0.37139788269996643, 0.21078190207481384, -0.2651304304599762, 0.05023634806275368, 0.026421964168548584, -0.01496178936213255, 0.006330128759145737, 0.026805978268384933, 0.024509476497769356, -0.009905369952321053, -0.009850475937128067, 0.17327991127967834, -0.0708680972456932, -0.04280330613255501, 0.01650388166308403, -0.08175276964902878, 0.006899806670844555, 0.0696759968996048, 0.019663743674755096, -0.12839250266551971, 0.177470400929451, 0.1594492644071579, 0.000337750359904021, 0.14206033945083618, -0.030140643939375877, 0.04183850437402725, 0.08464422076940536, 0.04077412933111191, -0.021562958136200905, -0.0499751977622509, -0.10915056616067886, -0.010064132511615753, 0.04865887016057968, -0.005301858298480511, 0.09253454208374023, -0.13759948313236237, -0.055571068078279495, -0.015574709512293339, -0.033707696944475174, -0.022542065009474754, 0.046601127833127975, 0.04049098119139671, 0.12028447538614273, -0.08657455444335938, -0.11424976587295532, 0.08647044003009796, -0.03888263553380966, -0.09479589760303497, 0.18527927994728088, -0.12614020705223083, -0.3814904987812042, -0.1282927542924881, -0.07738294452428818, -0.08053737878799438, 0.02037915401160717, 0.09219858050346375, -0.09749985486268997, -0.04215829446911812, -0.03151572123169899, -0.06787306070327759, 0.026435593143105507, 0.050324611365795135, -0.052165839821100235, 0.07749059051275253, -0.018525123596191406, -0.10462124645709991, -0.039733003824949265, -0.05916546657681465, -0.07301731407642365, 0.16206954419612885, -0.06597163528203964, 0.09934371709823608, 0.1579710692167282, -0.0030130832456052303, 0.025339042767882347, -0.026922594755887985, 0.14428111910820007, -0.06624820828437805, -0.006295415572822094, 0.17968854308128357, -0.057846784591674805, 0.09482963383197784, 0.1271447092294693, 0.010071842931210995, -0.06297805905342102, 0.0338418111205101, -0.05186527222394943, -0.06860917806625366, -0.26469868421554565, -0.1417602002620697, -0.07633744925260544, 0.06080036982893944, -0.015492280945181847, 0.08622865378856659, 0.15717852115631104, 0.06852131336927414, -0.029685107991099358, -0.07807593047618866, 0.031572263687849045, 0.05449285730719566, 0.15095122158527374, 0.0085527328774333, 0.15424907207489014, -0.08106362074613571, -0.13263970613479614, 0.06238839775323868, 0.046202074736356735, 0.13616439700126648, 0.048621200025081635, 0.009328209795057774, 0.03622497618198395, 0.15712089836597443, 0.14955025911331177, 0.14629493653774261, 0.008952796459197998, -0.049095071852207184, 0.027293112128973007, -0.024861998856067657, -0.01984332501888275, -0.010898071341216564, -0.05800369381904602, -0.11180747300386429, -0.03714370355010033, -0.05763905122876167, 0.11573225259780884, 0.07608997076749802, -0.00146139704156667, -0.19403310120105743, 0.0626140683889389, 0.07355768978595734, -0.04953401908278465, -0.06388441473245621, 0.0690792053937912, 0.05605195835232735, -0.09512870013713837, 0.0837019607424736, -0.06612367182970047, 0.09410583227872849, -0.01777883805334568, 0.07836073637008667, -0.04676394909620285, -0.09563879668712616, 0.02934962324798107, 0.09718608111143112, -0.24085870385169983, 0.21840250492095947, -0.020031869411468506, 0.0029759330209344625, -0.07791084796190262, -0.007468912750482559, 0.007700842805206776, 0.17704223096370697, 0.10118265450000763, -0.0063797663897275925, -0.06284572184085846, -0.11557459086179733, -0.06108506768941879, 0.06143087521195412, 0.11076954007148743, 0.04691372811794281, 0.02338489331305027, -0.020808588713407516, -0.04603927209973335, -0.012591144070029259, -0.07281915098428726, -0.0025283137802034616, -0.15434154868125916, 0.04211440682411194, 0.11298418045043945, 0.050730377435684204, -0.020236987620592117, -0.036584265530109406, -0.1460203230381012, 0.248916357755661, -0.11087480932474136, -0.11901739239692688, -0.05820181220769882, -0.10917427390813828, 0.02972598746418953, -0.08102705329656601, 0.04657129570841789, -0.0515240915119648, 0.040763009339571, -0.08709432929754257, -0.20196537673473358, 0.08855030685663223, -0.13788175582885742, -0.04429588094353676, -0.045215435326099396, 0.16734063625335693, -0.06087813526391983, -0.027020538225769997, 0.030547235161066055, -0.015803588554263115, -0.11475634574890137, -0.09749352186918259, -0.04531116038560867, -0.0056783342733979225, -0.011820197105407715, 0.05271105095744133, -0.05883542448282242, -0.1590103805065155, -0.05623948574066162, -0.00030073654488660395, 0.24242641031742096, 0.1995847374200821, -0.0636889860033989, 0.10737019777297974, 0.18277667462825775, -0.05796539783477783, -0.34419846534729004, -0.1238211989402771, -0.12079519778490067, -0.06409366428852081, -0.018690338358283043, -0.07097233086824417, 0.13967080414295197, 0.004903338383883238, -0.0352618508040905, 0.15247003734111786, -0.2399289757013321, -0.072364442050457, 0.14100472629070282, 0.011869825422763824, 0.34471622109413147, -0.1601930558681488, -0.06615538895130157, -0.0324099101126194, -0.04131646826863289, 0.1463167518377304, -0.07348374277353287, 0.06260991096496582, 0.01316816546022892, 0.029804496094584465, 0.0355985052883625, -0.07036780565977097, 0.05899825692176819, -0.031820349395275116, 0.05882423743605614, -0.08654841035604477, -0.00969606265425682, 0.0498163215816021, -0.007161490153521299, 0.035004664212465286, -0.11383914947509766, 0.02356104925274849, -0.04695048928260803, -0.03854241594672203, -0.07908175140619278, 0.07240162044763565, 0.03520047292113304, -0.02333264797925949, 0.0040486715734004974, -0.07686543464660645, 0.021386386826634407, 0.02589837647974491, 0.2270703911781311, -0.024631107226014137, 0.19896157085895538, 0.17663949728012085, 0.13170002400875092, -0.19102847576141357, 0.035768743604421616, -0.035908833146095276, -0.06725230067968369, 0.0872216448187828, -0.019982613623142242, 0.06864368170499802, 0.11603393405675888, -0.07160792499780655, 0.01663466915488243, 0.09723496437072754, 0.026537185534834862, -0.037952955812215805, 0.15103019773960114, -0.2477114498615265, -0.02025170624256134, -0.05493275076150894, 0.0008324664668180048, 0.05848577618598938, 0.1401602327823639, 0.15403109788894653, 0.015118165872991085, -0.03760737553238869, -0.029035057872533798, 0.028244927525520325, -0.01391720212996006, 0.09932316094636917, 0.04931383207440376, 0.03812979534268379, -0.14608487486839294, 0.04801790788769722, 0.009302404709160328, -0.14225536584854126, -0.015688175335526466, 0.18134813010692596, -0.1471942663192749, -0.13908754289150238, 0.0012438686098903418, 0.11068549007177353, -0.11329387873411179, -0.09452056884765625, -0.10138843208551407, -0.14288358390331268, 0.027827449142932892, 0.19683754444122314, 0.08435961604118347, 0.08264926075935364, 0.022891996428370476, -0.03637141361832619, -0.053942758589982986, 0.04373443126678467, 0.032310064882040024, 0.048777226358652115, -0.14541658759117126, 0.05168911814689636, 0.004061523824930191, 0.1389475017786026, -0.10383281856775284, -0.02433442324399948, -0.12663021683692932, 0.050031956285238266, -0.08991130441427231, -0.017197823151946068, -0.06632677465677261, -0.039535101503133774, -0.0195305235683918, -0.04083976149559021, -0.03531589359045029, -0.00957413949072361, -0.07866303622722626, 0.03202715888619423, -0.007903837598860264, -0.04044011980295181, -0.11647728085517883, -0.03258826956152916, 0.03549189865589142, -0.028332265093922615, 0.1011267751455307, 0.0984625294804573, -0.11067377775907516, 0.08835842460393906, -0.2207251489162445, -0.08167695999145508, 0.13451793789863586, 0.04681502655148506, 0.03538469225168228, 0.11795378476381302, 0.030018480494618416, 0.139913409948349, 0.018773533403873444, 0.04423825815320015, -0.008639955893158913, -0.11375356465578079, 0.06815952062606812, -0.033598676323890686, -0.10934042930603027, -0.025363821536302567, -0.08964159339666367, 0.08624068647623062, -0.004280705936253071, 0.19022776186466217, -0.08040215820074081, 0.09632444381713867, -0.06905997544527054, 0.026163890957832336, 0.0074530490674078465, -0.21539999544620514, -0.08341517299413681, -0.032408129423856735, 0.03270888701081276, -0.01374470628798008, 0.25287488102912903, 0.04949743300676346, 0.005624027457088232, 0.036297839134931564, 0.014743763022124767, 0.013173133134841919, 0.03090897761285305, 0.18813678622245789, 0.07874593883752823, -0.04587263613939285, -0.09843636304140091, 0.007268817629665136, 0.017906473949551582, -0.06357147544622421, 0.1222911924123764, 0.05933308228850365, 0.03483620285987854, 0.08968096226453781, 0.02734498120844364, 0.044697996228933334, -0.09524103999137878, -0.21300199627876282, -0.11826947331428528, 0.05702533945441246, 0.01305035687983036, 0.01740524172782898, 0.17343835532665253, 0.035247061401605606, -0.001849802560172975, -0.011819842271506786, -0.036242157220840454, -0.19723807275295258, -0.12052461504936218, -0.10300872474908829, -0.10467138141393661, -0.00842705462127924, -0.09209752827882767, -0.015515006147325039, 0.00818620901554823, 0.05101597681641579, -0.06788245588541031, 0.10998313128948212, 0.11819677799940109, -0.04575442150235176, 0.04738442227244377, -0.019032882526516914, 0.025640076026320457, 0.05890645831823349, -0.0050412132404744625, -0.11848992854356766, 0.000022003509002388455, -0.028384095057845116, 0.058232132345438004, -0.04993707314133644, 0.09099658578634262, -0.15053610503673553, -0.10946928709745407, -0.0563630647957325, 0.05365069583058357, -0.021560031920671463, 0.13893020153045654, 0.026417309418320656, -0.013429436832666397, 0.04505341872572899, 0.20358425378799438, -0.051707834005355835, -0.1664048135280609, -0.009013636969029903, 0.20230458676815033, 0.02660316787660122, 0.10471894592046738, -0.04177597165107727, 0.011832511983811855, -0.08421826362609863, 0.34322577714920044, 0.33784523606300354, -0.05198773741722107, 0.06412138789892197, -0.03213423117995262, 0.033670030534267426, 0.030346261337399483, 0.1296585202217102, 0.13541921973228455, 0.39514487981796265, -0.058389730751514435, -0.0014010278973728418, -0.04121999070048332, 0.013879934325814247, -0.17971830070018768, -0.000754977052565664, 0.02068675123155117, -0.030041348189115524, -0.04703560099005699, 0.10178884118795395, -0.1888098120689392, 0.16451306641101837, -0.05870428308844566, -0.1488785296678543, -0.025672663003206253, 0.01150430180132389, 0.217340886592865, -0.010208559222519398, 0.057313427329063416, -0.006294540595263243, -0.0690852627158165, 0.023459719493985176, -0.024035269394516945, -0.15496790409088135, 0.0037274404894560575, 0.03080599382519722, -0.12137214839458466, 0.06553536653518677, -0.001873314380645752, 0.057654980570077896, 0.05170338973402977, 0.01617307960987091, -0.04885212704539299, 0.12484479695558548, 0.0032084172125905752, -0.08330480009317398, 0.04451991617679596, -0.00016416350263170898, 0.013501019217073917, -0.05534280836582184, 0.05399652197957039, -0.09456926584243774, 0.036152906715869904, -0.06749844551086426, -0.0328073687851429, -0.013802471570670605, 0.02723105065524578, -0.028705943375825882, 0.050682950764894485, 0.04381537809967995, -0.021401535719633102, 0.017634274438023567, -0.03861250728368759, -0.0351911261677742, -0.02215433679521084, -0.0510709248483181, -0.055205654352903366, -0.1828417181968689, -0.06218384578824043, 0.1252320557832718, 0.04381036385893822, -0.16001474857330322, 0.03216592222452164, -0.14691738784313202, 0.022462565451860428, -0.19274355471134186, 0.022633487358689308, 0.12827058136463165, 0.009881632402539253, 0.0017405512044206262, -0.012676029466092587, 0.04242435097694397, 0.07050803303718567, -0.07365813106298447, -0.1141567975282669 ]
null
null
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [BC2GM](https://doi.org/10.1186/gb-2008-9-s2-s2) dataset for 10 epochs. This fine-tuned model can be used for NER for genes/proteins.
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "token-classification"}
token-classification
bioformers/bioformer-8L-bc2gm
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bioformer-8L fined-tuned on the BC2GM dataset for 10 epochs. This fine-tuned model can be used for NER for genes/proteins.
[]
[ "TAGS\n#transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 52 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.059595197439193726, 0.10631763190031052, -0.007629459258168936, 0.0244675874710083, 0.07692740112543106, -0.009490981698036194, 0.1120014414191246, 0.09707333892583847, 0.016386302188038826, -0.058308474719524384, 0.14559929072856903, 0.2322559505701065, -0.02104523777961731, 0.09640208631753922, -0.0772639587521553, -0.18908371031284332, 0.11321170628070831, 0.031629133969545364, -0.027390873059630394, 0.11348471790552139, 0.11655383557081223, -0.059609029442071915, 0.03608550876379013, -0.010012947022914886, -0.050080087035894394, 0.005900037940591574, 0.06558991968631744, -0.1263318806886673, 0.10472848266363144, 0.010667749680578709, 0.1416918933391571, 0.048578500747680664, -0.010780079290270805, -0.17827226221561432, 0.01685168221592903, 0.04325312748551369, -0.05701589956879616, 0.06061201170086861, 0.06445474177598953, -0.042393025010824203, -0.03439084067940712, 0.04937899485230446, 0.013264483772218227, 0.043994951993227005, -0.06446723639965057, -0.2367478609085083, -0.07986585795879364, 0.09175827354192734, 0.08877503871917725, 0.06225430965423584, 0.04686594381928444, 0.2166328728199005, -0.1363559067249298, 0.07040996849536896, 0.10097770392894745, -0.3378860056400299, 0.008846734650433064, 0.06439774483442307, 0.011660018935799599, -0.020830940455198288, -0.017887143418192863, 0.01634209230542183, 0.05087721347808838, 0.013740013353526592, 0.07426079362630844, -0.04597567394375801, -0.12318819016218185, 0.018208418041467667, -0.07754059135913849, -0.061774663627147675, 0.1946762651205063, 0.0051047285087406635, 0.01380863320082426, -0.016571272164583206, -0.09115388244390488, 0.03032490611076355, -0.010035322979092598, 0.015539965592324734, 0.015580558218061924, 0.07992756366729736, 0.07526838034391403, 0.02796023152768612, -0.13954363763332367, 0.0038283425383269787, -0.19779418408870697, 0.1512414664030075, 0.03748834878206253, 0.08667577058076859, -0.12928499281406403, 0.06433986872434616, 0.04397663101553917, -0.1079297736287117, 0.013299165293574333, -0.08847339451313019, 0.10585624724626541, 0.006872594356536865, -0.0216996930539608, 0.10459595918655396, 0.14807040989398956, 0.24554948508739471, 0.008490723557770252, 0.0006220643990673125, -0.03798950836062431, 0.09819090366363525, -0.02439701557159424, 0.06169116124510765, 0.004773916210979223, 0.0029138021636754274, 0.12058168649673462, -0.08234737813472748, 0.07648736983537674, -0.015147379599511623, -0.09438566118478775, -0.008250034414231777, 0.07007094472646713, 0.14284799993038177, 0.03614111989736557, 0.050720322877168655, -0.05599583312869072, 0.025464754551649094, 0.17661522328853607, -0.0716419592499733, 0.0030076471157372, 0.008878698572516441, 0.04219090938568115, 0.02228664979338646, 0.021391183137893677, 0.030783358961343765, -0.03333854302763939, 0.11593122035264969, -0.056953441351652145, -0.034543007612228394, -0.020107511430978775, -0.018121900036931038, 0.08384237438440323, -0.09292449057102203, 0.07103262841701508, -0.17778323590755463, -0.12789620459079742, 0.054290201514959335, 0.05843212455511093, 0.03949759155511856, -0.06971442699432373, 0.0627439096570015, -0.020450809970498085, -0.011543171480298042, -0.09382392466068268, -0.04808494448661804, -0.08693333715200424, 0.06649096310138702, -0.06748238950967789, -0.005129937082529068, -0.12065643072128296, 0.036540694534778595, -0.15144887566566467, 0.020572766661643982, -0.0577455498278141, -0.0837194174528122, -0.11143656820058823, 0.1909424215555191, -0.049468033015728, -0.051477499306201935, 0.023392388597130775, -0.0006517790025100112, -0.04389803856611252, 0.10010425001382828, -0.05719350650906563, -0.047356847673654556, 0.19699619710445404, -0.15346479415893555, -0.19086122512817383, 0.0805756002664566, 0.018746525049209595, -0.01342928409576416, 0.0699700340628624, 0.12589630484580994, 0.09753774106502533, -0.04877757653594017, 0.05581682175397873, 0.1286648064851761, -0.10490857809782028, -0.16889147460460663, 0.03976103290915489, -0.03041401319205761, -0.1507398933172226, 0.056760575622320175, -0.027175601571798325, 0.09410244226455688, -0.02349107526242733, -0.08472321182489395, -0.06348812580108643, -0.061779458075761795, 0.03498120605945587, 0.023742884397506714, 0.03657194599509239, -0.08156696707010269, -0.011193453334271908, -0.047948677092790604, 0.04690099135041237, 0.04283229634165764, 0.023988088592886925, -0.10232236236333847, 0.08006595820188522, 0.0033755141776055098, 0.012584766373038292, -0.12195257097482681, -0.06227247044444084, 0.021048063412308693, -0.02183537557721138, -0.04614357277750969, 0.06171775981783867, 0.05298782140016556, -0.04034341126680374, 0.003946306183934212, -0.04714684933423996, 0.14881442487239838, 0.0766487866640091, -0.011257418431341648, -0.13094469904899597, 0.030676545575261116, -0.054146356880664825, 0.03355014696717262, -0.01124284416437149, 0.023657727986574173, 0.0611737035214901, 0.12396371364593506, -0.02489505149424076, 0.09484673291444778, -0.03664865344762802, -0.000142398159368895, -0.05330050364136696, -0.009033212438225746, 0.11087857931852341, 0.03429315239191055, -0.059645961970090866, 0.1477213203907013, -0.07704055309295654, 0.34404459595680237, 0.19459190964698792, -0.16285039484500885, 0.05102197453379631, -0.005693621933460236, -0.03512963280081749, -0.014240749180316925, 0.026536915451288223, 0.03738819435238838, -0.024659400805830956, 0.009891473688185215, 0.13615724444389343, -0.05331426113843918, -0.05181577056646347, -0.004111792892217636, -0.07191430032253265, -0.01862928457558155, 0.034959230571985245, 0.11031261831521988, -0.18773338198661804, 0.1949310451745987, 0.33231258392333984, -0.010407802648842335, 0.02769985795021057, -0.09829138219356537, 0.023424124345183372, 0.04188505932688713, -0.010857561603188515, -0.025153521448373795, 0.029730141162872314, -0.1020900160074234, 0.02931899018585682, 0.09101535379886627, 0.037710871547460556, 0.027564043179154396, -0.14617547392845154, -0.04594927281141281, 0.0005768557311967015, 0.002950448077172041, -0.022592024877667427, 0.05258798226714134, 0.004609347321093082, 0.09558837860822678, -0.03956138715147972, -0.15612749755382538, 0.13214664161205292, 0.0009200698114000261, -0.06517138332128525, 0.1568019688129425, -0.1592644453048706, -0.2499362677335739, -0.09997566789388657, -0.11091836541891098, -0.016624461859464645, 0.011807420291006565, 0.10858207195997238, -0.05040875822305679, -0.07083499431610107, 0.005267674569040537, -0.08259241282939911, 0.011951121501624584, 0.04637390747666359, -0.022241583094000816, 0.06026598438620567, 0.03687203302979469, -0.10821034759283066, -0.05574595555663109, 0.007621741853654385, -0.06301957368850708, 0.09565864503383636, -0.03548980504274368, 0.0565580315887928, 0.1262890100479126, 0.009045802988111973, 0.004031754098832607, -0.03719327971339226, 0.13278941810131073, -0.02155284211039543, 0.024742111563682556, 0.21494249999523163, -0.05969719961285591, 0.08979412168264389, 0.16621504724025726, 0.04078880324959755, -0.04664229974150658, 0.014198161661624908, -0.05004282668232918, -0.08011195808649063, -0.23994417488574982, -0.11594166606664658, -0.06807024031877518, 0.06262688338756561, 0.044930994510650635, 0.09121332317590714, 0.1185266375541687, 0.10531827062368393, -0.012906715273857117, -0.04558880999684334, -0.002682699589058757, 0.056127361953258514, 0.21051685512065887, -0.010734698735177517, 0.11484015733003616, -0.09072810411453247, -0.07946362346410751, 0.09703280031681061, 0.08375775814056396, 0.10550329834222794, 0.11143471300601959, -0.01877782680094242, 0.07917140424251556, 0.2380746752023697, 0.09401649981737137, 0.14397072792053223, 0.0060878172516822815, -0.028690529987215996, -0.031617820262908936, -0.011649219319224358, -0.05533507838845253, 0.025410039350390434, -0.046027153730392456, -0.08183522522449493, -0.02575746551156044, -0.12770137190818787, 0.08474810421466827, 0.18414148688316345, 0.031717922538518906, -0.16124606132507324, 0.019827721640467644, 0.08781170845031738, -0.009311218746006489, -0.026490410789847374, 0.11675476282835007, -0.0708768367767334, -0.0788249745965004, 0.10491454601287842, -0.047420185059309006, 0.097123883664608, -0.005846098996698856, 0.05215346813201904, -0.004947523586452007, -0.08903983980417252, 0.06545103341341019, 0.1297169029712677, -0.23861956596374512, 0.21504756808280945, -0.015931053087115288, -0.02445845864713192, -0.08135662227869034, 0.013686065562069416, 0.057181499898433685, 0.22974897921085358, 0.11625958979129791, 0.02436232939362526, -0.11592810600996017, -0.07512018829584122, -0.07763414829969406, 0.043618958443403244, 0.01129867136478424, 0.0014053157065063715, -0.05197974294424057, -0.07176268100738525, -0.01478944718837738, 0.019009049981832504, -0.003704957664012909, -0.042290687561035156, -0.1050403043627739, 0.0327347069978714, 0.10741148889064789, 0.04168447479605675, -0.08872824907302856, -0.029534634202718735, -0.1355004757642746, 0.17636659741401672, -0.1088709831237793, -0.0793815478682518, -0.08503847569227219, -0.15265773236751556, 0.05100608617067337, -0.058765411376953125, 0.08026053011417389, -0.08279121667146683, 0.006286883261054754, -0.044234324246644974, -0.18449975550174713, 0.10897718369960785, -0.16726337373256683, -0.07496177405118942, -0.04734254628419876, 0.14166449010372162, -0.09050673991441727, -0.0010082157095894217, 0.04015079513192177, 0.002123621990904212, -0.07761029154062271, -0.11402487754821777, -0.009571169503033161, 0.006474085617810488, 0.06321746110916138, -0.010682391002774239, -0.07764094322919846, -0.0885096862912178, 0.02230287902057171, -0.024300487712025642, 0.1825769692659378, 0.22545233368873596, -0.08529490232467651, 0.12561868131160736, 0.23147578537464142, -0.039628904312849045, -0.3182145059108734, -0.16395695507526398, -0.16413220763206482, -0.11094354093074799, 0.00946718268096447, -0.08942510932683945, 0.16214993596076965, 0.07534264028072357, -0.1102471724152565, 0.08382916450500488, -0.13942518830299377, -0.061759982258081436, 0.2562066614627838, 0.014020739123225212, 0.3100128769874573, -0.1261322945356369, -0.06293918192386627, -0.04347341135144234, -0.15158842504024506, 0.11952613294124603, -0.09458768367767334, 0.018279504030942917, -0.0028460531029850245, -0.014908469282090664, -0.0105310482904315, -0.07361216843128204, 0.1151808649301529, -0.032727889716625214, 0.05070047825574875, -0.11032845079898834, -0.009167310781776905, 0.06449837982654572, -0.020154280588030815, 0.047452960163354874, -0.10327593237161636, 0.054281916469335556, -0.02973555028438568, -0.01783146895468235, -0.06745825707912445, 0.11551990360021591, 0.0035355251748114824, -0.08237697184085846, -0.02713950350880623, -0.014035383239388466, 0.0032904164399951696, -0.019548678770661354, 0.23817157745361328, 0.0533728264272213, 0.10620903968811035, 0.1415189802646637, 0.07724647223949432, -0.19441430270671844, -0.004892610013484955, -0.0880972146987915, -0.09032591432332993, 0.08275473117828369, -0.08097861707210541, 0.07521849125623703, 0.09847386181354523, -0.053555700927972794, 0.030957749113440514, 0.07722925394773483, 0.014392501674592495, -0.07189072668552399, 0.13734029233455658, -0.19336922466754913, -0.0029275917913764715, 0.016645127907395363, 0.11135733127593994, 0.05746306851506233, 0.13255950808525085, 0.1132577583193779, 0.011508218944072723, -0.03902217000722885, 0.00994537491351366, 0.038947444409132004, -0.06459175050258636, 0.05133867263793945, 0.06503661721944809, 0.028675276786088943, -0.1153540387749672, 0.0938890129327774, 0.005607145372778177, -0.13422808051109314, -0.049310486763715744, 0.03707799315452576, -0.16499435901641846, -0.1251576989889145, 0.012925009243190289, 0.042720671743154526, -0.0956338495016098, -0.13257832825183868, -0.03245978429913521, -0.1568082720041275, 0.050797589123249054, 0.13024407625198364, 0.13169004023075104, 0.10422632843255997, 0.014499234035611153, -0.048640262335538864, 0.013356425799429417, 0.008865008130669594, -0.06856595724821091, 0.030806060880422592, -0.16222138702869415, -0.05038931965827942, 0.02064080908894539, 0.09524060785770416, -0.05986732617020607, -0.0012853862717747688, -0.10596384853124619, 0.03725794330239296, -0.12649501860141754, -0.01643923483788967, -0.09022706001996994, 0.004841700196266174, 0.03337377309799194, -0.09527548402547836, -0.01847096160054207, 0.017560835927724838, -0.10123640298843384, 0.012896465137600899, 0.01566278003156185, 0.04947790503501892, -0.11697810143232346, -0.055427901446819305, 0.08668754994869232, -0.023936275392770767, 0.11237453669309616, 0.06576550751924515, -0.07070298492908478, 0.09061338752508163, -0.15505056083202362, -0.09907937049865723, 0.10854674130678177, 0.03758507966995239, 0.035369597375392914, -0.014077352359890938, 0.002548821968957782, 0.12766733765602112, -0.041569482535123825, 0.039211712777614594, 0.045912981033325195, -0.13729402422904968, -0.0176172386854887, 0.01935543492436409, -0.1300545185804367, 0.0009233326418325305, -0.14588460326194763, 0.1408264935016632, -0.0297873355448246, 0.20152471959590912, -0.008935026824474335, 0.02818414941430092, -0.06230417266488075, 0.01030105259269476, -0.0493222177028656, -0.1846861094236374, -0.135090634226799, -0.015834858641028404, -0.04791738837957382, -0.019033024087548256, 0.25928908586502075, 0.004040257539600134, -0.04947160929441452, 0.07740054279565811, 0.02997889183461666, 0.021803302690386772, 0.03991980105638504, 0.21982316672801971, 0.04124981909990311, -0.022249987348914146, -0.09143567830324173, -0.01731627993285656, 0.006730312015861273, -0.17266257107257843, 0.058640364557504654, 0.10775097459554672, 0.027582576498389244, 0.03858624026179314, 0.043156567960977554, 0.0037038924638181925, -0.13953903317451477, -0.18088886141777039, -0.013304623775184155, 0.06269197165966034, 0.03547661751508713, 0.09343685954809189, 0.13970057666301727, -0.009570972062647343, 0.0016306423349305987, -0.0555904395878315, 0.0031276573427021503, -0.1811908781528473, -0.11354430019855499, -0.07511179894208908, -0.1033962294459343, 0.008128470741212368, -0.030051978304982185, -0.038698285818099976, 0.10348473489284515, 0.050203386694192886, -0.05385258421301842, 0.045468322932720184, -0.02600432001054287, 0.009103916585445404, 0.016581980511546135, 0.01494691614061594, -0.030824335291981697, -0.0011615883558988571, -0.0636662170290947, -0.12034732103347778, -0.0118890181183815, -0.052707038819789886, 0.0007633204804733396, -0.03248484060168266, 0.056867413222789764, -0.09264763444662094, -0.062434274703264236, -0.05244990438222885, 0.022352026775479317, -0.02624649740755558, 0.1205274686217308, -0.0007312627276405692, 0.04951237887144089, 0.09091947227716446, 0.15412627160549164, -0.06287951022386551, -0.17018520832061768, -0.053630657494068146, 0.23211349546909332, 0.021259645000100136, 0.0738338977098465, 0.030710235238075256, 0.02688610553741455, -0.04032766819000244, 0.28390538692474365, 0.2609561085700989, -0.02433340810239315, 0.05970100313425064, -0.03252284228801727, 0.008852454833686352, 0.023858537897467613, 0.12555477023124695, 0.13468500971794128, 0.20234768092632294, -0.07987125217914581, -0.020072948187589645, -0.041369445621967316, 0.012630997225642204, -0.1578705608844757, 0.04768473282456398, -0.025302475318312645, -0.05368791148066521, -0.04729656130075455, 0.08546026051044464, -0.06392765045166016, 0.09854686260223389, 0.015809010714292526, -0.08856336772441864, -0.04839025065302849, 0.00021682998340111226, 0.21112284064292908, -0.007045868318527937, 0.019623814150691032, -0.03936074301600456, -0.05413379892706871, 0.07122472673654556, -0.011057602241635323, -0.1692773848772049, -0.06059876084327698, 0.07795844227075577, 0.023028375580906868, 0.1936575025320053, 0.015643781051039696, 0.07010204344987869, 0.08995462954044342, 0.04785418510437012, -0.11184735596179962, 0.08989690989255905, 0.03424299880862236, -0.08333216607570648, -0.015863552689552307, -0.13479553163051605, -0.012995379976928234, -0.04742743447422981, 0.016247572377324104, -0.1095607653260231, 0.03379101678729057, -0.014433617703616619, -0.06995736062526703, -0.04177592322230339, 0.058106571435928345, -0.050807029008865356, 0.05923372134566307, -0.00640771072357893, -0.027699260041117668, -0.0522528700530529, -0.06646668165922165, 0.009650778956711292, 0.027686018496751785, -0.17377161979675293, -0.056983496993780136, -0.02521589770913124, 0.0053129009902477264, 0.07856842130422592, 0.024405689910054207, -0.044164109975099564, -0.03560051694512367, -0.08570306748151779, 0.0035788060631603003, -0.1742836982011795, 0.013486085459589958, 0.06408070772886276, 0.02360478974878788, -0.007453749421983957, -0.036508526653051376, -0.007974712178111076, 0.01947420835494995, -0.08894628286361694, -0.09263118356466293 ]
null
null
transformers
[bioformer-cased-v1.0](https://huggingface.co/bioformers/bioformer-cased-v1.0) fined-tuned on the [MNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.803973 ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT. ## More information The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: https://huggingface.co/datasets/glue)
{}
text-classification
bioformers/bioformer-8L-mnli
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
bioformer-cased-v1.0 fined-tuned on the MNLI dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ## Evaluation results eval_accuracy = 0.803973 ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT. ## More information The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: URL
[ "## Evaluation results\n\neval_accuracy = 0.803973", "## Speed\n\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.", "## More information\nThe Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: URL" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n", "## Evaluation results\n\neval_accuracy = 0.803973", "## Speed\n\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.", "## More information\nThe Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: URL" ]
[ 41, 15, 45, 187 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n## Evaluation results\n\neval_accuracy = 0.803973## Speed\n\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.## More information\nThe Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: URL" ]
[ -0.0268918015062809, 0.07412702590227127, -0.002960555488243699, 0.0576358400285244, -0.06537050753831863, 0.013036997988820076, 0.14435023069381714, 0.07624328881502151, 0.09376644343137741, 0.02665145881474018, 0.03123488463461399, 0.022045275196433067, 0.06754318624734879, -0.012184021063148975, -0.05554593726992607, -0.10173814743757248, 0.040581703186035156, -0.014221983030438423, 0.16343064606189728, 0.11052606254816055, 0.055131424218416214, -0.09689921885728836, 0.028855593875050545, -0.025886062532663345, -0.009188327006995678, 0.047893933951854706, 0.07738480716943741, -0.06268487125635147, 0.09805697202682495, 0.010828041471540928, 0.11055703461170197, 0.08701563626527786, 0.0792151466012001, -0.06705155968666077, -0.0022053192369639874, 0.013816559687256813, 0.08380942046642303, 0.0744859054684639, 0.01454991102218628, 0.057358723133802414, -0.07617130130529404, 0.04334759712219238, 0.04636269062757492, 0.014067229814827442, -0.10681051015853882, -0.081924669444561, 0.01162765920162201, -0.061337705701589584, -0.025499150156974792, 0.09508095681667328, -0.03796990215778351, 0.22132201492786407, -0.20356214046478271, 0.07262663543224335, 0.14685457944869995, -0.17928168177604675, -0.051432475447654724, -0.004560996778309345, 0.06094695255160332, 0.18178623914718628, -0.040564216673374176, -0.041977714747190475, -0.003536824369803071, -0.004106732551008463, 0.09058462828397751, -0.0370636060833931, -0.10308880358934402, -0.005919246468693018, -0.15779109299182892, -0.004520893562585115, 0.28235194087028503, -0.013539724051952362, -0.11644445359706879, -0.01920885592699051, -0.07556050270795822, 0.2217768430709839, 0.054119814187288284, -0.08517739921808243, 0.026274023577570915, -0.028817974030971527, 0.022767603397369385, -0.008638337254524231, -0.07877503335475922, -0.1311907023191452, -0.09091748297214508, 0.13552309572696686, 0.06433737277984619, 0.08690335601568222, 0.029342681169509888, 0.1261606216430664, 0.08651991933584213, -0.14820227026939392, 0.030071880668401718, -0.07412097603082657, -0.08483471721410751, 0.007942566648125648, -0.007328611798584461, -0.18244895339012146, 0.004675458651036024, 0.05554297938942909, 0.01129908487200737, 0.009425568394362926, -0.04386448487639427, 0.05026642233133316, 0.04886103421449661, 0.10118713229894638, -0.008744594641029835, 0.042107805609703064, 0.029891809448599815, 0.05771556496620178, 0.010766394436359406, 0.03708488866686821, 0.018517399206757545, -0.05134112387895584, 0.01248939149081707, 0.012309822253882885, -0.047406528145074844, -0.012640021741390228, -0.06475961953401566, 0.0075194560922682285, 0.04912877827882767, -0.12025539577007294, -0.061818771064281464, 0.008327594958245754, -0.13520261645317078, -0.06369853019714355, -0.007933923043310642, -0.0344332717359066, -0.09416601061820984, 0.02466251701116562, -0.0647679790854454, -0.04961621016263962, -0.08237102627754211, -0.12325600534677505, -0.00247922888956964, -0.013802080415189266, -0.04017274081707001, -0.0897357389330864, -0.1954934448003769, -0.02494646981358528, 0.029405348002910614, -0.06240306422114372, -0.013034950941801071, -0.042659446597099304, 0.07539192587137222, -0.028516773134469986, -0.07436726242303848, -0.02825509011745453, -0.05034838616847992, 0.0739646926522255, 0.0007061279029585421, 0.055784691125154495, 0.02110908180475235, -0.009976334869861603, -0.20997801423072815, -0.035177990794181824, -0.12270046770572662, 0.10800935328006744, -0.07444017380475998, -0.010022825561463833, -0.04250838980078697, -0.05910874158143997, -0.08805224299430847, 0.011619181372225285, 0.008365534245967865, 0.1667477935552597, -0.10372038930654526, 0.00306275999173522, 0.2012867033481598, -0.10137391835451126, -0.03802867233753204, 0.1967872828245163, -0.08806762844324112, 0.11729483306407928, 0.1649523824453354, 0.19512347877025604, 0.072442427277565, -0.09554893523454666, 0.005492089316248894, 0.03639183193445206, -0.011335067451000214, 0.12116651237010956, 0.06374458223581314, 0.06866229325532913, -0.11591140925884247, 0.02612948790192604, -0.08462914824485779, 0.004585024435073137, -0.01637888327240944, -0.03916165605187416, -0.019777163863182068, -0.03907836228609085, 0.011134687811136246, 0.03779856488108635, 0.04400322213768959, -0.044421687722206116, -0.06489811837673187, 0.004125176463276148, 0.02666185423731804, -0.06147618219256401, -0.03982916846871376, 0.0011759873013943434, -0.021072223782539368, -0.012329320423305035, -0.043785158544778824, -0.10723059624433517, -0.051064878702163696, 0.12330574542284012, -0.06747447699308395, 0.05857357382774353, 0.08967136591672897, -0.0056374892592430115, 0.018850257620215416, -0.04550633952021599, -0.008700240403413773, 0.024365896359086037, -0.04208818078041077, -0.058082398027181625, -0.05955100432038307, 0.0615796260535717, 0.010765894316136837, -0.05114135146141052, -0.1592705249786377, 0.048687562346458435, -0.1286412924528122, -0.01708439365029335, 0.008526203222572803, -0.027641091495752335, 0.04311249777674675, -0.01894867978990078, -0.02913479506969452, 0.018288759514689445, -0.012401053681969643, 0.030880963429808617, -0.04907749965786934, 0.06860624253749847, -0.08175435662269592, -0.028190191835165024, -0.0013625407591462135, -0.03972681611776352, -0.06227570399641991, -0.011954685673117638, -0.0601334273815155, -0.015621012076735497, -0.16582340002059937, -0.09109117835760117, 0.12972204387187958, -0.011815965175628662, 0.037439074367284775, -0.16632618010044098, -0.11409895867109299, -0.022142944857478142, -0.07984517514705658, 0.08464253693819046, 0.0826881006360054, -0.004414258524775505, -0.11141255497932434, 0.06454487890005112, -0.0007661542622372508, -0.07090366631746292, 0.13804398477077484, -0.016607096418738365, -0.11334267258644104, 0.02588651329278946, 0.04588886350393295, -0.06341207027435303, 0.09643326699733734, -0.05937764421105385, 0.04330238327383995, 0.04412975162267685, 0.06520233303308487, -0.052404966205358505, -0.13862521946430206, 0.048782430589199066, -0.005075809080153704, -0.07343694567680359, -0.1195487231016159, -0.10811608284711838, -0.004364194348454475, 0.12232162803411484, 0.01550415437668562, -0.016627095639705658, -0.02246270515024662, -0.04408683255314827, -0.1200508177280426, 0.1906808614730835, -0.01869856007397175, -0.2050609439611435, -0.10113537311553955, 0.05926289036870003, 0.01893872395157814, 0.01956765726208687, 0.012911471538245678, -0.027139494195580482, -0.02875286526978016, -0.11094024777412415, 0.03107997588813305, 0.041997943073511124, -0.05454472079873085, -0.11604592949151993, 0.060475561767816544, 0.004747679457068443, -0.10632292181253433, -0.021441878750920296, -0.08415180444717407, -0.05838623642921448, 0.05255062133073807, -0.10961528867483139, 0.0517183318734169, 0.0672299712896347, -0.010625671595335007, -0.07404042780399323, -0.062439925968647, 0.14988009631633759, 0.00019087181135546416, 0.08050711452960968, 0.10531740635633469, -0.07674771547317505, 0.06204557046294212, 0.14705400168895721, 0.02710568904876709, -0.06211400777101517, 0.08083868026733398, -0.008455200120806694, -0.029180997982621193, -0.2936733067035675, -0.002192240906879306, -0.0366201214492321, -0.030732976272702217, 0.010917008854448795, -0.00023518106900155544, -0.020770518109202385, 0.10890885442495346, -0.02443540468811989, 0.00035471716546453536, 0.11192048341035843, 0.03809140622615814, 0.015978442505002022, 0.016100434586405754, 0.15836964547634125, -0.021749436855316162, -0.10027942806482315, 0.06950551271438599, 0.017601246014237404, 0.268380343914032, -0.09504611790180206, 0.0647730901837349, 0.06882230937480927, 0.10072147101163864, 0.020955845713615417, 0.12371392548084259, -0.029563965275883675, 0.04064301773905754, -0.0578317828476429, -0.07921027392148972, -0.07194805890321732, 0.007987652905285358, -0.12234681099653244, 0.05363147705793381, -0.009942070581018925, -0.0714944526553154, 0.09028134495019913, 0.22080296277999878, 0.06044657528400421, -0.23334698379039764, -0.09652680158615112, 0.04152700677514076, -0.08129077404737473, -0.08291158080101013, 0.050072167068719864, 0.15050920844078064, -0.06682240217924118, -0.002704486483708024, 0.018391255289316177, 0.07850354164838791, -0.05037643387913704, 0.03613748401403427, -0.06452460587024689, 0.0022533179726451635, -0.051557477563619614, 0.1011197566986084, -0.17912212014198303, 0.2046474814414978, -0.0009569268440827727, 0.06670378148555756, -0.09566403925418854, -0.0162343867123127, -0.002632460556924343, -0.02659503184258938, 0.15248043835163116, 0.016818685457110405, -0.03383681923151016, -0.035072267055511475, -0.1294427067041397, 0.08643321692943573, 0.039924051612615585, 0.014195886440575123, 0.10460622608661652, 0.037300653755664825, 0.06376265734434128, 0.02085266448557377, -0.05450065806508064, -0.15362589061260223, -0.06946330517530441, -0.031501270830631256, -0.028393171727657318, -0.09825310856103897, -0.03404088690876961, -0.05446659028530121, 0.07741741836071014, 0.1453813761472702, -0.1393376886844635, -0.11530580371618271, -0.08701805025339127, 0.06973210722208023, 0.05390379577875137, -0.03346104919910431, -0.07482365518808365, -0.01575230248272419, 0.09719467163085938, 0.043344203382730484, -0.04581188037991524, 0.019456038251519203, -0.051070377230644226, -0.1404125690460205, -0.10451943427324295, 0.08921003341674805, 0.1816626489162445, 0.10548866540193558, 0.03239431977272034, 0.01858191378414631, -0.03769378736615181, -0.06221520155668259, -0.04834571108222008, 0.004577558487653732, 0.06866534054279327, 0.09399241954088211, -0.15828226506710052, -0.09188713133335114, -0.1359969973564148, -0.025062138214707375, 0.10155977308750153, 0.1273198425769806, -0.03073991648852825, 0.08464298397302628, 0.2417527735233307, -0.148825541138649, -0.2006019651889801, 0.09348787367343903, 0.0885794535279274, 0.014964129775762558, 0.02985651232302189, -0.18250130116939545, 0.14242734014987946, 0.15996447205543518, -0.026008659973740578, -0.09417937695980072, -0.12571203708648682, -0.08962006866931915, 0.09531614184379578, 0.08138583600521088, 0.1756880283355713, -0.08937933295965195, -0.024682315066456795, -0.041363783180713654, -0.01642407849431038, 0.11500327289104462, -0.03297392651438713, 0.051308393478393555, -0.00796081405133009, -0.042165156453847885, 0.05095294862985611, -0.05645061656832695, 0.07736054807901382, 0.009104604832828045, 0.09143255650997162, -0.0312048327177763, 0.0321478433907032, 0.0632820799946785, -0.027004750445485115, 0.17280952632427216, 0.057666778564453125, 0.06830936670303345, -0.01928107626736164, -0.08081343024969101, -0.10479848086833954, 0.037628933787345886, -0.014370754361152649, -0.0761309266090393, -0.1003081277012825, 0.06323637068271637, 0.06121986359357834, -0.006491710431873798, 0.006464221049100161, -0.08939563482999802, 0.017464935779571533, 0.04644162207841873, 0.18775106966495514, 0.007938966155052185, 0.04807356372475624, 0.06828957051038742, -0.005032928194850683, 0.06935879588127136, -0.07765013724565506, 0.0634809285402298, 0.14411573112010956, 0.00019043410429731011, 0.08423180878162384, 0.06718345731496811, -0.0807105079293251, -0.00223525520414114, 0.004565717186778784, -0.16944865882396698, -0.06343746930360794, -0.011343919672071934, -0.046458300203084946, -0.16668806970119476, -0.06635287404060364, 0.08425112813711166, -0.07262829691171646, -0.009917009621858597, -0.012712126597762108, 0.059423208236694336, 0.010467375628650188, 0.22737698256969452, 0.01408433634787798, 0.03552091866731644, -0.04202623292803764, 0.15484103560447693, 0.09669669717550278, 0.008230306208133698, -0.0024814321659505367, 0.029699688777327538, -0.11273996531963348, 0.018777532503008842, -0.049226269125938416, 0.028964752331376076, 0.04637359827756882, -0.05468778684735298, -0.18724776804447174, -0.1585283875465393, 0.026956327259540558, 0.1286081075668335, 0.03802475705742836, -0.0016180019592866302, -0.006828089244663715, 0.0344671830534935, -0.024213479831814766, 0.13093937933444977, 0.05878465995192528, 0.06157182902097702, -0.009389737620949745, 0.03018268197774887, 0.01672486960887909, -0.024601051583886147, -0.07067951560020447, -0.00953647680580616, -0.17909854650497437, 0.060919325798749924, -0.09971579909324646, 0.08621545881032944, 0.006501398514956236, -0.034745119512081146, -0.010368049144744873, -0.04135463014245033, -0.027102047577500343, 0.023976212367415428, -0.046799108386039734, 0.05738737806677818, 0.00847876351326704, 0.048989418894052505, -0.1048133373260498, -0.05346782132983208, 0.08866089582443237, -0.08206026256084442, 0.052202120423316956, 0.0699312835931778, -0.08153823763132095, 0.06648553162813187, -0.20074214041233063, 0.019180357456207275, 0.05824744328856468, 0.14548836648464203, -0.07568113505840302, -0.1070934385061264, 0.050764258950948715, 0.07831194251775742, 0.020662160590291023, -0.013094709254801273, 0.058191586285829544, -0.0785762295126915, 0.08125610649585724, 0.07198125869035721, -0.09894150495529175, -0.07791539281606674, 0.00006787043093936518, 0.019266203045845032, 0.07028628140687943, 0.1366240531206131, -0.05525100976228714, -0.026819495484232903, -0.16971220076084137, -0.025734631344676018, 0.06981600075960159, -0.08841095119714737, -0.12553119659423828, -0.06357359141111374, 0.09009336680173874, 0.01946457102894783, 0.25574803352355957, 0.050949450582265854, -0.004195855930447578, 0.009603521786630154, -0.019688306376338005, 0.15028536319732666, -0.007868270389735699, 0.07891672104597092, 0.01802617497742176, -0.0938248559832573, -0.017015928402543068, -0.06970347464084625, -0.06599143147468567, -0.08553440868854523, 0.15734019875526428, 0.18369954824447632, 0.05429581180214882, -0.012040494941174984, 0.07383457571268082, 0.0575239472091198, 0.01712222397327423, -0.06460902094841003, 0.07221183180809021, 0.02786318212747574, 0.03589509427547455, 0.1646926999092102, 0.08231348544359207, -0.0726289227604866, 0.08823137730360031, -0.06618418544530869, -0.11911074072122574, -0.19541731476783752, -0.12149529159069061, -0.042743705213069916, 0.01044303085654974, -0.023368695750832558, -0.12435939162969589, -0.008536295033991337, 0.04754367843270302, 0.017560282722115517, -0.0015497051645070314, 0.1058138906955719, -0.021889405325055122, -0.05158871039748192, 0.04556569829583168, -0.016217784956097603, 0.0006934002740308642, -0.02752162702381611, 0.007650651037693024, 0.08609495311975479, 0.12687702476978302, 0.03040405921638012, 0.017446860671043396, 0.008697647601366043, -0.09869524091482162, -0.02722206525504589, -0.04487691447138786, -0.024334458634257317, -0.026824692264199257, -0.03658147528767586, 0.03167741000652313, 0.07759428024291992, -0.04224911332130432, 0.03076029196381569, 0.20798180997371674, -0.058846816420555115, -0.0961259976029396, -0.1375119984149933, 0.2781968116760254, -0.004552796017378569, -0.01775072142481804, 0.08326154947280884, -0.07674305140972137, 0.021282227709889412, 0.21544966101646423, 0.09952788054943085, -0.01600571908056736, -0.043678443878889084, -0.0028821551240980625, 0.00245195091702044, 0.014604393392801285, 0.1521254926919937, 0.018472081050276756, 0.23538760840892792, -0.09045102447271347, 0.07821948081254959, -0.009102242067456245, 0.008722000755369663, -0.03306824341416359, 0.03421591594815254, 0.03448803722858429, 0.0358026921749115, -0.18191908299922943, 0.06586837023496628, 0.02657358907163143, -0.17196126282215118, -0.07673189789056778, 0.012953419238328934, -0.051023971289396286, -0.004724997561424971, -0.12003012746572495, -0.12475921958684921, 0.03031296283006668, -0.007735385559499264, 0.03622552007436752, 0.06505578756332397, 0.03067564219236374, -0.09256555885076523, -0.040616948157548904, 0.10332007706165314, -0.007711976766586304, 0.212087482213974, 0.0400041900575161, 0.17488907277584076, 0.05797876790165901, -0.055391933768987656, -0.08985096216201782, 0.14238262176513672, 0.009979735128581524, -0.0513109527528286, 0.004785400815308094, 0.07530214637517929, 0.024657348170876503, 0.10758058726787567, 0.08528844267129898, 0.013516807928681374, 0.03323223814368248, -0.02302262745797634, -0.06870117783546448, -0.1553114354610443, 0.016489414498209953, -0.03284649923443794, 0.06632214784622192, 0.16741694509983063, 0.008017963729798794, 0.031463660299777985, -0.11178849637508392, -0.0005259450990706682, 0.03664647415280342, 0.02188671939074993, 0.06580083817243576, -0.215335413813591, -0.0025155472103506327, 0.09968587756156921, 0.024054724723100662, -0.3083972930908203, -0.030433684587478638, -0.03630451858043671, -0.03168696537613869, 0.03731580451130867, 0.0365881584584713, 0.014283890835940838, 0.08736880123615265, -0.03894748538732529, -0.22552703320980072, 0.0035767483059316874, 0.11137094348669052, -0.06652194261550903, -0.06741167604923248 ]
null
null
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [NCBI Disease](https://doi.org/10.1016/j.jbi.2013.12.006) dataset for 10 epochs. This fine-tuned model can be used for NER for diseases.
{"language": ["en"], "license": "apache-2.0"}
token-classification
bioformers/bioformer-8L-ncbi-disease
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bioformer-8L fined-tuned on the NCBI Disease dataset for 10 epochs. This fine-tuned model can be used for NER for diseases.
[]
[ "TAGS\n#transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 52 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.059595197439193726, 0.10631763190031052, -0.007629459258168936, 0.0244675874710083, 0.07692740112543106, -0.009490981698036194, 0.1120014414191246, 0.09707333892583847, 0.016386302188038826, -0.058308474719524384, 0.14559929072856903, 0.2322559505701065, -0.02104523777961731, 0.09640208631753922, -0.0772639587521553, -0.18908371031284332, 0.11321170628070831, 0.031629133969545364, -0.027390873059630394, 0.11348471790552139, 0.11655383557081223, -0.059609029442071915, 0.03608550876379013, -0.010012947022914886, -0.050080087035894394, 0.005900037940591574, 0.06558991968631744, -0.1263318806886673, 0.10472848266363144, 0.010667749680578709, 0.1416918933391571, 0.048578500747680664, -0.010780079290270805, -0.17827226221561432, 0.01685168221592903, 0.04325312748551369, -0.05701589956879616, 0.06061201170086861, 0.06445474177598953, -0.042393025010824203, -0.03439084067940712, 0.04937899485230446, 0.013264483772218227, 0.043994951993227005, -0.06446723639965057, -0.2367478609085083, -0.07986585795879364, 0.09175827354192734, 0.08877503871917725, 0.06225430965423584, 0.04686594381928444, 0.2166328728199005, -0.1363559067249298, 0.07040996849536896, 0.10097770392894745, -0.3378860056400299, 0.008846734650433064, 0.06439774483442307, 0.011660018935799599, -0.020830940455198288, -0.017887143418192863, 0.01634209230542183, 0.05087721347808838, 0.013740013353526592, 0.07426079362630844, -0.04597567394375801, -0.12318819016218185, 0.018208418041467667, -0.07754059135913849, -0.061774663627147675, 0.1946762651205063, 0.0051047285087406635, 0.01380863320082426, -0.016571272164583206, -0.09115388244390488, 0.03032490611076355, -0.010035322979092598, 0.015539965592324734, 0.015580558218061924, 0.07992756366729736, 0.07526838034391403, 0.02796023152768612, -0.13954363763332367, 0.0038283425383269787, -0.19779418408870697, 0.1512414664030075, 0.03748834878206253, 0.08667577058076859, -0.12928499281406403, 0.06433986872434616, 0.04397663101553917, -0.1079297736287117, 0.013299165293574333, -0.08847339451313019, 0.10585624724626541, 0.006872594356536865, -0.0216996930539608, 0.10459595918655396, 0.14807040989398956, 0.24554948508739471, 0.008490723557770252, 0.0006220643990673125, -0.03798950836062431, 0.09819090366363525, -0.02439701557159424, 0.06169116124510765, 0.004773916210979223, 0.0029138021636754274, 0.12058168649673462, -0.08234737813472748, 0.07648736983537674, -0.015147379599511623, -0.09438566118478775, -0.008250034414231777, 0.07007094472646713, 0.14284799993038177, 0.03614111989736557, 0.050720322877168655, -0.05599583312869072, 0.025464754551649094, 0.17661522328853607, -0.0716419592499733, 0.0030076471157372, 0.008878698572516441, 0.04219090938568115, 0.02228664979338646, 0.021391183137893677, 0.030783358961343765, -0.03333854302763939, 0.11593122035264969, -0.056953441351652145, -0.034543007612228394, -0.020107511430978775, -0.018121900036931038, 0.08384237438440323, -0.09292449057102203, 0.07103262841701508, -0.17778323590755463, -0.12789620459079742, 0.054290201514959335, 0.05843212455511093, 0.03949759155511856, -0.06971442699432373, 0.0627439096570015, -0.020450809970498085, -0.011543171480298042, -0.09382392466068268, -0.04808494448661804, -0.08693333715200424, 0.06649096310138702, -0.06748238950967789, -0.005129937082529068, -0.12065643072128296, 0.036540694534778595, -0.15144887566566467, 0.020572766661643982, -0.0577455498278141, -0.0837194174528122, -0.11143656820058823, 0.1909424215555191, -0.049468033015728, -0.051477499306201935, 0.023392388597130775, -0.0006517790025100112, -0.04389803856611252, 0.10010425001382828, -0.05719350650906563, -0.047356847673654556, 0.19699619710445404, -0.15346479415893555, -0.19086122512817383, 0.0805756002664566, 0.018746525049209595, -0.01342928409576416, 0.0699700340628624, 0.12589630484580994, 0.09753774106502533, -0.04877757653594017, 0.05581682175397873, 0.1286648064851761, -0.10490857809782028, -0.16889147460460663, 0.03976103290915489, -0.03041401319205761, -0.1507398933172226, 0.056760575622320175, -0.027175601571798325, 0.09410244226455688, -0.02349107526242733, -0.08472321182489395, -0.06348812580108643, -0.061779458075761795, 0.03498120605945587, 0.023742884397506714, 0.03657194599509239, -0.08156696707010269, -0.011193453334271908, -0.047948677092790604, 0.04690099135041237, 0.04283229634165764, 0.023988088592886925, -0.10232236236333847, 0.08006595820188522, 0.0033755141776055098, 0.012584766373038292, -0.12195257097482681, -0.06227247044444084, 0.021048063412308693, -0.02183537557721138, -0.04614357277750969, 0.06171775981783867, 0.05298782140016556, -0.04034341126680374, 0.003946306183934212, -0.04714684933423996, 0.14881442487239838, 0.0766487866640091, -0.011257418431341648, -0.13094469904899597, 0.030676545575261116, -0.054146356880664825, 0.03355014696717262, -0.01124284416437149, 0.023657727986574173, 0.0611737035214901, 0.12396371364593506, -0.02489505149424076, 0.09484673291444778, -0.03664865344762802, -0.000142398159368895, -0.05330050364136696, -0.009033212438225746, 0.11087857931852341, 0.03429315239191055, -0.059645961970090866, 0.1477213203907013, -0.07704055309295654, 0.34404459595680237, 0.19459190964698792, -0.16285039484500885, 0.05102197453379631, -0.005693621933460236, -0.03512963280081749, -0.014240749180316925, 0.026536915451288223, 0.03738819435238838, -0.024659400805830956, 0.009891473688185215, 0.13615724444389343, -0.05331426113843918, -0.05181577056646347, -0.004111792892217636, -0.07191430032253265, -0.01862928457558155, 0.034959230571985245, 0.11031261831521988, -0.18773338198661804, 0.1949310451745987, 0.33231258392333984, -0.010407802648842335, 0.02769985795021057, -0.09829138219356537, 0.023424124345183372, 0.04188505932688713, -0.010857561603188515, -0.025153521448373795, 0.029730141162872314, -0.1020900160074234, 0.02931899018585682, 0.09101535379886627, 0.037710871547460556, 0.027564043179154396, -0.14617547392845154, -0.04594927281141281, 0.0005768557311967015, 0.002950448077172041, -0.022592024877667427, 0.05258798226714134, 0.004609347321093082, 0.09558837860822678, -0.03956138715147972, -0.15612749755382538, 0.13214664161205292, 0.0009200698114000261, -0.06517138332128525, 0.1568019688129425, -0.1592644453048706, -0.2499362677335739, -0.09997566789388657, -0.11091836541891098, -0.016624461859464645, 0.011807420291006565, 0.10858207195997238, -0.05040875822305679, -0.07083499431610107, 0.005267674569040537, -0.08259241282939911, 0.011951121501624584, 0.04637390747666359, -0.022241583094000816, 0.06026598438620567, 0.03687203302979469, -0.10821034759283066, -0.05574595555663109, 0.007621741853654385, -0.06301957368850708, 0.09565864503383636, -0.03548980504274368, 0.0565580315887928, 0.1262890100479126, 0.009045802988111973, 0.004031754098832607, -0.03719327971339226, 0.13278941810131073, -0.02155284211039543, 0.024742111563682556, 0.21494249999523163, -0.05969719961285591, 0.08979412168264389, 0.16621504724025726, 0.04078880324959755, -0.04664229974150658, 0.014198161661624908, -0.05004282668232918, -0.08011195808649063, -0.23994417488574982, -0.11594166606664658, -0.06807024031877518, 0.06262688338756561, 0.044930994510650635, 0.09121332317590714, 0.1185266375541687, 0.10531827062368393, -0.012906715273857117, -0.04558880999684334, -0.002682699589058757, 0.056127361953258514, 0.21051685512065887, -0.010734698735177517, 0.11484015733003616, -0.09072810411453247, -0.07946362346410751, 0.09703280031681061, 0.08375775814056396, 0.10550329834222794, 0.11143471300601959, -0.01877782680094242, 0.07917140424251556, 0.2380746752023697, 0.09401649981737137, 0.14397072792053223, 0.0060878172516822815, -0.028690529987215996, -0.031617820262908936, -0.011649219319224358, -0.05533507838845253, 0.025410039350390434, -0.046027153730392456, -0.08183522522449493, -0.02575746551156044, -0.12770137190818787, 0.08474810421466827, 0.18414148688316345, 0.031717922538518906, -0.16124606132507324, 0.019827721640467644, 0.08781170845031738, -0.009311218746006489, -0.026490410789847374, 0.11675476282835007, -0.0708768367767334, -0.0788249745965004, 0.10491454601287842, -0.047420185059309006, 0.097123883664608, -0.005846098996698856, 0.05215346813201904, -0.004947523586452007, -0.08903983980417252, 0.06545103341341019, 0.1297169029712677, -0.23861956596374512, 0.21504756808280945, -0.015931053087115288, -0.02445845864713192, -0.08135662227869034, 0.013686065562069416, 0.057181499898433685, 0.22974897921085358, 0.11625958979129791, 0.02436232939362526, -0.11592810600996017, -0.07512018829584122, -0.07763414829969406, 0.043618958443403244, 0.01129867136478424, 0.0014053157065063715, -0.05197974294424057, -0.07176268100738525, -0.01478944718837738, 0.019009049981832504, -0.003704957664012909, -0.042290687561035156, -0.1050403043627739, 0.0327347069978714, 0.10741148889064789, 0.04168447479605675, -0.08872824907302856, -0.029534634202718735, -0.1355004757642746, 0.17636659741401672, -0.1088709831237793, -0.0793815478682518, -0.08503847569227219, -0.15265773236751556, 0.05100608617067337, -0.058765411376953125, 0.08026053011417389, -0.08279121667146683, 0.006286883261054754, -0.044234324246644974, -0.18449975550174713, 0.10897718369960785, -0.16726337373256683, -0.07496177405118942, -0.04734254628419876, 0.14166449010372162, -0.09050673991441727, -0.0010082157095894217, 0.04015079513192177, 0.002123621990904212, -0.07761029154062271, -0.11402487754821777, -0.009571169503033161, 0.006474085617810488, 0.06321746110916138, -0.010682391002774239, -0.07764094322919846, -0.0885096862912178, 0.02230287902057171, -0.024300487712025642, 0.1825769692659378, 0.22545233368873596, -0.08529490232467651, 0.12561868131160736, 0.23147578537464142, -0.039628904312849045, -0.3182145059108734, -0.16395695507526398, -0.16413220763206482, -0.11094354093074799, 0.00946718268096447, -0.08942510932683945, 0.16214993596076965, 0.07534264028072357, -0.1102471724152565, 0.08382916450500488, -0.13942518830299377, -0.061759982258081436, 0.2562066614627838, 0.014020739123225212, 0.3100128769874573, -0.1261322945356369, -0.06293918192386627, -0.04347341135144234, -0.15158842504024506, 0.11952613294124603, -0.09458768367767334, 0.018279504030942917, -0.0028460531029850245, -0.014908469282090664, -0.0105310482904315, -0.07361216843128204, 0.1151808649301529, -0.032727889716625214, 0.05070047825574875, -0.11032845079898834, -0.009167310781776905, 0.06449837982654572, -0.020154280588030815, 0.047452960163354874, -0.10327593237161636, 0.054281916469335556, -0.02973555028438568, -0.01783146895468235, -0.06745825707912445, 0.11551990360021591, 0.0035355251748114824, -0.08237697184085846, -0.02713950350880623, -0.014035383239388466, 0.0032904164399951696, -0.019548678770661354, 0.23817157745361328, 0.0533728264272213, 0.10620903968811035, 0.1415189802646637, 0.07724647223949432, -0.19441430270671844, -0.004892610013484955, -0.0880972146987915, -0.09032591432332993, 0.08275473117828369, -0.08097861707210541, 0.07521849125623703, 0.09847386181354523, -0.053555700927972794, 0.030957749113440514, 0.07722925394773483, 0.014392501674592495, -0.07189072668552399, 0.13734029233455658, -0.19336922466754913, -0.0029275917913764715, 0.016645127907395363, 0.11135733127593994, 0.05746306851506233, 0.13255950808525085, 0.1132577583193779, 0.011508218944072723, -0.03902217000722885, 0.00994537491351366, 0.038947444409132004, -0.06459175050258636, 0.05133867263793945, 0.06503661721944809, 0.028675276786088943, -0.1153540387749672, 0.0938890129327774, 0.005607145372778177, -0.13422808051109314, -0.049310486763715744, 0.03707799315452576, -0.16499435901641846, -0.1251576989889145, 0.012925009243190289, 0.042720671743154526, -0.0956338495016098, -0.13257832825183868, -0.03245978429913521, -0.1568082720041275, 0.050797589123249054, 0.13024407625198364, 0.13169004023075104, 0.10422632843255997, 0.014499234035611153, -0.048640262335538864, 0.013356425799429417, 0.008865008130669594, -0.06856595724821091, 0.030806060880422592, -0.16222138702869415, -0.05038931965827942, 0.02064080908894539, 0.09524060785770416, -0.05986732617020607, -0.0012853862717747688, -0.10596384853124619, 0.03725794330239296, -0.12649501860141754, -0.01643923483788967, -0.09022706001996994, 0.004841700196266174, 0.03337377309799194, -0.09527548402547836, -0.01847096160054207, 0.017560835927724838, -0.10123640298843384, 0.012896465137600899, 0.01566278003156185, 0.04947790503501892, -0.11697810143232346, -0.055427901446819305, 0.08668754994869232, -0.023936275392770767, 0.11237453669309616, 0.06576550751924515, -0.07070298492908478, 0.09061338752508163, -0.15505056083202362, -0.09907937049865723, 0.10854674130678177, 0.03758507966995239, 0.035369597375392914, -0.014077352359890938, 0.002548821968957782, 0.12766733765602112, -0.041569482535123825, 0.039211712777614594, 0.045912981033325195, -0.13729402422904968, -0.0176172386854887, 0.01935543492436409, -0.1300545185804367, 0.0009233326418325305, -0.14588460326194763, 0.1408264935016632, -0.0297873355448246, 0.20152471959590912, -0.008935026824474335, 0.02818414941430092, -0.06230417266488075, 0.01030105259269476, -0.0493222177028656, -0.1846861094236374, -0.135090634226799, -0.015834858641028404, -0.04791738837957382, -0.019033024087548256, 0.25928908586502075, 0.004040257539600134, -0.04947160929441452, 0.07740054279565811, 0.02997889183461666, 0.021803302690386772, 0.03991980105638504, 0.21982316672801971, 0.04124981909990311, -0.022249987348914146, -0.09143567830324173, -0.01731627993285656, 0.006730312015861273, -0.17266257107257843, 0.058640364557504654, 0.10775097459554672, 0.027582576498389244, 0.03858624026179314, 0.043156567960977554, 0.0037038924638181925, -0.13953903317451477, -0.18088886141777039, -0.013304623775184155, 0.06269197165966034, 0.03547661751508713, 0.09343685954809189, 0.13970057666301727, -0.009570972062647343, 0.0016306423349305987, -0.0555904395878315, 0.0031276573427021503, -0.1811908781528473, -0.11354430019855499, -0.07511179894208908, -0.1033962294459343, 0.008128470741212368, -0.030051978304982185, -0.038698285818099976, 0.10348473489284515, 0.050203386694192886, -0.05385258421301842, 0.045468322932720184, -0.02600432001054287, 0.009103916585445404, 0.016581980511546135, 0.01494691614061594, -0.030824335291981697, -0.0011615883558988571, -0.0636662170290947, -0.12034732103347778, -0.0118890181183815, -0.052707038819789886, 0.0007633204804733396, -0.03248484060168266, 0.056867413222789764, -0.09264763444662094, -0.062434274703264236, -0.05244990438222885, 0.022352026775479317, -0.02624649740755558, 0.1205274686217308, -0.0007312627276405692, 0.04951237887144089, 0.09091947227716446, 0.15412627160549164, -0.06287951022386551, -0.17018520832061768, -0.053630657494068146, 0.23211349546909332, 0.021259645000100136, 0.0738338977098465, 0.030710235238075256, 0.02688610553741455, -0.04032766819000244, 0.28390538692474365, 0.2609561085700989, -0.02433340810239315, 0.05970100313425064, -0.03252284228801727, 0.008852454833686352, 0.023858537897467613, 0.12555477023124695, 0.13468500971794128, 0.20234768092632294, -0.07987125217914581, -0.020072948187589645, -0.041369445621967316, 0.012630997225642204, -0.1578705608844757, 0.04768473282456398, -0.025302475318312645, -0.05368791148066521, -0.04729656130075455, 0.08546026051044464, -0.06392765045166016, 0.09854686260223389, 0.015809010714292526, -0.08856336772441864, -0.04839025065302849, 0.00021682998340111226, 0.21112284064292908, -0.007045868318527937, 0.019623814150691032, -0.03936074301600456, -0.05413379892706871, 0.07122472673654556, -0.011057602241635323, -0.1692773848772049, -0.06059876084327698, 0.07795844227075577, 0.023028375580906868, 0.1936575025320053, 0.015643781051039696, 0.07010204344987869, 0.08995462954044342, 0.04785418510437012, -0.11184735596179962, 0.08989690989255905, 0.03424299880862236, -0.08333216607570648, -0.015863552689552307, -0.13479553163051605, -0.012995379976928234, -0.04742743447422981, 0.016247572377324104, -0.1095607653260231, 0.03379101678729057, -0.014433617703616619, -0.06995736062526703, -0.04177592322230339, 0.058106571435928345, -0.050807029008865356, 0.05923372134566307, -0.00640771072357893, -0.027699260041117668, -0.0522528700530529, -0.06646668165922165, 0.009650778956711292, 0.027686018496751785, -0.17377161979675293, -0.056983496993780136, -0.02521589770913124, 0.0053129009902477264, 0.07856842130422592, 0.024405689910054207, -0.044164109975099564, -0.03560051694512367, -0.08570306748151779, 0.0035788060631603003, -0.1742836982011795, 0.013486085459589958, 0.06408070772886276, 0.02360478974878788, -0.007453749421983957, -0.036508526653051376, -0.007974712178111076, 0.01947420835494995, -0.08894628286361694, -0.09263118356466293 ]
null
null
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [QNLI](https://huggingface.co/datasets/glue) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.883397 ## More information The QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark. (source: https://paperswithcode.com/dataset/qnli) Original GLUE paper: https://arxiv.org/abs/1804.07461
{"language": ["en"], "license": "apache-2.0"}
text-classification
bioformers/bioformer-8L-qnli
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "en", "arxiv:1804.07461", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1804.07461" ]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bert #text-classification #en #arxiv-1804.07461 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bioformer-8L fined-tuned on the QNLI dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ## Evaluation results eval_accuracy = 0.883397 ## More information The QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark. (source: URL Original GLUE paper: URL
[ "## Evaluation results\neval_accuracy = 0.883397", "## More information\nThe QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark.\n(source: URL\n\nOriginal GLUE paper: URL" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #en #arxiv-1804.07461 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "## Evaluation results\neval_accuracy = 0.883397", "## More information\nThe QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark.\n(source: URL\n\nOriginal GLUE paper: URL" ]
[ 59, 15, 233 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #en #arxiv-1804.07461 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n## Evaluation results\neval_accuracy = 0.883397## More information\nThe QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark.\n(source: URL\n\nOriginal GLUE paper: URL" ]
[ -0.050867728888988495, 0.06072592735290527, -0.0007133181788958609, 0.06442955881357193, 0.002042328240349889, 0.008119173347949982, 0.05529621243476868, 0.07119231671094894, 0.028423160314559937, 0.13526418805122375, 0.04243595153093338, 0.0856427550315857, 0.06659512221813202, 0.018964502960443497, -0.018784550949931145, -0.03576007857918739, 0.03429596498608589, -0.027083124965429306, 0.05512522906064987, 0.10983002185821533, 0.03643789514899254, -0.10741573572158813, 0.019735757261514664, -0.032871048897504807, -0.040826037526130676, -0.001698456471785903, 0.031315580010414124, -0.020684869959950447, 0.1042894795536995, 0.11159855127334595, 0.03091319464147091, 0.0737430527806282, 0.0011513311183080077, -0.19640333950519562, 0.012413945980370045, 0.023863688111305237, 0.0011902136029675603, 0.02348863147199154, -0.015406129881739616, 0.013903908431529999, -0.12206780910491943, -0.025333993136882782, 0.022497108206152916, 0.014154458418488503, -0.09699764847755432, -0.02487429603934288, -0.09916654974222183, 0.03302540257573128, 0.10906153172254562, 0.07957884669303894, -0.047940559685230255, 0.1791331022977829, -0.10941364616155624, 0.07576705515384674, 0.1135973110795021, -0.2511182725429535, -0.00900151114910841, 0.04522060602903366, 0.01205355953425169, 0.0768776684999466, -0.07077868282794952, 0.02987777628004551, 0.010757187381386757, -0.015280759893357754, 0.03477583825588226, -0.0843881368637085, -0.1529913693666458, 0.008141831494867802, -0.11021428555250168, -0.01524991076439619, 0.20710761845111847, 0.0012318259105086327, -0.053220655769109726, -0.09096948057413101, -0.024872321635484695, 0.14482338726520538, 0.042138971388339996, -0.04800178483128548, 0.012122816406190395, -0.023658018559217453, 0.012354901060461998, -0.08642034977674484, -0.07357626408338547, -0.10903804749250412, -0.14231465756893158, 0.07417050004005432, 0.015756860375404358, 0.042747728526592255, -0.07038019597530365, 0.13765588402748108, -0.0712532177567482, -0.11489936709403992, -0.0571574866771698, 0.004178470466285944, -0.1494438499212265, -0.01625385694205761, -0.007702738977968693, -0.0692318007349968, 0.016486171633005142, 0.16795013844966888, -0.06442337483167648, 0.016823776066303253, -0.08983512967824936, 0.05885019525885582, 0.12493210285902023, 0.23532356321811676, -0.04077143594622612, -0.09788785129785538, 0.062048960477113724, 0.019065001979470253, 0.06836589425802231, -0.05083829164505005, -0.03526332229375839, -0.06053348630666733, 0.0677429735660553, 0.11347740143537521, 0.13904623687267303, 0.014970721676945686, -0.04654388129711151, -0.017330026254057884, -0.011326013132929802, -0.13497070968151093, -0.02254294417798519, 0.02009187638759613, -0.08135953545570374, -0.060006868094205856, 0.011435936205089092, 0.0035361081827431917, -0.08746392279863358, -0.01869248040020466, -0.09343492239713669, -0.018526040017604828, 0.0006792755448259413, -0.1407395452260971, 0.024786869063973427, -0.07286564260721207, -0.06400585174560547, -0.06959613412618637, -0.1702708750963211, -0.10756267607212067, -0.038740284740924835, -0.043736640363931656, -0.03908136859536171, -0.06456499546766281, 0.07241785526275635, -0.05626285448670387, -0.027879886329174042, -0.06057324633002281, -0.01552379596978426, 0.05687534064054489, 0.028584975749254227, 0.07500649988651276, -0.02793159894645214, 0.03839874267578125, -0.12679477035999298, 0.041008736938238144, -0.08619076013565063, 0.14403648674488068, -0.05616626515984535, -0.0021228701807558537, -0.07583823800086975, 0.0011027607833966613, 0.011904294602572918, -0.018999962136149406, 0.0016669424949213862, 0.15701095759868622, -0.15603268146514893, -0.023427795618772507, 0.18655937910079956, -0.09933065623044968, -0.15779589116573334, 0.07834691554307938, -0.04233243688941002, 0.16351954638957977, 0.14511029422283173, 0.1704394519329071, 0.13671959936618805, -0.06585733592510223, -0.1234409511089325, 0.01049723569303751, -0.03561786934733391, 0.13996127247810364, 0.05589234456419945, 0.004037912003695965, 0.005922036245465279, 0.030145181342959404, -0.16676834225654602, -0.014968836680054665, 0.012482917867600918, -0.07986778020858765, -0.0011131978826597333, -0.020500194281339645, -0.0027227168902754784, -0.02307438850402832, -0.016165800392627716, 0.04948928579688072, -0.05019169673323631, -0.018077539280056953, 0.014076941646635532, -0.10103069245815277, 0.018371986225247383, -0.04084155708551407, 0.13349834084510803, -0.05061745643615723, 0.02834661491215229, -0.16181422770023346, -0.17255118489265442, 0.0634584054350853, 0.05942780524492264, 0.049077995121479034, -0.015649519860744476, -0.03212861716747284, 0.021716229617595673, 0.016735678538680077, -0.0010189813328906894, -0.0303743127733469, -0.034796420484781265, -0.061443865299224854, -0.0634695291519165, 0.016343945637345314, -0.011640675365924835, 0.10154368728399277, -0.039211004972457886, 0.0006197771290317178, -0.06274688243865967, -0.06084344908595085, 0.012903990224003792, 0.011279172264039516, 0.005840871017426252, 0.01827886700630188, -0.05196287855505943, -0.018754707649350166, 0.0030907930340617895, 0.007244202774018049, -0.07209577411413193, 0.11690793931484222, -0.18917834758758545, -0.16788458824157715, 0.0185532383620739, -0.030077390372753143, -0.07909736782312393, -0.11985351890325546, -0.047713227570056915, -0.027759848162531853, -0.14807240664958954, -0.06585858762264252, 0.18312104046344757, 0.04964390769600868, 0.026277340948581696, -0.11486835777759552, -0.07052837312221527, -0.042476776987314224, 0.008314241655170918, 0.010914023034274578, 0.047908514738082886, 0.04661297798156738, -0.0674123764038086, 0.060883719474077225, -0.017620619386434555, -0.03469904884696007, 0.12502028048038483, -0.019678214564919472, -0.06780266016721725, -0.07236401736736298, 0.07081678509712219, -0.02353237196803093, 0.10622485727071762, -0.005847678519785404, 0.019952477887272835, 0.06104680150747299, 0.014441991224884987, -0.019675685092806816, -0.11714916676282883, 0.021878981962800026, 0.052555620670318604, -0.055324915796518326, -0.10711868852376938, -0.040414921939373016, 0.012827398255467415, 0.0964425802230835, 0.0160139799118042, 0.09073466807603836, -0.034689150750637054, -0.04546329379081726, -0.14222343266010284, 0.19519351422786713, -0.07182533293962479, -0.3455769121646881, -0.08131416141986847, 0.07478837668895721, -0.03353245556354523, -0.02518436498939991, 0.031051281839609146, 0.013621285557746887, -0.026626182720065117, -0.09054111689329147, 0.08961819112300873, 0.04614381864666939, -0.08584863692522049, -0.09528795629739761, 0.02807675302028656, -0.09102916717529297, -0.1154542788863182, -0.0055811223573982716, -0.044886842370033264, -0.09525147825479507, 0.06060776486992836, -0.055159252136945724, 0.11272051185369492, 0.10203521698713303, -0.000704489357303828, -0.004281119909137487, -0.0755600780248642, 0.21572993695735931, -0.08934104442596436, 0.12776944041252136, 0.06635584682226181, -0.017374280840158463, 0.02877575345337391, 0.14231805503368378, -0.052536774426698685, -0.04192919656634331, 0.03890085965394974, 0.07003267109394073, -0.03925569728016853, -0.2193257212638855, -0.0708470493555069, -0.017770355567336082, 0.043456997722387314, 0.0038993596099317074, 0.009522772394120693, 0.029620438814163208, 0.031926870346069336, -0.05085703730583191, 0.013343014754354954, 0.009942888282239437, 0.04147728160023689, 0.15683282911777496, -0.0339636392891407, 0.15573708713054657, -0.020246319472789764, 0.004587221425026655, 0.06915069371461868, 0.11320009082555771, 0.2223491668701172, -0.057358939200639725, 0.0957789197564125, 0.09734509140253067, 0.13727690279483795, -0.027951959520578384, 0.051221515983343124, -0.03501781448721886, 0.021146897226572037, -0.01530955359339714, -0.09888843446969986, -0.0026904165279120207, 0.0408756248652935, 0.07262735068798065, 0.000611678056884557, -0.02729814499616623, 0.004065067507326603, 0.06520957499742508, 0.14964431524276733, 0.03943534567952156, -0.06522170454263687, -0.041952356696128845, 0.04101003333926201, 0.061379365622997284, -0.008081788197159767, 0.040723878890275955, 0.11174000054597855, -0.08612217009067535, -0.02090352214872837, -0.003198839258402586, 0.12910470366477966, -0.06078493222594261, -0.010687611065804958, -0.11110042035579681, -0.1403750628232956, -0.02253819815814495, 0.13576464354991913, -0.18739451467990875, 0.09264741092920303, 0.0699707642197609, 0.011042606085538864, -0.05197550728917122, -0.025128794834017754, -0.050600092858076096, 0.05182594060897827, 0.20005358755588531, 0.004907455760985613, 0.023667654022574425, -0.1333443522453308, -0.0777563601732254, 0.07205818593502045, 0.012400978244841099, -0.01800675503909588, 0.10002988576889038, 0.008711647242307663, 0.05171307548880577, -0.014674666337668896, 0.0884178876876831, -0.05110635980963707, -0.1494164913892746, -0.008124464191496372, 0.03183763846755028, 0.002205710392445326, -0.006026079412549734, -0.039177391678094864, 0.10495265573263168, 0.15656223893165588, -0.18614712357521057, -0.07704706490039825, -0.10546151548624039, 0.03956963121891022, 0.08103348314762115, -0.11499223858118057, -0.055315904319286346, -0.04292077198624611, 0.05030228570103645, -0.049955565482378006, -0.081572026014328, 0.03301042690873146, -0.055493470281362534, -0.05853192135691643, -0.05217049643397331, 0.09493350982666016, 0.08817601948976517, 0.09431762993335724, 0.05213797837495804, 0.023283060640096664, -0.04971837252378464, -0.15093402564525604, -0.00949362013489008, 0.0635451003909111, 0.055711496621370316, 0.07019517570734024, -0.1283356100320816, -0.05338471382856369, -0.11261211335659027, 0.04000226780772209, 0.19765785336494446, 0.12283803522586823, -0.106939397752285, 0.1343023031949997, 0.17507749795913696, -0.10813863575458527, -0.2501404583454132, 0.004077848978340626, -0.0032921854872256517, 0.03599397465586662, 0.09695660322904587, -0.13020960986614227, 0.06199699267745018, 0.04931517690420151, -0.005742708221077919, 0.05820786580443382, -0.28410202264785767, -0.07153572887182236, 0.104161337018013, 0.04517161101102829, 0.12024673074483871, -0.11882158368825912, -0.03220456838607788, 0.036186642944812775, -0.030935650691390038, 0.1853695660829544, -0.08799125254154205, 0.06900607794523239, -0.011201472021639347, 0.0323188342154026, 0.03266459330916405, -0.037371329963207245, 0.08145337551832199, 0.00794199202209711, 0.03521833196282387, -0.00311055569909513, -0.06989892572164536, 0.10307945311069489, -0.05597115308046341, 0.1460990011692047, 0.013168929144740105, 0.12394023686647415, -0.020659325644373894, -0.051105938851833344, -0.08263303339481354, 0.07049451768398285, -0.07275841385126114, -0.07664157450199127, -0.10606243461370468, 0.06384709477424622, 0.09314537048339844, 0.01602347567677498, 0.01521360594779253, -0.047906000167131424, 0.05336642265319824, 0.09285396337509155, 0.05473650246858597, 0.016117094084620476, -0.15120519697666168, 0.008064025081694126, 0.01928097940981388, 0.09229135513305664, -0.020098509266972542, 0.07354526221752167, 0.1251663863658905, 0.08309733867645264, 0.11316892504692078, 0.048226673156023026, -0.0767584964632988, 0.023783313110470772, -0.030147923156619072, -0.1642804592847824, -0.03996848315000534, -0.02667928673326969, -0.07595393806695938, -0.08581158518791199, -0.07333191484212875, 0.09230928868055344, -0.005720602814108133, -0.017420832067728043, 0.02541780099272728, 0.05134540796279907, 0.05913563817739487, 0.1962260603904724, 0.045679740607738495, 0.025967048481106758, -0.05826669931411743, 0.07785087078809738, 0.12022144347429276, -0.08172549307346344, 0.04896616190671921, 0.011964760720729828, -0.09489960223436356, -0.020945679396390915, -0.05840307101607323, 0.0029865039978176355, -0.07214469462633133, -0.07187201082706451, -0.07901835441589355, -0.03566671162843704, -0.001018816838040948, 0.1435256004333496, -0.0007033048896118999, 0.10453367233276367, -0.016760116443037987, -0.05460677295923233, -0.020911656320095062, 0.15040241181850433, -0.05828025937080383, 0.0045441570691764355, 0.020031454041600227, 0.032156944274902344, 0.0820213183760643, 0.14169247448444366, -0.04958970099687576, -0.13285328447818756, -0.17028595507144928, 0.03144519776105881, -0.05023328587412834, 0.06132850795984268, -0.012598772533237934, -0.0379769429564476, -0.03551799803972244, -0.011965937912464142, -0.012980730272829533, 0.03749840706586838, 0.014768533408641815, -0.0006555926520377398, -0.05968034639954567, 0.05476554110646248, -0.21309201419353485, -0.04858817905187607, 0.075434111058712, -0.0149122579023242, 0.071912482380867, -0.012436221353709698, -0.03951379656791687, 0.013705611228942871, -0.09275564551353455, -0.018820153549313545, -0.0392092689871788, 0.06913196295499802, 0.020402079448103905, -0.1587667167186737, 0.004954170435667038, 0.006495937239378691, -0.03802719712257385, 0.028861917555332184, -0.007582925725728273, -0.08927629142999649, 0.06152850016951561, -0.060417454689741135, -0.1043144017457962, -0.054262544959783554, 0.04641128331422806, -0.04369937255978584, 0.03337136283516884, 0.08369893580675125, -0.0378432460129261, 0.07680220156908035, -0.14917993545532227, -0.056646041572093964, 0.054296690970659256, 0.05336011201143265, -0.07152824103832245, -0.06696055084466934, 0.029735112562775612, -0.004275255370885134, 0.15838445723056793, 0.0353463813662529, 0.054073516279459, 0.0034419612493366003, 0.054206132888793945, 0.059238970279693604, -0.05178452283143997, 0.05688418447971344, 0.030105996876955032, -0.028514772653579712, 0.054846830666065216, 0.0415751151740551, -0.08236199617385864, -0.029594935476779938, 0.17221280932426453, -0.0270890761166811, 0.07799894362688065, 0.024109503254294395, 0.0592631995677948, -0.053088605403900146, 0.005495191551744938, -0.03665145859122276, -0.020425552502274513, -0.03139317035675049, 0.009412331506609917, 0.15658816695213318, 0.10214167088270187, -0.12196823209524155, 0.12211944162845612, 0.05921813100576401, -0.11603023111820221, -0.1449151337146759, -0.12155748903751373, -0.05351186543703079, -0.0009112873813137412, -0.0096169114112854, -0.14442454278469086, -0.01880492828786373, 0.01938708685338497, 0.011619742028415203, -0.04582427069544792, 0.12286567687988281, -0.06801575422286987, -0.13788272440433502, 0.017345884814858437, 0.014651237055659294, 0.06323114037513733, -0.013281554915010929, 0.08935263007879257, 0.0641700029373169, 0.035675905644893646, 0.06329162418842316, 0.09439659118652344, 0.0945572480559349, 0.008897515945136547, -0.07332189381122589, -0.03145352005958557, -0.04178585857152939, 0.004372710827738047, 0.024637462571263313, 0.13235971331596375, 0.051132313907146454, -0.002888729562982917, 0.00888080894947052, 0.22902034223079681, -0.0016011056723073125, -0.028805561363697052, -0.10706312209367752, 0.16529357433319092, -0.009330544620752335, -0.022335439920425415, 0.026385704055428505, -0.10970252752304077, -0.008492402732372284, 0.21719318628311157, 0.09124716371297836, -0.020952310413122177, -0.016909966245293617, -0.02611560933291912, 0.017840595915913582, 0.048452284187078476, 0.07410548627376556, 0.029191426932811737, 0.37816891074180603, -0.07592317461967468, -0.017307091504335403, -0.05876766890287399, -0.023807326331734657, -0.030783142894506454, 0.037996865808963776, 0.028733130544424057, 0.026686949655413628, -0.11797896772623062, 0.08896677196025848, 0.0060081081464886665, -0.0917564108967781, -0.0158600565046072, -0.08976667374372482, -0.08421758562326431, -0.006658976431936026, 0.0031726814340800047, -0.1085645854473114, 0.016890401020646095, 0.010688717477023602, 0.026022057980298996, 0.10715902596712112, -0.011424393393099308, -0.1099880263209343, -0.04593227803707123, 0.0826859101653099, 0.016610726714134216, 0.12662211060523987, -0.012924287468194962, 0.1073879674077034, 0.06964219361543655, 0.007013141177594662, -0.02315324917435646, 0.11509857326745987, 0.051068954169750214, -0.05395954102277756, 0.01592671312391758, 0.07368951290845871, 0.059737347066402435, 0.10923490673303604, 0.11951272934675217, -0.0035790824331343174, 0.05954721197485924, -0.10874099284410477, -0.011268489994108677, -0.19801320135593414, 0.03730587288737297, -0.04180896654725075, 0.1414753794670105, 0.09128870069980621, -0.00948562566190958, 0.008396906778216362, -0.09144952893257141, -0.015258350409567356, -0.015607333742082119, 0.11667428910732269, 0.0037639844231307507, -0.09611795842647552, 0.07116653025150299, 0.0026157493703067303, -0.019520776346325874, -0.2944202125072479, -0.02712058089673519, 0.047063734382390976, -0.05299074202775955, 0.09039638936519623, 0.10172910988330841, 0.019038835540413857, 0.020770207047462463, -0.057070884853601456, -0.26343101263046265, 0.05438931658864021, 0.0745774507522583, -0.08245920389890671, -0.09952165186405182 ]
null
null
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [SQuAD1](https://rajpurkar.github.io/SQuAD-explorer) dataset for 3 epochs. The fine-tuning process was performed on a single P100 GPUs (16GB). The hyperparameters are: ``` max_seq_length=512 per_device_train_batch_size=16 gradient_accumulation_steps=1 total train batch size (w. parallel, distributed & accumulation) = 16 learning_rate=3e-5 num_train_epochs=3 ``` ## Evaluation results ``` "eval_exact_match": 78.55250709555345 "eval_f1": 85.91482799690257 ``` Bioformer's performance is on par with [DistilBERT](https://arxiv.org/pdf/1910.01108.pdf) (EM/F1: 77.7/85.8), although Bioformer was pretrained only on biomedical texts. ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "question-answering"}
question-answering
bioformers/bioformer-8L-squad1
[ "transformers", "pytorch", "safetensors", "bert", "question-answering", "en", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bert #question-answering #en #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us
bioformer-8L fined-tuned on the SQuAD1 dataset for 3 epochs. The fine-tuning process was performed on a single P100 GPUs (16GB). The hyperparameters are: ## Evaluation results Bioformer's performance is on par with DistilBERT (EM/F1: 77.7/85.8), although Bioformer was pretrained only on biomedical texts. ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.
[ "## Evaluation results\n\n\n\nBioformer's performance is on par with DistilBERT (EM/F1: 77.7/85.8), \nalthough Bioformer was pretrained only on biomedical texts.", "## Speed\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT." ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #question-answering #en #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n", "## Evaluation results\n\n\n\nBioformer's performance is on par with DistilBERT (EM/F1: 77.7/85.8), \nalthough Bioformer was pretrained only on biomedical texts.", "## Speed\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT." ]
[ 52, 42, 45 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #question-answering #en #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n## Evaluation results\n\n\n\nBioformer's performance is on par with DistilBERT (EM/F1: 77.7/85.8), \nalthough Bioformer was pretrained only on biomedical texts.## Speed\nIn our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT." ]
[ -0.019239705055952072, 0.04117913544178009, -0.0034886342473328114, 0.00858395267277956, -0.03463754430413246, -0.02597624808549881, -0.026189126074314117, 0.1510728895664215, 0.06564942002296448, 0.10182034969329834, 0.1532437652349472, 0.07900135219097137, -0.0044415732845664024, 0.16049428284168243, -0.06339624524116516, -0.053049977868795395, 0.08684936910867691, 0.06103181838989258, -0.04565024748444557, 0.022407270967960358, 0.037121109664440155, -0.1851140260696411, 0.06415702402591705, 0.02887064591050148, 0.024171549826860428, 0.024958014488220215, 0.12059763818979263, -0.005566926673054695, 0.06389108300209045, -0.030123455449938774, 0.04857448861002922, 0.06905729323625565, 0.04262101277709007, 0.0052858819253742695, 0.02606925182044506, -0.0018136315047740936, 0.1338556408882141, 0.13824738562107086, -0.0059454478323459625, 0.09311094880104065, 0.004626544192433357, 0.0374889075756073, 0.004164434038102627, 0.0711665228009224, -0.008353658951818943, -0.18255357444286346, -0.04944971948862076, -0.05350280553102493, -0.057144299149513245, 0.026586759835481644, -0.03366546332836151, 0.13791407644748688, -0.15654054284095764, 0.0719367116689682, 0.1912122517824173, -0.1892673373222351, -0.08548107743263245, -0.15532398223876953, 0.293415904045105, 0.02080904133617878, -0.11969876289367676, 0.02587161958217621, 0.08433142304420471, 0.025650715455412865, 0.10160478204488754, -0.04492448270320892, 0.09620732814073563, 0.031806960701942444, -0.08951940387487411, 0.13643258810043335, 0.17419327795505524, -0.022370927035808563, -0.1402764469385147, 0.03641738370060921, -0.1216159388422966, 0.09063125401735306, -0.01254013180732727, -0.10388688743114471, 0.040780141949653625, -0.06308320164680481, -0.08403988182544708, 0.016020923852920532, -0.02908562682569027, -0.11395128816366196, -0.08472313731908798, 0.2622491121292114, 0.06181612238287926, 0.08018842339515686, 0.08015424758195877, 0.07535078376531601, 0.1795801967382431, -0.12974491715431213, -0.022403649985790253, -0.05849175155162811, -0.009648889303207397, -0.03610513359308243, -0.07629263401031494, 0.10361810028553009, 0.10494452714920044, 0.16793686151504517, 0.04792894423007965, 0.013688824139535427, 0.02092297188937664, -0.006311101373285055, -0.06141524016857147, 0.07724782079458237, -0.09459662437438965, -0.031241141259670258, 0.05812560021877289, 0.12456658482551575, -0.04622673988342285, 0.06807460635900497, 0.0018452754011377692, -0.014534837566316128, 0.0679686963558197, 0.013837688602507114, -0.17134658992290497, -0.04086732119321823, -0.11482369899749756, 0.02952185645699501, 0.06725548207759857, -0.06448081135749817, -0.04751358926296234, 0.02548231929540634, -0.1154356524348259, 0.1508178412914276, 0.04322250187397003, -0.0754549577832222, 0.0009293461916968226, 0.04036198928952217, -0.1591162383556366, -0.04449347034096718, -0.037400033324956894, -0.07470813393592834, -0.021269507706165314, 0.12688663601875305, 0.02628372609615326, -0.07284383475780487, -0.04729224368929863, 0.06765954941511154, 0.01773209683597088, -0.13316018879413605, -0.015334416180849075, 0.03175662085413933, -0.005569624248892069, 0.07729212194681168, -0.09178116917610168, 0.0817030668258667, -0.08614891767501831, 0.15911322832107544, 0.08061717450618744, 0.16091462969779968, -0.07604274153709412, 0.02444625273346901, -0.1497579663991928, -0.004088204819709063, -0.1796792447566986, -0.030778756365180016, -0.1532900631427765, -0.03489697724580765, -0.14285412430763245, -0.09182365983724594, -0.10405241698026657, -0.029783019796013832, 0.0770932212471962, 0.12203659117221832, -0.15523064136505127, -0.026949021965265274, 0.09741610288619995, 0.07104330509901047, -0.0820627361536026, 0.1480122208595276, -0.05060704052448273, 0.07705535739660263, 0.09446638077497482, 0.21297526359558105, -0.08159788697957993, -0.23048867285251617, 0.016311192885041237, 0.03754745423793793, 0.027026239782571793, -0.034075621515512466, 0.15207690000534058, 0.03673700988292694, -0.004321548622101545, 0.0621781088411808, -0.05470134690403938, 0.20883138477802277, -0.08879110217094421, 0.02245195396244526, -0.004841163754463196, -0.12371977418661118, 0.09768268465995789, -0.018870536237955093, 0.012236865237355232, -0.07871375977993011, 0.03182677924633026, 0.09895210713148117, 0.09034207463264465, -0.11320161819458008, -0.04511900246143341, -0.01328047551214695, 0.0033650195691734552, -0.0711086317896843, -0.016356639564037323, -0.06268775463104248, -0.034279681742191315, 0.07208022475242615, -0.052535079419612885, -0.052734408527612686, 0.14510993659496307, 0.02403455600142479, 0.060095056891441345, -0.016799092292785645, 0.014154743403196335, 0.02668578550219536, 0.009564470499753952, -0.08792508393526077, -0.04362083971500397, 0.104981929063797, -0.03591771423816681, -0.03646526113152504, -0.0337432362139225, -0.018180955201387405, -0.0226072296500206, 0.11959245800971985, -0.04301940277218819, -0.027698952704668045, 0.008743665181100368, -0.06271707266569138, -0.07666060328483582, -0.010273799300193787, 0.03816784918308258, -0.017551323398947716, -0.0009810527553781867, 0.12177234143018723, 0.19765955209732056, 0.21123433113098145, 0.027488986030220985, 0.09903687983751297, -0.046577341854572296, -0.007067509926855564, -0.046609316021203995, -0.027098016813397408, -0.11707891523838043, -0.08840696513652802, 0.07707379758358002, 0.02698841132223606, 0.18294982612133026, -0.12476524710655212, -0.08123590052127838, 0.027054954320192337, -0.051348939538002014, 0.12433579564094543, 0.08210544288158417, 0.04685388505458832, -0.14650285243988037, 0.04660988971590996, 0.2678586542606354, 0.01706613600254059, 0.14274346828460693, -0.046922340989112854, -0.15924079716205597, -0.015963314101099968, -0.014041442424058914, -0.07725226879119873, 0.14863461256027222, -0.007489679381251335, 0.06325021386146545, 0.004629023373126984, -0.0175539031624794, -0.018299967050552368, -0.06587382405996323, 0.0016515129245817661, -0.033143822103738785, -0.04598642885684967, -0.03568841144442558, 0.012501712888479233, -0.02754884958267212, 0.10965811461210251, 0.0016307756304740906, -0.15138936042785645, -0.012382125481963158, 0.06773702800273895, -0.013556678779423237, 0.20645421743392944, -0.0277385376393795, -0.05723997578024864, -0.04430312663316727, -0.11198964715003967, 0.048053428530693054, 0.020713601261377335, 0.023035362362861633, -0.05063096433877945, -0.07000706344842911, 0.02121935412287712, -0.0351567268371582, -0.01626358926296234, 0.04805590584874153, 0.03222043067216873, -0.025310717523097992, 0.12260721623897552, -0.08608518540859222, -0.026853052899241447, -0.08995650708675385, 0.11224786192178726, 0.004523939918726683, -0.052404433488845825, 0.08220764249563217, 0.036149367690086365, -0.06304475665092468, -0.07846149057149887, -0.03288661316037178, 0.2236398309469223, 0.039406873285770416, 0.00023425287508871406, 0.19222170114517212, 0.03122766874730587, 0.06119762361049652, -0.026422835886478424, 0.04022243246436119, -0.08539731055498123, 0.04962584748864174, 0.021073661744594574, 0.061972957104444504, -0.18795551359653473, -0.001114869024604559, -0.00023136039089877158, -0.016666484996676445, 0.04201614111661911, -0.002061712322756648, -0.09113403409719467, 0.008449805900454521, 0.025360632687807083, 0.03193550556898117, -0.01952592469751835, 0.0052335807122290134, 0.06633366644382477, -0.08098268508911133, 0.22719605267047882, 0.09388910233974457, -0.14022839069366455, 0.05715532973408699, 0.026478426530957222, 0.13621622323989868, -0.026428665965795517, 0.056832119822502136, -0.037597645074129105, 0.12128622084856033, 0.03943142294883728, 0.20996922254562378, -0.0288232434540987, -0.07417496293783188, -0.12334126979112625, -0.03120136633515358, -0.11787796020507812, -0.03542688861489296, -0.06664159893989563, -0.01532308291643858, -0.02828536368906498, 0.05761023238301277, 0.07825569808483124, 0.11421222239732742, 0.06956713646650314, -0.22267529368400574, -0.09477759152650833, 0.03381993621587753, -0.0504022091627121, -0.09413966536521912, 0.06202775985002518, 0.2270985245704651, 0.03401494026184082, -0.07514629513025284, -0.06088133528828621, 0.06025567278265953, 0.09523741155862808, 0.09256178885698318, -0.0036341254599392414, 0.021591607481241226, -0.009282339364290237, 0.06427936255931854, -0.12255872786045074, 0.05302029848098755, -0.012814385816454887, 0.04016280546784401, 0.00561881810426712, 0.013579503633081913, 0.032059621065855026, 0.0728701800107956, 0.12768429517745972, 0.006577154155820608, 0.08615222573280334, -0.11736086010932922, -0.2760993242263794, 0.042527321726083755, 0.05547073483467102, 0.09938773512840271, 0.1064828559756279, -0.05560872331261635, 0.010855944827198982, -0.006296874489635229, -0.07300767302513123, -0.14545060694217682, -0.012209154665470123, 0.029952244833111763, -0.09537821263074875, 0.01962418667972088, -0.06692583113908768, -0.0731092318892479, -0.020927228033542633, 0.13630443811416626, -0.09697706252336502, -0.03931102529168129, -0.13028329610824585, 0.08262570947408676, 0.15766876935958862, -0.06513147801160812, -0.030268676578998566, -0.05657146871089935, 0.04124446213245392, 0.041428565979003906, -0.10099402070045471, 0.01892450824379921, -0.09398936480283737, -0.0960509330034256, -0.13349218666553497, 0.0419602207839489, -0.062153834849596024, 0.12134722620248795, 0.06486448645591736, -0.054213304072618484, -0.1847383975982666, -0.0718957930803299, 0.03653424233198166, -0.10380254685878754, 0.03789913281798363, -0.047831907868385315, -0.1977539360523224, 0.009812166914343834, -0.050993911921978, 0.04772870987653732, 0.06759950518608093, 0.179973304271698, -0.01596771366894245, 0.05022011697292328, 0.24134832620620728, 0.008940275758504868, -0.27286040782928467, -0.0410856269299984, 0.12425323575735092, -0.01859491504728794, -0.05594895780086517, -0.10792788863182068, 0.2642689347267151, 0.20108257234096527, -0.0007345626945607364, 0.02774820476770401, -0.018679283559322357, -0.09704703837633133, 0.04257144406437874, 0.014810534194111824, 0.3557019531726837, -0.1134929358959198, -0.03143911063671112, -0.04889264702796936, -0.09875411540269852, 0.0165720097720623, -0.07891496270895004, 0.08335572481155396, -0.07101652771234512, -0.015935534611344337, -0.016368048265576363, -0.0881085991859436, 0.10262742638587952, -0.08771420270204544, 0.0024863306898623705, 0.06898211687803268, -0.09896191209554672, 0.043455030769109726, 0.03346041589975357, 0.16442067921161652, -0.007622691337019205, 0.02474403567612171, 0.025408700108528137, -0.020694822072982788, -0.09241316467523575, -0.004113335628062487, 0.04971093311905861, -0.04697458818554878, -0.10563525557518005, 0.08181675523519516, -0.03629915416240692, -0.005637915804982185, 0.05579724535346031, -0.03523693606257439, -0.13729241490364075, 0.041506193578243256, 0.041261956095695496, -0.1652388572692871, -0.03896509110927582, 0.05558346211910248, -0.0446978360414505, 0.012212296947836876, -0.16021472215652466, 0.03839075565338135, 0.164388045668602, -0.051141221076250076, 0.0768834799528122, 0.0680597797036171, -0.04772605746984482, 0.014559399336576462, 0.007461877539753914, -0.20115920901298523, -0.03547871485352516, -0.011699938215315342, -0.03374345600605011, -0.14001920819282532, 0.06103367358446121, 0.1209256649017334, -0.07454933971166611, -0.03650711849331856, -0.0454745888710022, -0.005009789485484362, -0.021985642611980438, 0.32063373923301697, 0.07992903143167496, 0.06778443604707718, -0.07478360831737518, -0.02542594075202942, -0.0128274941816926, 0.08877963572740555, -0.03950588405132294, -0.061658427119255066, -0.11131986230611801, 0.011587404645979404, -0.09022638201713562, 0.14737600088119507, -0.027245398610830307, 0.05181436240673065, -0.2504567503929138, -0.11990755051374435, 0.05737008526921272, 0.1882690042257309, 0.03708679974079132, -0.053147297352552414, -0.12705537676811218, -0.0329422801733017, -0.010471872985363007, 0.13523609936237335, -0.08282577991485596, 0.0736750066280365, 0.004203686024993658, 0.15980342030525208, -0.12362752854824066, 0.018127523362636566, -0.1112082302570343, 0.0737060010433197, -0.12226466089487076, -0.0019199119415134192, -0.27253541350364685, -0.020131215453147888, 0.05522643029689789, -0.08681139349937439, 0.023273861035704613, -0.07314477115869522, 0.03877531364560127, 0.026962274685502052, -0.06788846850395203, 0.04281340539455414, 0.06939021497964859, 0.006516376510262489, -0.1326993703842163, -0.059786371886730194, 0.030326835811138153, -0.05396554246544838, -0.002055640332400799, 0.06873446702957153, 0.05405637249350548, -0.008859154768288136, 0.036224737763404846, -0.13122765719890594, 0.102481909096241, 0.0848095715045929, -0.011852121911942959, -0.06440623104572296, 0.00941009446978569, 0.03714446723461151, 0.056918248534202576, -0.017660124227404594, 0.020629368722438812, -0.01927940919995308, -0.10703737288713455, 0.01971438154578209, -0.039570827037096024, -0.08582571893930435, -0.0695762112736702, 0.07285647094249725, 0.16710823774337769, 0.16526614129543304, -0.01257476955652237, -0.06438609212636948, -0.13170035183429718, 0.007428019307553768, 0.018018607050180435, -0.2599913775920868, -0.1555403620004654, -0.05545978620648384, 0.06323758512735367, 0.024400092661380768, 0.13897624611854553, -0.026127230376005173, 0.01947212964296341, -0.02091566100716591, -0.05024801939725876, 0.10404578596353531, 0.02625458687543869, 0.23110172152519226, 0.05398644134402275, -0.001834757043980062, -0.08207985758781433, 0.006820402108132839, 0.13369949162006378, 0.11287838965654373, 0.15164485573768616, 0.19433064758777618, 0.032821398228406906, 0.08150383830070496, -0.03751835599541664, 0.03126133233308792, -0.036609429866075516, -0.11440963298082352, 0.04353826120495796, -0.06240679696202278, 0.05512996390461922, 0.1993301659822464, -0.020860567688941956, -0.10620729625225067, -0.0726129412651062, -0.11943534761667252, -0.09607718884944916, -0.12371440976858139, 0.25294119119644165, -0.05516195297241211, -0.004347274079918861, -0.04606464505195618, -0.17227524518966675, 0.07152864336967468, -0.06477817893028259, 0.002610418014228344, 0.014594296924769878, 0.13943515717983246, -0.029654555022716522, -0.06571381539106369, 0.0765066146850586, 0.035144999623298645, -0.018355343490839005, 0.013618615455925465, -0.055551618337631226, -0.017167698591947556, 0.04487530514597893, 0.05952486768364906, -0.056864187121391296, -0.06541867554187775, -0.09035379439592361, -0.05460166186094284, -0.03887780383229256, -0.05847998335957527, -0.030527830123901367, -0.05754838511347771, 0.022387083619832993, 0.05613650754094124, -0.003760205814614892, -0.007458334323018789, 0.09470674395561218, -0.06922651827335358, 0.004176161717623472, -0.08735093474388123, 0.24985674023628235, 0.07953976839780807, 0.14122380316257477, 0.016453443095088005, 0.007257699966430664, -0.023646827787160873, 0.3694702386856079, -0.1400342434644699, -0.18115538358688354, -0.07337018847465515, 0.06455211341381073, -0.004141310229897499, -0.00024839057005010545, 0.1285228729248047, 0.07618872076272964, 0.027381962165236473, -0.05253414437174797, -0.014697856269776821, -0.03397822380065918, -0.09821411967277527, -0.2045556902885437, -0.05026552081108093, 0.08275074511766434, 0.0572042390704155, -0.15579122304916382, -0.06815911829471588, 0.14127294719219208, -0.040898896753787994, -0.08381213992834091, -0.0613405779004097, -0.0724281594157219, -0.05917651951313019, -0.023622214794158936, -0.11399981379508972, -0.008140997029840946, -0.0929008200764656, 0.0859602689743042, 0.16338199377059937, -0.01697504334151745, -0.10253672301769257, 0.008113715797662735, 0.12853623926639557, -0.03585952892899513, 0.08774873614311218, 0.05969011038541794, 0.08707627654075623, 0.07015352696180344, -0.04201404005289078, -0.11858904361724854, 0.12209869921207428, -0.022119037806987762, -0.17194023728370667, 0.014758618548512459, 0.06789103150367737, 0.04300081729888916, 0.02800978533923626, -0.053123489022254944, -0.01931707374751568, -0.03582124039530754, 0.027519024908542633, -0.11600884050130844, -0.048815518617630005, 0.02498897723853588, -0.0038353961426764727, 0.0667271688580513, 0.12357648462057114, -0.03528165817260742, -0.01930011622607708, -0.11815342307090759, 0.053245797753334045, 0.076402448117733, 0.037993207573890686, -0.03706842660903931, -0.18577906489372253, -0.06607142835855484, 0.048368994146585464, 0.011838503181934357, -0.25834235548973083, -0.02586214989423752, -0.09996611624956131, 0.06310722976922989, -0.043430641293525696, 0.0621979646384716, -0.011086670681834221, 0.063321053981781, 0.032226819545030594, -0.14605730772018433, -0.013530979864299297, -0.006866766139864922, -0.06228933855891228, -0.014561912976205349 ]
null
null
transformers
**_NOTE: `bioformer-cased-v1.0` has been renamed to `bioformer-8L`. All links to `bioformer-cased-v1.0` will automatically redirect to `bioformer-8L`, including git operations. However, to avoid confusion, we recommend updating any existing local clones to point to the new repository URL._** Bioformer-8L is a lightweight BERT model for biomedical text mining. Bioformer-8L uses a biomedical vocabulary and is pre-trained from scratch only on biomedical domain corpora. Our experiments show that Bioformer-8L is 3x as fast as BERT-base, and achieves comparable or even better performance than BioBERT/PubMedBERT on downstream NLP tasks. Bioformer-8L has 8 layers (transformer blocks) with a hidden embedding size of 512, and the number of self-attention heads is 8. Its total number of parameters is 42,820,610. **The usage of Bioformer-8L is the same as a standard BERT model. The documentation of BERT can be found [here](https://huggingface.co/docs/transformers/model_doc/bert).** ## Vocabulary of Bioformer-8L Bioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT. ## Pre-training of Bioformer-8L Bioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using [SciSpacy](https://allenai.github.io/scispacy/). Pre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days. ## Usage Prerequisites: python3, pytorch, transformers and datasets We have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26. To install pytorch, please refer to instructions [here](https://pytorch.org/get-started/locally). To install the `transformers` and `datasets` library: ``` pip install transformers pip install datasets ``` ### Filling mask ``` from transformers import pipeline unmasker8L = pipeline('fill-mask', model='bioformers/bioformer-8L') unmasker8L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") unmasker16L = pipeline('fill-mask', model='bioformers/bioformer-16L') unmasker16L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") ``` Output of `bioformer-8L`: ``` [{'score': 0.3207533359527588, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.19234347343444824, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.09200277179479599, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.08494312316179276, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.0412776917219162, 'token': 22263, 'token_str': 'Hypertension', 'sequence': 'Hypertension refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` Output of `bioformer-16L`: ``` [{'score': 0.7262957692146301, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.124954953789711, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.04062706232070923, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.022694870829582214, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.009743048809468746, 'token': 13960, 'token_str': 'T2D', 'sequence': 'T2D refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` ## Awards Bioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (https://doi.org/10.1093/database/baac069) ## Links [Bioformer-16L](https://huggingface.co/bioformers/bioformer-16L) ## Acknowledgment Training and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01. ## Questions If you have any questions, please submit an issue here: https://github.com/WGLab/bioformer/issues You can also send an email to Li Fang ([email protected], https://fangli80.github.io/). ## Citation You can cite our preprint on arXiv: Fang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: https://doi.org/10.48550/arXiv.2302.01588 BibTeX format: ``` @ARTICLE{fangli2023bioformer, author = {{Fang}, Li and {Chen}, Qingyu and {Wei}, Chih-Hsuan and {Lu}, Zhiyong and {Wang}, Kai}, title = "{Bioformer: an efficient transformer language model for biomedical text mining}", journal = {arXiv preprint arXiv:2302.01588}, year = {2023} } ```
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "fill-mask"}
fill-mask
bioformers/bioformer-8L
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tf #safetensors #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
_NOTE: 'bioformer-cased-v1.0' has been renamed to 'bioformer-8L'. All links to 'bioformer-cased-v1.0' will automatically redirect to 'bioformer-8L', including git operations. However, to avoid confusion, we recommend updating any existing local clones to point to the new repository URL._ Bioformer-8L is a lightweight BERT model for biomedical text mining. Bioformer-8L uses a biomedical vocabulary and is pre-trained from scratch only on biomedical domain corpora. Our experiments show that Bioformer-8L is 3x as fast as BERT-base, and achieves comparable or even better performance than BioBERT/PubMedBERT on downstream NLP tasks. Bioformer-8L has 8 layers (transformer blocks) with a hidden embedding size of 512, and the number of self-attention heads is 8. Its total number of parameters is 42,820,610. The usage of Bioformer-8L is the same as a standard BERT model. The documentation of BERT can be found here. ## Vocabulary of Bioformer-8L Bioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT. ## Pre-training of Bioformer-8L Bioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using SciSpacy. Pre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days. ## Usage Prerequisites: python3, pytorch, transformers and datasets We have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26. To install pytorch, please refer to instructions here. To install the 'transformers' and 'datasets' library: ### Filling mask Output of 'bioformer-8L': Output of 'bioformer-16L': ## Awards Bioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (URL ## Links Bioformer-16L ## Acknowledgment Training and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01. ## Questions If you have any questions, please submit an issue here: URL You can also send an email to Li Fang (fangli9@URL, URL You can cite our preprint on arXiv: Fang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: URL BibTeX format:
[ "## Vocabulary of Bioformer-8L\nBioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT.", "## Pre-training of Bioformer-8L\nBioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using SciSpacy.\n\nPre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days.", "## Usage\n\nPrerequisites: python3, pytorch, transformers and datasets\n\nWe have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26.\n\nTo install pytorch, please refer to instructions here.\n\nTo install the 'transformers' and 'datasets' library:", "### Filling mask\n\n\n\nOutput of 'bioformer-8L':\n\n\n\nOutput of 'bioformer-16L':", "## Awards\nBioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (URL", "## Links\n\nBioformer-16L", "## Acknowledgment\n\nTraining and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01.", "## Questions\nIf you have any questions, please submit an issue here: URL\n\nYou can also send an email to Li Fang (fangli9@URL, URL\n\n\nYou can cite our preprint on arXiv:\n\nFang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: URL\n\n\nBibTeX format:" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "## Vocabulary of Bioformer-8L\nBioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT.", "## Pre-training of Bioformer-8L\nBioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using SciSpacy.\n\nPre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days.", "## Usage\n\nPrerequisites: python3, pytorch, transformers and datasets\n\nWe have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26.\n\nTo install pytorch, please refer to instructions here.\n\nTo install the 'transformers' and 'datasets' library:", "### Filling mask\n\n\n\nOutput of 'bioformer-8L':\n\n\n\nOutput of 'bioformer-16L':", "## Awards\nBioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (URL", "## Links\n\nBioformer-16L", "## Acknowledgment\n\nTraining and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01.", "## Questions\nIf you have any questions, please submit an issue here: URL\n\nYou can also send an email to Li Fang (fangli9@URL, URL\n\n\nYou can cite our preprint on arXiv:\n\nFang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: URL\n\n\nBibTeX format:" ]
[ 54, 180, 217, 90, 25, 36, 6, 77, 105 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n## Vocabulary of Bioformer-8L\nBioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT.## Pre-training of Bioformer-8L\nBioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using SciSpacy.\n\nPre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days." ]
[ -0.05647857487201691, 0.04730188474059105, -0.003238373203203082, 0.0005547406617552042, 0.05931759253144264, 0.014831350184977055, 0.0699847936630249, 0.11069706082344055, -0.05027611181139946, 0.09666968137025833, 0.05334116145968437, -0.09076055884361267, 0.011165192350745201, 0.07687756419181824, 0.07306980341672897, -0.21482212841510773, 0.02185959741473198, 0.009632393717765808, -0.02446516416966915, 0.048767708241939545, 0.08768858015537262, -0.08642172068357468, 0.06263744831085205, -0.02116345800459385, -0.02338218316435814, 0.027758540585637093, 0.05033230409026146, -0.026180898770689964, 0.07581744343042374, 0.03472740948200226, 0.03179331496357918, -0.026121938601136208, 0.06915981322526932, -0.1460651308298111, 0.008137760683894157, 0.05994565039873123, 0.0638478547334671, 0.07519423961639404, 0.06616920977830887, 0.03948454186320305, 0.24183312058448792, -0.057599008083343506, 0.05116041377186775, 0.05690186470746994, -0.07434912025928497, -0.1204221323132515, -0.05733355134725571, 0.03977401927113533, 0.051981233060359955, 0.040922749787569046, 0.002004158915951848, 0.09722121059894562, -0.01767977885901928, 0.10269976407289505, 0.13909724354743958, -0.2583554983139038, -0.017227962613105774, 0.03885020315647125, 0.07873210310935974, 0.07327034324407578, -0.031721990555524826, 0.049825381487607956, 0.018369214609265327, 0.0789099708199501, 0.09162585437297821, -0.012966342270374298, 0.11182309687137604, -0.03427456319332123, -0.09158243238925934, -0.03283106908202171, 0.14238522946834564, -0.03734631463885307, -0.07273189723491669, -0.0404244139790535, -0.0676618441939354, 0.012696655467152596, -0.02046099118888378, -0.026849811896681786, 0.02960529737174511, -0.010379510931670666, 0.005320896860212088, -0.0015102755278348923, -0.08255930244922638, -0.060487501323223114, -0.0845576673746109, 0.16608035564422607, 0.028060998767614365, 0.05765914171934128, -0.00982193648815155, 0.013023835606873035, -0.033441316336393356, -0.07055815309286118, -0.030454084277153015, -0.006003032438457012, -0.05218348652124405, -0.00006322836998151615, -0.11001438647508621, -0.13112594187259674, -0.0017350666457787156, 0.0015029072528705, -0.12528587877750397, 0.005514480639249086, 0.058461129665374756, 0.04370946064591408, 0.03473169729113579, 0.041665881872177124, -0.06296686083078384, -0.035521991550922394, 0.03917013108730316, -0.03052925318479538, 0.011006215587258339, 0.023890603333711624, -0.034440867602825165, 0.06397980451583862, 0.051552724093198776, 0.007744495291262865, -0.06413497775793076, -0.018644046038389206, -0.008076922968029976, -0.03684881329536438, 0.045440807938575745, -0.13013064861297607, -0.011950886808335781, -0.021614912897348404, -0.022685175761580467, 0.05959828197956085, 0.05681739002466202, -0.0956173688173294, -0.13186821341514587, 0.03675656393170357, -0.07937928289175034, -0.01924077235162258, -0.11923597007989883, -0.16194158792495728, 0.036248091608285904, -0.012072049081325531, -0.06039776653051376, -0.10524279624223709, -0.08723483979701996, -0.011824794113636017, 0.06496730446815491, -0.02473570592701435, -0.015892108902335167, 0.00832926481962204, 0.03891896829009056, -0.008847471326589584, 0.012606976553797722, 0.044493190944194794, -0.03029564581811428, 0.042020026594400406, -0.007781840395182371, 0.11291781812906265, -0.06849610060453415, 0.0254661962389946, -0.051520198583602905, 0.03641768917441368, -0.18996918201446533, 0.022619836032390594, 0.0008195413392968476, -0.04352688416838646, -0.0700124055147171, -0.0779254138469696, -0.1197190210223198, 0.0366256944835186, 0.07789668440818787, 0.05263533443212509, -0.03594564273953438, -0.0547022670507431, 0.13639914989471436, -0.07252505421638489, -0.06424874067306519, 0.12004567682743073, 0.0009150457917712629, 0.021340010687708855, 0.11789458990097046, 0.09685774147510529, -0.011669108644127846, -0.07252487540245056, -0.021250084042549133, -0.018004847690463066, 0.0084345992654562, -0.03868947923183441, 0.06895334273576736, -0.006166399922221899, 0.012538881041109562, 0.04293142259120941, 0.013681802898645401, -0.005441705696284771, -0.0541616827249527, 0.0072435359470546246, -0.022612914443016052, -0.03687627613544464, -0.08471216261386871, -0.0019448577659204602, 0.00018285959959030151, -0.0802716463804245, -0.012121873907744884, 0.11066190898418427, 0.06385055929422379, -0.08672450482845306, 0.03266063705086708, -0.03402756527066231, 0.01972925290465355, -0.17176571488380432, 0.017097027972340584, -0.1934753954410553, -0.02540956437587738, 0.0260922834277153, 0.03519617021083832, 0.08015784621238708, 0.13057942688465118, 0.02340632490813732, 0.09093829989433289, -0.10104870051145554, 0.0767258033156395, -0.02013753168284893, -0.031374741345644, -0.08831365406513214, -0.11927537620067596, -0.021041907370090485, -0.07165506482124329, -0.07532698661088943, -0.025978628545999527, 0.0009519081213511527, -0.1040373146533966, 0.021968906745314598, 0.008429571986198425, -0.08180440962314606, 0.060901425778865814, 0.02372286282479763, -0.02803855575621128, 0.004636105615645647, 0.044378891587257385, -0.000057635075791040435, -0.07322853803634644, 0.11211536079645157, -0.12978599965572357, 0.07336485385894775, 0.0587700791656971, 0.05024193972349167, -0.028635293245315552, 0.02083554118871689, -0.03079756163060665, -0.017088599503040314, -0.1142508015036583, -0.09799781441688538, 0.19165052473545074, -0.0028630183078348637, 0.12482423335313797, -0.15012376010417938, -0.043383270502090454, 0.027873529121279716, -0.016745198518037796, 0.006060605403035879, 0.050511520355939865, 0.09444164484739304, -0.17833328247070312, 0.023507196456193924, 0.009772163815796375, 0.03903365507721901, 0.12005937844514847, 0.035128120332956314, -0.13048098981380463, -0.029507825151085854, -0.013055847026407719, -0.0006891240482218564, 0.10524368286132812, -0.05544046685099602, -0.002607973525300622, 0.052026644349098206, 0.051108211278915405, 0.05904045328497887, -0.07168512046337128, 0.07387780398130417, 0.04005969315767288, -0.04808102920651436, -0.08392138034105301, -0.059693288058042526, -0.02104051411151886, 0.1507248431444168, 0.0176868736743927, 0.010308756493031979, -0.06270425021648407, 0.00926261581480503, -0.12525732815265656, 0.16668352484703064, -0.07477319985628128, -0.17828917503356934, -0.13313840329647064, 0.022627349942922592, -0.03885498270392418, 0.035734813660383224, -0.029368923977017403, -0.02063385583460331, -0.09120073169469833, -0.10294923186302185, 0.012136255390942097, -0.00009730811143526807, 0.024318793788552284, 0.01893654465675354, 0.03946426138281822, 0.06543977558612823, -0.1497955322265625, -0.03399718180298805, -0.06496802717447281, 0.012232253327965736, 0.025974562391638756, -0.07145505398511887, 0.08231870830059052, 0.15184229612350464, -0.08161191642284393, -0.006284262519329786, -0.0024780461098998785, 0.14294669032096863, -0.01027845498174429, 0.08692336827516556, 0.1400902271270752, 0.04051213338971138, -0.0033350721932947636, -0.0139293959364295, 0.04631861299276352, -0.07688821852207184, 0.06410123407840729, 0.0316736102104187, -0.09422212094068527, -0.20869873464107513, -0.09396646916866302, -0.06668093800544739, -0.05786175653338432, 0.044425200670957565, 0.030776606872677803, -0.10700797289609909, -0.0018584877252578735, -0.0655524805188179, 0.01925249956548214, -0.007194675039499998, 0.0582234151661396, -0.05371427908539772, -0.029801268130540848, 0.14268748462200165, -0.030558839440345764, -0.006088683847337961, 0.0861029401421547, -0.03630661219358444, 0.2189813107252121, -0.053341079503297806, 0.05582864210009575, 0.06854171305894852, -0.06975404173135757, 0.058860912919044495, 0.17715387046337128, -0.0913403183221817, 0.0024087983183562756, -0.05091790854930878, -0.05512043833732605, -0.06813450902700424, 0.027161961421370506, -0.0358300507068634, 0.022589679807424545, -0.06805279850959778, 0.015578560531139374, 0.024313990026712418, 0.27306097745895386, 0.09135624766349792, -0.16677020490169525, -0.07723553478717804, 0.0005070467595942318, -0.05657513067126274, -0.04675658047199249, 0.03229048475623131, 0.25904902815818787, -0.0022102813236415386, 0.040432803332805634, -0.0014883686089888215, 0.10000474750995636, -0.002532828599214554, 0.02493470534682274, -0.041690174490213394, 0.05175608769059181, -0.027990220114588737, 0.0625104233622551, -0.11959223449230194, 0.1468684822320938, 0.05147970840334892, 0.09634846448898315, -0.055392492562532425, -0.0010506205726414919, 0.036726679652929306, 0.053707681596279144, 0.042199406772851944, 0.06592162698507309, -0.1700114756822586, -0.07101406902074814, -0.11234010756015778, 0.05386070907115936, 0.08148440718650818, 0.03737431392073631, 0.14241057634353638, 0.009046888910233974, -0.012131870724260807, -0.008345754817128181, -0.05575382336974144, -0.09325359016656876, -0.09352068603038788, 0.0032231623772531748, -0.04555753991007805, -0.11643202602863312, -0.04910683259367943, -0.023658057674765587, 0.039175860583782196, 0.239582359790802, -0.04517200589179993, -0.07681500166654587, -0.11510397493839264, 0.1097952276468277, 0.04781597480177879, -0.04502210393548012, -0.02234012633562088, 0.027659567072987556, 0.12339358776807785, -0.017351046204566956, -0.12294497340917587, 0.04368738457560539, -0.07563475519418716, -0.10733857750892639, -0.04887120798230171, 0.1165316253900528, 0.004857705906033516, 0.11302129179239273, 0.04282164201140404, 0.040441595017910004, -0.004859707318246365, -0.07745257019996643, 0.033444322645664215, 0.06296445429325104, 0.08448321372270584, 0.06876217573881149, -0.2544267773628235, 0.04440424218773842, -0.002865708200260997, -0.016908513382077217, 0.0704406201839447, 0.13482069969177246, -0.03448592126369476, 0.07135191559791565, 0.23869876563549042, -0.12177781760692596, -0.21995556354522705, -0.008795633912086487, 0.004373318050056696, 0.07321462780237198, 0.039369724690914154, -0.14521893858909607, 0.11812121421098709, 0.09202193468809128, 0.04347614571452141, 0.030252350494265556, -0.20276521146297455, -0.1097523421049118, -0.023485977202653885, 0.08052937686443329, 0.23805172741413116, -0.06892695277929306, 0.007733769714832306, -0.08687324076890945, 0.03806999325752258, 0.01310500968247652, -0.04598580673336983, 0.15622767806053162, -0.06470426172018051, -0.0527455098927021, 0.03020847961306572, -0.054410241544246674, 0.078106589615345, -0.03837408870458603, 0.06804675608873367, 0.008981588296592236, 0.08526475727558136, 0.11817196011543274, -0.0029323091730475426, 0.20116986334323883, -0.060041703283786774, 0.035167545080184937, -0.05759149789810181, -0.08550821244716644, -0.0739060714840889, -0.03533024713397026, -0.013118213042616844, -0.03427616134285927, -0.0707414522767067, 0.04089277982711792, 0.055160850286483765, -0.0052501182071864605, -0.017453886568546295, -0.11342751234769821, 0.07543738186359406, 0.14290130138397217, 0.1325322836637497, -0.1665903776884079, -0.06248600408434868, 0.035760167986154556, -0.011357193812727928, 0.07074503600597382, -0.12285779416561127, 0.045807644724845886, 0.11257238686084747, 0.02485079877078533, 0.06003151834011078, 0.05768425390124321, -0.07467415928840637, -0.011414892040193081, 0.07950355857610703, -0.09346848726272583, -0.15780243277549744, -0.018214648589491844, -0.006569727323949337, -0.1450493186712265, -0.029898272827267647, 0.15196581184864044, -0.059963323175907135, -0.00623444514349103, -0.007654376793652773, 0.03842717409133911, -0.06637902557849884, 0.24731716513633728, 0.03995361551642418, 0.034163206815719604, -0.05319090932607651, 0.06007146090269089, 0.03081858716905117, -0.07747679203748703, 0.0324631929397583, 0.09397128224372864, -0.09039246290922165, -0.030661767348647118, 0.0506158284842968, 0.11130103468894958, 0.06573013216257095, -0.04077887907624245, -0.15698690712451935, -0.13890942931175232, 0.10638384521007538, 0.13509786128997803, 0.027765851467847824, 0.02337314561009407, -0.06783393025398254, -0.01972651481628418, -0.10843084752559662, 0.07665351033210754, -0.0165941771119833, 0.05605710670351982, 0.03809383511543274, 0.1456160992383957, -0.02249453216791153, -0.006569833494722843, -0.057837001979351044, -0.013380654156208038, -0.08960765600204468, 0.005462180823087692, -0.10083895921707153, -0.051129668951034546, -0.014573557302355766, -0.07642802596092224, -0.01584363728761673, 0.0458294041454792, -0.043499525636434555, 0.03156158700585365, -0.045577649027109146, -0.031208304688334465, -0.048092618584632874, 0.012103994376957417, -0.04642881453037262, -0.029806990176439285, -0.008008559234440327, -0.06272988021373749, 0.04399272799491882, -0.015813814476132393, -0.03695839270949364, -0.04785973206162453, -0.014944681897759438, -0.016390521079301834, 0.06577616184949875, 0.0836901068687439, -0.03460899740457535, -0.14825479686260223, 0.04870401322841644, 0.05147591978311539, 0.020855695009231567, 0.02649286389350891, 0.09580843150615692, -0.06729970127344131, 0.022352276369929314, -0.039631038904190063, -0.04707813262939453, -0.08631773293018341, -0.03234296664595604, 0.02261306904256344, 0.104240283370018, 0.11878068745136261, -0.06711115688085556, -0.00827014073729515, -0.21845844388008118, 0.02047768421471119, 0.02947084605693817, -0.04819831624627113, -0.07392558455467224, -0.004166546743363142, 0.05643976107239723, 0.04018831253051758, 0.14826267957687378, -0.0014619346475228667, -0.038236215710639954, 0.045380085706710815, 0.04962170869112015, 0.03893796354532242, -0.04438243806362152, 0.006591493729501963, -0.017242131754755974, -0.05626489967107773, -0.008401450701057911, 0.06661660969257355, 0.039099570363759995, 0.11014515161514282, 0.21923306584358215, 0.1034790500998497, 0.20721766352653503, 0.07917051017284393, -0.05527476966381073, 0.042932718992233276, -0.018072504550218582, 0.0036871950142085552, 0.05076208710670471, 0.0964534804224968, 0.04854203015565872, -0.01520540937781334, 0.18485668301582336, -0.17095820605754852, 0.12904301285743713, -0.027596691623330116, -0.054895441979169846, -0.09110874682664871, -0.06003830209374428, -0.042247120290994644, -0.015063599683344364, -0.028371309861540794, -0.16309396922588348, -0.001250561559572816, 0.037801168859004974, 0.042564984411001205, -0.016734588891267776, 0.06346610188484192, -0.20184798538684845, -0.02086479589343071, 0.019740479066967964, -0.0009383754804730415, 0.05238322541117668, 0.06403037905693054, -0.013254736550152302, 0.04153582081198692, 0.007607725448906422, 0.09720874577760696, 0.05071108043193817, 0.03972256928682327, -0.003838800359517336, -0.004605071619153023, -0.050400007516145706, -0.0027130600064992905, -0.08230458945035934, 0.06454978883266449, 0.23617105185985565, 0.016486262902617455, -0.08460436016321182, 0.02614653669297695, 0.10660914331674576, -0.05847310274839401, -0.09120649844408035, -0.14435432851314545, 0.19467788934707642, 0.09014090150594711, 0.006516754627227783, 0.0016480616759508848, -0.036588333547115326, -0.07939663529396057, 0.20972506701946259, 0.11078439652919769, -0.04149923846125603, -0.02832930162549019, -0.029666010290384293, -0.006472856272011995, 0.015293888747692108, 0.13567979633808136, 0.03816381096839905, 0.2551726996898651, -0.0061024087481200695, 0.03772706910967827, -0.059257905930280685, 0.025512930005788803, -0.08648017048835754, 0.04541819915175438, 0.04652182385325432, -0.0029429979622364044, -0.04316763952374458, 0.01811608485877514, 0.045811377465724945, -0.0712333396077156, -0.020681535825133324, -0.08300351351499557, -0.07863814383745193, -0.0018045254983007908, -0.06303607672452927, -0.029712462797760963, 0.0746898502111435, -0.012451655231416225, 0.07527042925357819, 0.10391604900360107, -0.00768169155344367, -0.14290277659893036, -0.11282923817634583, 0.09728410094976425, -0.043517179787158966, 0.10899100452661514, 0.035153333097696304, 0.04527326300740242, 0.05325532704591751, -0.026066675782203674, -0.0803687795996666, 0.08712252974510193, -0.05861065536737442, -0.05644959211349487, 0.06720977276563644, 0.14831826090812683, -0.01727835275232792, 0.055498573929071426, 0.012227458879351616, -0.022149743512272835, 0.0038302969187498093, -0.023815782740712166, -0.03739720955491066, -0.060628555715084076, 0.0779985561966896, -0.0646219328045845, 0.12727878987789154, 0.19729557633399963, 0.02380332536995411, 0.005853376816958189, -0.04369956627488136, 0.05556359887123108, 0.031134262681007385, 0.026165610179305077, -0.020926445722579956, -0.21467015147209167, -0.0017790294950827956, -0.07913914322853088, -0.021640995517373085, -0.3840865194797516, -0.11842560023069382, 0.0031477203592658043, -0.04885798320174217, -0.0390116386115551, 0.08526867628097534, 0.0431947223842144, 0.04369639232754707, -0.06427272409200668, -0.14255976676940918, 0.055368710309267044, 0.06428089737892151, -0.12361331284046173, -0.08901997655630112 ]
null
null
transformers
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-base-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed", "MIMIC-III"]}
null
bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III). ## Intended uses & limitations #### How to use Please see URL ## Training data We provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the PubMed ASCII code version. Pre-trained model: URL ## Training procedure * lowercasing the text * removing speical chars '\x00'-'\x7F' * tokenizing the text using the NLTK Treebank tokenizer Below is a code snippet for more details. ### BibTeX entry and citation info ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
[ "# BlueBert-Base, Uncased, PubMed and MIMIC-III", "## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ "TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us \n", "# BlueBert-Base, Uncased, PubMed and MIMIC-III", "## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ 53, 19, 26, 9, 8, 52, 56, 11, 109, 130 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us \n# BlueBert-Base, Uncased, PubMed and MIMIC-III## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).## Intended uses & limitations#### How to use\n\nPlease see URL## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.### BibTeX entry and citation info### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ -0.007672597654163837, 0.28489142656326294, -0.006376971956342459, 0.003260997124016285, 0.04170110821723938, -0.007052050903439522, 0.056028518825769424, 0.13582441210746765, -0.0020174614619463682, 0.16862145066261292, 0.008054436184465885, 0.1137438490986824, 0.0946488305926323, 0.11032941192388535, 0.050831377506256104, -0.22647273540496826, 0.04239482060074806, 0.009692962281405926, 0.1650891900062561, 0.0476178303360939, 0.031684305518865585, -0.05013490840792656, 0.03654412180185318, -0.018859706819057465, -0.01579943299293518, -0.011615617200732231, 0.0008849713485687971, 0.006328279618173838, 0.05639534443616867, -0.005043424665927887, 0.004624849651008844, 0.008717616088688374, 0.05609659105539322, -0.24439965188503265, 0.003029635176062584, 0.0451732762157917, 0.008345618844032288, 0.10258062183856964, -0.02706332318484783, -0.05262565612792969, 0.18875165283679962, -0.14901353418827057, 0.04492686316370964, 0.029453162103891373, -0.0899457260966301, -0.1997559815645218, -0.12287593632936478, 0.16093257069587708, 0.026753781363368034, 0.04097543656826019, 0.008801350370049477, 0.11644936352968216, -0.015168789774179459, 0.01630871184170246, 0.1224406361579895, -0.20657199621200562, 0.011298045516014099, 0.05663788318634033, 0.05765974149107933, 0.11665995419025421, -0.09694631397724152, 0.008675944060087204, -0.02789580635726452, -0.015474112704396248, 0.05366456136107445, -0.012981174513697624, 0.0716557726264, 0.004352751187980175, -0.08077636361122131, -0.04097404703497887, 0.06771118193864822, -0.04956880211830139, -0.0805642306804657, -0.116547591984272, -0.033856749534606934, 0.06423202902078629, 0.054512083530426025, -0.05736232176423073, 0.06775880604982376, -0.02150304801762104, 0.09804260730743408, -0.02576642483472824, -0.047346603125333786, -0.025508107617497444, -0.024549268186092377, 0.06979676336050034, -0.00008894260099623352, 0.03413057699799538, 0.03458625450730324, 0.07560135424137115, 0.02066364884376526, -0.07055214047431946, -0.09553135931491852, -0.03897245600819588, -0.05662068724632263, -0.008037982508540154, 0.04022543132305145, -0.036680445075035095, 0.04583723470568657, 0.1910894215106964, -0.06262079626321793, -0.01997269317507744, -0.07571297883987427, -0.02637750655412674, 0.10841802507638931, 0.02197413705289364, -0.08189939707517624, -0.059373144060373306, -0.0372837670147419, 0.02466288022696972, 0.10017605870962143, -0.015456592664122581, 0.0010551137384027243, 0.006921823136508465, -0.03159477934241295, 0.08464263379573822, 0.004042144399136305, -0.026636891067028046, -0.06138654798269272, -0.016642624512314796, 0.23667237162590027, -0.08771218359470367, -0.0063697160221636295, -0.0028952565044164658, 0.030319510027766228, 0.04740477353334427, 0.07547244429588318, -0.021524600684642792, -0.048549190163612366, 0.1230035200715065, -0.08384434878826141, -0.006267966236919165, -0.04318397864699364, -0.029645511880517006, 0.06612046808004379, -0.0719883143901825, -0.02573094144463539, -0.06167168542742729, -0.005544808227568865, -0.04971599951386452, -0.01125978771597147, -0.037411272525787354, 0.0796806588768959, 0.01315371971577406, 0.04279567301273346, -0.008906284347176552, -0.00598976481705904, -0.03726539760828018, -0.036784827709198, 0.028155013918876648, -0.12073840945959091, 0.06417969614267349, -0.06514738500118256, -0.029596950858831406, -0.09556498378515244, 0.03460565581917763, -0.09381811320781708, -0.020304687321186066, -0.06458385288715363, -0.01909458637237549, -0.1046249195933342, -0.0016927275573834777, -0.07488804310560226, -0.04362994432449341, 0.019619211554527283, 0.09474140405654907, -0.12711161375045776, -0.029009489342570305, 0.21165715157985687, -0.09960469603538513, -0.04185165837407112, 0.0721702128648758, -0.022511502727866173, 0.011775895021855831, 0.08330007642507553, 0.20063737034797668, 0.08251765370368958, -0.14649340510368347, -0.1333903968334198, -0.08927217125892639, -0.05291609466075897, 0.05685709789395332, 0.042529381811618805, -0.08033651858568192, 0.02157830074429512, 0.01971893198788166, -0.08404400199651718, -0.08551269769668579, -0.011670855805277824, 0.007318724878132343, 0.008354080840945244, -0.0742703229188919, -0.010189009830355644, 0.013228926807641983, -0.05370281636714935, 0.0024611749686300755, -0.03187454119324684, 0.05716312676668167, 0.09958011656999588, -0.012997070327401161, 0.01894993521273136, -0.06740587949752808, -0.041283730417490005, 0.0004269183846190572, -0.011585269123315811, -0.15204860270023346, 0.06757160276174545, 0.05727725103497505, -0.1305433064699173, 0.055554334074258804, -0.06673290580511093, -0.01912674307823181, 0.06966172158718109, -0.042501240968704224, 0.014799542725086212, 0.024214891716837883, 0.005501607432961464, -0.0601503923535347, -0.10485472530126572, -0.03600040450692177, -0.024797286838293076, 0.06168297678232193, -0.11879552900791168, 0.022404732182621956, -0.0034234817139804363, 0.13456588983535767, 0.05161619558930397, -0.11979936063289642, 0.08338714390993118, -0.004058727994561195, 0.025595737621188164, -0.0038366199005395174, -0.011547228321433067, -0.011225159280002117, 0.008980310522019863, 0.02143818326294422, -0.15376946330070496, -0.16622483730316162, -0.012894177809357643, 0.1483854502439499, 0.02579273097217083, -0.029438262805342674, -0.04435308277606964, 0.0014329705154523253, -0.11003394424915314, -0.10292646288871765, 0.09306950122117996, 0.007250893395394087, 0.028637930750846863, -0.025352919474244118, -0.06671962887048721, -0.03133898973464966, -0.021695943549275398, -0.030845336616039276, 0.014448452740907669, 0.018225068226456642, -0.15689687430858612, 0.020311269909143448, 0.0051088337786495686, 0.12088733166456223, 0.19828245043754578, 0.03706464543938637, -0.12212219834327698, -0.07944227010011673, -0.059334591031074524, 0.05150968208909035, 0.11646745353937149, -0.026247670873999596, 0.04676618427038193, 0.054944977164268494, -0.0016438509337604046, 0.013401038013398647, -0.005007839761674404, 0.02563881129026413, -0.002400154946371913, -0.018744267523288727, -0.049842555075883865, -0.018306313082575798, -0.022782891988754272, 0.12725479900836945, 0.042872101068496704, 0.1656804084777832, -0.04719126224517822, -0.03570137545466423, -0.10028792917728424, 0.11537149548530579, -0.11211913824081421, -0.21742849051952362, -0.1539539396762848, 0.02024836465716362, 0.037443798035383224, 0.020978165790438652, -0.008458171039819717, -0.05695578083395958, -0.061506982892751694, -0.12424984574317932, -0.010254578664898872, 0.059107162058353424, -0.08144477009773254, -0.029150264337658882, 0.036592841148376465, 0.025428904220461845, -0.11355935037136078, 0.010348550044000149, -0.05523210018873215, 0.0022221573162823915, 0.006745389197021723, -0.025009194388985634, 0.08265526592731476, 0.11411280930042267, 0.047207754105329514, -0.03900700435042381, 0.03485465049743652, 0.07930777966976166, -0.05869175121188164, 0.12295252829790115, 0.07427946478128433, -0.004954935517162085, 0.04222681745886803, 0.08999104052782059, 0.03775041177868843, -0.05146482586860657, 0.046009909361600876, 0.023091698065400124, -0.012133692391216755, -0.2746995687484741, -0.0540870800614357, -0.03325439989566803, -0.041524969041347504, -0.00003985929652117193, 0.04186741262674332, 0.09263722598552704, 0.0038477499037981033, -0.07452118396759033, 0.019547302275896072, -0.00764929223805666, 0.07199609279632568, 0.037102289497852325, 0.02894783765077591, 0.07681997120380402, -0.06699863076210022, 0.048062052577733994, 0.1111246719956398, -0.0024704679381102324, 0.15640594065189362, 0.009185904636979103, 0.21351593732833862, 0.10867957770824432, 0.06318312138319016, 0.06042878329753876, 0.05850483104586601, 0.048131827265024185, 0.049048759043216705, 0.00526147335767746, -0.08683522790670395, -0.07272768020629883, 0.02500038780272007, -0.058024078607559204, -0.0030655711889266968, 0.024830641224980354, -0.09214557707309723, 0.03967292979359627, 0.13280488550662994, 0.07388453185558319, -0.06981638818979263, -0.08657332509756088, 0.05629459023475647, -0.06724882125854492, -0.09485939145088196, -0.029883576557040215, 0.1497209370136261, -0.0945156067609787, 0.04188232123851776, -0.0007281510625034571, 0.06079382821917534, -0.13925500214099884, 0.01684199832379818, -0.04546351358294487, -0.03844716027379036, -0.0592491440474987, 0.056429240852594376, -0.08639531582593918, 0.06906983256340027, 0.028303319588303566, 0.0765964537858963, -0.06950672715902328, 0.014032242819666862, 0.0006195663590915501, 0.09459052979946136, 0.11723463982343674, 0.03951139748096466, -0.014400538057088852, -0.016481894999742508, -0.11100757122039795, -0.018521524965763092, 0.11522077769041061, -0.15612836182117462, 0.07742111384868622, 0.013728349469602108, -0.012587465345859528, -0.09644239395856857, -0.09739670902490616, -0.18178462982177734, -0.1412612348794937, 0.11229749023914337, -0.06522243469953537, 0.1222328469157219, -0.028175974264740944, -0.027564559131860733, 0.09198758006095886, 0.09102347493171692, -0.23125307261943817, -0.053551580756902695, -0.1558283269405365, 0.016265051439404488, 0.0920948013663292, -0.05281699076294899, 0.0014532292261719704, 0.004649054724723101, 0.1192033663392067, -0.00727112265303731, -0.1142301857471466, -0.042248085141181946, -0.04690481349825859, -0.19239439070224762, -0.07175500690937042, 0.15708312392234802, 0.12489563226699829, 0.06207086890935898, 0.005784391425549984, 0.10388118028640747, 0.036383256316185, -0.07901492714881897, 0.07769197970628738, 0.21877844631671906, 0.15186117589473724, 0.05508774518966675, -0.09934623539447784, -0.09406648576259613, -0.09313042461872101, -0.03873863071203232, -0.006234432570636272, 0.13441269099712372, -0.05374174192547798, 0.15407389402389526, 0.16970805823802948, -0.15109948813915253, -0.16586890816688538, -0.03542647510766983, -0.01888485811650753, -0.013500337488949299, 0.10743580758571625, -0.2519918382167816, 0.09473995864391327, 0.13307777047157288, -0.003264998085796833, -0.018175555393099785, -0.08931740373373032, -0.07653441280126572, -0.054474640637636185, 0.07487720251083374, -0.033071257174015045, -0.10141561180353165, -0.11004684865474701, 0.03226660564541817, -0.16182221472263336, 0.15848924219608307, -0.0777125358581543, 0.031188840046525, -0.08266515284776688, -0.03347949683666229, 0.05790824070572853, -0.03333306685090065, 0.09657550603151321, 0.018131207674741745, 0.06120575591921806, -0.07002156227827072, -0.049721941351890564, 0.041127465665340424, -0.04430774971842766, 0.1164977103471756, 0.0520431324839592, 0.02460348792374134, -0.09161288291215897, -0.030095793306827545, -0.09498877078294754, -0.0558997206389904, -0.061068929731845856, -0.09166828542947769, -0.12320312112569809, 0.10352121293544769, 0.05627685785293579, -0.000810901983641088, 0.09557541459798813, -0.11319228261709213, 0.05232219770550728, 0.10023441910743713, 0.18818753957748413, 0.01480093877762556, 0.06537862867116928, -0.00019996984337922186, -0.07343018054962158, 0.02489413507282734, -0.15906572341918945, 0.03301693871617317, 0.10736016929149628, 0.06301625818014145, 0.09602268040180206, -0.002393794944509864, -0.17277118563652039, -0.02879193052649498, 0.0751740112900734, -0.1237097680568695, -0.18038246035575867, 0.018297135829925537, 0.005402880255132914, -0.11808972805738449, 0.020210329443216324, 0.0904625803232193, -0.021881965920329094, -0.036450717598199844, -0.0006567696109414101, 0.07362498342990875, -0.009819979779422283, 0.0753943994641304, 0.05126035213470459, 0.011863254941999912, -0.06112390756607056, 0.06419005990028381, 0.1445275843143463, 0.0043587093241512775, -0.0037828125059604645, 0.06855329871177673, -0.06952079385519028, -0.04888978227972984, -0.07344858348369598, 0.04400406405329704, 0.06871302425861359, -0.07098542153835297, 0.02134678326547146, -0.03109569288790226, 0.008966058492660522, 0.18474425375461578, -0.045035626739263535, 0.09702830761671066, -0.009830251336097717, 0.02902742475271225, -0.09812702238559723, 0.07591691613197327, -0.08755198866128922, 0.06516138464212418, 0.057476289570331573, 0.028350386768579483, -0.004485853016376495, -0.029605945572257042, -0.025555552914738655, -0.01804892159998417, -0.0688687413930893, -0.05468963831663132, -0.1221328005194664, -0.01496676355600357, -0.07195236533880234, -0.08208072185516357, -0.04768115282058716, -0.022040430456399918, 0.029963912442326546, -0.00000832407567941118, 0.01955513097345829, -0.02942601777613163, 0.007778164930641651, 0.07583095133304596, -0.1508917361497879, 0.0297428946942091, 0.07270117849111557, -0.0731726661324501, 0.11320051550865173, -0.041016191244125366, 0.0005434202612377703, 0.022185659036040306, -0.08801073580980301, 0.028917985036969185, -0.01166113093495369, 0.08240088820457458, -0.004059983417391777, -0.12614445388317108, -0.05828571692109108, -0.013808498159050941, -0.060652103275060654, 0.04066718742251396, 0.06855908781290054, -0.04653715342283249, 0.06838880479335785, 0.027050122618675232, 0.0010983238462358713, -0.08106013387441635, 0.011681891977787018, 0.048953596502542496, -0.01842726394534111, 0.07841720432043076, -0.019567975774407387, -0.002340521663427353, -0.1377251297235489, -0.02938166819512844, 0.02849600836634636, -0.008048759773373604, -0.025159651413559914, -0.010170920751988888, 0.03505256399512291, 0.07192801684141159, 0.14245566725730896, -0.08981052041053772, -0.06289850920438766, 0.04473133385181427, 0.03778911754488945, -0.011689643375575542, -0.02961929328739643, 0.036805108189582825, 0.029716666787862778, -0.05726531893014908, -0.0010826662182807922, -0.04473939910531044, -0.0685148537158966, -0.01144483219832182, 0.1556077003479004, 0.11162428557872772, 0.15730030834674835, -0.06768147647380829, -0.05132339149713516, -0.002171772764995694, -0.1600559502840042, -0.06945602595806122, -0.005748175084590912, -0.03418194502592087, 0.004090669099241495, -0.0014573335647583008, 0.14036020636558533, -0.1654360443353653, 0.09069783985614777, 0.017596235498785973, -0.07018358260393143, -0.07417075335979462, -0.19221477210521698, 0.011500732973217964, 0.013772934675216675, -0.03508714959025383, -0.10979392379522324, 0.10748369246721268, 0.12876099348068237, 0.0003582900098990649, 0.013301325961947441, 0.07388409227132797, -0.07420632988214493, 0.019379211589694023, 0.038268379867076874, 0.004521660041064024, -0.0180826298892498, -0.06688473373651505, 0.10141598433256149, 0.012512018904089928, 0.01136852242052555, 0.10367652773857117, 0.09991702437400818, 0.07128202170133591, -0.04517984017729759, -0.013766402378678322, -0.11036288738250732, 0.0625167191028595, -0.036494769155979156, -0.04962988570332527, 0.19565318524837494, 0.12314503639936447, -0.0003075340355280787, 0.02797412872314453, 0.20553822815418243, -0.013939072377979755, -0.002271217992529273, -0.11404544115066528, 0.07589488476514816, 0.025703828781843185, 0.0022840574383735657, 0.006452797446399927, -0.1017652302980423, 0.036300256848335266, 0.14526575803756714, 0.0006781985866837204, 0.06894414126873016, 0.02043280377984047, 0.002427761908620596, 0.028130315244197845, 0.06159484013915062, 0.11201316863298416, 0.022899825125932693, 0.23100297152996063, -0.0105661666020751, 0.046676572412252426, -0.03576965257525444, -0.04280508682131767, -0.07943946123123169, 0.020871734246611595, -0.05557077005505562, -0.044929735362529755, -0.04903688654303551, 0.05962243303656578, -0.08685039728879929, -0.20621514320373535, 0.0784551277756691, -0.06272900849580765, -0.069573312997818, -0.03928481042385101, -0.007055043242871761, -0.08796579390764236, -0.007286147680133581, 0.0597989484667778, 0.009662795811891556, 0.2880169749259949, 0.010373464785516262, -0.057777103036642075, -0.041030850261449814, 0.035198286175727844, -0.10055617243051529, 0.20349960029125214, 0.036105453968048096, 0.00504318717867136, 0.04188361391425133, -0.021037522703409195, -0.15279024839401245, 0.1327103227376938, -0.03775670751929283, -0.01772109977900982, 0.008064967580139637, 0.1657577008008957, 0.06514346599578857, 0.10482396930456161, 0.03969550505280495, -0.03288998827338219, 0.01808200031518936, 0.09534458816051483, -0.023474207147955894, -0.07744248956441879, 0.09404170513153076, -0.0633256733417511, 0.11550069600343704, 0.06604772061109543, -0.0264765415340662, 0.03405130282044411, -0.0432092659175396, 0.02800295501947403, 0.03306903690099716, 0.10271750390529633, 0.014070089906454086, -0.12331303209066391, 0.05337245762348175, -0.07149547338485718, 0.05585994943976402, -0.201334610581398, -0.037075795233249664, 0.014810649678111076, -0.02754898928105831, -0.05670749396085739, 0.06682228296995163, 0.03612780570983887, 0.026545489206910133, -0.05366295203566551, -0.1312427669763565, 0.038695164024829865, 0.10614920407533646, -0.07739134877920151, -0.02971014752984047 ]
null
null
transformers
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed", "MIMIC-III"]}
null
bionlp/bluebert_pubmed_mimic_uncased_L-24_H-1024_A-16
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III). ## Intended uses & limitations #### How to use Please see URL ## Training data We provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the PubMed ASCII code version. Pre-trained model: URL ## Training procedure * lowercasing the text * removing speical chars '\x00'-'\x7F' * tokenizing the text using the NLTK Treebank tokenizer Below is a code snippet for more details. ### BibTeX entry and citation info ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
[ "# BlueBert-Base, Uncased, PubMed and MIMIC-III", "## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ "TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us \n", "# BlueBert-Base, Uncased, PubMed and MIMIC-III", "## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ 53, 19, 26, 9, 8, 52, 56, 11, 109, 130 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #dataset-MIMIC-III #license-cc0-1.0 #endpoints_compatible #region-us \n# BlueBert-Base, Uncased, PubMed and MIMIC-III## Model description\n\nA BERT model pre-trained on PubMed abstracts and clinical notes (MIMIC-III).## Intended uses & limitations#### How to use\n\nPlease see URL## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.### BibTeX entry and citation info### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ -0.007672597654163837, 0.28489142656326294, -0.006376971956342459, 0.003260997124016285, 0.04170110821723938, -0.007052050903439522, 0.056028518825769424, 0.13582441210746765, -0.0020174614619463682, 0.16862145066261292, 0.008054436184465885, 0.1137438490986824, 0.0946488305926323, 0.11032941192388535, 0.050831377506256104, -0.22647273540496826, 0.04239482060074806, 0.009692962281405926, 0.1650891900062561, 0.0476178303360939, 0.031684305518865585, -0.05013490840792656, 0.03654412180185318, -0.018859706819057465, -0.01579943299293518, -0.011615617200732231, 0.0008849713485687971, 0.006328279618173838, 0.05639534443616867, -0.005043424665927887, 0.004624849651008844, 0.008717616088688374, 0.05609659105539322, -0.24439965188503265, 0.003029635176062584, 0.0451732762157917, 0.008345618844032288, 0.10258062183856964, -0.02706332318484783, -0.05262565612792969, 0.18875165283679962, -0.14901353418827057, 0.04492686316370964, 0.029453162103891373, -0.0899457260966301, -0.1997559815645218, -0.12287593632936478, 0.16093257069587708, 0.026753781363368034, 0.04097543656826019, 0.008801350370049477, 0.11644936352968216, -0.015168789774179459, 0.01630871184170246, 0.1224406361579895, -0.20657199621200562, 0.011298045516014099, 0.05663788318634033, 0.05765974149107933, 0.11665995419025421, -0.09694631397724152, 0.008675944060087204, -0.02789580635726452, -0.015474112704396248, 0.05366456136107445, -0.012981174513697624, 0.0716557726264, 0.004352751187980175, -0.08077636361122131, -0.04097404703497887, 0.06771118193864822, -0.04956880211830139, -0.0805642306804657, -0.116547591984272, -0.033856749534606934, 0.06423202902078629, 0.054512083530426025, -0.05736232176423073, 0.06775880604982376, -0.02150304801762104, 0.09804260730743408, -0.02576642483472824, -0.047346603125333786, -0.025508107617497444, -0.024549268186092377, 0.06979676336050034, -0.00008894260099623352, 0.03413057699799538, 0.03458625450730324, 0.07560135424137115, 0.02066364884376526, -0.07055214047431946, -0.09553135931491852, -0.03897245600819588, -0.05662068724632263, -0.008037982508540154, 0.04022543132305145, -0.036680445075035095, 0.04583723470568657, 0.1910894215106964, -0.06262079626321793, -0.01997269317507744, -0.07571297883987427, -0.02637750655412674, 0.10841802507638931, 0.02197413705289364, -0.08189939707517624, -0.059373144060373306, -0.0372837670147419, 0.02466288022696972, 0.10017605870962143, -0.015456592664122581, 0.0010551137384027243, 0.006921823136508465, -0.03159477934241295, 0.08464263379573822, 0.004042144399136305, -0.026636891067028046, -0.06138654798269272, -0.016642624512314796, 0.23667237162590027, -0.08771218359470367, -0.0063697160221636295, -0.0028952565044164658, 0.030319510027766228, 0.04740477353334427, 0.07547244429588318, -0.021524600684642792, -0.048549190163612366, 0.1230035200715065, -0.08384434878826141, -0.006267966236919165, -0.04318397864699364, -0.029645511880517006, 0.06612046808004379, -0.0719883143901825, -0.02573094144463539, -0.06167168542742729, -0.005544808227568865, -0.04971599951386452, -0.01125978771597147, -0.037411272525787354, 0.0796806588768959, 0.01315371971577406, 0.04279567301273346, -0.008906284347176552, -0.00598976481705904, -0.03726539760828018, -0.036784827709198, 0.028155013918876648, -0.12073840945959091, 0.06417969614267349, -0.06514738500118256, -0.029596950858831406, -0.09556498378515244, 0.03460565581917763, -0.09381811320781708, -0.020304687321186066, -0.06458385288715363, -0.01909458637237549, -0.1046249195933342, -0.0016927275573834777, -0.07488804310560226, -0.04362994432449341, 0.019619211554527283, 0.09474140405654907, -0.12711161375045776, -0.029009489342570305, 0.21165715157985687, -0.09960469603538513, -0.04185165837407112, 0.0721702128648758, -0.022511502727866173, 0.011775895021855831, 0.08330007642507553, 0.20063737034797668, 0.08251765370368958, -0.14649340510368347, -0.1333903968334198, -0.08927217125892639, -0.05291609466075897, 0.05685709789395332, 0.042529381811618805, -0.08033651858568192, 0.02157830074429512, 0.01971893198788166, -0.08404400199651718, -0.08551269769668579, -0.011670855805277824, 0.007318724878132343, 0.008354080840945244, -0.0742703229188919, -0.010189009830355644, 0.013228926807641983, -0.05370281636714935, 0.0024611749686300755, -0.03187454119324684, 0.05716312676668167, 0.09958011656999588, -0.012997070327401161, 0.01894993521273136, -0.06740587949752808, -0.041283730417490005, 0.0004269183846190572, -0.011585269123315811, -0.15204860270023346, 0.06757160276174545, 0.05727725103497505, -0.1305433064699173, 0.055554334074258804, -0.06673290580511093, -0.01912674307823181, 0.06966172158718109, -0.042501240968704224, 0.014799542725086212, 0.024214891716837883, 0.005501607432961464, -0.0601503923535347, -0.10485472530126572, -0.03600040450692177, -0.024797286838293076, 0.06168297678232193, -0.11879552900791168, 0.022404732182621956, -0.0034234817139804363, 0.13456588983535767, 0.05161619558930397, -0.11979936063289642, 0.08338714390993118, -0.004058727994561195, 0.025595737621188164, -0.0038366199005395174, -0.011547228321433067, -0.011225159280002117, 0.008980310522019863, 0.02143818326294422, -0.15376946330070496, -0.16622483730316162, -0.012894177809357643, 0.1483854502439499, 0.02579273097217083, -0.029438262805342674, -0.04435308277606964, 0.0014329705154523253, -0.11003394424915314, -0.10292646288871765, 0.09306950122117996, 0.007250893395394087, 0.028637930750846863, -0.025352919474244118, -0.06671962887048721, -0.03133898973464966, -0.021695943549275398, -0.030845336616039276, 0.014448452740907669, 0.018225068226456642, -0.15689687430858612, 0.020311269909143448, 0.0051088337786495686, 0.12088733166456223, 0.19828245043754578, 0.03706464543938637, -0.12212219834327698, -0.07944227010011673, -0.059334591031074524, 0.05150968208909035, 0.11646745353937149, -0.026247670873999596, 0.04676618427038193, 0.054944977164268494, -0.0016438509337604046, 0.013401038013398647, -0.005007839761674404, 0.02563881129026413, -0.002400154946371913, -0.018744267523288727, -0.049842555075883865, -0.018306313082575798, -0.022782891988754272, 0.12725479900836945, 0.042872101068496704, 0.1656804084777832, -0.04719126224517822, -0.03570137545466423, -0.10028792917728424, 0.11537149548530579, -0.11211913824081421, -0.21742849051952362, -0.1539539396762848, 0.02024836465716362, 0.037443798035383224, 0.020978165790438652, -0.008458171039819717, -0.05695578083395958, -0.061506982892751694, -0.12424984574317932, -0.010254578664898872, 0.059107162058353424, -0.08144477009773254, -0.029150264337658882, 0.036592841148376465, 0.025428904220461845, -0.11355935037136078, 0.010348550044000149, -0.05523210018873215, 0.0022221573162823915, 0.006745389197021723, -0.025009194388985634, 0.08265526592731476, 0.11411280930042267, 0.047207754105329514, -0.03900700435042381, 0.03485465049743652, 0.07930777966976166, -0.05869175121188164, 0.12295252829790115, 0.07427946478128433, -0.004954935517162085, 0.04222681745886803, 0.08999104052782059, 0.03775041177868843, -0.05146482586860657, 0.046009909361600876, 0.023091698065400124, -0.012133692391216755, -0.2746995687484741, -0.0540870800614357, -0.03325439989566803, -0.041524969041347504, -0.00003985929652117193, 0.04186741262674332, 0.09263722598552704, 0.0038477499037981033, -0.07452118396759033, 0.019547302275896072, -0.00764929223805666, 0.07199609279632568, 0.037102289497852325, 0.02894783765077591, 0.07681997120380402, -0.06699863076210022, 0.048062052577733994, 0.1111246719956398, -0.0024704679381102324, 0.15640594065189362, 0.009185904636979103, 0.21351593732833862, 0.10867957770824432, 0.06318312138319016, 0.06042878329753876, 0.05850483104586601, 0.048131827265024185, 0.049048759043216705, 0.00526147335767746, -0.08683522790670395, -0.07272768020629883, 0.02500038780272007, -0.058024078607559204, -0.0030655711889266968, 0.024830641224980354, -0.09214557707309723, 0.03967292979359627, 0.13280488550662994, 0.07388453185558319, -0.06981638818979263, -0.08657332509756088, 0.05629459023475647, -0.06724882125854492, -0.09485939145088196, -0.029883576557040215, 0.1497209370136261, -0.0945156067609787, 0.04188232123851776, -0.0007281510625034571, 0.06079382821917534, -0.13925500214099884, 0.01684199832379818, -0.04546351358294487, -0.03844716027379036, -0.0592491440474987, 0.056429240852594376, -0.08639531582593918, 0.06906983256340027, 0.028303319588303566, 0.0765964537858963, -0.06950672715902328, 0.014032242819666862, 0.0006195663590915501, 0.09459052979946136, 0.11723463982343674, 0.03951139748096466, -0.014400538057088852, -0.016481894999742508, -0.11100757122039795, -0.018521524965763092, 0.11522077769041061, -0.15612836182117462, 0.07742111384868622, 0.013728349469602108, -0.012587465345859528, -0.09644239395856857, -0.09739670902490616, -0.18178462982177734, -0.1412612348794937, 0.11229749023914337, -0.06522243469953537, 0.1222328469157219, -0.028175974264740944, -0.027564559131860733, 0.09198758006095886, 0.09102347493171692, -0.23125307261943817, -0.053551580756902695, -0.1558283269405365, 0.016265051439404488, 0.0920948013663292, -0.05281699076294899, 0.0014532292261719704, 0.004649054724723101, 0.1192033663392067, -0.00727112265303731, -0.1142301857471466, -0.042248085141181946, -0.04690481349825859, -0.19239439070224762, -0.07175500690937042, 0.15708312392234802, 0.12489563226699829, 0.06207086890935898, 0.005784391425549984, 0.10388118028640747, 0.036383256316185, -0.07901492714881897, 0.07769197970628738, 0.21877844631671906, 0.15186117589473724, 0.05508774518966675, -0.09934623539447784, -0.09406648576259613, -0.09313042461872101, -0.03873863071203232, -0.006234432570636272, 0.13441269099712372, -0.05374174192547798, 0.15407389402389526, 0.16970805823802948, -0.15109948813915253, -0.16586890816688538, -0.03542647510766983, -0.01888485811650753, -0.013500337488949299, 0.10743580758571625, -0.2519918382167816, 0.09473995864391327, 0.13307777047157288, -0.003264998085796833, -0.018175555393099785, -0.08931740373373032, -0.07653441280126572, -0.054474640637636185, 0.07487720251083374, -0.033071257174015045, -0.10141561180353165, -0.11004684865474701, 0.03226660564541817, -0.16182221472263336, 0.15848924219608307, -0.0777125358581543, 0.031188840046525, -0.08266515284776688, -0.03347949683666229, 0.05790824070572853, -0.03333306685090065, 0.09657550603151321, 0.018131207674741745, 0.06120575591921806, -0.07002156227827072, -0.049721941351890564, 0.041127465665340424, -0.04430774971842766, 0.1164977103471756, 0.0520431324839592, 0.02460348792374134, -0.09161288291215897, -0.030095793306827545, -0.09498877078294754, -0.0558997206389904, -0.061068929731845856, -0.09166828542947769, -0.12320312112569809, 0.10352121293544769, 0.05627685785293579, -0.000810901983641088, 0.09557541459798813, -0.11319228261709213, 0.05232219770550728, 0.10023441910743713, 0.18818753957748413, 0.01480093877762556, 0.06537862867116928, -0.00019996984337922186, -0.07343018054962158, 0.02489413507282734, -0.15906572341918945, 0.03301693871617317, 0.10736016929149628, 0.06301625818014145, 0.09602268040180206, -0.002393794944509864, -0.17277118563652039, -0.02879193052649498, 0.0751740112900734, -0.1237097680568695, -0.18038246035575867, 0.018297135829925537, 0.005402880255132914, -0.11808972805738449, 0.020210329443216324, 0.0904625803232193, -0.021881965920329094, -0.036450717598199844, -0.0006567696109414101, 0.07362498342990875, -0.009819979779422283, 0.0753943994641304, 0.05126035213470459, 0.011863254941999912, -0.06112390756607056, 0.06419005990028381, 0.1445275843143463, 0.0043587093241512775, -0.0037828125059604645, 0.06855329871177673, -0.06952079385519028, -0.04888978227972984, -0.07344858348369598, 0.04400406405329704, 0.06871302425861359, -0.07098542153835297, 0.02134678326547146, -0.03109569288790226, 0.008966058492660522, 0.18474425375461578, -0.045035626739263535, 0.09702830761671066, -0.009830251336097717, 0.02902742475271225, -0.09812702238559723, 0.07591691613197327, -0.08755198866128922, 0.06516138464212418, 0.057476289570331573, 0.028350386768579483, -0.004485853016376495, -0.029605945572257042, -0.025555552914738655, -0.01804892159998417, -0.0688687413930893, -0.05468963831663132, -0.1221328005194664, -0.01496676355600357, -0.07195236533880234, -0.08208072185516357, -0.04768115282058716, -0.022040430456399918, 0.029963912442326546, -0.00000832407567941118, 0.01955513097345829, -0.02942601777613163, 0.007778164930641651, 0.07583095133304596, -0.1508917361497879, 0.0297428946942091, 0.07270117849111557, -0.0731726661324501, 0.11320051550865173, -0.041016191244125366, 0.0005434202612377703, 0.022185659036040306, -0.08801073580980301, 0.028917985036969185, -0.01166113093495369, 0.08240088820457458, -0.004059983417391777, -0.12614445388317108, -0.05828571692109108, -0.013808498159050941, -0.060652103275060654, 0.04066718742251396, 0.06855908781290054, -0.04653715342283249, 0.06838880479335785, 0.027050122618675232, 0.0010983238462358713, -0.08106013387441635, 0.011681891977787018, 0.048953596502542496, -0.01842726394534111, 0.07841720432043076, -0.019567975774407387, -0.002340521663427353, -0.1377251297235489, -0.02938166819512844, 0.02849600836634636, -0.008048759773373604, -0.025159651413559914, -0.010170920751988888, 0.03505256399512291, 0.07192801684141159, 0.14245566725730896, -0.08981052041053772, -0.06289850920438766, 0.04473133385181427, 0.03778911754488945, -0.011689643375575542, -0.02961929328739643, 0.036805108189582825, 0.029716666787862778, -0.05726531893014908, -0.0010826662182807922, -0.04473939910531044, -0.0685148537158966, -0.01144483219832182, 0.1556077003479004, 0.11162428557872772, 0.15730030834674835, -0.06768147647380829, -0.05132339149713516, -0.002171772764995694, -0.1600559502840042, -0.06945602595806122, -0.005748175084590912, -0.03418194502592087, 0.004090669099241495, -0.0014573335647583008, 0.14036020636558533, -0.1654360443353653, 0.09069783985614777, 0.017596235498785973, -0.07018358260393143, -0.07417075335979462, -0.19221477210521698, 0.011500732973217964, 0.013772934675216675, -0.03508714959025383, -0.10979392379522324, 0.10748369246721268, 0.12876099348068237, 0.0003582900098990649, 0.013301325961947441, 0.07388409227132797, -0.07420632988214493, 0.019379211589694023, 0.038268379867076874, 0.004521660041064024, -0.0180826298892498, -0.06688473373651505, 0.10141598433256149, 0.012512018904089928, 0.01136852242052555, 0.10367652773857117, 0.09991702437400818, 0.07128202170133591, -0.04517984017729759, -0.013766402378678322, -0.11036288738250732, 0.0625167191028595, -0.036494769155979156, -0.04962988570332527, 0.19565318524837494, 0.12314503639936447, -0.0003075340355280787, 0.02797412872314453, 0.20553822815418243, -0.013939072377979755, -0.002271217992529273, -0.11404544115066528, 0.07589488476514816, 0.025703828781843185, 0.0022840574383735657, 0.006452797446399927, -0.1017652302980423, 0.036300256848335266, 0.14526575803756714, 0.0006781985866837204, 0.06894414126873016, 0.02043280377984047, 0.002427761908620596, 0.028130315244197845, 0.06159484013915062, 0.11201316863298416, 0.022899825125932693, 0.23100297152996063, -0.0105661666020751, 0.046676572412252426, -0.03576965257525444, -0.04280508682131767, -0.07943946123123169, 0.020871734246611595, -0.05557077005505562, -0.044929735362529755, -0.04903688654303551, 0.05962243303656578, -0.08685039728879929, -0.20621514320373535, 0.0784551277756691, -0.06272900849580765, -0.069573312997818, -0.03928481042385101, -0.007055043242871761, -0.08796579390764236, -0.007286147680133581, 0.0597989484667778, 0.009662795811891556, 0.2880169749259949, 0.010373464785516262, -0.057777103036642075, -0.041030850261449814, 0.035198286175727844, -0.10055617243051529, 0.20349960029125214, 0.036105453968048096, 0.00504318717867136, 0.04188361391425133, -0.021037522703409195, -0.15279024839401245, 0.1327103227376938, -0.03775670751929283, -0.01772109977900982, 0.008064967580139637, 0.1657577008008957, 0.06514346599578857, 0.10482396930456161, 0.03969550505280495, -0.03288998827338219, 0.01808200031518936, 0.09534458816051483, -0.023474207147955894, -0.07744248956441879, 0.09404170513153076, -0.0633256733417511, 0.11550069600343704, 0.06604772061109543, -0.0264765415340662, 0.03405130282044411, -0.0432092659175396, 0.02800295501947403, 0.03306903690099716, 0.10271750390529633, 0.014070089906454086, -0.12331303209066391, 0.05337245762348175, -0.07149547338485718, 0.05585994943976402, -0.201334610581398, -0.037075795233249664, 0.014810649678111076, -0.02754898928105831, -0.05670749396085739, 0.06682228296995163, 0.03612780570983887, 0.026545489206910133, -0.05366295203566551, -0.1312427669763565, 0.038695164024829865, 0.10614920407533646, -0.07739134877920151, -0.02971014752984047 ]
null
null
transformers
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-base-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ```
{"language": ["en"], "license": "cc0-1.0", "tags": ["bluebert"], "datasets": ["pubmed"]}
null
bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
[ "transformers", "pytorch", "bluebert", "en", "dataset:pubmed", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bluebert #en #dataset-pubmed #license-cc0-1.0 #endpoints_compatible #region-us
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts ## Intended uses & limitations #### How to use Please see URL ## Training data We provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the PubMed ASCII code version. Pre-trained model: URL ## Training procedure * lowercasing the text * removing speical chars '\x00'-'\x7F' * tokenizing the text using the NLTK Treebank tokenizer Below is a code snippet for more details. ### BibTeX entry and citation info
[ "# BlueBert-Base, Uncased, PubMed", "## Model description\n\nA BERT model pre-trained on PubMed abstracts", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #bluebert #en #dataset-pubmed #license-cc0-1.0 #endpoints_compatible #region-us \n", "# BlueBert-Base, Uncased, PubMed", "## Model description\n\nA BERT model pre-trained on PubMed abstracts", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info" ]
[ 40, 14, 16, 9, 8, 52, 56, 11 ]
[ "passage: TAGS\n#transformers #pytorch #bluebert #en #dataset-pubmed #license-cc0-1.0 #endpoints_compatible #region-us \n# BlueBert-Base, Uncased, PubMed## Model description\n\nA BERT model pre-trained on PubMed abstracts## Intended uses & limitations#### How to use\n\nPlease see URL## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.### BibTeX entry and citation info" ]
[ -0.032565776258707047, 0.1432485282421112, -0.001035172725096345, 0.052044063806533813, 0.08335095643997192, -0.02759615331888199, 0.10668426752090454, 0.10914885997772217, -0.12407352030277252, 0.0752844363451004, 0.121692955493927, 0.15657950937747955, 0.04071548208594322, 0.11867568641901016, -0.05854639410972595, -0.3453459143638611, 0.054730694741010666, 0.09559285640716553, 0.13332077860832214, 0.09460862725973129, 0.08879342675209045, -0.04551278427243233, 0.06409647315740585, -0.03738102689385414, -0.08381420373916626, -0.03353690728545189, -0.014308705925941467, -0.030760008841753006, 0.0805777981877327, 0.050085507333278656, -0.010736918076872826, 0.036360275000333786, 0.03971417620778084, -0.23604093492031097, 0.021613141521811485, 0.027213070541620255, -0.023678071796894073, 0.1226692721247673, -0.002913402859121561, -0.030903253704309464, 0.16614268720149994, -0.07400580495595932, 0.028691722080111504, 0.0427950918674469, -0.13067345321178436, -0.08656968176364899, -0.09006927907466888, 0.1700519621372223, 0.1178998127579689, 0.019237350672483444, 0.004418142605572939, 0.14271435141563416, -0.06396567076444626, 0.08548415452241898, 0.17636249959468842, -0.29796743392944336, -0.023086844012141228, 0.14227354526519775, 0.16917572915554047, 0.08989657461643219, -0.08465850353240967, 0.022941824048757553, 0.08067718148231506, 0.022997522726655006, 0.01559118926525116, -0.07327493280172348, 0.029947273433208466, -0.0016869938699528575, -0.1596657782793045, -0.046334996819496155, 0.09026394039392471, -0.005979602225124836, -0.1053515076637268, -0.07241314649581909, -0.05393006280064583, 0.0510779470205307, -0.001144012319855392, -0.0036790689919143915, 0.025201715528964996, 0.007720819674432278, 0.01415867730975151, -0.15514162182807922, -0.05116172134876251, -0.09419191628694534, 0.03136828914284706, 0.15907077491283417, 0.0342375785112381, 0.033616695553064346, -0.06268128007650375, 0.11335895955562592, -0.08033198863267899, -0.091804638504982, -0.04935867339372635, -0.07492175698280334, 0.06497898697853088, -0.018568074330687523, -0.06041065976023674, -0.07567004859447479, 0.018242981284856796, 0.2723148465156555, 0.0349125899374485, -0.005948527250438929, -0.07634620368480682, 0.08451887965202332, 0.03904052451252937, 0.0816490650177002, -0.07432355731725693, -0.013603372499346733, 0.06977618485689163, 0.0791563168168068, 0.06608501076698303, 0.0029693646356463432, -0.12726716697216034, -0.056228987872600555, 0.02867891453206539, 0.06453505903482437, 0.0074700526893138885, 0.023736845701932907, -0.02545429766178131, -0.06532015651464462, 0.13058719038963318, -0.06319474428892136, 0.0057249972596764565, -0.036784328520298004, -0.010966042056679726, -0.06060638651251793, 0.07182373851537704, 0.0026479712687432766, -0.0964825376868248, 0.098696768283844, -0.06808558851480484, 0.037479691207408905, -0.057175565510988235, -0.11483284831047058, -0.0005327460821717978, -0.19882449507713318, 0.007232644595205784, -0.06310116499662399, -0.18658322095870972, -0.036035362631082535, 0.04356428608298302, -0.010030874982476234, 0.016389112919569016, -0.02456323429942131, -0.013649115338921547, -0.057623304426670074, -0.040052443742752075, -0.020722869783639908, -0.032389115542173386, 0.06832366436719894, -0.05545586720108986, 0.041120950132608414, -0.19855356216430664, 0.02148432843387127, -0.10832169651985168, 0.024550529196858406, -0.15452462434768677, 0.06007012352347374, -0.055654022842645645, -0.01323305070400238, -0.10406995564699173, -0.06348727643489838, -0.026132026687264442, 0.02704540826380253, 0.0787687599658966, 0.10861511528491974, -0.18176662921905518, -0.005445956718176603, 0.2915910482406616, -0.08090104907751083, -0.04892907291650772, 0.11780527234077454, -0.08319035917520523, 0.07034043967723846, 0.10405193269252777, 0.22980351746082306, 0.017786765471100807, -0.10351716727018356, 0.019651224836707115, 0.04273428022861481, -0.0246109701693058, -0.03723737224936485, 0.04349958896636963, -0.08729755878448486, -0.13153105974197388, 0.004652522969990969, -0.13622629642486572, -0.04253296181559563, -0.022963842377066612, -0.017628733068704605, 0.00212555262260139, -0.07288195937871933, 0.019376717507839203, 0.003004814498126507, 0.016288328915834427, -0.005853644572198391, -0.05425185337662697, 0.1411164104938507, 0.07328827679157257, -0.03798144683241844, 0.06479512155056, -0.025654688477516174, 0.02527468465268612, -0.11580285429954529, 0.003038342110812664, -0.18936802446842194, 0.15956328809261322, 0.03776320442557335, -0.01258594449609518, 0.04988681524991989, -0.021409064531326294, 0.010702354833483696, 0.06898067891597748, -0.08092793077230453, -0.002118125557899475, 0.016568830236792564, -0.0194692425429821, -0.16013182699680328, -0.12313668429851532, -0.07365354150533676, -0.050576213747262955, -0.04740529507398605, -0.18186664581298828, 0.08626622706651688, -0.049163222312927246, 0.05484411120414734, -0.01582428067922592, -0.01374462153762579, 0.06873723119497299, 0.037510164082050323, -0.016675787046551704, -0.05441029742360115, 0.057550471276044846, 0.04879848659038544, -0.08546838909387589, 0.04723741486668587, -0.11410976201295853, -0.09037069231271744, 0.0842788964509964, 0.05695563182234764, -0.005013499408960342, -0.022680552676320076, -0.055102840065956116, -0.01606469415128231, -0.0817440077662468, -0.046553753316402435, 0.1565428376197815, 0.015414589084684849, 0.1571391075849533, -0.12076523154973984, -0.0616789385676384, -0.030700936913490295, -0.07500655949115753, 0.015170382335782051, 0.07131016999483109, 0.03850214555859566, -0.16557317972183228, 0.06795185804367065, -0.036196980625391006, -0.0483657531440258, 0.20025290548801422, 0.0010038268519565463, -0.07289169728755951, -0.041880104690790176, 0.032325781881809235, 0.02376396767795086, 0.14285026490688324, -0.018960827961564064, -0.005224443972110748, 0.04086006060242653, 0.012282232753932476, 0.058082517236471176, -0.11330534517765045, -0.016689728945493698, 0.006443836726248264, -0.025060473009943962, -0.036239560693502426, 0.006992855109274387, -0.03522097319364548, 0.10935693979263306, 0.0429953895509243, 0.03650175407528877, 0.04714803397655487, -0.0003441545704845339, -0.1020563617348671, 0.22022569179534912, -0.08868429809808731, -0.16138646006584167, -0.14599651098251343, 0.006970349699258804, -0.007277173455804586, 0.03623972460627556, 0.05198915675282478, -0.0388248972594738, -0.009933371096849442, -0.08075737953186035, 0.009357634000480175, -0.03348839282989502, -0.04548808932304382, -0.08864015340805054, 0.0004242435679771006, 0.006965065374970436, -0.14688631892204285, -0.013756179250776768, -0.05920032784342766, 0.0093708960339427, -0.01657509058713913, -0.08725400269031525, 0.07617079466581345, 0.09501710534095764, -0.03969310596585274, 0.006869584787636995, -0.03669176623225212, 0.19373753666877747, 0.006432206369936466, 0.012314465828239918, 0.07846566289663315, -0.07540418207645416, 0.04424662888050079, 0.07924014329910278, 0.012300867587327957, -0.07155691832304001, 0.020697368308901787, 0.005969990976154804, -0.04889143630862236, -0.25448864698410034, -0.05245745927095413, -0.03444699943065643, 0.08639992773532867, 0.08771464973688126, 0.060896359384059906, 0.11958467215299606, 0.07315933704376221, -0.05294926464557648, 0.11671233922243118, 0.01524159125983715, 0.15368473529815674, -0.07748283445835114, 0.006126164458692074, 0.07906617969274521, -0.061701517552137375, 0.014777714386582375, 0.09138525277376175, 0.0005636248970404267, 0.14003482460975647, 0.009781097993254662, 0.11998902261257172, 0.11528633534908295, 0.036369819194078445, 0.08366386592388153, 0.1058075949549675, -0.03558655455708504, 0.041470255702733994, -0.014437876641750336, -0.07193686068058014, -0.07833657413721085, 0.01980351097881794, -0.053543951362371445, 0.061860259622335434, -0.046944908797740936, -0.02447429485619068, 0.021564628928899765, 0.20897896587848663, 0.03823181986808777, -0.18949460983276367, -0.08323539048433304, 0.03862617909908295, -0.03109188750386238, -0.12455331534147263, 0.030217932537198067, 0.09998827427625656, -0.11741809546947479, 0.015975603833794594, -0.05311710759997368, 0.1364365667104721, -0.09090901911258698, 0.0323493666946888, -0.06564600020647049, 0.0024403759744018316, -0.05830205976963043, 0.0833297148346901, -0.32345789670944214, 0.17062628269195557, 0.048944566398859024, 0.09521299600601196, -0.025075022131204605, 0.004741260316222906, 0.0163884237408638, 0.07189661264419556, 0.1465008407831192, 0.013499541208148003, 0.10012179613113403, -0.022007033228874207, -0.10320966690778732, -0.005955467000603676, 0.08018215000629425, -0.08606602996587753, 0.053612567484378815, 0.01593593694269657, 0.027522090822458267, -0.040331728756427765, -0.11629807204008102, -0.22272679209709167, -0.13109803199768066, 0.027434978634119034, -0.048428863286972046, 0.07563630491495132, -0.040425509214401245, -0.03235386684536934, 0.13786649703979492, 0.15101781487464905, -0.12566140294075012, -0.06900713592767715, -0.12825924158096313, 0.06514589488506317, 0.05924367532134056, -0.040671639144420624, 0.026446234434843063, -0.02326749823987484, 0.04832243546843529, -0.08258765935897827, -0.09190002083778381, 0.058498021215200424, -0.07849347591400146, -0.14630712568759918, -0.03358946368098259, 0.1714974045753479, 0.1050625815987587, 0.03502912446856499, 0.03796513378620148, 0.01477876864373684, 0.0059294626116752625, -0.10891075432300568, 0.006045982241630554, 0.08827506750822067, 0.16740165650844574, 0.0423189178109169, -0.135157510638237, -0.04462696984410286, -0.03827010467648506, 0.02133158966898918, 0.14627082645893097, 0.19559930264949799, -0.050802092999219894, 0.10432732105255127, 0.20258721709251404, -0.15136601030826569, -0.16985084116458893, 0.024515772238373756, -0.006279297638684511, 0.01667688600718975, -0.03644126281142235, -0.20479243993759155, 0.047836508601903915, 0.07570286095142365, -0.01785963959991932, -0.022166676819324493, -0.16539260745048523, -0.10011713951826096, 0.10671192407608032, 0.08499083667993546, 0.14615651965141296, -0.1393333375453949, -0.0991736650466919, -0.05446843430399895, -0.19887304306030273, 0.1457996517419815, -0.08664074540138245, 0.10846824198961258, -0.05925489589571953, -0.047834545373916626, 0.034455813467502594, -0.04700199514627457, 0.12753599882125854, 0.05197352170944214, 0.06558509916067123, -0.06759515404701233, -0.14044590294361115, 0.09914463013410568, -0.07520484924316406, 0.15764528512954712, -0.06992218643426895, 0.061024706810712814, -0.16769270598888397, -0.033096153289079666, -0.09020764380693436, -0.002895382000133395, -0.05770270153880119, -0.0923520028591156, -0.04990623518824577, 0.04309935122728348, 0.04859190434217453, 0.041685376316308975, 0.17318831384181976, -0.06367357820272446, 0.054770130664110184, 0.06627572327852249, 0.19346016645431519, 0.06638212502002716, 0.00854884646832943, -0.003222923493012786, -0.057076346129179, 0.11646459996700287, -0.15452560782432556, 0.010311892256140709, 0.09133384376764297, 0.0676913633942604, 0.12918613851070404, 0.056965604424476624, -0.07221376895904541, -0.0004539572400972247, -0.009221842512488365, -0.17486566305160522, -0.12906798720359802, -0.005652719177305698, 0.028681667521595955, -0.08325659483671188, 0.07664373517036438, 0.09411962330341339, -0.061266858130693436, -0.07757758349180222, -0.010074038989841938, 0.025719884783029556, -0.0913379117846489, 0.09000822901725769, 0.11573977023363113, 0.05285476893186569, -0.08584675937891006, 0.06284522265195847, 0.05095129460096359, 0.04557303711771965, 0.04884328693151474, 0.0649239644408226, -0.09008731693029404, -0.0544377863407135, 0.049870431423187256, 0.1279681771993637, 0.004065630491822958, -0.034399863332509995, -0.059508875012397766, -0.03095143660902977, 0.03769479691982269, 0.24703431129455566, 0.05098516494035721, 0.036797117441892624, -0.054435744881629944, 0.012373032979667187, -0.15962283313274384, 0.042039334774017334, -0.011260006576776505, 0.06076040118932724, 0.0072171990759670734, 0.053505789488554, -0.017036639153957367, 0.024788955226540565, -0.033326976001262665, -0.005515484604984522, -0.17509698867797852, -0.009598412550985813, -0.2453565150499344, 0.0404634065926075, -0.07267244160175323, -0.033802345395088196, -0.08436667919158936, -0.00796198658645153, 0.030442439019680023, 0.02058904990553856, -0.07582994550466537, -0.008607336319983006, -0.002040069317445159, 0.029620684683322906, -0.09124191105365753, 0.017216745764017105, -0.0023171233478933573, -0.029962530359625816, 0.07831431180238724, -0.005293817259371281, -0.0014222266618162394, -0.009533651173114777, -0.09422683715820312, -0.0032225940376520157, 0.026092153042554855, -0.031189268454909325, -0.0011357305338606238, -0.011813472956418991, 0.005085271317511797, -0.025022558867931366, 0.0019968191627413034, 0.007380209397524595, 0.13748246431350708, -0.10374588519334793, 0.0920829325914383, 0.0048494404181838036, -0.00047722909948788583, -0.04439966008067131, 0.07455641776323318, 0.008848773315548897, 0.0786178857088089, 0.11778096854686737, -0.05333786830306053, 0.023348679766058922, -0.11547961831092834, -0.005427532363682985, 0.003531152382493019, -0.09057998657226562, -0.08854302763938904, -0.04690864682197571, 0.021487727761268616, 0.023700661957263947, 0.16264064610004425, 0.008296261541545391, -0.036221299320459366, 0.016416925936937332, 0.03964073583483696, 0.07130388915538788, -0.010919073596596718, 0.23353460431098938, -0.025249822065234184, -0.05208692327141762, 0.017752278596162796, 0.08054269105195999, 0.003454718505963683, -0.0021873589139431715, 0.12345481663942337, 0.1443176418542862, 0.05030902847647667, 0.07046309113502502, -0.008926404640078545, 0.02394578605890274, -0.13765211403369904, -0.07515531778335571, 0.11863207817077637, 0.03694436326622963, -0.03384555131196976, 0.13067252933979034, 0.1257045567035675, -0.15639802813529968, 0.06121983006596565, 0.09686338156461716, -0.08489343523979187, -0.15683774650096893, -0.18975703418254852, -0.00585548160597682, 0.007152298931032419, -0.01294865645468235, -0.13734716176986694, -0.017255494371056557, 0.11792097985744476, 0.0021357897203415632, -0.013163461349904537, 0.05118545889854431, -0.032969992607831955, -0.04641472175717354, 0.09093383699655533, -0.03468465059995651, 0.039901621639728546, -0.09464476257562637, 0.03509778156876564, 0.04578292369842529, -0.07139609009027481, 0.061151906847953796, 0.01448318362236023, 0.06331706047058105, 0.018984336405992508, -0.03382333368062973, -0.08998307585716248, 0.03374247997999191, 0.05800392106175423, 0.08629558235406876, 0.2315007597208023, 0.07322410494089127, -0.09164629131555557, 0.031092196702957153, 0.22232452034950256, -0.018795689567923546, -0.07223622500896454, -0.09035579115152359, 0.17424596846103668, 0.05984210968017578, 0.007782594300806522, -0.030294284224510193, -0.09167385846376419, 0.08061935007572174, 0.20757870376110077, 0.14956101775169373, 0.03467890992760658, 0.009497946128249168, 0.02420778013765812, 0.009072725661098957, 0.1369893103837967, 0.08436508476734161, 0.04073069617152214, 0.16855023801326752, -0.06846866011619568, -0.029810482636094093, -0.0013285111635923386, -0.07704672962427139, -0.07403644174337387, 0.02308877371251583, 0.022769730538129807, -0.09467359632253647, -0.030434755608439445, 0.05771997570991516, -0.14507979154586792, -0.062116120010614395, -0.05176067724823952, -0.09330932050943375, -0.10056782513856888, -0.04630579054355621, -0.004940628539770842, -0.022038200870156288, 0.05096861720085144, 0.0097368648275733, -0.012082521803677082, 0.16583706438541412, -0.030796246603131294, -0.12280738353729248, -0.06644376367330551, 0.04358479380607605, -0.06339152902364731, 0.14863431453704834, -0.004786082077771425, 0.028745699673891068, 0.08193977177143097, 0.007604834623634815, -0.0907958447933197, 0.06843239068984985, -0.04185095056891441, 0.02258402481675148, 0.04340328648686409, 0.08212126791477203, -0.008171199820935726, 0.08271679282188416, 0.006071192212402821, -0.1178164929151535, -0.005307093262672424, -0.0023410851135849953, -0.11452129483222961, -0.14205312728881836, 0.07190581411123276, -0.07233569025993347, 0.11937106400728226, 0.12687668204307556, -0.07425834238529205, -0.02050125226378441, -0.07003717869520187, 0.035310711711645126, 0.07630129158496857, 0.01770094409584999, -0.012155843898653984, -0.09609217196702957, -0.002486639190465212, 0.004504182375967503, 0.009813432581722736, -0.29436901211738586, -0.033069293946027756, -0.0668133944272995, -0.05702054500579834, -0.11268255859613419, 0.059505049139261246, 0.095759816467762, 0.05091598257422447, -0.023653706535696983, -0.1333695352077484, -0.010974916629493237, 0.08531268686056137, -0.1110900342464447, -0.09578975290060043 ]
null
null
transformers
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts. ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed"]}
null
bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #license-cc0-1.0 #endpoints_compatible #region-us
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts. ## Intended uses & limitations #### How to use Please see URL ## Training data We provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the PubMed ASCII code version. Pre-trained model: URL ## Training procedure * lowercasing the text * removing speical chars '\x00'-'\x7F' * tokenizing the text using the NLTK Treebank tokenizer Below is a code snippet for more details. ### BibTeX entry and citation info ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
[ "# BlueBert-Base, Uncased, PubMed", "## Model description\n\nA BERT model pre-trained on PubMed abstracts.", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ "TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #license-cc0-1.0 #endpoints_compatible #region-us \n", "# BlueBert-Base, Uncased, PubMed", "## Model description\n\nA BERT model pre-trained on PubMed abstracts.", "## Intended uses & limitations", "#### How to use\n\nPlease see URL", "## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL", "## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.", "### BibTeX entry and citation info", "### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.", "### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ 45, 14, 17, 9, 8, 52, 56, 11, 109, 130 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #bluebert #en #dataset-PubMed #license-cc0-1.0 #endpoints_compatible #region-us \n# BlueBert-Base, Uncased, PubMed## Model description\n\nA BERT model pre-trained on PubMed abstracts.## Intended uses & limitations#### How to use\n\nPlease see URL## Training data\n\nWe provide preprocessed PubMed texts that were used to pre-train the BlueBERT models. \nThe corpus contains ~4000M words extracted from the PubMed ASCII code version. \n\nPre-trained model: URL## Training procedure\n\n* lowercasing the text\n* removing speical chars '\\x00'-'\\x7F'\n* tokenizing the text using the NLTK Treebank tokenizer\n\nBelow is a code snippet for more details.### BibTeX entry and citation info### Acknowledgments\n\nThis work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of\nMedicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01.\n\nWe are also grateful to the authors of BERT and ELMo to make the data and codes publicly available.\n\nWe would like to thank Dr Sun Kim for processing the PubMed texts.### Disclaimer\n\nThis tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced\non this website is not intended for direct diagnostic use or medical decision-making without review and oversight\nby a clinical professional. Individuals should not change their health behavior solely on the basis of information\nproduced on this website. NIH does not independently verify the validity or utility of the information produced\nby this tool. If you have questions about the information produced on this website, please see a health care\nprofessional. More information about NCBI's disclaimer policy is available." ]
[ -0.009972762316465378, 0.242561936378479, -0.00659784534946084, 0.013092860579490662, 0.06205746531486511, 0.005284602753818035, 0.0624539740383625, 0.129481703042984, 0.0027574331033974886, 0.14823220670223236, 0.0168942678719759, 0.07972858846187592, 0.1079392209649086, 0.010273542255163193, 0.009613659232854843, -0.1682787388563156, 0.01322938036173582, 0.028656216338276863, 0.17575334012508392, 0.055301833897829056, 0.05251295864582062, -0.049976646900177, 0.06340251117944717, -0.0022831475362181664, -0.006439019925892353, -0.027464307844638824, 0.013549371622502804, 0.001319805160164833, 0.08779682964086533, 0.030573109164834023, 0.02108795940876007, 0.015137912705540657, 0.04422109201550484, -0.21768410503864288, 0.0023198348935693502, 0.04243422672152519, -0.019411873072385788, 0.09184969216585159, 0.010254060849547386, -0.04627609997987747, 0.13170763850212097, -0.10469314455986023, 0.04159977659583092, 0.03093680739402771, -0.11713190376758575, -0.1724236160516739, -0.12973052263259888, 0.14123167097568512, 0.022095220163464546, 0.059534333646297455, 0.005711809266358614, 0.12363108992576599, 0.008640690706670284, 0.026424061506986618, 0.11712276190519333, -0.13677243888378143, 0.00965789146721363, 0.024393051862716675, 0.08003538846969604, 0.13856175541877747, -0.07934331148862839, 0.013838675804436207, 0.00562524376437068, -0.007337919436395168, 0.07736723124980927, -0.03595873713493347, 0.04697798192501068, 0.013643178157508373, -0.10161063820123672, -0.04893272742629051, 0.09967383742332458, -0.036662228405475616, -0.09635061770677567, -0.07921718806028366, -0.007085001096129417, 0.08889022469520569, 0.07307833433151245, -0.044027771800756454, 0.054813578724861145, -0.048857755959033966, 0.09620044380426407, -0.04667871072888374, -0.0663875862956047, -0.049387168139219284, 0.014008082449436188, 0.07806187868118286, 0.024459993466734886, 0.0245214831084013, 0.013722922652959824, 0.08074270933866501, -0.07666415721178055, -0.057857125997543335, -0.07439683377742767, -0.031030863523483276, 0.0194399394094944, -0.024494092911481857, 0.016403868794441223, -0.08133117109537125, 0.033707208931446075, 0.15248644351959229, -0.04931081086397171, -0.01360945962369442, -0.08983571082353592, -0.012271985411643982, 0.09783671051263809, 0.06020711362361908, -0.07427936047315598, -0.035832479596138, -0.0013987217098474503, 0.013766673393547535, 0.04226832464337349, -0.0038772900588810444, 0.002642608480527997, 0.006881420034915209, 0.024062518030405045, 0.07862301915884018, -0.0007021232158876956, -0.02710721641778946, -0.07618675380945206, -0.008060735650360584, 0.22680336236953735, -0.07949340343475342, 0.015023671090602875, 0.03805069997906685, 0.0045499037951231, 0.00673656864091754, 0.08196406066417694, -0.01995701715350151, -0.060214970260858536, 0.10335050523281097, -0.07365776598453522, -0.003136923536658287, -0.035129398107528687, -0.10741382092237473, 0.05159812048077583, -0.09539981186389923, -0.011202841065824032, -0.10418368130922318, -0.032937757670879364, -0.08998693525791168, 0.009866530075669289, -0.05640862137079239, 0.07549059391021729, 0.02087107114493847, 0.03642011433839798, -0.010781540535390377, -0.018709782510995865, -0.01892382651567459, -0.02704952098429203, 0.04284852743148804, -0.08240877091884613, 0.030100496485829353, -0.07631964981555939, 0.008318319916725159, -0.07443073391914368, 0.02284286729991436, -0.05145587399601936, -0.0343320369720459, -0.07819110155105591, -0.034571193158626556, -0.10894344002008438, -0.025959694758057594, -0.024355929344892502, -0.0379558764398098, 0.06855005025863647, 0.09493080526590347, -0.10388006269931793, -0.009941431693732738, 0.16574063897132874, -0.08026713877916336, -0.07712802290916443, 0.09563009440898895, -0.03495791181921959, 0.06213020905852318, 0.0693817287683487, 0.13265518844127655, 0.05376741290092468, -0.17769776284694672, -0.11741498112678528, -0.1114492416381836, -0.0176515132188797, 0.031509481370449066, 0.04513312876224518, -0.05911397188901901, -0.02144731394946575, -0.020287683233618736, -0.08644964545965195, -0.07812425494194031, -0.028538458049297333, 0.013448488898575306, 0.019609056413173676, -0.05285355821251869, -0.030283547937870026, 0.01010249275714159, -0.03868405148386955, -0.02435513213276863, -0.031396009027957916, 0.01722933165729046, 0.05917758122086525, -0.02130785956978798, 0.040010929107666016, -0.06902162730693817, -0.013983246870338917, -0.039802439510822296, -0.016534797847270966, -0.13742855191230774, 0.050534818321466446, 0.07467204332351685, -0.10806089639663696, 0.06703227013349533, -0.07551731914281845, -0.017503930255770683, 0.06552845984697342, -0.03897678107023239, 0.0031944834627211094, -0.008302442729473114, 0.0011945657897740602, -0.08864660561084747, -0.09998214244842529, -0.0020269479136914015, -0.035748790949583054, 0.0018269841093569994, -0.1464734971523285, 0.030208822339773178, 0.017132876440882683, 0.06393144279718399, 0.059180330485105515, -0.09183249622583389, 0.07201892137527466, 0.03835592791438103, 0.0017396969487890601, 0.0070039513520896435, 0.005183633882552385, -0.012724418193101883, -0.05231424793601036, 0.0795067548751831, -0.1383344531059265, -0.18564823269844055, -0.01556328497827053, 0.09767427295446396, -0.016103044152259827, 0.00696810195222497, -0.023147201165556908, -0.022197892889380455, -0.09884438663721085, -0.11860432475805283, 0.1639375239610672, 0.01511833630502224, 0.0478031262755394, -0.049732450395822525, -0.061274539679288864, -0.019721783697605133, -0.05713609233498573, -0.024011997506022453, 0.05043654516339302, 0.049581378698349, -0.15060389041900635, 0.04107550159096718, -0.00015718476788606495, 0.05982569605112076, 0.1334613859653473, 0.049151461571455, -0.11094807833433151, -0.04419893026351929, -0.045248404145240784, 0.06793804466724396, 0.09157409518957138, -0.026905691251158714, 0.01424112357199192, 0.060673341155052185, 0.011645596474409103, 0.01934242621064186, -0.05247069522738457, 0.0513225682079792, 0.015612240880727768, -0.012526072561740875, -0.042249102145433426, -0.009069454856216908, -0.0320599228143692, 0.11334104090929031, 0.02878238447010517, 0.13712364435195923, -0.03065192885696888, -0.027985936030745506, -0.11997252702713013, 0.12559446692466736, -0.06181838735938072, -0.19286863505840302, -0.16989359259605408, -0.04719869792461395, 0.039436813443899155, 0.009437399916350842, 0.03634488955140114, -0.03433730825781822, -0.08771554380655289, -0.10963505506515503, 0.011236615478992462, 0.03360693156719208, -0.0994202047586441, -0.05931251868605614, 0.008014350198209286, 0.013401873409748077, -0.11393587291240692, -0.0010992051102221012, -0.020565124228596687, 0.007000413723289967, 0.039185140281915665, -0.016761956736445427, 0.09873969107866287, 0.06768140941858292, 0.032624680548906326, -0.04773872345685959, 0.011276699602603912, 0.0981489047408104, -0.05146705359220505, 0.10556574165821075, 0.11109315603971481, -0.020961226895451546, 0.06393250077962875, 0.061083268374204636, 0.028804443776607513, -0.07383256405591965, 0.05426471307873726, 0.03427205979824066, -0.01937219314277172, -0.2979229688644409, -0.04811682179570198, -0.027328573167324066, -0.008563104085624218, 0.013160529546439648, 0.03499957174062729, 0.06912276148796082, 0.027429722249507904, -0.025031674653291702, 0.030907941982150078, -0.012109355069696903, 0.10655832290649414, 0.022225219756364822, 0.02220171131193638, 0.0708017498254776, -0.03918334096670151, 0.0738050565123558, 0.11729893088340759, 0.009322994388639927, 0.17902792990207672, 0.011195730417966843, 0.20548208057880402, 0.09387937933206558, 0.03939763456583023, 0.04545416682958603, 0.08719310909509659, -0.00674481550231576, 0.05879265442490578, -0.009551381692290306, -0.06472111493349075, -0.07420919835567474, 0.036650098860263824, -0.03131536766886711, -0.030510718002915382, 0.00021683424711227417, -0.12009337544441223, -0.00791650079190731, 0.12040546536445618, 0.04158362001180649, -0.09948652982711792, -0.07724778354167938, 0.06243637949228287, -0.07550453394651413, -0.11667107045650482, -0.03158409148454666, 0.1308564841747284, -0.10895344614982605, 0.010736250318586826, -0.015321433544158936, 0.09875979274511337, -0.13413766026496887, 0.0018479377031326294, -0.07433634996414185, -0.05541916564106941, -0.06797204166650772, 0.05980833247303963, -0.13994860649108887, 0.08683285117149353, 0.025788890197873116, 0.06645102798938751, -0.05674970522522926, 0.00043405068572610617, -0.015389877371490002, 0.08931519836187363, 0.13001450896263123, 0.029600415378808975, 0.05647338926792145, -0.012984144501388073, -0.10607833415269852, 0.001325748860836029, 0.11249025166034698, -0.15488186478614807, 0.09009400010108948, 0.019565308466553688, 0.021598869934678078, -0.07895628362894058, -0.061620134860277176, -0.1654689908027649, -0.1169271320104599, 0.08349082618951797, -0.05456816405057907, 0.1620735377073288, -0.005745080299675465, -0.028024809435009956, 0.02269270084798336, 0.09749142825603485, -0.1999492347240448, -0.0600736141204834, -0.1337854266166687, -0.005556456744670868, 0.06501886248588562, -0.052547793835401535, -0.0024811155162751675, -0.010018768720328808, 0.049065038561820984, -0.02493216097354889, -0.03837835416197777, -0.0033630153629928827, -0.06822104752063751, -0.19750262796878815, -0.07614567130804062, 0.12471165508031845, 0.1385277509689331, 0.07123854756355286, -0.0078080883249640465, 0.09091668576002121, -0.007266663480550051, -0.07495227456092834, 0.06988322734832764, 0.19859956204891205, 0.19430668652057648, 0.04764570668339729, -0.10115563124418259, -0.07833407074213028, -0.10913380235433578, -0.0742587223649025, 0.02161378413438797, 0.15249493718147278, -0.02302938513457775, 0.11754067987203598, 0.2000795304775238, -0.144046351313591, -0.1577949821949005, -0.025659741833806038, -0.0015912916278466582, 0.015473579056560993, 0.037327732890844345, -0.22739532589912415, 0.02543884702026844, 0.09553276002407074, -0.00415725726634264, -0.0077216592617332935, -0.02524302527308464, -0.07562444359064102, -0.0579925961792469, 0.10502734780311584, -0.011436950415372849, -0.11812696605920792, -0.09785959869623184, 0.034022945910692215, -0.22425879538059235, 0.15084534883499146, -0.02560311183333397, 0.051925282925367355, -0.07894361019134521, -0.007292160764336586, 0.04398282244801521, -0.0472104474902153, 0.09043067693710327, 0.015615061856806278, 0.058494433760643005, -0.05194534361362457, -0.029479598626494408, 0.048953864723443985, -0.05137839540839195, 0.14087653160095215, 0.034659191966056824, 0.03621385991573334, -0.11741911619901657, -0.04476267844438553, -0.086262546479702, -0.026480043306946754, -0.055972058326005936, -0.08811455219984055, -0.09330619126558304, 0.09176643192768097, 0.06211381033062935, -0.011901716701686382, 0.08978674560785294, -0.11284825205802917, 0.031645312905311584, 0.12531408667564392, 0.21946337819099426, 0.04717309772968292, 0.050040245056152344, 0.002298018429428339, -0.07546903938055038, 0.05426168069243431, -0.15221482515335083, 0.04244588688015938, 0.10947132110595703, 0.045083217322826385, 0.12598110735416412, -0.0047251153737306595, -0.16207140684127808, 0.007696866989135742, 0.046456195414066315, -0.1427742838859558, -0.15909352898597717, 0.011386016383767128, 0.008306356146931648, -0.10289885848760605, 0.0370778925716877, 0.11750344932079315, -0.03667902573943138, -0.044893741607666016, -0.02505074068903923, 0.08791693300008774, -0.010384166613221169, 0.07648465037345886, 0.060345184057950974, 0.006636342965066433, -0.03254052996635437, 0.046366240829229355, 0.12368091195821762, -0.037296101450920105, 0.01812267303466797, 0.07560359686613083, -0.056021690368652344, -0.03910961374640465, -0.05534239113330841, 0.10697460174560547, -0.0020568715408444405, -0.09154683351516724, 0.0163634791970253, -0.020919879898428917, 0.006127736996859312, 0.18123868107795715, -0.043546486645936966, 0.08080659061670303, -0.006257131230086088, 0.02262759953737259, -0.12170194089412689, 0.0699407085776329, -0.04994597285985947, 0.048733118921518326, 0.03955511003732681, 0.0030190495308488607, 0.0013940862845629454, -0.024797607213258743, -0.016883239150047302, 0.012105342000722885, -0.08134301751852036, -0.06218457594513893, -0.12473109364509583, -0.0034516577143222094, -0.0318341962993145, -0.044947996735572815, -0.044255148619413376, -0.02574910596013069, 0.031115753576159477, 0.021122049540281296, 0.007687844801694155, -0.02690659649670124, -0.003973247017711401, 0.09542521834373474, -0.1346300095319748, 0.016741501167416573, 0.07498716562986374, -0.061544619500637054, 0.10800395905971527, -0.0372963547706604, -0.011723426170647144, 0.005579684861004353, -0.08228806406259537, 0.09152814000844955, -0.013580193743109703, 0.0575692281126976, 0.010108797810971737, -0.1568678468465805, -0.04980282858014107, -0.033648502081632614, -0.0642869770526886, 0.02806228958070278, 0.0854729637503624, -0.04496874660253525, 0.0844370573759079, 0.036346107721328735, -0.010538988746702671, -0.0661943256855011, 0.023311417549848557, -0.013416959904134274, 0.03572874143719673, 0.06690459698438644, -0.009847162291407585, 0.03161855414509773, -0.0979067012667656, -0.009353243745863438, 0.04048917070031166, 0.010289317928254604, -0.02966511994600296, -0.02761578932404518, 0.045939892530441284, 0.05067553371191025, 0.12954942882061005, -0.06023627892136574, -0.07444154471158981, 0.027041401714086533, 0.03258385881781578, -0.02429327555000782, -0.061048299074172974, 0.01828855462372303, -0.024881863966584206, -0.06564082950353622, -0.0224788598716259, -0.018270427361130714, -0.07115039974451065, -0.04530232399702072, 0.16369011998176575, 0.12680616974830627, 0.13452371954917908, -0.05516068637371063, -0.03295564278960228, -0.002741021104156971, -0.15777872502803802, -0.08303295820951462, 0.041336141526699066, -0.02794780395925045, -0.026605041697621346, 0.09537038952112198, 0.12408725172281265, -0.15467298030853271, 0.07810227572917938, 0.02458297647535801, -0.06636154651641846, -0.06690260767936707, -0.1625891625881195, -0.024463407695293427, 0.01700489968061447, -0.008286205120384693, -0.12020324915647507, 0.11633578687906265, 0.08191687613725662, 0.0065017626620829105, 0.01778150163590908, 0.05780461058020592, -0.042468003928661346, -0.018249306827783585, 0.045138586312532425, 0.006233357358723879, -0.006191282533109188, -0.07123462855815887, 0.09500943869352341, 0.00872815866023302, 0.03346731513738632, 0.08763908594846725, 0.10518929362297058, 0.07063115388154984, -0.023207010701298714, -0.009751379489898682, -0.10140326619148254, 0.030301177874207497, -0.009651419706642628, -0.01338917762041092, 0.2002401202917099, 0.07398470491170883, 0.009162590838968754, 0.04256215691566467, 0.18069227039813995, -0.03318275138735771, 0.02175017260015011, -0.09817393124103546, 0.14567525684833527, 0.0026605005841702223, -0.0019977265037596226, 0.012432915158569813, -0.10688932240009308, 0.060761552304029465, 0.1694641262292862, -0.019997764378786087, 0.046026479452848434, 0.015454770997166634, -0.007870892062783241, 0.029472162947058678, 0.05037838593125343, 0.0879836231470108, 0.04140274226665497, 0.2122718095779419, -0.024005435407161713, 0.04088687524199486, -0.058044590055942535, 0.006200222298502922, -0.049966905266046524, 0.08264423906803131, -0.05293884500861168, -0.04683183878660202, -0.06661255657672882, 0.04992826282978058, -0.03759230673313141, -0.26734253764152527, 0.04583965241909027, -0.06179976835846901, -0.04847806692123413, -0.030032170936465263, -0.014785662293434143, -0.07490009069442749, 0.024089844897389412, 0.06514539569616318, 0.001335570472292602, 0.23351064324378967, 0.025695132091641426, -0.05366655811667442, 0.008984958752989769, 0.03758111596107483, -0.05084159970283508, 0.18442846834659576, 0.048678383231163025, 0.04862567037343979, 0.06955289095640182, -0.030642105266451836, -0.12222011387348175, 0.15086014568805695, -0.034096039831638336, -0.005008975509554148, 0.01558753103017807, 0.15846285223960876, 0.05814812332391739, 0.10457809269428253, 0.02512400783598423, -0.04881741851568222, 0.029659375548362732, 0.08154221624135971, -0.052567243576049805, -0.10615748167037964, 0.06678364425897598, -0.07793556898832321, 0.12312344461679459, 0.08644773066043854, -0.04037511721253395, 0.012585083954036236, -0.053465817123651505, 0.035473570227622986, 0.024468937888741493, 0.09261269122362137, 0.021055102348327637, -0.1462676078081131, 0.06175852194428444, -0.013010337948799133, 0.07352740317583084, -0.2447599172592163, -0.02227633260190487, 0.005334625951945782, -0.0025814296677708626, -0.05632486939430237, 0.04177007079124451, 0.015181978233158588, 0.008127149194478989, -0.049141671508550644, -0.1885983645915985, 0.024017736315727234, 0.1051139310002327, -0.07631627470254898, -0.026414217427372932 ]
null
null
transformers
## Malayalam news classifier ### Overview This model is trained on top of [MalayalamBert](https://huggingface.co/eliasedwin7/MalayalamBERT) for the task of classifying malayalam news headlines. Presently, the following news categories are supported: * Business * Sports * Entertainment ### Dataset The dataset used for training this model can be found [here](https://www.kaggle.com/disisbig/malyalam-news-dataset). ### Using the model with HF pipeline ```python from transformers import pipeline news_headline = "ക്രിപ്‌റ്റോ ഇടപാടുകളുടെ വിവരങ്ങൾ ആവശ്യപ്പെട്ട് ആദായനികുതി വകുപ്പ് നോട്ടീസയച്ചു" model = pipeline(task="text-classification", model="bipin/malayalam-news-classifier") model(news_headline) # Output # [{'label': 'business', 'score': 0.9979357123374939}] ``` ### Contact For feedback and questions, feel free to contact via twitter [@bkrish_](https://twitter.com/bkrish_)
{"license": "mit", "tags": ["text-classification", "roberta", "malayalam", "pytorch"], "widget": [{"text": "2032 \u0d12\u0d33\u0d3f\u0d2e\u0d4d\u0d2a\u0d3f\u0d15\u0d4d\u200c\u0d38\u0d3f\u0d28\u0d4d \u0d2c\u0d4d\u0d30\u0d3f\u0d38\u0d4d\u200c\u0d2c\u0d46\u0d2f\u0d4d\u0d28\u0d4d\u200d \u0d35\u0d47\u0d26\u0d3f\u0d2f\u0d3e\u0d15\u0d41\u0d02; \u0d17\u0d46\u0d2f\u0d3f\u0d02\u0d38\u0d3f\u0d28\u0d4d \u0d35\u0d47\u0d26\u0d3f\u0d2f\u0d3e\u0d15\u0d41\u0d28\u0d4d\u0d28 \u0d2e\u0d42\u0d28\u0d4d\u0d28\u0d3e\u0d2e\u0d24\u0d4d\u0d24\u0d46 \u0d13\u0d38\u0d4d\u200c\u0d1f\u0d4d\u0d30\u0d47\u0d32\u0d3f\u0d2f\u0d28\u0d4d\u200d \u0d28\u0d17\u0d30\u0d02"}]}
text-classification
bipin/malayalam-news-classifier
[ "transformers", "pytorch", "roberta", "text-classification", "malayalam", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #text-classification #malayalam #license-mit #autotrain_compatible #endpoints_compatible #region-us
## Malayalam news classifier ### Overview This model is trained on top of MalayalamBert for the task of classifying malayalam news headlines. Presently, the following news categories are supported: * Business * Sports * Entertainment ### Dataset The dataset used for training this model can be found here. ### Using the model with HF pipeline ### Contact For feedback and questions, feel free to contact via twitter @bkrish_
[ "## Malayalam news classifier", "### Overview\n\nThis model is trained on top of MalayalamBert for the task of classifying malayalam news headlines. Presently, the following news categories are supported:\n\n* Business\n* Sports\n* Entertainment", "### Dataset\n\nThe dataset used for training this model can be found here.", "### Using the model with HF pipeline", "### Contact\n\nFor feedback and questions, feel free to contact via twitter @bkrish_" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #malayalam #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "## Malayalam news classifier", "### Overview\n\nThis model is trained on top of MalayalamBert for the task of classifying malayalam news headlines. Presently, the following news categories are supported:\n\n* Business\n* Sports\n* Entertainment", "### Dataset\n\nThe dataset used for training this model can be found here.", "### Using the model with HF pipeline", "### Contact\n\nFor feedback and questions, feel free to contact via twitter @bkrish_" ]
[ 46, 5, 46, 17, 11, 19 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #malayalam #license-mit #autotrain_compatible #endpoints_compatible #region-us \n## Malayalam news classifier### Overview\n\nThis model is trained on top of MalayalamBert for the task of classifying malayalam news headlines. Presently, the following news categories are supported:\n\n* Business\n* Sports\n* Entertainment### Dataset\n\nThe dataset used for training this model can be found here.### Using the model with HF pipeline### Contact\n\nFor feedback and questions, feel free to contact via twitter @bkrish_" ]
[ -0.03577365726232529, -0.09659107774496078, -0.0009895449038594961, 0.03769412636756897, 0.1468673199415207, -0.0006949059315957129, 0.12144555151462555, 0.08519086241722107, -0.044376738369464874, -0.09724986553192139, 0.11390210688114166, 0.04985933378338814, 0.021076194941997528, 0.1712225079536438, 0.0005005057901144028, -0.3476299047470093, -0.04881134256720543, 0.001768935238942504, -0.024063048884272575, 0.14426009356975555, 0.12382996082305908, -0.040569476783275604, 0.08359183371067047, 0.02257659286260605, -0.12817226350307465, 0.05539627745747566, -0.04779526963829994, -0.09507957845926285, 0.12649932503700256, 0.00503295985981822, 0.06929458677768707, 0.06967243552207947, 0.06258738040924072, -0.10369852185249329, 0.07406916469335556, -0.03902166709303856, -0.016837814822793007, 0.023684101179242134, -0.01010120939463377, -0.005647488869726658, 0.2385547161102295, -0.03142797574400902, 0.0424262136220932, 0.01816781796514988, -0.1176472008228302, -0.08300480246543884, -0.07084260135889053, 0.03133745491504669, 0.1598915457725525, 0.15138092637062073, -0.062193889170885086, 0.14452117681503296, -0.15535582602024078, 0.09043853729963303, 0.028395678848028183, -0.23739971220493317, -0.021076884120702744, 0.11215685307979584, -0.013273051008582115, 0.010273450054228306, -0.03317992389202118, 0.08105156570672989, 0.0020344650838524103, 0.053614821285009384, 0.023617316037416458, -0.07752121984958649, -0.021503865718841553, -0.04499103128910065, -0.04608994722366333, 0.0476960688829422, 0.13688139617443085, -0.036109670996665955, -0.008131123147904873, -0.05976562947034836, 0.054473910480737686, 0.00666154595091939, -0.04082779213786125, 0.04230792075395584, -0.06930729746818542, 0.01658516377210617, -0.0006857865955680609, -0.007960665971040726, -0.10200225561857224, -0.015353209339082241, -0.07391127943992615, 0.061152663081884384, 0.01457864511758089, 0.0274411141872406, -0.20992615818977356, 0.08768730610609055, 0.0664663314819336, -0.14319847524166107, 0.005981402471661568, -0.075685515999794, 0.013972237706184387, 0.007686145603656769, -0.013911724090576172, -0.038752395659685135, 0.02799381874501705, -0.06673294305801392, -0.04922236502170563, 0.038792725652456284, 0.04232202097773552, 0.027739817276597023, 0.06579341739416122, 0.01618420146405697, -0.13069508969783783, -0.02272716350853443, 0.09633351862430573, -0.01989203691482544, 0.02171211875975132, 0.009736103937029839, -0.05419330671429634, 0.04162098467350006, -0.01247416902333498, 0.04926923289895058, -0.07516039907932281, 0.17818735539913177, 0.017969882115721703, -0.007903636433184147, 0.017636148259043694, -0.07307995855808258, -0.0823194682598114, -0.018226556479930878, -0.09696190059185028, -0.0762791782617569, 0.060172125697135925, 0.032615408301353455, 0.011866770684719086, 0.1479882448911667, -0.045228056609630585, -0.020422814413905144, -0.02954701893031597, -0.05470505729317665, 0.0014327216194942594, -0.13220344483852386, 0.04344025254249573, -0.10212717950344086, -0.23972360789775848, 0.01136633288115263, 0.01604798436164856, -0.07151571661233902, -0.08616631478071213, -0.06335852295160294, -0.021389901638031006, -0.005660129711031914, -0.022704895585775375, 0.12966416776180267, -0.06470300257205963, 0.08258560299873352, -0.014366958290338516, 0.11972340941429138, -0.0825338065624237, 0.053669579327106476, -0.0702480599284172, 0.03217209875583649, -0.009663548320531845, 0.15014785528182983, -0.1142023503780365, 0.09755411744117737, -0.032457783818244934, -0.0518544502556324, -0.045563310384750366, 0.048033107072114944, 0.011635635048151016, 0.16516995429992676, -0.12649370729923248, -0.08695642650127411, 0.043638862669467926, -0.030957695096731186, -0.15607592463493347, 0.019402405247092247, -0.0908142700791359, 0.2339058220386505, 0.08298202604055405, 0.076615110039711, 0.09114155173301697, -0.036250848323106766, 0.024790089577436447, 0.04185612499713898, -0.07322069257497787, 0.0034961956553161144, 0.044903066009283066, 0.07784761488437653, -0.08744784444570541, 0.09191230684518814, -0.00771327642723918, 0.10938166081905365, -0.0727948471903801, -0.023001056164503098, 0.07760702073574066, -0.025560444220900536, 0.05309556797146797, 0.046283405274152756, 0.16872543096542358, -0.011791995726525784, -0.05223557725548744, 0.1060614064335823, 0.0896480605006218, 0.02397218905389309, -0.04005984589457512, -0.1510007679462433, 0.04315723851323128, -0.0016041091876104474, 0.039092447608709335, -0.15365438163280487, -0.005435221828520298, -0.05237192660570145, 0.1106593906879425, 0.1241750717163086, 0.0385991595685482, -0.005741252098232508, -0.027575472369790077, -0.044438205659389496, 0.04509653151035309, 0.0843501165509224, 0.03841549530625343, -0.04747265577316284, -0.14231401681900024, 0.08370643854141235, -0.04234369844198227, 0.2252844125032425, -0.13082686066627502, 0.025221623480319977, 0.15393401682376862, 0.09753890335559845, 0.006668883841484785, 0.09017273783683777, 0.10053692758083344, 0.11195261031389236, 0.038584236055612564, -0.01402406394481659, 0.10310070216655731, 0.002604719251394272, -0.07241739332675934, 0.0831792950630188, -0.05476238578557968, 0.06368044018745422, 0.10986527800559998, -0.09853857755661011, -0.038906291127204895, 0.08831224590539932, -0.03771844506263733, -0.018466953188180923, -0.02962898463010788, 0.14832240343093872, 0.181566521525383, 0.046613700687885284, 0.17438644170761108, -0.05016171187162399, -0.09780728816986084, 0.008982157334685326, -0.07837998867034912, 0.04520796239376068, 0.04666561633348465, 0.0740494504570961, -0.28416708111763, 0.06909357756376266, 0.015329469926655293, 0.05564573034644127, 0.2778698801994324, -0.010581615380942822, 0.0499701164662838, -0.01976834423840046, -0.11644387245178223, -0.07962414622306824, 0.10070712864398956, -0.17388933897018433, -0.01396607980132103, -0.002543211216107011, -0.04743237793445587, 0.08280354738235474, -0.04435691609978676, -0.08399771898984909, 0.006615950260311365, 0.042235538363456726, -0.14913888275623322, 0.20421749353408813, -0.03489188849925995, 0.052454832941293716, 0.009676958434283733, -0.016691511496901512, 0.05500997602939606, -0.03736231103539467, -0.13258035480976105, 0.19936738908290863, -0.06051070988178253, -0.3161873519420624, -0.12339948117733002, -0.1648217886686325, -0.0077984994277358055, -0.05924127623438835, 0.06759561598300934, -0.13768215477466583, -0.018818387761712074, -0.0031332294456660748, -0.01406654343008995, 0.07377778738737106, 0.001291983644478023, -0.06088361516594887, 0.012882784008979797, -0.025185467675328255, -0.0869952067732811, -0.01686810702085495, -0.040067605674266815, -0.05686040595173836, 0.05263683199882507, -0.11864631623029709, 0.006240708753466606, 0.10206524282693863, -0.05401703342795372, 0.08214619755744934, -0.03979906067252159, 0.23365609347820282, -0.12864698469638824, 0.0645255520939827, 0.04191664978861809, -0.03406146913766861, 0.023651055991649628, 0.23004558682441711, 0.04811907559633255, -0.0334591343998909, 0.06804748624563217, 0.026237135753035545, -0.029719889163970947, -0.2011002153158188, -0.11887223273515701, -0.028328947722911835, -0.009952899068593979, -0.10141757130622864, 0.025335075333714485, 0.06979318708181381, 0.05138390511274338, 0.06290236115455627, 0.05051945149898529, 0.03749451786279678, 0.04849805682897568, 0.16653504967689514, 0.004831136204302311, 0.08504987508058548, -0.09036003053188324, 0.001705470960587263, 0.07855433225631714, -0.07172352820634842, 0.15936917066574097, -0.011916682124137878, -0.04029349610209465, 0.16047176718711853, 0.05257835239171982, 0.16066975891590118, 0.01822345331311226, -0.10080580413341522, -0.022785617038607597, -0.006383923348039389, 0.012279057875275612, -0.01948397420346737, -0.0370347760617733, -0.09609577059745789, -0.06690319627523422, -0.011547846719622612, 0.06002990901470184, 0.009870093315839767, 0.11873365938663483, 0.037606511265039444, -0.12873412668704987, -0.07258091866970062, 0.008144826628267765, -0.047415778040885925, -0.04408938065171242, -0.008031095378100872, -0.0200003981590271, -0.1579550951719284, 0.09321150928735733, -0.025040477514266968, 0.10931049287319183, -0.0445743054151535, 0.04569818824529648, -0.02748613804578781, -0.17944012582302094, -0.07659486681222916, 0.14173920452594757, -0.18365202844142914, 0.38890913128852844, 0.020990721881389618, 0.03306083753705025, -0.017470261082053185, -0.08703794330358505, 0.08370968699455261, 0.257642537355423, 0.060505714267492294, 0.009005073457956314, 0.04841103404760361, -0.21486857533454895, -0.02542111836373806, 0.04516316577792168, -0.006930340547114611, -0.0032927868887782097, 0.07838792353868484, 0.021759536117315292, 0.0017871332820504904, -0.016929062083363533, -0.07191510498523712, -0.1108374297618866, -0.05582102760672569, 0.013461518101394176, -0.09998206794261932, 0.059082165360450745, -0.06552518904209137, -0.09255661070346832, 0.04352573677897453, -0.039090897887945175, -0.10962355136871338, -0.1347474902868271, -0.08513212203979492, 0.1434938758611679, -0.10495959222316742, -0.11623115092515945, 0.008131406269967556, 0.011576907709240913, 0.020789196714758873, 0.024980826303362846, -0.0705198422074318, 0.041399698704481125, -0.001627136953175068, -0.10015740990638733, 0.010306209325790405, 0.08833327144384384, 0.07959797978401184, -0.00941736064851284, 0.06584581732749939, -0.007536349818110466, 0.034256719052791595, -0.11170109361410141, -0.04322288930416107, -0.04636484757065773, -0.0006813372019678354, 0.032533932477235794, -0.046971678733825684, -0.1365661323070526, -0.05387505516409874, -0.05986872687935829, 0.19005286693572998, 0.22416165471076965, -0.05937029793858528, 0.1546185314655304, 0.18739822506904602, -0.08239410817623138, -0.2570172846317291, -0.08692428469657898, 0.014528491534292698, 0.01517229899764061, 0.037482183426618576, -0.1728874295949936, 0.1099139153957367, -0.011178846471011639, -0.00784754566848278, -0.19224177300930023, -0.14866282045841217, -0.14572420716285706, 0.16556885838508606, 0.0112213846296072, 0.2782208323478699, -0.06807383894920349, -0.0325452983379364, -0.08634750545024872, -0.08013612776994705, 0.06703097373247147, -0.16426247358322144, 0.0854288786649704, -0.08806274086236954, 0.14698612689971924, -0.03845091164112091, 0.01774783805012703, 0.09459660947322845, -0.02114497683942318, 0.056922223418951035, -0.12150360643863678, -0.12433715909719467, 0.2139880359172821, 0.016591552644968033, 0.10630936920642853, -0.04074132815003395, 0.06581617891788483, -0.3049073815345764, -0.020096685737371445, -0.11075080186128616, 0.012803401798009872, -0.03435208648443222, -0.047942593693733215, -0.027988366782665253, 0.09884597361087799, -0.0046123056672513485, -0.043417856097221375, -0.036021165549755096, -0.09518735110759735, 0.03187638893723488, -0.006388376466929913, 0.22377146780490875, -0.027914633974432945, 0.060124900192022324, -0.05536071956157684, -0.039790451526641846, 0.015551958233118057, -0.18522624671459198, -0.06629055738449097, 0.0382721871137619, 0.027415096759796143, 0.10076671838760376, 0.03779520466923714, -0.08663301169872284, 0.07378203421831131, 0.1500789225101471, -0.08952224254608154, -0.07482387125492096, -0.07644832134246826, 0.08140306919813156, 0.053749483078718185, -0.004769572522491217, 0.09601348638534546, -0.0688510611653328, -0.050090670585632324, 0.04843541234731674, -0.005820911843329668, -0.07592561095952988, 0.06351616978645325, 0.09336385875940323, 0.05847853422164917, -0.09485846757888794, 0.0638670027256012, 0.0547713041305542, 0.06379180401563644, -0.007284571882337332, 0.20296238362789154, -0.21456462144851685, -0.10430608689785004, -0.02878447435796261, 0.26068148016929626, 0.0013396242866292596, -0.04205544292926788, -0.03704608976840973, -0.07146747410297394, 0.03249751776456833, 0.28640326857566833, 0.05349790304899216, 0.005754292942583561, -0.11306197196245193, -0.04569351300597191, 0.010661848820745945, 0.1460285633802414, 0.07829124480485916, -0.03535447642207146, -0.0976579412817955, -0.02501813881099224, 0.0482025071978569, 0.12742282450199127, -0.11339081823825836, -0.10932618379592896, -0.041031304746866226, 0.022405577823519707, -0.1715216040611267, 0.00807047076523304, -0.05215195193886757, -0.024395333603024483, -0.052625663578510284, -0.03577117621898651, -0.04510129615664482, -0.028761276975274086, -0.052031729370355606, 0.04422106221318245, -0.009099844843149185, 0.08429330587387085, -0.1117825135588646, -0.04443678259849548, 0.0677647739648819, -0.005578940734267235, 0.10156477987766266, 0.03284761309623718, -0.006600739900022745, 0.11669736355543137, -0.0035702527966350317, -0.03330286592245102, 0.010671243071556091, -0.031641535460948944, 0.07699636369943619, -0.09110403060913086, -0.0042475503869354725, -0.022589463740587234, 0.08290299773216248, 0.10373494029045105, 0.16063255071640015, -0.05688850209116936, 0.032263074070215225, -0.003796905744820833, 0.034811146557331085, -0.06557256728410721, 0.04560059309005737, 0.022055594250559807, 0.1231379359960556, 0.2302858531475067, -0.09253084659576416, 0.03175992891192436, -0.07302159816026688, -0.00383277446962893, -0.04694955796003342, -0.13822633028030396, -0.07732216268777847, -0.10046271234750748, 0.015092078596353531, -0.050718966871500015, 0.20539270341396332, 0.113290935754776, -0.06845692545175552, 0.06665794551372528, 0.06275579333305359, -0.005104538518935442, -0.026365794241428375, 0.1772526651620865, 0.053995367139577866, 0.05729550123214722, -0.034527845680713654, 0.026978764683008194, -0.10800491273403168, -0.039190568029880524, 0.09591411799192429, 0.03490934520959854, 0.06588249653577805, -0.013666504994034767, 0.12035855650901794, 0.0587628148496151, -0.04273802787065506, -0.19668269157409668, -0.1008288636803627, 0.0577714629471302, -0.07363773882389069, 0.08302810043096542, 0.19529035687446594, -0.11764732748270035, 0.03081914409995079, -0.05178924649953842, -0.11169786006212234, -0.08846587687730789, -0.12364363670349121, -0.06474372744560242, -0.10760825127363205, 0.03817867487668991, -0.0893210768699646, -0.06066376715898514, 0.12496570497751236, 0.07726755738258362, -0.04665759950876236, 0.22699202597141266, -0.09707750380039215, -0.03242941573262215, 0.11329003423452377, -0.042099785059690475, -0.058099403977394104, -0.12408498674631119, 0.1553635597229004, -0.10398659110069275, 0.02485707774758339, -0.05758470296859741, -0.006059370934963226, -0.11648432165384293, -0.022763438522815704, -0.062448348850011826, -0.08693323284387589, 0.01299089565873146, 0.05602357164025307, 0.023672539740800858, 0.12170897424221039, 0.009964833967387676, 0.03278140723705292, 0.015719667077064514, 0.23328502476215363, 0.0453466922044754, -0.19719573855400085, -0.0981014296412468, 0.19385415315628052, 0.03160174563527107, 0.022843191400170326, -0.0031962792854756117, -0.042018283158540726, 0.010360482148826122, 0.21849645674228668, 0.2794381380081177, -0.054377615451812744, 0.03091403841972351, -0.05958943068981171, 0.03873156011104584, -0.004694556817412376, 0.16050605475902557, 0.030301421880722046, 0.13036733865737915, -0.1278757005929947, 0.010223261080682278, -0.08113320916891098, -0.08241000771522522, -0.0406472273170948, 0.012456288561224937, 0.14214655756950378, -0.07770591229200363, -0.06746313720941544, 0.19766949117183685, -0.20915621519088745, -0.12834890186786652, -0.11964273452758789, -0.0593067929148674, -0.1253032386302948, -0.09105736017227173, -0.09740415960550308, 0.026728661730885506, 0.0520271472632885, 0.02869606763124466, 0.06197727471590042, 0.062317948788404465, 0.0612124539911747, -0.09853597730398178, -0.0984400138258934, 0.20871417224407196, -0.033555760979652405, 0.006787971593439579, -0.06960907578468323, 0.11003165692090988, 0.05862651392817497, -0.013893716968595982, -0.02643444947898388, 0.10396412760019302, 0.01862364076077938, 0.1190347969532013, -0.04182180389761925, 0.10305341333150864, 0.04281139373779297, -0.12496595829725266, 0.037613172084093094, -0.12849290668964386, 0.09588833153247833, -0.16925020515918732, -0.06081182509660721, -0.07707038521766663, 0.11733271181583405, -0.002700298558920622, 0.06465326249599457, 0.15494604408740997, -0.06027694046497345, 0.013915922492742538, -0.057763516902923584, 0.0015269313007593155, 0.0017053615301847458, -0.14544761180877686, -0.04433424025774002, -0.10760273784399033, -0.024149354547262192, -0.029184788465499878, -0.005333393812179565, -0.26992931962013245, 0.01674925908446312, -0.0826367512345314, 0.01162927970290184, 0.014796038158237934, 0.16988277435302734, 0.06147749722003937, 0.0401214100420475, -0.016750440001487732, -0.12083283811807632, -0.04362202808260918, 0.047572892159223557, -0.20668701827526093, -0.10912665724754333 ]
null
null
transformers
# Wav2vec 2.0 large VoxRex Swedish (C) Experiment with LM model. **Disclaimer:** This is a work in progress. See [VoxRex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) for more details. **Update 2022-01-10:** Updated to VoxRex-C version. Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **2.5%**. WER for Common Voice test set is **8.49%** directly and **7.37%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. # Performance\* ![Comparison](comparison.png "Comparison") <center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center> ## Training This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>. ![WER during training](chart_1.svg "WER") ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
{"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice", "NST Swedish ASR Database", "P4"], "metrics": ["wer"], "model-index": [{"name": "Wav2vec 2.0 large VoxRex Swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 9.914, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/lm-swedish
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "sv", "license:cc0-1.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #sv #license-cc0-1.0 #model-index #endpoints_compatible #region-us
# Wav2vec 2.0 large VoxRex Swedish (C) Experiment with LM model. Disclaimer: This is a work in progress. See VoxRex for more details. Update 2022-01-10: Updated to VoxRex-C version. Finetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. # Performance\* !Comparison <center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center> ## Training This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>. !WER during training ## Usage The model can be used directly (without a language model) as follows:
[ "# Wav2vec 2.0 large VoxRex Swedish (C)\n\nExperiment with LM model. \n\nDisclaimer: This is a work in progress. See VoxRex for more details.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>", "## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training", "## Usage\nThe model can be used directly (without a language model) as follows:" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #sv #license-cc0-1.0 #model-index #endpoints_compatible #region-us \n", "# Wav2vec 2.0 large VoxRex Swedish (C)\n\nExperiment with LM model. \n\nDisclaimer: This is a work in progress. See VoxRex for more details.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>", "## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training", "## Usage\nThe model can be used directly (without a language model) as follows:" ]
[ 57, 155, 41, 101, 20 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #sv #license-cc0-1.0 #model-index #endpoints_compatible #region-us \n# Wav2vec 2.0 large VoxRex Swedish (C)\n\nExperiment with LM model. \n\nDisclaimer: This is a work in progress. See VoxRex for more details.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training## Usage\nThe model can be used directly (without a language model) as follows:" ]
[ -0.07926260679960251, 0.10282541811466217, -0.004340698942542076, -0.023779572919011116, 0.04732692241668701, 0.011325010098516941, -0.013057422824203968, 0.09180358052253723, -0.031074464321136475, 0.12967608869075775, 0.04790427163243294, 0.00806579552590847, 0.05850596725940704, 0.016163595020771027, 0.04171126335859299, -0.17682231962680817, 0.052579186856746674, -0.07421708106994629, 0.17967508733272552, 0.04167947918176651, 0.09923677891492844, -0.03466051444411278, 0.00418016966432333, 0.04941942170262337, -0.0013603550614789128, 0.021894171833992004, 0.03956383839249611, -0.02761927619576454, 0.14170630276203156, 0.02440270595252514, 0.0030508937779814005, 0.020604083314538002, 0.03132929652929306, -0.21685121953487396, 0.020015699788928032, 0.09263169020414352, 0.04688859358429909, 0.029067877680063248, 0.08351031690835953, 0.046815212815999985, 0.1999102085828781, -0.034031786024570465, -0.038396935909986496, 0.061249762773513794, -0.028677916154265404, -0.056818872690200806, -0.14410696923732758, 0.0246712788939476, 0.08409050852060318, 0.10189443081617355, -0.05701446533203125, 0.12888765335083008, -0.041729193180799484, 0.08758501708507538, 0.09669375419616699, -0.25588297843933105, 0.0052905818447470665, 0.059252046048641205, 0.056266363710165024, 0.022651048377156258, -0.06789417564868927, 0.06781134009361267, 0.0620897002518177, 0.0028353966772556305, -0.09185465425252914, 0.028661556541919708, -0.13009561598300934, -0.049738623201847076, -0.08782468736171722, -0.05831914022564888, 0.15523600578308105, 0.0464591383934021, -0.1141534298658371, -0.11005280166864395, -0.018375486135482788, -0.13379797339439392, 0.015874959528446198, -0.07169565558433533, 0.0016252407804131508, 0.02353256568312645, 0.037402719259262085, -0.09568538516759872, -0.1079210564494133, -0.0398356094956398, -0.004120672587305307, -0.005334950052201748, 0.03628145158290863, 0.009062069468200207, 0.06206584721803665, 0.10470884293317795, -0.24539975821971893, -0.013761813752353191, -0.04306074604392052, -0.017413372173905373, -0.15282629430294037, -0.05183941870927811, -0.05280369147658348, -0.2554801106452942, 0.006460496690124273, 0.09585834294557571, -0.01868283934891224, 0.03987805172801018, -0.129079207777977, -0.004831101279705763, -0.005141633562743664, 0.11313329637050629, -0.1252109855413437, 0.015123527497053146, 0.05708400160074234, -0.03662073239684105, 0.07925809919834137, -0.01590728387236595, -0.018812270835042, -0.023834632709622383, 0.10889653861522675, 0.07340274006128311, -0.01039075292646885, -0.02682514861226082, -0.07757239043712616, 0.01927514746785164, 0.06929227709770203, -0.10130524635314941, 0.03421499952673912, -0.0021809227764606476, 0.04524371400475502, 0.11962816119194031, 0.07153317332267761, 0.05596539378166199, -0.0953507348895073, 0.052913449704647064, -0.007381103001534939, -0.04235647991299629, -0.015308153815567493, -0.05191843956708908, 0.09267691522836685, -0.06974063813686371, -0.04091913253068924, -0.05049533024430275, -0.08773107081651688, -0.05663531273603439, -0.028446460142731667, -0.021988432854413986, -0.08740256726741791, -0.01667695865035057, -0.062175218015909195, -0.001598301692865789, -0.022598015144467354, 0.061154481023550034, -0.02843133546411991, 0.02546871080994606, -0.03820664435625076, 0.030238507315516472, 0.019526885822415352, -0.0014591687358915806, -0.04636858031153679, 0.02137329988181591, -0.023463841527700424, 0.0857827439904213, -0.09201852977275848, -0.17040316760540009, -0.06857423484325409, 0.003477643011137843, -0.1269199103116989, 0.00947660394012928, 0.09452128410339355, 0.11049941182136536, -0.3034838140010834, -0.013600202277302742, 0.12827089428901672, -0.11137626320123672, 0.030110342428088188, 0.19387665390968323, 0.03795963525772095, -0.012326948344707489, 0.10106562823057175, 0.14104224741458893, 0.06846266239881516, -0.21697182953357697, -0.14703601598739624, -0.011779229156672955, -0.06852618604898453, 0.10053759068250656, 0.004978837911039591, -0.10113025456666946, 0.09320547431707382, 0.042765356600284576, 0.02922658622264862, -0.04295605048537254, -0.01117260567843914, -0.04987628385424614, -0.05098864063620567, -0.035710375756025314, 0.0690620094537735, 0.006863162387162447, -0.043155770748853683, -0.08478282392024994, -0.15306177735328674, -0.07639249414205551, 0.1095789447426796, -0.0459752231836319, 0.0940924808382988, -0.06522496789693832, 0.02248533070087433, -0.07546684145927429, 0.00808407086879015, -0.13769248127937317, 0.009534439072012901, 0.04116297885775566, 0.021755842491984367, 0.06408888846635818, 0.06592723727226257, 0.041862186044454575, 0.015046718530356884, -0.060807257890701294, 0.023333100602030754, -0.05326155945658684, -0.008384176529943943, -0.04848163574934006, -0.10801343619823456, -0.06635486334562302, -0.029469218105077744, 0.15892699360847473, -0.16643205285072327, -0.06599590927362442, 0.10330072790384293, 0.17115019261837006, -0.011539118364453316, -0.11501959711313248, 0.039700768887996674, 0.015097799710929394, -0.014073343947529793, -0.02973915822803974, -0.04301276057958603, 0.0001417048624716699, -0.05076207220554352, 0.1281304657459259, -0.12199653685092926, -0.202925905585289, 0.042030639946460724, 0.10460368543863297, -0.0432211235165596, 0.14869904518127441, -0.040989603847265244, -0.054298385977745056, -0.07978139072656631, -0.11533235013484955, 0.17197886109352112, 0.07886622846126556, 0.03642112761735916, -0.05923504754900932, 0.016247855499386787, 0.02488594874739647, -0.0562361478805542, -0.046300191432237625, 0.04150304198265076, 0.004434641450643539, 0.013745106756687164, -0.04758339375257492, -0.09658825397491455, -0.0945219174027443, 0.15855436027050018, -0.020547758787870407, -0.10503800958395004, 0.0032527800649404526, -0.03787653148174286, 0.0323270820081234, 0.07408344000577927, -0.032380931079387665, 0.06660003960132599, 0.039172831922769547, 0.009962891228497028, 0.05922942981123924, -0.11401274055242538, 0.06041879579424858, 0.016855891793966293, -0.08631327748298645, 0.0023643565364181995, 0.07964043319225311, -0.034524936228990555, 0.05172779783606529, -0.0663829818367958, 0.0011105731828138232, -0.023508785292506218, -0.011438538320362568, -0.1400277018547058, 0.041449934244155884, -0.09653233736753464, -0.19449558854103088, -0.19291171431541443, 0.08437252789735794, -0.06351467221975327, 0.0016389021184295416, 0.04008202254772186, -0.09375488758087158, -0.0698084756731987, -0.10400144755840302, -0.033372268080711365, -0.01039096713066101, -0.028318772092461586, -0.022410990670323372, -0.02690897509455681, 0.05138532817363739, -0.11724472045898438, 0.03196360543370247, -0.04705760255455971, -0.08374150097370148, -0.034205641597509384, 0.050863511860370636, 0.09114867448806763, 0.16336709260940552, 0.006384409498423338, -0.020361725240945816, 0.005482573062181473, 0.0923406109213829, -0.10403887182474136, 0.0705164223909378, 0.14878720045089722, -0.006827694363892078, 0.011068652383983135, 0.058649756014347076, 0.00833930354565382, -0.03592008724808693, -0.01507811713963747, 0.07493963837623596, -0.06210993602871895, -0.2755958139896393, -0.10820811241865158, -0.04407109320163727, -0.05766628682613373, -0.034611668437719345, 0.03949495404958725, 0.046566370874643326, -0.03152605518698692, -0.0661388412117958, -0.008308961056172848, 0.037776555866003036, 0.0014200512086972594, 0.14480265974998474, -0.010787926614284515, 0.03794245794415474, -0.05176730826497078, 0.029499631375074387, 0.07194685190916061, 0.03172232583165169, 0.07315512001514435, 0.02052471786737442, 0.20114949345588684, 0.049718063324689865, 0.09760954976081848, -0.0044318921864032745, 0.032614897936582565, 0.02321062795817852, 0.0049071707762777805, 0.024849966168403625, -0.08757524937391281, -0.056114278733730316, 0.002551720943301916, 0.17183396220207214, -0.03931566700339317, -0.02676311321556568, 0.0787249282002449, 0.015065113082528114, 0.19102618098258972, 0.07912730425596237, -0.09002232551574707, -0.07730818539857864, -0.028940929099917412, -0.08120877295732498, -0.025414129719138145, -0.0101148197427392, 0.10068323463201523, -0.14371681213378906, 0.07370641827583313, -0.013335321098566055, 0.06192625313997269, -0.06466900557279587, 0.025368589907884598, -0.08515745401382446, 0.10659372061491013, 0.03093300200998783, 0.08346930146217346, -0.12718746066093445, 0.08897243440151215, 0.03491845354437828, 0.1648448407649994, -0.0658411756157875, 0.032008636742830276, -0.021990658715367317, -0.04259010776877403, 0.1358959674835205, -0.007838013581931591, -0.03559710457921028, 0.013552234508097172, -0.10525087267160416, -0.009684490971267223, 0.05470316857099533, 0.07585165649652481, 0.05730750784277916, 0.017492108047008514, -0.016836341470479965, 0.02016577683389187, 0.01864994503557682, -0.21227751672267914, -0.1407974511384964, 0.07701890915632248, 0.1174587532877922, 0.028500571846961975, -0.04291732236742973, -0.08483757078647614, -0.12708404660224915, 0.18994785845279694, -0.0794563964009285, -0.007465033791959286, -0.08964821696281433, -0.006001138594001532, 0.23583823442459106, -0.0077385674230754375, -0.003731014207005501, 0.03067777119576931, 0.1867339313030243, -0.0942305326461792, -0.005740320775657892, -0.05250506475567818, -0.06266886740922928, -0.14353498816490173, -0.0044885971583426, 0.2576979100704193, -0.032771702855825424, 0.05868275836110115, 0.03751567378640175, 0.024638982489705086, 0.04591437429189682, -0.07695160806179047, 0.05305911973118782, 0.12357936799526215, -0.1499233990907669, 0.07056962698698044, 0.04477187246084213, -0.03923134505748749, -0.07740100473165512, -0.0683293417096138, 0.1076815277338028, 0.1733619123697281, -0.06757976114749908, 0.1604584902524948, 0.03850105032324791, -0.1245829164981842, -0.20290398597717285, -0.06477683037519455, 0.1036778911948204, 0.07062402367591858, 0.04452212527394295, -0.030771905556321144, 0.03701742738485336, 0.08030102401971817, -0.02731570228934288, -0.023520642891526222, -0.1782340407371521, -0.15183024108409882, 0.04052345082163811, -0.07449119538068771, 0.004044902976602316, 0.004948068410158157, -0.05588531866669655, -0.04108138754963875, -0.03160689398646355, 0.0007331493543460965, -0.0658978670835495, 0.09886657446622849, 0.06510613113641739, 0.03685329481959343, 0.08103815466165543, -0.05656178295612335, 0.12915635108947754, -0.005692469421774149, -0.04479910060763359, 0.039818789809942245, 0.10055822879076004, 0.02440408430993557, -0.00760544091463089, 0.15740543603897095, 0.07279264181852341, 0.016425443813204765, -0.025514032691717148, -0.02805745229125023, -0.060123734176158905, 0.08948271721601486, -0.033229582011699677, 0.009206651709973812, -0.023396918550133705, -0.017180217429995537, 0.03522292152047157, 0.016314750537276268, 0.05346781760454178, -0.0745958611369133, 0.01307239942252636, 0.20183740556240082, 0.16843923926353455, -0.006842266768217087, -0.10749475657939911, 0.029215771704912186, -0.053610168397426605, 0.015709616243839264, -0.005575063172727823, 0.05409311130642891, 0.07133756577968597, 0.021069305017590523, 0.04943213239312172, -0.03796966001391411, -0.22509384155273438, 0.029356898739933968, 0.030971135944128036, -0.07210713624954224, -0.1533319503068924, -0.02028370276093483, -0.01951749250292778, -0.0591743066906929, 0.00018004272715188563, 0.17863982915878296, -0.10962049663066864, -0.0011495179496705532, 0.011236675083637238, 0.05577497556805611, -0.06724148988723755, 0.17461399734020233, -0.005136309191584587, 0.04783455282449722, -0.07165475934743881, 0.13945332169532776, 0.07293044030666351, -0.09095464646816254, 0.1036725714802742, -0.04067371413111687, -0.03738696873188019, -0.036374568939208984, -0.05298951640725136, -0.00030414649518206716, 0.0619841068983078, -0.08832229673862457, -0.003950211219489574, -0.025546526536345482, -0.0003958278684876859, -0.02781202644109726, -0.01827644370496273, 0.08828960359096527, -0.07682148367166519, -0.034486643970012665, -0.1537688970565796, 0.06246471032500267, 0.11714339256286621, 0.054759591817855835, -0.12229600548744202, 0.11689218133687973, -0.020758818835020065, 0.03347280994057655, -0.012294652871787548, -0.01812625303864479, 0.025861117988824844, 0.015188694931566715, -0.03756316006183624, -0.005730807315558195, -0.022198501974344254, -0.04389338195323944, 0.03543801233172417, -0.003621256910264492, -0.021046841517090797, 0.08184531331062317, -0.040917620062828064, -0.04357901215553284, -0.04794464260339737, 0.0448465459048748, -0.09438043087720871, 0.05477077513933182, 0.03827408328652382, -0.06416569650173187, 0.053768694400787354, 0.04989873990416527, -0.010162975639104843, 0.11407898366451263, -0.17579707503318787, -0.022387875244021416, 0.03664577752351761, 0.0271525289863348, -0.046611860394477844, -0.08074113726615906, -0.009388902224600315, 0.07274628430604935, 0.027961136773228645, -0.02535180374979973, -0.051803216338157654, -0.06242911145091057, -0.06354879587888718, -0.015519705601036549, 0.021312830969691277, -0.03899558633565903, 0.05003718286752701, 0.06760527193546295, 0.05694907158613205, 0.13060912489891052, -0.07642509788274765, 0.02024790085852146, -0.11959535628557205, 0.025470569729804993, -0.07153230160474777, 0.02782456763088703, -0.05032363533973694, 0.020694104954600334, 0.07655609399080276, -0.03048926219344139, 0.05216923728585243, -0.03700235113501549, 0.06479427963495255, 0.004188441205769777, -0.009272310882806778, -0.11633595079183578, 0.01649673841893673, 0.12149685621261597, 0.03996039554476738, 0.020612560212612152, -0.06101880222558975, -0.0866975486278534, -0.018853450194001198, 0.04522784426808357, 0.028676895424723625, 0.04194777458906174, 0.07139024883508682, 0.11501360684633255, 0.05262753739953041, -0.0792933851480484, -0.025000132620334625, 0.05914650857448578, -0.10072067379951477, 0.07020936906337738, -0.002197487512603402, 0.016972316429018974, 0.11217391490936279, -0.14095617830753326, 0.12010718882083893, 0.016609717160463333, -0.08238399028778076, -0.11003101617097855, -0.18054448068141937, -0.05871473625302315, -0.0533631332218647, 0.0511062927544117, -0.11130693554878235, 0.12231985479593277, 0.027378156781196594, 0.005382852628827095, -0.027811627835035324, 0.14704754948616028, -0.1375020295381546, -0.09403173625469208, 0.08229659497737885, -0.03896462172269821, -0.010608806274831295, 0.03281058371067047, 0.012619650922715664, 0.10032085329294205, 0.009392890147864819, 0.08865998685359955, 0.03288017213344574, 0.07406746596097946, 0.06126022711396217, -0.020871547982096672, -0.07612640410661697, 0.05165012180805206, -0.030986815690994263, 0.08287547528743744, 0.13082215189933777, 0.08019789308309555, -0.04465357959270477, -0.025021804496645927, 0.15808872878551483, -0.042049139738082886, -0.055627863854169846, -0.1485816389322281, 0.1382284313440323, 0.0359150692820549, 0.03278467059135437, -0.02787281759083271, -0.11658206582069397, 0.04878133535385132, 0.12831631302833557, 0.055698443204164505, 0.04010087624192238, -0.022093651816248894, -0.036122821271419525, -0.015598227269947529, -0.05322053283452988, 0.07797738909721375, 0.020075347274541855, 0.1399867832660675, -0.018136251717805862, 0.13252583146095276, -0.007468729745596647, -0.02613290213048458, -0.08565225452184677, 0.11782204359769821, -0.09075456857681274, -0.06574421375989914, 0.030562886968255043, 0.1214851513504982, -0.040828924626111984, -0.2053334265947342, -0.13375402987003326, -0.07586359977722168, -0.09903771430253983, 0.017129385843873024, 0.07069894671440125, 0.02395038865506649, 0.03674826771020889, -0.006460010539740324, 0.003271419322118163, 0.16232189536094666, -0.020796088501811028, -0.035907771438360214, -0.006076782010495663, -0.05720853805541992, -0.010563434101641178, 0.13270162045955658, 0.05203012749552727, 0.13902385532855988, 0.030766600742936134, 0.02409413456916809, -0.06853189319372177, 0.09666828066110611, 0.006235858425498009, -0.16747836768627167, 0.07184037566184998, 0.22742104530334473, -0.003773468779399991, 0.07953424751758575, 0.015913689509034157, -0.13042375445365906, 0.023728596046566963, 0.08754095435142517, 0.04417130723595619, -0.017231205478310585, 0.10711725801229477, -0.09491579234600067, 0.11582423001527786, 0.07406572252511978, -0.04031766206026077, 0.03293628990650177, -0.0747736245393753, 0.02152421325445175, -0.007037017028778791, 0.1155300959944725, 0.03182582929730415, -0.1980227380990982, 0.02740044891834259, -0.04078369960188866, -0.01639978028833866, -0.08216582983732224, -0.06885523349046707, 0.03545520827174187, -0.061670199036598206, -0.021017009392380714, 0.08648699522018433, 0.08989530801773071, -0.03587362915277481, 0.012236139737069607, 0.030276428908109665, 0.05014501512050629, 0.07887109369039536, -0.12141724675893784, -0.08037211745977402 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-swedish-wikiann This model is a fine-tuned version of [nordic-roberta-wiki](hhttps://huggingface.co/flax-community/nordic-roberta-wiki) trained for NER on the wikiann dataset. eval F1-Score: **83,78** test F1-Score: **83,76** ## Model Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) ``` <!-- ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9086903597787154e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results It achieves the following results on the evaluation set: - Loss: 0.3156 - Precision: 0.8332 from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) - F1: 0.8378 - Accuracy: 0.9193 It achieves the following results on the test set: - Loss: 0.3023 - Precision: 0.8301 - Recall: 0.8452 - F1: 0.8376 - Accuracy: 0.92 ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2 -->
{"license": "apache-2.0", "tags": ["token-classification"], "datasets": ["wikiann"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "ner-swedish-wikiann", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "wikiann", "type": "wikiann"}, "metrics": [{"type": "precision", "value": 0.8331921416757433, "name": "Precision"}, {"type": "recall", "value": 0.84243586083126, "name": "Recall"}, {"type": "f1", "value": 0.8377885044416501, "name": "F1"}, {"type": "accuracy", "value": 0.91930707459758, "name": "Accuracy"}]}]}]}
token-classification
birgermoell/ner-swedish-wikiann
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #token-classification #dataset-wikiann #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# ner-swedish-wikiann This model is a fine-tuned version of nordic-roberta-wiki trained for NER on the wikiann dataset. eval F1-Score: 83,78 test F1-Score: 83,76 ## Model Usage
[ "# ner-swedish-wikiann\n\nThis model is a fine-tuned version of nordic-roberta-wiki trained for NER on the wikiann dataset.\n\neval F1-Score: 83,78 \n\ntest F1-Score: 83,76", "## Model Usage" ]
[ "TAGS\n#transformers #pytorch #roberta #token-classification #dataset-wikiann #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# ner-swedish-wikiann\n\nThis model is a fine-tuned version of nordic-roberta-wiki trained for NER on the wikiann dataset.\n\neval F1-Score: 83,78 \n\ntest F1-Score: 83,76", "## Model Usage" ]
[ 56, 57, 4 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #token-classification #dataset-wikiann #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# ner-swedish-wikiann\n\nThis model is a fine-tuned version of nordic-roberta-wiki trained for NER on the wikiann dataset.\n\neval F1-Score: 83,78 \n\ntest F1-Score: 83,76## Model Usage" ]
[ -0.08875424414873123, 0.10241816192865372, -0.0016468525864183903, 0.13502702116966248, 0.02997990883886814, -0.024501964449882507, 0.09463243186473846, 0.047997768968343735, -0.0034048452507704496, -0.032320212572813034, 0.16091500222682953, 0.11068986356258392, 0.02163880690932274, 0.11345931887626648, -0.02370690554380417, -0.2380894124507904, 0.09097328037023544, 0.013481753878295422, 0.0264528039842844, 0.10820447653532028, 0.11183716356754303, -0.021666238084435463, 0.052326224744319916, 0.09726647287607193, -0.11994175612926483, 0.04046512767672539, 0.030242912471294403, -0.1005106270313263, 0.13007742166519165, 0.043309684842824936, 0.12153594195842743, 0.031190359964966774, 0.08763176202774048, -0.11871291697025299, 0.01786603219807148, -0.03660283237695694, -0.016802947968244553, 0.06197568029165268, 0.024943016469478607, -0.001562207005918026, 0.15771515667438507, 0.08471120148897171, 0.02385891042649746, -0.00504156481474638, -0.048167526721954346, -0.12718170881271362, -0.060438647866249084, 0.10862497985363007, 0.03406691923737526, 0.07273507863283157, 0.01492809783667326, 0.1873665153980255, -0.19252410531044006, 0.08889027684926987, 0.1252046525478363, -0.2727934718132019, -0.06498971581459045, 0.11749623715877533, -0.034962497651576996, -0.0714246928691864, -0.05033889040350914, 0.0558522492647171, 0.07471057027578354, 0.03464524447917938, 0.08103644847869873, -0.02294171415269375, -0.16193917393684387, 0.02239805832505226, -0.1101715937256813, 0.025385385379195213, 0.19336648285388947, 0.07248518615961075, -0.03184707090258598, 0.0217791385948658, -0.00758980680257082, 0.04751428961753845, -0.013532576151192188, -0.06856818497180939, -0.058258235454559326, -0.05634371191263199, 0.020076796412467957, -0.030912071466445923, -0.07775836437940598, -0.04723966494202614, -0.16840529441833496, 0.19409893453121185, 0.03756635636091232, 0.06659922748804092, -0.09004288911819458, 0.031966760754585266, -0.1312028467655182, -0.10534722357988358, -0.04055226966738701, -0.09101861715316772, -0.03935576602816582, -0.037397049367427826, -0.029949482530355453, 0.0035454670432955027, 0.09557082504034042, 0.22899118065834045, 0.023059453815221786, -0.018192989751696587, 0.06275870651006699, 0.03586618974804878, -0.005610177759081125, 0.07154596596956253, -0.057990286499261856, -0.12767058610916138, 0.08400975167751312, -0.10582572221755981, -0.008563432842493057, -0.014275742694735527, -0.09810249507427216, -0.08256310969591141, 0.05955260619521141, -0.03166177123785019, -0.011915363371372223, 0.03792738914489746, -0.0019372403621673584, -0.026048099622130394, 0.14150232076644897, -0.05948876962065697, -0.014526932500302792, -0.011265244334936142, -0.07787959277629852, 0.10930297523736954, 0.02350667305290699, 0.04018966853618622, -0.03883815556764603, 0.11673232167959213, -0.03197994455695152, -0.06111392006278038, 0.0006579969194717705, -0.0724167749285698, 0.07499615103006363, -0.13265873491764069, 0.058090128004550934, -0.1587027907371521, -0.16128721833229065, -0.006116315256804228, 0.09945832192897797, -0.00818305928260088, -0.09815015643835068, -0.05187399312853813, -0.026023736223578453, 0.04932849481701851, -0.050849758088588715, -0.04402826726436615, -0.03628075495362282, -0.0418967679142952, -0.060112323611974716, 0.07936210930347443, -0.1554407924413681, 0.0079036895185709, -0.12349693477153778, -0.008255811408162117, -0.10360431671142578, -0.04076066613197327, -0.15018248558044434, 0.0350150540471077, -0.10723171383142471, -0.0430876761674881, -0.02566973678767681, -0.014222261495888233, 0.05081553012132645, 0.14186447858810425, -0.08753913640975952, -0.055462758988142014, 0.10473734140396118, -0.12871339917182922, -0.10582174360752106, 0.120902881026268, -0.025243129581212997, 0.0520586334168911, 0.09177357703447342, 0.17065727710723877, 0.1439923495054245, -0.08030106127262115, 0.022245343774557114, 0.04631197080016136, -0.05383020266890526, -0.18924081325531006, 0.04504641890525818, 0.05939401686191559, -0.12826089560985565, 0.08385954052209854, -0.020170951262116432, 0.08169770985841751, -0.03033226914703846, -0.07886531949043274, -0.010622642934322357, -0.08967775106430054, 0.05084173381328583, 0.02785574272274971, 0.09992743283510208, -0.06631424278020859, -0.026501672342419624, 0.0096870893612504, 0.08136609941720963, -0.01699889823794365, 0.021962111815810204, -0.06328386068344116, 0.11089532822370529, -0.09658429771661758, -0.0195389986038208, -0.07666872441768646, -0.12046582251787186, -0.04964989051222801, -0.06460953503847122, 0.03541693836450577, 0.06717993319034576, 0.05868925154209137, -0.015810739248991013, -0.018066929653286934, 0.054501693695783615, 0.030382594093680382, 0.056920185685157776, -0.00200493261218071, -0.19203777611255646, 0.03354381397366524, -0.023449314758181572, 0.022415677085518837, -0.14446988701820374, -0.04233762249350548, -0.03150862082839012, 0.14481040835380554, -0.039938606321811676, 0.05629873648285866, -0.0259868074208498, 0.025426290929317474, -0.06947042793035507, 0.03447231277823448, 0.07087276875972748, -0.02742139995098114, -0.06423433870077133, 0.13411647081375122, 0.11252842098474503, 0.13283029198646545, 0.12011579424142838, -0.0354558601975441, -0.0349089652299881, 0.0505296029150486, -0.009985287673771381, -0.03499066084623337, -0.026473158970475197, 0.11931797862052917, 0.0312394630163908, 0.011593017727136612, 0.0752202644944191, -0.061338625848293304, -0.02423284761607647, 0.08101435005664825, -0.08806218951940536, -0.0008414057665504515, 0.13272449374198914, 0.174934983253479, -0.26693201065063477, 0.0953478217124939, 0.09615521132946014, -0.15540888905525208, 0.15033167600631714, 0.013445001095533371, -0.039072103798389435, 0.014754604548215866, -0.08655882626771927, -0.008863100782036781, 0.11686443537473679, -0.045815806835889816, 0.004836418200284243, 0.05473858118057251, 0.033042531460523605, 0.04345773160457611, -0.06445130705833435, -0.04977333918213844, 0.007570903282612562, -0.020133694633841515, -0.017987648025155067, 0.08949697762727737, -0.05754100903868675, 0.06983260065317154, -0.011400899849832058, -0.22219595313072205, 0.06077847257256508, 0.03157106786966324, -0.08325754106044769, 0.17279207706451416, -0.029871448874473572, -0.11282740533351898, -0.14002296328544617, -0.05503604933619499, -0.13670256733894348, -0.04712771996855736, 0.06133495643734932, -0.04942081496119499, -0.05773075297474861, -0.016799937933683395, -0.04339740425348282, 0.015025192871689796, 0.011794356629252434, -0.053872767835855484, -0.05409250035881996, -0.016700811684131622, -0.08903291821479797, -0.016291750594973564, -0.03949568793177605, 0.049311935901641846, 0.059195004403591156, -0.12026375532150269, 0.13563847541809082, 0.05783673748373985, -0.03202943876385689, 0.03432353958487511, 0.033843640238046646, 0.25729066133499146, -0.05057868734002113, 0.08418245613574982, 0.058294929563999176, -0.06386887282133102, 0.030527330935001373, 0.11277783662080765, 0.037696827203035355, -0.013492606580257416, -0.030263982713222504, 0.02926125004887581, -0.0841006487607956, -0.25824350118637085, -0.08869615942239761, -0.02299649268388748, 0.0068982127122581005, 0.0689702257514, 0.029982222244143486, 0.03887690603733063, 0.14306196570396423, 0.06434763967990875, -0.06458167731761932, -0.07996772229671478, 0.055963847786188126, 0.1826956570148468, 0.060675960034132004, 0.12512899935245514, -0.07816749066114426, -0.047190383076667786, 0.07574968785047531, 0.046482816338539124, 0.1357540488243103, 0.05458053573966026, 0.029436947777867317, 0.04886727035045624, 0.22051475942134857, 0.09024171531200409, 0.13448408246040344, 0.019503427669405937, -0.052196063101291656, 0.03676168620586395, -0.013635142706334591, 0.012839876115322113, 0.02164025418460369, -0.08042921870946884, -0.07419370114803314, 0.0047762528993189335, -0.025316452607512474, 0.01084650307893753, 0.1363818198442459, 0.09250222146511078, -0.24463744461536407, -0.0756409615278244, -0.03439103066921234, -0.060750991106033325, -0.020107155665755272, 0.06003623455762863, -0.02448420226573944, -0.1362372785806656, 0.12598571181297302, -0.014813316985964775, 0.11494767665863037, -0.005559442099183798, -0.0050550056621432304, -0.045987240970134735, 0.0303952656686306, -0.0008329881238751113, 0.11885499954223633, -0.1444641798734665, 0.23313330113887787, -0.026572080329060555, 0.033379584550857544, -0.07284039258956909, -0.06933324784040451, 0.03192184120416641, 0.17986193299293518, 0.17104585468769073, 0.03646213188767433, -0.11419235914945602, -0.005310835316777229, -0.08227382600307465, 0.0605132095515728, -0.05359592288732529, -0.012055942788720131, 0.043568503111600876, 0.012306352145969868, 0.0026782879140228033, -0.011642269790172577, 0.0996161699295044, -0.10722365230321884, -0.06468075513839722, -0.03070382960140705, 0.11482606083154678, -0.10679959505796432, 0.01219788659363985, -0.12391404807567596, -0.2547813057899475, 0.21469931304454803, 0.031202608719468117, -0.03635873273015022, -0.12943637371063232, 0.005871220957487822, 0.08597353845834732, -0.11392953991889954, 0.024210087954998016, -0.05309842526912689, 0.022656675428152084, -0.07747826725244522, -0.12230661511421204, 0.046246014535427094, -0.10407784581184387, -0.017833830788731575, 0.027663394808769226, 0.02745905891060829, 0.1070822924375534, -0.007604080252349377, 0.09065786004066467, 0.027868617326021194, -0.03633856773376465, -0.12389488518238068, -0.031126489862799644, 0.020970141515135765, -0.07440779358148575, -0.08157411962747574, 0.05714627355337143, 0.001008038641884923, -0.04151320084929466, -0.022860771045088768, 0.17745551466941833, 0.09745373576879501, -0.11102692037820816, 0.07997623831033707, 0.2023310512304306, -0.05385580286383629, -0.27844879031181335, -0.05115174502134323, 0.010621115565299988, 0.03458539769053459, -0.010065584443509579, -0.07721544057130814, 0.27603599429130554, 0.09478887915611267, -0.07296078652143478, 0.0209796279668808, -0.007112766616046429, -0.10358753055334091, 0.18653525412082672, 0.06492402404546738, 0.3959839344024658, 0.011991540901362896, 0.0006265214178711176, -0.01959409937262535, -0.1876789927482605, 0.13763435184955597, -0.1221243217587471, 0.04955802112817764, -0.06151903048157692, 0.10480695217847824, 0.007568270433694124, -0.04011226072907448, 0.10039936751127243, 0.046066831797361374, 0.0006505773635581136, -0.06891979277133942, 0.08437125384807587, 0.025160303339362144, -0.04987599700689316, 0.14338158071041107, -0.04002606123685837, 0.05067979916930199, -0.06026014685630798, -0.08240347355604172, -0.09923138469457626, 0.15359079837799072, -0.022896992042660713, -0.04836248606443405, -0.05194497108459473, 0.06760675460100174, 0.03483501449227333, -0.009817861020565033, 0.1840711086988449, -0.013659004122018814, 0.05886077880859375, 0.06950418651103973, 0.08195420354604721, -0.015825429931282997, 0.02162565477192402, -0.01317517552524805, -0.102537140250206, 0.09059217572212219, -0.18221035599708557, 0.022090798243880272, 0.15043222904205322, -0.00907636247575283, -0.008317430503666401, -0.005328664090484381, -0.11811627447605133, -0.0751296654343605, 0.10640958696603775, -0.15211427211761475, 0.06349173933267593, -0.026028092950582504, -0.2016521692276001, 0.04567689821124077, 0.08016553521156311, 0.14575880765914917, -0.13909593224525452, 0.00753240380436182, -0.003766134614124894, -0.038220807909965515, -0.06620048731565475, 0.11329959332942963, 0.1346961259841919, 0.02352057956159115, -0.11276066303253174, 0.05262620747089386, 0.003862440586090088, 0.006078021600842476, 0.03565351665019989, 0.058757781982421875, -0.13367874920368195, -0.09060593694448471, 0.019493279978632927, 0.18007118999958038, -0.2571689188480377, -0.15093190968036652, -0.05624610558152199, -0.09044710546731949, 0.04336797073483467, 0.13815534114837646, 0.1215863823890686, 0.007111371960490942, 0.0054082381539046764, -0.10763411968946457, -0.07215895503759384, 0.06601868569850922, 0.019630860537290573, 0.05242728814482689, -0.13802936673164368, -0.11600515246391296, -0.02569623850286007, 0.10080128163099289, -0.05446363613009453, 0.014440485276281834, -0.08537372946739197, 0.02768157422542572, -0.1787651926279068, -0.0040468741208314896, -0.09846577793359756, 0.07348936796188354, -0.017407124862074852, -0.09272806346416473, -0.055440038442611694, 0.03628994897007942, -0.10688064247369766, 0.04263216629624367, -0.002993607195094228, 0.007718033157289028, -0.04647120088338852, 0.013029531575739384, 0.03511229529976845, -0.006231086794286966, 0.04570239782333374, 0.036344096064567566, -0.015472440980374813, 0.16381245851516724, -0.1255611926317215, 0.03286024183034897, -0.011984904296696186, 0.0354352705180645, 0.10344482213258743, -0.026731783524155617, -0.0012411379721015692, 0.09675902873277664, 0.06063363701105118, 0.03937101364135742, -0.0629345029592514, -0.08616290241479874, -0.09310851246118546, 0.01607969030737877, -0.1243724673986435, -0.02227708324790001, -0.00862790085375309, 0.1058986485004425, 0.031401291489601135, 0.20371568202972412, 0.000029119006285327487, 0.03833090513944626, -0.046375855803489685, 0.017221644520759583, -0.0015793185448274016, -0.1119818165898323, -0.019321775063872337, -0.03520704060792923, -0.024241818115115166, -0.055835749953985214, 0.1615975797176361, 0.001287809805944562, -0.027023768052458763, 0.0014636492123827338, -0.08487271517515182, -0.10550019890069962, -0.01331888698041439, 0.18084335327148438, 0.06746869534254074, 0.004235400818288326, -0.07320377975702286, 0.019900349900126457, -0.037791457027196884, 0.10413111746311188, 0.10589127987623215, 0.053389061242341995, -0.028558669611811638, 0.08536690473556519, 0.07530096918344498, 0.039656464010477066, -0.0388205386698246, -0.003496984951198101, -0.09032823890447617, 0.0678362175822258, 0.09337209165096283, -0.07273771613836288, 0.23883388936519623, -0.05636284127831459, -0.013140602968633175, 0.02569114789366722, -0.05928165093064308, -0.2329762578010559, -0.29891282320022583, -0.16019059717655182, -0.07130380719900131, 0.08601478487253189, -0.07553329318761826, -0.01810499280691147, 0.0702497661113739, 0.12549366056919098, -0.055771347135305405, 0.02897687442600727, 0.05301964655518532, -0.03126799315214157, 0.0734962746500969, -0.04751726984977722, -0.09571012109518051, 0.05585337430238724, 0.0019894212018698454, -0.06262150406837463, 0.0455867163836956, -0.041451696306467056, -0.03619886189699173, -0.006269651465117931, 0.03657190129160881, -0.040728144347667694, -0.0467853806912899, -0.046439386904239655, 0.01712907664477825, 0.06179823353886604, 0.03193062171339989, 0.03831677511334419, 0.014295789413154125, 0.01083415374159813, 0.11550502479076385, 0.0170577485114336, -0.14761760830879211, -0.16220052540302277, 0.16447506844997406, 0.009239940904080868, 0.053683869540691376, -0.015431317500770092, 0.021950947120785713, 0.031011313199996948, 0.2849789559841156, 0.24204020202159882, 0.06275835633277893, 0.009316104464232922, -0.03609183058142662, -0.01398405246436596, 0.013090535998344421, 0.05855448171496391, 0.010507859289646149, 0.10624440759420395, -0.048747267574071884, -0.06768947094678879, -0.12771715223789215, -0.02215544693171978, -0.03846298158168793, 0.05668044090270996, 0.06665648519992828, -0.08212342113256454, -0.12081333994865417, 0.1092260330915451, -0.16239318251609802, 0.01114549022167921, 0.04438970610499382, -0.0018099688459187746, -0.1734466254711151, -0.04549441486597061, 0.03456399217247963, 0.04081084206700325, 0.023011531680822372, -0.07039660215377808, -0.0015834332443773746, -0.04289955645799637, -0.005723912734538317, -0.12649032473564148, -0.05454952269792557, 0.067266084253788, 0.10370814800262451, 0.09840483963489532, 0.051400840282440186, 0.13284477591514587, 0.09507318586111069, 0.02526482753455639, -0.11241009086370468, 0.0726693794131279, 0.006827347446233034, -0.0045451014302670956, 0.03167464956641197, 0.024356653913855553, 0.012423471547663212, -0.001387467491440475, 0.03257431462407112, -0.1012636199593544, -0.010577000677585602, 0.06877575069665909, -0.023121396079659462, -0.05497074872255325, 0.12309855222702026, -0.07181049138307571, 0.138697549700737, 0.14221510291099548, -0.028601257130503654, -0.03491764888167381, -0.08841021358966827, 0.07597391307353973, -0.009350782260298729, -0.14079120755195618, -0.03825050964951515, -0.08763228356838226, -0.02865300327539444, -0.033869244158267975, -0.007581750862300396, -0.07835372537374496, 0.019446197897195816, -0.09354343265295029, -0.026723425835371017, -0.02162264473736286, 0.05440446361899376, 0.13409224152565002, 0.016263490542769432, -0.006759243551641703, 0.018773600459098816, -0.01566118746995926, -0.0011775154853239655, -0.0896206945180893, -0.13879786431789398 ]
null
null
transformers
# Svensk Roberta ## Description Swedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"language": "sv", "license": "cc-by-4.0", "tags": ["translate"], "datasets": ["mc4"], "widget": [{"text": "Meningen med livet \u00e4r <mask>"}]}
feature-extraction
birgermoell/roberta-swedish-scandi
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "translate", "sv", "dataset:mc4", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv" ]
TAGS #transformers #pytorch #jax #tensorboard #roberta #feature-extraction #translate #sv #dataset-mc4 #license-cc-by-4.0 #endpoints_compatible #region-us
# Svensk Roberta ## Description Swedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt URL ## Swedish gpt wiki URL # Nordic gpt wiki URL ## Dansk gpt wiki URL ## Norsk gpt wiki URL ## Roberta models ## Nordic Roberta Wiki URL ## Swe Roberta Wiki Oscar URL ## Roberta Swedish Scandi URL ## Roberta Swedish URL ## Swedish T5 model URL
[ "# Svensk Roberta", "## Description\nSwedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #roberta #feature-extraction #translate #sv #dataset-mc4 #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# Svensk Roberta", "## Description\nSwedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ 58, 4, 23, 32, 4, 5, 6, 6, 6, 6, 4, 6, 7, 7, 5, 6 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #roberta #feature-extraction #translate #sv #dataset-mc4 #license-cc-by-4.0 #endpoints_compatible #region-us \n# Svensk Roberta## Description\nSwedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.## Gpt models## Swedish Gpt\nURL## Swedish gpt wiki\nURL# Nordic gpt wiki\nURL## Dansk gpt wiki\nURL## Norsk gpt wiki\nURL## Roberta models## Nordic Roberta Wiki\nURL## Swe Roberta Wiki Oscar\nURL## Roberta Swedish Scandi\nURL## Roberta Swedish\nURL## Swedish T5 model\nURL" ]
[ -0.051757436245679855, 0.19655023515224457, 0.0004742823075503111, 0.15953779220581055, 0.05316965654492378, 0.020095277577638626, 0.04008375480771065, 0.11742103844881058, 0.023735197260975838, 0.016371000558137894, 0.17234203219413757, 0.06206796318292618, 0.11410794407129288, 0.04082202911376953, 0.07992029935121536, -0.35344749689102173, 0.06827946752309799, -0.028216388076543808, -0.07766173779964447, 0.09284885972738266, 0.0829644501209259, 0.003706239629536867, 0.06911377608776093, 0.010212995111942291, -0.027820490300655365, -0.0006989568355493248, -0.005680729169398546, -0.02701476588845253, 0.11119626462459564, 0.0649879202246666, -0.0034429419320076704, 0.09071068465709686, 0.12251510471105576, -0.12750950455665588, 0.013914945535361767, -0.004392547067254782, -0.02455211617052555, 0.019537681713700294, 0.018704622983932495, 0.07011306285858154, 0.2872470021247864, 0.024049272760748863, 0.016109464690089226, 0.007573237642645836, -0.031372785568237305, -0.19696001708507538, -0.07820296287536621, 0.07134140282869339, -0.01598917320370674, 0.05977874994277954, -0.049020543694496155, 0.15598349273204803, -0.18513473868370056, 0.09271235764026642, 0.12948091328144073, -0.278827428817749, -0.06472732871770859, 0.22510398924350739, 0.11055034399032593, 0.08128253370523453, -0.08187604695558548, 0.14161363244056702, 0.036566171795129776, 0.05780639871954918, 0.051202885806560516, -0.053465936332941055, -0.03522995114326477, 0.05415414273738861, -0.1411832720041275, 0.07553499937057495, 0.21517331898212433, 0.08066640794277191, -0.025997253134846687, -0.06816918402910233, 0.026772864162921906, 0.043834153562784195, -0.014069332741200924, -0.09123199433088303, 0.023399529978632927, -0.03810781240463257, -0.02410268783569336, -0.061402253806591034, -0.0660749152302742, -0.07302363961935043, 0.015325041487812996, 0.02023635059595108, 0.01518466416746378, 0.03063761629164219, 0.029249267652630806, 0.06596066802740097, -0.1840512901544571, -0.1029304563999176, -0.07640068978071213, -0.08772145956754684, -0.05160176008939743, -0.018527336418628693, 0.042887285351753235, -0.10926186293363571, 0.08642898499965668, 0.0912390872836113, 0.034512486308813095, 0.02471679076552391, 0.10283204913139343, 0.04200340062379837, 0.015015768818557262, 0.138035848736763, -0.19608506560325623, -0.17203155159950256, -0.004955464508384466, -0.06325951963663101, -0.03834763541817665, -0.033114418387413025, -0.04174141213297844, -0.06535708159208298, 0.03223308548331261, 0.020676488056778908, 0.014646852388978004, 0.07134157419204712, -0.0357021801173687, 0.036865293979644775, 0.025498881936073303, -0.043489083647727966, 0.01072064507752657, -0.05358337610960007, -0.0725182518362999, 0.0857718214392662, 0.07521378993988037, 0.01585792750120163, -0.06524516642093658, 0.10716695338487625, -0.0864500105381012, -0.04197731241583824, 0.04538843408226967, -0.07358666509389877, 0.08070960640907288, -0.08529082685709, 0.035812973976135254, -0.09913429617881775, -0.13362076878547668, -0.06349699199199677, 0.07796484231948853, -0.0978512167930603, -0.04353415593504906, -0.08155565708875656, -0.1044558435678482, 0.05330442637205124, -0.022564789280295372, 0.06751013547182083, -0.06282951682806015, 0.043357495218515396, -0.14460960030555725, 0.08389012515544891, -0.016651786863803864, -0.03801766410470009, -0.1161089539527893, -0.023142684251070023, -0.18892882764339447, 0.05292405188083649, -0.21479415893554688, 0.02390042133629322, -0.13668376207351685, -0.09332709014415741, -0.0016870507970452309, 0.05355842411518097, 0.0398227795958519, 0.24856242537498474, -0.14207389950752258, 0.004472773987799883, 0.2269923835992813, -0.08884496986865997, -0.04697153717279434, 0.15515021979808807, 0.02036959119141102, 0.08345997333526611, 0.11009471863508224, 0.22532683610916138, 0.06961232423782349, -0.11302170157432556, 0.030346591025590897, 0.07889475673437119, -0.06729667633771896, -0.014962702989578247, 0.07433655112981796, -0.019297011196613312, 0.009456053376197815, 0.054955411702394485, -0.1332664042711258, 0.03873224928975105, -0.019370611757040024, -0.05712810903787613, 0.0029504168778657913, -0.061811599880456924, 0.022224340587854385, 0.07835502922534943, 0.006663661915808916, -0.08693963289260864, -0.178270623087883, -0.13864250481128693, 0.026606539264321327, -0.07919928431510925, 0.019840195775032043, -0.05013393610715866, 0.09272794425487518, -0.06301367282867432, 0.007308392319828272, -0.008756261318922043, -0.1352090984582901, -0.058988407254219055, 0.024849142879247665, 0.03606375679373741, 0.1354321837425232, 0.11611707508563995, 0.03078398108482361, -0.04565678536891937, 0.023334801197052002, 0.01067293994128704, 0.007737101521342993, -0.013578517362475395, -0.23585334420204163, 0.039309777319431305, -0.037990666925907135, 0.01137573178857565, -0.17519772052764893, -0.06028499826788902, 0.1394682079553604, 0.12898100912570953, -0.008370807394385338, -0.0647667646408081, 0.03669717535376549, -0.02377697452902794, -0.0047407145611941814, -0.06306818127632141, 0.016786450520157814, -0.05756976455450058, -0.12525039911270142, 0.13509106636047363, 0.12566319108009338, 0.002806244883686304, 0.07063539326190948, 0.06793524324893951, -0.13126598298549652, 0.10727091133594513, -0.005935408174991608, 0.0034187017008662224, 0.0019949532579630613, -0.0012118463637307286, -0.0007084584212861955, 0.022882381454110146, 0.045940835028886795, -0.07806973904371262, -0.013159267604351044, 0.05152313411235809, -0.058269061148166656, -0.025165369734168053, 0.2090197205543518, 0.1535395234823227, -0.1720861941576004, 0.05832938849925995, -0.09209930151700974, -0.027871131896972656, 0.280236154794693, 0.02602553181350231, -0.051039401441812515, 0.003325041616335511, -0.03790862113237381, -0.0009704968542791903, 0.2212757021188736, -0.0471251979470253, 0.036893099546432495, 0.04113243520259857, 0.03139306604862213, 0.005881150718778372, -0.07560527324676514, -0.10726836323738098, -0.00811983086168766, -0.08427807688713074, -0.021386045962572098, 0.10084699839353561, -0.10402727872133255, 0.06114125996828079, 0.0022827174980193377, -0.12678860127925873, -0.0054295966401696205, 0.0006187607068568468, -0.09878744930028915, 0.22624599933624268, -0.039125584065914154, -0.1149422898888588, -0.11988939344882965, 0.01776043511927128, -0.03760897368192673, -0.024717427790164948, 0.09263956546783447, -0.13693764805793762, -0.1094755306839943, -0.08083748817443848, 0.11312714964151382, -0.00092656584456563, -0.03469080477952957, -0.14916689693927765, -0.035708025097846985, -0.0691113993525505, -0.11773011833429337, -0.0025629610754549503, -0.007783989887684584, 0.02038787119090557, 0.02779083512723446, -0.09607163816690445, 0.15077225863933563, 0.07382010668516159, 0.017603792250156403, 0.026255430653691292, 0.03734232112765312, 0.24868570268154144, -0.12510468065738678, 0.12896843254566193, -0.005304347723722458, 0.024913283064961433, 0.0449674166738987, 0.11647138744592667, 0.05013371631503105, -0.03736629709601402, -0.07008865475654602, 0.023235341534018517, -0.07639823853969574, -0.2010379433631897, -0.07519318163394928, 0.0018482634332031012, 0.05086183547973633, 0.021512921899557114, 0.05967817083001137, -0.12448249757289886, 0.14541663229465485, 0.03291603922843933, -0.101466104388237, 0.016056116670370102, 0.02235954813659191, -0.05457938089966774, -0.02218051254749298, 0.05729357898235321, -0.08055105060338974, -0.004665191285312176, 0.09031327068805695, 0.030555207282304764, 0.09060001373291016, -0.04763147234916687, 0.023086201399564743, 0.08937796950340271, 0.15353569388389587, 0.011108304373919964, 0.059814926236867905, 0.051337432116270065, -0.06094653904438019, 0.027907704934477806, -0.06782252341508865, -0.0002848324947990477, 0.05418295040726662, 0.0012831956846639514, -0.09060341119766235, -0.03381370007991791, -0.006175012793391943, 0.01760888658463955, 0.08415940403938293, 0.06958997994661331, -0.21891210973262787, -0.06576886773109436, 0.04132745787501335, -0.030339688062667847, -0.034615591168403625, 0.02533832937479019, 0.051328469067811966, -0.18428514897823334, 0.0803542360663414, -0.05318167060613632, 0.09381397813558578, -0.019969839602708817, -0.04278314858675003, 0.03203611075878143, 0.03981751576066017, -0.0522821769118309, 0.1303664743900299, -0.059929583221673965, 0.21741043031215668, -0.009871098212897778, 0.09379711747169495, -0.09336799383163452, -0.01744665764272213, 0.018419520929455757, 0.17694884538650513, 0.32827097177505493, 0.05110041797161102, -0.03437241539359093, -0.051078569144010544, -0.05891605466604233, 0.06456424295902252, -0.015848582610487938, -0.03342590853571892, 0.07368968427181244, 0.02483474090695381, 0.016198797151446342, -0.07462868094444275, -0.04524218291044235, -0.10500361025333405, -0.0497979074716568, 0.0033968440257012844, -0.06601735204458237, -0.015781091526150703, -0.01435966044664383, -0.08108341693878174, -0.28248631954193115, 0.19630064070224762, -0.031078992411494255, -0.12320758402347565, -0.14323864877223969, 0.06818926334381104, 0.12264156341552734, -0.07987462729215622, -0.04116249457001686, 0.007265973836183548, 0.01866621896624565, -0.027752354741096497, -0.021721230819821358, 0.023781899362802505, -0.05391928553581238, -0.07726311683654785, 0.007122778799384832, 0.08084731549024582, 0.10542596876621246, 0.025242136791348457, 0.07741434872150421, 0.04673558473587036, -0.034238554537296295, -0.1839427500963211, 0.040840160101652145, -0.019418615847826004, -0.051855720579624176, 0.008629018440842628, 0.02093360759317875, 0.08610832691192627, -0.01596939004957676, -0.03717536851763725, 0.09659568965435028, 0.20761588215827942, -0.12941040098667145, 0.10958222299814224, 0.13014647364616394, -0.04566981643438339, -0.30493399500846863, -0.028879376128315926, -0.013168771751224995, 0.03961488977074623, 0.087813600897789, -0.04306798800826073, 0.16352976858615875, 0.05220462381839752, -0.016498947516083717, 0.027315352112054825, -0.21240977942943573, -0.08910751342773438, 0.03516523912549019, 0.1425691395998001, 0.0724349319934845, -0.06729274988174438, -0.039588019251823425, 0.00928720086812973, -0.23198911547660828, 0.025370147079229355, -0.07040693610906601, 0.08821597695350647, 0.0012407591566443443, 0.11015670001506805, 0.03472944721579552, -0.050450559705495834, 0.16891855001449585, -0.0259051825851202, -0.04687125235795975, -0.1268005222082138, 0.1353341042995453, 0.0899161547422409, -0.0072939288802444935, 0.21637539565563202, -0.07209429144859314, 0.008371400646865368, -0.1186026930809021, -0.05812382325530052, -0.1104016900062561, 0.11658924072980881, -0.054214175790548325, -0.10277310013771057, -0.10124460607767105, 0.12779265642166138, 0.10009262710809708, -0.020928043872117996, 0.0564633272588253, -0.12350156158208847, 0.036166634410619736, -0.04547334089875221, 0.17490167915821075, -0.004938769154250622, -0.09446699172258377, -0.000748088292311877, -0.060260649770498276, 0.04947785288095474, -0.2321004718542099, 0.003922533243894577, 0.1333058476448059, 0.013104534707963467, 0.027385829016566277, -0.014354000799357891, -0.14986620843410492, -0.03279343619942665, 0.12134720385074615, -0.18145616352558136, -0.12243524193763733, -0.0538705512881279, -0.2879336178302765, 0.05888596922159195, 0.02349632792174816, 0.15664999186992645, -0.1277252584695816, 0.02972121350467205, 0.0053683193400502205, 0.03887499123811722, -0.06817957758903503, 0.17157404124736786, 0.10800425708293915, 0.05654469132423401, -0.1246163621544838, 0.07660971581935883, -0.045599281787872314, -0.014013533480465412, 0.04359439015388489, 0.14899230003356934, -0.10821064561605453, -0.0831025019288063, 0.04981400817632675, 0.14606179296970367, -0.16500268876552582, -0.05123366788029671, -0.0936698243021965, -0.05093538761138916, -0.01039155013859272, 0.009751363657414913, 0.04745294526219368, 0.003248719498515129, 0.020117757841944695, -0.0658113956451416, -0.07826697826385498, 0.06826332956552505, 0.06435670703649521, -0.019845228642225266, -0.16022300720214844, 0.030004454776644707, -0.04682577773928642, 0.08141300827264786, -0.0757426768541336, 0.09666130691766739, -0.08451355993747711, -0.00932029727846384, -0.020206177607178688, -0.025881128385663033, -0.05726656690239906, 0.04537646099925041, -0.042248159646987915, -0.07253333926200867, -0.0414796881377697, 0.02488526701927185, -0.0986604392528534, -0.0020268044900149107, -0.01429292093962431, -0.010533925145864487, -0.06712900847196579, -0.01617712341248989, 0.01772233471274376, -0.007518493104726076, 0.04455443099141121, -0.07715270668268204, -0.018193259835243225, 0.155076265335083, -0.1680014580488205, 0.09706147015094757, -0.0282489825040102, -0.055245526134967804, 0.03177446126937866, 0.04840420186519623, -0.031208256259560585, -0.025330400094389915, 0.051682259887456894, 0.06115535646677017, -0.06778016686439514, -0.07077484577894211, -0.035949062556028366, -0.027959303930401802, -0.051453009247779846, -0.06602554768323898, 0.12724359333515167, 0.08295896649360657, 0.04071640223264694, 0.10577213764190674, -0.04848961904644966, 0.050333745777606964, -0.10366779565811157, -0.0042828903533518314, 0.039661988615989685, -0.055406443774700165, 0.03515326976776123, 0.02816290594637394, 0.05211137235164642, -0.0891314223408699, 0.1391730010509491, 0.09586573392152786, -0.014393618330359459, 0.016835367307066917, -0.004413895774632692, 0.07633677870035172, -0.02306271530687809, 0.14193952083587646, -0.0031240833923220634, 0.002632174640893936, -0.08506868034601212, 0.032231107354164124, -0.044746752828359604, -0.0426962785422802, 0.10124355554580688, 0.004973371513187885, 0.05677532032132149, 0.12141220271587372, 0.015203913673758507, 0.037576574832201004, -0.004511862061917782, 0.058442309498786926, 0.04911068081855774, 0.05535966902971268, 0.02829296700656414, 0.018877821043133736, 0.18740314245224, -0.12187454849481583, 0.02409917674958706, 0.026093553751707077, -0.10443561524152756, -0.17496399581432343, -0.31665557622909546, -0.1214064359664917, -0.06977548450231552, 0.09656555950641632, -0.13663049042224884, 0.014382665976881981, 0.039720118045806885, 0.10387741774320602, -0.056094713509082794, 0.07900521159172058, -0.042663201689720154, -0.07348765432834625, 0.08429240435361862, 0.018723830580711365, -0.04584987461566925, 0.06382612138986588, 0.026704391464591026, 0.0022599452640861273, 0.031137390062212944, -0.0649835392832756, -0.024900611490011215, -0.07344066351652145, -0.021540824323892593, -0.026360776275396347, -0.06569474935531616, -0.031029507517814636, 0.061226584017276764, 0.06092631444334984, 0.016291502863168716, 0.05804670602083206, -0.04456770792603493, -0.04314816743135452, 0.20203717052936554, 0.005631604231894016, -0.006403197068721056, -0.15721635520458221, 0.10913685709238052, -0.08028294891119003, 0.08106474578380585, -0.00635457644239068, -0.1004493460059166, 0.09951795637607574, 0.25344136357307434, 0.2009163796901703, -0.009229266084730625, -0.012506700120866299, -0.03576863557100296, -0.02281149849295616, 0.01712561771273613, 0.07362152636051178, -0.04181280732154846, 0.1548311859369278, -0.10743498057126999, 0.04282884672284126, -0.06189483776688576, -0.02266419120132923, -0.06911271065473557, 0.027210483327507973, 0.09648207575082779, -0.023333469405770302, -0.13757365942001343, 0.19999046623706818, -0.13818593323230743, -0.12353190779685974, 0.06346575915813446, -0.04891437664628029, -0.15992289781570435, -0.07947571575641632, 0.008629041723906994, 0.04821273684501648, 0.03661657124757767, -0.022673267871141434, 0.01430271752178669, -0.06295191496610641, 0.05775725841522217, -0.15359193086624146, -0.05025981366634369, -0.010215706191956997, 0.058154862374067307, 0.21676558256149292, 0.030217614024877548, 0.04955923929810524, 0.11769293993711472, -0.04075371101498604, -0.07566004246473312, 0.050007205456495285, 0.05154469981789589, -0.08708591014146805, 0.025545869022607803, 0.14586986601352692, 0.01283678412437439, 0.0002652979164849967, 0.02648366615176201, -0.047881484031677246, 0.005014041438698769, 0.10796307027339935, -0.027309074997901917, -0.045618936419487, 0.1362164318561554, -0.11860843002796173, 0.09921041876077652, 0.18596303462982178, -0.014095744118094444, -0.01212093885987997, -0.11923959106206894, 0.11877583712339401, 0.018123572692275047, -0.06992512941360474, 0.05566268786787987, -0.10084456205368042, -0.06886649131774902, -0.035330332815647125, -0.026458432897925377, -0.09670501202344894, -0.012323003262281418, -0.1154233068227768, 0.027184559032320976, -0.006118519697338343, 0.12299584597349167, 0.12225335091352463, 0.019482852891087532, 0.01460269931703806, -0.10831508785486221, 0.039778079837560654, 0.06850502640008926, -0.12364806979894638, -0.0789976492524147 ]
null
null
transformers
Swedish RoBERTa ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"widget": [{"text": "Var kan jag hitta n\u00e5gon <mask> talar engelska?"}]}
fill-mask
birgermoell/roberta-swedish
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #tensorboard #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
Swedish RoBERTa ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt URL ## Swedish gpt wiki URL # Nordic gpt wiki URL ## Dansk gpt wiki URL ## Norsk gpt wiki URL ## Roberta models ## Nordic Roberta Wiki URL ## Swe Roberta Wiki Oscar URL ## Roberta Swedish Scandi URL ## Roberta Swedish URL ## Swedish T5 model URL
[ "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ 44, 32, 4, 5, 6, 6, 6, 6, 4, 6, 7, 7, 5, 6 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.## Gpt models## Swedish Gpt\nURL## Swedish gpt wiki\nURL# Nordic gpt wiki\nURL## Dansk gpt wiki\nURL## Norsk gpt wiki\nURL## Roberta models## Nordic Roberta Wiki\nURL## Swe Roberta Wiki Oscar\nURL## Roberta Swedish Scandi\nURL## Roberta Swedish\nURL## Swedish T5 model\nURL" ]
[ -0.03859005495905876, 0.12813186645507812, 0.0003573751309886575, 0.16056302189826965, 0.10411304235458374, 0.07355877012014389, 0.11797530949115753, 0.13116776943206787, 0.03267701342701912, -0.015240282751619816, 0.16085170209407806, 0.07587215304374695, 0.1028071716427803, 0.09465815871953964, 0.09360230714082718, -0.44559940695762634, 0.022824112325906754, -0.00396506255492568, -0.08046659082174301, 0.08557072281837463, 0.0954967737197876, 0.0007923492812551558, 0.08004525303840637, 0.02631070464849472, -0.0693405345082283, 0.0016671051271259785, 0.02561711147427559, -0.062037114053964615, 0.15623290836811066, 0.053153812885284424, 0.040672771632671356, 0.05642719566822052, 0.1444716602563858, -0.08679339289665222, 0.04239388555288315, 0.003692427184432745, -0.07051244378089905, 0.041434165090322495, -0.0008813785971142352, -0.008022602647542953, 0.22761648893356323, 0.0920478031039238, 0.045338090509176254, 0.024708060547709465, -0.09460049122571945, -0.2368440181016922, -0.02633199840784073, 0.12081700563430786, -0.04943405091762543, 0.06951846927404404, -0.02325589768588543, 0.22984561324119568, -0.12437038123607635, 0.09196913987398148, 0.18496054410934448, -0.3084075152873993, -0.08939006924629211, 0.16997665166854858, 0.1417602151632309, 0.03921780362725258, -0.0750785544514656, 0.08618777990341187, 0.020839553326368332, 0.07198052108287811, 0.06887215375900269, -0.0584585927426815, -0.0104737663641572, -0.015624798834323883, -0.11633037030696869, 0.09341394156217575, 0.18810857832431793, 0.05732448026537895, -0.016793962568044662, -0.03429674357175827, 0.01280747726559639, 0.06400177627801895, -0.036009758710861206, -0.06846986711025238, -0.006656437646597624, -0.021314838901162148, -0.06703741103410721, -0.04263685643672943, -0.08240809291601181, -0.07036611437797546, 0.004981856793165207, 0.08604682236909866, 0.004595910664647818, 0.0447111651301384, -0.04230532422661781, 0.036777760833501816, -0.1386597901582718, -0.10496509075164795, -0.017484499141573906, -0.0800853744149208, -0.04338467866182327, -0.032141491770744324, 0.013671047054231167, -0.10111896693706512, 0.07066716998815536, 0.1636427938938141, 0.09144230931997299, 0.031146930530667305, 0.12485045939683914, 0.039173778146505356, -0.013691931962966919, 0.10377343744039536, -0.16249725222587585, -0.11040261387825012, -0.03370228037238121, -0.04026404768228531, -0.03339619189500809, -0.03974873945116997, -0.06401832401752472, -0.06316792219877243, 0.012933681719005108, -0.014479819685220718, -0.008429386653006077, 0.08825884759426117, -0.03059331513941288, 0.0019036338198930025, 0.006928944028913975, -0.024977857246994972, -0.00641363300383091, -0.04384191334247589, -0.00965722743421793, 0.047117963433265686, 0.07607581466436386, 0.032861385494470596, -0.03825035318732262, 0.10897514224052429, -0.1265045702457428, -0.04200773686170578, 0.020090196281671524, -0.06541813164949417, 0.03918073698878288, -0.11709911376237869, 0.03174382448196411, -0.16751213371753693, -0.0962105467915535, -0.038998063653707504, 0.10302815586328506, -0.08839017897844315, -0.06827260553836823, -0.015362769365310669, -0.06964940577745438, 0.02226482704281807, 0.02469443716108799, 0.057360902428627014, -0.047627147287130356, 0.05722749978303909, -0.1139351949095726, 0.14535246789455414, 0.012217344716191292, -0.012977764941751957, -0.09145712852478027, -0.03564590960741043, -0.19949312508106232, 0.0016361583257094026, -0.1312732994556427, 0.0781228169798851, -0.08799717575311661, -0.09592396020889282, -0.015109281055629253, 0.05841255933046341, 0.05852261930704117, 0.1988804191350937, -0.1495513916015625, -0.02492341957986355, 0.29523566365242004, -0.0914793461561203, -0.07487893104553223, 0.1184849888086319, 0.011689318343997002, 0.1607232242822647, 0.03600272163748741, 0.16040436923503876, 0.05584750324487686, -0.08483726531267166, 0.10282841324806213, 0.042356938123703, -0.07317642122507095, -0.034623969346284866, 0.05452535301446915, 0.006042741239070892, -0.09112696349620819, 0.023272356018424034, -0.08475418388843536, 0.05982465669512749, -0.042964790016412735, -0.04829195514321327, 0.04037591069936752, -0.09092673659324646, 0.1065719798207283, 0.10633215308189392, 0.03166335076093674, -0.08639346063137054, -0.15925976634025574, -0.12275312840938568, 0.05168168619275093, -0.03714729845523834, -0.01671765372157097, -0.05541040375828743, 0.0845918282866478, 0.002384844934567809, -0.021223219111561775, -0.035467907786369324, -0.12212979793548584, -0.06494708359241486, 0.0651356652379036, 0.03653861582279205, 0.13319191336631775, 0.14781315624713898, 0.024025218561291695, -0.044962186366319656, 0.03860509395599365, -0.005744251422584057, 0.005494589917361736, 0.010341353714466095, -0.2236405313014984, 0.007974195294082165, -0.06373037397861481, 0.06476318836212158, -0.1405794322490692, -0.021825339645147324, -0.021028220653533936, 0.14952142536640167, 0.029160641133785248, -0.05225774273276329, -0.006476543378084898, -0.0015243198722600937, 0.009195425547659397, -0.051469963043928146, 0.07297780364751816, -0.0247395820915699, -0.09107022732496262, 0.11694549769163132, 0.0518876276910305, 0.08763789385557175, 0.08043452352285385, -0.05751219391822815, -0.19746436178684235, 0.10343648493289948, -0.03160326927900314, 0.023150641471147537, 0.006823590490967035, 0.01618250645697117, -0.019508227705955505, -0.008415231481194496, 0.07415162771940231, -0.04524493217468262, -0.007884006947278976, 0.0721953734755516, -0.07830771803855896, -0.02820122241973877, 0.14177171885967255, 0.1898636668920517, -0.16817903518676758, 0.06388050317764282, -0.040095217525959015, -0.06686621159315109, 0.2950122058391571, 0.053718313574790955, -0.016646001487970352, 0.0070950924418866634, -0.0874427855014801, 0.025197286158800125, 0.20545798540115356, -0.06846235692501068, 0.00503476383164525, 0.02814772166311741, -0.030856436118483543, -0.029865022748708725, -0.07927216589450836, -0.14299197494983673, -0.0007742841844446957, -0.01954270713031292, -0.01150632556527853, 0.12081381678581238, -0.10750868916511536, 0.09678423404693604, 0.030448181554675102, -0.1638210266828537, 0.008923286572098732, 0.025180000811815262, -0.10965573787689209, 0.19950732588768005, -0.008259834721684456, -0.14142106473445892, -0.11825620383024216, -0.00010610442404868081, 0.018259400501847267, -0.015157186426222324, 0.07102381438016891, -0.11622975766658783, -0.08768542110919952, -0.026771200820803642, 0.0512237474322319, 0.03299811854958534, 0.01841573975980282, -0.11550453305244446, -0.007672717794775963, -0.030030367895960808, -0.097312331199646, -0.005087616387754679, -0.030639436095952988, -0.010928613133728504, 0.052943143993616104, -0.11895311623811722, 0.10663249343633652, 0.0542735680937767, -0.02013607695698738, 0.015551377087831497, 0.030315639451146126, 0.24044394493103027, -0.10743365436792374, 0.13998650014400482, 0.06527058035135269, -0.03389713913202286, 0.050865888595581055, 0.1127837523818016, 0.062181875109672546, -0.013612538576126099, -0.023759089410305023, 0.012822465971112251, -0.09734830260276794, -0.151811882853508, -0.04106989875435829, -0.005979984998703003, 0.06987616419792175, 0.07570097595453262, 0.04391615837812424, 0.020354649052023888, 0.18514229357242584, 0.060744758695364, -0.07061304897069931, -0.030475551262497902, 0.0405261293053627, -0.09341474622488022, -0.033905964344739914, 0.09255672246217728, -0.08543572574853897, -0.07597749680280685, 0.05314101651310921, 0.0044189016334712505, 0.025449182838201523, -0.004227912984788418, -0.028540626168251038, 0.06265955418348312, 0.14366312325000763, 0.05472506582736969, 0.08451279997825623, 0.02968812733888626, -0.07921776920557022, 0.012052024714648724, -0.04721548408269882, 0.025778623297810555, 0.08706442266702652, -0.006318965926766396, -0.0759073868393898, -0.048211719840765, -0.05810888856649399, 0.002721073105931282, 0.09309184551239014, 0.0969875231385231, -0.23986917734146118, -0.07148832827806473, 0.017645301297307014, -0.049559708684682846, -0.04068543389439583, -0.0059553650207817554, 0.03173404559493065, -0.1706743836402893, 0.0874001681804657, -0.06255411356687546, 0.08018173277378082, 0.034305982291698456, -0.005518288817256689, 0.08906061202287674, 0.07895200699567795, -0.05575304850935936, 0.09773962944746017, -0.11109721660614014, 0.25478431582450867, -0.037657056003808975, 0.03646586090326309, -0.11529721319675446, -0.03247570991516113, 0.05330021679401398, 0.1277153193950653, 0.27375271916389465, 0.023013044148683548, -0.006955169141292572, -0.022533347830176353, -0.005249406676739454, 0.033836401998996735, -0.020517569035291672, -0.07363659888505936, 0.051554013043642044, -0.009085659869015217, -0.018721535801887512, -0.042158547788858414, 0.039494022727012634, -0.07447779178619385, -0.01757192239165306, 0.030310645699501038, -0.09839314967393875, -0.041153669357299805, -0.008467789739370346, -0.12231529504060745, -0.244882732629776, 0.14066484570503235, 0.052340518683195114, -0.0652422234416008, -0.14866025745868683, 0.015695616602897644, 0.08059605211019516, -0.07062286138534546, 0.017636891454458237, 0.024043239653110504, 0.03067074529826641, -0.02459288202226162, -0.045946154743433, 0.07560856640338898, -0.08255920559167862, -0.09157293289899826, -0.04694044217467308, 0.04449320584535599, 0.06106497719883919, 0.04081153869628906, 0.048142291605472565, 0.0385536290705204, -0.030216841027140617, -0.11519411951303482, 0.09832555800676346, -0.06845389306545258, -0.057091280817985535, -0.0751919224858284, -0.031505879014730453, 0.023334860801696777, -0.02361542545258999, -0.012133545242249966, 0.1035388633608818, 0.2265346497297287, -0.15180574357509613, 0.07860824465751648, 0.1286536455154419, 0.012013762257993221, -0.2919645607471466, -0.02812854014337063, -0.0275055393576622, 0.024896597489714622, 0.13457387685775757, -0.09862061589956284, 0.14197932183742523, 0.0015542992623522878, -0.014644741080701351, 0.036470212042331696, -0.16911745071411133, -0.10760079324245453, 0.09115248918533325, 0.16000309586524963, 0.1944912075996399, -0.06658351421356201, 0.0008137012482620776, 0.002411527093499899, -0.17785821855068207, 0.04095388948917389, -0.01584639400243759, 0.09378354251384735, -0.01683039590716362, 0.06837191432714462, 0.03254089131951332, -0.03714185208082199, 0.09451184421777725, -0.06748663634061813, -0.0528891459107399, -0.17115601897239685, 0.02702973037958145, 0.05035215616226196, 0.004998203366994858, 0.12406525760889053, -0.07970833778381348, -0.002464386634528637, -0.09439439326524734, -0.039210978895425797, -0.09001395106315613, 0.10459567606449127, -0.027961544692516327, -0.13060972094535828, -0.018501847982406616, 0.11310649663209915, 0.04081312194466591, -0.030350621789693832, 0.009926383383572102, -0.08945616334676743, 0.18761268258094788, -0.029932444915175438, 0.17204992473125458, 0.031208284199237823, -0.051110707223415375, -0.022242875769734383, -0.09769995510578156, 0.06657661497592926, -0.1270560622215271, -0.020391734316945076, 0.08956789970397949, 0.03809630870819092, 0.04178602620959282, 0.03495414927601814, -0.1273012012243271, -0.05283179506659508, 0.1662893295288086, -0.2193371206521988, -0.09165854752063751, -0.09436340630054474, -0.22206419706344604, 0.022519245743751526, 0.0009137451997958124, 0.1491863876581192, -0.10057428479194641, -0.021331805735826492, -0.006330172065645456, 0.015465689823031425, -0.08440467715263367, 0.06526299566030502, 0.15819740295410156, 0.045727066695690155, -0.06987915188074112, 0.018150467425584793, -0.019823944196105003, -0.006214876659214497, 0.0333699956536293, 0.2467273771762848, -0.08952634781599045, -0.11162484437227249, 0.07890493422746658, 0.17701761424541473, -0.20639821887016296, 0.0037782308645546436, -0.11076881736516953, -0.0556059256196022, -0.005488730035722256, 0.16015775501728058, 0.05068422108888626, -0.04527348652482033, 0.02340294048190117, -0.02997695654630661, -0.08098506182432175, 0.056841444224119186, 0.054940614849328995, 0.015083249658346176, -0.15947110950946808, 0.10197370499372482, -0.045907847583293915, 0.09259408712387085, -0.08934144675731659, 0.06434768438339233, -0.15569032728672028, -0.030545460060238838, -0.019138216972351074, -0.06944523751735687, -0.06415668874979019, 0.016817711293697357, -0.03581162169575691, -0.07168782502412796, -0.03401749208569527, -0.009217752143740654, -0.10126493126153946, -0.016591837629675865, 0.018416019156575203, -0.03991822525858879, -0.04369506612420082, -0.009857786819338799, 0.04400135204195976, -0.02543136291205883, 0.08276556432247162, -0.07396511733531952, -0.0009216255857609212, 0.10939005762338638, -0.1274840533733368, 0.08893466740846634, -0.04637616127729416, -0.05574719235301018, 0.02823304757475853, 0.0031776134856045246, -0.01387892384082079, -0.07470154762268066, 0.04488702863454819, 0.06062476336956024, 0.002445084508508444, -0.07433179020881653, 0.01921141892671585, 0.03070615604519844, -0.1169263944029808, -0.06340723484754562, 0.052746083587408066, 0.09110301733016968, -0.00414407579228282, 0.031931594014167786, -0.055331144481897354, 0.08152683824300766, -0.11975269019603729, 0.011671221815049648, 0.007581536658108234, -0.06636220961809158, 0.053781118243932724, 0.017779812216758728, 0.03226352110505104, -0.07346579432487488, 0.04751076176762581, 0.13618342578411102, -0.03486085683107376, 0.015551460906863213, 0.009783647023141384, 0.10345661640167236, 0.002431632485240698, 0.16352717578411102, 0.008433074690401554, -0.037896595895290375, -0.14857341349124908, 0.07289450615644455, -0.07245419919490814, -0.0012157484889030457, 0.11324811726808548, -0.008431059308350086, 0.016207564622163773, 0.050288960337638855, 0.057663533836603165, 0.03535446897149086, 0.006629746872931719, -0.027898890897631645, 0.06672871857881546, 0.028472034260630608, -0.012923373840749264, 0.011698015034198761, 0.19649071991443634, -0.08605928719043732, 0.013202291913330555, -0.008810852654278278, -0.06554964929819107, -0.18703758716583252, -0.2790617346763611, -0.09696008265018463, -0.05349592864513397, 0.0663595050573349, -0.07356537133455276, -0.02717762440443039, 0.02980879694223404, 0.05342138186097145, -0.047175802290439606, 0.07667385041713715, -0.04826948046684265, -0.020153973251581192, 0.06784847378730774, 0.04728534817695618, -0.0320388488471508, 0.0060717761516571045, 0.032620325684547424, -0.060740333050489426, 0.022658100351691246, -0.11346036940813065, -0.07636981457471848, -0.08560901135206223, -0.010734817944467068, 0.012717998586595058, -0.08260035514831543, -0.001056720968335867, 0.010646325536072254, 0.03828096017241478, 0.021856654435396194, 0.030061835423111916, 0.006289226934313774, -0.03649692237377167, 0.17209209501743317, 0.006004802882671356, -0.0005635405541397631, -0.19010400772094727, 0.13270512223243713, -0.11201038956642151, 0.049776431173086166, -0.011606087908148766, -0.06372194737195969, 0.08385423570871353, 0.3016749918460846, 0.2703028619289398, -0.04968893155455589, 0.028596889227628708, 0.04072556644678116, -0.015679268166422844, 0.0024417468812316656, 0.11311886459589005, 0.003884541802108288, 0.16026170551776886, -0.11312000453472137, 0.016456952318549156, -0.048273149877786636, -0.012757595628499985, -0.014696476981043816, 0.014175980351865292, 0.1152324229478836, -0.00304784975014627, -0.11134515702724457, 0.14045467972755432, -0.1542629450559616, -0.05030282214283943, 0.08834846317768097, -0.10064700990915298, -0.1476714313030243, -0.06777181476354599, -0.013529369607567787, 0.06365765631198883, 0.07396925985813141, -0.004222323186695576, 0.006687936373054981, -0.02479853294789791, 0.06302854418754578, -0.1427316665649414, -0.075743168592453, 0.02380012720823288, -0.001896267756819725, 0.19155941903591156, -0.04330193251371384, 0.00031904905335977674, 0.13409575819969177, -0.0017914731288328767, -0.04720843955874443, 0.011807205155491829, 0.056411389261484146, -0.04136135056614876, -0.004908952862024307, 0.17739494144916534, -0.003873322857543826, -0.04320402443408966, 0.034953970462083817, -0.1297094225883484, 0.0324663482606411, 0.013768395408987999, -0.04708513990044594, -0.0018549973610788584, 0.18040011823177338, -0.10376957803964615, 0.123368039727211, 0.21703237295150757, -0.013440309092402458, -0.02937263436615467, -0.08773340284824371, 0.06525062024593353, 0.04398297891020775, -0.13418371975421906, -0.018973655998706818, -0.07474160194396973, -0.0772438496351242, -0.10870709270238876, -0.046903129667043686, -0.16233225166797638, -0.03162291646003723, -0.15658356249332428, -0.025283733382821083, -0.05171818286180496, 0.06397856026887894, 0.14569087326526642, 0.04206547886133194, 0.005234277341514826, -0.02245759591460228, 0.01924917846918106, 0.07901892066001892, -0.15033970773220062, -0.08812118321657181 ]
null
null
transformers
# common-voice-vox-populi-swedish Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\\\\\ ``` **Test Result**: WER: 22.684600
{"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "common-voice-vox-populi-swedish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Vox Populi Swedish", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 36.951816, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/swedish-common-voice-vox-voxpopuli
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "et", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "et" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# common-voice-vox-populi-swedish Fine-tuned facebook/wav2vec2-large-sv-voxpopuli in Swedish using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. Test Result: WER: 22.684600
[ "# common-voice-vox-populi-swedish\n\nFine-tuned facebook/wav2vec2-large-sv-voxpopuli in Swedish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result:\nWER: 22.684600" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# common-voice-vox-populi-swedish\n\nFine-tuned facebook/wav2vec2-large-sv-voxpopuli in Swedish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result:\nWER: 22.684600" ]
[ 80, 60, 20, 30 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# common-voice-vox-populi-swedish\n\nFine-tuned facebook/wav2vec2-large-sv-voxpopuli in Swedish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result:\nWER: 22.684600" ]
[ -0.14323340356349945, 0.023167211562395096, -0.0027422276325523853, -0.053139667958021164, 0.05910209193825722, -0.10184963047504425, 0.11743062734603882, 0.05266086757183075, 0.05072161927819252, -0.0059853410348296165, 0.02828156389296055, 0.04434414952993393, 0.07132109254598618, 0.08041947335004807, -0.006748247426003218, -0.24420325458049774, 0.07070187479257584, -0.01950695738196373, 0.10088792443275452, 0.10836713016033173, 0.11283590644598007, -0.03849755600094795, -0.026369668543338776, 0.12367022037506104, -0.03371678292751312, 0.027304548770189285, 0.059158071875572205, -0.1036435142159462, 0.14630740880966187, 0.08131717890501022, -0.006396460346877575, 0.0734378844499588, 0.06287454813718796, -0.15854182839393616, 0.014645561575889587, -0.03528844937682152, 0.04716172814369202, -0.016744745895266533, 0.04768066853284836, 0.028767498210072517, 0.1324012130498886, 0.10280714184045792, -0.05528184771537781, 0.049493759870529175, 0.020150231197476387, -0.2501426935195923, 0.0015074003022164106, -0.0028676632791757584, 0.0689634382724762, 0.0862998366355896, -0.0960373654961586, 0.10249964892864227, -0.11357831209897995, 0.10773815214633942, 0.1077573224902153, -0.21255478262901306, -0.00820792093873024, 0.08406239002943039, 0.08343109488487244, 0.08793900907039642, -0.008940419182181358, 0.08043446391820908, 0.016393491998314857, 0.045033421367406845, -0.0010538179194554687, -0.0689135193824768, -0.160853311419487, -0.04520045965909958, -0.16240882873535156, 0.055134791880846024, 0.2640373706817627, -0.006510019302368164, -0.049638859927654266, -0.14376607537269592, 0.019183192402124405, 0.09206702560186386, -0.01697252318263054, -0.11864407360553741, 0.011403475888073444, 0.002006412949413061, 0.0427490659058094, -0.054466232657432556, -0.10527174174785614, -0.11100855469703674, -0.0007283746963366866, 0.09117082506418228, 0.0069696418941020966, 0.01808219589293003, -0.0538964718580246, -0.017461854964494705, -0.2024068385362625, -0.036231473088264465, -0.04039502143859863, -0.020840246230363846, -0.07409993559122086, 0.0196854155510664, -0.10100336372852325, -0.27810779213905334, 0.10139795392751694, -0.05152905359864235, 0.04834238812327385, 0.007171782199293375, 0.003103365655988455, 0.05332231521606445, 0.08062153309583664, 0.15214607119560242, -0.10235976427793503, -0.10011574625968933, 0.003828127169981599, -0.03732862323522568, 0.010365748777985573, -0.020695021376013756, -0.08619790524244308, -0.0810774490237236, 0.05719355493783951, 0.013549167662858963, -0.02811625599861145, 0.014675737358629704, -0.030625663697719574, -0.05104494094848633, -0.04089369624853134, -0.10989683866500854, -0.04583001509308815, 0.04004082456231117, 0.02652466855943203, 0.15508927404880524, 0.03672510385513306, 0.046619441360235214, -0.10931973904371262, 0.002097951713949442, 0.03332611918449402, 0.03379914537072182, 0.04676293954253197, -0.10246028006076813, 0.020282190293073654, -0.0644940584897995, -0.010629281401634216, -0.07932911068201065, -0.03161713108420372, -0.11586437374353409, -0.013781190849840641, 0.009940740652382374, -0.09840389341115952, -0.11589451879262924, -0.0003880027506966144, -0.03264010697603226, -0.11086707562208176, -0.003675337415188551, -0.06034782901406288, 0.03695247694849968, -0.004632243420928717, 0.07993467152118683, -0.0255939569324255, 0.08100753277540207, -0.10386762768030167, -0.06675498932600021, -0.09416723996400833, 0.13946866989135742, -0.12180545181035995, -0.07735170423984528, -0.09305325150489807, -0.07531507313251495, -0.009327529929578304, 0.1038937196135521, 0.02603917196393013, 0.0900457352399826, -0.22517570853233337, -0.13461565971374512, 0.1973448544740677, -0.16082005202770233, -0.016682131215929985, 0.19130776822566986, 0.06048782914876938, 0.06118268519639969, 0.18292200565338135, 0.315835565328598, 0.08623351901769638, -0.16664519906044006, 0.03714868798851967, 0.0868297666311264, -0.06363576650619507, -0.08238554000854492, 0.06534703075885773, -0.08793579787015915, -0.02180074155330658, 0.05101833865046501, -0.05677707865834236, 0.033713486045598984, 0.002340947277843952, -0.043671686202287674, 0.01763550564646721, -0.0920606330037117, 0.05225592106580734, 0.03290143609046936, -0.010384195484220982, -0.04065488651394844, -0.031707268208265305, 0.10269973427057266, 0.0613304078578949, -0.12319869548082352, 0.06523558497428894, -0.08947639167308807, 0.10919596999883652, -0.11200052499771118, 0.01600174978375435, -0.13066907227039337, 0.13873673975467682, -0.06438937038183212, 0.04458627104759216, 0.1005893424153328, 0.22208921611309052, 0.023692017421126366, -0.030097855255007744, -0.024183955043554306, 0.022846024483442307, 0.07439704239368439, -0.002292647724971175, -0.014566339552402496, -0.1161484643816948, -0.008632035925984383, -0.063357874751091, 0.052518196403980255, -0.055886056274175644, -0.06675635278224945, 0.028085265308618546, -0.006100416649132967, -0.025797231122851372, -0.006257503759115934, 0.09076528996229172, 0.08776366710662842, 0.06446484476327896, 0.06585881859064102, 0.058272961527109146, -0.01858353801071644, -0.11905018240213394, 0.219826802611351, -0.06195630878210068, 0.02046256698668003, 0.10069450736045837, -0.06615249067544937, 0.020879670977592468, 0.06915152072906494, 0.0071901180781424046, -0.010738635435700417, -0.026163872331380844, -0.05033743008971214, 0.25161275267601013, 0.05058368295431137, 0.07600521296262741, -0.10232561826705933, 0.03444186598062515, 0.036595989018678665, -0.13374756276607513, 0.02514980547130108, 0.09189052134752274, 0.002357294550165534, 0.0010555194457992911, -0.0021502692252397537, -0.07946587353944778, -0.08880466222763062, 0.2796817421913147, -0.02356250025331974, -0.08674021810293198, 0.055422961711883545, -0.0706363394856453, -0.058155108243227005, 0.05754294991493225, -0.2248072326183319, -0.04778999835252762, 0.05576307326555252, 0.028902003541588783, 0.07773315906524658, -0.07958793640136719, 0.0268770270049572, -0.000986717757768929, -0.13519272208213806, -0.1169075220823288, 0.08657211810350418, -0.04440009221434593, 0.007844546809792519, -0.09900112450122833, -0.13746318221092224, 0.0010224877623841166, -0.04145216569304466, -0.17140604555606842, 0.0942390188574791, -0.0691392794251442, -0.276704877614975, -0.14892055094242096, -0.005903644021600485, -0.06287741661071777, 0.02857358194887638, 0.12089066952466965, -0.10877665877342224, -0.05382894352078438, -0.018224237486720085, 0.13552062213420868, 0.0690595880150795, -0.053667373955249786, -0.06663273274898529, -0.05555219575762749, 0.07410020381212234, -0.1470710039138794, -0.020224230363965034, -0.0841333344578743, -0.023254061117768288, 0.004011747892946005, -0.03086353838443756, 0.015959633514285088, 0.18784192204475403, 0.05429323390126228, 0.0190828088670969, 0.011680432595312595, 0.2095033824443817, -0.05593634024262428, -0.027986103668808937, 0.18829073011875153, -0.00009338268864667043, -0.005182567983865738, 0.12244812399148941, 0.03003562241792679, -0.029749583452939987, -0.05474497377872467, 0.021448889747262, -0.06413081288337708, -0.21836180984973907, -0.17149507999420166, -0.03919941186904907, -0.049219921231269836, -0.08998280763626099, -0.0027632606215775013, -0.0002081935526803136, 0.02455243095755577, 0.006266438402235508, -0.16895976662635803, 0.05078365281224251, -0.020741106942296028, 0.20776091516017914, -0.056840550154447556, 0.12402705103158951, -0.030382949858903885, -0.026712261140346527, 0.04143262282013893, -0.034403663128614426, 0.04522893950343132, 0.09650231152772903, 0.03776061162352562, 0.07867258787155151, 0.08503261208534241, 0.09531492739915848, 0.07903586328029633, -0.03966105356812477, -0.01620248705148697, 0.016573777422308922, -0.07185832411050797, -0.0874389111995697, 0.03653063625097275, 0.1827574372291565, -0.08814956992864609, -0.003919417038559914, 0.005410713143646717, 0.021949153393507004, 0.20246946811676025, 0.09197841584682465, -0.1092018336057663, -0.07020105421543121, -0.03593217208981514, -0.11218901723623276, 0.015856625512242317, 0.05377587676048279, 0.09423182904720306, -0.14326997101306915, 0.10524534434080124, 0.005083004478365183, 0.07912267744541168, 0.014004180207848549, 0.07178229838609695, -0.1255900114774704, 0.04314056783914566, 0.02895205281674862, 0.08613846451044083, -0.12166334688663483, 0.1863071471452713, -0.002268719021230936, 0.09447095543146133, -0.06241341680288315, 0.0016488621477037668, -0.012926355004310608, 0.11274591833353043, 0.15085630118846893, 0.050958458334207535, 0.0458223782479763, -0.027246978133916855, -0.06883130967617035, 0.0654972642660141, -0.04023555666208267, 0.04228818044066429, 0.01855877786874771, 0.010998675599694252, -0.011420396156609058, -0.04338962212204933, -0.02965565398335457, -0.07277414947748184, -0.013707879930734634, 0.015093025751411915, 0.17642077803611755, 0.133416086435318, 0.003181667299941182, -0.09946445375680923, -0.2373763471841812, 0.0801699236035347, -0.03675805404782295, -0.13048872351646423, -0.043734751641750336, -0.08413806557655334, 0.10007095336914062, -0.05072195827960968, -0.032338883727788925, 0.08295014500617981, 0.0761069729924202, -0.07799877226352692, -0.0023164169397205114, 0.05359315872192383, -0.08463450521230698, -0.06288713961839676, 0.054387617856264114, 0.22295545041561127, 0.08762660622596741, 0.06332938373088837, 0.08689739555120468, 0.02314108982682228, 0.009616219438612461, -0.05968393757939339, 0.0076095666736364365, 0.09251009672880173, -0.15647156536579132, 0.0034122734796255827, 0.09111432731151581, -0.18272462487220764, -0.10634306818246841, -0.011011047288775444, 0.1668824404478073, 0.04536684602499008, -0.03838860243558884, 0.22097286581993103, 0.3254353702068329, -0.05740131810307503, -0.24039693176746368, -0.12279404699802399, 0.10827989876270294, 0.09883210062980652, 0.00999967660754919, -0.12498960644006729, 0.16958530247211456, 0.012060137465596199, -0.046280235052108765, -0.14270614087581635, -0.19084098935127258, -0.14083212614059448, 0.18444302678108215, -0.06512735784053802, 0.19077280163764954, 0.0533757321536541, -0.05864565074443817, -0.025214197114109993, -0.020919131115078926, -0.046282462775707245, -0.08313899487257004, 0.11228734254837036, 0.0453684963285923, 0.13046857714653015, 0.07245784997940063, 0.0024782679975032806, 0.09623415768146515, 0.07905959337949753, -0.06628984212875366, -0.019777711480855942, 0.10136976838111877, -0.0015679833013564348, 0.047896191477775574, 0.21197247505187988, -0.09678675979375839, -0.00435931421816349, -0.04037108272314072, -0.11995868384838104, -0.11868937313556671, 0.11110597103834152, 0.05079809948801994, -0.04113928601145744, 0.051890961825847626, -0.03734523057937622, 0.012948627583682537, 0.010140052065253258, 0.030477602034807205, -0.24040080606937408, 0.01911134272813797, 0.19827783107757568, 0.22940248250961304, -0.150637686252594, -0.14666657149791718, -0.024470791220664978, -0.0569596141576767, 0.11988508701324463, 0.01834085024893284, 0.05159543454647064, 0.07223077118396759, 0.03237685188651085, 0.07760992646217346, -0.0443548783659935, -0.12274250388145447, 0.049200139939785004, 0.039419446140527725, -0.07886585593223572, -0.15920230746269226, -0.03629232197999954, -0.11065895855426788, 0.007035772316157818, 0.08070546388626099, 0.1527547985315323, -0.07992078363895416, -0.02205965667963028, -0.037786491215229034, 0.020029272884130478, -0.14261165261268616, 0.2230408787727356, 0.02758939005434513, 0.07934015989303589, -0.15841050446033478, 0.042082782834768295, -0.05872233957052231, -0.014595608226954937, 0.058287207037210464, -0.028118152171373367, -0.05892867594957352, -0.05975255370140076, -0.03965609148144722, 0.07666580379009247, 0.009455178864300251, -0.1601991355419159, -0.023241236805915833, -0.13198724389076233, -0.005736464634537697, 0.09110055863857269, 0.07028116285800934, 0.012742879800498486, -0.10330275446176529, -0.0938367247581482, -0.03612808138132095, 0.03408103808760643, 0.08716253191232681, -0.05609264597296715, -0.11070670187473297, 0.09707505255937576, 0.013594554737210274, 0.06647324562072754, -0.07787498831748962, -0.06859678775072098, 0.007162106689065695, 0.042879801243543625, -0.13428886234760284, -0.01490830723196268, -0.06772322952747345, 0.03081449866294861, 0.015878841280937195, -0.050996020436286926, 0.004512698855251074, 0.07895068824291229, -0.10853195190429688, 0.07798022776842117, -0.013036925345659256, 0.043434131890535355, -0.10001077502965927, 0.050221916288137436, 0.007187545765191317, 0.012923339381814003, 0.07622002810239792, 0.10912380367517471, -0.1275368332862854, 0.15495043992996216, -0.1570833921432495, -0.048718977719545364, 0.08012866228818893, 0.0638333261013031, 0.00426918501034379, -0.045357923954725266, -0.016300741583108902, 0.13698187470436096, 0.038705263286828995, -0.010920489206910133, 0.0352335199713707, -0.07344169914722443, 0.0377592071890831, -0.04639854654669762, -0.03790256008505821, -0.019435714930295944, 0.014473344199359417, 0.07876819372177124, 0.15212053060531616, 0.18462751805782318, -0.11114823818206787, 0.05978303402662277, -0.0750294104218483, 0.04296569898724556, -0.04591621831059456, -0.030880138278007507, -0.09711399674415588, -0.07580149173736572, 0.040364284068346024, -0.058093227446079254, 0.13563986122608185, 0.06850949674844742, 0.07263628393411636, -0.03311339020729065, -0.012360361404716969, 0.010552501305937767, -0.0244459081441164, 0.1933668553829193, 0.03274987265467644, 0.05677986145019531, -0.02089868299663067, 0.007009090390056372, 0.00007807615475030616, 0.09736824035644531, -0.023727674037218094, 0.06663393974304199, 0.06276770681142807, 0.11796578764915466, 0.13113325834274292, 0.026192864403128624, -0.056390099227428436, -0.009738493710756302, -0.05213460698723793, 0.0554807148873806, -0.020537283271551132, 0.13576005399227142, 0.11163431406021118, -0.049423947930336, 0.09624549001455307, 0.03154149651527405, -0.06433789432048798, -0.20418839156627655, -0.21238650381565094, -0.11520728468894958, -0.14221711456775665, 0.021527661010622978, -0.10741990804672241, 0.01629558950662613, 0.017400402575731277, 0.057698898017406464, -0.03854362666606903, 0.1295609176158905, -0.09387470781803131, -0.13454774022102356, 0.09302858263254166, -0.09500887989997864, -0.0070022111758589745, -0.04557012394070625, 0.039775438606739044, 0.165980726480484, 0.10444609820842743, 0.025923941284418106, 0.017946090549230576, -0.06717532128095627, -0.02829773724079132, -0.08457113802433014, -0.08321730047464371, -0.024381550028920174, -0.02657265029847622, 0.09562896192073822, 0.07337769865989685, 0.10916128754615784, -0.09733980894088745, -0.01674548350274563, 0.1163044348359108, -0.04979169741272926, -0.1609715223312378, -0.12040194869041443, 0.1741219311952591, -0.01768515631556511, 0.09994164109230042, -0.017560115084052086, -0.04719512164592743, 0.008799671195447445, 0.1889093965291977, 0.22784042358398438, 0.08826474100351334, 0.03622306510806084, -0.07660165429115295, -0.007533106487244368, -0.03665533661842346, 0.004706172738224268, 0.017841029912233353, 0.21070018410682678, 0.022570626810193062, 0.10381972044706345, -0.09556203335523605, -0.06866762787103653, -0.02163221314549446, -0.011221562512218952, -0.0011221847962588072, -0.1161901131272316, -0.0007824180065654218, 0.18280260264873505, -0.11352250725030899, -0.08802754431962967, -0.13995777070522308, -0.010041717439889908, -0.12321799248456955, -0.03595639020204544, 0.048082608729600906, 0.1552506387233734, 0.03799533098936081, -0.03773970529437065, 0.029657164588570595, 0.09366331249475479, -0.0072893863543868065, -0.09494847804307938, -0.0510406456887722, 0.049525946378707886, -0.07229146361351013, -0.02668522484600544, 0.037105780094861984, 0.12796872854232788, -0.005364745389670134, 0.0933745950460434, 0.03251887485384941, 0.18897128105163574, -0.03186247870326042, -0.14516478776931763, 0.06545454263687134, 0.12903647124767303, 0.00012087363575119525, 0.1387387365102768, 0.0002873703488148749, -0.1777946650981903, -0.007813642732799053, -0.07705322653055191, -0.03566133230924606, -0.04539599269628525, 0.10241207480430603, -0.07938552647829056, 0.0408068485558033, 0.07937921583652496, -0.02546956017613411, -0.07108242809772491, -0.07018348574638367, 0.08812671154737473, 0.0008873917395249009, -0.10626866668462753, -0.04377102851867676, -0.2085421234369278, -0.03664860501885414, -0.0888594314455986, -0.05225967988371849, -0.0739859789609909, -0.005193936172872782, -0.03194333240389824, -0.01805197447538376, 0.03724074736237526, 0.00634528324007988, 0.06907127797603607, -0.002070426242426038, 0.037975627928972244, 0.034375838935375214, 0.08603266626596451, 0.1130659356713295, -0.17971085011959076, -0.09890349209308624 ]
null
null
transformers
## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish # GPT-svenska-wikipedia A swedish GPT2 style model trained using Flax CLM pipeline on the Swedish part of the wiki40b dataset and the Oscar dataset. https://huggingface.co/datasets/wiki40b The model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate Loss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) The model could likely be trained for longer. ## Data cleaning and preprocessing The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work. ```python from datasets import load_dataset def load_and_clean_wiki(): dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner', split="train") #dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner') dataset = dataset.remove_columns(['wikidata_id', 'version_id']) filtered_dataset = dataset.map(filter_wikipedia) # filtered_dataset[:3] # print(filtered_dataset[:3]) return filtered_dataset def filter_wikipedia(batch): batch["text"] = " ".join(batch["text"].split("\ _START_SECTION_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_PARAGRAPH_\ ")) batch["text"] = " ".join(batch["text"].split("_NEWLINE_")) batch["text"] = " ".join(batch["text"].split("\xa0")) return batch ``` ## Training script The following training script was used to train the model. ```bash ./run_clm_flax.py --output_dir="${MODEL_DIR}" --model_type="gpt2" --config_name="${MODEL_DIR}" --tokenizer_name="${MODEL_DIR}" --dataset_name="wiki40b" --dataset_config_name="sv" --do_train --do_eval --block_size="512" --per_device_train_batch_size="64" --per_device_eval_batch_size="64" --learning_rate="5e-3" --warmup_steps="1000" --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" --overwrite_output_dir --num_train_epochs="20" --logging_steps="500" --save_steps="1000" --eval_steps="2500" --push_to_hub ```
{"language": "sv", "widget": [{"text": "Jag \u00e4r en svensk spr\u00e5kmodell."}]}
text-generation
birgermoell/swedish-gpt
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "sv", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv" ]
TAGS #transformers #pytorch #jax #tensorboard #gpt2 #text-generation #sv #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt URL ## Swedish gpt wiki URL # Nordic gpt wiki URL ## Dansk gpt wiki URL ## Norsk gpt wiki URL ## Roberta models ## Nordic Roberta Wiki URL ## Swe Roberta Wiki Oscar URL ## Roberta Swedish Scandi URL ## Roberta Swedish URL ## Swedish T5 model URL # GPT-svenska-wikipedia A swedish GPT2 style model trained using Flax CLM pipeline on the Swedish part of the wiki40b dataset and the Oscar dataset. URL The model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate Loss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) The model could likely be trained for longer. ## Data cleaning and preprocessing The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work. ## Training script The following training script was used to train the model.
[ "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL", "# GPT-svenska-wikipedia\nA swedish GPT2 style model trained using Flax CLM pipeline on the Swedish\npart of the wiki40b dataset and the Oscar dataset. \nURL\n\nThe model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate\nLoss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) \n\nThe model could likely be trained for longer.", "## Data cleaning and preprocessing\nThe data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work.", "## Training script\nThe following training script was used to train the model." ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #gpt2 #text-generation #sv #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL", "# GPT-svenska-wikipedia\nA swedish GPT2 style model trained using Flax CLM pipeline on the Swedish\npart of the wiki40b dataset and the Oscar dataset. \nURL\n\nThe model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate\nLoss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) \n\nThe model could likely be trained for longer.", "## Data cleaning and preprocessing\nThe data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work.", "## Training script\nThe following training script was used to train the model." ]
[ 60, 32, 4, 5, 6, 6, 6, 6, 4, 6, 7, 7, 5, 6, 111, 40, 14 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #gpt2 #text-generation #sv #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.## Gpt models## Swedish Gpt\nURL## Swedish gpt wiki\nURL# Nordic gpt wiki\nURL## Dansk gpt wiki\nURL## Norsk gpt wiki\nURL## Roberta models## Nordic Roberta Wiki\nURL## Swe Roberta Wiki Oscar\nURL## Roberta Swedish Scandi\nURL## Roberta Swedish\nURL## Swedish T5 model\nURL# GPT-svenska-wikipedia\nA swedish GPT2 style model trained using Flax CLM pipeline on the Swedish\npart of the wiki40b dataset and the Oscar dataset. \nURL\n\nThe model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate\nLoss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) \n\nThe model could likely be trained for longer.## Data cleaning and preprocessing\nThe data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work.## Training script\nThe following training script was used to train the model." ]
[ -0.0932951271533966, 0.2307949811220169, -0.0004250535857863724, 0.06637486070394516, 0.04010304436087608, 0.008655490353703499, 0.05876021459698677, 0.12583233416080475, -0.005285907071083784, 0.0844700038433075, 0.12320355325937271, -0.05287715420126915, 0.09859446436166763, 0.13337598741054535, 0.040750693529844284, -0.37224462628364563, 0.05403013899922371, -0.06478361040353775, -0.04086761176586151, 0.09894471615552902, 0.09420417994260788, -0.06624697893857956, 0.04374855384230614, -0.022294169291853905, -0.04106530547142029, -0.001742845051921904, -0.032889094203710556, -0.051482681185007095, 0.09634032100439072, 0.07412797212600708, 0.0796755775809288, 0.07819409668445587, 0.15902723371982574, -0.14370281994342804, 0.004445462487637997, 0.06535778194665909, 0.011415239423513412, 0.0324656218290329, 0.06397945433855057, 0.051360905170440674, 0.16857236623764038, 0.013421732001006603, 0.07428135722875595, 0.026775404810905457, -0.07206366956233978, -0.23673418164253235, -0.07805898040533066, 0.04987124353647232, 0.04588591307401657, 0.10111168771982193, -0.07283665984869003, 0.03809001296758652, -0.13744673132896423, 0.05450586602091789, 0.13573569059371948, -0.21749472618103027, -0.0816463902592659, 0.12206317484378815, 0.07886075973510742, 0.06536456942558289, -0.09197515994310379, 0.05807904899120331, 0.05495969206094742, 0.03796064481139183, 0.11728332191705704, 0.008862710557878017, 0.0635305717587471, 0.009687716141343117, -0.150421142578125, -0.03429627791047096, 0.045182038098573685, 0.07434937357902527, -0.045039307326078415, -0.18142169713974, -0.04183446243405342, -0.07434182614088058, -0.01923729106783867, -0.04572438821196556, 0.045638248324394226, -0.010666540823876858, -0.020386258140206337, -0.03292930871248245, -0.06632223725318909, -0.061365049332380295, 0.05779871344566345, 0.11083712428808212, 0.05145222321152687, 0.02510058879852295, 0.022202860563993454, 0.09453675150871277, -0.037417102605104446, -0.10734812170267105, -0.06732729822397232, -0.020553043112158775, -0.11284397542476654, 0.0029195414390414953, 0.014230340719223022, -0.0054290322586894035, -0.06659918278455734, 0.19657421112060547, 0.01710611768066883, 0.010682692751288414, 0.10426252335309982, -0.010265830904245377, -0.006946562323719263, 0.12700128555297852, -0.1543135792016983, -0.1570841670036316, -0.06579577922821045, 0.0516289621591568, -0.02955430932343006, -0.02096278965473175, -0.018605919554829597, -0.07206331938505173, 0.043831754475831985, 0.05373688042163849, -0.015472397208213806, 0.011182405985891819, -0.0065300241112709045, -0.009316817857325077, 0.11893884837627411, -0.1093350425362587, -0.009987090714275837, -0.016814855858683586, -0.12381697446107864, 0.019635019823908806, 0.03587695583701134, -0.0069799525663256645, -0.03145664557814598, 0.13107125461101532, -0.05687054246664047, -0.061793986707925797, -0.06741288304328918, -0.14052073657512665, 0.015518461354076862, -0.09420192241668701, -0.02345399744808674, -0.043153658509254456, -0.16091057658195496, -0.0958109200000763, 0.08179895579814911, -0.07288341969251633, -0.03865016624331474, -0.07702916860580444, -0.07761745899915695, 0.020568210631608963, -0.040850963443517685, 0.1448940932750702, -0.030861325562000275, 0.045221101492643356, -0.07079961150884628, 0.12640540301799774, 0.08589985966682434, 0.022893253713846207, -0.09278783947229385, 0.02292732335627079, -0.19019652903079987, 0.07970599085092545, -0.127833753824234, 0.013566731475293636, -0.1170828640460968, -0.10104691237211227, -0.04289709031581879, 0.08789888024330139, 0.029105141758918762, 0.1352093517780304, -0.18288885056972504, -0.026539914309978485, 0.2700602114200592, -0.10834386944770813, 0.007574109826236963, 0.1102038249373436, 0.006122126244008541, 0.08450615406036377, 0.07950541377067566, 0.1588783860206604, 0.042933668941259384, -0.13846446573734283, -0.03050798363983631, -0.0002960587153211236, -0.01199385430663824, 0.06467122584581375, 0.06600433588027954, -0.01802857592701912, 0.09131816029548645, 0.03479999303817749, -0.09028718620538712, 0.00449999189004302, -0.03370104730129242, -0.054615333676338196, 0.024357374757528305, -0.0745597705245018, -0.014700072817504406, 0.06382045149803162, -0.01039907243102789, -0.05079084262251854, -0.16840888559818268, -0.006339057814329863, 0.12271611392498016, -0.08330461382865906, 0.0072565833106637, -0.08015614002943039, -0.09719377011060715, 0.04717444255948067, -0.023575671017169952, -0.11023622751235962, -0.08043670654296875, -0.029031910002231598, -0.050890326499938965, -0.043674685060977936, 0.11472932994365692, 0.08953889459371567, 0.06992996484041214, -0.06449293345212936, -0.02529328130185604, -0.02840336598455906, -0.04085135459899902, -0.0666818842291832, -0.11529000848531723, -0.07674811035394669, -0.049111004918813705, 0.1245836392045021, -0.2011229693889618, 0.02502262592315674, 0.025859171524643898, 0.12737242877483368, 0.016773082315921783, -0.06732787936925888, 0.03632689267396927, -0.008997004479169846, 0.008631371892988682, -0.11652327328920364, 0.018001126125454903, -0.05770128220319748, -0.030295636504888535, 0.07456431537866592, -0.062176413834095, -0.1032155454158783, 0.0756986066699028, 0.2533321678638458, -0.12518560886383057, 0.06438451260328293, -0.05819722265005112, -0.017348846420645714, -0.09278695285320282, -0.0056463442742824554, 0.0701906830072403, 0.06874266266822815, 0.10357724875211716, -0.09916912019252777, -0.012631295248866081, 0.015087621286511421, -0.003979239147156477, -0.048763565719127655, 0.15584991872310638, 0.09558848291635513, -0.13706524670124054, 0.06098273769021034, -0.0964970588684082, 0.017102133482694626, 0.2368413209915161, 0.057488810271024704, -0.11892062425613403, 0.0056354389525949955, -0.007411458529531956, 0.01333890575915575, 0.1571921706199646, 0.052365146577358246, 0.03473604843020439, 0.028754740953445435, 0.0011214889818802476, -0.001807314227335155, -0.11650902032852173, -0.07397592812776566, 0.008250362239778042, -0.07270147651433945, 0.02810382843017578, 0.03634013235569, -0.07131996750831604, 0.06310541927814484, 0.03694711625576019, -0.11084343492984772, -0.04927593842148781, -0.013071882538497448, -0.07809159904718399, 0.1928565502166748, -0.011045168153941631, -0.23696786165237427, -0.08969567716121674, 0.06859540939331055, 0.04502403363585472, -0.022985273972153664, 0.04642517864704132, -0.12653765082359314, -0.12081911414861679, -0.10976073145866394, 0.07922251522541046, -0.04705803841352463, -0.03347651660442352, -0.05282343924045563, 0.03272329270839691, -0.02007376216351986, -0.09516198188066483, 0.021442973986268044, -0.03224696218967438, -0.026298489421606064, 0.019711071625351906, -0.07120981812477112, 0.06393861025571823, 0.09751460701227188, 0.014326689764857292, 0.030683740973472595, 0.029993213713169098, 0.20575246214866638, -0.11061466485261917, 0.12127499282360077, 0.12062875926494598, 0.0706135705113411, 0.06981728971004486, 0.14802759885787964, 0.029274893924593925, -0.1112564280629158, 0.03648129850625992, 0.07886385172605515, -0.0606660470366478, -0.16571395099163055, -0.06657825410366058, 0.0040257456712424755, 0.04456251114606857, 0.15053795278072357, 0.04379749670624733, -0.07138731330633163, 0.05475880950689316, -0.10694270581007004, -0.06068585440516472, 0.05265798047184944, 0.04518682882189751, -0.11502563953399658, -0.01512796152383089, 0.09224117547273636, -0.03762432187795639, 0.012417002581059933, 0.09070033580064774, -0.03223245218396187, 0.1829659789800644, -0.035317737609148026, 0.0710175484418869, 0.055165406316518784, 0.10197734087705612, 0.06268052011728287, -0.0038173478096723557, 0.04824110120534897, -0.050926487892866135, -0.006605727132409811, -0.044866565614938736, 0.0067089274525642395, 0.10446304082870483, -0.026828590780496597, -0.0976233258843422, -0.01346093975007534, 0.02212853543460369, -0.06977201998233795, 0.285227507352829, 0.08587179332971573, -0.2472876012325287, -0.11434664577245712, 0.04375678673386574, -0.08404260128736496, -0.07178676128387451, -0.022732535377144814, 0.11880273371934891, -0.15670374035835266, 0.0644921287894249, -0.07165228575468063, 0.08281037211418152, -0.023966310545802116, -0.028491396456956863, 0.04296809434890747, 0.10183684527873993, -0.029929161071777344, 0.09670773893594742, -0.15242211520671844, 0.1466372311115265, -0.01786324754357338, 0.12793055176734924, -0.05447715148329735, -0.0004993377369828522, 0.006873629055917263, 0.05940434709191322, 0.23192204535007477, 0.01876796782016754, -0.10305065661668777, -0.09787647426128387, -0.12961886823177338, -0.013012335635721684, 0.03227456659078598, -0.10404705256223679, 0.11174207180738449, 0.008914027363061905, -0.008105362765491009, -0.03861581161618233, -0.06668521463871002, -0.09324802458286285, -0.09412756562232971, -0.006621426437050104, -0.08436346054077148, 0.05360164865851402, -0.07422050088644028, -0.0672825276851654, -0.0926334410905838, 0.21042336523532867, -0.03250272572040558, -0.10491151362657547, -0.14472468197345734, 0.10443821549415588, 0.15951953828334808, -0.07858328521251678, 0.012488278560340405, 0.047031573951244354, 0.15279370546340942, -0.06954367458820343, -0.015216759406030178, 0.06157354637980461, -0.05238264799118042, -0.1554073840379715, -0.018658744171261787, 0.06233016774058342, 0.1166163757443428, 0.08038956671953201, 0.002520015463232994, 0.050301335752010345, -0.02651536650955677, -0.08576184511184692, 0.04389562830328941, 0.14757952094078064, 0.007904918864369392, -0.07633942365646362, -0.04326355829834938, 0.04265240207314491, -0.04200245440006256, -0.04888230189681053, 0.028800485655665398, 0.25721263885498047, -0.11974691599607468, 0.12440214306116104, 0.13753899931907654, -0.0014198716962710023, -0.2768232226371765, -0.016674578189849854, 0.06570520251989365, 0.12069962918758392, 0.017015282064676285, -0.23211964964866638, 0.054302576929330826, 0.1208399310708046, -0.03228309005498886, 0.003942095208913088, -0.3039643168449402, -0.12190708518028259, 0.01601271890103817, 0.08114495873451233, -0.019412348046898842, -0.0023098939564079046, 0.001259742071852088, -0.006048998795449734, -0.06074386090040207, 0.01928095333278179, -0.008140145801007748, 0.09639501571655273, -0.013288231566548347, 0.024704230949282646, 0.03877079859375954, -0.05165204778313637, 0.12659674882888794, -0.002266888739541173, 0.04112454876303673, -0.06812027841806412, 0.10546715557575226, 0.05661054328083992, -0.056649379432201385, 0.19047731161117554, -0.0344604067504406, 0.011324761435389519, -0.12948361039161682, -0.09914795309305191, -0.08940059691667557, 0.05277477949857712, -0.0715508684515953, -0.07822153717279434, -0.06993574649095535, 0.11960742622613907, 0.07660700380802155, -0.008098765276372433, 0.012129491195082664, -0.081160768866539, -0.022787095978856087, 0.04823552072048187, 0.10899539291858673, 0.05417107790708542, -0.09061970561742783, -0.006027792580425739, 0.003441296052187681, 0.06824632734060287, -0.2031644582748413, -0.03783411160111427, 0.08675818890333176, 0.04960396885871887, 0.07507782429456711, -0.025479385629296303, -0.13296793401241302, -0.033778224140405655, 0.04251604154706001, -0.13343870639801025, -0.17787793278694153, -0.02731541357934475, -0.12211693823337555, -0.09538096934556961, -0.124297134578228, 0.0844353437423706, -0.11812301725149155, 0.0017938060918822885, -0.024619556963443756, 0.04695316404104233, 0.014992953278124332, 0.1779308021068573, 0.05031602829694748, 0.07007792592048645, -0.10477714240550995, 0.11027805507183075, 0.03853751718997955, -0.07054568827152252, 0.0486333966255188, 0.16551631689071655, -0.13748963177204132, -0.04923803731799126, -0.004934838507324457, 0.04253239184617996, -0.0772271677851677, -0.01383458636701107, -0.07936285436153412, -0.04463477432727814, 0.045103561133146286, -0.0019318476552143693, 0.033627476543188095, 0.015439044684171677, 0.018060820177197456, -0.028960352763533592, -0.10633942484855652, 0.05535975098609924, 0.09000343829393387, -0.004754436202347279, -0.05607966333627701, 0.17565995454788208, 0.015830595046281815, -0.03045896254479885, -0.030685827136039734, 0.04012179374694824, -0.04742398113012314, -0.010400524362921715, -0.03004094399511814, -0.04180142655968666, -0.046270646154880524, -0.004285680130124092, -0.061822790652513504, -0.046033766120672226, -0.015760114416480064, 0.00451585091650486, -0.09875227510929108, -0.05215165764093399, -0.0571134127676487, -0.025937849655747414, -0.07092712074518204, -0.01275537721812725, 0.013876241631805897, -0.07721914350986481, 0.027409790083765984, -0.025860967114567757, 0.03513209894299507, 0.055204927921295166, 0.065701924264431, -0.017082707956433296, -0.007847082801163197, -0.0020985074806958437, 0.04232977703213692, 0.020474642515182495, -0.044480100274086, -0.030752601101994514, 0.003803752362728119, 0.023754127323627472, -0.049458447843790054, -0.10329528898000717, 0.000174402492120862, -0.0028346586041152477, 0.0022682417184114456, -0.08110932260751724, 0.11945789307355881, 0.0988491103053093, 0.0478731133043766, 0.09509702026844025, -0.0449921078979969, 0.062321458011865616, -0.20350517332553864, -0.0064044250175356865, -0.012493417598307133, -0.016537662595510483, 0.03729483485221863, 0.023732129484415054, 0.06952151656150818, -0.04284738004207611, 0.04930396378040314, 0.06472151726484299, 0.007763580419123173, 0.06536182761192322, -0.08905842155218124, 0.022605374455451965, 0.018325524404644966, 0.12998943030834198, 0.07078371196985245, 0.017721962183713913, 0.05787200108170509, 0.032266195863485336, -0.02335932105779648, 0.06150186434388161, 0.12467791140079498, 0.14899100363254547, 0.1183839961886406, 0.09819760173559189, -0.06329919397830963, -0.09321768581867218, -0.14700950682163239, 0.16182780265808105, -0.06757025420665741, 0.03624687343835831, -0.014050825498998165, 0.09880871325731277, 0.1780264526605606, -0.1848587840795517, 0.08028030395507812, 0.06354811042547226, -0.08391410112380981, -0.15253430604934692, -0.2011057585477829, -0.0969572439789772, 0.00904049165546894, 0.0739966630935669, -0.08655651658773422, 0.07101349532604218, 0.09499238431453705, 0.05699196085333824, 0.02856902964413166, 0.08654434978961945, 0.00434166518971324, -0.0948081910610199, 0.09440076351165771, 0.025278057903051376, 0.017841292545199394, 0.022765561938285828, -0.006397056393325329, 0.08019361644983292, 0.0055239200592041016, 0.00973918940871954, -0.0167025625705719, -0.01863238401710987, -0.001732640084810555, 0.0546702966094017, -0.06968437880277634, -0.0296518262475729, 0.03612586483359337, 0.07661955803632736, 0.04708930477499962, 0.08703111112117767, -0.0226130373775959, -0.043523047119379044, 0.23254480957984924, -0.04955728352069855, -0.00745480228215456, -0.13821688294410706, 0.19884036481380463, 0.0001226053573191166, 0.05852339044213295, 0.0007878750911913812, -0.07080917805433273, 0.007960086688399315, 0.19498814642429352, 0.06831201910972595, -0.011585299856960773, -0.011003054678440094, -0.02371874824166298, -0.02301837131381035, -0.023068025708198547, 0.06876372545957565, 0.004057042300701141, 0.19138973951339722, -0.1015569195151329, 0.027963286265730858, -0.032557230442762375, -0.10274256020784378, -0.09376530349254608, 0.10142465680837631, 0.005324804224073887, 0.005184660200029612, -0.12573295831680298, 0.09766450524330139, 0.010346765629947186, -0.17866384983062744, 0.08651819825172424, -0.04984758794307709, -0.15597090125083923, -0.02883322723209858, -0.009672509506344795, 0.045634448528289795, 0.10711409896612167, 0.013760698027908802, 0.040925897657871246, 0.09326405078172684, 0.010453766211867332, -0.09900595992803574, -0.10709723830223083, 0.048141300678253174, -0.0012171814450994134, 0.19190630316734314, -0.016822446137666702, 0.018926963210105896, 0.08425368368625641, -0.0472545400261879, -0.10445939749479294, 0.03370153531432152, 0.026196306571364403, -0.04831172898411751, 0.024952124804258347, 0.2033379077911377, -0.05401971563696861, 0.0992753878235817, 0.049423664808273315, -0.12400277704000473, 0.013671720400452614, 0.0036379906814545393, -0.08500748127698898, -0.04800863564014435, 0.10084056109189987, -0.027446981519460678, 0.10814469307661057, 0.22574852406978607, -0.0389774851500988, -0.012357461266219616, -0.0769672840833664, 0.07854259014129639, -0.01725427247583866, 0.050851576030254364, 0.05646180734038353, -0.15168531239032745, -0.06823179125785828, -0.06436138600111008, -0.00020882861281279474, -0.20073436200618744, -0.03614664450287819, -0.04747651144862175, -0.04029860347509384, 0.01565810665488243, 0.09392537921667099, 0.06020251661539078, 0.045579470694065094, -0.022046612575650215, -0.03483535349369049, 0.023623650893568993, 0.09362675994634628, -0.1411105990409851, -0.058834657073020935 ]
null
null
transformers
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/oscar) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"language": ["sv"], "license": "apache-2.0", "tags": ["summarization", "translation"], "datasets": ["oscar"]}
translation
birgermoell/t5-base-swedish
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "feature-extraction", "summarization", "translation", "sv", "dataset:oscar", "arxiv:1910.10683", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1910.10683" ]
[ "sv" ]
TAGS #transformers #pytorch #jax #tensorboard #t5 #feature-extraction #summarization #translation #sv #dataset-oscar #arxiv-1910.10683 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us
Google's T5 Pretraining Dataset: C4 Paper: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. !model image ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt URL ## Swedish gpt wiki URL # Nordic gpt wiki URL ## Dansk gpt wiki URL ## Norsk gpt wiki URL ## Roberta models ## Nordic Roberta Wiki URL ## Swe Roberta Wiki Oscar URL ## Roberta Swedish Scandi URL ## Roberta Swedish URL ## Swedish T5 model URL
[ "## Abstract\nTransfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n!model image", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #t5 #feature-extraction #summarization #translation #sv #dataset-oscar #arxiv-1910.10683 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n", "## Abstract\nTransfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n!model image", "## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.", "## Gpt models", "## Swedish Gpt\nURL", "## Swedish gpt wiki\nURL", "# Nordic gpt wiki\nURL", "## Dansk gpt wiki\nURL", "## Norsk gpt wiki\nURL", "## Roberta models", "## Nordic Roberta Wiki\nURL", "## Swe Roberta Wiki Oscar\nURL", "## Roberta Swedish Scandi\nURL", "## Roberta Swedish\nURL", "## Swedish T5 model\nURL" ]
[ 78, 234, 32, 4, 5, 6, 6, 6, 6, 4, 6, 7, 7, 5, 6 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #t5 #feature-extraction #summarization #translation #sv #dataset-oscar #arxiv-1910.10683 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n## Abstract\nTransfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n!model image## Model series\nThis model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.## Gpt models## Swedish Gpt\nURL## Swedish gpt wiki\nURL# Nordic gpt wiki\nURL## Dansk gpt wiki\nURL## Norsk gpt wiki\nURL## Roberta models## Nordic Roberta Wiki\nURL## Swe Roberta Wiki Oscar\nURL## Roberta Swedish Scandi\nURL## Roberta Swedish\nURL## Swedish T5 model\nURL" ]
[ -0.0028484114445745945, 0.1365913301706314, -0.001975875347852707, 0.06489604711532593, 0.061288606375455856, -0.010331422090530396, 0.0511230006814003, 0.10922469943761826, -0.00032157261739484966, 0.07363301515579224, 0.020113136619329453, 0.04329824075102806, 0.11120481044054031, 0.03289664909243584, 0.06304808706045151, -0.3057731091976166, 0.03904234245419502, -0.1300407499074936, -0.08957231789827347, 0.08438331633806229, 0.09659608453512192, -0.05514676123857498, 0.03704145923256874, -0.023110680282115936, 0.03249740228056908, 0.016554880887269974, -0.09562929719686508, -0.07192165404558182, 0.11608492583036423, 0.09773009270429611, 0.02817339077591896, 0.037411417812108994, 0.0961102619767189, -0.23729804158210754, 0.01937505602836609, 0.03484805300831795, 0.028794284909963608, 0.03275858983397484, 0.05143265798687935, -0.00038769200909882784, 0.20353560149669647, -0.0667608454823494, 0.0668385699391365, 0.04552548751235008, -0.040776729583740234, -0.16757729649543762, -0.1014007031917572, 0.04714101180434227, 0.03792591765522957, 0.034405313432216644, -0.03463723510503769, 0.08612405508756638, -0.09397194534540176, 0.06786205619573593, 0.10801780223846436, -0.2631416618824005, -0.04362538084387779, 0.10273032635450363, 0.057796549052000046, 0.15694615244865417, -0.09131494164466858, 0.08072053641080856, 0.04129989072680473, 0.016137130558490753, 0.03601348400115967, -0.015014084987342358, 0.016966255381703377, -0.006287273485213518, -0.14090919494628906, -0.0181562639772892, 0.1890331208705902, 0.027390895411372185, -0.0585566908121109, -0.19518786668777466, 0.015417125076055527, 0.10124260932207108, 0.007536229677498341, -0.08314630389213562, 0.01462857611477375, -0.03064301796257496, 0.0817747712135315, -0.12266439944505692, -0.09836309403181076, 0.014627931639552116, 0.0019431601976975799, 0.08999983221292496, 0.03444710746407509, 0.032824281603097916, 0.07644914835691452, 0.064115010201931, -0.0027302957605570555, -0.04829974099993706, -0.05905017629265785, -0.08739989995956421, -0.12341364473104477, -0.013779043219983578, 0.04404473677277565, -0.15498043596744537, 0.04434432089328766, 0.14720402657985687, 0.028197694569826126, 0.023657754063606262, -0.038787487894296646, 0.04881114885210991, 0.11461013555526733, 0.1527753621339798, -0.0790630504488945, -0.18877743184566498, -0.05619286000728607, -0.05685257166624069, -0.016459787264466286, -0.04183045029640198, -0.019634904339909554, -0.030534619465470314, 0.005689694546163082, 0.0859084278345108, 0.029133887961506844, 0.03330110013484955, 0.02861202508211136, -0.015892991796135902, 0.034957405179739, -0.14870113134384155, -0.013396020047366619, -0.009909764863550663, -0.03717304766178131, 0.095201775431633, 0.037647783756256104, 0.023447968065738678, -0.07046405971050262, 0.03938455134630203, -0.03607631474733353, -0.05959412828087807, -0.021739980205893517, -0.13029207289218903, 0.0655684694647789, -0.02948692813515663, -0.04524993896484375, -0.061092231422662735, -0.08739373087882996, -0.06802525371313095, 0.03845922648906708, -0.05235006660223007, 0.018396243453025818, -0.07798982411623001, -0.05299355089664459, -0.017020447179675102, -0.017445005476474762, 0.017957700416445732, -0.03144284337759018, 0.02909485623240471, -0.16252315044403076, 0.08862705528736115, 0.021213822066783905, -0.00019046566740144044, -0.08241511881351471, 0.011404872871935368, -0.20595207810401917, 0.149448961019516, -0.22313159704208374, -0.029384367167949677, -0.1492045372724533, -0.07123684883117676, 0.03084559366106987, 0.04322221875190735, -0.017505347728729248, 0.11201000213623047, -0.14404472708702087, -0.03520424664020538, 0.16117635369300842, -0.14600950479507446, -0.013595124706625938, 0.14198505878448486, 0.0008267622324638069, 0.0958358570933342, 0.10648338496685028, 0.22653864324092865, 0.09394922852516174, -0.03639187663793564, -0.05444692075252533, 0.052035462111234665, -0.06341289728879929, 0.08776100724935532, 0.05601216107606888, -0.02693793550133705, 0.07455427199602127, 0.045606471598148346, -0.01626601256430149, 0.007159492000937462, -0.014869275502860546, -0.0791163221001625, 0.027923379093408585, -0.023153800517320633, -0.002073734300211072, 0.033112719655036926, -0.0466289147734642, -0.04470131918787956, -0.10436572134494781, -0.026876097545027733, 0.03618411347270012, -0.10986753553152084, 0.03497977554798126, -0.06234099343419075, 0.006913033779710531, -0.011104111559689045, 0.018365459516644478, -0.10753355175256729, -0.14435043931007385, 0.006124674808233976, -0.051289916038513184, 0.09876358509063721, 0.13334603607654572, 0.05073654651641846, 0.05288121476769447, -0.024194953963160515, 0.03445090353488922, -0.026188641786575317, -0.004273736849427223, -0.032038602977991104, -0.1715860813856125, -0.006993298884481192, -0.054632458835840225, 0.04636472091078758, -0.11213918775320053, -0.011437422595918179, 0.05228491872549057, 0.08928598463535309, 0.030002014711499214, -0.030114801600575447, 0.008420247584581375, 0.03869928419589996, -0.00738335819914937, -0.051247574388980865, 0.022191578522324562, -0.08670131117105484, -0.11531282216310501, 0.10413298010826111, -0.03840501233935356, -0.11928068101406097, 0.04040348902344704, 0.08493857830762863, -0.1011071428656578, -0.0017132555367425084, -0.0735960602760315, -0.030020028352737427, -0.04857903718948364, -0.021713433787226677, 0.11717141419649124, 0.0596800334751606, 0.04809092730283737, -0.09750176221132278, -0.007477985229343176, 0.0032658460550010204, -0.03918604180216789, -0.014424043707549572, 0.15249677002429962, 0.0064804269932210445, -0.21760942041873932, 0.07400576025247574, 0.0029507814906537533, 0.05590534955263138, 0.22939398884773254, -0.00813643354922533, -0.09016650170087814, -0.0004891410353593528, 0.029627233743667603, -0.01404224056750536, 0.11513073742389679, 0.05046806111931801, 0.03417595475912094, 0.054745644330978394, 0.035276807844638824, 0.05593616142868996, -0.0754353329539299, -0.003588666208088398, -0.009843770414590836, -0.05956384912133217, 0.11067476868629456, 0.045075125992298126, -0.011500661261379719, 0.08258122950792313, 0.01629120111465454, -0.008827668614685535, -0.04680917039513588, -0.04945436865091324, -0.06686445325613022, 0.17029374837875366, -0.10570633411407471, -0.2823243737220764, -0.16128012537956238, 0.14270439743995667, -0.06882691383361816, -0.05351760983467102, 0.03806101903319359, -0.072544626891613, -0.13374564051628113, -0.11610983312129974, 0.08780024945735931, -0.015611755661666393, -0.11248636990785599, -0.0793987512588501, 0.038375142961740494, -0.07019288837909698, -0.14651894569396973, 0.010700172744691372, -0.0016568793216720223, -0.10075781494379044, -0.0032150365877896547, -0.023125002160668373, 0.0697593167424202, 0.07318542897701263, -0.008593125268816948, -0.016509810462594032, -0.019399361684918404, 0.15647830069065094, -0.1235601156949997, 0.12632542848587036, 0.018549686297774315, -0.08001641184091568, 0.05672148987650871, 0.09402342885732651, 0.02531031146645546, -0.03749234974384308, 0.028549328446388245, 0.07663626968860626, -0.07271178066730499, -0.2937993109226227, -0.09970581531524658, -0.02988370694220066, 0.08661573380231857, -0.01034743431955576, 0.07025254517793655, 0.02943377010524273, 0.01612807810306549, -0.059854719787836075, -0.1097174659371376, 0.09121764451265335, 0.04381629824638367, 0.10520277172327042, -0.06675461679697037, 0.050781916826963425, -0.08056540787220001, -0.020185064524412155, 0.0770186111330986, 0.037247076630592346, 0.20121383666992188, 0.018009399995207787, 0.08072350174188614, 0.0668145939707756, 0.07616053521633148, 0.0011193744139745831, 0.05659592151641846, -0.0026863613165915012, 0.03208460286259651, -0.03015347756445408, -0.07489494979381561, -0.030104205012321472, 0.08544384688138962, 0.10477405041456223, -0.06637374311685562, 0.0407700315117836, 0.01748756133019924, 0.042772747576236725, 0.20046833157539368, 0.013496057130396366, -0.02838164195418358, -0.04639457166194916, 0.07476173341274261, -0.091530442237854, -0.04356590658426285, 0.044861312955617905, 0.14306244254112244, -0.1737971156835556, 0.044987015426158905, -0.03974183648824692, 0.08705021440982819, -0.10332979261875153, -0.04644973203539848, -0.08769461512565613, 0.06007125601172447, -0.029906146228313446, 0.1435830146074295, -0.06244617700576782, 0.12452198565006256, 0.01718958653509617, 0.062157317996025085, -0.07095377147197723, 0.0339789018034935, -0.023929564282298088, 0.019748596474528313, 0.20882931351661682, 0.025516094639897346, -0.09764523059129715, -0.004508216865360737, -0.08364333212375641, 0.045597754418849945, 0.07000510394573212, -0.07246513664722443, 0.062183067202568054, -0.022602127864956856, 0.015869544818997383, -0.051055844873189926, 0.011550158262252808, -0.10679949074983597, -0.17722012102603912, 0.020907530561089516, -0.10002758353948593, -0.00869298167526722, -0.04569779708981514, -0.07239851355552673, -0.17929591238498688, 0.23928150534629822, -0.15799395740032196, -0.13448990881443024, -0.12908326089382172, 0.014250379055738449, 0.1448415070772171, -0.023909777402877808, -0.014390477910637856, 0.012673130258917809, 0.06536758691072464, -0.0965695008635521, -0.04813207685947418, 0.02304016798734665, -0.01434700284153223, -0.146805077791214, 0.026386689394712448, 0.1312524378299713, 0.11823008209466934, 0.040093958377838135, 0.01854817196726799, 0.01154917012900114, 0.06516165286302567, -0.14786621928215027, -0.02506372146308422, 0.21129997074604034, -0.025458866730332375, 0.09769634902477264, -0.048609409481287, -0.03994414210319519, -0.08611802011728287, -0.04081542044878006, 0.17243258655071259, 0.1439475268125534, -0.09097899496555328, 0.22553206980228424, 0.15558524429798126, -0.11514294892549515, -0.2886958122253418, -0.032035063952207565, 0.0414450541138649, 0.023882536217570305, 0.10809578746557236, -0.1273491084575653, 0.06923219561576843, 0.08360176533460617, -0.010394356213510036, 0.0025374970864504576, -0.24866020679473877, -0.09599032998085022, 0.006084021646529436, 0.03781062737107277, 0.019452324137091637, -0.037487663328647614, -0.013283242471516132, 0.02572389878332615, -0.08390238881111145, 0.10190863907337189, 0.020103393122553825, 0.08950299769639969, 0.010919005610048771, 0.05384049564599991, 0.06382473558187485, -0.03956835716962814, 0.12380099296569824, -0.022416219115257263, -0.0003102992777712643, -0.0936126559972763, 0.09855461120605469, 0.09917788952589035, -0.0034914412535727024, 0.13445395231246948, -0.04456726461648941, -0.0011795277241617441, -0.08486244827508926, -0.06784535199403763, -0.06484982371330261, 0.09512375295162201, -0.06519099324941635, -0.08489196747541428, -0.14609456062316895, 0.12934578955173492, 0.10240576416254044, -0.00252185738645494, 0.13428163528442383, -0.09824908524751663, 0.04745224863290787, 0.07366540282964706, 0.19196943938732147, 0.05605445057153702, -0.08852413296699524, -0.030770765617489815, -0.009820966050028801, 0.04648416116833687, -0.18113362789154053, 0.04884827509522438, 0.16662825644016266, 0.0017286953516304493, 0.11798296868801117, -0.02514703944325447, -0.17247365415096283, -0.005418877117335796, 0.038324806839227676, -0.12109646201133728, -0.28269481658935547, -0.004768505226820707, -0.11620271950960159, -0.01228624489158392, -0.017673829570412636, 0.15915942192077637, -0.10633435100317001, 0.011443065479397774, 0.01798718050122261, 0.07695810496807098, -0.015573736280202866, 0.0788101851940155, 0.050385598093271255, 0.044495608657598495, -0.06441047787666321, 0.1419675350189209, 0.050821419805288315, -0.11603442579507828, 0.05255766957998276, 0.1185808777809143, -0.07311898469924927, -0.04264012724161148, 0.0016308990307152271, 0.0831793025135994, -0.05687727779150009, -0.05654088035225868, 0.061182111501693726, -0.085613913834095, -0.021876288577914238, 0.06155649572610855, -0.012464921921491623, 0.02509290538728237, 0.0020544608123600483, 0.013229441829025745, -0.03986131399869919, 0.09690773487091064, -0.031196273863315582, -0.05363670364022255, -0.028928622603416443, 0.012095066718757153, 0.0033690505661070347, 0.030584435909986496, -0.0332394503057003, -0.04587526246905327, -0.06027621403336525, -0.005291030742228031, -0.06090373545885086, -0.005997606553137302, -0.09571538865566254, 0.015865040943026543, 0.001214862335473299, -0.030832745134830475, 0.0070899901911616325, 0.011460288427770138, -0.07096312940120697, -0.005116359796375036, -0.037027452141046524, 0.07855155318975449, -0.1260862499475479, -0.025656599551439285, 0.01755829155445099, -0.038509368896484375, 0.06404298543930054, -0.06772272288799286, -0.02520398050546646, 0.0896044597029686, -0.07252092659473419, 0.06741148233413696, 0.001202505431137979, 0.037484314292669296, 0.021110879257321358, 0.01567390374839306, -0.05705137178301811, -0.03468790277838707, -0.017361190170049667, 0.024068230763077736, -0.053112439811229706, -0.07890830188989639, 0.0419265478849411, -0.017314299941062927, -0.06808783859014511, -0.05866708606481552, 0.07479149103164673, 0.053120218217372894, 0.055435363203287125, 0.07803856581449509, -0.055459264665842056, 0.08181817829608917, -0.09393295645713806, -0.020960602909326553, 0.05607589706778526, -0.00323608354665339, 0.11002036184072495, -0.04953804612159729, 0.019076332449913025, -0.06656736135482788, 0.1352992057800293, 0.0526740700006485, 0.009024818427860737, 0.03806314244866371, -0.11322695016860962, -0.045011114329099655, 0.03479180857539177, 0.0737384706735611, 0.022653134539723396, 0.023533493280410767, -0.021625282242894173, -0.04429935663938522, -0.07156199216842651, -0.08269090950489044, 0.09663049131631851, 0.08428722620010376, 0.06426771730184555, 0.05780861899256706, 0.04734358564019203, -0.04070761799812317, -0.05216933786869049, 0.08189890533685684, 0.05287846550345421, 0.0715777650475502, -0.024529630318284035, 0.042362846434116364, 0.14450111985206604, -0.13876190781593323, 0.12095589190721512, 0.02800261601805687, -0.09281995892524719, -0.12468046694993973, -0.1803704798221588, -0.06136145070195198, 0.00804048590362072, 0.03479067608714104, -0.14704348146915436, 0.05893675237894058, 0.003918128553777933, 0.10222367197275162, -0.03624687343835831, 0.0342746265232563, -0.09181258827447891, -0.1142793670296669, 0.06274035573005676, 0.03795100748538971, 0.06535881012678146, -0.028808897361159325, 0.04326650872826576, 0.0034359386190772057, 0.07312309741973877, -0.0004672908107750118, 0.07265514880418777, 0.03497243672609329, -0.009524272754788399, -0.06615503132343292, -0.05280033126473427, -0.01618574745953083, 0.010755529627203941, 0.03416510298848152, 0.06319194287061691, 0.08041133731603622, -0.0766894742846489, -0.034970324486494064, 0.16855040192604065, -0.016877885907888412, -0.05255860462784767, -0.14605429768562317, 0.1807943433523178, -0.037553682923316956, 0.08431883901357651, 0.023011600598692894, -0.0910905972123146, 0.0004125196428503841, 0.15809398889541626, 0.19357356429100037, 0.032777123153209686, -0.018560253083705902, -0.029169980436563492, -0.003786495653912425, -0.000546654628124088, 0.09260306507349014, -0.04329180344939232, 0.225400909781456, -0.035646915435791016, 0.09378349781036377, -0.06432238966226578, -0.04601964354515076, -0.05966854840517044, 0.11895690113306046, -0.008338750340044498, -0.012303994968533516, -0.07544754445552826, 0.1670631468296051, -0.14229953289031982, -0.31090012192726135, 0.11213061213493347, -0.07538545876741409, -0.14734958112239838, -0.018939640372991562, 0.08022116124629974, 0.012353462167084217, 0.026941606774926186, 0.028902975842356682, -0.006102238781750202, 0.08170249313116074, 0.04632636159658432, -0.06371116638183594, 0.012007168494164944, 0.01968437246978283, -0.09333246946334839, 0.13938061892986298, 0.04130074754357338, 0.04638383910059929, 0.08410229533910751, -0.018531842157244682, -0.0641755759716034, -0.00617204187437892, 0.05980014055967331, -0.06431398540735245, -0.002511106664314866, 0.1688995510339737, 0.024432092905044556, 0.12642039358615875, 0.07718124240636826, -0.06506269425153732, 0.009299526922404766, 0.046031128615140915, -0.055337075144052505, -0.014752735383808613, 0.10456272959709167, -0.08392076939344406, 0.1273416131734848, 0.14409691095352173, 0.010156250558793545, 0.014971590600907803, -0.08677656948566437, 0.004292767029255629, -0.019906627014279366, 0.05984511598944664, 0.010250834748148918, -0.10795384645462036, -0.053134720772504807, -0.11223149299621582, 0.025989113375544548, -0.12141481041908264, -0.01992720738053322, -0.0067070540972054005, 0.010741211473941803, -0.009460948407649994, 0.08994375914335251, 0.08501245081424713, -0.031494349241256714, 0.0077088819816708565, -0.20077566802501678, 0.04738854989409447, 0.08559105545282364, -0.10381606966257095, 0.009011361747980118 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.5528 - Wer: 0.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.74 | 100 | 3.4444 | 1.0 | | No log | 1.47 | 200 | 2.9421 | 1.0 | | No log | 2.21 | 300 | 2.2802 | 1.0137 | | No log | 2.94 | 400 | 0.9683 | 0.7611 | | 3.7264 | 3.68 | 500 | 0.7941 | 0.6594 | | 3.7264 | 4.41 | 600 | 0.6695 | 0.5751 | | 3.7264 | 5.15 | 700 | 0.6507 | 0.5314 | | 3.7264 | 5.88 | 800 | 0.5731 | 0.4927 | | 3.7264 | 6.62 | 900 | 0.5723 | 0.4580 | | 0.4592 | 7.35 | 1000 | 0.5913 | 0.4479 | | 0.4592 | 8.09 | 1100 | 0.5562 | 0.4423 | | 0.4592 | 8.82 | 1200 | 0.5566 | 0.4292 | | 0.4592 | 9.56 | 1300 | 0.5492 | 0.4303 | | 0.4592 | 10.29 | 1400 | 0.5665 | 0.4331 | | 0.2121 | 11.03 | 1500 | 0.5610 | 0.4084 | | 0.2121 | 11.76 | 1600 | 0.5703 | 0.4014 | | 0.2121 | 12.5 | 1700 | 0.5669 | 0.3898 | | 0.2121 | 13.24 | 1800 | 0.5586 | 0.3962 | | 0.2121 | 13.97 | 1900 | 0.5656 | 0.3897 | | 0.1326 | 14.71 | 2000 | 0.5565 | 0.3813 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"language": ["sv-SE"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-common_voice-tr-demo", "results": []}]}
automatic-speech-recognition
birgermoell/wav2vec2-common_voice-tr-demo
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv-SE" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-common\_voice-tr-demo ============================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON\_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: * Loss: 0.5528 * Wer: 0.3811 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 15.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu113 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 67, 159, 4, 40 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.11221516877412796, 0.07982339709997177, -0.0037102941423654556, 0.033470284193754196, 0.12529268860816956, 0.005515833850950003, 0.09059354662895203, 0.14515577256679535, -0.10154422372579575, 0.08516019582748413, 0.08222422748804092, 0.06913313269615173, 0.06400781124830246, 0.10395049303770065, -0.015411758795380592, -0.30983567237854004, 0.015789855271577835, 0.0006841248250566423, -0.0776417925953865, 0.11088529229164124, 0.10258830338716507, -0.1059601753950119, 0.007212532684206963, 0.027757087722420692, -0.11553706973791122, 0.008132614195346832, -0.02026238664984703, -0.05999856814742088, 0.12362109869718552, 0.04961719363927841, 0.08552385121583939, 0.022055549547076225, 0.08976016938686371, -0.28411126136779785, 0.014724109321832657, 0.06194252893328667, 0.04209987446665764, 0.06785918027162552, 0.10759888589382172, -0.0174671933054924, 0.13164642453193665, -0.06600376963615417, 0.06847414374351501, 0.05667690560221672, -0.10264497995376587, -0.31108972430229187, -0.08542992174625397, 0.018909718841314316, 0.134964719414711, 0.10230018198490143, -0.03967832028865814, 0.05450069531798363, -0.089177705347538, 0.09460312128067017, 0.23210150003433228, -0.24739080667495728, -0.06965076923370361, -0.04831781983375549, 0.05117202550172806, 0.042158931493759155, -0.10996644198894501, -0.023909246549010277, 0.024133455008268356, 0.04088933393359184, 0.09950067102909088, 0.010418473742902279, -0.04821246862411499, 0.004101014230400324, -0.13477849960327148, -0.04494091868400574, 0.10789883881807327, 0.08064454793930054, -0.028862496837973595, -0.09027943015098572, -0.007878492586314678, -0.21899878978729248, -0.04755597934126854, 0.008980651386082172, 0.03212464973330498, -0.029097426682710648, -0.09275585412979126, 0.02748967707157135, -0.07804509997367859, -0.08881999552249908, 0.01174084097146988, 0.11937457323074341, 0.04243012145161629, -0.04458780214190483, 0.01430723536759615, 0.09066110849380493, 0.020372385159134865, -0.127430260181427, 0.0010586377466097474, 0.05823376402258873, -0.10644294321537018, -0.018912578001618385, -0.039356738328933716, -0.06358671933412552, 0.009205945767462254, 0.10863008350133896, -0.012439343146979809, 0.08776430040597916, -0.010857019573450089, 0.025998959317803383, -0.07473180443048477, 0.16614720225334167, -0.054880257695913315, -0.05463112145662308, -0.044833745807409286, 0.07931150496006012, -0.014150344766676426, -0.014393532648682594, -0.06551191955804825, 0.016238044947385788, 0.11395597457885742, 0.04930592328310013, -0.020917920395731926, 0.0060809701681137085, -0.06993085145950317, -0.011680146679282188, -0.02401505969464779, -0.10774710029363632, 0.044764671474695206, 0.03899267315864563, -0.05380581319332123, 0.015029039233922958, 0.0073450650088489056, 0.0325111486017704, -0.03460386022925377, 0.13139359652996063, -0.04900011420249939, 0.012079441919922829, -0.06844046711921692, -0.11079024523496628, 0.034804102033376694, -0.030659779906272888, -0.0003861312579829246, -0.06695754081010818, -0.07509440928697586, -0.06451674550771713, 0.05307537689805031, -0.052608635276556015, -0.07638488709926605, -0.0795745849609375, -0.06429305672645569, 0.05496208742260933, -0.037015318870544434, 0.17881284654140472, -0.06475837528705597, 0.10823359340429306, 0.01221659779548645, 0.030872976407408714, 0.04929644241929054, 0.08902054280042648, -0.03236572816967964, 0.03348059952259064, -0.13812194764614105, 0.08350813388824463, -0.0828942134976387, 0.047197286039590836, -0.15011945366859436, -0.12857766449451447, -0.00943317823112011, 0.0027494162786751986, 0.1098954975605011, 0.08356976509094238, -0.2011038362979889, -0.09459856152534485, 0.17245930433273315, -0.06587249040603638, -0.07747161388397217, 0.153578981757164, -0.023810505867004395, -0.0223548486828804, 0.0500151664018631, 0.1884615123271942, 0.08776157349348068, -0.10010530799627304, 0.027956310659646988, -0.06792125850915909, 0.12917031347751617, 0.02882843278348446, 0.09131898730993271, -0.05753018707036972, 0.02900034561753273, -0.009569650515913963, -0.00904929731041193, 0.07129917293787003, -0.08962913602590561, -0.07672697305679321, -0.010395892895758152, -0.07527811080217361, 0.008627571165561676, 0.054233163595199585, 0.014977733604609966, -0.105507031083107, -0.13153360784053802, 0.03229402005672455, 0.10123246908187866, -0.10525882989168167, 0.04471191018819809, -0.07628310471773148, 0.042247939854860306, -0.011276161298155785, -0.019255787134170532, -0.16126748919487, 0.02899022586643696, 0.026663456112146378, -0.04560062661767006, 0.03668529540300369, -0.00985416118055582, 0.06744275987148285, 0.040647175163030624, -0.053457364439964294, -0.06264203786849976, -0.0541444830596447, 0.0075690858066082, -0.07908659428358078, -0.2334805577993393, -0.0636613592505455, -0.02564016357064247, 0.14936333894729614, -0.20925603806972504, -0.004128406289964914, 0.02709232270717621, 0.10183138400316238, 0.029906943440437317, -0.0503903329372406, -0.006362652871757746, 0.09621035307645798, -0.011474513448774815, -0.05494192615151405, 0.03435799106955528, 0.00890851579606533, -0.11944033205509186, 0.029763730242848396, -0.13574998080730438, 0.06798844039440155, 0.10079330205917358, -0.03125372529029846, -0.08904880285263062, -0.06043989583849907, -0.05369548127055168, -0.061576224863529205, -0.03178391978144646, -0.0009484617621637881, 0.2247742861509323, 0.035693105310201645, 0.11686018109321594, -0.06483034044504166, -0.0369190014898777, 0.03091784380376339, 0.008550304919481277, -0.003825431689620018, 0.1321186125278473, 0.0636187419295311, -0.038798749446868896, 0.08736038208007812, 0.06870201975107193, -0.0792996808886528, 0.13743005692958832, -0.0685860738158226, -0.11637987941503525, -0.02788403071463108, 0.011186717078089714, 0.026471512392163277, 0.09562361985445023, -0.16783498227596283, -0.009528850205242634, 0.01866108924150467, 0.03411611542105675, 0.020753318443894386, -0.20694264769554138, -0.003913046792149544, 0.0509728379547596, -0.07425583899021149, -0.05122673511505127, -0.020250149071216583, -0.003917294554412365, 0.08581743389368057, 0.009984306991100311, -0.06127502769231796, -0.019524618983268738, -0.03643076494336128, -0.09170006960630417, 0.1694878190755844, -0.11508700996637344, -0.13535742461681366, -0.12188822776079178, -0.05673268437385559, 0.019540250301361084, -0.014763237908482552, 0.06778411567211151, -0.1167382225394249, -0.04201086610555649, -0.06402234733104706, 0.03663851320743561, -0.07114619016647339, 0.02769097127020359, -0.01550863403826952, 0.00769296009093523, 0.07676523923873901, -0.10626313090324402, 0.018293600529432297, -0.011235471814870834, -0.02892550826072693, 0.02114032581448555, 0.04187728092074394, 0.08271221071481705, 0.17553235590457916, 0.041146308183670044, 0.011354935355484486, -0.04626409709453583, 0.15684716403484344, -0.11487464606761932, -0.03227734938263893, 0.09910076856613159, -0.0021431727800518274, 0.033807918429374695, 0.14572003483772278, 0.053697068244218826, -0.08156317472457886, 0.02062535099685192, 0.04159534350037575, -0.013384441845119, -0.2551257610321045, -0.04267681762576103, -0.07147198170423508, -0.034848857671022415, 0.09644518047571182, 0.029109077528119087, -0.004390187095850706, 0.006697566714137793, -0.014241939410567284, -0.0010796342976391315, 0.018367739394307137, 0.05895495414733887, 0.10029197484254837, 0.03322315216064453, 0.11556291580200195, -0.012695475481450558, -0.02219398319721222, 0.026582499966025352, -0.014025919139385223, 0.24021854996681213, 0.017056239768862724, 0.1741015762090683, 0.05536332353949547, 0.15082065761089325, 0.015207024291157722, 0.05177310109138489, 0.018327362835407257, -0.016241492703557014, 0.01816563494503498, -0.05209549888968468, -0.037018582224845886, 0.02847413904964924, 0.11845344305038452, 0.021257823333144188, -0.11961277574300766, -0.037037648260593414, 0.008472288027405739, 0.3669363856315613, 0.07494024932384491, -0.2720969617366791, -0.08602435141801834, 0.002679790137335658, -0.10318516194820404, -0.04109272360801697, 0.033477623015642166, 0.10736478865146637, -0.09587065875530243, 0.06184084340929985, -0.05097753182053566, 0.10296761989593506, -0.05792714282870293, 0.011819655075669289, 0.07039035111665726, 0.06931061297655106, -0.006073499098420143, 0.0620465986430645, -0.2745465934276581, 0.3048536479473114, -0.014300503768026829, 0.07893231511116028, -0.029961688444018364, 0.03226953372359276, 0.02270505018532276, -0.04622148722410202, 0.060382358729839325, -0.01054326631128788, -0.1080980896949768, -0.17879824340343475, -0.07257169485092163, 0.017757441848516464, 0.12037099152803421, -0.03479420766234398, 0.11432987451553345, -0.032899465411901474, -0.017784545198082924, 0.055737100541591644, -0.06359824538230896, -0.10270409286022186, -0.10217662900686264, 0.011376961134374142, 0.04338952898979187, 0.11176702380180359, -0.09075646847486496, -0.1033208817243576, -0.08188094943761826, 0.15591274201869965, -0.08529634773731232, -0.0032104726415127516, -0.11877358704805374, 0.08190998435020447, 0.16093716025352478, -0.06367002427577972, 0.057636916637420654, 0.036999598145484924, 0.1109461560845375, 0.028388842940330505, 0.004862667061388493, 0.11894456297159195, -0.07445800304412842, -0.18293355405330658, -0.06656596809625626, 0.1812663972377777, 0.045000702142715454, 0.08826813101768494, -0.02602355368435383, 0.0336526557803154, -0.013319467194378376, -0.05851021781563759, 0.06095258519053459, 0.036302994936704636, -0.000024092712919809856, 0.06715583056211472, -0.03221258148550987, -0.02801583521068096, -0.08623132854700089, -0.08979519456624985, 0.17365914583206177, 0.2868083119392395, -0.08120306581258774, 0.06155563145875931, 0.03921244665980339, -0.05489126220345497, -0.1293407678604126, 0.015339179895818233, 0.1407119184732437, 0.04730500280857086, 0.021373571828007698, -0.22073154151439667, 0.034625791013240814, 0.08966165781021118, -0.01795293390750885, 0.055723246186971664, -0.3260408341884613, -0.1338607668876648, 0.10965710878372192, 0.08447291702032089, -0.032166581600904465, -0.1442445069551468, -0.05640806257724762, -0.02792169898748398, -0.10232776403427124, 0.04212551191449165, -0.012174486182630062, 0.1273973137140274, 0.012940917164087296, 0.06661555171012878, 0.027463361620903015, -0.041355013847351074, 0.13648684322834015, -0.014725897461175919, 0.040074530988931656, -0.01432754285633564, 0.05657913535833359, -0.030577674508094788, -0.03764966502785683, -0.003089969279244542, -0.08305652439594269, 0.004367826972156763, -0.12296223640441895, -0.03362053260207176, -0.07972323149442673, 0.005726702976971865, -0.037769608199596405, -0.03882226347923279, -0.012531326152384281, 0.03109012357890606, 0.08111340552568436, 0.0016811755485832691, 0.09981494396924973, -0.07591556012630463, 0.1552094668149948, 0.07514706254005432, 0.10798531770706177, -0.006478250492364168, -0.10530810058116913, -0.009998333640396595, -0.016535114496946335, 0.04495595395565033, -0.10343621671199799, 0.041055548936128616, 0.14244095981121063, 0.04601641371846199, 0.1591581404209137, 0.04907597228884697, -0.08099940419197083, 0.02711491845548153, 0.0574130043387413, -0.059681687504053116, -0.1383366882801056, -0.004246054217219353, 0.0655222088098526, -0.12768875062465668, -0.021426435559988022, 0.10649304836988449, -0.04939320683479309, -0.018504159525036812, 0.018842581659555435, 0.03127022087574005, -0.06484729796648026, 0.23141948878765106, 0.007285472005605698, 0.07480460405349731, -0.09370627999305725, 0.06258892267942429, 0.0718880221247673, -0.1739666759967804, 0.04051487520337105, 0.0830429419875145, -0.03049691952764988, -0.02204263210296631, 0.04124131798744202, 0.06965136528015137, 0.029960215091705322, -0.05601698160171509, -0.09333157539367676, -0.15689344704151154, 0.09170708060264587, 0.08995944261550903, 0.02152673900127411, 0.021323828026652336, -0.04444628208875656, 0.03820641711354256, -0.10701800882816315, 0.08695799112319946, 0.10034379363059998, 0.061796434223651886, -0.1192588359117508, 0.16252920031547546, 0.015031453222036362, -0.00765675213187933, 0.009662768803536892, -0.010850547812879086, -0.0786331295967102, 0.041632067412137985, -0.13025277853012085, -0.021703526377677917, -0.04795753210783005, 0.0017920678947120905, 0.013208838179707527, -0.05692953243851662, -0.050600070506334305, 0.019970551133155823, -0.12164578586816788, -0.040298353880643845, -0.018816746771335602, 0.07343953847885132, -0.09749315679073334, -0.022799139842391014, 0.045524321496486664, -0.10210458934307098, 0.0905313789844513, 0.05976715683937073, 0.012578250840306282, 0.03811148181557655, -0.13860253989696503, -0.006413716822862625, 0.04505612701177597, 0.00011083092249464244, 0.0204288512468338, -0.18237575888633728, -0.020776860415935516, -0.006729952059686184, 0.03041836805641651, -0.00525807635858655, 0.02908247336745262, -0.1302478313446045, -0.04704158008098602, -0.03593536093831062, -0.07067080587148666, -0.05679476261138916, 0.04167165234684944, 0.06295507401227951, 0.04625312238931656, 0.16379483044147491, -0.09996039420366287, 0.0718284323811531, -0.20829962193965912, 0.0150145273655653, -0.045655861496925354, -0.055697157979011536, -0.07906324416399002, -0.03437504544854164, 0.08762281388044357, -0.060589998960494995, 0.07156877219676971, -0.043230317533016205, 0.06168805807828903, 0.03462042659521103, -0.12385524064302444, 0.007358406204730272, 0.04039706289768219, 0.22435534000396729, 0.052137341350317, -0.03588956966996193, 0.06329968571662903, -0.005870217457413673, 0.055633511394262314, 0.18850010633468628, 0.13103610277175903, 0.17512068152427673, 0.06758607178926468, 0.0801566019654274, 0.06485677510499954, -0.12600870430469513, -0.12115667760372162, 0.12054109573364258, -0.03725256398320198, 0.13715901970863342, -0.016882799565792084, 0.2700650095939636, 0.0933828055858612, -0.19796137511730194, 0.07229072600603104, -0.04209519550204277, -0.08609896898269653, -0.09663411229848862, -0.0570523738861084, -0.07440299540758133, -0.1822274625301361, 0.007558770943433046, -0.10448308289051056, 0.0753805860877037, 0.0476275272667408, 0.04175839200615883, 0.026464631780982018, 0.11103640496730804, 0.03423751890659332, -0.01680188998579979, 0.11497409641742706, 0.010994788259267807, -0.0113908676430583, -0.06601601839065552, -0.0830220878124237, 0.06572752445936203, -0.0337030328810215, 0.053840748965740204, -0.029221422970294952, -0.10572097450494766, 0.062182992696762085, 0.002131653716787696, -0.11149761080741882, 0.026780081912875175, -0.01586761698126793, 0.07456057518720627, 0.11728709191083908, 0.044535309076309204, -0.005086587741971016, -0.012875507585704327, 0.2447095811367035, -0.10144829750061035, -0.0649251937866211, -0.12586095929145813, 0.24384431540966034, 0.02312229573726654, -0.017358705401420593, 0.014625740237534046, -0.06732112169265747, 0.0007108390564098954, 0.14293073117733002, 0.14778858423233032, -0.007349308114498854, -0.01740865781903267, 0.009621458128094673, -0.011815779842436314, -0.0414174385368824, 0.07367927581071854, 0.13758890330791473, 0.05400171875953674, -0.057286154478788376, -0.009943763725459576, -0.05749940127134323, -0.04782465100288391, -0.019323483109474182, 0.06037425994873047, 0.023705722764134407, -0.02315448224544525, -0.012833650223910809, 0.13058780133724213, -0.059076134115457535, -0.14312857389450073, 0.006141113582998514, -0.1822117120027542, -0.18444903194904327, -0.028820769861340523, 0.07536429166793823, 0.058326683938503265, 0.04341493546962738, -0.01317988708615303, -0.014755075797438622, 0.12314049154520035, 0.0012473338283598423, -0.03652239963412285, -0.116225466132164, 0.08431103080511093, -0.0974983349442482, 0.166346937417984, -0.03350924327969551, 0.03944208100438118, 0.10955603420734406, 0.09626156091690063, -0.058773454278707504, 0.06398764997720718, 0.0724099650979042, -0.14289870858192444, 0.06135474145412445, 0.20295724272727966, -0.04677719622850418, 0.14724090695381165, 0.048319682478904724, -0.11092737317085266, 0.03465336188673973, -0.11687833815813065, -0.058865539729595184, -0.04922086000442505, -0.005184571258723736, -0.046923477202653885, 0.13154573738574982, 0.20589807629585266, -0.06990250200033188, -0.02324928715825081, -0.05843798443675041, -0.008889265358448029, 0.03658048063516617, 0.13550665974617004, -0.047933515161275864, -0.27205196022987366, 0.02462572418153286, 0.002321816748008132, 0.022194311022758484, -0.24082864820957184, -0.09252375364303589, 0.02982310764491558, -0.0618770532310009, -0.06848342716693878, 0.11624164879322052, 0.0627722293138504, 0.03621579334139824, -0.05961071699857712, -0.11192747205495834, -0.018267827108502388, 0.19703058898448944, -0.169640451669693, -0.056978970766067505 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: WER: 36.951816 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/1VcWT92vBCwVn-5d-mkYxhgILPr11OHfR?usp=sharing
{"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Estonian by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Estonian", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 36.951816, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/wav2vec2-large-xlrs-estonian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "et", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "et" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. Test Result: WER: 36.951816 ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here URL
[ "# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 36.951816", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 36.951816", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ 80, 62, 20, 32, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 36.951816## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ -0.1428551822900772, 0.0014933116035535932, -0.0018434664234519005, 0.0016972885932773352, 0.12373056262731552, -0.03574923053383827, 0.1813642382621765, 0.11513392627239227, 0.019650401547551155, -0.026717666536569595, 0.021612288430333138, 0.004151956178247929, 0.04619215428829193, 0.08532112836837769, 0.06267356872558594, -0.23971672356128693, -0.004027812276035547, 0.015610608272254467, 0.031241299584507942, 0.11373768001794815, 0.10912664234638214, -0.05344957858324051, -0.008571757934987545, 0.08406016230583191, -0.1671687811613083, 0.06295723468065262, 0.008593004196882248, -0.09381361305713654, 0.14572682976722717, 0.05156271159648895, 0.09465770423412323, 0.017565451562404633, 0.11235877871513367, -0.2153828740119934, 0.02619362249970436, 0.033796802163124084, 0.023246675729751587, 0.017783688381314278, 0.01790158636868, -0.04737646132707596, 0.10254240781068802, 0.08405586332082748, -0.015183745883405209, 0.07564212381839752, -0.05881129950284958, -0.17841127514839172, 0.013074823655188084, -0.011539224535226822, 0.07719100266695023, 0.17278675734996796, -0.05410849675536156, 0.05128259211778641, -0.1627318263053894, 0.08681295812129974, 0.12323708087205887, -0.14173969626426697, 0.0038861031644046307, 0.11481921374797821, 0.0642881914973259, 0.062347959727048874, -0.0803200826048851, 0.015413781628012657, 0.025027960538864136, 0.018242938444018364, 0.04507173225283623, -0.022351987659931183, -0.2192506343126297, -0.03771857172250748, -0.127670019865036, -0.00549439899623394, 0.2285473644733429, -0.02075183019042015, -0.06465297937393188, -0.11119580268859863, 0.0169485192745924, 0.005713496822863817, -0.01740705594420433, -0.02124549262225628, -0.0004339748702477664, 0.04300680384039879, 0.0032168817706406116, -0.07287461310625076, -0.11905238777399063, -0.15868249535560608, 0.04935261234641075, 0.09708142280578613, 0.02982013300061226, -0.005195484030991793, -0.13387782871723175, 0.1067761480808258, -0.08341275900602341, -0.06476718187332153, -0.02876978926360607, 0.02140960656106472, -0.03663454204797745, 0.016224564984440804, -0.06843441724777222, -0.1557014137506485, 0.027374373748898506, 0.04985050857067108, 0.129537433385849, 0.031577885150909424, -0.018179314211010933, 0.07569773495197296, -0.01983858458697796, 0.15073521435260773, -0.00825571920722723, -0.03425068035721779, 0.04520372301340103, 0.06131616234779358, -0.04840036854147911, -0.01480924990028143, -0.10796673595905304, -0.07980115711688995, 0.007097965572029352, 0.0859808698296547, -0.03017878159880638, 0.03679151460528374, -0.045121341943740845, -0.025058967992663383, 0.014522591605782509, -0.11612117290496826, -0.03884946554899216, 0.07973391562700272, -0.032556451857089996, 0.08952026814222336, 0.1110619306564331, 0.038413599133491516, -0.0983598604798317, -0.05627889558672905, 0.01786728948354721, 0.08941508084535599, -0.05606212094426155, -0.10460920631885529, 0.024856911972165108, -0.006660825107246637, 0.0008932884666137397, -0.13102179765701294, -0.12078087031841278, -0.07547216862440109, -0.004522003699094057, 0.05121507868170738, 0.027778945863246918, -0.11966998130083084, -0.015349159017205238, -0.043783146888017654, -0.04609152302145958, 0.0422099344432354, -0.03350881487131119, 0.053927455097436905, -0.00047106947749853134, 0.04380076006054878, 0.0543452687561512, 0.07980173081159592, -0.10028448700904846, -0.08622201532125473, -0.007848113775253296, 0.1164577379822731, -0.049286823719739914, -0.007939646020531654, -0.08795642107725143, -0.07645745575428009, -0.09966921806335449, 0.08545488864183426, 0.05447792634367943, 0.1323663741350174, -0.2362874150276184, -0.09310740232467651, 0.2477731555700302, -0.1195203959941864, -0.01841985620558262, 0.17512743175029755, -0.019740810617804527, 0.15313847362995148, 0.1316210776567459, 0.23441562056541443, 0.1833195835351944, -0.20530061423778534, 0.05963516980409622, 0.017070550471544266, -0.011314400471746922, -0.07934519648551941, 0.0807279497385025, -0.05402342602610588, 0.013609836809337139, 0.03878970071673393, -0.11215073615312576, 0.10044152289628983, -0.013838929124176502, -0.06309616565704346, -0.006543261464685202, -0.06335590034723282, 0.02470082975924015, 0.036012668162584305, 0.017537426203489304, -0.030758652836084366, -0.10164237767457962, 0.07399293035268784, 0.14339551329612732, -0.16002947092056274, 0.06776314973831177, -0.108971506357193, 0.026300696656107903, -0.020721232518553734, 0.010904583148658276, -0.1302194446325302, 0.12917597591876984, -0.026762448251247406, 0.01648721657693386, 0.0643736720085144, 0.10941935330629349, 0.014992987737059593, 0.012067015282809734, -0.03850991278886795, -0.013092448934912682, -0.03953290358185768, -0.03217994421720505, -0.02316759154200554, -0.08216825127601624, -0.043768975883722305, -0.06511566787958145, 0.07854541391134262, -0.1884908527135849, 0.034160662442445755, 0.02147538959980011, -0.013044117018580437, -0.003907681442797184, -0.023181963711977005, 0.07876883447170258, 0.10355902463197708, -0.012624102644622326, -0.014867168851196766, 0.06234147772192955, 0.009692823514342308, -0.06109410151839256, 0.09779289364814758, -0.13726578652858734, -0.010031873360276222, 0.10584112256765366, -0.06730516999959946, -0.011026773601770401, 0.03509645536541939, -0.012643367983400822, -0.007591294124722481, -0.06700415164232254, -0.05117243155837059, 0.2630438804626465, -0.013628697022795677, 0.12179220467805862, -0.07957854866981506, 0.016798464581370354, 0.003916577436029911, -0.10126953572034836, 0.06842327117919922, 0.05441880598664284, 0.021813932806253433, 0.06141764670610428, 0.021978700533509254, -0.06325095891952515, -0.10103555768728256, 0.294516921043396, -0.029473252594470978, -0.0806504487991333, 0.028050050139427185, -0.008767690509557724, -0.01976757124066353, 0.04583665728569031, -0.2070673704147339, -0.0827479287981987, 0.0049964552745223045, 0.057121243327856064, 0.08491717278957367, -0.17316821217536926, -0.007585865445435047, 0.021992530673742294, -0.12676680088043213, -0.16044114530086517, 0.072110116481781, -0.06798103451728821, 0.03730754926800728, -0.10056212544441223, -0.03575310483574867, -0.004896101076155901, -0.042347609996795654, -0.16806189715862274, 0.15816590189933777, -0.08750756829977036, -0.2141713798046112, -0.17038817703723907, 0.05769915506243706, 0.07447167485952377, 0.002793053863570094, 0.09088478982448578, -0.14621399343013763, 0.0006627226248383522, -0.03221290558576584, 0.1326148957014084, 0.03221270814538002, -0.06062034144997597, -0.026335583999753, 0.04641157388687134, 0.056602321565151215, -0.1755136400461197, 0.002361358841881156, -0.02639463171362877, -0.07340922206640244, -0.009674540720880032, -0.053298525512218475, 0.021832147613167763, 0.17189942300319672, 0.04266023263335228, 0.012213087640702724, -0.01901426538825035, 0.14125128090381622, -0.09269285947084427, 0.007258294615894556, 0.22016942501068115, -0.012936125509440899, -0.010727057233452797, 0.060079533606767654, 0.035304948687553406, -0.06433034688234329, 0.010505366139113903, -0.02317442186176777, -0.10039477795362473, -0.2487916648387909, -0.09511065483093262, -0.06534413993358612, -0.04757201671600342, -0.008941377513110638, 0.0025988894049078226, 0.039247531443834305, 0.018641354516148567, -0.002573584206402302, -0.09777841717004776, 0.0894683226943016, 0.021726131439208984, 0.0892760306596756, -0.002760052215307951, 0.08793076127767563, -0.06393260508775711, -0.002433952409774065, -0.004446569364517927, 0.02870228886604309, 0.16854016482830048, 0.04931710660457611, 0.10202457010746002, 0.0929187461733818, 0.0873560756444931, 0.08971843868494034, 0.06876881420612335, -0.033627238124608994, -0.008390438742935658, 0.022206656634807587, -0.04864030331373215, -0.03301917016506195, 0.030483363196253777, 0.07175841927528381, -0.0715014711022377, -0.04999464750289917, -0.029274793341755867, 0.03003440424799919, 0.12471538037061691, 0.05610423907637596, -0.20047476887702942, -0.09564689546823502, -0.03174891695380211, -0.056934721767902374, 0.010658820159733295, 0.05298817902803421, 0.14480486512184143, -0.14147813618183136, 0.0010995633201673627, 0.0060114432126283646, 0.09413067251443863, 0.010946526192128658, 0.018579158931970596, -0.04715431481599808, 0.07412347942590714, -0.0035588021855801344, 0.09857210516929626, -0.26057082414627075, 0.20184390246868134, -0.004848303273320198, 0.15674874186515808, -0.04189290106296539, 0.002711391309276223, 0.045775916427373886, 0.07209187746047974, 0.11485681682825089, 0.01990496926009655, 0.03948195278644562, -0.13314670324325562, -0.07467477023601532, 0.05195849388837814, 0.0064637791365385056, -0.016185197979211807, 0.051912128925323486, -0.006292157806456089, 0.003786959685385227, 0.022636039182543755, -0.08906258642673492, -0.14664024114608765, -0.0582219623029232, -0.003919542301446199, 0.13758240640163422, 0.11643965542316437, -0.028063232079148293, -0.09297876060009003, -0.050279099494218826, 0.039214134216308594, -0.093618243932724, -0.05609884113073349, -0.053809165954589844, -0.011528723873198032, 0.07799506932497025, -0.08335758000612259, 0.01254985574632883, 0.10000433772802353, 0.10476618260145187, -0.03411358594894409, -0.052245862782001495, 0.026145633310079575, -0.12348264455795288, -0.0822892114520073, 0.004123309627175331, 0.19210082292556763, 0.10326378792524338, 0.06466647237539291, 0.04579887166619301, -0.010291188955307007, 0.00902672577649355, -0.05163909122347832, -0.008295772597193718, 0.13917940855026245, -0.1021389290690422, 0.010971992276608944, -0.05491073429584503, -0.1575397551059723, -0.12250911444425583, -0.06715178489685059, 0.1750989705324173, 0.06978023052215576, -0.059238508343696594, 0.11221519857645035, 0.19331218302249908, -0.12331599742174149, -0.23384185135364532, 0.016350483521819115, 0.0985003113746643, 0.11878660321235657, -0.012240210548043251, -0.2592008411884308, 0.05221007019281387, -0.004606931004673243, -0.011750838719308376, -0.03301720693707466, -0.33902493119239807, -0.14920580387115479, 0.1486220508813858, -0.011009964160621166, 0.12424185127019882, -0.0035669368226081133, 0.007236601784825325, 0.008254789747297764, -0.03809225931763649, 0.024067476391792297, -0.08425324410200119, 0.1280772089958191, 0.0348769836127758, 0.09134945273399353, 0.04223950207233429, -0.035928498953580856, 0.06448829174041748, 0.08396559208631516, -0.0017466886201873422, -0.007648357655853033, 0.03517024591565132, 0.0314629003405571, -0.0028813527897000313, 0.16804970800876617, -0.10801119357347488, 0.011011375114321709, -0.07554415613412857, -0.10290887951850891, -0.085752934217453, 0.07847533375024796, 0.02643558382987976, -0.0444694422185421, 0.009493771940469742, -0.013255164958536625, 0.005103100556880236, 0.013892799615859985, -0.04472311586141586, -0.1355602741241455, 0.01889641582965851, 0.08780574053525925, 0.18588344752788544, 0.016195394098758698, -0.1129511222243309, 0.0016295784153044224, -0.021750817075371742, 0.12717494368553162, -0.14051152765750885, 0.010122368112206459, 0.06437736749649048, 0.04938775673508644, 0.13749052584171295, 0.017712166532874107, -0.1199827492237091, 0.076703742146492, 0.054703790694475174, -0.022704651579260826, -0.09998011589050293, -0.03913281112909317, -0.06579244881868362, -0.03160976618528366, 0.026960136368870735, 0.09448307752609253, -0.11400230973958969, -0.013183392584323883, -0.02064785547554493, 0.01359112374484539, -0.1347147673368454, 0.18625912070274353, 0.060188889503479004, 0.06328803300857544, -0.07656372338533401, 0.049415770918130875, -0.0282281544059515, -0.017068926244974136, 0.0598188191652298, 0.009925213642418385, -0.08677800744771957, -0.08178537338972092, -0.05233961343765259, 0.10539283603429794, 0.02683483436703682, -0.11690061539411545, -0.0748010128736496, -0.06383895874023438, -0.015410570427775383, 0.07688010483980179, 0.059932608157396317, 0.013061241246759892, -0.11870571970939636, -0.017879027873277664, -0.10898447781801224, 0.052726373076438904, 0.09618138521909714, -0.04602030664682388, -0.09587643295526505, 0.19046631455421448, 0.10200313478708267, 0.0012633601436391473, -0.028652265667915344, -0.083571657538414, -0.027494141831994057, 0.0913926512002945, -0.053988195955753326, -0.024156013503670692, -0.04937110096216202, 0.016201812773942947, -0.02385726012289524, -0.06609688699245453, -0.0029638786800205708, 0.09790656715631485, -0.09239212423563004, 0.026821335777640343, -0.020927857607603073, 0.07164999097585678, -0.06571284681558609, 0.00709883589297533, 0.03957289084792137, -0.06199273467063904, 0.05946172773838043, 0.12136048078536987, -0.09223563969135284, 0.14521358907222748, -0.18926364183425903, -0.016181614249944687, 0.08284518122673035, 0.0557609386742115, -0.04478734731674194, -0.06561674922704697, 0.031297020614147186, 0.04882845655083656, 0.08082184195518494, -0.018026430159807205, 0.09757903218269348, -0.07066500186920166, 0.013925273902714252, -0.032602500170469284, 0.0025832944083958864, -0.03775358200073242, 0.06930502504110336, 0.059468500316143036, 0.1449907273054123, 0.15595628321170807, -0.11011409014463425, 0.1229945719242096, -0.12996114790439606, 0.012819784693419933, -0.03696340322494507, -0.02493204176425934, -0.10124210268259048, -0.07047086209058762, 0.05374293029308319, -0.06815815716981888, 0.09242814034223557, 0.024105601012706757, 0.03599328175187111, -0.02981804497539997, -0.07723583281040192, 0.008653752505779266, -0.012321610935032368, 0.20434455573558807, 0.034496452659368515, 0.021642837673425674, -0.03608427569270134, 0.007543935440480709, 0.037373315542936325, 0.07211383432149887, 0.02069932036101818, 0.1689741462469101, 0.023619351908564568, 0.09784983098506927, 0.08671119064092636, -0.05116794630885124, -0.11423524469137192, -0.07352474331855774, -0.08500812947750092, 0.03241388499736786, -0.08391467481851578, 0.18485461175441742, 0.15932098031044006, -0.06591185927391052, 0.08425401151180267, 0.04304153099656105, -0.10158298164606094, -0.15943491458892822, -0.16037748754024506, -0.03326704353094101, -0.13655169308185577, 0.026147805154323578, -0.07619859278202057, 0.015230518765747547, 0.036950334906578064, 0.043628890067338943, -0.04059255123138428, 0.23508943617343903, 0.0394180528819561, -0.12047306448221207, 0.07680939137935638, -0.0918586403131485, -0.007073696237057447, -0.08478249609470367, 0.037759989500045776, 0.1584213227033615, 0.007832192815840244, 0.06949169933795929, 0.008800597861409187, -0.06732576340436935, 0.03292590752243996, -0.09645534306764603, -0.062293458729982376, -0.035194769501686096, 0.006854787934571505, 0.08709654211997986, 0.11263151466846466, 0.11968079954385757, -0.08444957435131073, 0.01591387763619423, 0.14427030086517334, -0.01601206697523594, -0.16522741317749023, -0.12922504544258118, 0.12552811205387115, 0.055346500128507614, 0.0007570160669274628, -0.05198555439710617, -0.03124954178929329, -0.007359158247709274, 0.2670334279537201, 0.229649156332016, 0.0843023732304573, 0.03108307160437107, -0.022693565115332603, -0.0050981431268155575, -0.02758292481303215, 0.09595136344432831, 0.07004935294389725, 0.15568315982818604, 0.0005420060479082167, 0.023335697129368782, -0.0640856921672821, -0.073430635035038, -0.0059076896868646145, 0.03955746814608574, -0.06697450578212738, -0.0743473619222641, -0.02804785594344139, 0.11862168461084366, -0.04681887477636337, -0.09869778156280518, -0.08688077330589294, -0.0833294466137886, -0.07708307355642319, -0.027643568813800812, 0.0419161394238472, 0.09445007145404816, 0.03307761996984482, -0.06601490080356598, 0.007095772307366133, 0.11194855719804764, -0.010265476070344448, -0.04536120966076851, -0.09600795060396194, 0.027559759095311165, -0.07287851721048355, 0.04207538068294525, -0.022665303200483322, 0.1473436802625656, 0.014858579263091087, 0.09330365061759949, -0.022767065092921257, 0.14967291057109833, -0.026877181604504585, 0.005244359839707613, 0.011710927821695805, 0.09309226274490356, -0.06277786195278168, 0.11365018784999847, 0.001993120415136218, -0.1379283219575882, 0.05347831919789314, -0.10845519602298737, -0.056874051690101624, -0.09104086458683014, 0.03597188740968704, -0.04960662126541138, 0.07530014961957932, 0.10926231741905212, -0.07011613994836807, -0.0768454298377037, -0.04682198911905289, 0.05748966708779335, 0.05364523082971573, -0.04114273190498352, -0.055491529405117035, -0.21776404976844788, -0.027307050302624702, -0.08358486741781235, -0.012211720459163189, -0.160160630941391, -0.035557836294174194, -0.007935373112559319, -0.07363857328891754, -0.006835511885583401, 0.048622265458106995, 0.0998915284872055, 0.044259510934352875, 0.01371209230273962, -0.03992363065481186, 0.057325296103954315, 0.13539980351924896, -0.18907280266284943, -0.12213610112667084 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: The WER is 55.097365 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/16AyzqMWU_aWNe3IA-NxrhskB1WLPHG-Q?usp=sharing
{"language": "fi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Finnish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fi", "type": "common_voice", "args": "fi"}, "metrics": [{"type": "wer", "value": 55.097365, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/wav2vec2-large-xlsr-finnish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned facebook/wav2vec2-large-xlsr-53 in Finnish using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. Test Result: The WER is 55.097365 ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here URL
[ "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Finnish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result:\nThe WER is 55.097365", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Finnish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result:\nThe WER is 55.097365", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ 80, 63, 20, 33, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Finnish using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice.\n\n\n\n\nTest Result:\nThe WER is 55.097365## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ -0.1619464010000229, 0.033176224678754807, -0.001114157377742231, 0.0024973072577267885, 0.1142803281545639, -0.04667608067393303, 0.19643761217594147, 0.10798394680023193, 0.016078343614935875, -0.02430972084403038, 0.03466575965285301, -0.013394963927567005, 0.06625331193208694, 0.12712225317955017, 0.026934290304780006, -0.23305746912956238, -0.002603396773338318, 0.026401488110423088, 0.01045054942369461, 0.13269968330860138, 0.11041975766420364, -0.052385132759809494, -0.029502782970666885, 0.0821441039443016, -0.19767087697982788, 0.04017201066017151, 0.04063383489847183, -0.11719358712434769, 0.14449676871299744, 0.047665659338235855, 0.10456826537847519, 0.026924466714262962, 0.10427971929311752, -0.18073295056819916, 0.027916017919778824, 0.04031066969037056, 0.047128431499004364, 0.035788245499134064, 0.04012531414628029, 0.016322139650583267, 0.0935460776090622, 0.10491081327199936, -0.015524550341069698, 0.06836360692977905, -0.04528026655316353, -0.1613960713148117, 0.00948983896523714, -0.013563526794314384, 0.08040407299995422, 0.168142169713974, -0.05916527286171913, 0.0800129622220993, -0.1473979651927948, 0.11021986603736877, 0.1195765808224678, -0.13606420159339905, -0.0052069383673369884, 0.071861132979393, 0.0754772201180458, 0.04137986898422241, -0.07219766825437546, 0.03067321702837944, 0.025353508070111275, 0.017988672479987144, 0.024245744571089745, -0.006772696506232023, -0.22647587954998016, -0.05142730847001076, -0.11601558327674866, 0.0011313613504171371, 0.24512580037117004, -0.013110082596540451, -0.06126786768436432, -0.10446202754974365, 0.006380047183483839, 0.009736473672091961, 0.011237410828471184, -0.05907103046774864, -0.025464029982686043, 0.018402690067887306, -0.008591734804213047, -0.06793384999036789, -0.1292850226163864, -0.15240317583084106, 0.04800501838326454, 0.09542585164308548, 0.005999399349093437, 0.02585042454302311, -0.14736893773078918, 0.0866168662905693, -0.05261729657649994, -0.06900595873594284, -0.0017500645481050014, 0.01922631822526455, -0.038401782512664795, 0.005172311794012785, -0.07302180677652359, -0.20405419170856476, 0.012248269282281399, -0.021325580775737762, 0.06986606866121292, 0.005287387408316135, -0.017199711874127388, 0.07247551530599594, -0.004475241526961327, 0.13044972717761993, -0.037391118705272675, -0.03324069082736969, 0.035293009132146835, 0.04534446820616722, -0.07329431921243668, -0.03417990729212761, -0.09255664050579071, -0.05800756812095642, 0.038967315107584, 0.06901466846466064, -0.02895507775247097, 0.01303345151245594, -0.036584772169589996, -0.05630097538232803, 0.020726623013615608, -0.13338004052639008, -0.028058694675564766, 0.07918895781040192, -0.03801349177956581, 0.10859877616167068, 0.07999098300933838, 0.03252623602747917, -0.12042846530675888, -0.03984178975224495, 0.025724615901708603, 0.09092199802398682, -0.047195058315992355, -0.10842011868953705, 0.021954508498311043, -0.01190074160695076, -0.021469028666615486, -0.10585709661245346, -0.09095588326454163, -0.07775520533323288, 0.008395149372518063, 0.056449536234140396, -0.0009289399022236466, -0.11320609599351883, -0.010188205167651176, -0.03309004381299019, -0.060192424803972244, 0.03660918027162552, -0.033829208463430405, 0.051348768174648285, -0.022332392632961273, 0.045205578207969666, 0.061659324914216995, 0.07710897922515869, -0.08665895462036133, -0.09798458963632584, -0.016964666545391083, 0.10744310915470123, -0.032214485108852386, -0.04981047287583351, -0.07929395884275436, -0.09634435921907425, -0.05674073100090027, 0.07288843393325806, 0.054633524268865585, 0.1300506293773651, -0.2596794068813324, -0.09570170938968658, 0.23199878633022308, -0.13327373564243317, -0.005617584101855755, 0.18154843151569366, -0.0038759729359298944, 0.12696868181228638, 0.13885562121868134, 0.25013354420661926, 0.13446742296218872, -0.20476087927818298, 0.050631094723939896, 0.007730323355644941, -0.017832521349191666, -0.07675991952419281, 0.07002890855073929, -0.05061006173491478, -0.005052152555435896, 0.0407445915043354, -0.09824458509683609, 0.08659259229898453, -0.012638969346880913, -0.0719330906867981, -0.0003987040545325726, -0.06297638267278671, 0.004154225345700979, 0.05974999815225601, 0.03429426625370979, -0.03714878857135773, -0.07984036952257156, 0.05359215661883354, 0.11639333516359329, -0.15801574289798737, 0.07006790488958359, -0.09973695874214172, 0.0617668442428112, -0.05969615653157234, -0.005808977875858545, -0.1372290998697281, 0.1293870508670807, -0.02516310289502144, 0.04366866126656532, 0.04269064590334892, 0.13978993892669678, 0.02132895030081272, 0.03312027081847191, -0.029573973268270493, -0.01058719027787447, -0.044085972011089325, -0.02565602771937847, -0.029666684567928314, -0.09632457047700882, -0.03896113485097885, -0.0675114318728447, 0.07971073687076569, -0.18316619098186493, 0.012018098495900631, 0.02840479463338852, -0.004627245012670755, 0.00854980107396841, -0.0372091569006443, 0.06945542246103287, 0.09184210002422333, -0.0010315296240150928, -0.007005185820162296, 0.04913884401321411, 0.005081159994006157, -0.04060173034667969, 0.10340812802314758, -0.1353316456079483, 0.010610775090754032, 0.09217526018619537, -0.05523425713181496, -0.03091888315975666, 0.03887563571333885, -0.02798210270702839, -0.011264609172940254, -0.07928218692541122, -0.009405028074979782, 0.25710994005203247, 0.0025649683084338903, 0.10712062567472458, -0.08256158977746964, 0.024529285728931427, 0.023650307208299637, -0.1004553884267807, 0.05907227471470833, 0.047268785536289215, 0.011882705613970757, -0.004114584531635046, 0.022056277841329575, -0.07034836709499359, -0.08286305516958237, 0.3305114507675171, -0.015203865244984627, -0.10354137420654297, 0.026217298582196236, -0.02995123527944088, -0.015116269700229168, 0.10419543832540512, -0.1666596680879593, -0.05948915332555771, 0.009431477636098862, 0.05342938005924225, 0.07288170605897903, -0.1631854623556137, -0.010683617554605007, 0.01177737582474947, -0.13267435133457184, -0.16200906038284302, 0.03683387488126755, -0.0564773753285408, 0.051040079444646835, -0.09596776217222214, -0.06902290880680084, -0.014866129495203495, -0.048325199633836746, -0.16976754367351532, 0.16300265491008759, -0.08340755105018616, -0.25302451848983765, -0.161944180727005, 0.10088366270065308, 0.05087803304195404, 0.00013798955478705466, 0.08899907767772675, -0.13665950298309326, -0.007231082767248154, -0.03917795419692993, 0.12608148157596588, 0.04215922951698303, -0.060591645538806915, -0.033878426998853683, 0.0324270986020565, 0.0642472431063652, -0.16637609899044037, 0.015961548313498497, -0.03931655362248421, -0.049761444330215454, -0.006506070960313082, -0.03554100915789604, 0.015116473659873009, 0.18267570436000824, 0.0037871128879487514, 0.028759263455867767, -0.015433508902788162, 0.1406739056110382, -0.11419697105884552, 0.0166920218616724, 0.16754524409770966, -0.005583055783063173, -0.02208562195301056, 0.05486222356557846, 0.025574754923582077, -0.05198151245713234, -0.0049966927617788315, -0.023843437433242798, -0.08527461439371109, -0.2388295829296112, -0.10546299815177917, -0.042396269738674164, -0.032281968742609024, -0.009556572884321213, -0.00630649458616972, 0.05162186548113823, 0.006428706459701061, -0.010149240493774414, -0.1302349865436554, 0.07580821216106415, -0.004675711505115032, 0.0444062240421772, -0.0002590203075669706, 0.0963582694530487, -0.04794243723154068, 0.007838083431124687, -0.003668832592666149, 0.03603246435523033, 0.16427624225616455, 0.024244720116257668, 0.08960190415382385, 0.07223843783140182, 0.08845534920692444, 0.09456699341535568, 0.11260468512773514, -0.01764107681810856, -0.005344912875443697, 0.04047195240855217, -0.047812651842832565, -0.03369918838143349, 0.016301125288009644, 0.08142969012260437, -0.06653067469596863, -0.0537337101995945, -0.0025750095956027508, 0.008657463826239109, 0.18248610198497772, 0.06448300927877426, -0.18820466101169586, -0.11841514706611633, -0.0540330745279789, -0.05741691589355469, -0.0032660020515322685, 0.04480191692709923, 0.18407289683818817, -0.14712895452976227, -0.008330965414643288, -0.035301242023706436, 0.09406200051307678, 0.023827942088246346, 0.01831625960767269, -0.02190314792096615, 0.05104983597993851, 0.004487595520913601, 0.10182136297225952, -0.23873351514339447, 0.21087034046649933, -0.00039312223088927567, 0.1690073162317276, -0.05434129759669304, -0.006954316049814224, 0.015959009528160095, 0.06971488893032074, 0.12276267260313034, 0.03410232439637184, 0.009208821691572666, -0.12649884819984436, -0.09788839519023895, 0.0511588528752327, -0.0008452345500700176, -0.0006703163380734622, 0.037992581725120544, 0.00846044160425663, 0.014687503688037395, 0.01812896691262722, -0.11487872153520584, -0.14370878040790558, -0.07285190373659134, 0.01756427250802517, 0.12052584439516068, 0.07104451954364777, -0.019579879939556122, -0.11848380416631699, -0.04763886332511902, 0.08437330275774002, -0.08924256265163422, -0.05917659029364586, -0.05573057010769844, -0.019605327397584915, 0.08003966510295868, -0.07231917977333069, -0.008509841747581959, 0.09654343128204346, 0.10218869149684906, -0.04035080224275589, -0.04466211423277855, 0.04128986969590187, -0.11106053739786148, -0.08675508201122284, 0.006863413378596306, 0.17114952206611633, 0.1081622913479805, 0.05741632357239723, 0.06507640331983566, -0.0013827086659148335, 0.006136613432317972, -0.034912288188934326, -0.026470739394426346, 0.11116465926170349, -0.08846299350261688, -0.0044877356849610806, -0.019079869613051414, -0.11699837446212769, -0.1376122236251831, -0.04893224686384201, 0.1731879860162735, 0.03259386494755745, -0.06646230816841125, 0.14598114788532257, 0.19573479890823364, -0.11686354130506516, -0.2179456353187561, 0.036767710000276566, 0.09925948083400726, 0.14022962749004364, -0.02965405024588108, -0.23441655933856964, 0.07535180449485779, 0.0030182660557329655, -0.013514835387468338, 0.009378735907375813, -0.2756274938583374, -0.1442568004131317, 0.12999121844768524, -0.0021938830614089966, 0.12783832848072052, 0.011823139153420925, 0.021324729546904564, 0.01677819900214672, -0.008073577657341957, 0.04626811295747757, -0.09024172276258469, 0.13153515756130219, 0.028184963390231133, 0.08925296366214752, 0.044811975210905075, -0.0461290143430233, 0.053577523678541183, 0.06635422259569168, -0.021651487797498703, -0.008526366204023361, 0.06725464761257172, 0.04969451203942299, 0.005169996060431004, 0.1765998750925064, -0.10772349685430527, 0.006083047948777676, -0.07468356937170029, -0.10618913173675537, -0.09308596700429916, 0.0992598608136177, 0.015194625593721867, -0.039745766669511795, 0.029303627088665962, -0.014728773385286331, 0.015313344076275826, 0.009423831477761269, -0.05203733220696449, -0.12224110215902328, 0.06773242354393005, 0.11197454482316971, 0.19596779346466064, -0.02613568678498268, -0.11386539787054062, 0.018469758331775665, -0.02290067821741104, 0.14794017374515533, -0.08302410691976547, 0.014576285146176815, 0.07975365221500397, 0.04228364676237106, 0.12614719569683075, 0.008459486998617649, -0.11665774136781693, 0.060801003128290176, 0.03970007970929146, -0.07870538532733917, -0.10330504924058914, -0.039995089173316956, -0.05733560398221016, -0.01998249813914299, 0.03654259443283081, 0.10959330946207047, -0.1112283319234848, -0.018739011138677597, -0.033390067517757416, 0.03612644225358963, -0.1266097128391266, 0.2162569910287857, 0.04970068857073784, 0.08317405730485916, -0.08559493720531464, 0.05676186457276344, -0.029914896935224533, -0.06966543197631836, 0.08310556411743164, -0.0006597579922527075, -0.07879245281219482, -0.07469110190868378, -0.0030858481768518686, 0.11783643811941147, 0.05318141356110573, -0.13191698491573334, -0.09727734327316284, -0.07069551944732666, -0.020362749695777893, 0.080326147377491, 0.050369102507829666, 0.021354099735617638, -0.11796663701534271, -0.04377501457929611, -0.14116914570331573, 0.0635845810174942, 0.09504016488790512, -0.05482643470168114, -0.08364658802747726, 0.2067280262708664, 0.08288285881280899, 0.012875784188508987, -0.03341630473732948, -0.06911775469779968, -0.005580557975918055, 0.07190144062042236, -0.0042100162245333195, -0.024069862440228462, -0.03431446850299835, 0.02200962044298649, -0.027140768244862556, -0.04337244853377342, 0.021751323714852333, 0.09717432409524918, -0.08610466867685318, 0.040910523384809494, -0.024737272411584854, 0.02174784243106842, -0.0875692144036293, 0.02131330408155918, 0.004044931847602129, -0.050665851682424545, 0.056834787130355835, 0.12179917097091675, -0.10454043000936508, 0.12627138197422028, -0.19138725101947784, -0.014035673812031746, 0.055572960525751114, 0.053450822830200195, -0.03207097947597504, -0.07866407185792923, 0.0295375045388937, 0.07616792619228363, 0.10367602854967117, -0.0033594409469515085, 0.09958488494157791, -0.05535942688584328, 0.004323447123169899, -0.025245727971196175, -0.006167821120470762, -0.05230113863945007, 0.08225613087415695, 0.04940367862582207, 0.13816548883914948, 0.16481344401836395, -0.10859107971191406, 0.13779181241989136, -0.1241828128695488, 0.012859213165938854, -0.019396668300032616, -0.027628127485513687, -0.09841755032539368, -0.0432397797703743, 0.06594912707805634, -0.06832318753004074, 0.06487011164426804, 0.05075624957680702, 0.06178709492087364, -0.024277716875076294, -0.13016459345817566, 0.021441364660859108, -0.007673672866076231, 0.19066935777664185, 0.00873104389756918, 0.015236112289130688, -0.02627219632267952, 0.002005442278459668, 0.013345520943403244, 0.12009764462709427, 0.038811445236206055, 0.16921591758728027, -0.003244754858314991, 0.09842747449874878, 0.06481185555458069, -0.04759036749601364, -0.10184173285961151, -0.08136346936225891, -0.10448777675628662, 0.0548287071287632, -0.05693032965064049, 0.1514863818883896, 0.14042600989341736, -0.07796017080545425, 0.08482479304075241, 0.026047999039292336, -0.12587106227874756, -0.16964516043663025, -0.15896327793598175, -0.044352855533361435, -0.10296634584665298, 0.030043791979551315, -0.09473453462123871, 0.03126169368624687, 0.03732956945896149, 0.051004692912101746, -0.048401083797216415, 0.22486765682697296, 0.05247434601187706, -0.08802826702594757, 0.10289764404296875, -0.07142489403486252, -0.01875181682407856, -0.0765039250254631, 0.05934706702828407, 0.15726761519908905, 0.0023774898145347834, 0.08094025403261185, 0.0012697933707386255, -0.0676782876253128, 0.025863749906420708, -0.07054796814918518, -0.07678878307342529, -0.022324098274111748, -0.007608018349856138, 0.08861882239580154, 0.12796719372272491, 0.12195020169019699, -0.07640842348337173, 0.0030182944610714912, 0.12597687542438507, -0.022876223549246788, -0.14408551156520844, -0.15526029467582703, 0.13517090678215027, 0.027351783588528633, 0.008772017434239388, -0.04393200948834419, -0.024642309173941612, -0.002494561718776822, 0.22899888455867767, 0.24774853885173798, 0.07766353338956833, 0.022175803780555725, -0.044440608471632004, -0.014469452202320099, -0.04688899219036102, 0.09991203248500824, 0.06179739162325859, 0.14441846311092377, -0.0047979820519685745, 0.015519769862294197, -0.07516097277402878, -0.08913504332304001, -0.01743433251976967, 0.008267173543572426, -0.048811085522174835, -0.0689128190279007, -0.043481290340423584, 0.12259384244680405, -0.03458670154213905, -0.09280425310134888, -0.09482991695404053, -0.09441779553890228, -0.09294149279594421, -0.02234467677772045, 0.07286322861909866, 0.06114929914474487, 0.04302757605910301, -0.056827764958143234, 0.03164898231625557, 0.1319490224123001, -0.0004803739720955491, -0.05368303135037422, -0.07281776517629623, 0.021888332441449165, -0.13611313700675964, 0.0279519222676754, -0.005029053892940283, 0.1569148302078247, 0.006880437955260277, 0.08201506733894348, -0.01857023686170578, 0.12925715744495392, -0.03364691138267517, -0.006968865171074867, 0.008505763486027718, 0.1470368504524231, -0.04994935169816017, 0.10551021993160248, -0.0028952723369002342, -0.15018367767333984, 0.03448181226849556, -0.1355435699224472, -0.03841722756624222, -0.06434968113899231, 0.04173995926976204, -0.030045101419091225, 0.08503099530935287, 0.13552306592464447, -0.06267666071653366, -0.05860878527164459, -0.06803199648857117, 0.05900098755955696, 0.036442164331674576, -0.06786108762025833, -0.05226675420999527, -0.22313664853572845, -0.046745121479034424, -0.11721303313970566, -0.017273934558033943, -0.1659161001443863, -0.026889963075518608, -0.00024845689767971635, -0.10013742744922638, 0.001507396693341434, 0.03731527924537659, 0.08852435648441315, 0.044100429862737656, 0.007337616756558418, 0.022068724036216736, 0.07370758056640625, 0.1283085197210312, -0.1813850700855255, -0.11908683180809021 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.97 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1c8LS-RP-RMukvXkpqJ9kLXRWmRKFjevs?usp=sharing)
{"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Hugarian by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 46.97, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/wav2vec2-large-xlsr-hungarian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned facebook/wav2vec2-large-xlsr-53 in Hungarian using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. Test Result: 46.97 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Hungarian using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\n\nTest Result: 46.97 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Hungarian using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\n\nTest Result: 46.97 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here" ]
[ 80, 63, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Hungarian using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\n\nTest Result: 46.97 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here" ]
[ -0.1614154577255249, -0.018646225333213806, -0.0010123762767761946, -0.03800954297184944, 0.1372675746679306, -0.05554584041237831, 0.2337213009595871, 0.09671829640865326, 0.06111660972237587, -0.013911914080381393, 0.0015202222857624292, 0.021803591400384903, 0.04198415204882622, 0.04640946537256241, 0.049940161406993866, -0.24097858369350433, 0.021104484796524048, 0.004698524251580238, 0.0597374364733696, 0.09879928827285767, 0.11402636766433716, -0.05121142789721489, -0.0229254849255085, 0.07192038744688034, -0.14282865822315216, 0.05589553713798523, 0.010806416161358356, -0.11384180933237076, 0.16019754111766815, 0.03027072176337242, 0.06487465649843216, 0.04061471298336983, 0.08295349031686783, -0.15804392099380493, 0.02366340532898903, 0.030613644048571587, 0.035829052329063416, 0.02394513227045536, 0.053666435182094574, -0.04556700587272644, 0.1533055305480957, 0.08320070058107376, -0.025506317615509033, 0.07148709148168564, -0.03258313611149788, -0.2201577126979828, 0.02424212172627449, 0.055695049464702606, 0.08523322641849518, 0.15372662246227264, -0.060957252979278564, 0.09103672951459885, -0.14696958661079407, 0.08797044306993484, 0.11517293751239777, -0.16875667870044708, 0.021498247981071472, 0.08146610856056213, 0.05897049233317375, 0.09254831075668335, -0.05649450048804283, 0.021228021010756493, 0.006824202369898558, 0.01708984561264515, 0.05309723690152168, -0.02964707277715206, -0.2526552975177765, -0.06747297197580338, -0.145746648311615, -0.014884806238114834, 0.20434273779392242, -0.016883179545402527, -0.061625558882951736, -0.1350376456975937, 0.008852613158524036, 0.0489167720079422, -0.01998925767838955, -0.010089876130223274, -0.02339494228363037, 0.032732948660850525, 0.003207910107448697, -0.03684741258621216, -0.09140078723430634, -0.1370660811662674, 0.06395046412944794, 0.0902501717209816, 0.04038514569401741, 0.004188288934528828, -0.09412192553281784, 0.08935242146253586, -0.06388697773218155, -0.08418673276901245, 0.012323280796408653, 0.06598890572786331, -0.05902538821101189, -0.011156540364027023, -0.06683851778507233, -0.12469517439603806, 0.00694817490875721, -0.015475466847419739, 0.08013670146465302, 0.024248573929071426, -0.023862337693572044, 0.10286390781402588, -0.011501259170472622, 0.12624318897724152, -0.06974203884601593, -0.02322538197040558, 0.0193626806139946, 0.042992401868104935, -0.04919944703578949, -0.03326801210641861, -0.11604677140712738, -0.07580069452524185, 0.0486874058842659, 0.07121714949607849, -0.053530190140008926, 0.031091157346963882, 0.010851713828742504, -0.054468005895614624, 0.0490046925842762, -0.10146044939756393, -0.05371975898742676, 0.09192666411399841, -0.0317806713283062, 0.11866996437311172, 0.027666866779327393, 0.059297073632478714, -0.11945153772830963, 0.00015879812417551875, 0.01999756321310997, 0.08959906548261642, -0.04157549515366554, -0.11028105765581131, 0.019424045458436012, 0.018812566995620728, 0.0028761366847902536, -0.11090079694986343, -0.0738176628947258, -0.05310650169849396, -0.02116341143846512, 0.049412865191698074, 0.029154008254408836, -0.11814573407173157, -0.030461909249424934, -0.042414918541908264, -0.05787017568945885, 0.07040809094905853, -0.04655255749821663, 0.07862188667058945, -0.04694962501525879, 0.021357612684369087, 0.029712112620472908, 0.07183511555194855, -0.12316934019327164, -0.07347521930932999, -0.046465229243040085, 0.10615681856870651, -0.044870443642139435, 0.015873070806264877, -0.07062094658613205, -0.07197265326976776, -0.014828621409833431, 0.06979506462812424, 0.045564353466033936, 0.08675043284893036, -0.24031022191047668, -0.10457148402929306, 0.2062719315290451, -0.13867945969104767, -0.03980298712849617, 0.20446017384529114, -0.013600141741335392, 0.13078045845031738, 0.1365833580493927, 0.289144903421402, 0.19699783623218536, -0.17765900492668152, 0.013376861810684204, -0.001499770674854517, -0.0025760559365153313, -0.09771495312452316, 0.09659655392169952, -0.03191119059920311, -0.021206272765994072, 0.026229508221149445, -0.1438623070716858, 0.0995526984333992, -0.012311931699514389, -0.035170216113328934, 0.0018487273482605815, -0.08531232923269272, 0.05440846085548401, 0.044933389872312546, 0.05278562754392624, -0.04743680730462074, -0.07497622072696686, 0.05490993708372116, 0.1561899483203888, -0.14144748449325562, 0.04764139652252197, -0.08684927970170975, 0.10965617746114731, -0.04384196177124977, 0.004450731910765171, -0.13113568723201752, 0.21112962067127228, 0.005855188705027103, 0.05026858299970627, 0.06328398734331131, 0.10002510249614716, 0.008332845754921436, 0.0589262917637825, -0.029377447441220284, -0.005761921871453524, -0.014904794283211231, -0.023546254262328148, -0.03492465987801552, -0.09285301715135574, -0.04387986287474632, -0.051495809108018875, 0.10068618506193161, -0.13924473524093628, 0.019014019519090652, -0.006269327364861965, 0.018299594521522522, -0.027833545580506325, -0.018288200721144676, 0.03668661788105965, 0.10558416694402695, 0.0013545521069318056, -0.010398699901998043, 0.07233358919620514, 0.029804743826389313, -0.044445618987083435, 0.11657069623470306, -0.18221299350261688, -0.03391014039516449, 0.09207563102245331, -0.11208542436361313, -0.022491244599223137, 0.017610138282179832, -0.023373505100607872, 0.00921778567135334, -0.07379185408353806, -0.04601294547319412, 0.33448049426078796, -0.026762541383504868, 0.14150936901569366, -0.09393128752708435, 0.0070971474051475525, -0.0019215528154745698, -0.08073344081640244, 0.0841442197561264, 0.05992794409394264, 0.031246373429894447, 0.0298093780875206, 0.028535399585962296, -0.03846867382526398, -0.08909540623426437, 0.3018130958080292, -0.020262375473976135, -0.11029884964227676, 0.0531516969203949, 0.002176336944103241, -0.01804416999220848, 0.0415232852101326, -0.18472059071063995, -0.05088438466191292, 0.013756638392806053, 0.060079384595155716, 0.074350506067276, -0.13518522679805756, 0.014569470658898354, 0.005234948359429836, -0.12898199260234833, -0.1851169764995575, 0.06895141303539276, -0.052162136882543564, 0.06082690879702568, -0.08239974081516266, -0.06312121450901031, -0.030433613806962967, -0.039366573095321655, -0.18064862489700317, 0.12193207442760468, -0.06049872562289238, -0.15867429971694946, -0.20540088415145874, 0.07877148687839508, 0.0700666680932045, 0.01843757927417755, 0.08633993566036224, -0.1130543053150177, 0.022132569923996925, -0.019859667867422104, 0.13181695342063904, 0.0078102522529661655, -0.06789223849773407, -0.015187530778348446, 0.051052555441856384, 0.042982831597328186, -0.12694065272808075, -0.006128143984824419, -0.03735477104783058, -0.07452943921089172, -0.05569196119904518, -0.024107184261083603, -0.021621378138661385, 0.18192343413829803, 0.02959328517317772, 0.019348012283444405, -0.036188382655382156, 0.13786041736602783, -0.10966824740171432, -0.004253595136106014, 0.2041379064321518, -0.04076897352933884, -0.02038988284766674, 0.07689247280359268, 0.04260893166065216, -0.02374371327459812, -0.005123468581587076, -0.03997474163770676, -0.10366447269916534, -0.1912723332643509, -0.13391442596912384, -0.05154569819569588, -0.05639506131410599, -0.027813022956252098, -0.007114816922694445, 0.08876350522041321, 0.04074782505631447, -0.05553627759218216, -0.10462852567434311, 0.055389970541000366, 0.020674213767051697, 0.04817318543791771, 0.011187420226633549, 0.08307237178087234, -0.05993291363120079, -0.018177906051278114, -0.02264445461332798, 0.011111549101769924, 0.17922239005565643, 0.03598253056406975, 0.08212175965309143, 0.08814182877540588, 0.07473520189523697, 0.10228472948074341, 0.07572835683822632, -0.046334732323884964, -0.011823784559965134, 0.01799437776207924, -0.07327080518007278, -0.001999154919758439, 0.011268150992691517, 0.06369663774967194, -0.024882519617676735, -0.11187921464443207, -0.06349864602088928, 0.033073484897613525, 0.1848294734954834, 0.04390167072415352, -0.19144636392593384, -0.1100277528166771, -0.02267071045935154, -0.0495520681142807, 0.04102782905101776, 0.03234035149216652, 0.1601928174495697, -0.14642170071601868, -0.012433014810085297, 0.03297313302755356, 0.0936669409275055, -0.039004553109407425, 0.03919685259461403, -0.09024491161108017, 0.038105349987745285, -0.00434102863073349, 0.12508730590343475, -0.2287922352552414, 0.21545720100402832, 0.0026416643522679806, 0.1590157449245453, -0.07910671830177307, -0.014550447463989258, 0.048761263489723206, 0.055226583033800125, 0.09308977425098419, 0.02532665990293026, 0.029570013284683228, -0.1613030731678009, -0.08262728154659271, 0.026104573160409927, -0.003117020009085536, -0.034241411834955215, 0.027677953243255615, -0.022785315290093422, -0.00015289938892237842, -0.007147687952965498, -0.09382561594247818, -0.09726561605930328, -0.028173338621854782, 0.004588152747601271, 0.19841064512729645, 0.08307202160358429, -0.028561001643538475, -0.09030196070671082, -0.09033182263374329, 0.02725732885301113, -0.11694224178791046, -0.06645192950963974, -0.03397269546985626, -0.06294991075992584, 0.08117610216140747, -0.09283509850502014, -0.03786212578415871, 0.10984472185373306, 0.09793997555971146, -0.03898687660694122, -0.07594156265258789, 0.020699912682175636, -0.1295139640569687, -0.08842223882675171, 0.008132070302963257, 0.23011568188667297, 0.12153016775846481, 0.08378700911998749, 0.048440780490636826, 0.0041428497061133385, 0.02132468670606613, -0.05735009163618088, -0.034184277057647705, 0.08165828138589859, -0.095872662961483, 0.01673191227018833, -0.06425660103559494, -0.13219919800758362, -0.14763380587100983, -0.050984833389520645, 0.1825372874736786, 0.08190758526325226, -0.07029438763856888, 0.13171784579753876, 0.2449503093957901, -0.07924173772335052, -0.19516664743423462, -0.001828639768064022, 0.12001460045576096, 0.10988052934408188, -0.013720464892685413, -0.2052600085735321, 0.05602123588323593, -0.0044461814686656, -0.023767627775669098, -0.04620871692895889, -0.36278340220451355, -0.13114354014396667, 0.16305124759674072, -0.001973761711269617, 0.12421422451734543, 0.012667224742472172, -0.00362230371683836, 0.026053234934806824, 0.007776434067636728, -0.013358294032514095, -0.1342366635799408, 0.11636900156736374, 0.049164775758981705, 0.07426205277442932, 0.060357894748449326, -0.04062849283218384, 0.06374102085828781, 0.11539220809936523, -0.020793670788407326, -0.027936862781643867, 0.049885861575603485, 0.061333175748586655, 0.006705780979245901, 0.1340656280517578, -0.11599362641572952, 0.020264815539121628, -0.08830221742391586, -0.08271914720535278, -0.08529946208000183, 0.058052804321050644, 0.019802112132310867, -0.0409102626144886, 0.020065777003765106, -0.019763505086302757, 0.006117681972682476, 0.012837913818657398, -0.06369300186634064, -0.13827459514141083, 0.08078008145093918, 0.0815512016415596, 0.17164471745491028, -0.06140677258372307, -0.07233614474534988, 0.0021164806094020605, -0.022665848955512047, 0.1321175992488861, -0.04953652620315552, 0.01626734994351864, 0.077354796230793, 0.031780678778886795, 0.12080377340316772, 0.028285762295126915, -0.10646912455558777, 0.07168927788734436, 0.03752285614609718, -0.04620750620961189, -0.07709497213363647, -0.05850716307759285, 0.004535178188234568, -0.010984702967107296, 0.023610521107912064, 0.09222205728292465, -0.11585266143083572, -0.012506191618740559, -0.030048001557588577, -0.026816127821803093, -0.1312960535287857, 0.18719691038131714, 0.004643927328288555, 0.08451081812381744, -0.09354330599308014, 0.02583366632461548, 0.009560815989971161, 0.004385009873658419, 0.05487842485308647, 0.014551020227372646, -0.10981399565935135, -0.07093025743961334, -0.05485819652676582, 0.12712369859218597, 0.027720415964722633, -0.13143610954284668, -0.07778002321720123, -0.08164311200380325, -0.014496820978820324, 0.06065867841243744, 0.06375192850828171, -0.01407010667026043, -0.15317225456237793, -0.04577730968594551, -0.13355141878128052, 0.03601574897766113, 0.07045546919107437, -0.029627330601215363, -0.08012482523918152, 0.2407137006521225, 0.09303268045186996, 0.007788753602653742, -0.04475713148713112, -0.09702380746603012, -0.007395830936729908, 0.08900610357522964, -0.04243067651987076, -0.05916668474674225, -0.06245966628193855, 0.0004526520788203925, -0.02171502821147442, -0.08375855535268784, 0.010135386139154434, 0.08203734457492828, -0.08556795865297318, 0.043329764157533646, -0.021648220717906952, 0.0665685385465622, -0.06513480842113495, 0.020972440019249916, 0.03802113234996796, -0.05888073518872261, 0.07361983507871628, 0.12819761037826538, -0.09317580610513687, 0.14743998646736145, -0.18727903068065643, -0.05535927787423134, 0.036010824143886566, 0.05128127336502075, -0.023478152230381966, -0.04354141280055046, 0.04764914512634277, 0.05446552857756615, 0.08458735048770905, -0.0013960502110421658, 0.07832808047533035, -0.04833459109067917, 0.0018819330725818872, -0.008056942373514175, 0.014147496782243252, -0.03785698488354683, 0.08538196980953217, 0.05385353043675423, 0.1332932710647583, 0.12091923505067825, -0.11294916272163391, 0.12057798355817795, -0.09807420521974564, 0.019395092502236366, -0.05404523015022278, -0.02441154606640339, -0.08566441386938095, -0.09259428083896637, 0.044710658490657806, -0.06744066625833511, 0.07966741919517517, -0.00606648251414299, 0.10644301027059555, -0.015747297555208206, -0.03163069486618042, 0.03819408640265465, -0.024394523352384567, 0.25182515382766724, 0.049601923674345016, 0.01395145058631897, -0.043725401163101196, 0.02844560518860817, 0.03169015422463417, 0.05462855473160744, -0.0038835552986711264, 0.17099657654762268, -0.03177058696746826, 0.056055162101984024, 0.09716098010540009, -0.05915733799338341, -0.1148550882935524, -0.0925753265619278, -0.053148601204156876, 0.012287096120417118, -0.09134561568498611, 0.24250781536102295, 0.18073628842830658, -0.07077475637197495, 0.09911942481994629, 0.07592469453811646, -0.07826875150203705, -0.12859869003295898, -0.11384207010269165, -0.009111007675528526, -0.14156676828861237, 0.010744555853307247, -0.04942204803228378, -0.010511018335819244, 0.06403844803571701, 0.061718590557575226, -0.04202713817358017, 0.2163618505001068, 0.029112854972481728, -0.09039968252182007, 0.08885609358549118, -0.10807289928197861, 0.022452155128121376, -0.1036943569779396, 0.008246881887316704, 0.16284984350204468, 0.005425330251455307, 0.08519414067268372, -0.002313329605385661, -0.07839930802583694, -0.006132942624390125, -0.09941449761390686, -0.05900692567229271, -0.010575491935014725, -0.028360284864902496, 0.07023248076438904, 0.12933243811130524, 0.11296863108873367, -0.07979295402765274, -0.012241506949067116, 0.17486688494682312, -0.03402005508542061, -0.15964092314243317, -0.12410132586956024, 0.16412976384162903, 0.07325026392936707, -0.01066506002098322, -0.0311506949365139, -0.025771673768758774, -0.04134853556752205, 0.2577834725379944, 0.24399715662002563, 0.07318387925624847, 0.026206230744719505, -0.05061536282300949, -0.010840714909136295, -0.011521118693053722, 0.10827895253896713, 0.0657554343342781, 0.19874678552150726, -0.004027301911264658, 0.04784950613975525, -0.08507252484560013, -0.05526123195886612, -0.03725496679544449, 0.06532315909862518, -0.07717615365982056, -0.08468560874462128, -0.003788683796301484, 0.12813737988471985, -0.05039367824792862, -0.08241824060678482, -0.1634492725133896, -0.06876087188720703, -0.08660894632339478, -0.012160689570009708, 0.007746710907667875, 0.10057196021080017, 0.020857105031609535, -0.04913215711712837, 0.021416619420051575, 0.0808660015463829, -0.006570081692188978, -0.017057882621884346, -0.10320864617824554, 0.02292984165251255, -0.14613863825798035, 0.05991502106189728, -0.04316256567835808, 0.13537076115608215, 0.03066573664546013, 0.11213662475347519, 0.008910776115953922, 0.15698283910751343, -0.023102501407265663, -0.06073659658432007, 0.04143957793712616, 0.13778217136859894, -0.059232838451862335, 0.10453497618436813, -0.0007959118811413646, -0.1991928517818451, 0.05296901986002922, -0.17679612338542938, -0.020736699923872948, -0.07056811451911926, 0.0447843037545681, -0.015734735876321793, 0.07256705313920975, 0.09535127133131027, -0.07106409221887589, -0.05646788701415062, -0.0704539567232132, 0.015008416958153248, 0.06214729696512222, -0.08932045102119446, -0.06355436146259308, -0.2572512626647949, -0.03419232368469238, -0.12733697891235352, -0.016986465081572533, -0.22690992057323456, -0.006037491373717785, -0.014140107668936253, -0.08269286155700684, 0.0017701330361887813, 0.013676914386451244, 0.08642598241567612, 0.028834406286478043, 0.005212326999753714, -0.04280957207083702, 0.03359542414546013, 0.1411229819059372, -0.21098677814006805, -0.11326265335083008 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Luganda Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: WER: 48.314356 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/1ZeII36LZ5IpBrTV7kBaTVfhDqygznlmC?usp=sharing
{"language": "lg", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Luganda by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Luganda", "type": "common_voice", "args": "lg"}, "metrics": [{"type": "wer", "value": 48.31, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/wav2vec2-luganda
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "lg", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "lg" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lg #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Luganda Fine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. Test Result: WER: 48.314356 ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here URL
[ "# Wav2Vec2-Large-XLSR-53-Luganda\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 48.314356", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lg #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Luganda\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 48.314356", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ 80, 62, 20, 33, 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lg #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Luganda\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Luganda using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Luganda test data of Common Voice.\n\n\n\n\nTest Result:\nWER: 48.314356## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\nThe script used for training can be found here\nURL" ]
[ -0.14543816447257996, 0.03393751010298729, -0.0019601560197770596, 0.009657609276473522, 0.12493585795164108, -0.026905419304966927, 0.1814686357975006, 0.11572858691215515, -0.006572915706783533, -0.03327083960175514, 0.020736951380968094, 0.015841376036405563, 0.04143492132425308, 0.05378127098083496, 0.05567163974046707, -0.2411934733390808, -0.02066388726234436, 0.02194250002503395, 0.008440305478870869, 0.11947847902774811, 0.08931917697191238, -0.04792900010943413, -0.0035916853230446577, 0.07609695196151733, -0.16400691866874695, 0.049558091908693314, 0.006609977688640356, -0.08785438537597656, 0.14541131258010864, 0.06657334417104721, 0.0960044339299202, 0.027991613373160362, 0.11968967318534851, -0.21880242228507996, 0.02970919758081436, 0.033192139118909836, 0.030627930536866188, 0.025999777019023895, 0.003973201848566532, -0.03889738768339157, 0.0997733399271965, 0.0970887839794159, -0.009160264395177364, 0.08201010525226593, -0.07503712922334671, -0.16449864208698273, 0.005261903163045645, -0.019440947100520134, 0.047101378440856934, 0.1661137491464615, -0.04441429302096367, 0.038848258554935455, -0.15316593647003174, 0.08279525488615036, 0.12698793411254883, -0.1555827111005783, 0.0043456158600747585, 0.13654614984989166, 0.07927398383617401, 0.044277019798755646, -0.08904755115509033, 0.017498522996902466, 0.034387391060590744, 0.014241350814700127, 0.047446176409721375, -0.026825232431292534, -0.20415079593658447, -0.02796034887433052, -0.1194746121764183, -0.011258658953011036, 0.22263075411319733, -0.02238599583506584, -0.0780261680483818, -0.10785701870918274, 0.015267996117472649, 0.001494544092565775, -0.01347311120480299, -0.01818629540503025, 0.0052071246318519115, 0.05850125104188919, -0.019739046692848206, -0.06416798382997513, -0.10403001308441162, -0.16753129661083221, 0.04428890347480774, 0.06949776411056519, 0.02440456673502922, -0.00042280947673134506, -0.15536612272262573, 0.110564224421978, -0.0631420686841011, -0.07389824092388153, -0.03710652515292168, 0.026890546083450317, -0.027676379308104515, 0.01403330359607935, -0.06096276268362999, -0.12079742550849915, 0.028401194140315056, 0.05012566223740578, 0.11572080850601196, 0.03509718179702759, -0.030945884063839912, 0.06317760795354843, -0.01528883446007967, 0.1336064487695694, -0.013567514717578888, -0.025078680366277695, 0.06496521830558777, 0.07882160693407059, -0.04719293490052223, -0.025181923061609268, -0.10357236862182617, -0.0676213800907135, 0.0016652606427669525, 0.09055617451667786, -0.028528058901429176, 0.03664499893784523, -0.05403909832239151, -0.02181069739162922, 0.011812233366072178, -0.11206980049610138, -0.037480805069208145, 0.07506143301725388, -0.03008262813091278, 0.09197280555963516, 0.1309950202703476, 0.03721807524561882, -0.07233670353889465, -0.054399456828832626, 0.004851228091865778, 0.07537315785884857, -0.06641685217618942, -0.08112551271915436, 0.02360256388783455, 0.01856701448559761, -0.0006117295706644654, -0.12096812576055527, -0.15907038748264313, -0.0744677409529686, -0.004492111504077911, 0.04907546937465668, 0.010451260022819042, -0.11611241102218628, -0.014341706410050392, -0.043061353266239166, -0.045035261660814285, 0.06536795943975449, -0.039639826864004135, 0.06806409358978271, 0.0348268561065197, 0.040971655398607254, 0.04255190119147301, 0.07338061928749084, -0.0870673805475235, -0.0594111792743206, 0.01786446012556553, 0.13167548179626465, -0.024437127634882927, -0.0034645574633032084, -0.07816742360591888, -0.07692417502403259, -0.11523421108722687, 0.08790595829486847, 0.04890301451086998, 0.13388553261756897, -0.25059109926223755, -0.08555557578802109, 0.2597735822200775, -0.11221257597208023, -0.02295745350420475, 0.1583230048418045, -0.034112755209207535, 0.15379782021045685, 0.13405439257621765, 0.20545721054077148, 0.18603818118572235, -0.19963161647319794, 0.06894471496343613, 0.008238192647695541, 0.001566018327139318, -0.06395208835601807, 0.07768692821264267, -0.052429523319005966, -0.015568772330880165, 0.0343099907040596, -0.09439275413751602, 0.10321082174777985, -0.025523127987980843, -0.06119120866060257, -0.012451397255063057, -0.0784592255949974, 0.030426759272813797, 0.031769853085279465, 0.012286275625228882, -0.012121472507715225, -0.09864699840545654, 0.07050720602273941, 0.14874760806560516, -0.15744680166244507, 0.057925984263420105, -0.11944567412137985, 0.015215503983199596, -0.024423955008387566, 0.012723153457045555, -0.14176668226718903, 0.116425521671772, -0.027812831103801727, 0.04204985871911049, 0.06407153606414795, 0.09714235365390778, 0.01030708383768797, 0.024330731481313705, -0.038744498044252396, -0.006183360703289509, -0.03929063677787781, -0.04161020740866661, -0.02445886842906475, -0.08159239590167999, -0.059987086802721024, -0.06676984578371048, 0.09070397168397903, -0.20933648943901062, 0.0362468957901001, 0.0017772030550986528, -0.03486529365181923, -0.006791438441723585, -0.031640756875276566, 0.09835531562566757, 0.10127988457679749, -0.015669574961066246, -0.016591845080256462, 0.05818389728665352, 0.016525007784366608, -0.07168468832969666, 0.07152340561151505, -0.14204026758670807, 0.007815014570951462, 0.10018318146467209, -0.05822928994894028, -0.005021307617425919, 0.02329978719353676, -0.007360138930380344, -0.009159433655440807, -0.08927001804113388, -0.039817746728658676, 0.2780842185020447, -0.02236567996442318, 0.12469292432069778, -0.08541359007358551, 0.017122210934758186, -0.008897235617041588, -0.09315691143274307, 0.08131511509418488, 0.040054965764284134, 0.03331040218472481, 0.080661840736866, 0.01855284906923771, -0.06549083441495895, -0.09546969830989838, 0.28136110305786133, -0.027899637818336487, -0.06363785266876221, 0.018391400575637817, -0.010057251900434494, -0.015483789145946503, 0.03737087920308113, -0.1953706443309784, -0.07298030704259872, 0.001067657838575542, 0.048818573355674744, 0.07594072073698044, -0.180773064494133, -0.011642465367913246, 0.034599632024765015, -0.12993201613426208, -0.15900878608226776, 0.05554521083831787, -0.07071618735790253, 0.0393705740571022, -0.096281997859478, -0.023785632103681564, 0.0031451876275241375, -0.0414428748190403, -0.1697407066822052, 0.1557704657316208, -0.07263093441724777, -0.19150608777999878, -0.15079297125339508, 0.053696367889642715, 0.08040633052587509, 0.01424114778637886, 0.07575467228889465, -0.13244763016700745, 0.011249100789427757, -0.028987746685743332, 0.1072915717959404, 0.02657570131123066, -0.04778970032930374, -0.006376976612955332, 0.03931521996855736, 0.058978479355573654, -0.17780373990535736, 0.004865548107773066, -0.018781866878271103, -0.08662685006856918, -0.02264544554054737, -0.03959881514310837, 0.0275882575660944, 0.17844125628471375, 0.062769815325737, 0.0113450912758708, -0.02121814526617527, 0.1411682814359665, -0.07652515918016434, -0.013787828385829926, 0.23982317745685577, -0.01788238435983658, -0.015268165618181229, 0.04479164257645607, 0.03820841759443283, -0.08331498503684998, 0.014347042888402939, -0.017218448221683502, -0.11698970943689346, -0.22972539067268372, -0.07589476555585861, -0.06301999092102051, -0.04644511267542839, -0.010665948502719402, 0.004571849014610052, 0.049930717796087265, 0.0215569119900465, 0.005882267374545336, -0.07042773813009262, 0.08466461300849915, 0.01403058785945177, 0.06226377561688423, -0.0028339733835309744, 0.09555855393409729, -0.0596415139734745, -0.008651621639728546, -0.010479645803570747, 0.03312927857041359, 0.1609610915184021, 0.04893098399043083, 0.09049513190984726, 0.09748956561088562, 0.10258401185274124, 0.10633929073810577, 0.06802694499492645, -0.040085822343826294, -0.009756479412317276, 0.018545998260378838, -0.053562864661216736, -0.05986678600311279, 0.025003749877214432, 0.06865659356117249, -0.046645089983940125, -0.058866824954748154, -0.020545363426208496, 0.0104269003495574, 0.12238342314958572, 0.052328113466501236, -0.22181200981140137, -0.08379504084587097, -0.025334496051073074, -0.03773494437336922, 0.01608716882765293, 0.06801868230104446, 0.13626842200756073, -0.13483496010303497, 0.003558332333341241, 0.006912562530487776, 0.09737957268953323, -0.02840975672006607, 0.0223128292709589, -0.04377727583050728, 0.07028605788946152, -0.01082932110875845, 0.09207344055175781, -0.29478147625923157, 0.17464768886566162, -0.002801374066621065, 0.15168379247188568, -0.04294341802597046, 0.0026804779190570116, 0.04987819120287895, 0.052718181163072586, 0.10655032098293304, 0.005971258040517569, 0.060988351702690125, -0.1278432309627533, -0.07299786806106567, 0.052391018718481064, 0.0022305010352283716, -0.013693138025701046, 0.06694957613945007, -0.008470271714031696, 0.004229253623634577, 0.028241688385605812, -0.06439648568630219, -0.1639646589756012, -0.0691850408911705, -0.0023708543740212917, 0.13812366127967834, 0.13448761403560638, -0.040117066353559494, -0.0830422192811966, -0.021377524361014366, 0.036596011370420456, -0.07827408611774445, -0.055199239403009415, -0.0525309294462204, 0.00884360820055008, 0.06941665709018707, -0.0709294006228447, 0.006789593957364559, 0.1021188348531723, 0.09190906584262848, -0.02829333022236824, -0.0616830438375473, 0.024040011689066887, -0.11543383449316025, -0.09891171008348465, -0.012019171379506588, 0.19298043847084045, 0.10046140849590302, 0.06490879505872726, 0.05079454556107521, -0.025160834193229675, 0.023233981803059578, -0.053602077066898346, -0.007943691685795784, 0.1508551687002182, -0.09845235198736191, 0.011706561781466007, -0.059930503368377686, -0.11939909309148788, -0.10146208107471466, -0.06806261837482452, 0.16690577566623688, 0.046978872269392014, -0.048384882509708405, 0.10816957801580429, 0.18442979454994202, -0.12905368208885193, -0.21524344384670258, 0.004361344035714865, 0.09229651838541031, 0.10901765525341034, -0.006776814814656973, -0.2723047435283661, 0.05091019719839096, -0.0005488950992003083, -0.010164281353354454, -0.00598490983247757, -0.37076500058174133, -0.1431736797094345, 0.13125169277191162, -0.005527906119823456, 0.13534577190876007, -0.03637713938951492, -0.010959203355014324, -0.005515408236533403, -0.05870848894119263, 0.047306641936302185, -0.09015676379203796, 0.13230864703655243, 0.02797403186559677, 0.09198758751153946, 0.042085833847522736, -0.033477094024419785, 0.06254646927118301, 0.08435951173305511, 0.007886221632361412, -0.009038921445608139, 0.026072904467582703, 0.024874592199921608, -0.005635000765323639, 0.1487146019935608, -0.12303690612316132, 0.015144039876759052, -0.0810035765171051, -0.10773678869009018, -0.07705910503864288, 0.058290302753448486, 0.01902509108185768, -0.03782769292593002, 0.015601337887346745, -0.02427624724805355, 0.0015666125109419227, 0.0182157214730978, -0.05134987458586693, -0.13136589527130127, 0.0334024578332901, 0.08403073251247406, 0.19358304142951965, 0.02181309461593628, -0.11223335564136505, -0.005341436713933945, -0.01569780893623829, 0.13187314569950104, -0.15930062532424927, 0.018394291400909424, 0.06106136366724968, 0.05993158742785454, 0.1434021145105362, 0.036755215376615524, -0.10387680679559708, 0.08102577924728394, 0.05153844878077507, -0.026420142501592636, -0.09996160864830017, -0.03819015994668007, -0.05126972869038582, -0.04178312420845032, 0.01957830786705017, 0.09822347015142441, -0.09902100265026093, -0.017374536022543907, -0.015360536053776741, 0.0166871789842844, -0.14029589295387268, 0.20130029320716858, 0.04959657043218613, 0.06368403881788254, -0.0789036676287651, 0.046286359429359436, -0.022701237350702286, -0.008047948591411114, 0.05107679218053818, 0.011706945486366749, -0.08056151866912842, -0.0761677548289299, -0.0693967193365097, 0.1299920529127121, 0.01571272313594818, -0.10640428215265274, -0.0653173178434372, -0.0717867836356163, -0.011072245426476002, 0.07825861126184464, 0.04564643278717995, 0.030466729775071144, -0.11943814158439636, -0.014181734062731266, -0.11263082921504974, 0.04331168904900551, 0.09147875010967255, -0.0349411703646183, -0.10536389797925949, 0.184820294380188, 0.10242482274770737, 0.0062577868811786175, -0.02531108446419239, -0.08517150580883026, -0.04645269364118576, 0.09998490661382675, -0.07465814054012299, -0.014632940292358398, -0.04855550825595856, 0.01635430008172989, -0.022600235417485237, -0.05345425009727478, 0.009746192954480648, 0.09502740949392319, -0.0848073735833168, 0.01705598272383213, -0.013363574631512165, 0.06703919172286987, -0.06433757394552231, 0.004235055297613144, 0.03814255818724632, -0.06380204856395721, 0.05600791424512863, 0.1137721985578537, -0.08991871029138565, 0.129233255982399, -0.18602585792541504, -0.01400022767484188, 0.085756316781044, 0.050540272146463394, -0.06105726212263107, -0.07240885496139526, 0.03553646430373192, 0.043151188641786575, 0.07176299393177032, -0.018777262419462204, 0.11340038478374481, -0.07761406898498535, 0.009926144964993, -0.023306120187044144, 0.01731567457318306, -0.028137682005763054, 0.0512952022254467, 0.06676310300827026, 0.14296796917915344, 0.14551913738250732, -0.10377800464630127, 0.1162700280547142, -0.1501043736934662, 0.007654134649783373, -0.03448944538831711, -0.015792066231369972, -0.11112567782402039, -0.08142544329166412, 0.06092995032668114, -0.06473473459482193, 0.08427730947732925, 0.010308107361197472, 0.0347546748816967, -0.04725867509841919, -0.05728737264871597, 0.038666415959596634, -0.018220609053969383, 0.22518402338027954, 0.043508000671863556, 0.02129053696990013, 0.0013637844240292907, 0.02242279052734375, 0.042677510529756546, 0.08110802620649338, 0.02992555871605873, 0.15558253228664398, 0.021812694147229195, 0.09064754843711853, 0.08370474725961685, -0.05692329257726669, -0.09058123081922531, -0.07094317674636841, -0.07722228765487671, 0.025253858417272568, -0.08921335637569427, 0.15329350531101227, 0.14518408477306366, -0.05786531791090965, 0.09231182187795639, 0.04907466843724251, -0.09804192185401917, -0.16144013404846191, -0.16281792521476746, -0.02417529560625553, -0.12436980754137039, 0.02553330361843109, -0.08445876091718674, 0.0077808331698179245, 0.05042240396142006, 0.02750137634575367, -0.02990550734102726, 0.21617518365383148, 0.038174547255039215, -0.11580050736665726, 0.06436437368392944, -0.08915538340806961, -0.005532517563551664, -0.08738311380147934, 0.04211597144603729, 0.1587107628583908, 0.0056147146970033646, 0.06516019254922867, 0.010988453403115273, -0.06050323322415352, 0.044393762946128845, -0.08259249478578568, -0.05661414936184883, -0.032482728362083435, -0.00038906687404960394, 0.09333911538124084, 0.12018154561519623, 0.11516543477773666, -0.08634742349386215, 0.024451354518532753, 0.14785313606262207, -0.026490522548556328, -0.1568073183298111, -0.1296430081129074, 0.12683720886707306, 0.04253014922142029, -0.009861956350505352, -0.048806678503751755, -0.02585953287780285, 0.011713405139744282, 0.28472766280174255, 0.22546961903572083, 0.05140545591711998, 0.03305419906973839, -0.025679973885416985, -0.004779302980750799, -0.017701406031847, 0.0911264643073082, 0.092903733253479, 0.16838762164115906, -0.0003778883838094771, 0.008157843723893166, -0.05424997955560684, -0.0733800008893013, 0.002591116586700082, 0.044049955904483795, -0.07563239336013794, -0.05367664247751236, -0.018687983974814415, 0.10612146556377411, -0.05881130322813988, -0.09804745018482208, -0.06957335025072098, -0.08331037312746048, -0.06802049279212952, -0.03930194303393364, 0.011973291635513306, 0.0937562957406044, 0.021181568503379822, -0.06919357180595398, 0.01118406094610691, 0.12526988983154297, -0.011186656542122364, -0.06656188517808914, -0.0885704979300499, 0.02540765516459942, -0.050441283732652664, 0.03278077393770218, -0.02916841395199299, 0.14022168517112732, 0.021182000637054443, 0.09873711317777634, -0.03707355633378029, 0.14562617242336273, -0.034477509558200836, -0.014794871211051941, -0.0019065187079831958, 0.08450212329626083, -0.051124271005392075, 0.12078279256820679, -0.004355703014880419, -0.12337657809257507, 0.04617695510387421, -0.09258902817964554, -0.05006333440542221, -0.09988070279359818, 0.019587276503443718, -0.04815234988927841, 0.081544429063797, 0.09835558384656906, -0.07477430999279022, -0.0658564418554306, -0.0407617911696434, 0.06306765973567963, 0.04669966176152229, -0.040742263197898865, -0.06994383037090302, -0.21686477959156036, -0.02831128053367138, -0.09532028436660767, -0.023513557389378548, -0.18224193155765533, -0.03850835561752319, 0.002759198658168316, -0.08171502500772476, -0.003071107203140855, 0.053022194653749466, 0.1166432574391365, 0.05498802289366722, 0.009309959597885609, -0.061354950070381165, 0.05098341032862663, 0.14687886834144592, -0.20189756155014038, -0.11805764585733414 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-speechdat This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.4578 - Wer: 0.2927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | No log | 0.01 | 100 | 3.6252 | 1.0 | | No log | 0.02 | 200 | 3.1906 | 1.0 | | No log | 0.03 | 300 | 3.1090 | 1.0 | | No log | 0.04 | 400 | 1.8796 | 0.9955 | | 6.2575 | 0.05 | 500 | 1.3515 | 0.9058 | | 6.2575 | 0.06 | 600 | 1.1209 | 0.8328 | | 6.2575 | 0.07 | 700 | 1.1404 | 0.8309 | | 6.2575 | 0.09 | 800 | 1.0599 | 0.8021 | | 6.2575 | 0.1 | 900 | 0.9901 | 0.8335 | | 0.7737 | 0.11 | 1000 | 0.8846 | 0.7400 | | 0.7737 | 0.12 | 1100 | 0.9971 | 0.7820 | | 0.7737 | 0.13 | 1200 | 0.8665 | 0.7123 | | 0.7737 | 0.14 | 1300 | 0.8490 | 0.7366 | | 0.7737 | 0.15 | 1400 | 0.8250 | 0.6765 | | 0.6183 | 0.16 | 1500 | 0.8291 | 0.6965 | | 0.6183 | 0.17 | 1600 | 0.7946 | 0.6823 | | 0.6183 | 0.18 | 1700 | 0.8239 | 0.6894 | | 0.6183 | 0.19 | 1800 | 0.8282 | 0.6796 | | 0.6183 | 0.2 | 1900 | 0.7645 | 0.6518 | | 0.561 | 0.21 | 2000 | 0.7530 | 0.6367 | | 0.561 | 0.22 | 2100 | 0.7296 | 0.6177 | | 0.561 | 0.24 | 2200 | 0.7527 | 0.6498 | | 0.561 | 0.25 | 2300 | 0.7210 | 0.6316 | | 0.561 | 0.26 | 2400 | 0.7938 | 0.6757 | | 0.5402 | 0.27 | 2500 | 0.7485 | 0.6372 | | 0.5402 | 0.28 | 2600 | 0.7146 | 0.6133 | | 0.5402 | 0.29 | 2700 | 0.7308 | 0.6626 | | 0.5402 | 0.3 | 2800 | 0.7078 | 0.5949 | | 0.5402 | 0.31 | 2900 | 0.7679 | 0.6373 | | 0.5303 | 0.32 | 3000 | 0.7263 | 0.6502 | | 0.5303 | 0.33 | 3100 | 0.6613 | 0.5846 | | 0.5303 | 0.34 | 3200 | 0.6784 | 0.5783 | | 0.5303 | 0.35 | 3300 | 0.6908 | 0.5833 | | 0.5303 | 0.36 | 3400 | 0.6595 | 0.5826 | | 0.503 | 0.37 | 3500 | 0.6717 | 0.5938 | | 0.503 | 0.39 | 3600 | 0.6938 | 0.5791 | | 0.503 | 0.4 | 3700 | 0.6677 | 0.6052 | | 0.503 | 0.41 | 3800 | 0.6544 | 0.5554 | | 0.503 | 0.42 | 3900 | 0.6514 | 0.5728 | | 0.4959 | 0.43 | 4000 | 0.6847 | 0.6188 | | 0.4959 | 0.44 | 4100 | 0.6626 | 0.5869 | | 0.4959 | 0.45 | 4200 | 0.6670 | 0.5700 | | 0.4959 | 0.46 | 4300 | 0.6596 | 0.5846 | | 0.4959 | 0.47 | 4400 | 0.6523 | 0.5468 | | 0.4824 | 0.48 | 4500 | 0.6392 | 0.5688 | | 0.4824 | 0.49 | 4600 | 0.6561 | 0.5687 | | 0.4824 | 0.5 | 4700 | 0.6697 | 0.5817 | | 0.4824 | 0.51 | 4800 | 0.6348 | 0.5608 | | 0.4824 | 0.52 | 4900 | 0.6561 | 0.5600 | | 0.4714 | 0.54 | 5000 | 0.6522 | 0.6181 | | 0.4714 | 0.55 | 5100 | 0.6858 | 0.5921 | | 0.4714 | 0.56 | 5200 | 0.6706 | 0.5497 | | 0.4714 | 0.57 | 5300 | 0.7123 | 0.5768 | | 0.4714 | 0.58 | 5400 | 0.6599 | 0.6100 | | 0.471 | 0.59 | 5500 | 0.6421 | 0.5626 | | 0.471 | 0.6 | 5600 | 0.6395 | 0.5753 | | 0.471 | 0.61 | 5700 | 0.6788 | 0.5481 | | 0.471 | 0.62 | 5800 | 0.6386 | 0.5516 | | 0.471 | 0.63 | 5900 | 0.6694 | 0.5913 | | 0.4707 | 0.64 | 6000 | 0.6251 | 0.5699 | | 0.4707 | 0.65 | 6100 | 0.6243 | 0.5567 | | 0.4707 | 0.66 | 6200 | 0.6645 | 0.5629 | | 0.4707 | 0.67 | 6300 | 0.6296 | 0.5895 | | 0.4707 | 0.69 | 6400 | 0.6078 | 0.5183 | | 0.4632 | 0.7 | 6500 | 0.6270 | 0.5619 | | 0.4632 | 0.71 | 6600 | 0.6050 | 0.5336 | | 0.4632 | 0.72 | 6700 | 0.6185 | 0.5449 | | 0.4632 | 0.73 | 6800 | 0.6281 | 0.5645 | | 0.4632 | 0.74 | 6900 | 0.5877 | 0.5084 | | 0.4514 | 0.75 | 7000 | 0.6199 | 0.5403 | | 0.4514 | 0.76 | 7100 | 0.6293 | 0.5275 | | 0.4514 | 0.77 | 7200 | 0.6290 | 0.5447 | | 0.4514 | 0.78 | 7300 | 0.6130 | 0.5373 | | 0.4514 | 0.79 | 7400 | 0.6138 | 0.5285 | | 0.4457 | 0.8 | 7500 | 0.6040 | 0.5259 | | 0.4457 | 0.81 | 7600 | 0.6220 | 0.5686 | | 0.4457 | 0.82 | 7700 | 0.5915 | 0.5164 | | 0.4457 | 0.84 | 7800 | 0.6270 | 0.5289 | | 0.4457 | 0.85 | 7900 | 0.6224 | 0.5515 | | 0.4458 | 0.86 | 8000 | 0.6161 | 0.5323 | | 0.4458 | 0.87 | 8100 | 0.5827 | 0.5122 | | 0.4458 | 0.88 | 8200 | 0.6067 | 0.5202 | | 0.4458 | 0.89 | 8300 | 0.6087 | 0.5192 | | 0.4458 | 0.9 | 8400 | 0.6859 | 0.5796 | | 0.4409 | 0.91 | 8500 | 0.6180 | 0.5131 | | 0.4409 | 0.92 | 8600 | 0.5945 | 0.4948 | | 0.4409 | 0.93 | 8700 | 0.5967 | 0.5532 | | 0.4409 | 0.94 | 8800 | 0.5770 | 0.4961 | | 0.4409 | 0.95 | 8900 | 0.5809 | 0.5203 | | 0.4305 | 0.96 | 9000 | 0.5805 | 0.5039 | | 0.4305 | 0.97 | 9100 | 0.5873 | 0.5188 | | 0.4305 | 0.98 | 9200 | 0.6277 | 0.5516 | | 0.4305 | 1.0 | 9300 | 0.5727 | 0.5052 | | 0.4305 | 1.01 | 9400 | 0.5858 | 0.5123 | | 0.4264 | 1.02 | 9500 | 0.5692 | 0.4968 | | 0.4264 | 1.03 | 9600 | 0.5954 | 0.5117 | | 0.4264 | 1.04 | 9700 | 0.5904 | 0.5076 | | 0.4264 | 1.05 | 9800 | 0.6046 | 0.5101 | | 0.4264 | 1.06 | 9900 | 0.5616 | 0.4926 | | 0.4176 | 1.07 | 10000 | 0.5971 | 0.5368 | | 0.4176 | 1.08 | 10100 | 0.5706 | 0.4940 | | 0.4176 | 1.09 | 10200 | 0.5612 | 0.5032 | | 0.4176 | 1.1 | 10300 | 0.5672 | 0.4944 | | 0.4176 | 1.11 | 10400 | 0.5915 | 0.5218 | | 0.4033 | 1.12 | 10500 | 0.5706 | 0.5051 | | 0.4033 | 1.13 | 10600 | 0.5661 | 0.4934 | | 0.4033 | 1.15 | 10700 | 0.5724 | 0.4903 | | 0.4033 | 1.16 | 10800 | 0.5792 | 0.4940 | | 0.4033 | 1.17 | 10900 | 0.5744 | 0.4911 | | 0.392 | 1.18 | 11000 | 0.5767 | 0.5162 | | 0.392 | 1.19 | 11100 | 0.5588 | 0.4835 | | 0.392 | 1.2 | 11200 | 0.5609 | 0.4922 | | 0.392 | 1.21 | 11300 | 0.5890 | 0.4914 | | 0.392 | 1.22 | 11400 | 0.5525 | 0.4897 | | 0.387 | 1.23 | 11500 | 0.5704 | 0.5051 | | 0.387 | 1.24 | 11600 | 0.5539 | 0.5014 | | 0.387 | 1.25 | 11700 | 0.5473 | 0.4882 | | 0.387 | 1.26 | 11800 | 0.5662 | 0.5004 | | 0.387 | 1.27 | 11900 | 0.5785 | 0.5220 | | 0.3956 | 1.28 | 12000 | 0.5990 | 0.5114 | | 0.3956 | 1.3 | 12100 | 0.5497 | 0.4895 | | 0.3956 | 1.31 | 12200 | 0.5538 | 0.4895 | | 0.3956 | 1.32 | 12300 | 0.5652 | 0.4913 | | 0.3956 | 1.33 | 12400 | 0.5682 | 0.5128 | | 0.4043 | 1.34 | 12500 | 0.5830 | 0.4999 | | 0.4043 | 1.35 | 12600 | 0.5686 | 0.4865 | | 0.4043 | 1.36 | 12700 | 0.5688 | 0.4937 | | 0.4043 | 1.37 | 12800 | 0.5753 | 0.5034 | | 0.4043 | 1.38 | 12900 | 0.5898 | 0.4865 | | 0.3997 | 1.39 | 13000 | 0.5723 | 0.4963 | | 0.3997 | 1.4 | 13100 | 0.5767 | 0.4986 | | 0.3997 | 1.41 | 13200 | 0.5960 | 0.5084 | | 0.3997 | 1.42 | 13300 | 0.5859 | 0.5096 | | 0.3997 | 1.43 | 13400 | 0.5491 | 0.4784 | | 0.3997 | 1.45 | 13500 | 0.5636 | 0.5049 | | 0.3997 | 1.46 | 13600 | 0.5667 | 0.4708 | | 0.3997 | 1.47 | 13700 | 0.5757 | 0.4862 | | 0.3997 | 1.48 | 13800 | 0.5444 | 0.4816 | | 0.3997 | 1.49 | 13900 | 0.5557 | 0.4792 | | 0.3954 | 1.5 | 14000 | 0.5437 | 0.4810 | | 0.3954 | 1.51 | 14100 | 0.5489 | 0.4674 | | 0.3954 | 1.52 | 14200 | 0.5415 | 0.4674 | | 0.3954 | 1.53 | 14300 | 0.5481 | 0.4902 | | 0.3954 | 1.54 | 14400 | 0.5474 | 0.4763 | | 0.3814 | 1.55 | 14500 | 0.5588 | 0.4731 | | 0.3814 | 1.56 | 14600 | 0.5746 | 0.4820 | | 0.3814 | 1.57 | 14700 | 0.5676 | 0.4884 | | 0.3814 | 1.58 | 14800 | 0.5495 | 0.4711 | | 0.3814 | 1.6 | 14900 | 0.5565 | 0.4782 | | 0.3877 | 1.61 | 15000 | 0.5671 | 0.5135 | | 0.3877 | 1.62 | 15100 | 0.5512 | 0.4868 | | 0.3877 | 1.63 | 15200 | 0.5683 | 0.4650 | | 0.3877 | 1.64 | 15300 | 0.5427 | 0.4717 | | 0.3877 | 1.65 | 15400 | 0.5519 | 0.4651 | | 0.387 | 1.66 | 15500 | 0.5327 | 0.4456 | | 0.387 | 1.67 | 15600 | 0.5371 | 0.4673 | | 0.387 | 1.68 | 15700 | 0.5337 | 0.4705 | | 0.387 | 1.69 | 15800 | 0.5606 | 0.4992 | | 0.387 | 1.7 | 15900 | 0.5254 | 0.4613 | | 0.3877 | 1.71 | 16000 | 0.5619 | 0.4882 | | 0.3877 | 1.72 | 16100 | 0.5212 | 0.4560 | | 0.3877 | 1.73 | 16200 | 0.5369 | 0.4696 | | 0.3877 | 1.75 | 16300 | 0.5392 | 0.4677 | | 0.3877 | 1.76 | 16400 | 0.5353 | 0.4768 | | 0.3739 | 1.77 | 16500 | 0.5435 | 0.4777 | | 0.3739 | 1.78 | 16600 | 0.5343 | 0.4884 | | 0.3739 | 1.79 | 16700 | 0.5309 | 0.4942 | | 0.3739 | 1.8 | 16800 | 0.5373 | 0.4727 | | 0.3739 | 1.81 | 16900 | 0.5550 | 0.4686 | | 0.3884 | 1.82 | 17000 | 0.5486 | 0.4826 | | 0.3884 | 1.83 | 17100 | 0.5508 | 0.4862 | | 0.3884 | 1.84 | 17200 | 0.5423 | 0.4855 | | 0.3884 | 1.85 | 17300 | 0.5478 | 0.4730 | | 0.3884 | 1.86 | 17400 | 0.5438 | 0.4938 | | 0.3842 | 1.87 | 17500 | 0.5571 | 0.4818 | | 0.3842 | 1.88 | 17600 | 0.5402 | 0.4753 | | 0.3842 | 1.9 | 17700 | 0.5679 | 0.4827 | | 0.3842 | 1.91 | 17800 | 0.5385 | 0.4642 | | 0.3842 | 1.92 | 17900 | 0.5519 | 0.4942 | | 0.3953 | 1.93 | 18000 | 0.5559 | 0.4745 | | 0.3953 | 1.94 | 18100 | 0.5657 | 0.4963 | | 0.3953 | 1.95 | 18200 | 0.5296 | 0.4642 | | 0.3953 | 1.96 | 18300 | 0.5529 | 0.4907 | | 0.3953 | 1.97 | 18400 | 0.5380 | 0.4536 | | 0.3745 | 1.98 | 18500 | 0.5276 | 0.4678 | | 0.3745 | 1.99 | 18600 | 0.5544 | 0.4854 | | 0.3745 | 2.0 | 18700 | 0.5195 | 0.4535 | | 0.3745 | 2.01 | 18800 | 0.5165 | 0.4635 | | 0.3745 | 2.02 | 18900 | 0.5062 | 0.4431 | | 0.3538 | 2.03 | 19000 | 0.5255 | 0.4509 | | 0.3538 | 2.04 | 19100 | 0.5125 | 0.4512 | | 0.3538 | 2.06 | 19200 | 0.5105 | 0.4504 | | 0.3538 | 2.07 | 19300 | 0.5000 | 0.4490 | | 0.3538 | 2.08 | 19400 | 0.5150 | 0.4520 | | 0.356 | 2.09 | 19500 | 0.5053 | 0.4383 | | 0.356 | 2.1 | 19600 | 0.5085 | 0.4417 | | 0.356 | 2.11 | 19700 | 0.5229 | 0.4490 | | 0.356 | 2.12 | 19800 | 0.5326 | 0.4492 | | 0.356 | 2.13 | 19900 | 0.5139 | 0.4491 | | 0.3474 | 2.14 | 20000 | 0.5134 | 0.4384 | | 0.3474 | 2.15 | 20100 | 0.5498 | 0.4606 | | 0.3474 | 2.16 | 20200 | 0.5324 | 0.4540 | | 0.3474 | 2.17 | 20300 | 0.5338 | 0.4548 | | 0.3474 | 2.18 | 20400 | 0.5076 | 0.4425 | | 0.345 | 2.19 | 20500 | 0.5253 | 0.4550 | | 0.345 | 2.21 | 20600 | 0.5125 | 0.4618 | | 0.345 | 2.22 | 20700 | 0.5171 | 0.4487 | | 0.345 | 2.23 | 20800 | 0.5232 | 0.4464 | | 0.345 | 2.24 | 20900 | 0.5298 | 0.4588 | | 0.341 | 2.25 | 21000 | 0.5342 | 0.4576 | | 0.341 | 2.26 | 21100 | 0.5515 | 0.4678 | | 0.341 | 2.27 | 21200 | 0.5041 | 0.4495 | | 0.341 | 2.28 | 21300 | 0.5169 | 0.4473 | | 0.341 | 2.29 | 21400 | 0.5227 | 0.4494 | | 0.354 | 2.3 | 21500 | 0.5214 | 0.4458 | | 0.354 | 2.31 | 21600 | 0.5303 | 0.4587 | | 0.354 | 2.32 | 21700 | 0.5237 | 0.4597 | | 0.354 | 2.33 | 21800 | 0.5067 | 0.4460 | | 0.354 | 2.34 | 21900 | 0.5117 | 0.4560 | | 0.3333 | 2.36 | 22000 | 0.5104 | 0.4359 | | 0.3333 | 2.37 | 22100 | 0.5326 | 0.4679 | | 0.3333 | 2.38 | 22200 | 0.5098 | 0.4510 | | 0.3333 | 2.39 | 22300 | 0.5044 | 0.4445 | | 0.3333 | 2.4 | 22400 | 0.5219 | 0.4489 | | 0.3514 | 2.41 | 22500 | 0.4987 | 0.4433 | | 0.3514 | 2.42 | 22600 | 0.5009 | 0.4338 | | 0.3514 | 2.43 | 22700 | 0.5252 | 0.4444 | | 0.3514 | 2.44 | 22800 | 0.4861 | 0.4269 | | 0.3514 | 2.45 | 22900 | 0.5157 | 0.4421 | | 0.3444 | 2.46 | 23000 | 0.5277 | 0.4426 | | 0.3444 | 2.47 | 23100 | 0.5213 | 0.4378 | | 0.3444 | 2.48 | 23200 | 0.5172 | 0.4482 | | 0.3444 | 2.49 | 23300 | 0.5142 | 0.4376 | | 0.3444 | 2.51 | 23400 | 0.5044 | 0.4231 | | 0.3536 | 2.52 | 23500 | 0.5268 | 0.4496 | | 0.3536 | 2.53 | 23600 | 0.5176 | 0.4326 | | 0.3536 | 2.54 | 23700 | 0.5032 | 0.4296 | | 0.3536 | 2.55 | 23800 | 0.5211 | 0.4460 | | 0.3536 | 2.56 | 23900 | 0.5093 | 0.4379 | | 0.337 | 2.57 | 24000 | 0.4990 | 0.4311 | | 0.337 | 2.58 | 24100 | 0.4962 | 0.4329 | | 0.337 | 2.59 | 24200 | 0.5033 | 0.4289 | | 0.337 | 2.6 | 24300 | 0.5260 | 0.4534 | | 0.337 | 2.61 | 24400 | 0.5309 | 0.4441 | | 0.3393 | 2.62 | 24500 | 0.5132 | 0.4346 | | 0.3393 | 2.63 | 24600 | 0.5189 | 0.4233 | | 0.3393 | 2.64 | 24700 | 0.5074 | 0.4326 | | 0.3393 | 2.66 | 24800 | 0.5111 | 0.4254 | | 0.3393 | 2.67 | 24900 | 0.4933 | 0.4254 | | 0.3334 | 2.68 | 25000 | 0.5046 | 0.4407 | | 0.3334 | 2.69 | 25100 | 0.5010 | 0.4404 | | 0.3334 | 2.7 | 25200 | 0.5045 | 0.4236 | | 0.3334 | 2.71 | 25300 | 0.4938 | 0.4305 | | 0.3334 | 2.72 | 25400 | 0.5021 | 0.4383 | | 0.3366 | 2.73 | 25500 | 0.4953 | 0.4202 | | 0.3366 | 2.74 | 25600 | 0.4985 | 0.4338 | | 0.3366 | 2.75 | 25700 | 0.4765 | 0.4161 | | 0.3366 | 2.76 | 25800 | 0.4873 | 0.4292 | | 0.3366 | 2.77 | 25900 | 0.4998 | 0.4189 | | 0.3359 | 2.78 | 26000 | 0.4991 | 0.4248 | | 0.3359 | 2.79 | 26100 | 0.5012 | 0.4307 | | 0.3359 | 2.81 | 26200 | 0.5081 | 0.4151 | | 0.3359 | 2.82 | 26300 | 0.4997 | 0.4305 | | 0.3359 | 2.83 | 26400 | 0.4969 | 0.4302 | | 0.3396 | 2.84 | 26500 | 0.4784 | 0.4271 | | 0.3396 | 2.85 | 26600 | 0.4804 | 0.4149 | | 0.3396 | 2.86 | 26700 | 0.4900 | 0.4192 | | 0.3396 | 2.87 | 26800 | 0.5044 | 0.4325 | | 0.3396 | 2.88 | 26900 | 0.4935 | 0.4376 | | 0.3356 | 2.89 | 27000 | 0.5007 | 0.4269 | | 0.3356 | 2.9 | 27100 | 0.4887 | 0.4178 | | 0.3356 | 2.91 | 27200 | 0.4770 | 0.4170 | | 0.3356 | 2.92 | 27300 | 0.4847 | 0.4167 | | 0.3356 | 2.93 | 27400 | 0.4861 | 0.4139 | | 0.3395 | 2.94 | 27500 | 0.4975 | 0.4291 | | 0.3395 | 2.95 | 27600 | 0.5056 | 0.4471 | | 0.3395 | 2.97 | 27700 | 0.5111 | 0.4375 | | 0.3395 | 2.98 | 27800 | 0.5327 | 0.4577 | | 0.3395 | 2.99 | 27900 | 0.5067 | 0.4393 | | 0.3332 | 3.0 | 28000 | 0.4898 | 0.4188 | | 0.3332 | 3.01 | 28100 | 0.4790 | 0.4093 | | 0.3332 | 3.02 | 28200 | 0.4828 | 0.4202 | | 0.3332 | 3.03 | 28300 | 0.4836 | 0.4146 | | 0.3332 | 3.04 | 28400 | 0.4901 | 0.4242 | | 0.2984 | 3.05 | 28500 | 0.4772 | 0.4118 | | 0.2984 | 3.06 | 28600 | 0.5055 | 0.4213 | | 0.2984 | 3.07 | 28700 | 0.4911 | 0.4100 | | 0.2984 | 3.08 | 28800 | 0.4737 | 0.4087 | | 0.2984 | 3.09 | 28900 | 0.4930 | 0.4216 | | 0.3056 | 3.1 | 29000 | 0.4736 | 0.4109 | | 0.3056 | 3.12 | 29100 | 0.4863 | 0.4058 | | 0.3056 | 3.13 | 29200 | 0.4784 | 0.4184 | | 0.3056 | 3.14 | 29300 | 0.4923 | 0.4240 | | 0.3056 | 3.15 | 29400 | 0.4846 | 0.4226 | | 0.2995 | 3.16 | 29500 | 0.4829 | 0.4086 | | 0.2995 | 3.17 | 29600 | 0.4934 | 0.4240 | | 0.2995 | 3.18 | 29700 | 0.4893 | 0.4152 | | 0.2995 | 3.19 | 29800 | 0.4730 | 0.4227 | | 0.2995 | 3.2 | 29900 | 0.5027 | 0.4330 | | 0.2926 | 3.21 | 30000 | 0.4903 | 0.4112 | | 0.2926 | 3.22 | 30100 | 0.4961 | 0.4157 | | 0.2926 | 3.23 | 30200 | 0.4980 | 0.4269 | | 0.2926 | 3.24 | 30300 | 0.4896 | 0.4126 | | 0.2926 | 3.25 | 30400 | 0.4726 | 0.4062 | | 0.301 | 3.27 | 30500 | 0.4733 | 0.3985 | | 0.301 | 3.28 | 30600 | 0.4772 | 0.4047 | | 0.301 | 3.29 | 30700 | 0.4806 | 0.4082 | | 0.301 | 3.3 | 30800 | 0.4683 | 0.4011 | | 0.301 | 3.31 | 30900 | 0.4775 | 0.4079 | | 0.2933 | 3.32 | 31000 | 0.4729 | 0.4083 | | 0.2933 | 3.33 | 31100 | 0.4628 | 0.4016 | | 0.2933 | 3.34 | 31200 | 0.4753 | 0.4192 | | 0.2933 | 3.35 | 31300 | 0.4687 | 0.4185 | | 0.2933 | 3.36 | 31400 | 0.4806 | 0.4106 | | 0.2957 | 3.37 | 31500 | 0.4889 | 0.4240 | | 0.2957 | 3.38 | 31600 | 0.4882 | 0.4182 | | 0.2957 | 3.39 | 31700 | 0.4798 | 0.4162 | | 0.2957 | 3.4 | 31800 | 0.4718 | 0.4108 | | 0.2957 | 3.42 | 31900 | 0.4685 | 0.4101 | | 0.3039 | 3.43 | 32000 | 0.4816 | 0.4188 | | 0.3039 | 3.44 | 32100 | 0.4874 | 0.4139 | | 0.3039 | 3.45 | 32200 | 0.4899 | 0.4115 | | 0.3039 | 3.46 | 32300 | 0.4852 | 0.4180 | | 0.3039 | 3.47 | 32400 | 0.5074 | 0.4129 | | 0.3006 | 3.48 | 32500 | 0.4837 | 0.4076 | | 0.3006 | 3.49 | 32600 | 0.4927 | 0.4098 | | 0.3006 | 3.5 | 32700 | 0.4999 | 0.4172 | | 0.3006 | 3.51 | 32800 | 0.4773 | 0.4194 | | 0.3006 | 3.52 | 32900 | 0.4859 | 0.4058 | | 0.3089 | 3.53 | 33000 | 0.4783 | 0.4104 | | 0.3089 | 3.54 | 33100 | 0.4622 | 0.4020 | | 0.3089 | 3.55 | 33200 | 0.4840 | 0.4065 | | 0.3089 | 3.57 | 33300 | 0.4756 | 0.4241 | | 0.3089 | 3.58 | 33400 | 0.4831 | 0.4170 | | 0.3061 | 3.59 | 33500 | 0.4794 | 0.4068 | | 0.3061 | 3.6 | 33600 | 0.4730 | 0.4037 | | 0.3061 | 3.61 | 33700 | 0.4808 | 0.4138 | | 0.3061 | 3.62 | 33800 | 0.4924 | 0.4248 | | 0.3061 | 3.63 | 33900 | 0.4749 | 0.4112 | | 0.3047 | 3.64 | 34000 | 0.4924 | 0.4326 | | 0.3047 | 3.65 | 34100 | 0.4745 | 0.4104 | | 0.3047 | 3.66 | 34200 | 0.4760 | 0.4123 | | 0.3047 | 3.67 | 34300 | 0.4788 | 0.4066 | | 0.3047 | 3.68 | 34400 | 0.4627 | 0.4158 | | 0.3042 | 3.69 | 34500 | 0.4974 | 0.4131 | | 0.3042 | 3.7 | 34600 | 0.4593 | 0.4063 | | 0.3042 | 3.72 | 34700 | 0.4549 | 0.3928 | | 0.3042 | 3.73 | 34800 | 0.4690 | 0.3898 | | 0.3042 | 3.74 | 34900 | 0.4560 | 0.4007 | | 0.2963 | 3.75 | 35000 | 0.4606 | 0.3959 | | 0.2963 | 3.76 | 35100 | 0.4762 | 0.4057 | | 0.2963 | 3.77 | 35200 | 0.4750 | 0.4034 | | 0.2963 | 3.78 | 35300 | 0.4772 | 0.4114 | | 0.2963 | 3.79 | 35400 | 0.4669 | 0.3995 | | 0.3012 | 3.8 | 35500 | 0.4709 | 0.4090 | | 0.3012 | 3.81 | 35600 | 0.4722 | 0.4123 | | 0.3012 | 3.82 | 35700 | 0.4913 | 0.4165 | | 0.3012 | 3.83 | 35800 | 0.4814 | 0.4063 | | 0.3012 | 3.84 | 35900 | 0.4869 | 0.4171 | | 0.3015 | 3.85 | 36000 | 0.4791 | 0.4059 | | 0.3015 | 3.87 | 36100 | 0.4535 | 0.3976 | | 0.3015 | 3.88 | 36200 | 0.4706 | 0.4009 | | 0.3015 | 3.89 | 36300 | 0.4679 | 0.4012 | | 0.3015 | 3.9 | 36400 | 0.4736 | 0.4096 | | 0.2965 | 3.91 | 36500 | 0.4756 | 0.4106 | | 0.2965 | 3.92 | 36600 | 0.4669 | 0.4085 | | 0.2965 | 3.93 | 36700 | 0.4796 | 0.4054 | | 0.2965 | 3.94 | 36800 | 0.4583 | 0.3932 | | 0.2965 | 3.95 | 36900 | 0.4430 | 0.3969 | | 0.2993 | 3.96 | 37000 | 0.4560 | 0.3914 | | 0.2993 | 3.97 | 37100 | 0.4739 | 0.4002 | | 0.2993 | 3.98 | 37200 | 0.4598 | 0.3912 | | 0.2993 | 3.99 | 37300 | 0.4607 | 0.3907 | | 0.2993 | 4.0 | 37400 | 0.4709 | 0.3986 | | 0.2886 | 4.01 | 37500 | 0.4642 | 0.4067 | | 0.2886 | 4.03 | 37600 | 0.4684 | 0.3984 | | 0.2886 | 4.04 | 37700 | 0.4690 | 0.3979 | | 0.2886 | 4.05 | 37800 | 0.4722 | 0.3980 | | 0.2886 | 4.06 | 37900 | 0.4734 | 0.3927 | | 0.2534 | 4.07 | 38000 | 0.4724 | 0.3988 | | 0.2534 | 4.08 | 38100 | 0.4665 | 0.3986 | | 0.2534 | 4.09 | 38200 | 0.4659 | 0.4036 | | 0.2534 | 4.1 | 38300 | 0.4694 | 0.3952 | | 0.2534 | 4.11 | 38400 | 0.4719 | 0.3891 | | 0.2596 | 4.12 | 38500 | 0.4687 | 0.3994 | | 0.2596 | 4.13 | 38600 | 0.4705 | 0.3903 | | 0.2596 | 4.14 | 38700 | 0.4601 | 0.3975 | | 0.2596 | 4.15 | 38800 | 0.4666 | 0.3971 | | 0.2596 | 4.16 | 38900 | 0.4772 | 0.3892 | | 0.2643 | 4.18 | 39000 | 0.4810 | 0.4071 | | 0.2643 | 4.19 | 39100 | 0.4980 | 0.4167 | | 0.2643 | 4.2 | 39200 | 0.4657 | 0.3996 | | 0.2643 | 4.21 | 39300 | 0.4869 | 0.4002 | | 0.2643 | 4.22 | 39400 | 0.4656 | 0.3913 | | 0.265 | 4.23 | 39500 | 0.4720 | 0.3947 | | 0.265 | 4.24 | 39600 | 0.4711 | 0.3970 | | 0.265 | 4.25 | 39700 | 0.4689 | 0.3933 | | 0.265 | 4.26 | 39800 | 0.4728 | 0.4017 | | 0.265 | 4.27 | 39900 | 0.4673 | 0.3847 | | 0.2644 | 4.28 | 40000 | 0.4636 | 0.3960 | | 0.2644 | 4.29 | 40100 | 0.4699 | 0.3864 | | 0.2644 | 4.3 | 40200 | 0.4580 | 0.3874 | | 0.2644 | 4.31 | 40300 | 0.4763 | 0.3951 | | 0.2644 | 4.33 | 40400 | 0.4752 | 0.4141 | | 0.2633 | 4.34 | 40500 | 0.4918 | 0.3994 | | 0.2633 | 4.35 | 40600 | 0.4783 | 0.4026 | | 0.2633 | 4.36 | 40700 | 0.4739 | 0.4034 | | 0.2633 | 4.37 | 40800 | 0.4750 | 0.4000 | | 0.2633 | 4.38 | 40900 | 0.4608 | 0.3943 | | 0.2679 | 4.39 | 41000 | 0.4615 | 0.3891 | | 0.2679 | 4.4 | 41100 | 0.4730 | 0.3984 | | 0.2679 | 4.41 | 41200 | 0.4728 | 0.4011 | | 0.2679 | 4.42 | 41300 | 0.4675 | 0.3932 | | 0.2679 | 4.43 | 41400 | 0.4662 | 0.3929 | | 0.2682 | 4.44 | 41500 | 0.4490 | 0.3837 | | 0.2682 | 4.45 | 41600 | 0.4611 | 0.3838 | | 0.2682 | 4.46 | 41700 | 0.4605 | 0.3945 | | 0.2682 | 4.48 | 41800 | 0.4730 | 0.3938 | | 0.2682 | 4.49 | 41900 | 0.4567 | 0.3874 | | 0.2658 | 4.5 | 42000 | 0.4715 | 0.3869 | | 0.2658 | 4.51 | 42100 | 0.4514 | 0.3833 | | 0.2658 | 4.52 | 42200 | 0.4602 | 0.3898 | | 0.2658 | 4.53 | 42300 | 0.4846 | 0.4022 | | 0.2658 | 4.54 | 42400 | 0.4474 | 0.3810 | | 0.2676 | 4.55 | 42500 | 0.4513 | 0.3820 | | 0.2676 | 4.56 | 42600 | 0.4588 | 0.3928 | | 0.2676 | 4.57 | 42700 | 0.4601 | 0.3894 | | 0.2676 | 4.58 | 42800 | 0.4516 | 0.3792 | | 0.2676 | 4.59 | 42900 | 0.4482 | 0.3848 | | 0.2693 | 4.6 | 43000 | 0.4695 | 0.4008 | | 0.2693 | 4.61 | 43100 | 0.4580 | 0.3871 | | 0.2693 | 4.63 | 43200 | 0.4419 | 0.3857 | | 0.2693 | 4.64 | 43300 | 0.4534 | 0.3796 | | 0.2693 | 4.65 | 43400 | 0.4532 | 0.3856 | | 0.2641 | 4.66 | 43500 | 0.4421 | 0.3809 | | 0.2641 | 4.67 | 43600 | 0.4400 | 0.3844 | | 0.2641 | 4.68 | 43700 | 0.4515 | 0.3833 | | 0.2641 | 4.69 | 43800 | 0.4462 | 0.3808 | | 0.2641 | 4.7 | 43900 | 0.4741 | 0.3926 | | 0.2626 | 4.71 | 44000 | 0.4542 | 0.3931 | | 0.2626 | 4.72 | 44100 | 0.4555 | 0.3885 | | 0.2626 | 4.73 | 44200 | 0.4505 | 0.3845 | | 0.2626 | 4.74 | 44300 | 0.4593 | 0.3871 | | 0.2626 | 4.75 | 44400 | 0.4359 | 0.3830 | | 0.2648 | 4.76 | 44500 | 0.4387 | 0.3736 | | 0.2648 | 4.78 | 44600 | 0.4529 | 0.3807 | | 0.2648 | 4.79 | 44700 | 0.4566 | 0.3837 | | 0.2648 | 4.8 | 44800 | 0.4557 | 0.4067 | | 0.2648 | 4.81 | 44900 | 0.4609 | 0.3852 | | 0.2603 | 4.82 | 45000 | 0.4667 | 0.4005 | | 0.2603 | 4.83 | 45100 | 0.4666 | 0.3836 | | 0.2603 | 4.84 | 45200 | 0.4775 | 0.3946 | | 0.2603 | 4.85 | 45300 | 0.4701 | 0.3925 | | 0.2603 | 4.86 | 45400 | 0.4579 | 0.3889 | | 0.2626 | 4.87 | 45500 | 0.4516 | 0.3884 | | 0.2626 | 4.88 | 45600 | 0.4605 | 0.3878 | | 0.2626 | 4.89 | 45700 | 0.4576 | 0.3802 | | 0.2626 | 4.9 | 45800 | 0.4553 | 0.3780 | | 0.2626 | 4.91 | 45900 | 0.4336 | 0.3752 | | 0.2602 | 4.93 | 46000 | 0.4419 | 0.3881 | | 0.2602 | 4.94 | 46100 | 0.4601 | 0.3843 | | 0.2602 | 4.95 | 46200 | 0.4437 | 0.3956 | | 0.2602 | 4.96 | 46300 | 0.4524 | 0.3844 | | 0.2602 | 4.97 | 46400 | 0.4709 | 0.4031 | | 0.2609 | 4.98 | 46500 | 0.4500 | 0.3872 | | 0.2609 | 4.99 | 46600 | 0.4366 | 0.3846 | | 0.2609 | 5.0 | 46700 | 0.4653 | 0.3884 | | 0.2609 | 5.01 | 46800 | 0.4602 | 0.3932 | | 0.2609 | 5.02 | 46900 | 0.4668 | 0.3854 | | 0.2472 | 5.03 | 47000 | 0.4616 | 0.3891 | | 0.2472 | 5.04 | 47100 | 0.4543 | 0.3836 | | 0.2472 | 5.05 | 47200 | 0.4526 | 0.3822 | | 0.2472 | 5.06 | 47300 | 0.4539 | 0.3741 | | 0.2472 | 5.07 | 47400 | 0.4776 | 0.3818 | | 0.2278 | 5.09 | 47500 | 0.4771 | 0.3794 | | 0.2278 | 5.1 | 47600 | 0.4662 | 0.3831 | | 0.2278 | 5.11 | 47700 | 0.4558 | 0.4032 | | 0.2278 | 5.12 | 47800 | 0.4904 | 0.3918 | | 0.2278 | 5.13 | 47900 | 0.4765 | 0.3890 | | 0.2311 | 5.14 | 48000 | 0.4674 | 0.3882 | | 0.2311 | 5.15 | 48100 | 0.4609 | 0.3947 | | 0.2311 | 5.16 | 48200 | 0.4588 | 0.3837 | | 0.2311 | 5.17 | 48300 | 0.4827 | 0.3845 | | 0.2311 | 5.18 | 48400 | 0.4711 | 0.3839 | | 0.229 | 5.19 | 48500 | 0.4583 | 0.3873 | | 0.229 | 5.2 | 48600 | 0.4800 | 0.3858 | | 0.229 | 5.21 | 48700 | 0.4611 | 0.3800 | | 0.229 | 5.22 | 48800 | 0.4504 | 0.3889 | | 0.229 | 5.24 | 48900 | 0.4569 | 0.3761 | | 0.2313 | 5.25 | 49000 | 0.4732 | 0.3915 | | 0.2313 | 5.26 | 49100 | 0.4728 | 0.3832 | | 0.2313 | 5.27 | 49200 | 0.4667 | 0.3815 | | 0.2313 | 5.28 | 49300 | 0.4912 | 0.3856 | | 0.2313 | 5.29 | 49400 | 0.4790 | 0.3946 | | 0.2266 | 5.3 | 49500 | 0.4597 | 0.3763 | | 0.2266 | 5.31 | 49600 | 0.4580 | 0.3778 | | 0.2266 | 5.32 | 49700 | 0.4439 | 0.3721 | | 0.2266 | 5.33 | 49800 | 0.4611 | 0.3704 | | 0.2266 | 5.34 | 49900 | 0.4599 | 0.3769 | | 0.235 | 5.35 | 50000 | 0.4543 | 0.3808 | | 0.235 | 5.36 | 50100 | 0.4555 | 0.3773 | | 0.235 | 5.37 | 50200 | 0.4525 | 0.3815 | | 0.235 | 5.39 | 50300 | 0.4557 | 0.3814 | | 0.235 | 5.4 | 50400 | 0.4604 | 0.3754 | | 0.2299 | 5.41 | 50500 | 0.4658 | 0.3770 | | 0.2299 | 5.42 | 50600 | 0.4658 | 0.3884 | | 0.2299 | 5.43 | 50700 | 0.4701 | 0.3919 | | 0.2299 | 5.44 | 50800 | 0.4495 | 0.3818 | | 0.2299 | 5.45 | 50900 | 0.4703 | 0.3886 | | 0.2307 | 5.46 | 51000 | 0.4395 | 0.3743 | | 0.2307 | 5.47 | 51100 | 0.4487 | 0.3751 | | 0.2307 | 5.48 | 51200 | 0.4355 | 0.3733 | | 0.2307 | 5.49 | 51300 | 0.4622 | 0.3811 | | 0.2307 | 5.5 | 51400 | 0.4443 | 0.3801 | | 0.2383 | 5.51 | 51500 | 0.4411 | 0.3743 | | 0.2383 | 5.52 | 51600 | 0.4438 | 0.3778 | | 0.2383 | 5.54 | 51700 | 0.4559 | 0.3784 | | 0.2383 | 5.55 | 51800 | 0.4309 | 0.3656 | | 0.2383 | 5.56 | 51900 | 0.4455 | 0.3660 | | 0.23 | 5.57 | 52000 | 0.4436 | 0.3598 | | 0.23 | 5.58 | 52100 | 0.4344 | 0.3685 | | 0.23 | 5.59 | 52200 | 0.4282 | 0.3690 | | 0.23 | 5.6 | 52300 | 0.4464 | 0.3800 | | 0.23 | 5.61 | 52400 | 0.4458 | 0.3909 | | 0.2305 | 5.62 | 52500 | 0.4483 | 0.3756 | | 0.2305 | 5.63 | 52600 | 0.4547 | 0.3785 | | 0.2305 | 5.64 | 52700 | 0.4671 | 0.3820 | | 0.2305 | 5.65 | 52800 | 0.4449 | 0.3658 | | 0.2305 | 5.66 | 52900 | 0.4596 | 0.3716 | | 0.2237 | 5.67 | 53000 | 0.4399 | 0.3669 | | 0.2237 | 5.69 | 53100 | 0.4410 | 0.3719 | | 0.2237 | 5.7 | 53200 | 0.4574 | 0.3619 | | 0.2237 | 5.71 | 53300 | 0.4443 | 0.3690 | | 0.2237 | 5.72 | 53400 | 0.4381 | 0.3678 | | 0.2337 | 5.73 | 53500 | 0.4490 | 0.3687 | | 0.2337 | 5.74 | 53600 | 0.4427 | 0.3752 | | 0.2337 | 5.75 | 53700 | 0.4423 | 0.3858 | | 0.2337 | 5.76 | 53800 | 0.4702 | 0.3825 | | 0.2337 | 5.77 | 53900 | 0.4724 | 0.3800 | | 0.23 | 5.78 | 54000 | 0.4476 | 0.3827 | | 0.23 | 5.79 | 54100 | 0.4508 | 0.3919 | | 0.23 | 5.8 | 54200 | 0.4564 | 0.3788 | | 0.23 | 5.81 | 54300 | 0.4602 | 0.3888 | | 0.23 | 5.82 | 54400 | 0.4538 | 0.3732 | | 0.2334 | 5.84 | 54500 | 0.4500 | 0.3808 | | 0.2334 | 5.85 | 54600 | 0.4475 | 0.3705 | | 0.2334 | 5.86 | 54700 | 0.4415 | 0.3772 | | 0.2334 | 5.87 | 54800 | 0.4515 | 0.3771 | | 0.2334 | 5.88 | 54900 | 0.4410 | 0.3677 | | 0.2259 | 5.89 | 55000 | 0.4555 | 0.3702 | | 0.2259 | 5.9 | 55100 | 0.4509 | 0.3894 | | 0.2259 | 5.91 | 55200 | 0.4472 | 0.3692 | | 0.2259 | 5.92 | 55300 | 0.4438 | 0.3754 | | 0.2259 | 5.93 | 55400 | 0.4399 | 0.3698 | | 0.2289 | 5.94 | 55500 | 0.4496 | 0.3753 | | 0.2289 | 5.95 | 55600 | 0.4506 | 0.3752 | | 0.2289 | 5.96 | 55700 | 0.4482 | 0.3766 | | 0.2289 | 5.97 | 55800 | 0.4415 | 0.3772 | | 0.2289 | 5.98 | 55900 | 0.4447 | 0.3750 | | 0.2281 | 6.0 | 56000 | 0.4566 | 0.3842 | | 0.2281 | 6.01 | 56100 | 0.4694 | 0.3774 | | 0.2281 | 6.02 | 56200 | 0.4454 | 0.3788 | | 0.2281 | 6.03 | 56300 | 0.4676 | 0.3718 | | 0.2281 | 6.04 | 56400 | 0.4650 | 0.3751 | | 0.1979 | 6.05 | 56500 | 0.4601 | 0.3765 | | 0.1979 | 6.06 | 56600 | 0.4647 | 0.3840 | | 0.1979 | 6.07 | 56700 | 0.4782 | 0.3756 | | 0.1979 | 6.08 | 56800 | 0.4709 | 0.3736 | | 0.1979 | 6.09 | 56900 | 0.4707 | 0.3734 | | 0.1923 | 6.1 | 57000 | 0.4704 | 0.3751 | | 0.1923 | 6.11 | 57100 | 0.4542 | 0.3721 | | 0.1923 | 6.12 | 57200 | 0.4542 | 0.3735 | | 0.1923 | 6.13 | 57300 | 0.4587 | 0.3804 | | 0.1923 | 6.15 | 57400 | 0.4428 | 0.3687 | | 0.2012 | 6.16 | 57500 | 0.4456 | 0.3748 | | 0.2012 | 6.17 | 57600 | 0.4578 | 0.3762 | | 0.2012 | 6.18 | 57700 | 0.4699 | 0.3722 | | 0.2012 | 6.19 | 57800 | 0.4499 | 0.3756 | | 0.2012 | 6.2 | 57900 | 0.4633 | 0.3680 | | 0.1951 | 6.21 | 58000 | 0.4548 | 0.3712 | | 0.1951 | 6.22 | 58100 | 0.4520 | 0.3759 | | 0.1951 | 6.23 | 58200 | 0.4458 | 0.3616 | | 0.1951 | 6.24 | 58300 | 0.4307 | 0.3637 | | 0.1951 | 6.25 | 58400 | 0.4546 | 0.3621 | | 0.1967 | 6.26 | 58500 | 0.4459 | 0.3623 | | 0.1967 | 6.27 | 58600 | 0.4535 | 0.3690 | | 0.1967 | 6.28 | 58700 | 0.4574 | 0.3771 | | 0.1967 | 6.3 | 58800 | 0.4493 | 0.3744 | | 0.1967 | 6.31 | 58900 | 0.4494 | 0.3769 | | 0.1998 | 6.32 | 59000 | 0.4529 | 0.3644 | | 0.1998 | 6.33 | 59100 | 0.4416 | 0.3662 | | 0.1998 | 6.34 | 59200 | 0.4468 | 0.3785 | | 0.1998 | 6.35 | 59300 | 0.4377 | 0.3664 | | 0.1998 | 6.36 | 59400 | 0.4647 | 0.3755 | | 0.2009 | 6.37 | 59500 | 0.4700 | 0.3824 | | 0.2009 | 6.38 | 59600 | 0.4488 | 0.3685 | | 0.2009 | 6.39 | 59700 | 0.4649 | 0.3804 | | 0.2009 | 6.4 | 59800 | 0.4389 | 0.3689 | | 0.2009 | 6.41 | 59900 | 0.4456 | 0.3531 | | 0.2007 | 6.42 | 60000 | 0.4572 | 0.3658 | | 0.2007 | 6.43 | 60100 | 0.4464 | 0.3669 | | 0.2007 | 6.45 | 60200 | 0.4666 | 0.3711 | | 0.2007 | 6.46 | 60300 | 0.4399 | 0.3660 | | 0.2007 | 6.47 | 60400 | 0.4445 | 0.3631 | | 0.2005 | 6.48 | 60500 | 0.4450 | 0.3621 | | 0.2005 | 6.49 | 60600 | 0.4346 | 0.3571 | | 0.2005 | 6.5 | 60700 | 0.4358 | 0.3581 | | 0.2005 | 6.51 | 60800 | 0.4344 | 0.3646 | | 0.2005 | 6.52 | 60900 | 0.4377 | 0.3621 | | 0.2038 | 6.53 | 61000 | 0.4262 | 0.3570 | | 0.2038 | 6.54 | 61100 | 0.4269 | 0.3614 | | 0.2038 | 6.55 | 61200 | 0.4297 | 0.3592 | | 0.2038 | 6.56 | 61300 | 0.4433 | 0.3682 | | 0.2038 | 6.57 | 61400 | 0.4474 | 0.3644 | | 0.199 | 6.58 | 61500 | 0.4464 | 0.3678 | | 0.199 | 6.6 | 61600 | 0.4397 | 0.3562 | | 0.199 | 6.61 | 61700 | 0.4415 | 0.3612 | | 0.199 | 6.62 | 61800 | 0.4362 | 0.3601 | | 0.199 | 6.63 | 61900 | 0.4442 | 0.3623 | | 0.1995 | 6.64 | 62000 | 0.4558 | 0.3662 | | 0.1995 | 6.65 | 62100 | 0.4477 | 0.3647 | | 0.1995 | 6.66 | 62200 | 0.4542 | 0.3699 | | 0.1995 | 6.67 | 62300 | 0.4411 | 0.3632 | | 0.1995 | 6.68 | 62400 | 0.4408 | 0.3658 | | 0.2014 | 6.69 | 62500 | 0.4426 | 0.3691 | | 0.2014 | 6.7 | 62600 | 0.4246 | 0.3645 | | 0.2014 | 6.71 | 62700 | 0.4466 | 0.3676 | | 0.2014 | 6.72 | 62800 | 0.4493 | 0.3566 | | 0.2014 | 6.73 | 62900 | 0.4336 | 0.3621 | | 0.2015 | 6.75 | 63000 | 0.4367 | 0.3604 | | 0.2015 | 6.76 | 63100 | 0.4424 | 0.3754 | | 0.2015 | 6.77 | 63200 | 0.4679 | 0.3733 | | 0.2015 | 6.78 | 63300 | 0.4483 | 0.3752 | | 0.2015 | 6.79 | 63400 | 0.4746 | 0.3822 | | 0.2048 | 6.8 | 63500 | 0.4340 | 0.3731 | | 0.2048 | 6.81 | 63600 | 0.4346 | 0.3631 | | 0.2048 | 6.82 | 63700 | 0.4525 | 0.3680 | | 0.2048 | 6.83 | 63800 | 0.4360 | 0.3641 | | 0.2048 | 6.84 | 63900 | 0.4299 | 0.3558 | | 0.2017 | 6.85 | 64000 | 0.4370 | 0.3533 | | 0.2017 | 6.86 | 64100 | 0.4293 | 0.3617 | | 0.2017 | 6.87 | 64200 | 0.4431 | 0.3660 | | 0.2017 | 6.88 | 64300 | 0.4362 | 0.3688 | | 0.2017 | 6.9 | 64400 | 0.4507 | 0.3648 | | 0.2045 | 6.91 | 64500 | 0.4439 | 0.3613 | | 0.2045 | 6.92 | 64600 | 0.4249 | 0.3493 | | 0.2045 | 6.93 | 64700 | 0.4362 | 0.3612 | | 0.2045 | 6.94 | 64800 | 0.4336 | 0.3585 | | 0.2045 | 6.95 | 64900 | 0.4387 | 0.3568 | | 0.1977 | 6.96 | 65000 | 0.4313 | 0.3542 | | 0.1977 | 6.97 | 65100 | 0.4287 | 0.3552 | | 0.1977 | 6.98 | 65200 | 0.4372 | 0.3586 | | 0.1977 | 6.99 | 65300 | 0.4378 | 0.3629 | | 0.1977 | 7.0 | 65400 | 0.4518 | 0.3640 | | 0.1971 | 7.01 | 65500 | 0.4480 | 0.3557 | | 0.1971 | 7.02 | 65600 | 0.4530 | 0.3560 | | 0.1971 | 7.03 | 65700 | 0.4581 | 0.3582 | | 0.1971 | 7.04 | 65800 | 0.4492 | 0.3543 | | 0.1971 | 7.06 | 65900 | 0.4448 | 0.3608 | | 0.1672 | 7.07 | 66000 | 0.4469 | 0.3543 | | 0.1672 | 7.08 | 66100 | 0.4262 | 0.3488 | | 0.1672 | 7.09 | 66200 | 0.4289 | 0.3570 | | 0.1672 | 7.1 | 66300 | 0.4455 | 0.3545 | | 0.1672 | 7.11 | 66400 | 0.4449 | 0.3563 | | 0.169 | 7.12 | 66500 | 0.4555 | 0.3565 | | 0.169 | 7.13 | 66600 | 0.4432 | 0.3656 | | 0.169 | 7.14 | 66700 | 0.4399 | 0.3610 | | 0.169 | 7.15 | 66800 | 0.4383 | 0.3554 | | 0.169 | 7.16 | 66900 | 0.4376 | 0.3536 | | 0.1724 | 7.17 | 67000 | 0.4383 | 0.3572 | | 0.1724 | 7.18 | 67100 | 0.4452 | 0.3535 | | 0.1724 | 7.19 | 67200 | 0.4610 | 0.3668 | | 0.1724 | 7.21 | 67300 | 0.4534 | 0.3546 | | 0.1724 | 7.22 | 67400 | 0.4506 | 0.3604 | | 0.1729 | 7.23 | 67500 | 0.4463 | 0.3507 | | 0.1729 | 7.24 | 67600 | 0.4440 | 0.3630 | | 0.1729 | 7.25 | 67700 | 0.4361 | 0.3550 | | 0.1729 | 7.26 | 67800 | 0.4397 | 0.3643 | | 0.1729 | 7.27 | 67900 | 0.4328 | 0.3548 | | 0.1736 | 7.28 | 68000 | 0.4546 | 0.3614 | | 0.1736 | 7.29 | 68100 | 0.4506 | 0.3558 | | 0.1736 | 7.3 | 68200 | 0.4361 | 0.3513 | | 0.1736 | 7.31 | 68300 | 0.4223 | 0.3500 | | 0.1736 | 7.32 | 68400 | 0.4474 | 0.3497 | | 0.1733 | 7.33 | 68500 | 0.4303 | 0.3549 | | 0.1733 | 7.34 | 68600 | 0.4265 | 0.3483 | | 0.1733 | 7.36 | 68700 | 0.4339 | 0.3558 | | 0.1733 | 7.37 | 68800 | 0.4266 | 0.3491 | | 0.1733 | 7.38 | 68900 | 0.4423 | 0.3565 | | 0.1764 | 7.39 | 69000 | 0.4410 | 0.3554 | | 0.1764 | 7.4 | 69100 | 0.4482 | 0.3703 | | 0.1764 | 7.41 | 69200 | 0.4480 | 0.3641 | | 0.1764 | 7.42 | 69300 | 0.4361 | 0.3500 | | 0.1764 | 7.43 | 69400 | 0.4399 | 0.3632 | | 0.1711 | 7.44 | 69500 | 0.4383 | 0.3591 | | 0.1711 | 7.45 | 69600 | 0.4523 | 0.3636 | | 0.1711 | 7.46 | 69700 | 0.4388 | 0.3502 | | 0.1711 | 7.47 | 69800 | 0.4305 | 0.3565 | | 0.1711 | 7.48 | 69900 | 0.4290 | 0.3538 | | 0.1748 | 7.49 | 70000 | 0.4359 | 0.3511 | | 0.1748 | 7.51 | 70100 | 0.4315 | 0.3460 | | 0.1748 | 7.52 | 70200 | 0.4268 | 0.3555 | | 0.1748 | 7.53 | 70300 | 0.4267 | 0.3455 | | 0.1748 | 7.54 | 70400 | 0.4359 | 0.3517 | | 0.1739 | 7.55 | 70500 | 0.4299 | 0.3491 | | 0.1739 | 7.56 | 70600 | 0.4423 | 0.3409 | | 0.1739 | 7.57 | 70700 | 0.4251 | 0.3420 | | 0.1739 | 7.58 | 70800 | 0.4300 | 0.3414 | | 0.1739 | 7.59 | 70900 | 0.4349 | 0.3422 | | 0.1763 | 7.6 | 71000 | 0.4328 | 0.3418 | | 0.1763 | 7.61 | 71100 | 0.4313 | 0.3452 | | 0.1763 | 7.62 | 71200 | 0.4240 | 0.3534 | | 0.1763 | 7.63 | 71300 | 0.4274 | 0.3474 | | 0.1763 | 7.64 | 71400 | 0.4304 | 0.3467 | | 0.171 | 7.66 | 71500 | 0.4331 | 0.3510 | | 0.171 | 7.67 | 71600 | 0.4263 | 0.3478 | | 0.171 | 7.68 | 71700 | 0.4301 | 0.3447 | | 0.171 | 7.69 | 71800 | 0.4046 | 0.3452 | | 0.171 | 7.7 | 71900 | 0.4300 | 0.3528 | | 0.1792 | 7.71 | 72000 | 0.4253 | 0.3492 | | 0.1792 | 7.72 | 72100 | 0.4296 | 0.3491 | | 0.1792 | 7.73 | 72200 | 0.4118 | 0.3451 | | 0.1792 | 7.74 | 72300 | 0.4348 | 0.3345 | | 0.1792 | 7.75 | 72400 | 0.4283 | 0.3447 | | 0.1801 | 7.76 | 72500 | 0.4232 | 0.3449 | | 0.1801 | 7.77 | 72600 | 0.4491 | 0.3486 | | 0.1801 | 7.78 | 72700 | 0.4261 | 0.3343 | | 0.1801 | 7.79 | 72800 | 0.4382 | 0.3455 | | 0.1801 | 7.81 | 72900 | 0.4301 | 0.3415 | | 0.1731 | 7.82 | 73000 | 0.4236 | 0.3438 | | 0.1731 | 7.83 | 73100 | 0.4257 | 0.3419 | | 0.1731 | 7.84 | 73200 | 0.4368 | 0.3410 | | 0.1731 | 7.85 | 73300 | 0.4207 | 0.3398 | | 0.1731 | 7.86 | 73400 | 0.4118 | 0.3418 | | 0.1748 | 7.87 | 73500 | 0.4357 | 0.3429 | | 0.1748 | 7.88 | 73600 | 0.4277 | 0.3452 | | 0.1748 | 7.89 | 73700 | 0.4173 | 0.3476 | | 0.1748 | 7.9 | 73800 | 0.4191 | 0.3478 | | 0.1748 | 7.91 | 73900 | 0.4197 | 0.3457 | | 0.1745 | 7.92 | 74000 | 0.4197 | 0.3436 | | 0.1745 | 7.93 | 74100 | 0.4253 | 0.3512 | | 0.1745 | 7.94 | 74200 | 0.4217 | 0.3463 | | 0.1745 | 7.95 | 74300 | 0.4305 | 0.3473 | | 0.1745 | 7.97 | 74400 | 0.4215 | 0.3507 | | 0.1743 | 7.98 | 74500 | 0.4127 | 0.3408 | | 0.1743 | 7.99 | 74600 | 0.4191 | 0.3468 | | 0.1743 | 8.0 | 74700 | 0.4381 | 0.3491 | | 0.1743 | 8.01 | 74800 | 0.4510 | 0.3477 | | 0.1743 | 8.02 | 74900 | 0.4482 | 0.3471 | | 0.1588 | 8.03 | 75000 | 0.4471 | 0.3430 | | 0.1588 | 8.04 | 75100 | 0.4296 | 0.3393 | | 0.1588 | 8.05 | 75200 | 0.4480 | 0.3398 | | 0.1588 | 8.06 | 75300 | 0.4302 | 0.3452 | | 0.1588 | 8.07 | 75400 | 0.4410 | 0.3431 | | 0.144 | 8.08 | 75500 | 0.4263 | 0.3455 | | 0.144 | 8.09 | 75600 | 0.4523 | 0.3495 | | 0.144 | 8.1 | 75700 | 0.4455 | 0.3511 | | 0.144 | 8.12 | 75800 | 0.4379 | 0.3445 | | 0.144 | 8.13 | 75900 | 0.4418 | 0.3411 | | 0.1483 | 8.14 | 76000 | 0.4491 | 0.3463 | | 0.1483 | 8.15 | 76100 | 0.4386 | 0.3467 | | 0.1483 | 8.16 | 76200 | 0.4327 | 0.3524 | | 0.1483 | 8.17 | 76300 | 0.4360 | 0.3613 | | 0.1483 | 8.18 | 76400 | 0.4352 | 0.3498 | | 0.1541 | 8.19 | 76500 | 0.4376 | 0.3414 | | 0.1541 | 8.2 | 76600 | 0.4408 | 0.3464 | | 0.1541 | 8.21 | 76700 | 0.4415 | 0.3445 | | 0.1541 | 8.22 | 76800 | 0.4455 | 0.3482 | | 0.1541 | 8.23 | 76900 | 0.4542 | 0.3415 | | 0.1479 | 8.24 | 77000 | 0.4462 | 0.3426 | | 0.1479 | 8.25 | 77100 | 0.4460 | 0.3413 | | 0.1479 | 8.27 | 77200 | 0.4434 | 0.3375 | | 0.1479 | 8.28 | 77300 | 0.4397 | 0.3473 | | 0.1479 | 8.29 | 77400 | 0.4379 | 0.3484 | | 0.1479 | 8.3 | 77500 | 0.4441 | 0.3494 | | 0.1479 | 8.31 | 77600 | 0.4301 | 0.3466 | | 0.1479 | 8.32 | 77700 | 0.4420 | 0.3474 | | 0.1479 | 8.33 | 77800 | 0.4520 | 0.3589 | | 0.1479 | 8.34 | 77900 | 0.4283 | 0.3482 | | 0.1531 | 8.35 | 78000 | 0.4325 | 0.3446 | | 0.1531 | 8.36 | 78100 | 0.4380 | 0.3469 | | 0.1531 | 8.37 | 78200 | 0.4463 | 0.3503 | | 0.1531 | 8.38 | 78300 | 0.4479 | 0.3499 | | 0.1531 | 8.39 | 78400 | 0.4477 | 0.3529 | | 0.1507 | 8.4 | 78500 | 0.4709 | 0.3551 | | 0.1507 | 8.42 | 78600 | 0.4533 | 0.3531 | | 0.1507 | 8.43 | 78700 | 0.4507 | 0.3522 | | 0.1507 | 8.44 | 78800 | 0.4562 | 0.3583 | | 0.1507 | 8.45 | 78900 | 0.4421 | 0.3577 | | 0.1545 | 8.46 | 79000 | 0.4485 | 0.3547 | | 0.1545 | 8.47 | 79100 | 0.4389 | 0.3465 | | 0.1545 | 8.48 | 79200 | 0.4397 | 0.3502 | | 0.1545 | 8.49 | 79300 | 0.4403 | 0.3471 | | 0.1545 | 8.5 | 79400 | 0.4394 | 0.3482 | | 0.153 | 8.51 | 79500 | 0.4393 | 0.3474 | | 0.153 | 8.52 | 79600 | 0.4343 | 0.3495 | | 0.153 | 8.53 | 79700 | 0.4395 | 0.3539 | | 0.153 | 8.54 | 79800 | 0.4497 | 0.3535 | | 0.153 | 8.55 | 79900 | 0.4443 | 0.3540 | | 0.1558 | 8.57 | 80000 | 0.4495 | 0.3554 | | 0.1558 | 8.58 | 80100 | 0.4387 | 0.3460 | | 0.1558 | 8.59 | 80200 | 0.4378 | 0.3520 | | 0.1558 | 8.6 | 80300 | 0.4446 | 0.3527 | | 0.1558 | 8.61 | 80400 | 0.4513 | 0.3508 | | 0.1527 | 8.62 | 80500 | 0.4396 | 0.3537 | | 0.1527 | 8.63 | 80600 | 0.4405 | 0.3507 | | 0.1527 | 8.64 | 80700 | 0.4398 | 0.3450 | | 0.1527 | 8.65 | 80800 | 0.4458 | 0.3508 | | 0.1527 | 8.66 | 80900 | 0.4380 | 0.3465 | | 0.1522 | 8.67 | 81000 | 0.4373 | 0.3482 | | 0.1522 | 8.68 | 81100 | 0.4363 | 0.3410 | | 0.1522 | 8.69 | 81200 | 0.4290 | 0.3447 | | 0.1522 | 8.7 | 81300 | 0.4409 | 0.3515 | | 0.1522 | 8.72 | 81400 | 0.4363 | 0.3433 | | 0.1502 | 8.73 | 81500 | 0.4313 | 0.3429 | | 0.1502 | 8.74 | 81600 | 0.4263 | 0.3451 | | 0.1502 | 8.75 | 81700 | 0.4297 | 0.3452 | | 0.1502 | 8.76 | 81800 | 0.4449 | 0.3411 | | 0.1502 | 8.77 | 81900 | 0.4465 | 0.3455 | | 0.151 | 8.78 | 82000 | 0.4274 | 0.3425 | | 0.151 | 8.79 | 82100 | 0.4525 | 0.3532 | | 0.151 | 8.8 | 82200 | 0.4282 | 0.3502 | | 0.151 | 8.81 | 82300 | 0.4189 | 0.3507 | | 0.151 | 8.82 | 82400 | 0.4379 | 0.3451 | | 0.1529 | 8.83 | 82500 | 0.4378 | 0.3419 | | 0.1529 | 8.84 | 82600 | 0.4283 | 0.3392 | | 0.1529 | 8.85 | 82700 | 0.4359 | 0.3399 | | 0.1529 | 8.87 | 82800 | 0.4308 | 0.3358 | | 0.1529 | 8.88 | 82900 | 0.4296 | 0.3335 | | 0.151 | 8.89 | 83000 | 0.4387 | 0.3372 | | 0.151 | 8.9 | 83100 | 0.4335 | 0.3420 | | 0.151 | 8.91 | 83200 | 0.4329 | 0.3374 | | 0.151 | 8.92 | 83300 | 0.4353 | 0.3404 | | 0.151 | 8.93 | 83400 | 0.4384 | 0.3447 | | 0.1522 | 8.94 | 83500 | 0.4444 | 0.3353 | | 0.1522 | 8.95 | 83600 | 0.4413 | 0.3481 | | 0.1522 | 8.96 | 83700 | 0.4247 | 0.3474 | | 0.1522 | 8.97 | 83800 | 0.4197 | 0.3386 | | 0.1522 | 8.98 | 83900 | 0.4216 | 0.3384 | | 0.1511 | 8.99 | 84000 | 0.4159 | 0.3396 | | 0.1511 | 9.0 | 84100 | 0.4213 | 0.3416 | | 0.1511 | 9.01 | 84200 | 0.4399 | 0.3379 | | 0.1511 | 9.03 | 84300 | 0.4318 | 0.3437 | | 0.1511 | 9.04 | 84400 | 0.4356 | 0.3371 | | 0.1336 | 9.05 | 84500 | 0.4403 | 0.3373 | | 0.1336 | 9.06 | 84600 | 0.4545 | 0.3381 | | 0.1336 | 9.07 | 84700 | 0.4313 | 0.3331 | | 0.1336 | 9.08 | 84800 | 0.4257 | 0.3360 | | 0.1336 | 9.09 | 84900 | 0.4285 | 0.3372 | | 0.1315 | 9.1 | 85000 | 0.4378 | 0.3332 | | 0.1315 | 9.11 | 85100 | 0.4352 | 0.3282 | | 0.1315 | 9.12 | 85200 | 0.4360 | 0.3339 | | 0.1315 | 9.13 | 85300 | 0.4404 | 0.3365 | | 0.1315 | 9.14 | 85400 | 0.4345 | 0.3356 | | 0.1272 | 9.15 | 85500 | 0.4468 | 0.3375 | | 0.1272 | 9.16 | 85600 | 0.4331 | 0.3363 | | 0.1272 | 9.18 | 85700 | 0.4330 | 0.3309 | | 0.1272 | 9.19 | 85800 | 0.4424 | 0.3301 | | 0.1272 | 9.2 | 85900 | 0.4520 | 0.3326 | | 0.1289 | 9.21 | 86000 | 0.4421 | 0.3326 | | 0.1289 | 9.22 | 86100 | 0.4480 | 0.3335 | | 0.1289 | 9.23 | 86200 | 0.4351 | 0.3380 | | 0.1289 | 9.24 | 86300 | 0.4350 | 0.3427 | | 0.1289 | 9.25 | 86400 | 0.4362 | 0.3320 | | 0.1333 | 9.26 | 86500 | 0.4260 | 0.3342 | | 0.1333 | 9.27 | 86600 | 0.4357 | 0.3360 | | 0.1333 | 9.28 | 86700 | 0.4505 | 0.3372 | | 0.1333 | 9.29 | 86800 | 0.4342 | 0.3359 | | 0.1333 | 9.3 | 86900 | 0.4295 | 0.3367 | | 0.1318 | 9.31 | 87000 | 0.4320 | 0.3335 | | 0.1318 | 9.33 | 87100 | 0.4332 | 0.3344 | | 0.1318 | 9.34 | 87200 | 0.4373 | 0.3330 | | 0.1318 | 9.35 | 87300 | 0.4490 | 0.3316 | | 0.1318 | 9.36 | 87400 | 0.4188 | 0.3429 | | 0.1275 | 9.37 | 87500 | 0.4502 | 0.3383 | | 0.1275 | 9.38 | 87600 | 0.4463 | 0.3387 | | 0.1275 | 9.39 | 87700 | 0.4385 | 0.3308 | | 0.1275 | 9.4 | 87800 | 0.4464 | 0.3414 | | 0.1275 | 9.41 | 87900 | 0.4563 | 0.3405 | | 0.1331 | 9.42 | 88000 | 0.4286 | 0.3374 | | 0.1331 | 9.43 | 88100 | 0.4389 | 0.3352 | | 0.1331 | 9.44 | 88200 | 0.4301 | 0.3340 | | 0.1331 | 9.45 | 88300 | 0.4417 | 0.3373 | | 0.1331 | 9.46 | 88400 | 0.4450 | 0.3425 | | 0.1266 | 9.48 | 88500 | 0.4456 | 0.3451 | | 0.1266 | 9.49 | 88600 | 0.4517 | 0.3403 | | 0.1266 | 9.5 | 88700 | 0.4447 | 0.3419 | | 0.1266 | 9.51 | 88800 | 0.4486 | 0.3428 | | 0.1266 | 9.52 | 88900 | 0.4591 | 0.3411 | | 0.1316 | 9.53 | 89000 | 0.4481 | 0.3387 | | 0.1316 | 9.54 | 89100 | 0.4308 | 0.3349 | | 0.1316 | 9.55 | 89200 | 0.4411 | 0.3405 | | 0.1316 | 9.56 | 89300 | 0.4378 | 0.3390 | | 0.1316 | 9.57 | 89400 | 0.4448 | 0.3365 | | 0.1325 | 9.58 | 89500 | 0.4575 | 0.3416 | | 0.1325 | 9.59 | 89600 | 0.4608 | 0.3422 | | 0.1325 | 9.6 | 89700 | 0.4396 | 0.3350 | | 0.1325 | 9.61 | 89800 | 0.4380 | 0.3398 | | 0.1325 | 9.63 | 89900 | 0.4337 | 0.3388 | | 0.1324 | 9.64 | 90000 | 0.4376 | 0.3388 | | 0.1324 | 9.65 | 90100 | 0.4185 | 0.3380 | | 0.1324 | 9.66 | 90200 | 0.4394 | 0.3384 | | 0.1324 | 9.67 | 90300 | 0.4472 | 0.3400 | | 0.1324 | 9.68 | 90400 | 0.4523 | 0.3390 | | 0.1361 | 9.69 | 90500 | 0.4466 | 0.3389 | | 0.1361 | 9.7 | 90600 | 0.4414 | 0.3383 | | 0.1361 | 9.71 | 90700 | 0.4288 | 0.3348 | | 0.1361 | 9.72 | 90800 | 0.4445 | 0.3374 | | 0.1361 | 9.73 | 90900 | 0.4252 | 0.3322 | | 0.1353 | 9.74 | 91000 | 0.4312 | 0.3338 | | 0.1353 | 9.75 | 91100 | 0.4326 | 0.3319 | | 0.1353 | 9.76 | 91200 | 0.4212 | 0.3400 | | 0.1353 | 9.78 | 91300 | 0.4191 | 0.3374 | | 0.1353 | 9.79 | 91400 | 0.4399 | 0.3332 | | 0.1308 | 9.8 | 91500 | 0.4340 | 0.3349 | | 0.1308 | 9.81 | 91600 | 0.4280 | 0.3379 | | 0.1308 | 9.82 | 91700 | 0.4419 | 0.3376 | | 0.1308 | 9.83 | 91800 | 0.4309 | 0.3333 | | 0.1308 | 9.84 | 91900 | 0.4274 | 0.3352 | | 0.1321 | 9.85 | 92000 | 0.4147 | 0.3337 | | 0.1321 | 9.86 | 92100 | 0.4252 | 0.3316 | | 0.1321 | 9.87 | 92200 | 0.4378 | 0.3381 | | 0.1321 | 9.88 | 92300 | 0.4265 | 0.3355 | | 0.1321 | 9.89 | 92400 | 0.4247 | 0.3331 | | 0.1358 | 9.9 | 92500 | 0.4099 | 0.3379 | | 0.1358 | 9.91 | 92600 | 0.4142 | 0.3356 | | 0.1358 | 9.93 | 92700 | 0.4220 | 0.3332 | | 0.1358 | 9.94 | 92800 | 0.4219 | 0.3369 | | 0.1358 | 9.95 | 92900 | 0.4178 | 0.3332 | | 0.1331 | 9.96 | 93000 | 0.4305 | 0.3353 | | 0.1331 | 9.97 | 93100 | 0.4324 | 0.3307 | | 0.1331 | 9.98 | 93200 | 0.4315 | 0.3344 | | 0.1331 | 9.99 | 93300 | 0.4212 | 0.3314 | | 0.1331 | 10.0 | 93400 | 0.4203 | 0.3332 | | 0.1304 | 10.01 | 93500 | 0.4424 | 0.3351 | | 0.1304 | 10.02 | 93600 | 0.4474 | 0.3341 | | 0.1304 | 10.03 | 93700 | 0.4466 | 0.3378 | | 0.1304 | 10.04 | 93800 | 0.4388 | 0.3327 | | 0.1304 | 10.05 | 93900 | 0.4312 | 0.3360 | | 0.1152 | 10.06 | 94000 | 0.4471 | 0.3307 | | 0.1152 | 10.07 | 94100 | 0.4472 | 0.3316 | | 0.1152 | 10.09 | 94200 | 0.4462 | 0.3324 | | 0.1152 | 10.1 | 94300 | 0.4383 | 0.3344 | | 0.1152 | 10.11 | 94400 | 0.4671 | 0.3365 | | 0.1097 | 10.12 | 94500 | 0.4596 | 0.3307 | | 0.1097 | 10.13 | 94600 | 0.4517 | 0.3382 | | 0.1097 | 10.14 | 94700 | 0.4285 | 0.3380 | | 0.1097 | 10.15 | 94800 | 0.4628 | 0.3363 | | 0.1097 | 10.16 | 94900 | 0.4478 | 0.3365 | | 0.1153 | 10.17 | 95000 | 0.4464 | 0.3346 | | 0.1153 | 10.18 | 95100 | 0.4432 | 0.3392 | | 0.1153 | 10.19 | 95200 | 0.4326 | 0.3330 | | 0.1153 | 10.2 | 95300 | 0.4480 | 0.3327 | | 0.1153 | 10.21 | 95400 | 0.4436 | 0.3260 | | 0.1149 | 10.22 | 95500 | 0.4549 | 0.3311 | | 0.1149 | 10.24 | 95600 | 0.4573 | 0.3353 | | 0.1149 | 10.25 | 95700 | 0.4373 | 0.3369 | | 0.1149 | 10.26 | 95800 | 0.4459 | 0.3358 | | 0.1149 | 10.27 | 95900 | 0.4288 | 0.3270 | | 0.1169 | 10.28 | 96000 | 0.4474 | 0.3330 | | 0.1169 | 10.29 | 96100 | 0.4524 | 0.3298 | | 0.1169 | 10.3 | 96200 | 0.4517 | 0.3258 | | 0.1169 | 10.31 | 96300 | 0.4366 | 0.3288 | | 0.1169 | 10.32 | 96400 | 0.4574 | 0.3324 | | 0.1137 | 10.33 | 96500 | 0.4507 | 0.3343 | | 0.1137 | 10.34 | 96600 | 0.4414 | 0.3301 | | 0.1137 | 10.35 | 96700 | 0.4524 | 0.3366 | | 0.1137 | 10.36 | 96800 | 0.4563 | 0.3435 | | 0.1137 | 10.37 | 96900 | 0.4315 | 0.3375 | | 0.1162 | 10.39 | 97000 | 0.4429 | 0.3365 | | 0.1162 | 10.4 | 97100 | 0.4489 | 0.3380 | | 0.1162 | 10.41 | 97200 | 0.4352 | 0.3357 | | 0.1162 | 10.42 | 97300 | 0.4390 | 0.3319 | | 0.1162 | 10.43 | 97400 | 0.4570 | 0.3303 | | 0.1151 | 10.44 | 97500 | 0.4692 | 0.3344 | | 0.1151 | 10.45 | 97600 | 0.4605 | 0.3332 | | 0.1151 | 10.46 | 97700 | 0.4457 | 0.3238 | | 0.1151 | 10.47 | 97800 | 0.4298 | 0.3304 | | 0.1151 | 10.48 | 97900 | 0.4619 | 0.3274 | | 0.1105 | 10.49 | 98000 | 0.4362 | 0.3244 | | 0.1105 | 10.5 | 98100 | 0.4568 | 0.3289 | | 0.1105 | 10.51 | 98200 | 0.4522 | 0.3336 | | 0.1105 | 10.52 | 98300 | 0.4302 | 0.3257 | | 0.1105 | 10.54 | 98400 | 0.4505 | 0.3238 | | 0.1164 | 10.55 | 98500 | 0.4430 | 0.3301 | | 0.1164 | 10.56 | 98600 | 0.4575 | 0.3283 | | 0.1164 | 10.57 | 98700 | 0.4447 | 0.3277 | | 0.1164 | 10.58 | 98800 | 0.4400 | 0.3301 | | 0.1164 | 10.59 | 98900 | 0.4427 | 0.3288 | | 0.1113 | 10.6 | 99000 | 0.4538 | 0.3248 | | 0.1113 | 10.61 | 99100 | 0.4519 | 0.3298 | | 0.1113 | 10.62 | 99200 | 0.4290 | 0.3249 | | 0.1113 | 10.63 | 99300 | 0.4501 | 0.3220 | | 0.1113 | 10.64 | 99400 | 0.4410 | 0.3218 | | 0.1159 | 10.65 | 99500 | 0.4478 | 0.3211 | | 0.1159 | 10.66 | 99600 | 0.4462 | 0.3250 | | 0.1159 | 10.67 | 99700 | 0.4543 | 0.3302 | | 0.1159 | 10.69 | 99800 | 0.4462 | 0.3301 | | 0.1159 | 10.7 | 99900 | 0.4468 | 0.3229 | | 0.1161 | 10.71 | 100000 | 0.4515 | 0.3241 | | 0.1161 | 10.72 | 100100 | 0.4404 | 0.3276 | | 0.1161 | 10.73 | 100200 | 0.4439 | 0.3222 | | 0.1161 | 10.74 | 100300 | 0.4392 | 0.3257 | | 0.1161 | 10.75 | 100400 | 0.4476 | 0.3314 | | 0.1199 | 10.76 | 100500 | 0.4493 | 0.3270 | | 0.1199 | 10.77 | 100600 | 0.4462 | 0.3224 | | 0.1199 | 10.78 | 100700 | 0.4467 | 0.3311 | | 0.1199 | 10.79 | 100800 | 0.4198 | 0.3228 | | 0.1199 | 10.8 | 100900 | 0.4349 | 0.3225 | | 0.1146 | 10.81 | 101000 | 0.4371 | 0.3272 | | 0.1146 | 10.82 | 101100 | 0.4525 | 0.3210 | | 0.1146 | 10.84 | 101200 | 0.4293 | 0.3219 | | 0.1146 | 10.85 | 101300 | 0.4238 | 0.3216 | | 0.1146 | 10.86 | 101400 | 0.4377 | 0.3252 | | 0.118 | 10.87 | 101500 | 0.4371 | 0.3208 | | 0.118 | 10.88 | 101600 | 0.4216 | 0.3174 | | 0.118 | 10.89 | 101700 | 0.4312 | 0.3189 | | 0.118 | 10.9 | 101800 | 0.4317 | 0.3204 | | 0.118 | 10.91 | 101900 | 0.4303 | 0.3235 | | 0.114 | 10.92 | 102000 | 0.4416 | 0.3158 | | 0.114 | 10.93 | 102100 | 0.4240 | 0.3195 | | 0.114 | 10.94 | 102200 | 0.4340 | 0.3149 | | 0.114 | 10.95 | 102300 | 0.4311 | 0.3215 | | 0.114 | 10.96 | 102400 | 0.4261 | 0.3238 | | 0.1152 | 10.97 | 102500 | 0.4263 | 0.3206 | | 0.1152 | 10.98 | 102600 | 0.4325 | 0.3294 | | 0.1152 | 11.0 | 102700 | 0.4327 | 0.3187 | | 0.1152 | 11.01 | 102800 | 0.4423 | 0.3195 | | 0.1152 | 11.02 | 102900 | 0.4341 | 0.3277 | | 0.1084 | 11.03 | 103000 | 0.4232 | 0.3243 | | 0.1084 | 11.04 | 103100 | 0.4355 | 0.3184 | | 0.1084 | 11.05 | 103200 | 0.4374 | 0.3274 | | 0.1084 | 11.06 | 103300 | 0.4484 | 0.3305 | | 0.1084 | 11.07 | 103400 | 0.4423 | 0.3226 | | 0.1003 | 11.08 | 103500 | 0.4518 | 0.3224 | | 0.1003 | 11.09 | 103600 | 0.4518 | 0.3243 | | 0.1003 | 11.1 | 103700 | 0.4282 | 0.3207 | | 0.1003 | 11.11 | 103800 | 0.4418 | 0.3220 | | 0.1003 | 11.12 | 103900 | 0.4411 | 0.3216 | | 0.1009 | 11.13 | 104000 | 0.4474 | 0.3238 | | 0.1009 | 11.15 | 104100 | 0.4406 | 0.3245 | | 0.1009 | 11.16 | 104200 | 0.4384 | 0.3242 | | 0.1009 | 11.17 | 104300 | 0.4702 | 0.3265 | | 0.1009 | 11.18 | 104400 | 0.4611 | 0.3266 | | 0.0992 | 11.19 | 104500 | 0.4425 | 0.3211 | | 0.0992 | 11.2 | 104600 | 0.4575 | 0.3222 | | 0.0992 | 11.21 | 104700 | 0.4449 | 0.3208 | | 0.0992 | 11.22 | 104800 | 0.4715 | 0.3208 | | 0.0992 | 11.23 | 104900 | 0.4469 | 0.3223 | | 0.1021 | 11.24 | 105000 | 0.4536 | 0.3225 | | 0.1021 | 11.25 | 105100 | 0.4629 | 0.3234 | | 0.1021 | 11.26 | 105200 | 0.4550 | 0.3205 | | 0.1021 | 11.27 | 105300 | 0.4598 | 0.3213 | | 0.1021 | 11.28 | 105400 | 0.4522 | 0.3179 | | 0.1021 | 11.3 | 105500 | 0.4658 | 0.3211 | | 0.1021 | 11.31 | 105600 | 0.4664 | 0.3196 | | 0.1021 | 11.32 | 105700 | 0.4736 | 0.3177 | | 0.1021 | 11.33 | 105800 | 0.4587 | 0.3158 | | 0.1021 | 11.34 | 105900 | 0.4589 | 0.3194 | | 0.1025 | 11.35 | 106000 | 0.4692 | 0.3214 | | 0.1025 | 11.36 | 106100 | 0.4382 | 0.3181 | | 0.1025 | 11.37 | 106200 | 0.4556 | 0.3185 | | 0.1025 | 11.38 | 106300 | 0.4445 | 0.3191 | | 0.1025 | 11.39 | 106400 | 0.4379 | 0.3163 | | 0.104 | 11.4 | 106500 | 0.4454 | 0.3220 | | 0.104 | 11.41 | 106600 | 0.4463 | 0.3201 | | 0.104 | 11.42 | 106700 | 0.4550 | 0.3173 | | 0.104 | 11.43 | 106800 | 0.4404 | 0.3168 | | 0.104 | 11.45 | 106900 | 0.4569 | 0.3170 | | 0.1016 | 11.46 | 107000 | 0.4529 | 0.3168 | | 0.1016 | 11.47 | 107100 | 0.4587 | 0.3173 | | 0.1016 | 11.48 | 107200 | 0.4505 | 0.3172 | | 0.1016 | 11.49 | 107300 | 0.4489 | 0.3159 | | 0.1016 | 11.5 | 107400 | 0.4528 | 0.3130 | | 0.1001 | 11.51 | 107500 | 0.4473 | 0.3181 | | 0.1001 | 11.52 | 107600 | 0.4434 | 0.3176 | | 0.1001 | 11.53 | 107700 | 0.4597 | 0.3186 | | 0.1001 | 11.54 | 107800 | 0.4351 | 0.3159 | | 0.1001 | 11.55 | 107900 | 0.4471 | 0.3185 | | 0.1005 | 11.56 | 108000 | 0.4457 | 0.3191 | | 0.1005 | 11.57 | 108100 | 0.4544 | 0.3293 | | 0.1005 | 11.58 | 108200 | 0.4436 | 0.3221 | | 0.1005 | 11.6 | 108300 | 0.4642 | 0.3270 | | 0.1005 | 11.61 | 108400 | 0.4474 | 0.3270 | | 0.1031 | 11.62 | 108500 | 0.4458 | 0.3196 | | 0.1031 | 11.63 | 108600 | 0.4723 | 0.3205 | | 0.1031 | 11.64 | 108700 | 0.4507 | 0.3226 | | 0.1031 | 11.65 | 108800 | 0.4424 | 0.3213 | | 0.1031 | 11.66 | 108900 | 0.4511 | 0.3213 | | 0.1014 | 11.67 | 109000 | 0.4422 | 0.3205 | | 0.1014 | 11.68 | 109100 | 0.4498 | 0.3180 | | 0.1014 | 11.69 | 109200 | 0.4303 | 0.3167 | | 0.1014 | 11.7 | 109300 | 0.4483 | 0.3108 | | 0.1014 | 11.71 | 109400 | 0.4548 | 0.3169 | | 0.0981 | 11.72 | 109500 | 0.4406 | 0.3122 | | 0.0981 | 11.73 | 109600 | 0.4293 | 0.3114 | | 0.0981 | 11.75 | 109700 | 0.4369 | 0.3159 | | 0.0981 | 11.76 | 109800 | 0.4364 | 0.3164 | | 0.0981 | 11.77 | 109900 | 0.4358 | 0.3189 | | 0.1023 | 11.78 | 110000 | 0.4281 | 0.3183 | | 0.1023 | 11.79 | 110100 | 0.4404 | 0.3159 | | 0.1023 | 11.8 | 110200 | 0.4471 | 0.3135 | | 0.1023 | 11.81 | 110300 | 0.4498 | 0.3201 | | 0.1023 | 11.82 | 110400 | 0.4527 | 0.3161 | | 0.0988 | 11.83 | 110500 | 0.4440 | 0.3173 | | 0.0988 | 11.84 | 110600 | 0.4356 | 0.3136 | | 0.0988 | 11.85 | 110700 | 0.4308 | 0.3135 | | 0.0988 | 11.86 | 110800 | 0.4294 | 0.3192 | | 0.0988 | 11.87 | 110900 | 0.4241 | 0.3168 | | 0.1022 | 11.88 | 111000 | 0.4420 | 0.3157 | | 0.1022 | 11.9 | 111100 | 0.4313 | 0.3125 | | 0.1022 | 11.91 | 111200 | 0.4213 | 0.3168 | | 0.1022 | 11.92 | 111300 | 0.4352 | 0.3135 | | 0.1022 | 11.93 | 111400 | 0.4297 | 0.3116 | | 0.1032 | 11.94 | 111500 | 0.4218 | 0.3137 | | 0.1032 | 11.95 | 111600 | 0.4334 | 0.3123 | | 0.1032 | 11.96 | 111700 | 0.4373 | 0.3175 | | 0.1032 | 11.97 | 111800 | 0.4299 | 0.3160 | | 0.1032 | 11.98 | 111900 | 0.4326 | 0.3189 | | 0.0969 | 11.99 | 112000 | 0.4208 | 0.3186 | | 0.0969 | 12.0 | 112100 | 0.4385 | 0.3169 | | 0.0969 | 12.01 | 112200 | 0.4453 | 0.3156 | | 0.0969 | 12.02 | 112300 | 0.4596 | 0.3133 | | 0.0969 | 12.03 | 112400 | 0.4509 | 0.3093 | | 0.0901 | 12.04 | 112500 | 0.4535 | 0.3138 | | 0.0901 | 12.06 | 112600 | 0.4371 | 0.3144 | | 0.0901 | 12.07 | 112700 | 0.4499 | 0.3154 | | 0.0901 | 12.08 | 112800 | 0.4615 | 0.3198 | | 0.0901 | 12.09 | 112900 | 0.4523 | 0.3177 | | 0.0889 | 12.1 | 113000 | 0.4412 | 0.3130 | | 0.0889 | 12.11 | 113100 | 0.4471 | 0.3181 | | 0.0889 | 12.12 | 113200 | 0.4530 | 0.3169 | | 0.0889 | 12.13 | 113300 | 0.4670 | 0.3149 | | 0.0889 | 12.14 | 113400 | 0.4594 | 0.3141 | | 0.0917 | 12.15 | 113500 | 0.4623 | 0.3127 | | 0.0917 | 12.16 | 113600 | 0.4460 | 0.3133 | | 0.0917 | 12.17 | 113700 | 0.4512 | 0.3191 | | 0.0917 | 12.18 | 113800 | 0.4681 | 0.3136 | | 0.0917 | 12.19 | 113900 | 0.4564 | 0.3129 | | 0.0906 | 12.21 | 114000 | 0.4482 | 0.3107 | | 0.0906 | 12.22 | 114100 | 0.4595 | 0.3133 | | 0.0906 | 12.23 | 114200 | 0.4510 | 0.3118 | | 0.0906 | 12.24 | 114300 | 0.4472 | 0.3131 | | 0.0906 | 12.25 | 114400 | 0.4499 | 0.3130 | | 0.0918 | 12.26 | 114500 | 0.4503 | 0.3138 | | 0.0918 | 12.27 | 114600 | 0.4518 | 0.3135 | | 0.0918 | 12.28 | 114700 | 0.4493 | 0.3114 | | 0.0918 | 12.29 | 114800 | 0.4574 | 0.3133 | | 0.0918 | 12.3 | 114900 | 0.4683 | 0.3200 | | 0.0869 | 12.31 | 115000 | 0.4608 | 0.3165 | | 0.0869 | 12.32 | 115100 | 0.4618 | 0.3183 | | 0.0869 | 12.33 | 115200 | 0.4689 | 0.3173 | | 0.0869 | 12.34 | 115300 | 0.4681 | 0.3224 | | 0.0869 | 12.36 | 115400 | 0.4576 | 0.3231 | | 0.0885 | 12.37 | 115500 | 0.4831 | 0.3176 | | 0.0885 | 12.38 | 115600 | 0.4602 | 0.3181 | | 0.0885 | 12.39 | 115700 | 0.4493 | 0.3168 | | 0.0885 | 12.4 | 115800 | 0.4564 | 0.3149 | | 0.0885 | 12.41 | 115900 | 0.4585 | 0.3158 | | 0.091 | 12.42 | 116000 | 0.4713 | 0.3193 | | 0.091 | 12.43 | 116100 | 0.4581 | 0.3139 | | 0.091 | 12.44 | 116200 | 0.4637 | 0.3131 | | 0.091 | 12.45 | 116300 | 0.4572 | 0.3124 | | 0.091 | 12.46 | 116400 | 0.4489 | 0.3163 | | 0.0886 | 12.47 | 116500 | 0.4679 | 0.3159 | | 0.0886 | 12.48 | 116600 | 0.4712 | 0.3151 | | 0.0886 | 12.49 | 116700 | 0.4750 | 0.3186 | | 0.0886 | 12.51 | 116800 | 0.4673 | 0.3176 | | 0.0886 | 12.52 | 116900 | 0.4601 | 0.3113 | | 0.0917 | 12.53 | 117000 | 0.4341 | 0.3125 | | 0.0917 | 12.54 | 117100 | 0.4462 | 0.3077 | | 0.0917 | 12.55 | 117200 | 0.4502 | 0.3099 | | 0.0917 | 12.56 | 117300 | 0.4482 | 0.3116 | | 0.0917 | 12.57 | 117400 | 0.4459 | 0.3131 | | 0.0881 | 12.58 | 117500 | 0.4464 | 0.3122 | | 0.0881 | 12.59 | 117600 | 0.4471 | 0.3125 | | 0.0881 | 12.6 | 117700 | 0.4319 | 0.3122 | | 0.0881 | 12.61 | 117800 | 0.4421 | 0.3103 | | 0.0881 | 12.62 | 117900 | 0.4326 | 0.3108 | | 0.0913 | 12.63 | 118000 | 0.4414 | 0.3068 | | 0.0913 | 12.64 | 118100 | 0.4421 | 0.3083 | | 0.0913 | 12.66 | 118200 | 0.4449 | 0.3103 | | 0.0913 | 12.67 | 118300 | 0.4380 | 0.3128 | | 0.0913 | 12.68 | 118400 | 0.4390 | 0.3136 | | 0.0921 | 12.69 | 118500 | 0.4452 | 0.3104 | | 0.0921 | 12.7 | 118600 | 0.4378 | 0.3122 | | 0.0921 | 12.71 | 118700 | 0.4459 | 0.3080 | | 0.0921 | 12.72 | 118800 | 0.4369 | 0.3051 | | 0.0921 | 12.73 | 118900 | 0.4474 | 0.3076 | | 0.0886 | 12.74 | 119000 | 0.4508 | 0.3066 | | 0.0886 | 12.75 | 119100 | 0.4456 | 0.3097 | | 0.0886 | 12.76 | 119200 | 0.4503 | 0.3078 | | 0.0886 | 12.77 | 119300 | 0.4460 | 0.3081 | | 0.0886 | 12.78 | 119400 | 0.4404 | 0.3080 | | 0.0897 | 12.79 | 119500 | 0.4351 | 0.3100 | | 0.0897 | 12.81 | 119600 | 0.4446 | 0.3120 | | 0.0897 | 12.82 | 119700 | 0.4407 | 0.3098 | | 0.0897 | 12.83 | 119800 | 0.4406 | 0.3084 | | 0.0897 | 12.84 | 119900 | 0.4492 | 0.3067 | | 0.09 | 12.85 | 120000 | 0.4546 | 0.3098 | | 0.09 | 12.86 | 120100 | 0.4547 | 0.3074 | | 0.09 | 12.87 | 120200 | 0.4517 | 0.3111 | | 0.09 | 12.88 | 120300 | 0.4320 | 0.3064 | | 0.09 | 12.89 | 120400 | 0.4294 | 0.3072 | | 0.0898 | 12.9 | 120500 | 0.4412 | 0.3050 | | 0.0898 | 12.91 | 120600 | 0.4254 | 0.3074 | | 0.0898 | 12.92 | 120700 | 0.4409 | 0.3071 | | 0.0898 | 12.93 | 120800 | 0.4362 | 0.3071 | | 0.0898 | 12.94 | 120900 | 0.4579 | 0.3090 | | 0.0892 | 12.95 | 121000 | 0.4492 | 0.3059 | | 0.0892 | 12.97 | 121100 | 0.4404 | 0.3105 | | 0.0892 | 12.98 | 121200 | 0.4365 | 0.3066 | | 0.0892 | 12.99 | 121300 | 0.4368 | 0.3048 | | 0.0892 | 13.0 | 121400 | 0.4410 | 0.3033 | | 0.085 | 13.01 | 121500 | 0.4450 | 0.3047 | | 0.085 | 13.02 | 121600 | 0.4633 | 0.3013 | | 0.085 | 13.03 | 121700 | 0.4600 | 0.3054 | | 0.085 | 13.04 | 121800 | 0.4541 | 0.3047 | | 0.085 | 13.05 | 121900 | 0.4546 | 0.3058 | | 0.0791 | 13.06 | 122000 | 0.4536 | 0.3045 | | 0.0791 | 13.07 | 122100 | 0.4589 | 0.3066 | | 0.0791 | 13.08 | 122200 | 0.4581 | 0.3057 | | 0.0791 | 13.09 | 122300 | 0.4546 | 0.3048 | | 0.0791 | 13.1 | 122400 | 0.4673 | 0.3006 | | 0.0789 | 13.12 | 122500 | 0.4551 | 0.3019 | | 0.0789 | 13.13 | 122600 | 0.4467 | 0.3025 | | 0.0789 | 13.14 | 122700 | 0.4593 | 0.3015 | | 0.0789 | 13.15 | 122800 | 0.4598 | 0.3037 | | 0.0789 | 13.16 | 122900 | 0.4532 | 0.3038 | | 0.077 | 13.17 | 123000 | 0.4607 | 0.3015 | | 0.077 | 13.18 | 123100 | 0.4385 | 0.3005 | | 0.077 | 13.19 | 123200 | 0.4590 | 0.3041 | | 0.077 | 13.2 | 123300 | 0.4359 | 0.3047 | | 0.077 | 13.21 | 123400 | 0.4458 | 0.3039 | | 0.0771 | 13.22 | 123500 | 0.4506 | 0.3075 | | 0.0771 | 13.23 | 123600 | 0.4457 | 0.3079 | | 0.0771 | 13.24 | 123700 | 0.4448 | 0.3048 | | 0.0771 | 13.25 | 123800 | 0.4398 | 0.3036 | | 0.0771 | 13.27 | 123900 | 0.4510 | 0.3055 | | 0.0804 | 13.28 | 124000 | 0.4507 | 0.3059 | | 0.0804 | 13.29 | 124100 | 0.4544 | 0.3076 | | 0.0804 | 13.3 | 124200 | 0.4534 | 0.3073 | | 0.0804 | 13.31 | 124300 | 0.4441 | 0.3061 | | 0.0804 | 13.32 | 124400 | 0.4391 | 0.3075 | | 0.0774 | 13.33 | 124500 | 0.4527 | 0.3063 | | 0.0774 | 13.34 | 124600 | 0.4638 | 0.3057 | | 0.0774 | 13.35 | 124700 | 0.4541 | 0.3064 | | 0.0774 | 13.36 | 124800 | 0.4617 | 0.3078 | | 0.0774 | 13.37 | 124900 | 0.4584 | 0.3041 | | 0.0795 | 13.38 | 125000 | 0.4663 | 0.3032 | | 0.0795 | 13.39 | 125100 | 0.4546 | 0.3025 | | 0.0795 | 13.4 | 125200 | 0.4616 | 0.3021 | | 0.0795 | 13.42 | 125300 | 0.4603 | 0.3016 | | 0.0795 | 13.43 | 125400 | 0.4616 | 0.3040 | | 0.0791 | 13.44 | 125500 | 0.4548 | 0.3021 | | 0.0791 | 13.45 | 125600 | 0.4560 | 0.3025 | | 0.0791 | 13.46 | 125700 | 0.4516 | 0.3037 | | 0.0791 | 13.47 | 125800 | 0.4500 | 0.3013 | | 0.0791 | 13.48 | 125900 | 0.4540 | 0.3009 | | 0.0776 | 13.49 | 126000 | 0.4581 | 0.3026 | | 0.0776 | 13.5 | 126100 | 0.4598 | 0.3028 | | 0.0776 | 13.51 | 126200 | 0.4587 | 0.3038 | | 0.0776 | 13.52 | 126300 | 0.4514 | 0.3024 | | 0.0776 | 13.53 | 126400 | 0.4495 | 0.3036 | | 0.0793 | 13.54 | 126500 | 0.4556 | 0.3016 | | 0.0793 | 13.55 | 126600 | 0.4603 | 0.3025 | | 0.0793 | 13.57 | 126700 | 0.4496 | 0.2995 | | 0.0793 | 13.58 | 126800 | 0.4483 | 0.2969 | | 0.0793 | 13.59 | 126900 | 0.4462 | 0.2980 | | 0.0816 | 13.6 | 127000 | 0.4521 | 0.2982 | | 0.0816 | 13.61 | 127100 | 0.4580 | 0.3019 | | 0.0816 | 13.62 | 127200 | 0.4669 | 0.3009 | | 0.0816 | 13.63 | 127300 | 0.4513 | 0.3017 | | 0.0816 | 13.64 | 127400 | 0.4602 | 0.3015 | | 0.0779 | 13.65 | 127500 | 0.4592 | 0.2998 | | 0.0779 | 13.66 | 127600 | 0.4700 | 0.2981 | | 0.0779 | 13.67 | 127700 | 0.4727 | 0.2978 | | 0.0779 | 13.68 | 127800 | 0.4600 | 0.2983 | | 0.0779 | 13.69 | 127900 | 0.4472 | 0.2978 | | 0.0779 | 13.7 | 128000 | 0.4483 | 0.2984 | | 0.0779 | 13.72 | 128100 | 0.4512 | 0.2968 | | 0.0779 | 13.73 | 128200 | 0.4549 | 0.2988 | | 0.0779 | 13.74 | 128300 | 0.4576 | 0.2992 | | 0.0779 | 13.75 | 128400 | 0.4400 | 0.2974 | | 0.0793 | 13.76 | 128500 | 0.4433 | 0.3009 | | 0.0793 | 13.77 | 128600 | 0.4456 | 0.2982 | | 0.0793 | 13.78 | 128700 | 0.4560 | 0.3019 | | 0.0793 | 13.79 | 128800 | 0.4551 | 0.3008 | | 0.0793 | 13.8 | 128900 | 0.4513 | 0.3007 | | 0.0769 | 13.81 | 129000 | 0.4518 | 0.3008 | | 0.0769 | 13.82 | 129100 | 0.4567 | 0.2981 | | 0.0769 | 13.83 | 129200 | 0.4437 | 0.2985 | | 0.0769 | 13.84 | 129300 | 0.4424 | 0.2970 | | 0.0769 | 13.85 | 129400 | 0.4423 | 0.3010 | | 0.0785 | 13.87 | 129500 | 0.4495 | 0.2999 | | 0.0785 | 13.88 | 129600 | 0.4483 | 0.2975 | | 0.0785 | 13.89 | 129700 | 0.4485 | 0.2982 | | 0.0785 | 13.9 | 129800 | 0.4429 | 0.2972 | | 0.0785 | 13.91 | 129900 | 0.4430 | 0.2958 | | 0.0792 | 13.92 | 130000 | 0.4495 | 0.2954 | | 0.0792 | 13.93 | 130100 | 0.4485 | 0.2947 | | 0.0792 | 13.94 | 130200 | 0.4395 | 0.2972 | | 0.0792 | 13.95 | 130300 | 0.4379 | 0.2973 | | 0.0792 | 13.96 | 130400 | 0.4428 | 0.2989 | | 0.0795 | 13.97 | 130500 | 0.4385 | 0.3000 | | 0.0795 | 13.98 | 130600 | 0.4490 | 0.2983 | | 0.0795 | 13.99 | 130700 | 0.4568 | 0.2970 | | 0.0795 | 14.0 | 130800 | 0.4482 | 0.2963 | | 0.0795 | 14.01 | 130900 | 0.4479 | 0.2962 | | 0.075 | 14.03 | 131000 | 0.4565 | 0.2968 | | 0.075 | 14.04 | 131100 | 0.4623 | 0.2962 | | 0.075 | 14.05 | 131200 | 0.4617 | 0.2965 | | 0.075 | 14.06 | 131300 | 0.4687 | 0.2949 | | 0.075 | 14.07 | 131400 | 0.4718 | 0.2929 | | 0.0709 | 14.08 | 131500 | 0.4720 | 0.2945 | | 0.0709 | 14.09 | 131600 | 0.4604 | 0.2953 | | 0.0709 | 14.1 | 131700 | 0.4655 | 0.2955 | | 0.0709 | 14.11 | 131800 | 0.4695 | 0.2958 | | 0.0709 | 14.12 | 131900 | 0.4666 | 0.2945 | | 0.0705 | 14.13 | 132000 | 0.4605 | 0.2959 | | 0.0705 | 14.14 | 132100 | 0.4581 | 0.2947 | | 0.0705 | 14.15 | 132200 | 0.4597 | 0.2948 | | 0.0705 | 14.16 | 132300 | 0.4612 | 0.2943 | | 0.0705 | 14.18 | 132400 | 0.4611 | 0.2959 | | 0.0727 | 14.19 | 132500 | 0.4569 | 0.2958 | | 0.0727 | 14.2 | 132600 | 0.4556 | 0.2951 | | 0.0727 | 14.21 | 132700 | 0.4597 | 0.2955 | | 0.0727 | 14.22 | 132800 | 0.4472 | 0.2935 | | 0.0727 | 14.23 | 132900 | 0.4573 | 0.2943 | | 0.0723 | 14.24 | 133000 | 0.4572 | 0.2943 | | 0.0723 | 14.25 | 133100 | 0.4582 | 0.2956 | | 0.0723 | 14.26 | 133200 | 0.4599 | 0.2968 | | 0.0723 | 14.27 | 133300 | 0.4633 | 0.2962 | | 0.0723 | 14.28 | 133400 | 0.4604 | 0.2972 | | 0.071 | 14.29 | 133500 | 0.4587 | 0.2971 | | 0.071 | 14.3 | 133600 | 0.4598 | 0.2973 | | 0.071 | 14.31 | 133700 | 0.4579 | 0.2976 | | 0.071 | 14.33 | 133800 | 0.4539 | 0.2969 | | 0.071 | 14.34 | 133900 | 0.4628 | 0.2961 | | 0.0703 | 14.35 | 134000 | 0.4627 | 0.2974 | | 0.0703 | 14.36 | 134100 | 0.4611 | 0.2974 | | 0.0703 | 14.37 | 134200 | 0.4607 | 0.2977 | | 0.0703 | 14.38 | 134300 | 0.4638 | 0.2983 | | 0.0703 | 14.39 | 134400 | 0.4628 | 0.2969 | | 0.0736 | 14.4 | 134500 | 0.4543 | 0.2965 | | 0.0736 | 14.41 | 134600 | 0.4585 | 0.2963 | | 0.0736 | 14.42 | 134700 | 0.4636 | 0.2950 | | 0.0736 | 14.43 | 134800 | 0.4636 | 0.2964 | | 0.0736 | 14.44 | 134900 | 0.4630 | 0.2958 | | 0.0715 | 14.45 | 135000 | 0.4611 | 0.2968 | | 0.0715 | 14.46 | 135100 | 0.4633 | 0.2966 | | 0.0715 | 14.48 | 135200 | 0.4664 | 0.2954 | | 0.0715 | 14.49 | 135300 | 0.4670 | 0.2945 | | 0.0715 | 14.5 | 135400 | 0.4638 | 0.2961 | | 0.073 | 14.51 | 135500 | 0.4635 | 0.2965 | | 0.073 | 14.52 | 135600 | 0.4639 | 0.2956 | | 0.073 | 14.53 | 135700 | 0.4617 | 0.2948 | | 0.073 | 14.54 | 135800 | 0.4609 | 0.2933 | | 0.073 | 14.55 | 135900 | 0.4614 | 0.2947 | | 0.0717 | 14.56 | 136000 | 0.4567 | 0.2958 | | 0.0717 | 14.57 | 136100 | 0.4615 | 0.2934 | | 0.0717 | 14.58 | 136200 | 0.4606 | 0.2929 | | 0.0717 | 14.59 | 136300 | 0.4652 | 0.2934 | | 0.0717 | 14.6 | 136400 | 0.4664 | 0.2934 | | 0.0717 | 14.61 | 136500 | 0.4657 | 0.2923 | | 0.0717 | 14.63 | 136600 | 0.4633 | 0.2931 | | 0.0717 | 14.64 | 136700 | 0.4624 | 0.2943 | | 0.0717 | 14.65 | 136800 | 0.4615 | 0.2949 | | 0.0717 | 14.66 | 136900 | 0.4619 | 0.2930 | | 0.0707 | 14.67 | 137000 | 0.4608 | 0.2936 | | 0.0707 | 14.68 | 137100 | 0.4615 | 0.2945 | | 0.0707 | 14.69 | 137200 | 0.4605 | 0.2941 | | 0.0707 | 14.7 | 137300 | 0.4598 | 0.2931 | | 0.0707 | 14.71 | 137400 | 0.4596 | 0.2943 | | 0.0694 | 14.72 | 137500 | 0.4624 | 0.2927 | | 0.0694 | 14.73 | 137600 | 0.4614 | 0.2931 | | 0.0694 | 14.74 | 137700 | 0.4621 | 0.2924 | | 0.0694 | 14.75 | 137800 | 0.4589 | 0.2920 | | 0.0694 | 14.76 | 137900 | 0.4590 | 0.2926 | | 0.0706 | 14.78 | 138000 | 0.4588 | 0.2931 | | 0.0706 | 14.79 | 138100 | 0.4583 | 0.2928 | | 0.0706 | 14.8 | 138200 | 0.4552 | 0.2934 | | 0.0706 | 14.81 | 138300 | 0.4551 | 0.2923 | | 0.0706 | 14.82 | 138400 | 0.4555 | 0.2927 | | 0.0717 | 14.83 | 138500 | 0.4547 | 0.2930 | | 0.0717 | 14.84 | 138600 | 0.4546 | 0.2930 | | 0.0717 | 14.85 | 138700 | 0.4553 | 0.2934 | | 0.0717 | 14.86 | 138800 | 0.4554 | 0.2924 | | 0.0717 | 14.87 | 138900 | 0.4573 | 0.2924 | | 0.0722 | 14.88 | 139000 | 0.4582 | 0.2927 | | 0.0722 | 14.89 | 139100 | 0.4586 | 0.2926 | | 0.0722 | 14.9 | 139200 | 0.4570 | 0.2926 | | 0.0722 | 14.91 | 139300 | 0.4571 | 0.2923 | | 0.0722 | 14.93 | 139400 | 0.4564 | 0.2925 | | 0.0698 | 14.94 | 139500 | 0.4573 | 0.2927 | | 0.0698 | 14.95 | 139600 | 0.4574 | 0.2927 | | 0.0698 | 14.96 | 139700 | 0.4573 | 0.2927 | | 0.0698 | 14.97 | 139800 | 0.4576 | 0.2921 | | 0.0698 | 14.98 | 139900 | 0.4578 | 0.2923 | | 0.0705 | 14.99 | 140000 | 0.4579 | 0.2928 | | 0.0705 | 15.0 | 140100 | 0.4578 | 0.2927 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": ["sv-SE"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-speechdat", "results": []}]}
automatic-speech-recognition
birgermoell/wav2vec2-speechdat
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv-SE" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-speechdat ================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON\_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: * Loss: 0.4578 * Wer: 0.2927 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 15.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu113 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 58, 159, 4, 40 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.13250194489955902, 0.0668853223323822, -0.002209613099694252, 0.039187654852867126, 0.1353345513343811, -0.0048112450167536736, 0.10550779849290848, 0.13766154646873474, -0.08541721105575562, 0.08948235958814621, 0.09455639868974686, 0.07506321370601654, 0.05965765193104744, 0.10457193851470947, -0.024024801328778267, -0.33244478702545166, 0.021367039531469345, 0.025098169222474098, -0.13681842386722565, 0.11407382786273956, 0.11490131169557571, -0.09650151431560516, 0.021762430667877197, 0.049194857478141785, -0.13007251918315887, 0.007737272884696722, -0.004181026015430689, -0.07373028248548508, 0.11395125836133957, 0.05230306461453438, 0.08914756774902344, 0.01539565809071064, 0.07725261896848679, -0.2549056112766266, 0.012488015927374363, 0.05604174733161926, 0.050987061113119125, 0.07216919958591461, 0.09066146612167358, -0.008539678528904915, 0.13371720910072327, -0.06422951817512512, 0.06938406080007553, 0.07522910088300705, -0.11405466496944427, -0.31705933809280396, -0.0871492549777031, 0.02981797233223915, 0.11996332556009293, 0.0988200232386589, -0.032115597277879715, 0.06985675543546677, -0.06491482257843018, 0.08718698471784592, 0.23015470802783966, -0.2549274265766144, -0.08140875399112701, -0.03652876615524292, 0.05433502048254013, 0.033284541219472885, -0.12747371196746826, -0.023804007098078728, 0.04540909826755524, 0.03588256984949112, 0.08829847723245621, 0.013560697436332703, -0.01330589223653078, 0.001534164883196354, -0.13438762724399567, -0.05407880246639252, 0.15699517726898193, 0.09070857614278793, -0.048932816833257675, -0.0869792103767395, -0.0073048630729317665, -0.2068263739347458, -0.046758562326431274, 0.006675561890006065, 0.028614191338419914, -0.04182315245270729, -0.11866098642349243, 0.014778180047869682, -0.08693231642246246, -0.10082969814538956, 0.017422160133719444, 0.19897954165935516, 0.03538740053772926, -0.029047520831227303, 0.00044392564450390637, 0.09315399825572968, 0.02884094975888729, -0.14530177414417267, -0.0358235128223896, 0.046951230615377426, -0.08447780460119247, -0.018032550811767578, -0.06423085182905197, -0.03169168159365654, -0.0041994014754891396, 0.15046609938144684, -0.023433251306414604, 0.08168478310108185, 0.009294764138758183, 0.022199105471372604, -0.10184106975793839, 0.2013516128063202, -0.050832852721214294, -0.017916252836585045, -0.03872644528746605, 0.07998092472553253, -0.014748298563063145, -0.015966303646564484, -0.05103122442960739, 0.018470430746674538, 0.10519763082265854, 0.043245211243629456, -0.03714151680469513, 0.015852823853492737, -0.053672246634960175, -0.024231422692537308, -0.017860818654298782, -0.10338548570871353, 0.02191365696489811, 0.01836106926202774, -0.07892902940511703, 0.02502310462296009, 0.015289287082850933, 0.02506484091281891, -0.009991593658924103, 0.10511142015457153, -0.08169135451316833, -0.003129886230453849, -0.07396045327186584, -0.10024693608283997, 0.035622112452983856, -0.010117716155946255, 0.008857741951942444, -0.07600564509630203, -0.10475078225135803, -0.05091866850852966, 0.04264916852116585, -0.033032774925231934, -0.07818102836608887, -0.05943650007247925, -0.06841384619474411, 0.05758778005838394, -0.035039693117141724, 0.13145656883716583, -0.054850127547979355, 0.10923197865486145, 0.062461040914058685, 0.04420339688658714, 0.027018798515200615, 0.07030853629112244, -0.05538402125239372, 0.03394271060824394, -0.1476275771856308, 0.07430399954319, -0.09363461285829544, 0.0684540644288063, -0.13346603512763977, -0.13463306427001953, -0.025408221408724785, -0.0014087961753830314, 0.09840293973684311, 0.09521584212779999, -0.15229441225528717, -0.10765617340803146, 0.17133715748786926, -0.0858222171664238, -0.12854710221290588, 0.1347983479499817, -0.011863607913255692, 0.008538078516721725, 0.06000635027885437, 0.17249222099781036, 0.1062663123011589, -0.10102783888578415, -0.007556063588708639, -0.06669662147760391, 0.13483217358589172, 0.009257352910935879, 0.1101059690117836, -0.04571643844246864, -0.0006304886192083359, 0.007709015626460314, -0.046336837112903595, 0.06869446486234665, -0.10239150375127792, -0.08401450514793396, -0.031766846776008606, -0.09022440761327744, 0.006684800144284964, 0.06140388920903206, 0.04639853164553642, -0.10404416173696518, -0.1254485547542572, 0.05758703872561455, 0.11016902327537537, -0.10680752247571945, 0.03767632320523262, -0.08449813723564148, 0.02855793759226799, -0.02541581727564335, -0.021140968427062035, -0.16596205532550812, -0.02459007315337658, 0.02464054897427559, -0.0747087374329567, 0.03959779441356659, -0.04337408021092415, 0.079306460916996, 0.040218159556388855, -0.05398968607187271, -0.059555042535066605, -0.08553000539541245, -0.009736956097185612, -0.06947138905525208, -0.1939040720462799, -0.08347980678081512, -0.017874600365757942, 0.1624775230884552, -0.21479880809783936, 0.014628131873905659, 0.02012620121240616, 0.11266638338565826, 0.028971606865525246, -0.055387526750564575, -0.01275172084569931, 0.0764075219631195, -0.021062396466732025, -0.05727045610547066, 0.022786060348153114, 0.017410604283213615, -0.13055260479450226, 0.01671355962753296, -0.12153813987970352, 0.11137893050909042, 0.10285785049200058, -0.02324771136045456, -0.06540428847074509, -0.03948400169610977, -0.0706339180469513, -0.05945202708244324, -0.0240461602807045, -0.024993939325213432, 0.16460980474948883, 0.024874815717339516, 0.121311716735363, -0.07914771884679794, -0.040614377707242966, 0.037794943898916245, -0.0017561536515131593, -0.002772382227703929, 0.10872729122638702, 0.04728715121746063, -0.030512236058712006, 0.09199324250221252, 0.06206390634179115, -0.09349747747182846, 0.15204210579395294, -0.07646306604146957, -0.12023632973432541, -0.024130217730998993, 0.015411538071930408, 0.04498543217778206, 0.10285166651010513, -0.15402869880199432, -0.0008266653749160469, 0.021350394934415817, 0.033185966312885284, 0.026302315294742584, -0.2066614180803299, -0.01141156442463398, 0.04809874668717384, -0.0719810277223587, -0.06304917484521866, 0.004664205014705658, -0.014766020700335503, 0.07728435844182968, 0.012599486857652664, -0.04385443404316902, -0.013304227963089943, -0.025384705513715744, -0.09122230112552643, 0.19519194960594177, -0.0851224884390831, -0.15013255178928375, -0.16171404719352722, -0.045818667858839035, -0.02366764470934868, -0.0038629728369414806, 0.06076864153146744, -0.11166933178901672, -0.04163889214396477, -0.04809047654271126, 0.056335873901844025, -0.05557176098227501, 0.04315084591507912, 0.016748378053307533, 0.008385512977838516, 0.09828425943851471, -0.11691930890083313, 0.01848180964589119, -0.013277360238134861, -0.04654602333903313, 0.003570080269128084, 0.01754065975546837, 0.10879185050725937, 0.17119891941547394, 0.03700268268585205, 0.025763442739844322, -0.038721028715372086, 0.18903851509094238, -0.11370182782411575, -0.04753221943974495, 0.1219673901796341, 0.020117269828915596, 0.03415118530392647, 0.10272222757339478, 0.06215117126703262, -0.09169083088636398, 0.03433660417795181, 0.05079195648431778, -0.026815252378582954, -0.24519066512584686, -0.03355332091450691, -0.07854495197534561, -0.019299695268273354, 0.11551311612129211, 0.03153637796640396, 0.039956167340278625, 0.02901376225054264, -0.02017555572092533, 0.009974395856261253, 0.007384869735687971, 0.0830732062458992, 0.11791469156742096, 0.055283546447753906, 0.12643268704414368, -0.02347397617995739, -0.03289756923913956, 0.023262154310941696, -0.009535637684166431, 0.2469460666179657, 0.033026907593011856, 0.17842954397201538, 0.052690453827381134, 0.13894023001194, 0.014153112657368183, 0.09491374343633652, 0.022553037852048874, -0.032482367008924484, 0.0315699428319931, -0.060097020119428635, -0.033749260008335114, 0.039913564920425415, 0.07485790550708771, 0.046378593891859055, -0.14198049902915955, -0.04249076917767525, 0.007249187678098679, 0.35699543356895447, 0.08297497779130936, -0.3117411732673645, -0.12609054148197174, -0.0022141935769468546, -0.09374178946018219, -0.04618295654654503, 0.03672757372260094, 0.06957169622182846, -0.09413834661245346, 0.07340872287750244, -0.06988906115293503, 0.107953280210495, -0.02835831418633461, 0.0014093738282099366, 0.0756266638636589, 0.06032392755150795, -0.010854551568627357, 0.05742020905017853, -0.2568429112434387, 0.2943805158138275, -0.020738529041409492, 0.0944678783416748, -0.022457826882600784, 0.027457362040877342, 0.038009438663721085, -0.03355742245912552, 0.04885221645236015, -0.016352113336324692, -0.08964117616415024, -0.19916442036628723, -0.06395503133535385, 0.03426572307944298, 0.13061431050300598, -0.05409819260239601, 0.13373327255249023, -0.03536820784211159, -0.0035659384448081255, 0.06986553221940994, -0.07050897926092148, -0.11837465316057205, -0.0929614007472992, 0.0259659755975008, 0.04824702814221382, 0.12027539312839508, -0.10184574127197266, -0.11453685164451599, -0.05336468666791916, 0.13682310283184052, -0.08334597945213318, -0.012236854061484337, -0.1261838674545288, 0.08253505080938339, 0.1776382178068161, -0.06953875720500946, 0.06359177082777023, 0.020230278372764587, 0.1408964842557907, 0.038058798760175705, -0.00834337156265974, 0.09793519973754883, -0.07787788659334183, -0.19348080456256866, -0.03784453868865967, 0.17828086018562317, 0.023007551208138466, 0.06990553438663483, -0.020192256197333336, 0.031593263149261475, -0.022410091012716293, -0.08657650649547577, 0.04320818558335304, -0.017347773537039757, -0.029463106766343117, 0.06107235327363014, -0.019762450829148293, 0.03135620057582855, -0.08491834998130798, -0.05693129450082779, 0.14830607175827026, 0.28867608308792114, -0.06927461922168732, 0.0014161925064399838, 0.04008377715945244, -0.03554639592766762, -0.12216073274612427, 0.01995725929737091, 0.14200100302696228, 0.03577795624732971, 0.0014523169957101345, -0.21877415478229523, 0.0755755677819252, 0.09643758833408356, -0.028703976422548294, 0.09579737484455109, -0.28599193692207336, -0.14240238070487976, 0.110760398209095, 0.0841493234038353, -0.0027206402737647295, -0.15925417840480804, -0.07057826966047287, -0.03052222728729248, -0.13071727752685547, 0.08380389958620071, -0.005698198452591896, 0.1325247436761856, -0.0034777314867824316, 0.07678452879190445, 0.021784745156764984, -0.042011942714452744, 0.15756405889987946, -0.0033837787341326475, 0.0376315638422966, 0.0019481105264276266, 0.05925630033016205, 0.019567767158150673, -0.05275748670101166, 0.026662204414606094, -0.07043351978063583, 0.01569337770342827, -0.13710908591747284, -0.04417050629854202, -0.09398029744625092, 0.02527429908514023, -0.03001214563846588, -0.033410362899303436, -0.0225395355373621, 0.03206080570816994, 0.0549197793006897, 0.011217300780117512, 0.15669459104537964, -0.05279717966914177, 0.17971408367156982, 0.08833809942007065, 0.09571078419685364, -0.022809041664004326, -0.10397709161043167, -0.007665228098630905, -0.018314091488718987, 0.05840623006224632, -0.13794274628162384, 0.03704153001308441, 0.14305806159973145, 0.06361176073551178, 0.1532175987958908, 0.06838435679674149, -0.06895998120307922, 0.028903905302286148, 0.07602794468402863, -0.059311725199222565, -0.13582497835159302, -0.027247203513979912, 0.05237109959125519, -0.1593814194202423, 0.030303509905934334, 0.1052277609705925, -0.06945886462926865, -0.0019402424804866314, 0.012175059877336025, 0.00595500972121954, -0.07219234108924866, 0.23383130133152008, 0.042398735880851746, 0.08352702111005783, -0.09509003162384033, 0.06883374601602554, 0.04826192185282707, -0.1533094048500061, 0.007416239473968744, 0.07193465530872345, -0.035012684762477875, -0.004910257179290056, -0.013515894301235676, 0.038534604012966156, -0.04277585819363594, -0.06279813498258591, -0.13049881160259247, -0.15296974778175354, 0.09102733433246613, 0.11157193034887314, 0.03682345896959305, 0.03590014949440956, -0.04869022220373154, 0.06298480927944183, -0.11775247752666473, 0.08067413419485092, 0.0919884517788887, 0.07857383042573929, -0.13968519866466522, 0.14887817203998566, 0.014460377395153046, 0.010968534275889397, 0.007889356464147568, -0.022969288751482964, -0.08546479046344757, 0.032205790281295776, -0.11913362145423889, -0.03892243281006813, -0.050200577825307846, -0.004712202586233616, 0.011664288118481636, -0.07332389801740646, -0.0854790136218071, 0.03359675034880638, -0.12228208035230637, -0.04945136979222298, -0.005791433155536652, 0.0684647485613823, -0.10598361492156982, -0.0082022063434124, 0.06531314551830292, -0.11861112713813782, 0.07862108200788498, 0.06987041980028152, 0.019840260967612267, 0.057941339910030365, -0.09295038878917694, 0.01591518707573414, 0.053494058549404144, -0.007564228493720293, 0.017808660864830017, -0.16749125719070435, -0.009245221503078938, -0.0066556320525705814, 0.061394885182380676, 0.0003277557552792132, 0.013601860962808132, -0.13327457010746002, -0.05208481103181839, -0.027465417981147766, -0.04837173596024513, -0.053892333060503006, 0.03133011236786842, 0.0634661465883255, 0.060687385499477386, 0.16585640609264374, -0.08231581747531891, 0.03915480151772499, -0.233186274766922, 0.016380684450268745, -0.04289096221327782, -0.07627616077661514, -0.06861869990825653, -0.02588389627635479, 0.07746395468711853, -0.05588173121213913, 0.08119595050811768, -0.07262147217988968, 0.075106680393219, 0.046345360577106476, -0.08622237294912338, 0.025458157062530518, 0.030195558443665504, 0.2774602472782135, 0.0730249360203743, -0.024079184979200363, 0.08792401850223541, 0.0023742488119751215, 0.058279868215322495, 0.14857861399650574, 0.15339145064353943, 0.15661588311195374, 0.00499439612030983, 0.10250025242567062, 0.0671669989824295, -0.08313239365816116, -0.13645638525485992, 0.08026453852653503, -0.012426715344190598, 0.12464886158704758, 0.007977939210832119, 0.2355078160762787, 0.1251325011253357, -0.19255538284778595, 0.061153121292591095, -0.030797353014349937, -0.0842016413807869, -0.10373345762491226, -0.03837282955646515, -0.07404538244009018, -0.20227381587028503, 0.0171409510076046, -0.1245688945055008, 0.06741881370544434, 0.06024123728275299, 0.033240314573049545, 0.02085401862859726, 0.15251560509204865, 0.029856223613023758, -0.012060618959367275, 0.11522406339645386, -0.011989543214440346, -0.016363071277737617, -0.05087558552622795, -0.09730128198862076, 0.04727957397699356, -0.027950048446655273, 0.054688647389411926, -0.047669969499111176, -0.11408255994319916, 0.06195446103811264, 0.007749210111796856, -0.11323914676904678, 0.021124020218849182, 0.006507029756903648, 0.07704897224903107, 0.07784511893987656, 0.025181569159030914, -0.002052042866125703, -0.014340190216898918, 0.25288787484169006, -0.11084531247615814, -0.05633923038840294, -0.13747534155845642, 0.24064387381076813, 0.03428688645362854, -0.017571846023201942, 0.010188461281359196, -0.07536600530147552, -0.017612913623452187, 0.1615016907453537, 0.10240724682807922, 0.009853215888142586, -0.02605278417468071, -0.002241380512714386, -0.015414186753332615, -0.04126515984535217, 0.07999547570943832, 0.11890467256307602, 0.07579698413610458, -0.0520157553255558, -0.028533997014164925, -0.05079684033989906, -0.055908460170030594, -0.012436742894351482, 0.0720594972372055, 0.014842130243778229, -0.02765788324177265, -0.02731212228536606, 0.129679337143898, -0.07054952532052994, -0.10202670842409134, 0.01611930876970291, -0.17580349743366241, -0.178365558385849, -0.040057916194200516, 0.03824243322014809, 0.035991448909044266, 0.05514710396528244, -0.014034518972039223, -0.02913382090628147, 0.1043119803071022, 0.0042246803641319275, -0.0460100993514061, -0.13851693272590637, 0.09879609942436218, -0.06369531899690628, 0.18656738102436066, -0.03841014578938484, 0.03291134536266327, 0.11332253366708755, 0.08269841223955154, -0.07592230290174484, 0.05138220265507698, 0.06969599425792694, -0.1436411589384079, 0.04596259072422981, 0.19841907918453217, -0.041332535445690155, 0.14041060209274292, 0.025888657197356224, -0.1559188961982727, 0.01175992377102375, -0.06529903411865234, -0.045927390456199646, -0.07550480216741562, -0.02792610041797161, -0.05131090432405472, 0.12166745215654373, 0.21608398854732513, -0.08298676460981369, -0.030144203454256058, -0.0534842275083065, 0.01870790310204029, 0.06253895908594131, 0.12334469705820084, -0.05018370598554611, -0.296786367893219, 0.01466682180762291, 0.014600170776247978, -0.006112460047006607, -0.2637186646461487, -0.09304900467395782, 0.03895982354879379, -0.06825409829616547, -0.025470590218901634, 0.11768881976604462, 0.06657704710960388, 0.034422796219587326, -0.04938029125332832, -0.11782252788543701, -0.03772309422492981, 0.20398901402950287, -0.1810554563999176, -0.07560206949710846 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice). The training data amounts to 402 MB. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 36.91 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1KkD4PeZwnIwxxxOP1bUE7XTZMK7-SzRj?usp=sharing)
{"language": "sv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Swedish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sv-SE", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 36.91, "name": "Test WER"}]}]}]}
automatic-speech-recognition
birgermoell/wav2vec2-swedish-common-voice
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice. The training data amounts to 402 MB. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. Test Result: 36.91 % ## Training The Common Voice 'train', 'validation' datasets were used for training. The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice. The training data amounts to 402 MB.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\n\n\nTest Result: 36.91 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice. The training data amounts to 402 MB.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\n\n\nTest Result: 36.91 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ 80, 73, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice. The training data amounts to 402 MB.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\n\n\nTest Result: 36.91 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ -0.17753846943378448, 0.023915262892842293, -0.0012993579730391502, -0.014094054698944092, 0.07853042334318161, -0.0756961852312088, 0.12540803849697113, 0.09385199844837189, -0.06869460642337799, 0.004628640599548817, 0.056321196258068085, -0.02703750506043434, 0.0829947292804718, 0.11619453132152557, -0.008712762035429478, -0.198263481259346, 0.015637101605534554, -0.0044322446919977665, 0.06482444703578949, 0.10767514258623123, 0.12098342925310135, -0.06143202632665634, -0.024422455579042435, 0.061924878507852554, -0.14241935312747955, 0.03270883858203888, 0.0538003034889698, -0.09652552753686905, 0.13763907551765442, 0.06295956671237946, 0.0534687303006649, 0.06787263602018356, 0.10802165418863297, -0.1810411959886551, 0.021707890555262566, 0.013279602862894535, 0.044819753617048264, 0.016949106007814407, 0.055605698376894, 0.03743252158164978, 0.08390767872333527, 0.0730152279138565, -0.049464285373687744, 0.08396010845899582, -0.021958524361252785, -0.22534538805484772, -0.017724130302667618, -0.00037608237471431494, 0.1053897812962532, 0.12415305525064468, -0.0749364048242569, 0.08133701235055923, -0.15089137852191925, 0.10351680219173431, 0.07778321951627731, -0.17513388395309448, 0.0002987574553117156, 0.12664340436458588, 0.07972270995378494, 0.08494547009468079, -0.06647839397192001, 0.05984517186880112, 0.06198578327894211, 0.03215201944112778, 0.03887559846043587, -0.023677708581089973, -0.23660285770893097, -0.03498721122741699, -0.13429738581180573, -0.014059922657907009, 0.2436891496181488, 0.00015121142496354878, -0.08942227065563202, -0.1298273503780365, 0.014975432306528091, -0.00020246466738171875, 0.021892234683036804, -0.051704827696084976, -0.0029014453757554293, 0.02139449678361416, -0.03815620020031929, -0.04884568601846695, -0.1327352225780487, -0.1535017043352127, 0.03422683849930763, 0.01089046336710453, 0.005497020669281483, 0.015212480910122395, -0.08907396346330643, 0.07430663704872131, -0.12428802996873856, -0.06882423907518387, -0.030136795714497566, 0.01838362216949463, -0.08427857607603073, -0.007642708253115416, -0.09299181401729584, -0.2214541882276535, 0.030898919329047203, -0.023057883605360985, 0.06771102547645569, 0.0038048254791647196, -0.0225748959928751, 0.057535018771886826, 0.029082948341965675, 0.13012701272964478, -0.06283817440271378, -0.057170320302248, 0.02892620675265789, -0.0038295213598757982, -0.04039799049496651, -0.018644297495484352, -0.08119833469390869, -0.07641937583684921, 0.07558884471654892, 0.056332703679800034, -0.0489506796002388, -0.00436897948384285, -0.022990891709923744, -0.006603884510695934, 0.0065240575931966305, -0.10830055177211761, -0.030308887362480164, 0.06440495699644089, -0.03354693204164505, 0.07945244014263153, 0.04370688274502754, 0.06091633439064026, -0.10186272859573364, -0.012593557126820087, 0.03030536323785782, 0.05341706424951553, -0.006673954427242279, -0.1232110857963562, 0.037929002195596695, -0.05801219120621681, -0.0070081125013530254, -0.08086585253477097, -0.11512526869773865, -0.10854069888591766, -0.009705676697194576, 0.03413429856300354, -0.011851243674755096, -0.1270621418952942, -0.02787960134446621, -0.00829029455780983, -0.07781261205673218, 0.13424214720726013, -0.04837651923298836, 0.05258765444159508, 0.0026035141199827194, 0.050345856696367264, 0.022978896275162697, 0.06452027708292007, -0.08457713574171066, -0.07169239968061447, 0.022389104589819908, 0.14702485501766205, -0.053644850850105286, -0.059194911271333694, -0.08662287890911102, -0.0854843333363533, -0.03581400215625763, 0.07700931280851364, 0.06264917552471161, 0.11752767860889435, -0.3010178208351135, -0.08714856952428818, 0.22017119824886322, -0.13073667883872986, -0.01568840816617012, 0.19884292781352997, 0.005492347292602062, 0.09321650117635727, 0.17054906487464905, 0.24195486307144165, 0.0998506024479866, -0.20589329302310944, 0.014457190409302711, 0.031249502673745155, -0.02494298294186592, -0.1076839342713356, 0.09158263355493546, -0.05949220433831215, 0.014359730295836926, 0.0376008078455925, -0.06912162154912949, 0.05227464810013771, -0.01903357170522213, -0.050572168081998825, -0.00828381348401308, -0.08204104006290436, -0.009710812009871006, 0.04754098877310753, 0.012762721627950668, -0.06432714313268661, -0.05486690625548363, 0.055389419198036194, 0.09952566027641296, -0.13662917912006378, 0.062300924211740494, -0.05730399116873741, 0.0525377131998539, -0.08497017621994019, -0.0178002268075943, -0.12676599621772766, 0.14912091195583344, -0.024456607177853584, 0.0863463431596756, 0.03800150007009506, 0.1949397474527359, 0.029731595888733864, 0.03132361173629761, -0.047300711274147034, -0.003516237484291196, 0.008066799491643906, -0.036214619874954224, -0.04279814660549164, -0.07997148483991623, -0.03544911369681358, -0.07201871275901794, 0.10592658817768097, -0.18950214982032776, -0.008605469018220901, 0.03988471254706383, 0.0017422330565750599, 0.007174855563789606, -0.034744735807180405, 0.09201537817716599, 0.07352686673402786, 0.006944369524717331, 0.0033066016621887684, 0.02828548476099968, 0.0151869161054492, -0.08289919048547745, 0.14939218759536743, -0.09011361747980118, -0.02832406386733055, 0.10238314419984818, -0.01077154092490673, -0.006064180284738541, 0.002449149964377284, -0.0175591092556715, -0.01995416358113289, -0.10780991613864899, -0.02615460939705372, 0.22595608234405518, -0.0005977234686724842, 0.10693617910146713, -0.11575858294963837, -0.0012412688229233027, 0.021151773631572723, -0.10008092224597931, 0.03646198287606239, 0.0648898258805275, -0.031389378011226654, -0.00534725422039628, 0.006483543664216995, -0.09934299439191818, -0.09776651114225388, 0.2826293706893921, -0.023815618827939034, -0.10853984206914902, 0.046490378677845, -0.024439338594675064, -0.022491147741675377, 0.06823180615901947, -0.1082427054643631, -0.04217151924967766, 0.03818054869771004, 0.06181525066494942, 0.06907178461551666, -0.15354137122631073, 0.012201881036162376, 0.004369107075035572, -0.14943544566631317, -0.1418587565422058, 0.05618144944310188, -0.0690431147813797, 0.04342389479279518, -0.10306531935930252, -0.050157397985458374, -0.01461345236748457, -0.04405396059155464, -0.18321837484836578, 0.14086611568927765, -0.08192607015371323, -0.21038301289081573, -0.1722436100244522, 0.06991389393806458, 0.02624218352138996, 0.03849980607628822, 0.09491438418626785, -0.11531121283769608, -0.017021048814058304, -0.05487179756164551, 0.09300082921981812, 0.02690064162015915, -0.02101641707122326, -0.05667531490325928, 0.04005968198180199, 0.07023242115974426, -0.14611926674842834, 0.019982364028692245, -0.07502161711454391, -0.031190384179353714, -0.002306002890691161, -0.02219812572002411, 0.02355358563363552, 0.1624949723482132, 0.019669372588396072, 0.012465848587453365, -0.028684986755251884, 0.15964561700820923, -0.0629907175898552, -0.0018868447514250875, 0.19712254405021667, 0.0035544477868825197, -0.02921304479241371, 0.09980642050504684, 0.0102390106767416, -0.05367463082075119, -0.0064402176067233086, -0.017145279794931412, -0.09075827151536942, -0.2557574510574341, -0.09210103005170822, -0.05078568309545517, -0.06120435148477554, -0.023059073835611343, 0.014879160560667515, 0.010875103995203972, 0.02423783391714096, -0.034663908183574677, -0.1137700080871582, 0.08288611471652985, -0.010507120750844479, 0.037007201462984085, -0.0018880084389820695, 0.10405687242746353, -0.038749851286411285, 0.01428925059735775, 0.02691400982439518, 0.026880431920289993, 0.1122017651796341, 0.009792005643248558, 0.058569930493831635, 0.0657917782664299, 0.07702776044607162, 0.08182892948389053, 0.07764802128076553, -0.03190828859806061, -0.02777000144124031, 0.025885893031954765, -0.06795515865087509, -0.0742163211107254, 0.04439171031117439, 0.1481284201145172, -0.04168160632252693, -0.058832403272390366, 0.0054725054651498795, 0.011264648288488388, 0.17023766040802002, 0.130621537566185, -0.21375654637813568, -0.11124033480882645, -0.01558460108935833, -0.062189362943172455, -0.002816982101649046, 0.032170090824365616, 0.2076949030160904, -0.12697799503803253, 0.033567819744348526, 0.0060704415664076805, 0.10501094907522202, 0.014599247835576534, 0.02489832602441311, -0.08503834903240204, 0.03514431044459343, -0.0008673053234815598, 0.09537075459957123, -0.2511741816997528, 0.1893116533756256, 0.00028045690851286054, 0.16453804075717926, -0.05303904414176941, -0.000161831863806583, -0.01767887733876705, 0.05944313481450081, 0.1417938619852066, 0.021160544827580452, -0.024939801543951035, -0.07349932938814163, -0.07703616470098495, 0.04407425969839096, -0.02455214224755764, 0.03849489986896515, 0.03655650466680527, 0.024561652913689613, 0.015674810856580734, -0.0077606323175132275, -0.07850810885429382, -0.1406906247138977, -0.01733209565281868, -0.014193147420883179, 0.16219784319400787, 0.10448842495679855, -0.029082445427775383, -0.08770101517438889, -0.11878052353858948, 0.10525866597890854, -0.13043706119060516, -0.08373961597681046, -0.07476098090410233, 0.015434300526976585, 0.07687364518642426, -0.06079544126987457, -0.01770588755607605, 0.10405932366847992, 0.1373867690563202, -0.060348376631736755, -0.005049673840403557, 0.051889918744564056, -0.10702476650476456, -0.10313782095909119, 0.00021613930584862828, 0.21175388991832733, 0.09214448928833008, 0.0666717141866684, 0.06928703933954239, 0.013161585666239262, 0.0014818753115832806, -0.04462774097919464, 0.03361550718545914, 0.08723202347755432, -0.055224381387233734, 0.0024207530077546835, 0.02849196456372738, -0.15838922560214996, -0.0870160311460495, -0.057061538100242615, 0.17855553328990936, 0.10234842449426651, -0.05935794860124588, 0.1664905846118927, 0.22814764082431793, -0.08111841976642609, -0.24118672311306, 0.00040606819675303996, 0.12877368927001953, 0.14349375665187836, -0.010762709192931652, -0.15626434981822968, 0.0619218535721302, 0.014852190390229225, -0.032571449875831604, -0.08291296660900116, -0.26947471499443054, -0.15533235669136047, 0.10358002036809921, -0.02685326151549816, 0.1383783519268036, 0.023735444992780685, -0.02967502921819687, -0.028271472081542015, -0.012112187221646309, -0.007917330600321293, -0.13097812235355377, 0.12411026656627655, 0.03363877162337303, 0.06630843877792358, 0.04723498597741127, -0.049596838653087616, 0.0849185660481453, 0.09128597378730774, -0.02088462933897972, -0.016405386850237846, 0.1161547303199768, 0.03280258551239967, -0.001508615561760962, 0.18088044226169586, -0.1247950941324234, 0.0247438233345747, -0.10661023110151291, -0.1014569103717804, -0.08258771151304245, 0.09803879261016846, 0.014988973736763, -0.046641308814287186, 0.028393689543008804, -0.02372717298567295, 0.02300698310136795, -0.0007016687304712832, -0.03286005184054375, -0.16734541952610016, 0.04144057258963585, 0.17901693284511566, 0.190363347530365, -0.03556256368756294, -0.0573396198451519, 0.0036006225273013115, -0.0319780558347702, 0.12077432870864868, -0.08054126799106598, 0.03099617175757885, 0.06795200705528259, 0.03523116558790207, 0.11774668097496033, -0.009687148965895176, -0.10024510324001312, 0.0742429867386818, 0.0399361327290535, -0.05884106457233429, -0.08038561791181564, -0.03814777731895447, -0.09707777947187424, -0.03503871336579323, 0.03436117619276047, 0.12035038322210312, -0.10568877309560776, -0.00006984526407904923, -0.03620113804936409, 0.04567255452275276, -0.12833230197429657, 0.2542356252670288, 0.043682098388671875, 0.09111680835485458, -0.11321405321359634, 0.058539435267448425, -0.024514874443411827, -0.017414573580026627, 0.06955955922603607, -0.021155590191483498, -0.08794432133436203, -0.044990174472332, 0.018206872045993805, 0.07777151465415955, 0.04184233024716377, -0.1433960497379303, -0.06500369310379028, -0.10705069452524185, 0.013098285533487797, 0.031954750418663025, 0.05285979062318802, 0.0194440595805645, -0.08845096826553345, -0.07341773808002472, -0.10730771720409393, 0.05812970921397209, 0.08534044772386551, -0.02864304929971695, -0.09307163953781128, 0.21785730123519897, 0.04209364950656891, 0.020992686972022057, -0.04553419351577759, -0.04085250571370125, 0.0039014483336359262, 0.07934629917144775, -0.07850778847932816, 0.004147831816226244, -0.03032604046165943, 0.017731718719005585, -0.02787019871175289, -0.0693286582827568, -0.0074441032484173775, 0.10212291777133942, -0.07993638515472412, 0.061926644295454025, -0.044488418847322464, 0.0430697537958622, -0.0921834260225296, 0.006846628617495298, -0.007048608269542456, -0.03503984957933426, 0.06626062095165253, 0.10367055237293243, -0.09471995383501053, 0.14389361441135406, -0.20613409578800201, -0.040071628987789154, 0.08711137622594833, 0.04120178148150444, -0.0326358824968338, -0.054769497364759445, 0.02157813124358654, 0.09772810339927673, 0.04778283089399338, -0.010976041667163372, 0.05575378239154816, -0.04356446489691734, -0.03450462594628334, -0.05700410157442093, 0.005933245178312063, -0.03942008689045906, 0.07932069897651672, 0.06559731811285019, 0.15058238804340363, 0.16328322887420654, -0.11494658142328262, 0.0797492042183876, -0.1385994553565979, 0.01223425380885601, -0.03539666905999184, -0.032608941197395325, -0.164026141166687, -0.050073541700839996, 0.075843445956707, -0.05894704908132553, 0.09613033384084702, 0.030553733929991722, 0.03298871964216232, -0.019583838060498238, -0.0660831555724144, 0.03260781988501549, -0.004839912988245487, 0.24803154170513153, 0.03164658695459366, 0.03051009774208069, -0.017874332144856453, -0.0013288763584569097, 0.03737788647413254, 0.10747220367193222, 0.05758362635970116, 0.1204335168004036, 0.01589120738208294, 0.11429739743471146, 0.07490045577287674, -0.03833192586898804, -0.07217026501893997, 0.007348765153437853, -0.09923727810382843, 0.031331803649663925, -0.052789248526096344, 0.11894416809082031, 0.15671753883361816, -0.12201704829931259, 0.050531696528196335, 0.03578022122383118, -0.10586301982402802, -0.17441043257713318, -0.17119015753269196, -0.08547879010438919, -0.0920054242014885, 0.033525869250297546, -0.10251474380493164, 0.02681058831512928, 0.016409175470471382, 0.05530982092022896, -0.028251999989151955, 0.148219034075737, -0.005239277612417936, -0.10614795237779617, 0.08710632473230362, -0.09584592282772064, 0.012936181388795376, -0.04399929195642471, 0.025165949016809464, 0.19888727366924286, 0.023615308105945587, 0.07177908718585968, 0.006562486290931702, -0.023877689614892006, 0.016092870384454727, -0.06536052376031876, -0.05738462507724762, -0.016071747988462448, 0.004897445440292358, 0.10259320586919785, 0.10592544078826904, 0.1381714940071106, -0.08739568293094635, 0.014926805160939693, 0.13275323808193207, -0.040723856538534164, -0.14407290518283844, -0.16094428300857544, 0.1264200359582901, 0.03759106621146202, 0.052954353392124176, -0.007459146436303854, -0.04726275056600571, 0.017222454771399498, 0.207274928689003, 0.21943673491477966, 0.07102585583925247, 0.021670054644346237, -0.05415090173482895, -0.016978606581687927, -0.02976962924003601, 0.07776752859354019, 0.047689225524663925, 0.14690761268138885, -0.00799337588250637, 0.059671591967344284, -0.0627199113368988, -0.08377228677272797, -0.0068408045917749405, 0.04444966837763786, -0.0853743627667427, -0.0885901004076004, -0.006685018539428711, 0.1521579474210739, -0.026476750150322914, -0.11800572276115417, -0.10755894333124161, -0.028123049065470695, -0.09994541853666306, -0.000797871733084321, 0.04049893468618393, 0.11606824398040771, 0.0113188112154603, -0.0559375025331974, 0.06547371298074722, 0.09903373569250107, -0.013662684708833694, -0.046184297651052475, -0.05407540500164032, 0.02787916548550129, -0.060765590518713, 0.014204154722392559, 0.007171113044023514, 0.16014821827411652, 0.014715561643242836, 0.08331809192895889, -0.023951413109898567, 0.1683340221643448, -0.02162310667335987, -0.058780230581760406, 0.04899658262729645, 0.16985730826854706, -0.04632841423153877, 0.13029037415981293, 0.008092780597507954, -0.1345101296901703, 0.026028793305158615, -0.12358077615499496, -0.02221859060227871, -0.07970690727233887, 0.07705877721309662, -0.037628889083862305, 0.1017235741019249, 0.09407737106084824, -0.06301025301218033, -0.04287301003932953, -0.07802947610616684, 0.06785678118467331, 0.011417032219469547, -0.05106659606099129, -0.021016554906964302, -0.23897822201251984, -0.010893693193793297, -0.06078362092375755, -0.0084082568064332, -0.166608065366745, 0.0006273089675232768, -0.03304430469870567, -0.08413341641426086, 0.01480211690068245, 0.05926201120018959, 0.09124504029750824, 0.004645723849534988, -0.002414221875369549, 0.003237250493839383, 0.07472924143075943, 0.11228267103433609, -0.17917516827583313, -0.1257753074169159 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 530615016 - CO2 Emissions (in grams): 2.2247356264808964 ## Validation Metrics - Loss: 0.7859578132629395 - Accuracy: 0.676854818831649 - Macro F1: 0.3297126297995653 - Micro F1: 0.676854818831649 - Weighted F1: 0.6429522696884535 - Macro Precision: 0.33152557743856437 - Micro Precision: 0.676854818831649 - Weighted Precision: 0.6276125515413322 - Macro Recall: 0.33784302289888885 - Micro Recall: 0.676854818831649 - Weighted Recall: 0.676854818831649 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bitmorse/autonlp-ks-530615016 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bitmorse/autonlp-data-ks"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 2.2247356264808964}
text-classification
bitmorse/autonlp-ks-530615016
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:bitmorse/autonlp-data-ks", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-bitmorse/autonlp-data-ks #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 530615016 - CO2 Emissions (in grams): 2.2247356264808964 ## Validation Metrics - Loss: 0.7859578132629395 - Accuracy: 0.676854818831649 - Macro F1: 0.3297126297995653 - Micro F1: 0.676854818831649 - Weighted F1: 0.6429522696884535 - Macro Precision: 0.33152557743856437 - Micro Precision: 0.676854818831649 - Weighted Precision: 0.6276125515413322 - Macro Recall: 0.33784302289888885 - Micro Recall: 0.676854818831649 - Weighted Recall: 0.676854818831649 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 530615016\n- CO2 Emissions (in grams): 2.2247356264808964", "## Validation Metrics\n\n- Loss: 0.7859578132629395\n- Accuracy: 0.676854818831649\n- Macro F1: 0.3297126297995653\n- Micro F1: 0.676854818831649\n- Weighted F1: 0.6429522696884535\n- Macro Precision: 0.33152557743856437\n- Micro Precision: 0.676854818831649\n- Weighted Precision: 0.6276125515413322\n- Macro Recall: 0.33784302289888885\n- Micro Recall: 0.676854818831649\n- Weighted Recall: 0.676854818831649", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-bitmorse/autonlp-data-ks #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 530615016\n- CO2 Emissions (in grams): 2.2247356264808964", "## Validation Metrics\n\n- Loss: 0.7859578132629395\n- Accuracy: 0.676854818831649\n- Macro F1: 0.3297126297995653\n- Micro F1: 0.676854818831649\n- Weighted F1: 0.6429522696884535\n- Macro Precision: 0.33152557743856437\n- Micro Precision: 0.676854818831649\n- Weighted Precision: 0.6276125515413322\n- Macro Recall: 0.33784302289888885\n- Micro Recall: 0.676854818831649\n- Weighted Recall: 0.676854818831649", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 68, 43, 145, 17 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-bitmorse/autonlp-data-ks #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 530615016\n- CO2 Emissions (in grams): 2.2247356264808964## Validation Metrics\n\n- Loss: 0.7859578132629395\n- Accuracy: 0.676854818831649\n- Macro F1: 0.3297126297995653\n- Micro F1: 0.676854818831649\n- Weighted F1: 0.6429522696884535\n- Macro Precision: 0.33152557743856437\n- Micro Precision: 0.676854818831649\n- Weighted Precision: 0.6276125515413322\n- Macro Recall: 0.33784302289888885\n- Micro Recall: 0.676854818831649\n- Weighted Recall: 0.676854818831649## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.08854322135448456, 0.17336268723011017, -0.0041908081620931625, 0.07902895659208298, 0.08892913907766342, 0.05166678503155708, 0.07989572733640671, 0.137925922870636, 0.03323274105787277, 0.1475956290960312, 0.11911827325820923, 0.17107145488262177, 0.06359871476888657, 0.18564507365226746, -0.0861060842871666, -0.13038060069084167, 0.03530771657824516, -0.009172946214675903, 0.055341269820928574, 0.0713689997792244, 0.0847700759768486, -0.06186734884977341, 0.11733318120241165, -0.012930815108120441, -0.08922033756971359, 0.021625494584441185, 0.074391670525074, -0.08203987777233124, 0.06318380683660507, 0.10400770604610443, 0.11143515259027481, -0.014622840099036694, 0.0743485540151596, -0.150966614484787, -0.02398049458861351, 0.0555831603705883, -0.03263416513800621, 0.08307236433029175, 0.15363164246082306, 0.002519124886021018, 0.046004053205251694, -0.09493617713451385, 0.08856143057346344, 0.08230426162481308, -0.0895056277513504, -0.08911720663309097, -0.11729804426431656, 0.05021843686699867, 0.10863515734672546, 0.06938358396291733, -0.005406711250543594, 0.17278286814689636, -0.04837700352072716, 0.08320876210927963, 0.014997171238064766, -0.23187124729156494, -0.02890072390437126, 0.1542617529630661, -0.01716676354408264, -0.03344763070344925, -0.012050851248204708, -0.005105938296765089, 0.05480936914682388, 0.011071907356381416, 0.0030706548132002354, -0.057919032871723175, -0.051984354853630066, -0.026909632608294487, -0.12276475131511688, -0.057712193578481674, 0.1820918321609497, 0.031885772943496704, -0.07745273411273956, -0.08785136044025421, -0.06820923089981079, -0.11497233808040619, -0.04266982525587082, -0.037266798317432404, 0.005200835410505533, -0.02732609212398529, -0.005732336547225714, 0.0828685462474823, -0.04071516543626785, -0.03404252976179123, -0.1286628544330597, -0.023588988929986954, 0.013158123008906841, 0.05697736144065857, 0.01585306227207184, 0.009553076699376106, -0.07826124876737595, -0.040127068758010864, -0.01030639186501503, 0.005806010216474533, -0.10329199582338333, -0.06369897723197937, 0.013050289824604988, 0.09875456988811493, 0.052925433963537216, 0.2112841159105301, -0.008876381441950798, 0.10884304344654083, 0.05752826854586601, -0.019812684506177902, -0.02944747731089592, 0.08193929493427277, -0.0971616581082344, -0.13321928679943085, 0.04371187463402748, -0.037978533655405045, 0.018606586381793022, -0.04603816196322441, -0.06350143253803253, -0.04997309297323227, 0.040101855993270874, 0.05440879985690117, 0.03766777366399765, 0.008485076949000359, -0.07864238321781158, -0.04784751310944557, 0.06940079480409622, -0.09008615463972092, 0.06080339103937149, 0.004687800072133541, -0.10632660984992981, 0.08867400884628296, 0.05533834174275398, 0.011311275884509087, -0.10601120442152023, 0.029759133234620094, -0.1252005249261856, -0.028315572068095207, -0.07486999779939651, -0.12449862062931061, 0.06401404738426208, 0.01426562201231718, -0.004809251055121422, -0.12366051971912384, -0.14840994775295258, -0.051337990909814835, 0.0031485871877521276, -0.09801509976387024, -0.06828361749649048, -0.00036809788434766233, -0.031240295618772507, 0.06164761260151863, 0.009690533392131329, 0.03660212457180023, -0.03484252840280533, -0.00004904693196294829, 0.059840403497219086, 0.06826388090848923, -0.055095262825489044, 0.011121009476482868, -0.03268927335739136, 0.034452639520168304, -0.10833526402711868, 0.056289173662662506, -0.09452996402978897, 0.005021862220019102, -0.17310816049575806, -0.05107051879167557, 0.10111313313245773, -0.036653585731983185, 0.06219318509101868, 0.09436500072479248, -0.10340653359889984, 0.012954761274158955, 0.1078760176897049, -0.046495210379362106, -0.09078603237867355, 0.08421874791383743, 0.008909264579415321, 0.011493127793073654, 0.008846580050885677, 0.0834510549902916, 0.13134166598320007, -0.12252230942249298, -0.08875171095132828, 0.02275008149445057, 0.03286992758512497, -0.045635323971509933, 0.0848253071308136, -0.05034342035651207, -0.11202102899551392, -0.005092437379062176, 0.09954417496919632, -0.019281242042779922, -0.04597456008195877, -0.06838082522153854, -0.030735060572624207, -0.024372516199946404, 0.013260595500469208, -0.041581396013498306, 0.005594297312200069, -0.042566634714603424, -0.07253491133451462, 0.0236112829297781, 0.16546015441417694, -0.01886957511305809, -0.02989398129284382, -0.17303575575351715, 0.07269052416086197, -0.09240755438804626, -0.04188414663076401, -0.1879577338695526, -0.06702343374490738, 0.025014683604240417, -0.11597182601690292, 0.0067872111685574055, -0.02104213275015354, 0.068449966609478, 0.051839668303728104, 0.045917585492134094, 0.029971757903695107, 0.08782393485307693, -0.01966002956032753, -0.1051144227385521, -0.061902280896902084, -0.0368618480861187, 0.0067241801880300045, 0.26294228434562683, -0.19300930202007294, -0.0004549211880657822, 0.043326493352651596, 0.05993211269378662, -0.01689242199063301, -0.04251956194639206, -0.045897454023361206, 0.06352328509092331, -0.007794066797941923, -0.04570934921503067, 0.044486455619335175, -0.033559996634721756, -0.0397019125521183, -0.03076785057783127, -0.25815168023109436, 0.1391270011663437, 0.12767848372459412, 0.01859300583600998, -0.08310720324516296, -0.046882495284080505, 0.03847349435091019, -0.0519825704395771, -0.001174065051600337, -0.00385801843367517, 0.10151515156030655, 0.02793378382921219, 0.09685744345188141, -0.04859571158885956, -0.02525511011481285, 0.042400676757097244, -0.048017408698797226, -0.023519713431596756, 0.17953534424304962, 0.08709553629159927, -0.10324137657880783, 0.07418304681777954, 0.0023147251922637224, -0.0769481360912323, 0.011801320128142834, 0.025147471576929092, -0.046546194702386856, -0.07984893023967743, -0.01699819602072239, 0.05983821675181389, 0.036855895072221756, -0.0027211569249629974, 0.09192592650651932, 0.08009270578622818, -0.01281592808663845, 0.021320611238479614, -0.09672300517559052, 0.02311624400317669, 0.019923251122236252, -0.03217076137661934, -0.04011233150959015, 0.016846291720867157, 0.03552569821476936, 0.10444984585046768, -0.007305064704269171, -0.028914369642734528, 0.011390131898224354, -0.0025372595991939306, -0.11862161755561829, 0.23904864490032196, -0.14356324076652527, -0.1763627976179123, -0.16703200340270996, -0.18466328084468842, -0.056526731699705124, -0.05280783772468567, -0.0009414631640538573, -0.050038114190101624, -0.12724465131759644, -0.06673070788383484, -0.04607519507408142, -0.03680175170302391, -0.050606608390808105, 0.006518761161714792, -0.014378776773810387, 0.07791359722614288, -0.12950173020362854, -0.0245687086135149, 0.033101391047239304, -0.0984853059053421, 0.07497348636388779, 0.0022603042889386415, 0.07571947574615479, 0.17342540621757507, -0.027134159579873085, 0.007239676546305418, 0.009811779484152794, 0.2638256847858429, 0.017072543501853943, 0.010751425288617611, 0.2008659541606903, 0.06921300292015076, 0.0737440437078476, 0.10338830202817917, 0.04183271527290344, -0.07876020669937134, -0.012311452068388462, 0.06171010434627533, -0.011960387229919434, -0.22047513723373413, -0.19380225241184235, 0.0018476025434210896, 0.04188935458660126, 0.13891828060150146, 0.023623652756214142, 0.09677553176879883, 0.10183125734329224, 0.020482005551457405, 0.08688582479953766, -0.06597067415714264, 0.07152803987264633, 0.15162967145442963, 0.03175293281674385, 0.12907515466213226, -0.05642963945865631, 0.023408522829413414, 0.11837869882583618, 0.008970086462795734, 0.08284007757902145, 0.09301401674747467, 0.10956011712551117, -0.011467182077467442, 0.11220023781061172, 0.0382782518863678, 0.09880851209163666, 0.05139632895588875, -0.010121094062924385, 0.030448365956544876, -0.0768207460641861, -0.08865699172019958, 0.02243857830762863, 0.04399383068084717, 0.015214215964078903, -0.09602164477109909, 0.04369647055864334, 0.00007651527266716585, 0.06472452729940414, 0.0985611230134964, -0.43047910928726196, -0.03925762325525284, 0.025662288069725037, -0.035325393080711365, -0.11544963717460632, -0.024401778355240822, -0.011855144053697586, -0.1447831094264984, 0.03626803308725357, -0.00550079345703125, 0.11615367233753204, -0.06964348256587982, -0.0364004410803318, -0.05140304192900658, 0.07117288559675217, -0.004941773600876331, 0.06412912905216217, -0.14654146134853363, 0.1471327394247055, 0.047747716307640076, 0.03752422705292702, -0.08269969373941422, 0.03513406589627266, 0.009195452556014061, -0.016872350126504898, 0.13765905797481537, 0.023764370009303093, -0.16385455429553986, -0.30009743571281433, -0.1493786871433258, 0.009082909673452377, 0.0062546515837311745, 0.016211766749620438, 0.08991458266973495, -0.036836665123701096, -0.00986788421869278, -0.01850605010986328, -0.02495124563574791, -0.09988634288311005, -0.09657029062509537, 0.04283823445439339, 0.10030679404735565, -0.04252421483397484, -0.034444309771060944, -0.000505874864757061, 0.011891412548720837, 0.11922696977853775, -0.13827797770500183, -0.048313792794942856, -0.1434168964624405, -0.02051861211657524, 0.1540115475654602, -0.112047478556633, 0.0833854004740715, -0.020492451265454292, 0.06821095943450928, -0.0120167788118124, -0.11279388517141342, 0.08368003368377686, -0.07510102540254593, -0.04882930591702461, -0.011030253022909164, 0.044678088277578354, -0.0021035003010183573, 0.0667494535446167, 0.059311844408512115, 0.01294319611042738, -0.04572124779224396, -0.12725304067134857, -0.013000497594475746, 0.02150788903236389, 0.13605298101902008, 0.040182434022426605, -0.015113040804862976, -0.04799897223711014, -0.044551484286785126, 0.0599549263715744, 0.1329585760831833, 0.31237325072288513, -0.0630999431014061, -0.00396654661744833, 0.08663421869277954, -0.04001954570412636, -0.20642682909965515, -0.05022464692592621, 0.028693271800875664, 0.006607819814234972, -0.06356967240571976, -0.11480791121721268, 0.1442638635635376, 0.19606897234916687, -0.030734984204173088, 0.009248785674571991, -0.26755067706108093, -0.12283330410718918, 0.16365478932857513, 0.0643841028213501, 0.027691619470715523, -0.1646466702222824, -0.05250733345746994, -0.12244097888469696, -0.13450324535369873, 0.16715699434280396, -0.04660825803875923, 0.05755072459578514, -0.026490559801459312, 0.11213260143995285, 0.030877064913511276, -0.053047243505716324, 0.2093043178319931, -0.009395783767104149, 0.004182000644505024, -0.04367019981145859, -0.03069307841360569, -0.0075494893826544285, -0.07508264482021332, 0.09781228750944138, 0.026549294590950012, 0.05666559934616089, -0.24757902324199677, 0.0018769428133964539, 0.0051599363796412945, 0.07091491669416428, -0.0535103939473629, -0.03747835382819176, -0.021488839760422707, 0.03601395711302757, -0.010495686903595924, -0.0249205119907856, -0.02495361864566803, -0.024658244103193283, 0.05156771466135979, 0.216690331697464, 0.09194312989711761, -0.010809758678078651, -0.08895692229270935, 0.05769072473049164, -0.06188983842730522, 0.03635145351290703, -0.11351517587900162, 0.053862717002630234, 0.11239112913608551, 0.01802573725581169, 0.08254552632570267, 0.029688246548175812, -0.05666022375226021, -0.015374881215393543, 0.059276606887578964, -0.11484906077384949, 0.04111890122294426, 0.030929500237107277, 0.09011659026145935, -0.09817370772361755, -0.07489142566919327, 0.13782227039337158, 0.02597212791442871, -0.03531764820218086, 0.021033747121691704, 0.013780622743070126, -0.02598324790596962, 0.2548375129699707, 0.015782633796334267, 0.09909259527921677, -0.10505110770463943, 0.06541629880666733, 0.10761243849992752, -0.1099362000823021, 0.01979312114417553, 0.0948026105761528, -0.0760728195309639, -0.06490691751241684, -0.01898963376879692, 0.06714998930692673, -0.14594033360481262, -0.0668145939707756, 0.03987240418791771, -0.0804699957370758, 0.061218276619911194, 0.1693212240934372, 0.07378365844488144, -0.005597999785095453, 0.008650963194668293, -0.09205634146928787, -0.13483594357967377, 0.021032467484474182, 0.07258178293704987, 0.013302384875714779, -0.0882989689707756, 0.14544303715229034, -0.024503039196133614, 0.00562164606526494, -0.007164841517806053, 0.012878569774329662, -0.20526476204395294, -0.041676294058561325, -0.09938274323940277, 0.07110783457756042, -0.06031062453985214, 0.029745446518063545, 0.009163198061287403, 0.031046928837895393, -0.0687728300690651, 0.009618593379855156, -0.059393905103206635, -0.07308593392372131, 0.009117073379456997, 0.0557669959962368, -0.08316273987293243, -0.03258376568555832, 0.08018453419208527, -0.04138477146625519, 0.04657108336687088, 0.08178159594535828, 0.06662242859601974, 0.004459821153432131, -0.025937698781490326, -0.005706758704036474, 0.06511161476373672, 0.04490470886230469, 0.09038253128528595, -0.19280603528022766, 0.050388894975185394, -0.011618712916970253, 0.014380641281604767, 0.04206104576587677, 0.09826869517564774, -0.10939908772706985, 0.014801845885813236, -0.11539418250322342, -0.0775478407740593, -0.10251038521528244, 0.022512508556246758, 0.13512636721134186, 0.01693839766085148, 0.058270882815122604, -0.05800960958003998, 0.045893680304288864, -0.16435359418392181, -0.006835356820374727, -0.04776933416724205, -0.01773720607161522, 0.039040543138980865, -0.009155606850981712, 0.08967909961938858, -0.024029158055782318, 0.11859031021595001, -0.04177168011665344, 0.034356847405433655, 0.02211696468293667, 0.05060602352023125, -0.026824306696653366, -0.023706795647740364, 0.18454128503799438, 0.1092309057712555, 0.018250875174999237, 0.08301400393247604, 0.08478227257728577, 0.05083496496081352, 0.013349671848118305, 0.03200126439332962, 0.03676740452647209, -0.09121061861515045, 0.08647274971008301, 0.009313534013926983, -0.14980299770832062, -0.02586442232131958, 0.11030455678701401, -0.08302639424800873, 0.03330886736512184, -0.03885846212506294, 0.035047344863414764, 0.11338836699724197, -0.11390617489814758, 0.014057948254048824, -0.004060190636664629, -0.07312098890542984, -0.215865820646286, -0.09579692035913467, -0.12580646574497223, -0.02312954142689705, -0.03159729391336441, -0.12132386118173599, 0.016073040664196014, 0.13910791277885437, 0.019948072731494904, 0.023922085762023926, 0.051312271505594254, -0.21468383073806763, -0.009441263973712921, -0.06435690820217133, 0.007081642746925354, -0.004942819010466337, -0.02929195947945118, -0.040966980159282684, 0.013448123820126057, 0.015600443817675114, 0.08959175646305084, 0.021855516359210014, 0.020357470959424973, 0.1112392470240593, -0.007558448240160942, -0.07700403779745102, -0.045878008008003235, 0.022021014243364334, 0.014286783523857594, 0.15439896285533905, 0.020733309909701347, 0.004955719690769911, -0.028944294899702072, 0.15829989314079285, -0.08241549879312515, 0.01106157898902893, -0.11817245930433273, 0.24619700014591217, -0.012373512610793114, 0.07607360929250717, 0.023363953456282616, -0.007567306514829397, -0.02090051956474781, 0.18711449205875397, 0.1149168387055397, -0.016085777431726456, -0.02696160599589348, 0.03945408761501312, -0.00991724245250225, -0.04682346433401108, 0.10001350194215775, 0.05078931525349617, 0.16919173300266266, -0.07283642143011093, 0.04512396454811096, 0.018154198303818703, -0.00933043658733368, -0.11148484796285629, 0.057274892926216125, 0.00425219489261508, -0.007049561943858862, 0.03662244230508804, 0.07818936556577682, -0.07700201869010925, 0.06168588995933533, 0.08577041327953339, -0.07719610631465912, -0.14100989699363708, 0.03567628934979439, -0.07991309463977814, -0.043958477675914764, 0.10343890637159348, -0.054815873503685, -0.036392632871866226, 0.06370456516742706, -0.00805311743170023, -0.19797328114509583, -0.08153028786182404, 0.003169434145092964, 0.12592846155166626, 0.28420665860176086, 0.03445953503251076, 0.1374373435974121, 0.18037688732147217, -0.015505893155932426, -0.15373121201992035, 0.07246329635381699, 0.03921830281615257, -0.12592701613903046, 0.11058223247528076, 0.047156933695077896, -0.048937879502773285, 0.158254012465477, 0.04962216690182686, -0.15421095490455627, -0.017638063058257103, 0.040062855929136276, 0.07549376785755157, -0.05084872618317604, -0.011019784025847912, -0.11026693135499954, 0.11929358541965485, 0.130706325173378, -0.05613669753074646, -0.0116577772423625, -0.029681622982025146, 0.0832442119717598, -0.004567569121718407, -0.007768084295094013, -0.029868675395846367, -0.11454213410615921, 0.0764339491724968, -0.18779870867729187, 0.025503462180495262, -0.25898095965385437, -0.021182091906666756, -0.020247632637619972, -0.03999646380543709, -0.07293902337551117, 0.1074526458978653, 0.02367597073316574, -0.010480367578566074, -0.05752724036574364, -0.15185360610485077, -0.003096611239016056, 0.136738121509552, -0.09490884095430374, -0.13023731112480164 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kickstarter-distilbert-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.2 - Tokenizers 0.11.0
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "kickstarter-distilbert-model", "results": []}]}
feature-extraction
bitmorse/kickstarter-distilbert-model
[ "transformers", "pytorch", "tf", "distilbert", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #distilbert #feature-extraction #generated_from_keras_callback #endpoints_compatible #region-us
# kickstarter-distilbert-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.2 - Tokenizers 0.11.0
[ "# kickstarter-distilbert-model\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.7.0\n- Datasets 1.18.2\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tf #distilbert #feature-extraction #generated_from_keras_callback #endpoints_compatible #region-us \n", "# kickstarter-distilbert-model\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.7.0\n- Datasets 1.18.2\n- Tokenizers 0.11.0" ]
[ 45, 36, 6, 12, 8, 3, 33, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #tf #distilbert #feature-extraction #generated_from_keras_callback #endpoints_compatible #region-us \n# kickstarter-distilbert-model\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32### Training results### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.7.0\n- Datasets 1.18.2\n- Tokenizers 0.11.0" ]
[ -0.10274045169353485, 0.07483311742544174, -0.002235176507383585, 0.09052950888872147, 0.16903987526893616, 0.019787034019827843, 0.07376401126384735, 0.10059912502765656, -0.1029803678393364, 0.018250709399580956, 0.08954600244760513, 0.12589426338672638, 0.019111499190330505, 0.1316813975572586, -0.007751100230962038, -0.274394154548645, 0.015298223122954369, 0.030044903978705406, -0.07748471200466156, 0.11287403851747513, 0.09786611050367355, -0.11944321542978287, 0.05592601001262665, 0.018308447673916817, -0.21846123039722443, 0.005274755880236626, 0.0009483133326284587, -0.05231967940926552, 0.1018642708659172, -0.014900165610015392, 0.149375781416893, 0.026381729170680046, 0.0923016369342804, -0.07907652854919434, 0.019135721027851105, 0.07866782695055008, 0.017105016857385635, 0.07658080011606216, 0.047212421894073486, -0.0255295280367136, 0.15784883499145508, -0.050667740404605865, 0.07279098778963089, 0.013770854100584984, -0.11502760648727417, -0.16894154250621796, -0.06316470354795456, 0.060604292899370193, 0.07218177616596222, 0.10754676908254623, 0.006179082673043013, 0.17192894220352173, -0.09591048210859299, 0.08889702707529068, 0.17328858375549316, -0.26372697949409485, -0.08242295682430267, 0.012413674965500832, 0.05409308895468712, -0.00784625206142664, -0.09289968013763428, -0.002856275998055935, 0.018699701875448227, 0.056296344846487045, 0.08995886892080307, -0.031163915991783142, -0.1598123013973236, -0.018493380397558212, -0.13806800544261932, 0.0034070515539497137, 0.13182352483272552, -0.006122232880443335, -0.06138783320784569, -0.059588849544525146, -0.07247648388147354, -0.07433158159255981, -0.03552829474210739, -0.08016109466552734, 0.02657957747578621, -0.02037365734577179, -0.06414076685905457, -0.07693327963352203, -0.1088908463716507, -0.07545837759971619, -0.054961591958999634, 0.16928906738758087, 0.00544962752610445, 0.054873403161764145, -0.0803733691573143, 0.13568218052387238, -0.011412277817726135, -0.10865694284439087, -0.01181785762310028, -0.04852459207177162, -0.06871617585420609, -0.0629943385720253, -0.05895199254155159, -0.10600029677152634, -0.0005987974000163376, 0.08144377171993256, -0.019573109224438667, 0.052625104784965515, 0.02746783010661602, 0.045939717441797256, -0.011569682508707047, 0.1259339600801468, -0.04587132856249809, -0.01127011887729168, 0.024117907509207726, 0.024371467530727386, -0.03643352910876274, -0.024807607755064964, -0.10737202316522598, 0.007606409955769777, 0.04357944056391716, 0.0395575650036335, -0.04327128827571869, 0.0652502179145813, -0.057579003274440765, -0.04232000187039375, -0.06617920845746994, -0.1013113260269165, 0.012474399991333485, -0.03562474250793457, -0.09283449500799179, 0.04238293692469597, 0.09263678640127182, -0.029667170718312263, -0.0456334725022316, 0.02661219611763954, -0.10907476395368576, 0.037078436464071274, -0.0987396165728569, -0.08703597635030746, -0.0011202949099242687, -0.16023488342761993, 0.021995840594172478, -0.07297440618276596, -0.22564280033111572, -0.0013361333403736353, 0.08786258101463318, -0.06760893762111664, 0.002882766304537654, -0.06172383949160576, -0.06845936179161072, -0.004115007817745209, 0.01327536255121231, 0.08550391346216202, -0.0281047485768795, 0.06860587000846863, 0.01860954239964485, 0.06306909769773483, -0.043241798877716064, 0.03323271870613098, -0.13227349519729614, 0.04015281796455383, -0.1563158482313156, 0.11064925789833069, -0.06550626456737518, 0.05514664947986603, -0.09123428910970688, -0.10341623425483704, -0.061103470623493195, -0.004960827063769102, 0.10234513133764267, 0.18239547312259674, -0.21286706626415253, -0.03758571669459343, 0.14243744313716888, -0.110360287129879, -0.09210192412137985, 0.07008785009384155, -0.07832136005163193, 0.1962418407201767, 0.044177908450365067, 0.13661037385463715, 0.08818602561950684, -0.14754395186901093, 0.07393496483564377, 0.05624230206012726, -0.04624465852975845, -0.018985018134117126, -0.0011275715660303831, -0.016330750659108162, 0.0024402018170803785, 0.04814663529396057, -0.04838939756155014, 0.050450194627046585, -0.12617227435112, -0.07022154331207275, -0.04891299083828926, -0.09591099619865417, 0.09007959067821503, 0.024417242035269737, 0.0880657434463501, -0.009619009681046009, -0.09673239290714264, 0.14004336297512054, 0.06181652843952179, -0.04547141492366791, 0.006723284255713224, -0.10001851618289948, 0.05021032691001892, -0.07114014029502869, -0.022459041327238083, -0.23758359253406525, -0.10004226118326187, 0.001545488485135138, 0.061784230172634125, 0.03614411503076553, 0.06483247876167297, 0.09842433780431747, 0.05513577535748482, -0.01259671151638031, -0.013391043059527874, -0.0711832046508789, 0.02207336761057377, -0.11021964251995087, -0.13765572011470795, -0.07040292024612427, -0.052801329642534256, 0.08039548248052597, -0.2018747329711914, 0.009635268710553646, -0.007840815000236034, 0.13215556740760803, 0.02324453555047512, -0.04710155725479126, -0.01695605367422104, 0.04841884598135948, -0.011721525341272354, -0.10298938304185867, 0.06986022740602493, 0.033342789858579636, -0.11112526804208755, -0.06604810059070587, -0.05600207671523094, 0.09774257242679596, 0.08555824309587479, -0.0637473464012146, -0.11362328380346298, 0.017640799283981323, -0.07654161006212234, -0.033923108130693436, -0.013083016499876976, 0.042389318346977234, 0.1630897969007492, 0.004525333642959595, 0.1176929920911789, -0.041032738983631134, -0.0271501075476408, 0.041646264493465424, -0.028835928067564964, 0.006639501545578241, 0.04852066561579704, 0.03139595314860344, -0.11281539499759674, 0.07849486172199249, 0.07347521930932999, -0.05557505413889885, 0.1606442779302597, -0.046900685876607895, -0.08441103249788284, -0.06412298232316971, -0.009100827388465405, -0.008090820163488388, 0.13383840024471283, -0.17591403424739838, -0.022197218611836433, 0.0276385135948658, 0.008045045658946037, 0.05418189987540245, -0.16673734784126282, -0.020842505618929863, 0.02118384651839733, 0.01012720912694931, -0.024969257414340973, 0.02720201015472412, -0.007105587515980005, 0.08282017707824707, 0.010403220541775227, -0.0072991689667105675, 0.07739055156707764, 0.00115871150046587, -0.05956544354557991, 0.20016935467720032, -0.09826184809207916, -0.1391875147819519, -0.0796588659286499, 0.021451102569699287, -0.021098574623465538, 0.008710320107638836, 0.008363700471818447, -0.04272276908159256, -0.03362487256526947, -0.04765281826257706, 0.012543659657239914, -0.0762532502412796, 0.01786934956908226, -0.0007679449627175927, 0.00023210349900182337, 0.08458451181650162, -0.11584591120481491, -0.0021100568119436502, -0.048494916409254074, -0.07442477345466614, 0.020059965550899506, 0.003701397217810154, 0.0914679691195488, 0.14516912400722504, -0.03899257257580757, 0.04501324146986008, -0.033688776195049286, 0.25919610261917114, -0.06378524005413055, -0.00308058550581336, 0.12153377383947372, -0.008894688449800014, 0.045847710222005844, 0.03991704061627388, 0.03654933720827103, -0.10248729586601257, 0.03534088656306267, 0.01590588502585888, -0.06910386681556702, -0.16983169317245483, -0.04135045409202576, -0.06933978199958801, -0.062212709337472916, 0.04763805866241455, 0.02863326668739319, 0.06083148345351219, 0.08017837256193161, 0.07394633442163467, 0.061045728623867035, -0.03772546723484993, 0.05839895084500313, 0.03707747906446457, 0.029302135109901428, 0.09319613873958588, -0.029418494552373886, -0.05052312836050987, 0.040089476853609085, -0.06374835222959518, 0.28536316752433777, -0.018307453021407127, 0.04889596626162529, 0.07876318693161011, 0.19439199566841125, 0.0026144334115087986, 0.13061857223510742, 0.03452932834625244, -0.03256840631365776, 0.013182293623685837, -0.05123921111226082, -0.09314762055873871, 0.01193434838205576, -0.029672276228666306, 0.04087928682565689, -0.12096986919641495, 0.0407351553440094, 0.017333852127194405, 0.2540457546710968, 0.012698885053396225, -0.3168356120586395, -0.1299232840538025, -0.028387561440467834, 0.007315444760024548, -0.0734301507472992, -0.008675478398799896, 0.0981670618057251, -0.10871075093746185, -0.009956669062376022, -0.08686157315969467, 0.08478948473930359, 0.028330476954579353, 0.012083000503480434, 0.02981964498758316, 0.10373073816299438, 0.0034196549095213413, 0.08722226321697235, -0.232299342751503, 0.2211420238018036, 0.005086514633148909, 0.15317721664905548, -0.08395998179912567, 0.008490591309964657, 0.010728111490607262, 0.08147523552179337, 0.18037551641464233, -0.00345010869204998, -0.058472320437431335, -0.17323045432567596, -0.01369735598564148, -0.005626859609037638, 0.11033397167921066, -0.010381126776337624, 0.1066679060459137, -0.02254459448158741, 0.011614581570029259, 0.061674926429986954, 0.028988290578126907, -0.1403013914823532, -0.10353267937898636, 0.009132020175457, -0.047645650804042816, -0.044984474778175354, -0.07351119071245193, -0.09871164709329605, 0.07753223180770874, 0.15632690489292145, -0.024811357259750366, -0.06637810915708542, -0.16846635937690735, 0.06888189166784286, 0.12332725524902344, -0.030402034521102905, 0.053237393498420715, 0.011685462668538094, 0.08725766092538834, 0.049605678766965866, -0.1267484575510025, 0.08263630419969559, -0.10326259583234787, -0.1274820864200592, -0.0435110405087471, 0.10988130420446396, 0.09971415251493454, 0.014962464570999146, 0.015589047223329544, 0.016683103516697884, -0.006868004333227873, -0.10286641865968704, 0.01975340209901333, 0.021257152780890465, 0.030439108610153198, 0.0353669635951519, -0.07510198652744293, 0.06118875369429588, 0.0021151008550077677, 0.05901741981506348, 0.09242073446512222, 0.13599391281604767, -0.0876271054148674, 0.10143379122018814, 0.040823038667440414, -0.10605819523334503, -0.23151245713233948, 0.07280626147985458, 0.09681244194507599, 0.03002915158867836, 0.07109205424785614, -0.1858566850423813, 0.1185927465558052, 0.04352264478802681, -0.005113695282489061, 0.060269393026828766, -0.3308897614479065, -0.10746408998966217, 0.12088008224964142, 0.10653279721736908, 0.14039653539657593, -0.10516420006752014, -0.03361242637038231, -0.0012047067284584045, -0.0855688527226448, 0.18074212968349457, -0.14237819612026215, 0.093794085085392, -0.00291530997492373, 0.08207503706216812, 0.038280680775642395, -0.049562808126211166, 0.08946826308965683, 0.03270481899380684, 0.10725322365760803, -0.06423458456993103, -0.01385811809450388, 0.216631218791008, -0.03608928620815277, 0.060735832899808884, 0.09883368015289307, 0.06660725176334381, -0.12096799165010452, -0.02297944761812687, -0.11178317666053772, 0.12103218585252762, -0.028674883767962456, -0.08181888610124588, -0.0065895747393369675, 0.05211485177278519, 0.05165667459368706, -0.01645379699766636, 0.07831815630197525, 0.03627007454633713, 0.1293741762638092, 0.1509774625301361, 0.11106157302856445, 0.0014626211486756802, -0.0940287634730339, 0.01607242040336132, -0.013042584992945194, 0.05416359007358551, -0.07400365173816681, 0.0062137627974152565, 0.12650980055332184, 0.055330790579319, 0.10538534820079803, 0.09749104082584381, -0.052941493690013885, 0.017846014350652695, 0.04216470196843147, -0.1612335443496704, -0.1327139288187027, -0.02619418501853943, -0.10344382375478745, -0.07611013203859329, 0.06644736975431442, 0.11196614056825638, -0.08983586728572845, 0.01098279096186161, -0.01890156976878643, -0.025031907483935356, -0.08718626946210861, 0.19207355380058289, 0.03701600804924965, 0.05015521124005318, -0.08260348439216614, 0.1360194981098175, 0.027087131515145302, -0.06696447730064392, 0.03678908944129944, 0.012474151328206062, -0.11015819758176804, -0.039121270179748535, 0.05153099074959755, 0.16714084148406982, -0.04452953860163689, -0.02536550723016262, -0.09639190882444382, -0.07484012097120285, 0.008179377764463425, 0.13002854585647583, 0.06772983074188232, 0.047522470355033875, -0.08982165157794952, 0.05603957176208496, -0.14387822151184082, 0.05456078052520752, 0.0894390344619751, 0.019285229966044426, -0.14055053889751434, 0.18755657970905304, -0.014932227320969105, 0.08027516305446625, -0.08083786815404892, -0.01788071170449257, -0.10648738592863083, 0.00840840581804514, -0.10550867021083832, -0.024300511926412582, -0.04037686064839363, -0.03518654406070709, 0.004480551462620497, -0.03597379848361015, -0.04061725735664368, 0.05246284231543541, -0.08885610103607178, -0.0037693351041525602, 0.0409964993596077, 0.007907635532319546, -0.08487024158239365, -0.028554851189255714, -0.00044567385339178145, -0.07174196094274521, 0.06126440316438675, 0.1280214637517929, 0.002001093467697501, 0.06302006542682648, -0.11647316068410873, -0.001653508865274489, 0.037035174667835236, -0.010330196470022202, 0.08336373418569565, -0.0018068809295073152, -0.018750431016087532, -0.010257095098495483, 0.04163031652569771, -0.01251749787479639, 0.023336997255682945, -0.12165087461471558, -0.07978177815675735, 0.005848352797329426, -0.0232318677008152, -0.0650813952088356, 0.0367128849029541, 0.1200336366891861, 0.06505514681339264, 0.15737847983837128, -0.08478301018476486, 0.062361348420381546, -0.16705608367919922, -0.05064673349261284, 0.018947243690490723, -0.024868370965123177, -0.017439579591155052, -0.07309558987617493, 0.08067194372415543, -0.056085940450429916, 0.1330251842737198, 0.023396100848913193, 0.13170255720615387, 0.005815110635012388, -0.024068107828497887, 0.013988681137561798, 0.03306715935468674, 0.21106082201004028, 0.0352516807615757, -0.016394950449466705, 0.023048289120197296, 0.044557809829711914, 0.03225937485694885, 0.04854458570480347, 0.19926562905311584, 0.0693616271018982, -0.042415715754032135, 0.08970893174409866, 0.0415610708296299, -0.035452596843242645, -0.1311250478029251, 0.037718672305345535, 0.0023579811677336693, 0.09881393611431122, -0.07316417247056961, 0.10798697918653488, 0.047011490911245346, -0.09873956441879272, 0.07338422536849976, -0.031431470066308975, -0.10530976206064224, -0.09229225665330887, -0.1386275291442871, -0.03445005044341087, -0.11355392634868622, 0.004310780670493841, -0.1008877232670784, 0.005720778834074736, 0.05320490524172783, -0.0012516817077994347, -0.036446183919906616, 0.2354053258895874, -0.030879786238074303, -0.000709404528606683, 0.10580246150493622, -0.01283228863030672, -0.017921851947903633, -0.06548549979925156, -0.029200686141848564, 0.00278291292488575, 0.012734073214232922, 0.02889895811676979, -0.06126268208026886, -0.03761408105492592, 0.005837838631123304, 0.008750290609896183, -0.09340491890907288, 0.01784428209066391, 0.041188374161720276, 0.0015772058395668864, -0.038415007293224335, 0.03253386914730072, -0.025768311694264412, -0.05332692340016365, 0.24152375757694244, -0.09000919759273529, -0.04969865828752518, -0.10393139719963074, 0.24256284534931183, 0.03744756802916527, 0.009707190096378326, 0.04656808823347092, -0.08582551032304764, 0.00398117583245039, 0.2116241455078125, 0.14453376829624176, -0.08181773126125336, -0.009093920700252056, 0.013249550014734268, -0.014748112298548222, -0.058179158717393875, 0.13878172636032104, 0.05344394966959953, 0.08075264096260071, -0.06428258121013641, 0.005279258359223604, -0.036552008241415024, -0.04966742545366287, -0.06602688133716583, 0.07129577547311783, 0.041477933526039124, 0.02156856656074524, -0.051409292966127396, 0.07666099816560745, -0.15646028518676758, -0.2244500070810318, 0.09077178686857224, -0.12433305382728577, -0.14345400035381317, -0.06386931985616684, 0.015931706875562668, 0.01696898229420185, 0.10778091847896576, -0.04602110758423805, 0.016471007838845253, 0.1730574071407318, 0.008130223490297794, -0.06835399568080902, -0.056739162653684616, 0.0948794037103653, -0.08176641166210175, 0.16736890375614166, -0.018886882811784744, 0.04803943634033203, 0.08253014832735062, 0.042076218873262405, -0.09630982577800751, 0.03899592161178589, 0.021074557676911354, -0.05370990186929703, 0.01328760851174593, 0.14932064712047577, -0.015341157093644142, -0.009682235307991505, -0.006046175491064787, -0.21515315771102905, 0.008377606980502605, -0.025148971006274223, -0.03173859417438507, -0.07110012322664261, -0.026545662432909012, -0.05468979850411415, 0.1318449229001999, 0.18503503501415253, -0.039195913821458817, 0.014471739530563354, -0.08820484578609467, 0.06787265837192535, 0.06964023411273956, 0.06482240557670593, -0.04717138037085533, -0.18961776793003082, -0.0003075109561905265, 0.05090642720460892, -0.037445731461048126, -0.18934495747089386, -0.07436267286539078, 0.014190820045769215, -0.06766920536756516, -0.03934447839856148, 0.07372841238975525, 0.06651826202869415, 0.06070657819509506, -0.03129027411341667, -0.034871987998485565, -0.05538449063897133, 0.12855225801467896, -0.12156383693218231, -0.04245288670063019 ]
null
null
transformers
# AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). #### How to use ```python from transformers import BertModel, BertTokenizerFast alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base') alephbert = BertModel.from_pretrained('onlplab/alephbert-base') # if not finetuning - disable dropout alephbert.eval() ``` ## Training data 1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
{"language": ["he"], "license": "apache-2.0", "tags": ["language model"], "datasets": ["oscar", "wikipedia", "twitter"]}
fill-mask
biu-nlp/alephbert-base
[ "transformers", "pytorch", "bert", "fill-mask", "language model", "he", "dataset:oscar", "dataset:wikipedia", "dataset:twitter", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1810.04805" ]
[ "he" ]
TAGS #transformers #pytorch #bert #fill-mask #language model #he #dataset-oscar #dataset-wikipedia #dataset-twitter #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture (Devlin et al. 2018). #### How to use ## Training data 1. OSCAR (Ortiz, 2019) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of Wikipedia (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
[ "# AlephBERT", "## Hebrew Language Model\n\nState-of-the-art language model for Hebrew.\nBased on Google's BERT architecture (Devlin et al. 2018).", "#### How to use", "## Training data\n1. OSCAR (Ortiz, 2019) Hebrew section (10 GB text, 20 million sentences).\n2. Hebrew dump of Wikipedia (650 MB text, 3 million sentences).\n3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences).", "## Training procedure\n\nTrained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure.\n\nSince the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only.\n\nTo optimize training time we split the data into 4 sections based on max number of tokens:\n\n1. num tokens < 32 (70M sentences)\n2. 32 <= num tokens < 64 (12M sentences)\n3. 64 <= num tokens < 128 (10M sentences)\n4. 128 <= num tokens < 512 (1.5M sentences)\n\nEach section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs.\n\nTotal training time was 8 days." ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #language model #he #dataset-oscar #dataset-wikipedia #dataset-twitter #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# AlephBERT", "## Hebrew Language Model\n\nState-of-the-art language model for Hebrew.\nBased on Google's BERT architecture (Devlin et al. 2018).", "#### How to use", "## Training data\n1. OSCAR (Ortiz, 2019) Hebrew section (10 GB text, 20 million sentences).\n2. Hebrew dump of Wikipedia (650 MB text, 3 million sentences).\n3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences).", "## Training procedure\n\nTrained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure.\n\nSince the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only.\n\nTo optimize training time we split the data into 4 sections based on max number of tokens:\n\n1. num tokens < 32 (70M sentences)\n2. 32 <= num tokens < 64 (12M sentences)\n3. 64 <= num tokens < 128 (10M sentences)\n4. 128 <= num tokens < 512 (1.5M sentences)\n\nEach section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs.\n\nTotal training time was 8 days." ]
[ 74, 5, 36, 5, 63, 194 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #language model #he #dataset-oscar #dataset-wikipedia #dataset-twitter #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# AlephBERT## Hebrew Language Model\n\nState-of-the-art language model for Hebrew.\nBased on Google's BERT architecture (Devlin et al. 2018).#### How to use## Training data\n1. OSCAR (Ortiz, 2019) Hebrew section (10 GB text, 20 million sentences).\n2. Hebrew dump of Wikipedia (650 MB text, 3 million sentences).\n3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences).## Training procedure\n\nTrained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure.\n\nSince the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only.\n\nTo optimize training time we split the data into 4 sections based on max number of tokens:\n\n1. num tokens < 32 (70M sentences)\n2. 32 <= num tokens < 64 (12M sentences)\n3. 64 <= num tokens < 128 (10M sentences)\n4. 128 <= num tokens < 512 (1.5M sentences)\n\nEach section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs.\n\nTotal training time was 8 days." ]
[ -0.02087954245507717, 0.11003583669662476, -0.002011623466387391, 0.07119014859199524, 0.0937439575791359, 0.03832339867949486, 0.16900216042995453, 0.09576477855443954, -0.05309392139315605, 0.05629819631576538, 0.0954609140753746, -0.07731560617685318, 0.04740629717707634, 0.10118826478719711, 0.06822758167982101, -0.29741108417510986, 0.003562592202797532, -0.10978308320045471, -0.0786779597401619, 0.09579741954803467, 0.09672350436449051, -0.043807584792375565, 0.06432981044054031, -0.04128774628043175, -0.10713603347539902, 0.06818202883005142, 0.002529872814193368, -0.07036076486110687, 0.09131842851638794, 0.04826562479138374, 0.016729865223169327, 0.0057754553854465485, 0.061730023473501205, -0.19123582541942596, 0.014685898087918758, 0.08346530050039291, 0.012790719978511333, 0.008707650005817413, 0.026293566450476646, 0.030879540368914604, 0.27415892481803894, -0.15668131411075592, 0.02061467245221138, 0.05786538124084473, -0.09796667098999023, -0.08566147089004517, -0.07427334040403366, 0.035398855805397034, 0.04743938520550728, 0.08942724019289017, -0.05893431231379509, 0.07996150851249695, -0.08223102241754532, 0.04480424150824547, 0.037968724966049194, -0.3092059791088104, -0.04331684112548828, 0.08248055726289749, -0.09465330839157104, 0.10956678539514542, -0.1052330732345581, 0.030102506279945374, 0.07996047288179398, 0.023931292816996574, 0.06738850474357605, 0.039832957088947296, 0.08789945393800735, 0.008633937686681747, -0.1237119734287262, -0.0992521345615387, 0.1061488687992096, 0.08271054923534393, -0.027282848954200745, -0.1818883866071701, -0.04288247227668762, -0.07188505679368973, 0.04122478514909744, -0.008763712830841541, -0.008045177906751633, 0.03254500404000282, -0.0897362008690834, -0.038128241896629333, -0.10779976844787598, 0.0586785189807415, -0.09862234443426132, 0.025912949815392494, 0.043305788189172745, 0.04136589542031288, 0.012094452045857906, 0.04580925777554512, 0.047788579016923904, -0.1334281712770462, -0.008354348130524158, -0.048907894641160965, -0.09949245303869247, -0.02996804751455784, -0.010414463467895985, -0.028805876150727272, -0.04730037972331047, 0.08849915117025375, -0.00858127512037754, 0.03434735909104347, 0.01945822685956955, -0.029832348227500916, 0.03140822798013687, 0.11191928386688232, -0.06902924925088882, -0.08786360174417496, -0.02611462213099003, 0.03709938004612923, 0.014477214775979519, 0.020418928936123848, -0.016479013487696648, -0.020430458709597588, 0.03477393463253975, 0.05154737830162048, -0.0644369050860405, 0.06503194570541382, 0.0689380019903183, -0.04156845808029175, 0.03829525411128998, -0.1542070060968399, 0.0032520529348403215, -0.007415764033794403, -0.07238265126943588, 0.05250169336795807, -0.045319218188524246, -0.044238656759262085, -0.04897857829928398, 0.016490591689944267, -0.0817650556564331, -0.019566336646676064, -0.03205724060535431, -0.09427275508642197, 0.047064557671546936, -0.013523105531930923, -0.05364367365837097, -0.13775348663330078, -0.027586879208683968, 0.006618790328502655, 0.008776850067079067, -0.01792440563440323, -0.03341348096728325, -0.07133808732032776, -0.014029838144779205, -0.004980168770998716, -0.009561475366353989, -0.004457560833543539, -0.026988649740815163, 0.0658726915717125, -0.03329860419034958, 0.0616612434387207, 0.06585106998682022, 0.021007606759667397, -0.10019878298044205, 0.027970170602202415, -0.08429906517267227, 0.18871979415416718, -0.021620241925120354, 0.052064310759305954, -0.11262112855911255, -0.07526612281799316, -0.06627704948186874, -0.027232900261878967, 0.02810615301132202, 0.14608031511306763, -0.1509026288986206, -0.10027613490819931, 0.14990051090717316, -0.06300700455904007, -0.06005622819066048, 0.17251187562942505, -0.05515168979763985, -0.014457779936492443, 0.16016243398189545, 0.1858518123626709, 0.020108507946133614, -0.06523037701845169, -0.18413646519184113, -0.07525456696748734, 0.011282959021627903, 0.0725589245557785, 0.0727636069059372, 0.06891917437314987, 0.027477048337459564, 0.021945588290691376, 0.05916176736354828, 0.1084793210029602, -0.03482285887002945, -0.10547557473182678, 0.0032996125519275665, -0.05134594440460205, -0.003986678551882505, 0.031217938289046288, 0.0035364534705877304, -0.06540995091199875, -0.12455141544342041, 0.029080508276820183, 0.11278041452169418, -0.09332531690597534, 0.0181280467659235, -0.09160725027322769, -0.06721065193414688, -0.04685064032673836, -0.004556463565677404, -0.09071991592645645, -0.08337422460317612, 0.042747486382722855, -0.017459658905863762, 0.113271564245224, -0.02717244066298008, 0.10029792785644531, 0.052773360162973404, -0.09910998493432999, 0.0457744300365448, -0.054433420300483704, -0.04439669847488403, -0.04150569066405296, -0.08713012933731079, -0.0398089624941349, -0.00784069113433361, 0.14911098778247833, -0.14859460294246674, 0.0019333850359544158, -0.004281423054635525, 0.10202252864837646, 0.0019930750131607056, -0.047313984483480453, 0.003706512972712517, -0.026051916182041168, -0.015803949907422066, -0.11820099502801895, -0.03689281642436981, -0.011410207487642765, -0.07611314207315445, 0.045743197202682495, -0.15617573261260986, -0.06478328257799149, 0.1009138822555542, 0.16050030291080475, -0.06787989288568497, 0.02397601120173931, -0.13785749673843384, -0.011166124604642391, -0.05833709239959717, -0.010855220258235931, 0.09908207505941391, -0.007358937058597803, 0.06200030446052551, -0.0799335464835167, -0.04487576708197594, 0.017829155549407005, 0.028398096561431885, -0.07868744432926178, 0.04589148983359337, 0.04229370132088661, -0.22565631568431854, 0.0881117656826973, 0.006165535654872656, 0.03685754910111427, 0.2347584217786789, -0.02501375414431095, -0.10704266279935837, -0.030577590689063072, 0.009280475787818432, -0.001935711014084518, 0.06100383400917053, -0.03495864197611809, 0.00426215585321188, 0.0006382216815836728, 0.02405807562172413, 0.03940192982554436, -0.052330683916807175, 0.01758635602891445, 0.03496678173542023, -0.07278060913085938, -0.027771120890975, 0.017535431310534477, -0.016427112743258476, 0.09513353556394577, 0.029282674193382263, 0.020930400118231773, -0.03246935084462166, 0.007410356309264898, -0.07754102349281311, 0.11713690310716629, -0.06796780228614807, -0.19841642677783966, -0.10502535104751587, 0.012792013585567474, -0.07612515240907669, -0.002151686465367675, 0.011868658475577831, -0.16474267840385437, -0.06837806850671768, -0.09686178714036942, 0.11666349321603775, -0.08542176336050034, 0.054310064762830734, 0.023943355306982994, 0.026054879650473595, -0.00928062666207552, -0.10491166263818741, -0.009891422465443611, -0.016681648790836334, -0.08895790576934814, -0.020097609609365463, -0.059780508279800415, -0.003941098693758249, 0.11395177990198135, -0.019088264554739, 0.030544593930244446, -0.04867706820368767, 0.231684148311615, -0.0980391576886177, 0.0689760148525238, 0.03648455813527107, 0.051459912210702896, 0.031104514375329018, 0.1414775252342224, -0.0031219040974974632, -0.06949035823345184, 0.08216671645641327, 0.08231671154499054, -0.049808990210294724, -0.25419774651527405, -0.05292463302612305, -0.08749791234731674, 0.02489408291876316, 0.1549621969461441, 0.06291506439447403, 0.013096892274916172, 0.043784063309431076, -0.14456163346767426, 0.08310680836439133, 0.021832317113876343, 0.04577697440981865, 0.0788651630282402, 0.0668250098824501, 0.05236799642443657, -0.07978028804063797, -0.07744590193033218, 0.12867669761180878, -0.05106588825583458, 0.20277827978134155, -0.039973001927137375, 0.11463821679353714, 0.04808618500828743, 0.10635866969823837, 0.000853016332257539, 0.0076037500984966755, 0.007249435409903526, 0.030928784981369972, 0.0016469215042889118, -0.08128983527421951, -0.02188935875892639, 0.05998978018760681, 0.09188762307167053, -0.04510490968823433, -0.027972564101219177, 0.04248437285423279, 0.08496195077896118, 0.22054286301136017, 0.09653648734092712, -0.2347734570503235, -0.12743912637233734, 0.035758089274168015, -0.11798811703920364, -0.02191527746617794, 0.01458711177110672, 0.17149637639522552, -0.06716559082269669, 0.1213560700416565, -0.0102962926030159, 0.05605466291308403, -0.018290476873517036, -0.015150628052651882, 0.045932456851005554, 0.06887438893318176, -0.03379395604133606, 0.10757318139076233, -0.257821649312973, 0.14295822381973267, 0.010452226735651493, 0.10922626405954361, -0.0880030170083046, 0.007716297637671232, 0.037011921405792236, -0.07345003634691238, 0.0864693745970726, 0.038550104945898056, -0.053030505776405334, -0.020337486639618874, -0.11508829146623611, -0.008947458118200302, 0.0703882947564125, -0.026916390284895897, 0.12147863954305649, 0.0009404011652804911, 0.0010377829894423485, -0.0011497599771246314, 0.03339154273271561, -0.09645932912826538, -0.20979906618595123, -0.020914429798722267, 0.012936867773532867, -0.012730316258966923, -0.01197342574596405, -0.07780396938323975, -0.01456004660576582, 0.1667906641960144, 0.017366629093885422, -0.10109874606132507, -0.10818520188331604, 0.10087606310844421, 0.15435492992401123, -0.06330569833517075, 0.0005952190258540213, 0.04569147154688835, 0.10636880248785019, -0.06681448966264725, -0.11929396539926529, -0.0074314698576927185, -0.014558459632098675, -0.06438475102186203, 0.02954617142677307, 0.20653145015239716, 0.04673123359680176, 0.07317996025085449, 0.002481698989868164, -0.017027823254466057, 0.013822704553604126, -0.08253498375415802, 0.009842250496149063, 0.026241222396492958, 0.026097454130649567, 0.02381272055208683, 0.003635150147601962, -0.011799120344221592, -0.1322619765996933, -0.0027962271124124527, 0.05333803594112396, 0.21326084434986115, -0.06138890981674194, 0.11121431738138199, 0.0826839879155159, -0.023313378915190697, -0.11769204586744308, -0.046666860580444336, 0.07430124282836914, 0.0914129912853241, 0.006392067763954401, -0.21083052456378937, 0.0025499220937490463, 0.01987987384200096, 0.03395436331629753, -0.03708747401833534, -0.3094369173049927, -0.09640642255544662, 0.03545871376991272, -0.003889498533681035, 0.12007365375757217, -0.04384496808052063, 0.014714713208377361, -0.04911106824874878, 0.07486627250909805, 0.18538682162761688, -0.012468750588595867, 0.1365826278924942, 0.018406199291348457, 0.052506137639284134, 0.04044270142912865, -0.03254035487771034, 0.10942215472459793, 0.07622624188661575, 0.06094704940915108, -0.0785413458943367, -0.01826103776693344, 0.19731302559375763, -0.04839124158024788, 0.09862471371889114, -0.054885584861040115, 0.019948408007621765, -0.11896640807390213, -0.11006102710962296, -0.05641807243227959, 0.00222984841093421, -0.016325870528817177, -0.09027712792158127, -0.09916502237319946, 0.0984884575009346, 0.13056786358356476, -0.012808854691684246, 0.015385832637548447, 0.04455472528934479, -0.00032194299274124205, 0.024109823629260063, 0.11375853419303894, 0.04790419340133667, 0.022250724956393242, -0.03865757957100868, 0.016249341890215874, 0.05556316673755646, -0.183821439743042, -0.01194350142031908, 0.11138830333948135, -0.023189252242445946, 0.11434811353683472, -0.00017557416867930442, -0.14421014487743378, -0.01728987693786621, 0.0961739793419838, -0.11065993458032608, -0.2476016730070114, -0.038677629083395004, -0.10128142684698105, -0.12009081989526749, -0.07325700670480728, 0.09638985991477966, -0.11944810301065445, -0.007248260080814362, 0.03398611769080162, 0.040932588279247284, -0.029341941699385643, 0.1729678362607956, -0.01668217033147812, 0.014877763576805592, -0.0725024864077568, 0.10930266231298447, 0.1146460771560669, -0.09963927417993546, 0.038994599133729935, 0.13005448877811432, -0.12353258579969406, 0.038146693259477615, -0.05888320878148079, -0.05065162479877472, 0.05910706892609596, 0.0152538837864995, -0.002844369737431407, -0.07963577657938004, 0.041945893317461014, -0.03821109980344772, -0.0053459894843399525, 0.11184638738632202, -0.07747245579957962, 0.03850777447223663, -0.10675569623708725, 0.06583353132009506, 0.08001033216714859, -0.023456016555428505, -0.07927920669317245, 0.16266517341136932, -0.04052017256617546, 0.07366463541984558, -0.022066732868552208, -0.0058663394302129745, -0.0486384741961956, -0.016394933685660362, -0.03619382157921791, -0.024131977930665016, -0.06901385635137558, -0.00928511656820774, -0.015088989399373531, -0.014460843987762928, -0.09730977565050125, 0.015494602732360363, -0.03505716845393181, -0.06541723757982254, -0.03461506962776184, 0.05245941877365112, -0.08605330437421799, 0.0059697129763662815, 0.03116150014102459, -0.10859503597021103, 0.11420363187789917, 0.0781903937458992, 0.010179963894188404, 0.028964929282665253, 0.07673517614603043, -0.06036420539021492, 0.052455976605415344, 0.05726001039147377, -0.005138108041137457, -0.07341106981039047, 0.023177525028586388, 0.01681811548769474, -0.000353851675754413, 0.01917359046638012, -0.05554599687457085, -0.05971924960613251, -0.023798584938049316, -0.0020865683909505606, 0.006198191549628973, -0.04237787052989006, 0.04246059060096741, 0.0035009069833904505, 0.02381252683699131, 0.12676149606704712, -0.05624943599104881, -0.02756182663142681, -0.22169971466064453, -0.018295230343937874, -0.030697965994477272, -0.029736964032053947, 0.03639728203415871, -0.020049771293997765, 0.08458108454942703, 0.0005247776280157268, 0.11037558317184448, 0.03463646396994591, -0.08747121691703796, 0.04007284343242645, 0.00196828949265182, 0.00375187280587852, -0.023677697405219078, 0.20025551319122314, 0.058665353804826736, -0.060188110917806625, 0.03867630288004875, -0.11255661398172379, 0.031908709555864334, 0.1312771588563919, 0.1744806319475174, 0.1240333691239357, 0.0966154932975769, 0.02123837172985077, 0.027973322197794914, -0.05197659507393837, -0.08237861841917038, 0.09117108583450317, -0.05933811888098717, 0.03543657436966896, -0.04312262311577797, 0.034088149666786194, 0.18855524063110352, -0.1509847790002823, 0.10496676713228226, 0.020192859694361687, -0.07995020598173141, -0.10143640637397766, -0.16315442323684692, -0.04257148131728172, -0.1049339547753334, 0.04696185514330864, -0.08609453588724136, 0.028501436114311218, 0.05271708965301514, 0.11392626166343689, -0.03610784187912941, 0.1138019934296608, -0.04885777458548546, -0.09643614292144775, 0.10198143869638443, -0.016066178679466248, -0.024096019566059113, 0.07427907735109329, -0.031534064561128616, 0.018455667421221733, -0.03013235330581665, 0.09402672201395035, -0.004198698792606592, 0.0870494544506073, 0.05550628527998924, -0.010689880698919296, -0.051703501492738724, -0.025027446448802948, -0.02734140306711197, 0.033317577093839645, 0.09132304042577744, 0.05668139457702637, -0.016055237501859665, -0.01196406502276659, 0.15773139894008636, -0.009081118740141392, -0.13187719881534576, -0.1697164922952652, 0.04881167411804199, 0.03686622157692909, -0.012958469800651073, 0.017077120020985603, -0.09363359957933426, -0.034757617861032486, 0.12138980627059937, 0.14735287427902222, 0.0233356524258852, -0.041042838245630264, -0.04339173063635826, -0.005610408261418343, -0.00007503820961574093, 0.15864931046962738, -0.03682076558470726, 0.1413642317056656, -0.03687434270977974, -0.006454089656472206, -0.013163330964744091, -0.047859255224466324, 0.007729994598776102, 0.18489690124988556, -0.021219724789261818, 0.0028468884993344545, -0.04130825027823448, 0.07752380520105362, -0.06350214034318924, -0.1702899932861328, -0.04029111936688423, -0.08944341540336609, -0.12160646170377731, 0.016335442662239075, -0.023513048887252808, 0.05045022442936897, 0.08436726778745651, 0.01572544127702713, 0.029671646654605865, 0.11768916249275208, 0.03478328883647919, -0.16810071468353271, -0.044961098581552505, 0.12369228154420853, 0.02035239152610302, 0.11582446843385696, 0.0018904529279097915, 0.030819043517112732, 0.06171039864420891, -0.004705412313342094, -0.09616277366876602, 0.0066504399292171, 0.038930539041757584, 0.04194909334182739, -0.006916103418916464, 0.18104727566242218, -0.029123947024345398, 0.029817691072821617, 0.04067061468958855, 0.016503410413861275, -0.02117631398141384, 0.02189255692064762, 0.03589870408177376, -0.09902811795473099, 0.051053356379270554, -0.025218641385436058, 0.11628899723291397, 0.18151479959487915, -0.0477948896586895, 0.048261746764183044, -0.06180436909198761, -0.03374800458550453, 0.04971492663025856, 0.08487477153539658, 0.008223566226661205, -0.1877930760383606, -0.08654829114675522, -0.10831119865179062, 0.022938335314393044, -0.17886708676815033, -0.06747656315565109, 0.021270863711833954, -0.041072554886341095, -0.08053522557020187, 0.17303581535816193, 0.04156317189335823, 0.021176716312766075, -0.021840324625372887, -0.06634924560785294, 0.005889029707759619, 0.06858205795288086, -0.12756727635860443, -0.041692104190588 ]
null
null
transformers
# Cross-Document Language Modeling CDLM: Cross-Document Language Modeling. Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. [PDF](https://arxiv.org/pdf/2101.00406.pdf) Please note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are `<doc-s>`, `</doc-s>` (the last two tokens in the vocabulary), and `<s>`, `</s>`, respectively. ```python from transformers import AutoTokenizer, AutoModel # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm') model = AutoModel.from_pretrained('biu-nlp/cdlm') ``` The original repo is [here](https://github.com/aviclu/CDLM). If you find our work useful, please cite the paper as: ```python @article{caciularu2021cross, title={Cross-Document Language Modeling}, author={Caciularu, Avi and Cohan, Arman and Beltagy, Iz and Peters, Matthew E and Cattan, Arie and Dagan, Ido}, journal={Findings of the Association for Computational Linguistics: EMNLP 2021}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["longformer", "cdlm"], "inference": false}
fill-mask
biu-nlp/cdlm
[ "transformers", "pytorch", "longformer", "fill-mask", "cdlm", "en", "arxiv:2101.00406", "license:apache-2.0", "autotrain_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2101.00406" ]
[ "en" ]
TAGS #transformers #pytorch #longformer #fill-mask #cdlm #en #arxiv-2101.00406 #license-apache-2.0 #autotrain_compatible #region-us
# Cross-Document Language Modeling CDLM: Cross-Document Language Modeling. Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. PDF Please note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are '<doc-s>', '</doc-s>' (the last two tokens in the vocabulary), and '<s>', '</s>', respectively. The original repo is here. If you find our work useful, please cite the paper as:
[ "# Cross-Document Language Modeling\n\nCDLM: Cross-Document Language Modeling. \nAvi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. PDF\n\n\nPlease note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are '<doc-s>', '</doc-s>' (the last two tokens in the vocabulary), and '<s>', '</s>', respectively.\n\n\n\n\nThe original repo is here.\n\nIf you find our work useful, please cite the paper as:" ]
[ "TAGS\n#transformers #pytorch #longformer #fill-mask #cdlm #en #arxiv-2101.00406 #license-apache-2.0 #autotrain_compatible #region-us \n", "# Cross-Document Language Modeling\n\nCDLM: Cross-Document Language Modeling. \nAvi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. PDF\n\n\nPlease note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are '<doc-s>', '</doc-s>' (the last two tokens in the vocabulary), and '<s>', '</s>', respectively.\n\n\n\n\nThe original repo is here.\n\nIf you find our work useful, please cite the paper as:" ]
[ 50, 149 ]
[ "passage: TAGS\n#transformers #pytorch #longformer #fill-mask #cdlm #en #arxiv-2101.00406 #license-apache-2.0 #autotrain_compatible #region-us \n# Cross-Document Language Modeling\n\nCDLM: Cross-Document Language Modeling. \nAvi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. PDF\n\n\nPlease note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are '<doc-s>', '</doc-s>' (the last two tokens in the vocabulary), and '<s>', '</s>', respectively.\n\n\n\n\nThe original repo is here.\n\nIf you find our work useful, please cite the paper as:" ]
[ -0.08891650289297104, -0.08009159564971924, -0.002096025040373206, 0.032956190407276154, 0.03264201059937477, 0.024886421859264374, 0.15813851356506348, 0.024844788014888763, 0.01550864428281784, -0.01701924577355385, 0.10864454507827759, 0.10843458026647568, 0.015382189303636551, 0.05316314846277237, -0.0783781111240387, -0.322050541639328, 0.04859088733792305, 0.019284863024950027, 0.024458549916744232, 0.07637849450111389, 0.13481485843658447, -0.09170079231262207, 0.04219236224889755, 0.0334165096282959, -0.13203813135623932, -0.05904672294855118, -0.06065405160188675, -0.09322720766067505, 0.12884441018104553, 0.03537054359912872, 0.13229012489318848, 0.057338498532772064, 0.04517339915037155, -0.04806015267968178, 0.039926111698150635, -0.06650213152170181, -0.008030313067138195, 0.05424255132675171, -0.01870294101536274, -0.010105421766638756, 0.1047169417142868, -0.0023094406351447105, 0.006476376671344042, -0.066063292324543, -0.10329543799161911, -0.19534382224082947, -0.10737390071153641, -0.03492789342999458, 0.12472038716077805, 0.08629650622606277, 0.011052008718252182, 0.17577999830245972, -0.07297714799642563, 0.018251048400998116, 0.09216701984405518, -0.2704421579837799, -0.02556275762617588, 0.09189897775650024, 0.1167391985654831, -0.011585717089474201, 0.0009515488054603338, 0.05684560909867287, 0.027544178068637848, -0.0013718933332711458, -0.04721641540527344, -0.07262381166219711, -0.018396079540252686, -0.05768450349569321, -0.13456059992313385, -0.003917225636541843, 0.42457008361816406, -0.041205741465091705, -0.02997179701924324, -0.0008115787641145289, -0.03562593087553978, 0.09753680974245071, -0.008040494285523891, -0.14053645730018616, 0.0016415304271504283, -0.0005706792580895126, 0.13853581249713898, -0.05108194798231125, -0.17167866230010986, 0.0024242184590548277, -0.2701554000377655, 0.19839327037334442, 0.03592686727643013, -0.007631723303347826, -0.046435657888650894, 0.034798070788383484, -0.08927828818559647, -0.12025588750839233, -0.01357361115515232, -0.05160079523921013, 0.06523516029119492, -0.016822462901473045, -0.09028025716543198, -0.14956218004226685, 0.03146786242723465, 0.17158477008342743, 0.09496266394853592, -0.036931831389665604, -0.11395498365163803, 0.11958927661180496, 0.023936741054058075, 0.2173936516046524, -0.0006836168467998505, 0.029041333124041557, 0.08695828169584274, -0.07386231422424316, 0.08482810854911804, -0.04940813407301903, -0.2039637267589569, -0.007540945429354906, -0.024554811418056488, 0.05183927342295647, 0.036302778869867325, 0.03940092772245407, -0.029037509113550186, -0.043555766344070435, 0.12570926547050476, -0.09815426170825958, -0.01203316543251276, -0.0604206845164299, 0.007613216061145067, 0.07295767962932587, 0.007868623360991478, 0.11081984639167786, -0.01062008272856474, 0.03238850086927414, -0.00983075425028801, 0.01662127673625946, -0.03428918495774269, -0.13242079317569733, 0.07203208655118942, -0.02610994130373001, 0.03411499410867691, -0.1892991065979004, -0.1371414214372635, 0.0036662870552390814, 0.051932305097579956, -0.02027605101466179, 0.04373979941010475, -0.04619525000452995, 0.0520596019923687, -0.04888977110385895, -0.009022751823067665, -0.05462449789047241, -0.03858927637338638, 0.0037692778278142214, -0.029210330918431282, 0.06068753823637962, -0.21573705971240997, 0.03446026146411896, -0.09001016616821289, 0.01323016919195652, -0.1331033706665039, -0.040520403534173965, 0.03116115741431713, 0.014114652760326862, -0.03192153573036194, 0.014507977291941643, -0.1047624945640564, 0.034593015909194946, -0.04170934483408928, 0.11064741015434265, -0.20345675945281982, -0.053861528635025024, 0.10273577272891998, -0.13757552206516266, -0.13263362646102905, 0.12766706943511963, -0.03257713466882706, 0.1612347513437271, 0.05726504698395729, 0.1397881805896759, 0.05491827428340912, -0.16678552329540253, 0.10132905095815659, -0.0076528689824044704, -0.03064229153096676, 0.007684048265218735, 0.14142686128616333, -0.022688116878271103, -0.034593649208545685, 0.03210948035120964, -0.05986471474170685, -0.02983398362994194, -0.028718315064907074, -0.04157836735248566, 0.03777322173118591, 0.0010317523265257478, 0.03863034397363663, -0.010448979213833809, 0.07312092930078506, -0.03771412745118141, 0.00701476912945509, -0.09593232721090317, 0.04929862171411514, 0.003582393517717719, 0.040637802332639694, -0.043518103659152985, 0.11398480832576752, -0.06775875389575958, 0.024645434692502022, -0.13869895040988922, -0.049810852855443954, 0.035172238945961, 0.2077610045671463, 0.06602296233177185, 0.1248609870672226, -0.014403946697711945, 0.0306315366178751, 0.006116109434515238, 0.040291644632816315, 0.03466971218585968, 0.01676819659769535, -0.038602422922849655, -0.0906572937965393, 0.08562903851270676, -0.06775394827127457, 0.1222454309463501, -0.025247791782021523, 0.011491415090858936, -0.08218098431825638, 0.04715082794427872, 0.005564457271248102, 0.09429261833429337, -0.06381821632385254, 0.06208232417702675, -0.0761290192604065, 0.07207444310188293, 0.025416787713766098, -0.009711327962577343, -0.08572328835725784, 0.16806639730930328, -0.10603810846805573, 0.13074439764022827, 0.16218429803848267, -0.11250754445791245, 0.0484032928943634, -0.13999994099140167, 0.0012160791084170341, -0.01605847477912903, 0.01682288572192192, -0.00953525397926569, 0.11133945733308792, 0.013355080038309097, 0.10714657604694366, -0.07771384716033936, 0.04656120389699936, -0.03305031731724739, -0.09823262691497803, -0.07045964896678925, 0.03557370603084564, 0.10946173220872879, -0.1027430072426796, 0.09501486271619797, 0.2811431884765625, -0.007495375815778971, 0.1010655090212822, -0.013284653425216675, -0.04691692441701889, -0.08084819465875626, -0.01601361855864525, -0.00516317505389452, 0.0455392561852932, -0.020507436245679855, 0.04656365513801575, 0.06952492892742157, 0.033665671944618225, 0.046984318643808365, -0.12465764582157135, -0.0314263217151165, 0.044817209243774414, 0.02807537280023098, -0.02891133911907673, 0.10798116773366928, -0.01700836420059204, 0.058869343250989914, -0.0004549556761048734, -0.09899914264678955, 0.00953678134828806, 0.02739005722105503, -0.06382540613412857, 0.15882869064807892, -0.16003423929214478, -0.38487958908081055, -0.11293613910675049, -0.050263673067092896, -0.038493797183036804, 0.05996614694595337, 0.06947753578424454, -0.01494787447154522, -0.04191162809729576, -0.0037597136106342077, 0.05990012735128403, -0.05830521509051323, -0.040112171322107315, 0.05129504203796387, -0.02009422518312931, -0.13470996916294098, -0.08209455758333206, -0.048822641372680664, -0.05425131693482399, 0.023822056129574776, 0.10297254472970963, -0.1159500703215599, 0.13006864488124847, 0.11385393142700195, 0.04714517667889595, 0.0208134762942791, -0.022217687219381332, 0.057302072644233704, -0.0630105659365654, 0.013116667047142982, 0.22060982882976532, -0.10431299358606339, 0.03691263496875763, 0.13709893822669983, 0.0013280194252729416, -0.0286845825612545, -0.01833498850464821, -0.08709809184074402, -0.06859505921602249, -0.18156568706035614, -0.1440778225660324, -0.08461710810661316, 0.009091362357139587, -0.03580809757113457, -0.009568444453179836, 0.09793546795845032, 0.07792293280363083, -0.008020555600523949, 0.029932266101241112, 0.023814605548977852, 0.08948004990816116, 0.20739588141441345, -0.047996412962675095, 0.10925357043743134, 0.0053543271496891975, -0.10154277086257935, 0.07362653315067291, 0.04631833732128143, 0.16217218339443207, 0.1613035649061203, 0.022285660728812218, 0.09348321706056595, 0.03833158686757088, 0.03483768552541733, 0.08060374855995178, 0.01075515616685152, -0.012210691347718239, -0.073672354221344, -0.06655760109424591, 0.007181431632488966, 0.06654978543519974, 0.015699470415711403, -0.04798882454633713, -0.10161975026130676, 0.06569739431142807, 0.04793880879878998, -0.006989589426666498, 0.024228621274232864, -0.15203142166137695, -0.029083870351314545, 0.004283708054572344, 0.040977660566568375, -0.04895125329494476, -0.01085488311946392, -0.09617063403129578, -0.08327271789312363, 0.024077201262116432, 0.006467064842581749, 0.07395578175783157, -0.04095683991909027, 0.05143235623836517, -0.19585801661014557, -0.05198490992188454, 0.04992189630866051, 0.07668502628803253, -0.22565804421901703, 0.28687918186187744, 0.031381912529468536, -0.03919866308569908, -0.11701471358537674, 0.0030611471738666296, -0.005821079947054386, 0.1681985706090927, 0.0690850168466568, -0.021027175709605217, -0.059014879167079926, -0.017522627487778664, -0.09869252890348434, 0.038734376430511475, 0.12188298255205154, -0.11454608291387558, 0.049874838441610336, -0.004234556574374437, 0.012005924247205257, 0.03980822488665581, 0.10247398912906647, -0.12554582953453064, -0.14250126481056213, 0.14804328978061676, 0.006713741458952427, 0.018410416319966316, -0.01212492398917675, -0.07643894851207733, -0.13376301527023315, 0.17147429287433624, -0.047741033136844635, -0.017942845821380615, -0.05975086987018585, 0.008267061784863472, 0.09347688406705856, -0.08781696110963821, 0.05627603456377983, -0.05568833649158478, 0.04694891348481178, -0.12715986371040344, -0.061078596860170364, 0.06273204833269119, -0.12559808790683746, -0.03423970937728882, -0.05435220152139664, 0.13796983659267426, 0.01913585141301155, 0.02941909246146679, 0.08803118020296097, 0.0426306277513504, -0.08927565068006516, -0.05564865842461586, -0.014618674293160439, 0.07339853793382645, 0.17404791712760925, 0.015787336975336075, -0.18403200805187225, -0.06619718670845032, -0.02014894410967827, -0.12916484475135803, 0.2239435464143753, 0.21930952370166779, -0.06136548891663551, 0.11591681838035583, 0.13328228890895844, -0.06032919883728027, -0.2359665483236313, -0.0964680165052414, -0.03718720003962517, 0.03173541650176048, 0.004631078336387873, -0.11769906431436539, 0.062140949070453644, 0.11330417543649673, -0.03604985028505325, 0.01299411989748478, -0.2564440965652466, -0.12043318152427673, 0.23696905374526978, -0.08024495840072632, 0.3109271824359894, -0.0759071484208107, -0.003525950713083148, -0.10895518958568573, -0.09572674334049225, 0.0939861387014389, -0.06786560267210007, 0.06928877532482147, 0.005159485153853893, 0.03517361730337143, -0.01023157313466072, -0.027135461568832397, 0.16153834760189056, -0.03373557701706886, 0.044410329312086105, -0.0848337858915329, -0.10127683728933334, 0.033280834555625916, -0.03709930554032326, 0.08512312173843384, -0.009234524331986904, -0.02084292098879814, -0.014254697598516941, -0.08282879739999771, -0.0002274028811370954, 0.07823887467384338, -0.002505469135940075, -0.08083897083997726, -0.09546074271202087, 0.01985335163772106, -0.06023957580327988, -0.01554245688021183, 0.14679554104804993, 0.0017246109200641513, -0.016635533422231674, 0.021231582388281822, 0.11424917727708817, -0.08818580210208893, 0.1547396183013916, -0.05120239406824112, -0.08583204448223114, 0.07017388194799423, 0.005912005435675383, 0.016418317332863808, 0.1269371211528778, -0.09187540411949158, 0.10846332460641861, 0.041438840329647064, -0.04952940344810486, -0.017771074548363686, 0.08188473433256149, -0.08627946674823761, -0.07299555093050003, -0.039236944168806076, 0.026069406419992447, 0.07347089052200317, 0.04995102062821388, 0.12100981920957565, -0.02296307124197483, -0.03443257510662079, 0.006321621127426624, 0.022274455055594444, 0.03319144248962402, 0.0577114075422287, 0.023366468027234077, -0.03138688579201698, -0.07055377215147018, 0.08680049329996109, 0.10417523235082626, -0.0431075245141983, 0.012210718356072903, -0.01606743223965168, -0.08862096816301346, -0.1350124180316925, -0.05367941036820412, 0.10557324439287186, -0.15604020655155182, -0.08511312305927277, -0.05554564297199249, -0.10770808160305023, 0.008270434103906155, 0.18170979619026184, 0.1021672785282135, -0.013089437037706375, -0.02214263379573822, -0.016289938241243362, -0.02501394972205162, 0.09066224098205566, 0.08578123897314072, 0.016132337972521782, -0.04497310891747475, 0.09304121136665344, -0.01447093766182661, 0.06367399543523788, -0.04362938180565834, -0.045338619500398636, -0.07178901135921478, 0.0016052178107202053, -0.06891583651304245, 0.020445525646209717, -0.0761960819363594, -0.035141848027706146, 0.03272336721420288, -0.036707308143377304, -0.019818294793367386, -0.01288587972521782, -0.09082572162151337, 0.027676844969391823, -0.05927463620901108, 0.04503019154071808, -0.04932241886854172, -0.09220339357852936, 0.0678633376955986, 0.010125560685992241, 0.06754688918590546, 0.060788318514823914, 0.03258161246776581, 0.078379787504673, -0.2086355835199356, 0.01821708492934704, 0.116754449903965, 0.104976586997509, 0.021655390039086342, -0.09948396682739258, -0.006923930253833532, 0.09630030393600464, -0.03386951610445976, 0.026934215798974037, 0.13413049280643463, -0.09147805720567703, -0.04628637805581093, -0.05111568793654442, -0.1490028202533722, 0.008152708411216736, -0.034087084233760834, 0.0015327190048992634, 0.050775784999132156, 0.1376047134399414, -0.012158194556832314, 0.07483604550361633, -0.04160112887620926, 0.022786209359765053, -0.04491136968135834, -0.11181924492120743, -0.019763300195336342, -0.13204626739025116, -0.015932928770780563, -0.014422835782170296, 0.24029476940631866, 0.060524214059114456, 0.04618019983172417, -0.031023899093270302, 0.10115578025579453, -0.005345429293811321, -0.008837653324007988, 0.10893744975328445, 0.13177146017551422, 0.0261048786342144, -0.11836466193199158, 0.08165115863084793, 0.06293006241321564, -0.01224554143846035, 0.13386569917201996, 0.11269015818834305, 0.05945717915892601, 0.1101488545536995, 0.055947862565517426, -0.03078336827456951, -0.012801241129636765, -0.20984236896038055, 0.011751102283596992, 0.019449593499302864, 0.013564316555857658, 0.035437487065792084, 0.1328229457139969, -0.0670282393693924, -0.013360554352402687, 0.015580844134092331, -0.01953485980629921, -0.15705014765262604, -0.12527507543563843, -0.1113404706120491, -0.024851562455296516, -0.0417080782353878, -0.07117071002721786, -0.0121539905667305, -0.05888381600379944, 0.038652993738651276, -0.030661387369036674, 0.08670540153980255, -0.10741154104471207, -0.13733509182929993, 0.019143592566251755, -0.026010647416114807, 0.042985882610082626, -0.058715637773275375, -0.02931010164320469, -0.0655420646071434, 0.02108074352145195, -0.012602985836565495, -0.015571185387670994, 0.04856124520301819, -0.024312829598784447, -0.11409763246774673, -0.06779734790325165, -0.05277268588542938, 0.0336783304810524, 0.04112205654382706, 0.07353024184703827, 0.0265007633715868, -0.014285827055573463, 0.05529879033565521, 0.06613177061080933, 0.03928770497441292, -0.17166605591773987, -0.08720064163208008, 0.10855494439601898, 0.03403725475072861, 0.02562098391354084, -0.050473812967538834, -0.031411707401275635, -0.022697890177369118, 0.2531461715698242, 0.2979068458080292, -0.007642737589776516, -0.0010757908457890153, 0.04243919253349304, 0.021319372579455376, 0.017467226833105087, 0.05079899728298187, 0.08522637188434601, 0.25727376341819763, -0.022476382553577423, -0.08619590103626251, -0.10585536807775497, 0.03905064985156059, -0.1274702101945877, 0.020978830754756927, 0.02099406160414219, -0.08356291800737381, 0.033925700932741165, 0.09172404557466507, 0.030618058517575264, 0.022237801924347878, -0.01529186125844717, -0.11469990760087967, -0.08701949566602707, 0.0010514580644667149, 0.027711834758520126, -0.009756478480994701, 0.041439078748226166, -0.06468763947486877, -0.08392813056707382, 0.10481956601142883, 0.01744149811565876, -0.11614128947257996, 0.001314579276368022, 0.13658687472343445, 0.0895308256149292, 0.05021011829376221, -0.018465716391801834, 0.17221355438232422, 0.04258168861269951, 0.09778286516666412, 0.028337979689240456, 0.1077764630317688, 0.05518632382154465, 0.0547352209687233, 0.12679600715637207, -0.039376795291900635, -0.03992471471428871, -0.0007661636918783188, 0.13996315002441406, -0.08783196657896042, 0.09184373915195465, 0.007276126183569431, -0.1304779201745987, -0.0024717270862311125, 0.11078579723834991, -0.1557377278804779, 0.0969720259308815, 0.09515818953514099, 0.0038735775742679834, -0.020608440041542053, -0.034432388842105865, 0.0639009028673172, 0.053411051630973816, -0.01889973133802414, -0.07828675210475922, -0.09656845778226852, -0.01948019117116928, 0.045121874660253525, 0.005502653773874044, -0.15560537576675415, -0.07816466689109802, -0.07834625989198685, -0.033269740641117096, -0.03692326322197914, 0.002671873662620783, 0.08100096136331558, -0.013824462890625, -0.051136791706085205, -0.08252913504838943, 0.021112099289894104, -0.000437002454418689, -0.1221688911318779, -0.029989352449774742 ]
null
null
transformers
# SuperPAL model Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. [PDF](https://arxiv.org/pdf/2009.00590) **How to use?** ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("biu-nlp/superpal") model = AutoModelForSequenceClassification.from_pretrained("biu-nlp/superpal") ``` The original repo is [here](https://github.com/oriern/SuperPAL). If you find our work useful, please cite the paper as: ```python @inproceedings{ernst-etal-2021-summary, title = "Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline", author = "Ernst, Ori and Shapira, Ori and Pasunuru, Ramakanth and Lepioshkin, Michael and Goldberger, Jacob and Bansal, Mohit and Dagan, Ido", booktitle = "Proceedings of the 25th Conference on Computational Natural Language Learning", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.conll-1.25", pages = "310--322" } ```
{"widget": [{"text": "Prime Minister Hun Sen insisted that talks take place in Cambodia. </s><s> Cambodian leader Hun Sen rejected opposition parties' demands for talks outside the country."}]}
text-classification
biu-nlp/superpal
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2009.00590", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2009.00590" ]
[]
TAGS #transformers #pytorch #roberta #text-classification #arxiv-2009.00590 #autotrain_compatible #endpoints_compatible #region-us
# SuperPAL model Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. PDF How to use? The original repo is here. If you find our work useful, please cite the paper as:
[ "# SuperPAL model\n\nSummary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline\nOri Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. PDF\n\nHow to use?\n\n\n\n\n\nThe original repo is here.\n\n\nIf you find our work useful, please cite the paper as:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #arxiv-2009.00590 #autotrain_compatible #endpoints_compatible #region-us \n", "# SuperPAL model\n\nSummary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline\nOri Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. PDF\n\nHow to use?\n\n\n\n\n\nThe original repo is here.\n\n\nIf you find our work useful, please cite the paper as:" ]
[ 44, 89 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #arxiv-2009.00590 #autotrain_compatible #endpoints_compatible #region-us \n# SuperPAL model\n\nSummary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline\nOri Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. PDF\n\nHow to use?\n\n\n\n\n\nThe original repo is here.\n\n\nIf you find our work useful, please cite the paper as:" ]
[ -0.08062505722045898, 0.04790615662932396, 0.0002861368702724576, 0.01120904739946127, 0.12414659559726715, -0.006813571322709322, 0.10178445279598236, 0.022186478599905968, 0.008181940764188766, 0.0017511161277070642, 0.11765868216753006, 0.1028825044631958, 0.08718381077051163, 0.13373297452926636, -0.07030180841684341, -0.2922707200050354, 0.014243374578654766, 0.0703393965959549, -0.06060606613755226, 0.07875014841556549, 0.09492556750774384, -0.09309916943311691, 0.04439302533864975, 0.009127075783908367, -0.11332223564386368, 0.05845917761325836, -0.05860394984483719, -0.04656987264752388, 0.08319200575351715, 0.08874884992837906, 0.1320020705461502, 0.09218835830688477, 0.039236947894096375, -0.004342909436672926, 0.03785242512822151, -0.04319564625620842, -0.020476697012782097, 0.06945788115262985, 0.05365915223956108, 0.0005697868764400482, 0.11949622631072998, -0.038111597299575806, -0.046386685222387314, 0.008459768258035183, -0.1523299366235733, 0.027474932372570038, -0.06445154547691345, 0.06457555294036865, 0.15178099274635315, 0.0025233174674212933, -0.004945322405546904, 0.15700173377990723, -0.03032609447836876, 0.047058068215847015, -0.008553802967071533, -0.2645077407360077, -0.08299127221107483, 0.1544121503829956, -0.02521630749106407, -0.013651694171130657, 0.02647794596850872, 0.022222919389605522, 0.07882486283779144, -0.0178334042429924, -0.013324056752026081, -0.11558922380208969, -0.14155437052249908, 0.035747770220041275, -0.1569315493106842, 0.07042594254016876, 0.293419748544693, -0.002026469213888049, -0.04387064650654793, 0.030040577054023743, -0.09973153471946716, 0.0010354779660701752, 0.012881876900792122, -0.13089486956596375, 0.027993682771921158, -0.029528506100177765, 0.11802604794502258, -0.03084980510175228, -0.07158910483121872, 0.009083445183932781, -0.16404591500759125, 0.1856250762939453, -0.014014189131557941, 0.02291199564933777, -0.04295535013079643, 0.07182275503873825, -0.20359881222248077, -0.10882701724767685, 0.04656974598765373, -0.11710779368877411, -0.041566986590623856, -0.04909395053982735, -0.029160507023334503, -0.15377944707870483, -0.008267818950116634, 0.10592049360275269, 0.1339797079563141, 0.039999641478061676, 0.037837423384189606, 0.05998111516237259, 0.07489140331745148, 0.16944925487041473, -0.1374228447675705, -0.13520380854606628, 0.0668589323759079, 0.003157515311613679, 0.09065031260251999, -0.031307294964790344, -0.12206284701824188, -0.04895270988345146, -0.12680870294570923, 0.049005176872015, 0.04179484024643898, 0.044672876596450806, -0.039332639425992966, -0.08066093921661377, 0.05923021212220192, -0.08410162478685379, 0.004066861234605312, -0.06854813545942307, -0.054058369249105453, 0.13624843955039978, 0.0038348401430994272, 0.05135368928313255, -0.08581791818141937, 0.1113630086183548, -0.06509239226579666, 0.006456286180764437, -0.07208888232707977, -0.07586944848299026, 0.010417722165584564, -0.10643627494573593, 0.048601049929857254, -0.149287149310112, -0.1133662536740303, -0.027505580335855484, 0.05043493211269379, -0.08084654808044434, -0.05129041150212288, -0.07725990563631058, 0.04964803531765938, -0.027776993811130524, -0.04712029919028282, -0.008459408767521381, -0.053881507366895676, -0.02112055942416191, 0.044890303164720535, 0.07594191282987595, -0.15235556662082672, 0.04819227755069733, -0.13309212028980255, 0.0037325925659388304, -0.12567360699176788, -0.008276376873254776, -0.017361124977469444, 0.08706088364124298, -0.06107170879840851, 0.00752401165664196, -0.08182361721992493, 0.003159456653520465, 0.0749819427728653, 0.22765934467315674, -0.07485959678888321, -0.05961773172020912, 0.05532931536436081, -0.11394903808832169, -0.15483494102954865, 0.057764481753110886, 0.016784021630883217, 0.10381356626749039, 0.04528568312525749, 0.11298511922359467, 0.04475024715065956, 0.036274660378694534, 0.002007481874898076, -0.012000752612948418, -0.00392477260902524, -0.07718406617641449, 0.08803031593561172, 0.08380109071731567, -0.16457995772361755, 0.020376065745949745, 0.005365628283470869, 0.012117807753384113, -0.056340742856264114, -0.06201284006237984, -0.02379431016743183, -0.035281483083963394, 0.016600925475358963, -0.007716196123510599, 0.08195432275533676, -0.03156155347824097, -0.00045261444756761193, -0.05595045164227486, 0.04321551322937012, 0.011405388824641705, 0.01359860971570015, -0.04527555778622627, 0.12492707371711731, -0.18188585340976715, 0.019367342814803123, -0.15631495416164398, 0.028133206069469452, -0.005430358927696943, 0.11309488117694855, 0.06836934387683868, 0.07165025919675827, 0.022717198356986046, 0.021223340183496475, -0.028779638931155205, -0.02165628783404827, 0.09046762436628342, -0.00817160215228796, -0.029191678389906883, -0.11644887179136276, -0.006233885418623686, -0.03916109353303909, -0.014784873463213444, -0.10047699511051178, -0.014651360921561718, -0.060895487666130066, 0.12869103252887726, -0.013901771046221256, 0.07734611630439758, 0.03844572603702545, 0.11708876490592957, -0.06022633612155914, 0.02594219706952572, 0.0893888995051384, 0.006628596223890781, -0.0996008887887001, 0.09112311899662018, -0.03324965015053749, 0.20262496173381805, 0.1274436116218567, -0.18117953836917877, 0.00034264620626345277, -0.039934199303388596, -0.012658733874559402, -0.0069456021301448345, -0.02325437031686306, 0.10533114522695541, 0.09049851447343826, 0.005391126964241266, 0.09588462859392166, -0.038233157247304916, 0.05827063322067261, 0.003982985857874155, -0.06931357830762863, -0.006152943708002567, 0.10362270474433899, 0.23442324995994568, -0.15927058458328247, 0.12758904695510864, 0.10569749772548676, -0.020747844129800797, 0.17735619843006134, 0.0005740058259107172, -0.03679196909070015, -0.029264986515045166, -0.055150095373392105, -0.05218304321169853, 0.011183584108948708, -0.14321371912956238, 0.008869036100804806, 0.056657224893569946, -0.006018112413585186, 0.028943786397576332, -0.11987647414207458, -0.03143364563584328, 0.05828242376446724, 0.05814456194639206, -0.06287870556116104, 0.03185923770070076, -0.04749242588877678, 0.10198267549276352, -0.008444080129265785, -0.02671191655099392, 0.025651508942246437, 0.014245848171412945, -0.08792119473218918, 0.11663049459457397, -0.0006966512301005423, -0.26072418689727783, -0.1349717080593109, -0.08781161159276962, -0.12211652100086212, 0.01608860492706299, 0.043553676456213, -0.008511783555150032, -0.08810240775346756, 0.041118912398815155, 0.060696858912706375, 0.01757087931036949, -0.003979402594268322, 0.005688228644430637, -0.0024289540015161037, -0.05458274856209755, -0.061376579105854034, -0.04486194998025894, -0.009660706855356693, 0.01966782473027706, 0.07398536056280136, -0.059082239866256714, 0.138131782412529, 0.0899023711681366, -0.029382621869444847, 0.011083811521530151, 0.016018351539969444, 0.16349296271800995, -0.08944448828697205, 0.0706949457526207, 0.21992819011211395, -0.04454301297664642, 0.04504036158323288, 0.1613570749759674, 0.019101127982139587, -0.019909005612134933, -0.011321666650474072, -0.0720481276512146, -0.06264646351337433, -0.20507942140102386, -0.10756675899028778, -0.12578031420707703, 0.03499310463666916, 0.0248761847615242, -0.024080585688352585, -0.020953701809048653, 0.15948596596717834, 0.01760207675397396, -0.008678148500621319, -0.12334597855806351, 0.10577423125505447, 0.17180956900119781, 0.030866609886288643, 0.16314907371997833, -0.11042811721563339, -0.1459088921546936, 0.06914302706718445, -0.012913279235363007, 0.13667894899845123, 0.15306426584720612, -0.0859379768371582, 0.0005528883193619549, 0.0070620751939713955, 0.07945823669433594, 0.14140689373016357, 0.012715764343738556, -0.07539911568164825, -0.08050257712602615, -0.059731267392635345, -0.06409823894500732, 0.10532335937023163, -0.0334990993142128, -0.021313736215233803, -0.03951053321361542, -0.10823162645101547, 0.06319322437047958, 0.15445071458816528, 0.11270065605640411, -0.22636042535305023, -0.04943826422095299, 0.036878619343042374, 0.0028228650335222483, -0.03181947395205498, 0.002422880847007036, -0.10440939664840698, -0.05334611237049103, 0.14141161739826202, 0.007979677990078926, 0.13194742798805237, -0.007297356612980366, 0.03477977216243744, -0.19026176631450653, -0.07157015055418015, -0.023325610905885696, 0.08507617563009262, -0.15418633818626404, 0.2707115411758423, 0.010459735058248043, -0.028923198580741882, -0.057847823947668076, -0.003845958737656474, 0.04975901544094086, 0.25127437710762024, 0.06653948873281479, 0.007875155657529831, -0.1271124929189682, -0.04998266324400902, -0.04795641452074051, 0.07018132507801056, 0.03604506701231003, -0.011380348354578018, 0.07757117599248886, 0.0013210212346166372, 0.012467021122574806, -0.020166758447885513, 0.060693059116601944, -0.016964221373200417, -0.09928728640079498, 0.07535367459058762, -0.04328868165612221, 0.07972653210163116, 0.05611185356974602, -0.09583038091659546, 0.002861034357920289, 0.17578163743019104, -0.029428578913211823, -0.06642122566699982, -0.09011435508728027, 0.008075088262557983, 0.07252143323421478, -0.06067856401205063, 0.012706481851637363, -0.04286113381385803, 0.0007096268236637115, -0.0008649759693071246, -0.08824510127305984, 0.08018708229064941, -0.09243345260620117, 0.0009692200110293925, -0.019864363595843315, 0.09474388509988785, -0.037951670587062836, 0.025951433926820755, -0.02263377606868744, 0.05593240261077881, -0.026913994923233986, -0.10726987570524216, 0.048625826835632324, -0.01176343485713005, 0.11059103906154633, 0.04123873636126518, -0.013076318427920341, -0.02043241262435913, -0.011251218616962433, -0.058614857494831085, 0.14182904362678528, 0.24245943129062653, -0.02165663242340088, 0.05115223303437233, 0.15516948699951172, -0.06792404502630234, -0.2300960123538971, -0.02255694381892681, -0.08265146613121033, 0.08483274281024933, -0.03292292729020119, -0.15201832354068756, 0.11506997048854828, 0.045413363724946976, -0.009602033533155918, 0.0919915959239006, -0.13493189215660095, -0.10041394084692001, 0.0944007933139801, 0.043458107858896255, 0.3414826989173889, -0.1118905320763588, -0.004496601410210133, -0.060987554490566254, -0.12078161537647247, 0.10626184195280075, 0.016035275533795357, 0.08277525752782822, -0.04718475788831711, 0.012332353740930557, 0.018937181681394577, -0.03562316298484802, 0.17952241003513336, -0.12503038346767426, 0.010212608613073826, -0.0715366080403328, -0.052706655114889145, 0.045321159064769745, 0.0032028756104409695, 0.0777464509010315, 0.06050671637058258, -0.004707622807472944, -0.1166815385222435, -0.08105842769145966, 0.013794033788144588, 0.0539654865860939, 0.01911051757633686, -0.10316705703735352, -0.02944306470453739, 0.07436170428991318, -0.021625692024827003, -0.002150963759049773, 0.14584428071975708, -0.09301229566335678, 0.08456942439079285, 0.12535658478736877, 0.16417911648750305, -0.16149866580963135, 0.05130286142230034, -0.004731486551463604, -0.07032781839370728, 0.06930942088365555, -0.14245764911174774, -0.005209183320403099, 0.19372272491455078, -0.012604051269590855, 0.0226190984249115, 0.05889138579368591, 0.025208789855241776, -0.009467199444770813, 0.13074228167533875, -0.17561455070972443, -0.03963736072182655, -0.060699909925460815, -0.046242646872997284, 0.06171717867255211, 0.08073488622903824, 0.13407662510871887, -0.08452049642801285, -0.039438601583242416, 0.027929682284593582, 0.009129276499152184, -0.06769857555627823, 0.06488177180290222, 0.06663667410612106, 0.012275627814233303, -0.07113754749298096, 0.08599439263343811, 0.0805596336722374, -0.14031390845775604, -0.011135198175907135, 0.0714007094502449, -0.09988514333963394, -0.06049639359116554, -0.1368194967508316, 0.11566336452960968, -0.17980709671974182, -0.10996092855930328, -0.11323051899671555, -0.05602181702852249, 0.022649265825748444, 0.08836300671100616, 0.07745356112718582, -0.04584459960460663, -0.06238361820578575, -0.05134708434343338, -0.05073568597435951, 0.01530308835208416, 0.14069458842277527, 0.04671099781990051, -0.1400103121995926, -0.005502250045537949, -0.016057537868618965, 0.12044061720371246, -0.08633053302764893, -0.02944515459239483, -0.17688165605068207, -0.0029604248702526093, -0.13181209564208984, -0.04970073699951172, -0.0692506805062294, -0.030038688331842422, -0.03896761313080788, -0.09721655398607254, -0.14033403992652893, -0.030641911551356316, -0.08206609636545181, 0.053487829864025116, -0.027288217097520828, -0.0038110953755676746, 0.01051077526062727, -0.0421462319791317, 0.10083741694688797, 0.004478713497519493, -0.018866179510951042, 0.05054271221160889, -0.03932909667491913, 0.06060190126299858, -0.04847946763038635, 0.009519113227725029, 0.04037344083189964, 0.05494535341858864, 0.07172995805740356, -0.14837203919887543, 0.034611593931913376, 0.09811350703239441, 0.014364858157932758, 0.02868010476231575, 0.08339251577854156, -0.08491325378417969, -0.006555532105267048, -0.06702364981174469, -0.16109636425971985, 0.004164862912148237, -0.022807002067565918, 0.03951650112867355, 0.09589886665344238, 0.10809579491615295, -0.02879241481423378, 0.04423130303621292, -0.11318513751029968, 0.03291202336549759, -0.04826968163251877, -0.14741550385951996, 0.025552889332175255, -0.14625880122184753, 0.023036928847432137, -0.0145998140797019, 0.24746227264404297, 0.04597862809896469, 0.10028200596570969, 0.0384170338511467, -0.05676959082484245, 0.04430763050913811, 0.012716591358184814, 0.15559692680835724, 0.10611238330602646, -0.011272121220827103, -0.07134693115949631, 0.16392143070697784, 0.013742141425609589, 0.10813193023204803, 0.1589846909046173, 0.008390967734158039, -0.03851041570305824, 0.08501327782869339, -0.05068247765302658, -0.018283499404788017, -0.008859545923769474, -0.1557038277387619, 0.030361134558916092, 0.054811831563711166, 0.011050927452743053, 0.11181385815143585, 0.18061985075473785, -0.03226571902632713, 0.05542868748307228, -0.048323847353458405, -0.023913966491818428, -0.14987048506736755, -0.14523448050022125, -0.11490463465452194, -0.14147774875164032, -0.030002670362591743, -0.08206479996442795, -0.022249050438404083, 0.1137043759226799, 0.04013742133975029, -0.05866430699825287, 0.12101835757493973, 0.0257432758808136, -0.0194567684084177, 0.08156972378492355, -0.0310229379683733, 0.03681909665465355, -0.04031464830040932, -0.016302891075611115, -0.06295882165431976, 0.021144259721040726, -0.05204616114497185, 0.028602372854948044, -0.023942843079566956, -0.03270987793803215, 0.009808878414332867, -0.07248751819133759, -0.06918302923440933, 0.06065952777862549, 0.030353037640452385, 0.0734221413731575, -0.024775126948952675, 0.057853661477565765, 0.012237118557095528, 0.2105061113834381, -0.05805915221571922, -0.07800967991352081, -0.11212457716464996, 0.18856249749660492, 0.00919035729020834, 0.07081668078899384, 0.010321138426661491, -0.06130886822938919, -0.010759752243757248, 0.1702289581298828, 0.2512736916542053, -0.021651877090334892, -0.017498815432190895, -0.002617445308715105, 0.04097861796617508, 0.04591421037912369, 0.07096148282289505, 0.08205259591341019, 0.13159921765327454, -0.11203642934560776, -0.017545314505696297, -0.0850902870297432, 0.025825712829828262, -0.014674630016088486, 0.10920675098896027, 0.10892873257398605, -0.03570234403014183, -0.04152088984847069, 0.1067737340927124, -0.0642055794596672, 0.0013240693369880319, -0.04229041188955307, -0.16131308674812317, -0.14597612619400024, -0.052424442023038864, -0.03169086575508118, -0.014961883425712585, 0.09456340968608856, -0.0782066062092781, -0.06397654116153717, 0.026755787432193756, 0.05335398018360138, -0.0800388753414154, -0.08740273863077164, 0.13105016946792603, -0.0029057650826871395, -0.0034666210412979126, -0.0012052335077896714, 0.055518172681331635, 0.09914491325616837, 0.018468603491783142, -0.05533097684383392, 0.05572234094142914, 0.027640653774142265, -0.015198537148535252, 0.05476747453212738, -0.00713600218296051, -0.003370304126292467, -0.03910309821367264, 0.024214347824454308, -0.1192457526922226, 0.016072997823357582, 0.0875345915555954, -0.00930252019315958, -0.032577164471149445, 0.09608505666255951, -0.11529911309480667, 0.11908730119466782, 0.1608676016330719, -0.037104591727256775, 0.001470800838433206, -0.07643906772136688, 0.12936119735240936, 0.05189052224159241, 0.01080713514238596, -0.0092387106269598, -0.13010559976100922, -0.03319806605577469, 0.0793202668428421, 0.020756050944328308, -0.19258882105350494, -0.02182145044207573, -0.12131112068891525, 0.011600092984735966, -0.03366287425160408, 0.047877728939056396, -0.00046261012903414667, 0.004149374086409807, -0.043203793466091156, -0.19958068430423737, 0.00589723838493228, 0.013290680013597012, -0.061347946524620056, -0.07333657145500183 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlxlm-finetuned-funsd-test This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "layoutlxlm-finetuned-funsd-test", "results": []}]}
token-classification
bjorz/layoutxlm-finetuned-funsd-test
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
# layoutlxlm-finetuned-funsd-test This model is a fine-tuned version of microsoft/layoutxlm-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# layoutlxlm-finetuned-funsd-test\n\nThis model is a fine-tuned version of microsoft/layoutxlm-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1000\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.8.0+cu101\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# layoutlxlm-finetuned-funsd-test\n\nThis model is a fine-tuned version of microsoft/layoutxlm-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1000\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.8.0+cu101\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 65, 42, 6, 12, 8, 3, 117, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #layoutlmv2 #token-classification #generated_from_trainer #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# layoutlxlm-finetuned-funsd-test\n\nThis model is a fine-tuned version of microsoft/layoutxlm-base on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1000\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.8.0+cu101\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.11350405961275101, 0.13143187761306763, -0.0025706826709210873, 0.0884898453950882, 0.1298552006483078, 0.03712385520339012, 0.08364524692296982, 0.1604582965373993, -0.07265586405992508, 0.06574681401252747, 0.0841170996427536, 0.05129355564713478, 0.054983146488666534, 0.13965065777301788, -0.027820779010653496, -0.23206786811351776, 0.012147538363933563, -0.007684278767555952, -0.03264794126152992, 0.10995525866746902, 0.09653837978839874, -0.09403937309980392, 0.07007928937673569, 0.0025422440376132727, -0.13737399876117706, 0.0024553975090384483, -0.027813343331217766, -0.055303607136011124, 0.09176438301801682, -0.014314154163002968, 0.09522039443254471, 0.013749492354691029, 0.1434250921010971, -0.19627492129802704, -0.003222402185201645, 0.06557260453701019, 0.053246885538101196, 0.08222413808107376, 0.08259237557649612, 0.00026551177143119276, 0.07208012044429779, -0.14500923454761505, 0.09061606973409653, 0.022753188386559486, -0.07178466767072678, -0.12480201572179794, -0.09450789541006088, 0.06330011785030365, 0.07771764695644379, 0.09251338988542557, 0.01573377475142479, 0.14426888525485992, -0.08694811165332794, 0.08945804089307785, 0.16801685094833374, -0.24567081034183502, -0.06584884226322174, 0.09313179552555084, 0.09334788471460342, 0.02872641198337078, -0.10552140325307846, -0.009254278615117073, 0.015758046880364418, 0.041654329746961594, 0.08767179399728775, -0.028618091717362404, -0.08804768323898315, 0.006017626728862524, -0.1198224350810051, -0.045385245233774185, 0.12527698278427124, 0.02342849038541317, -0.04543434455990791, -0.1142892837524414, -0.036974042654037476, -0.12580469250679016, 0.000799887755420059, -0.034829068928956985, 0.028477579355239868, -0.05175365135073662, -0.043468330055475235, -0.06810582429170609, -0.07413741946220398, -0.0788128450512886, 0.012208056636154652, 0.08800837397575378, 0.0256291925907135, 0.018908217549324036, -0.02985023520886898, 0.14662547409534454, 0.004363358020782471, -0.1202925369143486, -0.028773624449968338, -0.01532752811908722, -0.11530955880880356, -0.07094261050224304, -0.02679937705397606, -0.0482567735016346, -0.006865006871521473, 0.12889744341373444, -0.033626489341259, 0.0835791528224945, 0.02472039684653282, -0.0050641861744225025, -0.03297794610261917, 0.16868838667869568, -0.030926775187253952, -0.04311235994100571, -0.005500268191099167, 0.10958414524793625, -0.00775888143107295, -0.0030057840049266815, -0.07578901201486588, -0.04887048155069351, 0.10212032496929169, 0.06933260709047318, -0.027625111863017082, 0.03588098660111427, -0.050227485597133636, -0.026084614917635918, 0.021683668717741966, -0.13741514086723328, 0.055827170610427856, -0.006218260154128075, -0.08887823671102524, -0.044836677610874176, 0.04868202283978462, -0.012688578106462955, -0.04482145980000496, 0.0922071784734726, -0.0643080621957779, 0.014993980526924133, -0.09378533065319061, -0.05991440638899803, 0.019534455612301826, -0.11320099979639053, -0.023286981508135796, -0.043087709695100784, -0.25329309701919556, -0.0649145320057869, 0.04470004513859749, -0.06338340789079666, -0.02020927518606186, -0.03971772640943527, -0.06677291542291641, 0.015623433515429497, -0.007531553041189909, 0.1436188817024231, -0.04749404639005661, 0.08043217658996582, 0.006399156060069799, 0.023263586685061455, 0.042181648313999176, 0.045910246670246124, -0.08344674110412598, 0.034803085029125214, -0.13061785697937012, 0.092270627617836, -0.08687761425971985, 0.013636365532875061, -0.11139100044965744, -0.10288932919502258, 0.010448288172483444, -0.01943545788526535, 0.062326233834028244, 0.14415010809898376, -0.18822045624256134, 0.008727140724658966, 0.13365685939788818, -0.07211261242628098, -0.04513115808367729, 0.06908290833234787, -0.0487208217382431, 0.05104834958910942, 0.049382731318473816, 0.15175586938858032, 0.12001053243875504, -0.1513267457485199, -0.006675338838249445, 0.0027338960207998753, 0.02695658430457115, 0.016084210947155952, 0.048724595457315445, -0.012117711827158928, 0.054649628698825836, 0.014543144032359123, -0.09168518334627151, -0.026649631559848785, -0.07399965077638626, -0.07563711702823639, -0.07043100148439407, -0.07334065437316895, 0.05994545295834541, 0.02813420258462429, 0.028882035985589027, -0.05948062986135483, -0.10913655906915665, 0.11253751069307327, 0.13471801578998566, -0.05289792641997337, 0.001297331997193396, -0.0908573642373085, 0.012626194395124912, -0.02137875370681286, -0.037528008222579956, -0.21201615035533905, -0.09920267015695572, 0.041876260191202164, -0.06286867707967758, 0.034835588186979294, 0.01786419004201889, 0.07429979741573334, 0.05004945397377014, -0.032074399292469025, -0.040133554488420486, -0.07879123836755753, 0.0019197346409782767, -0.10302744060754776, -0.1623535454273224, -0.07543734461069107, -0.03179360553622246, 0.12130960822105408, -0.23294568061828613, 0.017225192859768867, 0.013955269008874893, 0.14827539026737213, 0.030288320034742355, -0.061029210686683655, 0.0402393713593483, 0.04591214284300804, 0.004706635605543852, -0.10419070720672607, 0.04050445556640625, -0.0026081474497914314, -0.08025367558002472, -0.056474149227142334, -0.11602877825498581, -0.002273114863783121, 0.05484432354569435, 0.09535815566778183, -0.11539878696203232, -0.02417311631143093, -0.047825127840042114, -0.060563765466213226, -0.08120838552713394, -0.0006977012963034213, 0.1928449422121048, 0.02978575974702835, 0.10765744000673294, -0.05231142044067383, -0.0662238821387291, -0.009477775543928146, 0.015130358748137951, -0.0006451583467423916, 0.07867874950170517, 0.03531978651881218, -0.09117332845926285, 0.07706256955862045, 0.059206511825323105, -0.06210979074239731, 0.1466493457555771, -0.04979357495903969, -0.08666576445102692, -0.03237086907029152, 0.026084719225764275, -0.008218218572437763, 0.13923348486423492, -0.07056856155395508, -0.0037244881968945265, 0.031564902514219284, 0.024682359769940376, 0.02634109929203987, -0.17906485497951508, -0.0011879006633535028, 0.02034776844084263, -0.061387479305267334, -0.00522499717772007, -0.010951577685773373, 0.04411213845014572, 0.06798600405454636, 0.010761176235973835, -0.023314714431762695, 0.03433108329772949, -0.015684986487030983, -0.09202978014945984, 0.17103680968284607, -0.10591547936201096, -0.15728923678398132, -0.13560576736927032, 0.08083809167146683, -0.046148356050252914, -0.032542724162340164, -0.00004460949276108295, -0.04686279594898224, -0.04683418199419975, -0.08740922808647156, -0.0518149696290493, -0.021070195361971855, -0.018043655902147293, 0.000703074038028717, 0.01617877185344696, 0.07414963096380234, -0.11919193714857101, 0.009697950445115566, 0.004988483153283596, -0.0706753358244896, 0.026374520733952522, 0.0479988157749176, 0.09603326767683029, 0.10781840234994888, -0.029022838920354843, 0.02528134174644947, -0.030977504327893257, 0.18219025433063507, -0.08737238496541977, 0.017846127972006798, 0.14724396169185638, -0.006537057925015688, 0.052612677216529846, 0.09717927128076553, 0.013520706444978714, -0.07977235317230225, 0.019865062087774277, 0.03219199925661087, -0.014176104217767715, -0.23583683371543884, -0.0344393327832222, -0.018041059374809265, -0.04224833473563194, 0.09363552927970886, 0.04679788649082184, -0.010195924900472164, 0.04141930490732193, 0.013963240198791027, -0.003499975660815835, -0.02278796210885048, 0.07505646347999573, 0.09069835394620895, 0.03335520252585411, 0.0926838219165802, -0.02967565320432186, -0.00707252835854888, 0.05551638826727867, 0.04656865820288658, 0.24586884677410126, -0.03252450004220009, 0.11073978245258331, 0.00950130820274353, 0.14911620318889618, -0.016678282991051674, 0.04715530201792717, 0.04171312600374222, 0.005421517416834831, 0.026753008365631104, -0.0581793375313282, -0.03663930669426918, 0.02610023505985737, 0.0034886286593973637, 0.0270936731249094, -0.07729976624250412, 0.021573850885033607, 0.016794772818684578, 0.27738261222839355, 0.04401461035013199, -0.30120497941970825, -0.07759767770767212, -0.003055316861718893, -0.027621440589427948, -0.0856143981218338, -0.017835251986980438, 0.1292390525341034, -0.17335496842861176, 0.06653165817260742, -0.08021590858697891, 0.08744185417890549, -0.05953040346503258, -0.0037854427937418222, 0.07089081406593323, 0.10718649625778198, -0.0000028603751616174122, 0.08503394573926926, -0.22278186678886414, 0.1906556934118271, 0.02544369176030159, 0.12058278173208237, -0.07452957332134247, 0.03363056108355522, 0.024742091074585915, 0.06455978751182556, 0.11662928760051727, -0.014564726501703262, -0.07700634002685547, -0.1640595644712448, -0.10757388919591904, 0.024569785222411156, 0.11000170558691025, -0.013105212710797787, 0.08893832564353943, -0.04057927802205086, 0.002237008884549141, 0.02467632107436657, -0.12315715849399567, -0.15111826360225677, -0.07769165933132172, 0.03450342267751694, 0.006237689405679703, 0.003231164999306202, -0.07753247767686844, -0.09050370752811432, 0.00037147049442864954, 0.17504440248012543, -0.04078264907002449, -0.04614773765206337, -0.1510559618473053, 0.04985913634300232, 0.15072493255138397, -0.044945426285266876, 0.02101775072515011, 0.0144257303327322, 0.11105509847402573, 0.0406443290412426, -0.07182086259126663, 0.041135285049676895, -0.06508636474609375, -0.17971111834049225, -0.0567183718085289, 0.1210755705833435, 0.05357949063181877, 0.04986460134387016, 0.007431809324771166, 0.03289016708731651, -0.001957767875865102, -0.08733593672513962, 0.0166400708258152, 0.07299434393644333, 0.07660751044750214, 0.06731900572776794, -0.08502800017595291, 0.012224430218338966, -0.023926839232444763, -0.026577219367027283, 0.11868062615394592, 0.14774803817272186, -0.09355388581752777, 0.08440955728292465, 0.02377985045313835, -0.08788148313760757, -0.19203130900859833, 0.08048488199710846, 0.12467549741268158, 0.05187109485268593, 0.06955140829086304, -0.18003912270069122, 0.08379792422056198, 0.10822206735610962, -0.029260680079460144, 0.09020208567380905, -0.3229207992553711, -0.12988422811031342, 0.06454755365848541, 0.09188855439424515, -0.041361644864082336, -0.12817762792110443, -0.0467674694955349, 0.005091697908937931, -0.12285957485437393, 0.09330124408006668, -0.05894351005554199, 0.11824814230203629, -0.019619915634393692, 0.10693009942770004, 0.03548033535480499, -0.05056699365377426, 0.14343109726905823, 0.029152870178222656, 0.08108539879322052, -0.05184616521000862, 0.025582393631339073, 0.07330689579248428, -0.08523853123188019, 0.0879359096288681, -0.03152308240532875, 0.07146622985601425, -0.19657287001609802, -0.007233407814055681, -0.08048984408378601, 0.0761571153998375, -0.04859510809183121, -0.04365827143192291, -0.03136242553591728, 0.06456724554300308, 0.02962014451622963, -0.038630787283182144, 0.03335990384221077, -0.009023160673677921, 0.06969109922647476, 0.14817696809768677, 0.1082877442240715, 0.023147910833358765, -0.12943662703037262, 0.004003389738500118, -0.007909310981631279, 0.03844700753688812, -0.09155133366584778, 0.01307641714811325, 0.1486147791147232, 0.04431823268532753, 0.1333943009376526, 0.01947430521249771, -0.050045937299728394, -0.0020720064640045166, 0.03648462891578674, -0.11164863407611847, -0.09455849230289459, -0.0008016495849005878, -0.05323353409767151, -0.13474278151988983, 0.002275595674291253, 0.10746142268180847, -0.05039014294743538, -0.01323621068149805, -0.009739939123392105, 0.024356383830308914, -0.021067215129733086, 0.21081121265888214, 0.02348746918141842, 0.07426849752664566, -0.07248544692993164, 0.12389039248228073, 0.06505227833986282, -0.08062528818845749, 0.038163863122463226, 0.0880943089723587, -0.09658981114625931, -0.023838860914111137, 0.06962169706821442, 0.14405518770217896, -0.04358150064945221, -0.04630590230226517, -0.0857270359992981, -0.08597176522016525, 0.04002992808818817, 0.10909461230039597, 0.049237873405218124, 0.01322959829121828, -0.02818453311920166, 0.005795480217784643, -0.12277802079916, 0.09103918820619583, 0.07242211699485779, 0.06847832351922989, -0.15034416317939758, 0.15105989575386047, 0.0007642647251486778, 0.04831425100564957, -0.016657687723636627, 0.021853992715477943, -0.07575491070747375, -0.007144525181502104, -0.11584965139627457, 0.007090133149176836, -0.0257802065461874, -0.0013442946365103126, -0.0010868305107578635, -0.041708722710609436, -0.012527357786893845, 0.040120888501405716, -0.06760968267917633, -0.06222556531429291, -0.0080699622631073, 0.05107836425304413, -0.1204628199338913, -0.017020665109157562, 0.017805038020014763, -0.09038566797971725, 0.07056274265050888, 0.050584640353918076, 0.00839075818657875, 0.008123626001179218, -0.07170110195875168, -0.0051927524618804455, 0.020023658871650696, 0.018480105325579643, 0.0411887988448143, -0.10533463954925537, -0.008586371317505836, -0.023456675931811333, 0.03635484352707863, 0.03076786734163761, 0.08255708962678909, -0.12822958827018738, -0.02075030654668808, -0.054476723074913025, -0.02226858027279377, -0.06330820918083191, 0.06287319213151932, 0.12059260904788971, 0.044911619275808334, 0.162339985370636, -0.0818130299448967, 0.05908238887786865, -0.19179025292396545, -0.030159439891576767, -0.006588384974747896, -0.02513086050748825, -0.06581827998161316, -0.02516781911253929, 0.09760849922895432, -0.048919085413217545, 0.09057586640119553, 0.00024137090076692402, 0.09762401878833771, 0.03142358362674713, -0.04265020042657852, -0.04449499025940895, 0.014759007841348648, 0.12575756013393402, 0.042121388018131256, -0.013614766299724579, 0.11538239568471909, -0.005757695995271206, 0.015578786842525005, 0.027545258402824402, 0.19229112565517426, 0.14149151742458344, -0.026509592309594154, 0.08664552867412567, 0.07031260430812836, -0.10080157220363617, -0.15665920078754425, 0.09799085557460785, -0.025940967723727226, 0.12528525292873383, -0.06562221795320511, 0.16045533120632172, 0.06045416742563248, -0.18826597929000854, 0.06397449970245361, -0.055009081959724426, -0.12198495864868164, -0.09358175843954086, -0.0685918778181076, -0.07377459853887558, -0.08924783766269684, 0.014620010741055012, -0.10152692347764969, 0.051566675305366516, 0.077069953083992, 0.011623351834714413, -0.0065721143037080765, 0.1521219164133072, -0.058861296623945236, 0.002506287768483162, 0.0755457803606987, 0.01920420303940773, 0.01740572601556778, -0.05136517435312271, -0.057280685752630234, 0.035621073096990585, 0.024221837520599365, 0.08806431293487549, -0.04416282847523689, 0.006135168485343456, 0.012680787593126297, -0.014054421335458755, -0.06632359325885773, 0.025403032079339027, 0.03411924093961716, 0.04201166331768036, 0.05754878371953964, 0.060705166310071945, -0.0022665997967123985, -0.04701254889369011, 0.26863786578178406, -0.07942333072423935, -0.08627400547266006, -0.13237936794757843, 0.2070419192314148, 0.009586377069354057, -0.029915519058704376, 0.06531713902950287, -0.11024369299411774, 0.009169882163405418, 0.1549781709909439, 0.1359536051750183, -0.06688424944877625, -0.02270604483783245, -0.016115572303533554, -0.014351869001984596, -0.031689755618572235, 0.09368427097797394, 0.06591468304395676, 0.041684988886117935, -0.0683898776769638, 0.0002545449242461473, -0.00029815256129950285, -0.055846843868494034, -0.07901057600975037, 0.036288078874349594, -0.004855520091950893, 0.009593538008630276, -0.02521190606057644, 0.08116303384304047, -0.006686981301754713, -0.17354175448417664, 0.07316701114177704, -0.15976712107658386, -0.17873170971870422, -0.01645059511065483, 0.061542581766843796, -0.03238726407289505, 0.04269654303789139, -0.016123361885547638, 0.0037964715156704187, 0.1093648225069046, -0.031086871400475502, -0.04398370906710625, -0.09574922919273376, 0.07746699452400208, -0.06896854937076569, 0.19427354633808136, 0.000798111199401319, 0.09059029817581177, 0.0918913409113884, 0.016169575974345207, -0.15271581709384918, 0.03972193971276283, 0.06958111375570297, -0.0630522146821022, 0.04347081482410431, 0.16316373646259308, -0.03918800130486488, 0.08435114473104477, 0.022275883704423904, -0.1061062291264534, -0.011322001926600933, -0.026832453906536102, -0.0095533961430192, -0.08628233522176743, -0.01059541292488575, -0.048962656408548355, 0.17390674352645874, 0.2180752009153366, -0.029092339798808098, 0.014613226056098938, -0.08026870340108871, 0.030976654961705208, 0.036490168422460556, 0.06408990919589996, -0.03488877788186073, -0.18357764184474945, 0.03345586359500885, 0.008046976290643215, 0.020432306453585625, -0.1939341425895691, -0.10346053540706635, 0.04088955000042915, -0.056693896651268005, -0.0400080680847168, 0.11980313062667847, 0.04112345725297928, 0.04261397942900658, -0.020191052928566933, -0.08368534594774246, -0.028769757598638535, 0.14188094437122345, -0.17229385673999786, -0.05340715870261192 ]
null
null
transformers
# simple_kitchen Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### best kitchen island ![best kitchen island](images/best_kitchen_island.jpg) #### kitchen cabinet ![kitchen cabinet](images/kitchen_cabinet.jpg) #### kitchen countertop ![kitchen countertop](images/kitchen_countertop.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
image-classification
black/simple_kitchen
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# simple_kitchen Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### best kitchen island !best kitchen island #### kitchen cabinet !kitchen cabinet #### kitchen countertop !kitchen countertop
[ "# simple_kitchen\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### best kitchen island\n\n!best kitchen island", "#### kitchen cabinet\n\n!kitchen cabinet", "#### kitchen countertop\n\n!kitchen countertop" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# simple_kitchen\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### best kitchen island\n\n!best kitchen island", "#### kitchen cabinet\n\n!kitchen cabinet", "#### kitchen countertop\n\n!kitchen countertop" ]
[ 49, 43, 4, 9, 8, 10 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n# simple_kitchen\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.## Example Images#### best kitchen island\n\n!best kitchen island#### kitchen cabinet\n\n!kitchen cabinet#### kitchen countertop\n\n!kitchen countertop" ]
[ -0.11179875582456589, 0.1615101844072342, 0.00033214804716408253, 0.03430011123418808, 0.10799963027238846, 0.057527005672454834, 0.0649498924612999, 0.17992615699768066, 0.18261964619159698, 0.02409958653151989, 0.0872439369559288, 0.17785964906215668, -0.005746659357100725, 0.19882477819919586, 0.04556894302368164, -0.2271580547094345, 0.0064462935552001, 0.11158040165901184, 0.06283387541770935, 0.11888512969017029, 0.04684993997216225, -0.11092960834503174, 0.13660678267478943, 0.01604989916086197, -0.19599686563014984, -0.028308363631367683, 0.017377611249685287, -0.08461914211511612, 0.12795871496200562, -0.06260686367750168, 0.0940835028886795, 0.06299726665019989, -0.024086281657218933, -0.008828600868582726, 0.030892841517925262, 0.06621172279119492, -0.04728124663233757, 0.07315962016582489, 0.027407487854361534, 0.023343253880739212, 0.07009851187467575, 0.04907257854938507, -0.0317373052239418, 0.11584204435348511, -0.11692246794700623, -0.04043073579668999, -0.043100714683532715, -0.05918754264712334, 0.013271360658109188, 0.05925299972295761, 0.0224135909229517, 0.05472065880894661, -0.12433048337697983, 0.08674702793359756, 0.19925162196159363, -0.08715344220399857, -0.11703694611787796, 0.09582296758890152, 0.059324126690626144, -0.0788237452507019, -0.017962748184800148, 0.09551993012428284, 0.04676264896988869, 0.05260342359542847, -0.05232412740588188, -0.023668210953474045, -0.12657511234283447, -0.05437050759792328, -0.03428519889712334, 0.028624631464481354, 0.0690493956208229, -0.04531875252723694, -0.0431915819644928, -0.08180738240480423, -0.06854797154664993, -0.06404095143079758, -0.07232104986906052, -0.04826455935835838, -0.0051207710057497025, -0.009564833715558052, -0.14820596575737, -0.08350478857755661, -0.09291651844978333, -0.08915884047746658, -0.03459876775741577, 0.16237123310565948, 0.008910025469958782, -0.03775814175605774, -0.08630085736513138, 0.0960552766919136, -0.05426037684082985, -0.08707091957330704, -0.02396230772137642, -0.033508338034152985, 0.02317916601896286, -0.0027268328703939915, 0.09036057442426682, -0.06528536975383759, 0.11503365635871887, 0.06119801104068756, 0.02780621126294136, 0.0077736335806548595, -0.03599241003394127, -0.045364636927843094, 0.05463090538978577, 0.16816379129886627, -0.03211922571063042, -0.06064864620566368, -0.014350608922541142, 0.007305615581572056, -0.03371422737836838, -0.0327410064637661, -0.09553869813680649, -0.04639209806919098, 0.05952677130699158, 0.026369629427790642, 0.1238420307636261, -0.005502183921635151, -0.08021575212478638, -0.05248322710394859, 0.21652564406394958, -0.01280650682747364, 0.045431267470121384, -0.03149411082267761, -0.0048367055132985115, 0.024939002469182014, 0.0471409447491169, 0.04397008568048477, -0.03668918088078499, 0.021949097514152527, -0.08051970601081848, -0.03989781066775322, -0.08909793943166733, 0.028670907020568848, -0.014898605644702911, -0.23861286044120789, -0.036127783358097076, -0.10051977634429932, 0.0300733745098114, -0.0556320957839489, 0.07564190775156021, -0.07337405532598495, -0.08822053670883179, -0.029411429539322853, 0.038750048726797104, -0.054134637117385864, 0.04620961472392082, 0.042985010892152786, -0.0031818151473999023, 0.054068345576524734, 0.02260776050388813, 0.0719246044754982, -0.021806776523590088, 0.05538925528526306, -0.12924441695213318, 0.06979382038116455, -0.25017985701560974, 0.021806905046105385, -0.029912512749433517, 0.09194990992546082, -0.08765671402215958, -0.0047910381108522415, -0.04510382562875748, 0.00873464997857809, 0.002667985623702407, 0.1815280318260193, -0.20035211741924286, -0.03441738709807396, 0.03426636755466461, -0.12220073491334915, -0.06732161343097687, 0.10663528740406036, 0.0547059066593647, 0.11904997378587723, 0.08118794858455658, 0.08382881432771683, 0.029879620298743248, -0.017711494117975235, 0.01641112007200718, -0.019943762570619583, -0.0770757719874382, 0.0013378553558140993, -0.07201787829399109, 0.04750914126634598, -0.12940238416194916, 0.041979819536209106, 0.0008255413267761469, 0.027744758874177933, -0.02197366952896118, -0.03830607980489731, -0.04933174327015877, -0.0470992773771286, 0.03459164500236511, 0.09797085076570511, 0.05324488878250122, 0.005000611767172813, -0.04517366737127304, -0.10954359173774719, 0.024721626192331314, -0.03310682997107506, -0.020024284720420837, -0.060266438871622086, 0.21293634176254272, 0.03291740268468857, -0.04708518460392952, -0.07494941353797913, -0.04743470251560211, 0.05138159170746803, 0.046033889055252075, 0.03978203237056732, -0.029492374509572983, 0.07696229219436646, 0.014350520446896553, 0.06802178174257278, -0.03344583883881569, 0.07995477318763733, 0.034433480352163315, -0.07943815737962723, -0.0530460961163044, -0.002842965070158243, -0.03979938477277756, 0.07825122028589249, -0.10789555311203003, -0.026550164446234703, 0.1279056966304779, 0.15889711678028107, 0.05254344269633293, -0.05954737588763237, 0.0404481403529644, -0.025903811678290367, -0.03943444415926933, -0.02480527013540268, 0.04673399031162262, -0.05968673154711723, -0.01083535049110651, 0.11644510179758072, 0.013959812931716442, -0.09837272763252258, 0.0933537557721138, -0.11127994954586029, -0.0326627679169178, -0.09458278119564056, -0.04684107378125191, 0.03678040951490402, -0.046199146658182144, 0.05158380791544914, -0.0016419505700469017, 0.04068802669644356, 0.04362109303474426, 0.010510556399822235, 0.013549872674047947, 0.06835170835256577, 0.05331764742732048, -0.12109668552875519, 0.08788798749446869, 0.13582266867160797, -0.036008693277835846, 0.04227493330836296, 0.09790842980146408, 0.1287277638912201, 0.060187727212905884, 0.10264033824205399, 0.013191666454076767, -0.005800723098218441, -0.02969343774020672, 0.008524361997842789, 0.13938355445861816, -0.23190999031066895, -0.04586726799607277, 0.030133450403809547, -0.11192106455564499, 0.03826113045215607, -0.12418124079704285, 0.001322613563388586, -0.02894744835793972, -0.007544821128249168, 0.1804889291524887, 0.030609263107180595, -0.02574245259165764, 0.005123965907841921, 0.014564815908670425, -0.0307474322617054, -0.012055106461048126, 0.03401387482881546, 0.04920805245637894, 0.14156663417816162, -0.05637580528855324, -0.23036888241767883, -0.029874766245484352, -0.12554888427257538, 0.0352984182536602, 0.018619095906615257, 0.05334184691309929, -0.14597798883914948, -0.10399410873651505, -0.013563301414251328, -0.05603313073515892, 0.07023151218891144, -0.027956748381257057, -0.17191565036773682, 0.03125380724668503, -0.07993781566619873, -0.09854327142238617, -0.016841361299157143, -0.0007377369329333305, -0.08665402978658676, 0.16585329174995422, -0.05967007204890251, 0.06123952940106392, 0.06450694799423218, 0.013056381605565548, 0.03947115316987038, 0.009259729646146297, 0.16955068707466125, -0.15199464559555054, 0.08391503989696503, 0.1291448026895523, 0.08614493906497955, 0.026493754237890244, 0.11430694162845612, 0.029165921732783318, -0.08891884982585907, 0.011138396337628365, 0.013002045452594757, -0.05097378417849541, -0.08193385601043701, -0.07955791801214218, -0.07514972984790802, 0.10829838365316391, 0.16435427963733673, 0.09472967684268951, 0.10939329117536545, 0.1668929010629654, 0.007989112287759781, 0.0512552484869957, -0.032149478793144226, 0.006368245929479599, 0.0341656468808651, -0.04949434474110603, 0.021722594276070595, 0.04591268301010132, -0.07114432752132416, 0.1109510213136673, 0.09114298224449158, 0.14661912620067596, 0.005067887250334024, 0.12139123678207397, 0.04638770967721939, 0.10958610475063324, 0.07586398720741272, 0.00019692664500325918, -0.0811842605471611, 0.01699141040444374, -0.0008700403850525618, -0.06420744210481644, -0.03444874286651611, 0.011753726750612259, 0.019600166007876396, -0.16270072758197784, 0.05576622858643532, -0.04149680212140083, 0.03736454248428345, 0.16446562111377716, 0.07367086410522461, -0.217386856675148, 0.030527612194418907, 0.0025759749114513397, -0.02336808107793331, -0.118141770362854, -0.0025482731871306896, -0.017809320241212845, -0.06442955136299133, -0.020017828792333603, -0.0751296728849411, 0.08259982615709305, -0.05016675218939781, 0.006754857487976551, 0.08371581882238388, 0.08289206027984619, 0.02084147185087204, 0.03486209362745285, -0.1620243787765503, 0.1468961089849472, -0.03283553943037987, -0.037671856582164764, -0.1696581244468689, -0.034761056303977966, 0.012825598940253258, 0.096523217856884, 0.14333269000053406, 0.0420827679336071, 0.0014600199647247791, -0.15588372945785522, -0.09643137454986572, 0.028669539839029312, -0.029829591512680054, -0.0856151133775711, -0.06970588862895966, 0.02422984689474106, -0.08608008921146393, -0.019719554111361504, -0.06419450789690018, -0.16435012221336365, -0.08809405565261841, 0.01682281866669655, 0.025222469121217728, 0.05065267160534859, -0.03042808547616005, -0.07430711388587952, 0.03666524961590767, 0.12416823208332062, 0.12236584722995758, -0.011965717189013958, -0.1382475346326828, 0.03510454297065735, 0.09639719128608704, -0.022292250767350197, 0.07963255047798157, -0.057432256639003754, 0.1289711445569992, -0.016188621520996094, -0.06433971971273422, 0.12169711291790009, -0.053345754742622375, -0.10493021458387375, -0.03761030361056328, 0.02470684051513672, 0.1172347366809845, -0.018950853496789932, 0.05873846262693405, 0.10660919547080994, -0.06797603517770767, -0.026721734553575516, -0.10291992127895355, 0.0030982033349573612, 0.05639415234327316, 0.0923200324177742, -0.06334564089775085, -0.03705684468150139, -0.10147213935852051, -0.00549244275316596, 0.09517326951026917, 0.059925004839897156, -0.07790500670671463, 0.11109967529773712, -0.025843795388936996, 0.040226344019174576, -0.19306132197380066, -0.07774736732244492, -0.07041560858488083, 0.03689292073249817, 0.01553225889801979, -0.1334586888551712, 0.25015968084335327, 0.07150796800851822, -0.04745158553123474, 0.2097921073436737, -0.09033142775297165, -0.10774996131658554, 0.06483867764472961, 0.14114508032798767, 0.050871841609478, -0.08920203149318695, -0.0700984075665474, 0.010187827982008457, -0.04287467524409294, 0.19494189321994781, 0.0067907837219536304, 0.05522353574633598, -0.06997620314359665, 0.03308574855327606, 0.03528470918536186, -0.03252464905381203, 0.06774985045194626, 0.011205559596419334, -0.057684190571308136, -0.07944051176309586, -0.15723736584186554, -0.11468495428562164, -0.001293664681725204, -0.016716234385967255, 0.03580429404973984, 0.003547967178747058, -0.12358574569225311, -0.014169665053486824, -0.10023840516805649, 0.11611855030059814, -0.033402301371097565, -0.045545924454927444, -0.043463677167892456, 0.1419491320848465, -0.10225842893123627, 0.04037756472826004, 0.10079848766326904, -0.03759719058871269, 0.13599415123462677, 0.08050420880317688, 0.08522161841392517, -0.1641857773065567, 0.052645351737737656, 0.014056410640478134, -0.0071350447833538055, 0.014120463281869888, -0.015852175652980804, 0.048579297959804535, 0.0563618429005146, 0.052239447832107544, 0.055448297411203384, -0.010876480489969254, -0.0389181487262249, -0.02989679016172886, 0.09256664663553238, -0.08050771057605743, -0.015829559415578842, -0.03021826781332493, -0.05095702409744263, 0.027336984872817993, -0.029431838542222977, 0.14377261698246002, 0.012256812304258347, -0.08908642828464508, 0.023191995918750763, 0.016157003119587898, -0.028210222721099854, 0.09433457255363464, 0.11157030612230301, 0.008761005476117134, -0.11536218971014023, -0.012174960225820541, 0.09769821912050247, -0.13569636642932892, -0.05073762685060501, 0.1823270469903946, -0.0748075395822525, -0.12697547674179077, 0.06672544777393341, 0.11028420925140381, -0.07920710742473602, 0.00731880497187376, -0.07570721209049225, -0.03180576115846634, 0.04006122797727585, -0.07557752728462219, 0.10674044489860535, 0.06925398856401443, 0.020349133759737015, 0.024519074708223343, -0.05859334394335747, 0.0243294145911932, 0.06824496388435364, 0.14430391788482666, -0.15269774198532104, -0.06258048117160797, 0.06502114981412888, 0.12040337920188904, -0.0993257388472557, -0.040048327296972275, -0.10194218158721924, -0.04801201447844505, 0.0453825369477272, 0.08873691409826279, -0.15049684047698975, -0.0022213240154087543, -0.03642889857292175, -0.07332903891801834, -0.05391758307814598, -0.02396383509039879, -0.0935167670249939, -0.010967588052153587, -0.005901553202420473, 0.01574034057557583, -0.04724617674946785, 0.011027522385120392, 0.08924335986375809, -0.03838076815009117, 0.0889456570148468, -0.0504378005862236, -0.026203472167253494, -0.032172273844480515, -0.16618740558624268, -0.07028274983167648, 0.03412097319960594, -0.005668198224157095, 0.0980541780591011, -0.04369886592030525, 0.03371628746390343, 0.012379402294754982, 0.10250186175107956, -0.012132763862609863, 0.20379003882408142, -0.13121536374092102, -0.06508086621761322, -0.022134903818368912, -0.14023235440254211, -0.046308428049087524, 0.04537699371576309, 0.08338693529367447, -0.06416793167591095, 0.07402743399143219, -0.054275594651699066, 0.060201894491910934, -0.1477082371711731, 0.03209385648369789, -0.056084852665662766, -0.11066554486751556, 0.027027834206819534, -0.028765439987182617, 0.036604635417461395, 0.059654608368873596, 0.08542050421237946, 0.13281655311584473, 0.04374858736991882, 0.04836147278547287, 0.013942865654826164, -0.02766914665699005, -0.011929474771022797, 0.11213251203298569, 0.021032258868217468, 0.08086046576499939, -0.031279899179935455, 0.039261266589164734, -0.01566922292113304, 0.04991646856069565, 0.04478800296783447, 0.07219953835010529, -0.030341871082782745, -0.02149985358119011, 0.11351751536130905, 0.03316769376397133, -0.09858200699090958, 0.1001828983426094, -0.1931234896183014, 0.08993169665336609, -0.056625187397003174, 0.011168604716658592, 0.005800971761345863, -0.11339915543794632, 0.047807760536670685, 0.01582653820514679, -0.05289764329791069, -0.044366415590047836, -0.25105977058410645, -0.09006651490926743, -0.17513200640678406, 0.03993062302470207, -0.02494761347770691, -0.028950415551662445, -0.025550689548254013, -0.0020280838944017887, 0.006112885661423206, 0.23196573555469513, 0.008137776516377926, 0.013061422854661942, 0.10462360829114914, 0.06316493451595306, -0.05530194565653801, -0.00678618997335434, -0.06329618394374847, -0.08189719915390015, 0.15835444629192352, -0.00009821564890444279, -0.03147811070084572, -0.02448452264070511, 0.02176053635776043, 0.02821456268429756, -0.09064572304487228, -0.05232404172420502, -0.05844184756278992, -0.009912656620144844, -0.0009004529565572739, -0.010419437661767006, 0.022048920392990112, 0.03396065533161163, 0.18619096279144287, -0.00973424781113863, -0.0004194783978164196, -0.09589025378227234, 0.17916716635227203, -0.058991529047489166, -0.10042852908372879, -0.01779811829328537, -0.023926768451929092, 0.0016178613295778632, 0.2617410123348236, 0.23567770421504974, -0.01155952550470829, -0.034590642899274826, 0.02014675736427307, 0.012627038173377514, 0.024571724236011505, 0.08746325224637985, 0.03475930169224739, 0.11479172110557556, -0.04606036841869354, -0.04751048982143402, 0.03659871965646744, -0.07630596309900284, -0.1309855580329895, -0.052131157368421555, 0.10977748781442642, -0.03997967392206192, -0.07733359187841415, 0.16957062482833862, -0.029833154752850533, -0.0009149191901087761, 0.063226118683815, -0.13920624554157257, -0.12973622977733612, -0.07059921324253082, 0.14905820786952972, -0.01471039094030857, 0.07893684506416321, -0.02231157012283802, 0.04745577275753021, 0.02153298258781433, -0.008046567440032959, -0.209281325340271, 0.07016991078853607, 0.06174715608358383, -0.13246910274028778, 0.26940032839775085, -0.03989364579319954, -0.09903395175933838, 0.11671552062034607, -0.031058885157108307, -0.11900383234024048, -0.05335284769535065, -0.050608985126018524, -0.1289840042591095, 0.04507358744740486, 0.11532561480998993, -0.0043075429275631905, -0.20978327095508575, 0.020796682685613632, -0.1868755966424942, 0.043607763946056366, 0.16465482115745544, 0.0656673014163971, -0.061448343098163605, 0.11073210090398788, -0.09860798716545105, 0.11858688294887543, 0.07238873839378357, 0.011402171105146408, -0.04278935119509697, -0.09176824241876602, 0.06686119735240936, -0.02995637059211731, -0.018549136817455292, -0.09932404011487961, -0.10980124771595001, -0.08613283187150955, -0.08085434883832932, -0.11683620512485504, -0.13499346375465393, -0.0384126715362072, -0.13153454661369324, -0.03087235987186432, -0.07703900337219238, 0.10889354348182678, 0.08865804970264435, 0.007035274989902973, 0.042222753167152405, -0.0587262399494648, 0.002036887686699629, 0.07598036527633667, -0.14423494040966034, -0.03643603250384331 ]
null
null
transformers
BERT based model finetuned on MNLI with our custom training routine. Yields 60% accuraqcy on adversarial HANS dataset.
{}
text-classification
blackbird/bert-base-uncased-MNLI-v1
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
BERT based model finetuned on MNLI with our custom training routine. Yields 60% accuraqcy on adversarial HANS dataset.
[]
[ "TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 44 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.021713463589549065, 0.0654725506901741, -0.00794708076864481, 0.022156789898872375, 0.16400907933712006, 0.015473652631044388, 0.10103922337293625, 0.09779391437768936, 0.05949626490473747, -0.030349696055054665, 0.12249185889959335, 0.21417325735092163, -0.03984736651182175, 0.13577724993228912, -0.12860147655010223, -0.2440502643585205, 0.0882980152964592, 0.02172994613647461, 0.028411343693733215, 0.11552661657333374, 0.08964807540178299, -0.10224562883377075, 0.05607806146144867, -0.05696086958050728, -0.09846892952919006, 0.026674916967749596, 0.05891455337405205, -0.1369890570640564, 0.0983535647392273, 0.01722935400903225, 0.17299683392047882, 0.046053510159254074, -0.05138836428523064, -0.1584518551826477, 0.04156217351555824, 0.0077022067271173, -0.08001645654439926, 0.03997304290533066, 0.07976111769676208, -0.11045137047767639, -0.01044571865350008, 0.022499991580843925, 0.034013718366622925, 0.048617806285619736, -0.13905729353427887, -0.11005605012178421, -0.010662647895514965, 0.04192438721656799, 0.0870012566447258, 0.06714481860399246, -0.006997082848101854, 0.18823473155498505, -0.12497025728225708, 0.13017280399799347, 0.10634823888540268, -0.30007341504096985, -0.017160119488835335, 0.07763838022947311, 0.05102614685893059, 0.06910742074251175, -0.06440568715333939, 0.045330747961997986, 0.033393945544958115, -0.00997313391417265, 0.03747172653675079, -0.06577962636947632, -0.12370630353689194, 0.01016975287348032, -0.07940340042114258, -0.03855573385953903, 0.19136355817317963, -0.05098869279026985, 0.053452592343091965, -0.05703575536608696, -0.09246117621660233, -0.02188172936439514, -0.02346687763929367, 0.0019310942152515054, -0.0351005420088768, 0.05075797438621521, 0.0361248143017292, 0.02690335363149643, -0.11150021106004715, 0.018141092732548714, -0.17581529915332794, 0.20734457671642303, 0.01990143023431301, 0.046327587217092514, -0.17929427325725555, 0.04431639239192009, 0.048998575657606125, -0.1149277314543724, 0.05817234516143799, -0.11155778169631958, 0.0514126680791378, -0.03316843509674072, -0.0372835211455822, -0.037159424275159836, 0.12362152338027954, 0.1250646859407425, -0.00912782084196806, 0.06013563275337219, -0.04675215482711792, 0.08676736801862717, 0.03288273140788078, 0.08866127580404282, 0.05280424281954765, -0.014787320978939533, 0.08290963619947433, -0.06756016612052917, 0.019660266116261482, -0.05727663263678551, -0.11807560920715332, 0.01039548497647047, 0.11793402582406998, 0.11675688624382019, 0.012611068785190582, 0.09543249011039734, -0.06506446748971939, 0.006505368743091822, 0.09588105231523514, -0.07895839214324951, 0.017125414684414864, 0.0350351482629776, 0.04829170182347298, 0.024707822129130363, -0.026487937197089195, 0.0030121563468128443, -0.061472248286008835, 0.12689241766929626, -0.05422953888773918, -0.007692599203437567, -0.02952299267053604, -0.07651115208864212, 0.048986878246068954, -0.10287142544984818, 0.034805621951818466, -0.19008123874664307, -0.11772795766592026, 0.006102612242102623, 0.011861618608236313, 0.024503471329808235, -0.02513660490512848, -0.023777177557349205, -0.008414730429649353, 0.032708507031202316, -0.05869688093662262, -0.09407905489206314, -0.08068183809518814, 0.10415510088205338, -0.037043895572423935, 0.06219480559229851, -0.08236175030469894, 0.038519203662872314, -0.11986368894577026, -0.023322315886616707, -0.12570463120937347, -0.0007101881201379001, -0.06390572339296341, 0.20689509809017181, 0.026964673772454262, -0.0224609375, -0.05051908269524574, 0.05645376443862915, -0.07215681672096252, 0.19493497908115387, -0.07625866681337357, -0.08623489737510681, 0.24678544700145721, -0.1279580146074295, -0.17000986635684967, 0.10133079439401627, -0.013959852047264576, -0.004501427989453077, 0.12573395669460297, 0.2081976979970932, 0.07290318608283997, -0.03132502734661102, 0.06526272743940353, 0.09816371649503708, -0.09078552573919296, -0.0883825421333313, -0.016022957861423492, 0.00846122857183218, -0.15588414669036865, 0.047241490334272385, 0.06577310711145401, 0.06889242678880692, -0.05379139259457588, -0.04198388382792473, -0.020334823057055473, -0.02342434972524643, 0.11055458337068558, 0.05180465057492256, 0.0923023521900177, -0.11551622301340103, -0.011464827693998814, -0.04335340857505798, -0.007100371643900871, 0.023038135841488838, 0.001145660295151174, -0.08214972168207169, 0.101126529276371, 0.021960193291306496, 0.031735386699438095, -0.1913764625787735, -0.11281553655862808, -0.0008762988145463169, 0.11225378513336182, -0.043872132897377014, 0.061931852251291275, 0.07055530697107315, -0.0332125760614872, -0.014029931277036667, -0.05974722281098366, 0.19266952574253082, 0.03074836917221546, -0.05821244791150093, -0.09517458081245422, 0.08039040118455887, -0.08065038919448853, 0.01600276120007038, -0.10583970695734024, 0.029083125293254852, 0.07110360264778137, 0.10849476605653763, 0.029637476429343224, 0.05734116956591606, -0.013249640353024006, 0.04259081557393074, -0.05547172948718071, 0.011545118875801563, 0.10758806020021439, 0.0014412952587008476, -0.061990465968847275, 0.15194498002529144, -0.17725147306919098, 0.3685913383960724, 0.20586258172988892, -0.24432027339935303, -0.002561305882409215, -0.010347469709813595, 0.007789911702275276, 0.030541660264134407, 0.0162393469363451, 0.013952181674540043, 0.039644233882427216, -0.006282297428697348, 0.1877308487892151, -0.05219453200697899, -0.057030003517866135, 0.004496603738516569, -0.052575986832380295, -0.03682097792625427, 0.09196595102548599, 0.011779937893152237, -0.2177613526582718, 0.19338391721248627, 0.2537401616573334, 0.025199389085173607, 0.16060958802700043, -0.02582998387515545, 0.05915607884526253, 0.0824630931019783, -0.013157798908650875, -0.022533336654305458, -0.04554226994514465, -0.1455221325159073, -0.03673265129327774, 0.059724047780036926, 0.02907709777355194, 0.040551792830228806, -0.11503995209932327, -0.05756233632564545, -0.006099446211010218, 0.02140898071229458, -0.02359427511692047, 0.06876208633184433, 0.054972827434539795, 0.1263849288225174, -0.03098524548113346, -0.09141557663679123, 0.10585656017065048, -0.01901656575500965, -0.08530191332101822, 0.191598579287529, -0.14447884261608124, -0.35428786277770996, -0.10313033312559128, -0.14785133302211761, -0.0037141970824450254, 0.04614908620715141, 0.10450293868780136, -0.11793774366378784, -0.0380684994161129, -0.0004040142521262169, -0.038726743310689926, -0.030250607058405876, 0.04581953212618828, -0.05772920325398445, 0.07456407696008682, -0.02582315355539322, -0.06380484253168106, -0.07301127165555954, -0.03579798713326454, -0.040448445826768875, 0.16221703588962555, -0.0892651304602623, 0.07203865051269531, 0.13615871965885162, -0.015593440271914005, 0.041886527091264725, -0.04898044839501381, 0.1555844396352768, -0.07631782442331314, -0.019584430381655693, 0.16826319694519043, -0.08730562776327133, 0.07662565261125565, 0.16526925563812256, 0.02406305819749832, -0.06910371780395508, 0.04291778802871704, -0.04478449746966362, -0.0724785104393959, -0.22262144088745117, -0.1271025836467743, -0.07931119948625565, 0.07219051569700241, 0.052540916949510574, 0.07992782443761826, 0.11519292742013931, 0.06368740648031235, -0.0023743873462080956, -0.04634237289428711, 0.05454256013035774, 0.07711439579725266, 0.17705762386322021, 0.0043832785449922085, 0.1426936239004135, -0.05474034324288368, -0.14214468002319336, 0.06859677284955978, -0.01417678315192461, 0.07450098544359207, 0.09917003661394119, -0.022616079077124596, 0.013673663139343262, 0.10604599863290787, 0.16437357664108276, 0.13580524921417236, 0.01983647607266903, -0.04336691275238991, -0.014547656290233135, -0.013477444648742676, -0.08312629908323288, -0.004832982551306486, 0.009819258004426956, -0.08831845968961716, -0.09007405489683151, -0.1315731555223465, 0.11031142622232437, 0.08005206286907196, 0.03532475233078003, -0.21246163547039032, 0.018303824588656425, 0.11229286342859268, -0.018204273656010628, -0.09043079614639282, 0.10070422291755676, -0.01678953878581524, -0.117817223072052, 0.0996197760105133, -0.037970688194036484, 0.11916128545999527, -0.06753453612327576, 0.08645343780517578, -0.07420429587364197, -0.1188579797744751, 0.011212152428925037, 0.09781660884618759, -0.2638496458530426, 0.22001980245113373, 0.00972041953355074, -0.024888113141059875, -0.0646883174777031, -0.028239667415618896, 0.04417185112833977, 0.22146032750606537, 0.10971783846616745, 0.00009361281991004944, -0.09073538333177567, -0.15357232093811035, -0.03785524144768715, 0.025326425209641457, 0.10204120725393295, -0.025252096354961395, -0.008983354084193707, -0.046831171959638596, -0.027956394478678703, -0.02389000542461872, -0.07279519736766815, -0.014091418124735355, -0.13749128580093384, 0.026165178045630455, 0.055422406643629074, 0.0877295657992363, -0.02378608100116253, -0.04513174295425415, -0.1197848990559578, 0.17492496967315674, -0.08910252898931503, -0.07073826342821121, -0.10059648752212524, -0.11181958764791489, 0.0007767801289446652, -0.07184138149023056, 0.04481477662920952, -0.06904283910989761, 0.03184283897280693, -0.06817156821489334, -0.18812686204910278, 0.13625912368297577, -0.13195689022541046, -0.05899064242839813, -0.07384099811315536, 0.15552079677581787, -0.06302634626626968, -0.0035479702055454254, 0.03970842435956001, 0.027778903022408485, -0.07482940703630447, -0.07818155735731125, 0.006534373387694359, 0.009610188193619251, 0.05552814528346062, 0.05251498147845268, -0.09461628645658493, -0.14215251803398132, -0.02355608530342579, 0.01197721529752016, 0.25463566184043884, 0.22666041553020477, -0.05347258225083351, 0.1358383297920227, 0.18503350019454956, -0.05803385749459267, -0.3454492390155792, -0.09773682802915573, -0.1344824731349945, -0.059851933270692825, -0.01793389953672886, -0.09627822786569595, 0.11547074466943741, 0.004937163088470697, -0.04625356197357178, 0.08518151193857193, -0.1461019665002823, -0.083231620490551, 0.2013142704963684, 0.016737112775444984, 0.3915456235408783, -0.15460002422332764, -0.08379893749952316, -0.05153810977935791, -0.09382570534944534, 0.14099515974521637, -0.06832609325647354, 0.04495837166905403, 0.0019382579484954476, -0.0028918490279465914, 0.04694472625851631, -0.05234109237790108, 0.08885977417230606, -0.04875560104846954, 0.04963110014796257, -0.12214414030313492, -0.09103014320135117, 0.030814101919531822, -0.028373291715979576, -0.005930721759796143, -0.056702833622694016, 0.020790567621588707, -0.1209561824798584, -0.03191009536385536, -0.06636703759431839, 0.06905783712863922, 0.02149762213230133, -0.030735423788428307, 0.030209749937057495, -0.01809299923479557, -0.0042241644114255905, 0.0009792455239221454, 0.2923944890499115, -0.038492076098918915, 0.22044970095157623, 0.10613560676574707, 0.14744965732097626, -0.14929358661174774, 0.05999607965350151, -0.04910130798816681, -0.0754656121134758, 0.07482101023197174, -0.06515238434076309, 0.07774417847394943, 0.10547447204589844, -0.05612943693995476, 0.06839057803153992, 0.10780969262123108, 0.0478271059691906, -0.038744617253541946, 0.16603823006153107, -0.25541171431541443, -0.0012396922102198005, -0.038202524185180664, 0.033761367201805115, 0.06086653470993042, 0.09347615391016006, 0.12888671457767487, 0.035416025668382645, -0.04951908811926842, -0.01688341051340103, 0.019208915531635284, 0.010039051994681358, 0.05638628080487251, 0.06072856858372688, 0.04548066854476929, -0.1262623816728592, 0.06109809875488281, 0.035816729068756104, -0.1820671111345291, -0.00909417774528265, 0.1431208699941635, -0.16468144953250885, -0.1327553391456604, 0.01471090316772461, 0.156119704246521, -0.024150794371962547, -0.07418226450681686, -0.06659402698278427, -0.14670325815677643, 0.04257367551326752, 0.2263869047164917, 0.10529720038175583, 0.07898824661970139, -0.0014055153587833047, -0.038048405200242996, -0.007766969036310911, 0.03615836799144745, -0.011422540992498398, 0.021358588710427284, -0.14689211547374725, 0.0037143740337342024, -0.010536531917750835, 0.11306611448526382, -0.09912221878767014, -0.047185856848955154, -0.1922134906053543, 0.03933587297797203, -0.059326570481061935, -0.009605652652680874, -0.07529854029417038, -0.012454226613044739, -0.002915274351835251, -0.05342821776866913, -0.026465559378266335, -0.05807827413082123, -0.10688316822052002, 0.04150213301181793, 0.002345814136788249, 0.03729872405529022, -0.08780533075332642, -0.05785459652543068, 0.0853082537651062, -0.03572157397866249, 0.11269453167915344, 0.1070907786488533, -0.089089035987854, 0.10803984850645065, -0.2005157470703125, -0.09468311071395874, 0.13732028007507324, 0.003848859341815114, 0.050899725407361984, 0.06576873362064362, 0.03185916319489479, 0.08350106328725815, 0.0003468405921012163, 0.07290676236152649, 0.06128183379769325, -0.1181051954627037, 0.071310855448246, 0.011074036359786987, -0.16973160207271576, -0.022691503167152405, -0.0701931044459343, 0.10188555717468262, -0.041144873946905136, 0.17418168485164642, -0.076426662504673, 0.07797541469335556, -0.060945093631744385, 0.016739221289753914, -0.01372558157891035, -0.22573141753673553, -0.11859673261642456, -0.053039368242025375, 0.028635278344154358, -0.015315480530261993, 0.22630931437015533, 0.05916966497898102, 0.013154883868992329, 0.06369247287511826, 0.035830263048410416, 0.01047768909484148, 0.04045509174466133, 0.17195628583431244, 0.06200168654322624, -0.06969088315963745, -0.06826761364936829, 0.030157266184687614, 0.02877793274819851, -0.06939956545829773, 0.11072975397109985, 0.10129404067993164, -0.0251607745885849, 0.05968738719820976, -0.006188264582306147, 0.05709199234843254, -0.07589592784643173, -0.18348610401153564, -0.0562448650598526, 0.05603133514523506, 0.026982419192790985, 0.05744026601314545, 0.142180934548378, 0.004996979609131813, 0.010084230452775955, -0.07741006463766098, -0.03342839702963829, -0.1943444460630417, -0.07347012311220169, -0.11249250173568726, -0.08961030840873718, 0.009935879148542881, -0.08145841211080551, -0.029054639860987663, 0.054039642214775085, 0.051013242453336716, -0.049097608774900436, 0.08035353571176529, 0.05342123284935951, -0.028418174013495445, 0.08278832584619522, -0.024090737104415894, 0.0135620953515172, 0.005216807126998901, -0.035933662205934525, -0.12749753892421722, -0.03550497815012932, -0.058167051523923874, 0.03714491054415703, -0.06676458567380905, 0.03030305542051792, -0.14020051062107086, -0.12535710632801056, -0.021322326734662056, 0.05690642073750496, -0.0517280288040638, 0.1114698275923729, 0.015188813209533691, 0.0023455366026610136, 0.06108670309185982, 0.22716949880123138, -0.04502088204026222, -0.07763572782278061, -0.023048361763358116, 0.2505435645580292, 0.054953381419181824, 0.12029256671667099, -0.004578823689371347, -0.0050336215645074844, -0.04786117002367973, 0.2800162136554718, 0.3008327782154083, -0.049834996461868286, 0.07139132171869278, -0.028420327231287956, 0.029972707852721214, 0.10022050142288208, 0.1346438229084015, 0.09786063432693481, 0.24367362260818481, -0.06024493649601936, 0.012106356211006641, -0.014927470125257969, -0.002041126834228635, -0.13366930186748505, 0.04151143506169319, 0.03682940825819969, -0.02120414562523365, -0.07004236429929733, 0.1041441485285759, -0.16367332637310028, 0.12311186641454697, -0.01414033304899931, -0.20375603437423706, -0.061052095144987106, -0.028266752138733864, 0.16914020478725433, -0.014487233012914658, 0.06880565732717514, -0.0027392974589020014, -0.10483374446630478, -0.008490480482578278, 0.004270398523658514, -0.17219771444797516, -0.04357116296887398, 0.0455457866191864, -0.03780859336256981, 0.08406970649957657, -0.011100434698164463, 0.03013930656015873, 0.07466962188482285, 0.015251037664711475, -0.0406903512775898, 0.07738472521305084, 0.008484533987939358, -0.04552280530333519, 0.008135504089295864, 0.0024812573101371527, 0.0032781909685581923, -0.05371193215250969, 0.07237998396158218, -0.14029689133167267, 0.04713515564799309, -0.09903568029403687, -0.08193216472864151, -0.019585581496357918, 0.08061938732862473, -0.0352899469435215, 0.04849293828010559, 0.06978024542331696, -0.004088457208126783, -0.014330332167446613, -0.03933378681540489, -0.013950365595519543, 0.0020331216510385275, -0.11243174225091934, -0.10394086688756943, -0.11117445677518845, -0.06611403822898865, 0.13685625791549683, 0.013783015310764313, -0.1875249594449997, 0.0034856752026826143, -0.12291533499956131, 0.0509054958820343, -0.19321024417877197, 0.06684365123510361, 0.06787635385990143, 0.026447894051671028, -0.011317764408886433, -0.06444274634122849, 0.04915736988186836, 0.0877934917807579, -0.09415892511606216, -0.09623237699270248 ]
null
null
null
# TEST # huggingface model
{}
null
blackface/dummy
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# TEST # huggingface model
[ "# TEST", "# huggingface model" ]
[ "TAGS\n#region-us \n", "# TEST", "# huggingface model" ]
[ 6, 3, 5 ]
[ "passage: TAGS\n#region-us \n# TEST# huggingface model" ]
[ -0.03881610929965973, -0.04575558751821518, -0.005185125861316919, -0.039399199187755585, 0.020794788375496864, 0.09639494121074677, 0.09159161150455475, 0.07754091918468475, 0.3179450035095215, 0.03235868364572525, 0.16059279441833496, -0.11284822970628738, -0.012858353555202484, 0.19177913665771484, -0.031146695837378502, -0.16874130070209503, 0.04295007511973381, 0.021408705040812492, 0.01680559664964676, 0.0862375870347023, 0.0031402723398059607, 0.0028784913010895252, 0.09439387917518616, -0.06741135567426682, -0.17962618172168732, 0.047026172280311584, -0.03684516251087189, 0.04276606813073158, 0.11763175576925278, -0.048622772097587585, 0.13279274106025696, -0.00040376291144639254, -0.12049499154090881, -0.22241337597370148, 0.04005115106701851, -0.05183897912502289, -0.03237752988934517, 0.00842062383890152, 0.07905599474906921, -0.028310758993029594, 0.15088243782520294, 0.1749982088804245, 0.02740078791975975, 0.04657692089676857, -0.17715667188167572, -0.05952158197760582, -0.06081460416316986, -0.12073265016078949, -0.023564085364341736, 0.02646002545952797, -0.019159965217113495, 0.27644726634025574, -0.22160598635673523, 0.02307240292429924, 0.106169193983078, -0.12343719601631165, 0.03570420295000076, 0.15552282333374023, 0.10268984735012054, -0.05112473666667938, -0.0423908494412899, 0.06257641315460205, 0.12839505076408386, 0.019677523523569107, -0.16829736530780792, -0.05185049772262573, 0.018049931153655052, 0.10819678753614426, -0.10379631072282791, -0.06046205013990402, 0.2203141301870346, 0.05840418115258217, -0.02929980494081974, -0.01574263721704483, -0.019586483016610146, 0.040938399732112885, 0.07452630251646042, -0.041924599558115005, 0.025958232581615448, 0.04327790439128876, -0.05421127378940582, 0.040793947875499725, -0.0557672381401062, -0.0703301802277565, -0.196674644947052, 0.15667080879211426, -0.03416590392589569, 0.08454664051532745, -0.21747130155563354, -0.029452748596668243, -0.26230525970458984, -0.035760704427957535, 0.01015566661953926, -0.12397339940071106, 0.004746920429170132, -0.01432409230619669, -0.09641430526971817, 0.1358875334262848, 0.19157807528972626, 0.1684962958097458, -0.0379435196518898, 0.06841867417097092, -0.05116331949830055, 0.0551346018910408, 0.05219583213329315, 0.16203410923480988, 0.12580186128616333, -0.10003997385501862, -0.07693468034267426, -0.03727932274341583, -0.028311431407928467, -0.029620518907904625, -0.0009110089740715921, -0.059477463364601135, -0.04187643155455589, 0.05137373507022858, -0.0030451796483248472, -0.03960735350847244, -0.11099843680858612, 0.04716134071350098, -0.06112892925739288, -0.03119722381234169, 0.007913454435765743, 0.011347685940563679, -0.040301788598299026, -0.10118833184242249, -0.04487902671098709, -0.04085833579301834, 0.11095944046974182, -0.02888862043619156, -0.07718868553638458, -0.050925105810165405, -0.039109740406274796, -0.006660944782197475, 0.04976198449730873, -0.15847444534301758, 0.040734440088272095, -0.10933388024568558, -0.050669774413108826, -0.0399886816740036, -0.04830571636557579, -0.01944718137383461, 0.10594836622476578, -0.0769505500793457, 0.024591611698269844, -0.0784655287861824, 0.024868542328476906, -0.1595831960439682, -0.07653416693210602, -0.0014410391449928284, 0.10540971904993057, 0.09698940068483353, -0.0355013832449913, 0.016325818374753, -0.15962664783000946, 0.09120428562164307, -0.07501969486474991, 0.01819395273923874, -0.08282377570867538, 0.17069125175476074, 0.07211296260356903, 0.04073064401745796, -0.189019575715065, 0.06582196056842804, 0.05924443528056145, 0.29803261160850525, -0.15980809926986694, -0.14764493703842163, 0.3037959635257721, -0.10542645305395126, -0.21598516404628754, 0.13310125470161438, 0.019259076565504074, 0.037302739918231964, 0.006902189459651709, 0.43992698192596436, -0.08623728156089783, -0.14865335822105408, 0.0725100189447403, 0.11006930470466614, -0.14921657741069794, 0.05710573494434357, 0.03323948383331299, -0.10793270170688629, -0.27840009331703186, 0.04083451256155968, 0.019539454951882362, 0.1484902799129486, -0.10600534826517105, 0.00995983649045229, -0.04144812002778053, -0.059805043041706085, 0.13541088998317719, 0.07924669981002808, -0.0014191472437232733, -0.19029203057289124, 0.060819413512945175, -0.16775351762771606, 0.08091248571872711, 0.0474870502948761, -0.027061475440859795, -0.09490641951560974, 0.17368772625923157, -0.02324403077363968, -0.03811869025230408, -0.08464859426021576, -0.10614560544490814, 0.06256809830665588, 0.13447067141532898, 0.043287962675094604, 0.11268309503793716, 0.13502620160579681, -0.06288572400808334, 0.056422583758831024, -0.038808420300483704, 0.06496076285839081, -0.03221363574266434, 0.00117283605504781, -0.017398670315742493, 0.10770652443170547, -0.10750904679298401, 0.11902756243944168, -0.05648075044155121, 0.004983989521861076, -0.11331699788570404, 0.03626050055027008, 0.0031937805470079184, 0.00015898255514912307, 0.03062228299677372, -0.017446178942918777, 0.006792626343667507, -0.037442997097969055, 0.09885438531637192, -0.029495596885681152, -0.09731858968734741, 0.13822239637374878, -0.09869281202554703, 0.04512404277920723, 0.12060117721557617, -0.07264220714569092, -0.06765994429588318, -0.11888857930898666, -0.07909825444221497, 0.05643542483448982, 0.008097256533801556, 0.019782468676567078, -0.0051202839240431786, -0.04102395102381706, 0.031255874782800674, -0.054411955177783966, -0.018539249897003174, -0.00967401172965765, -0.12162661552429199, -0.0991506278514862, 0.1330210417509079, -0.08941175043582916, -0.023952940478920937, 0.08268806338310242, 0.2069912552833557, 0.052204474806785583, 0.1250392198562622, -0.07398360222578049, -0.03712989389896393, -0.023787718266248703, 0.10601074993610382, -0.024108918383717537, 0.08906444162130356, -0.21462303400039673, -0.010398264974355698, 0.05325160548090935, 0.042935390025377274, 0.07928070425987244, -0.08201174437999725, -0.10070516169071198, -0.018296973779797554, -0.06296425312757492, -0.10993301868438721, 0.13611266016960144, -0.04370907321572304, 0.04229842498898506, 0.021542664617300034, -0.08934137225151062, 0.030793223530054092, -0.004238024353981018, -0.13645964860916138, 0.12088554352521896, -0.09721633046865463, -0.1257638782262802, -0.10630549490451813, -0.04570239782333374, -0.06566581130027771, 0.033579014241695404, 0.03019847720861435, -0.1612984985113144, 0.03483863174915314, -0.05335959419608116, 0.07911098748445511, 0.021973393857479095, 0.023315755650401115, -0.08606434613466263, 0.020912140607833862, -0.03960581123828888, -0.06788057833909988, -0.0850149542093277, -0.09525619447231293, 0.07456526905298233, 0.15168246626853943, -0.2882903218269348, 0.08483687788248062, 0.13868440687656403, -0.004720637574791908, 0.05489905923604965, -0.039427053183317184, 0.2517756223678589, -0.046874936670064926, -0.0840538740158081, 0.0485084131360054, -0.017693405970931053, 0.04381918907165527, 0.06320076435804367, -0.057652395218610764, -0.16345542669296265, 0.06535904854536057, -0.04907413572072983, -0.11170768737792969, -0.11996136605739594, -0.06779596954584122, -0.03092551976442337, 0.24181167781352997, -0.0560702420771122, 0.01821136102080345, 0.07637825608253479, 0.045682813972234726, 0.15462401509284973, -0.22099970281124115, -0.05710557475686073, -0.005739493295550346, -0.07528124749660492, -0.07830090075731277, -0.0003223824896849692, -0.0773862898349762, -0.09965645521879196, 0.12366984784603119, 0.0018578064627945423, 0.09004994481801987, 0.14240898191928864, -0.11334286630153656, 0.0841665118932724, 0.1665983945131302, 0.09986458718776703, 0.09462511539459229, 0.005734043195843697, -0.08609889447689056, -0.0323578305542469, -0.0015216958709061146, -0.07118649035692215, 0.02821185812354088, 0.11881402134895325, -0.11247924715280533, -0.07511138170957565, -0.20735198259353638, 0.07865733653306961, -0.04840753227472305, 0.21682403981685638, -0.1397833228111267, 0.07715360075235367, 0.03615659847855568, 0.05816496163606644, -0.01227585319429636, 0.04013068601489067, 0.07975970953702927, -0.09429503232240677, 0.09073600172996521, 0.07091358304023743, 0.10514134168624878, 0.19354194402694702, 0.06783804297447205, -0.21097882091999054, -0.03786323219537735, -0.02805551514029503, 0.05998745188117027, -0.23110505938529968, 0.21953055262565613, -0.027213556692004204, -0.07509487867355347, 0.019278259947896004, -0.07362441718578339, 0.15261191129684448, 0.1641225814819336, 0.1130075454711914, 0.023616569116711617, -0.12711209058761597, -0.06577611714601517, -0.003921695984899998, 0.0615648478269577, 0.1585720330476761, 0.011206259950995445, -0.023147476837038994, -0.04042007774114609, 0.02475021779537201, -0.030395865440368652, 0.24745114147663116, -0.002901757601648569, 0.08177171647548676, -0.14083729684352875, -0.0810939148068428, -0.09924479573965073, 0.040765225887298584, 0.06323602050542831, -0.0744846910238266, -0.019289707764983177, 0.24282413721084595, 0.11223149299621582, -0.08779171854257584, -0.15423572063446045, 0.1351645141839981, -0.02767191082239151, -0.07473739981651306, -0.07555410265922546, -0.07091542333364487, -0.06219633296132088, -0.0912523940205574, 0.06263985484838486, -0.04902677983045578, 0.011056075803935528, -0.03682761639356613, 0.07503921538591385, -0.05108889192342758, 0.050624702125787735, 0.036603763699531555, 0.024746056646108627, -0.08084078878164291, -0.0391610711812973, 0.18121053278446198, 0.008934355340898037, -0.18005190789699554, 0.15414929389953613, -0.027195625007152557, 0.10228072106838226, -0.0772518515586853, 0.06337983161211014, 0.12696167826652527, 0.41704925894737244, 0.01514880545437336, 0.08013663440942764, 0.190740704536438, -0.05921516939997673, -0.27597156167030334, 0.010218784213066101, -0.16150875389575958, 0.08792290091514587, 0.12754090130329132, -0.005605635698884726, 0.05641955882310867, 0.04652673751115799, -0.029631247743964195, 0.14943379163742065, -0.034311480820178986, -0.041388366371393204, 0.16819533705711365, -0.02574741467833519, 0.462005615234375, -0.07409186661243439, -0.08878505229949951, -0.018046630546450615, -0.10133319348096848, 0.017525160685181618, -0.020952053368091583, 0.07283633202314377, -0.07796221226453781, 0.0047632865607738495, 0.06286567449569702, -0.011372365057468414, 0.2417561262845993, -0.034510985016822815, 0.0907866433262825, -0.0957908108830452, -0.04977308213710785, -0.011416515335440636, -0.06539842486381531, 0.08209414780139923, -0.04067041724920273, 0.02833159826695919, -0.2143724262714386, 0.0068518673069775105, -0.11083044856786728, 0.10497239232063293, 0.05145905911922455, 0.008672076277434826, -0.05900762602686882, 0.009587370790541172, -0.07061129808425903, 0.017543617635965347, 0.06410685926675797, -0.14682988822460175, 0.23294878005981445, -0.010236755944788456, 0.12100879102945328, -0.02556440606713295, 0.09672820568084717, 0.0646195337176323, -0.05798641964793205, 0.016219593584537506, -0.18224725127220154, -0.029048502445220947, 0.10136936604976654, -0.02636072412133217, 0.048051945865154266, 0.10765239596366882, -0.11959435045719147, 0.006298988591879606, 0.1445663571357727, -0.12517958879470825, -0.07672669738531113, -0.03629765287041664, -0.2729160189628601, 0.01462980080395937, 0.007002962753176689, -0.0016747727058827877, 0.13137401640415192, 0.010534839704632759, -0.04659204185009003, -0.024430029094219208, -0.14776408672332764, -0.0017618959536775947, 0.09531417489051819, 0.006869553122669458, -0.08104166388511658, 0.14435066282749176, -0.11970169097185135, -0.12216976284980774, 0.009716643020510674, 0.13860827684402466, -0.03708488494157791, -0.048214141279459, -0.020890917629003525, 0.4504169225692749, -0.039464112371206284, -0.05706073343753815, -0.08010005205869675, -0.06397988647222519, -0.03453566133975983, 0.16810423135757446, 0.1144886314868927, 0.10666675120592117, 0.09651064872741699, -0.003303974401205778, -0.017059504985809326, -0.04981517046689987, 0.04948827996850014, -0.028193218633532524, 0.04184828698635101, -0.09437122195959091, -0.07165887951850891, 0.16773730516433716, -0.12160564959049225, -0.09969628602266312, -0.20736604928970337, 0.036761574447155, -0.16609035432338715, -0.07284509390592575, -0.00966836791485548, -0.07941296696662903, 0.08275631070137024, -0.04018037021160126, -0.03628335893154144, -0.07445189356803894, -0.13032123446464539, 0.07728591561317444, 0.02000250108540058, -0.0014329912373796105, 0.0387214832007885, 0.0038883392699062824, 0.18826542794704437, -0.08595412224531174, 0.12297439575195312, 0.1326216757297516, -0.03274571895599365, 0.09732939302921295, -0.17525307834148407, -0.1044192686676979, 0.06692932546138763, -0.05972413346171379, 0.06621750444173813, 0.01972603052854538, -0.013913687318563461, -0.010547935031354427, -0.02938798815011978, 0.09843669831752777, 0.10417227447032928, 0.007634134031832218, 0.0592317134141922, 0.010652575641870499, -0.26736217737197876, -0.06975407898426056, -0.14287878572940826, 0.11544537544250488, 0.14135736227035522, -0.001752000767737627, 0.006504676770418882, 0.08256946504116058, -0.0629645437002182, -0.030884500592947006, 0.005984285846352577, -0.0865476131439209, 0.12100233137607574, -0.005862763151526451, 0.05541400611400604, 0.03893941640853882, 0.2670377790927887, 0.0028658988885581493, 0.03769807144999504, -0.013603693805634975, 0.12044291943311691, 0.13903456926345825, -0.014688301831483841, 0.11621180176734924, 0.017972184345126152, -0.05368044972419739, -0.13516280055046082, 0.08491594344377518, -0.05199576914310455, -0.12130430340766907, 0.02587357722222805, 0.07311976701021194, -0.11577422171831131, 0.16466857492923737, 0.008687187917530537, 0.07740069925785065, 0.15224283933639526, -0.1861501783132553, -0.008126388303935528, -0.010278550907969475, 0.06939508765935898, 0.2203100025653839, 0.062308523803949356, -0.11675422638654709, 0.13308459520339966, -0.07526460289955139, -0.03578348085284233, -0.1769818365573883, -0.004582136869430542, -0.03294258192181587, -0.19622142612934113, 0.10265814512968063, -0.03245389834046364, -0.09079045802354813, 0.19573721289634705, 0.01971898227930069, -0.02158447541296482, 0.04927246645092964, -0.12105584144592285, -0.028042227029800415, 0.11085487902164459, -0.05042828619480133, -0.03987593948841095, 0.04445873200893402, -0.0927257314324379, -0.01079292967915535, -0.056197624653577805, -0.02639702521264553, -0.023473218083381653, -0.07439043372869492, -0.033554092049598694, -0.14443323016166687, -0.0830419510602951, -0.02869691140949726, 0.030515074729919434, -0.08250395208597183, 0.0024360481183975935, 0.023264843970537186, 0.05156123638153076, 0.050278909504413605, 0.13079534471035004, -0.015035205520689487, 0.02133285067975521, -0.12286451458930969, 0.16025151312351227, -0.14750342071056366, 0.1315315067768097, -0.10732308775186539, -0.006784635595977306, -0.09450827538967133, 0.2523571252822876, 0.17568616569042206, -0.06326206773519516, -0.05310368165373802, -0.01012677326798439, 0.041627973318099976, 0.027800368145108223, 0.14074954390525818, 0.03118666633963585, 0.1537274718284607, -0.07007297873497009, 0.050045523792505264, -0.020763251930475235, -0.06800945103168488, 0.04098568856716156, -0.009449551813304424, 0.09022736549377441, -0.07253727316856384, -0.0904010534286499, 0.09957961738109589, -0.19742712378501892, 0.14164775609970093, 0.14707133173942566, -0.21054643392562866, -0.03274192661046982, -0.08633103966712952, 0.06514880061149597, -0.034393951296806335, 0.1778625249862671, -0.05586196482181549, -0.02206338942050934, -0.08552470803260803, -0.05654773488640785, -0.24414017796516418, -0.10810312628746033, 0.024715865030884743, -0.1381450891494751, -0.015787392854690552, -0.0000574369405512698, 0.06915228068828583, 0.05669822916388512, 0.008501476608216763, -0.016631383448839188, 0.10660748928785324, 0.02381611056625843, 0.0716777890920639, -0.1412181854248047, 0.08016131073236465, 0.019909746944904327, -0.1783415526151657, 0.08664030581712723, -0.08778882026672363, 0.05779065564274788, -0.0044563706032931805, -0.0577428862452507, -0.09341620653867722, 0.03669225051999092, -0.10912027209997177, 0.10228332132101059, 0.11175772547721863, 0.023457245901226997, 0.04417974501848221, -0.017002809792757034, 0.07528706640005112, 0.039510175585746765, -0.12746967375278473, -0.0460863895714283, 0.019977539777755737, -0.05633847042918205, 0.2730658948421478, -0.15788504481315613, -0.26712995767593384, -0.02935369871556759, -0.13356761634349823, 0.059217408299446106, 0.05267488211393356, 0.1182747408747673, 0.08339616656303406, 0.10384069383144379, 0.03667563572525978, -0.27562415599823, 0.15433789789676666, 0.10018137097358704, 0.03232602775096893, -0.1106196790933609 ]
null
null
transformers
# RuBERT for Sentiment Analysis of Medical Reviews This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on corpus of medical reviews. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-med') model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-med', return_dict=True) @torch.no_grad() def predict(text): inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return predicted ``` ## Dataset used for model training **[Отзывы о медучреждениях](https://github.com/blanchefort/datasets/tree/master/medical_comments)** > Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта prodoctorov.ru
{"language": ["ru"], "tags": ["sentiment", "text-classification"]}
text-classification
blanchefort/rubert-base-cased-sentiment-med
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "text-classification", "sentiment", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #region-us
# RuBERT for Sentiment Analysis of Medical Reviews This is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ## Dataset used for model training Отзывы о медучреждениях > Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL
[ "# RuBERT for Sentiment Analysis of Medical Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #region-us \n", "# RuBERT for Sentiment Analysis of Medical Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ 52, 41, 15, 4, 40 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #region-us \n# RuBERT for Sentiment Analysis of Medical Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews.## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE## How to use## Dataset used for model training\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ -0.011837666854262352, 0.03830361366271973, -0.00632257666438818, -0.059093356132507324, 0.10802332311868668, 0.049930546432733536, 0.03461373597383499, 0.15071484446525574, 0.01439262181520462, 0.07260885834693909, 0.06803380697965622, 0.08087430149316788, 0.011970395222306252, 0.0761507973074913, -0.05160749703645706, -0.23060151934623718, -0.003960518166422844, 0.10264275223016739, 0.11918936669826508, 0.12064412981271744, 0.07903654128313065, -0.07222006469964981, 0.06923495978116989, 0.036517929285764694, 0.0033670621924102306, -0.02566666528582573, 0.0934070274233818, -0.03296922147274017, 0.11711513996124268, -0.05082666501402855, 0.028905751183629036, 0.05310586839914322, 0.022522298619151115, -0.15121345221996307, 0.032046735286712646, 0.0030864186119288206, -0.02430742420256138, 0.08303743600845337, 0.04295695200562477, -0.1874110996723175, 0.18743225932121277, -0.12222710996866226, 0.07523354887962341, 0.05036868155002594, -0.11264064162969589, -0.23124738037586212, -0.09500221908092499, 0.13034497201442719, 0.00010062210640171543, 0.13611632585525513, -0.020836148411035538, 0.24385209381580353, -0.1315939873456955, 0.03422761708498001, 0.1622544825077057, -0.19186754524707794, -0.043893080204725266, 0.05028005689382553, 0.053346239030361176, 0.021164290606975555, -0.08551615476608276, 0.03434118255972862, 0.0073730782605707645, 0.02385561540722847, 0.03273449465632439, -0.042012374848127365, 0.02174091711640358, 0.042295876890420914, -0.08272597938776016, -0.015127751976251602, 0.19146493077278137, -0.04357647895812988, 0.006651746574789286, -0.0610521174967289, 0.03283635154366493, -0.07032895088195801, 0.016414407640695572, -0.12876735627651215, -0.011207844130694866, -0.06079498678445816, -0.0698484480381012, 0.06485971063375473, -0.07276201248168945, -0.012249867431819439, -0.09601074457168579, 0.004071198869496584, -0.03347543627023697, 0.04327806085348129, 0.003294155700132251, 0.0967424064874649, -0.019964316859841347, -0.022562429308891296, -0.0054658506996929646, -0.03127420321106911, -0.019681496545672417, -0.08195702731609344, -0.0662560984492302, -0.004186671692878008, 0.08467860519886017, 0.042284443974494934, 0.009935669600963593, -0.04007543995976448, 0.02408130280673504, -0.03840003162622452, 0.10403219610452652, -0.00800636038184166, -0.11148753762245178, -0.014955328777432442, -0.05086595192551613, 0.07591081410646439, 0.031641777604818344, 0.06603015214204788, 0.03308766335248947, 0.004964863881468773, 0.08435565233230591, 0.06602340936660767, -0.15467451512813568, 0.061182789504528046, -0.11031478643417358, -0.018434157595038414, -0.011249726638197899, 0.005169225856661797, -0.07350638508796692, 0.06020206958055496, -0.0364563912153244, 0.07090071588754654, 0.05863117054104805, 0.012713953852653503, -0.01808769255876541, 0.11992373317480087, -0.03183308616280556, -0.034303490072488785, -0.01784461922943592, -0.014545679092407227, 0.06014489755034447, -0.009554561227560043, 0.048904724419116974, -0.12138508260250092, -0.08679452538490295, -0.044613227248191833, 0.007811398711055517, -0.07221554219722748, 0.04971718415617943, -0.046164970844984055, -0.007201435510069132, -0.011127081699669361, 0.01981773041188717, 0.004585412330925465, -0.06014756113290787, 0.048547763377428055, -0.08420661836862564, 0.0849805548787117, -0.03014560043811798, 0.00012277328642085195, -0.14319424331188202, -0.001191393588669598, -0.04192880541086197, -0.018753351643681526, -0.07707148045301437, 0.048144351691007614, -0.10564501583576202, -0.06558717787265778, -0.06270226836204529, -0.04550069198012352, 0.02314336970448494, 0.10519628971815109, -0.11600645631551743, -0.0742252990603447, 0.11967993527650833, -0.04957405850291252, -0.20113280415534973, 0.14462251961231232, -0.06791141629219055, 0.18711936473846436, 0.08004980534315109, 0.153676375746727, 0.03599395230412483, -0.09721378237009048, -0.06408221274614334, -0.08836992084980011, -0.09464262425899506, 0.05022275820374489, 0.0687737688422203, 0.06755396723747253, -0.055643290281295776, 0.004062398336827755, -0.05129420757293701, -0.0015465457690879703, -0.11631639301776886, -0.043987322598695755, 0.005359623581171036, -0.09592632949352264, 0.07551145553588867, 0.0426870733499527, 0.03989843651652336, -0.13942208886146545, -0.0014069329481571913, -0.09356693923473358, 0.11570195108652115, 0.03129718452692032, -0.057850226759910583, -0.12479870766401291, -0.01378235686570406, 0.0717787891626358, -0.0006423978484235704, -0.11158662289381027, -0.002097578952088952, -0.0549747534096241, 0.06260709464550018, -0.011325879953801632, 0.1435781866312027, 0.002043419284746051, -0.07438822090625763, -0.04646900296211243, 0.013895570300519466, 0.07516474276781082, 0.0017359410412609577, -0.02067205309867859, -0.17637009918689728, 0.10304736346006393, -0.08033307641744614, 0.1351006180047989, -0.16022855043411255, 0.025629298761487007, -0.003151870332658291, 0.0791383683681488, 0.05680592730641365, 0.0022847827058285475, 0.08356377482414246, 0.0003228369459975511, 0.027392735704779625, 0.058936700224876404, 0.09142369031906128, -0.04461980238556862, -0.05972253531217575, 0.11140988767147064, -0.08969782292842865, 0.10713754594326019, 0.05940471589565277, -0.15216581523418427, -0.09062297642230988, -0.04802454262971878, -0.045444026589393616, 0.044914934784173965, -0.10575170814990997, 0.005601728335022926, 0.15008407831192017, -0.006975445430725813, 0.060161661356687546, 0.02790924906730652, -0.007207581307739019, -0.014603415504097939, -0.09457266330718994, -0.03461698442697525, 0.09153204411268234, -0.021300021559000015, -0.22621913254261017, 0.021149909123778343, 0.1583845317363739, -0.022590795531868935, 0.12616053223609924, 0.015076352283358574, -0.018120557069778442, -0.05048290640115738, -0.07701816409826279, -0.002435771282762289, 0.027027640491724014, -0.21717441082000732, -0.025399930775165558, 0.07243388891220093, -0.08624589443206787, -0.0007451038109138608, -0.06688728928565979, -0.03175532817840576, 0.004052011761814356, 0.022587178274989128, -0.06029791384935379, 0.14303815364837646, 0.02304953522980213, 0.15258090198040009, 0.02371765673160553, 0.05033104494214058, 0.03253365308046341, -0.023602750152349472, -0.15948998928070068, 0.08849753439426422, -0.06275772303342819, -0.18111415207386017, -0.005382529925554991, -0.03860185295343399, 0.016730986535549164, -0.015489411540329456, 0.013745850883424282, -0.13674704730510712, -0.002168695442378521, -0.03141532465815544, 0.004337787628173828, 0.1337987780570984, -0.058057401329278946, -0.017085380852222443, 0.0823470801115036, 0.062414515763521194, -0.03523580729961395, -0.035971369594335556, -0.1400243043899536, -0.08714986592531204, 0.12685348093509674, -0.062113042920827866, 0.024712111800909042, 0.15686213970184326, 0.03665025904774666, -0.0010336985578760505, -0.04464193433523178, 0.09578965604305267, -0.089784175157547, -0.040086738765239716, 0.14793998003005981, -0.010796268470585346, -0.02913873828947544, 0.11438285559415817, 0.06233470141887665, -0.04906727373600006, 0.09492066502571106, 0.06015195697546005, 0.009674153290688992, -0.26320430636405945, -0.09716304391622543, -0.04595743492245674, 0.004183120094239712, -0.07077888399362564, 0.0035879379138350487, 0.09945530444383621, 0.09147171676158905, 0.03639712557196617, -0.1025482788681984, -0.07348652929067612, 0.05187758430838585, 0.1460949331521988, -0.03864140063524246, 0.11903563886880875, -0.015493734739720821, -0.057138893753290176, 0.0995047315955162, -0.050966303795576096, 0.1159663274884224, -0.002530045807361603, 0.024456074461340904, 0.10754109919071198, 0.10774767398834229, 0.04620850831270218, 0.006875508930534124, 0.048584260046482086, -0.0504208579659462, -0.02396269328892231, -0.012432369403541088, -0.18649329245090485, 0.05665752664208412, -0.08376439660787582, 0.01487001683562994, -0.09254560619592667, -0.05458787456154823, 0.11692491918802261, 0.16248026490211487, 0.08393532037734985, -0.1317828744649887, -0.12244472652673721, 0.02288411185145378, -0.06273619085550308, 0.012089998461306095, 0.011907079257071018, 0.0002482342242728919, -0.11764656752347946, 0.06597817689180374, -0.058523356914520264, 0.0823437049984932, -0.09866859763860703, 0.11495190858840942, -0.07647918164730072, -0.09863239526748657, -0.04911152645945549, 0.07619619369506836, -0.18855182826519012, 0.23069369792938232, -0.02825414389371872, 0.012461268343031406, -0.12437745928764343, -0.10451582819223404, 0.09810802340507507, 0.16514937579631805, 0.07456641644239426, -0.011604922823607922, 0.07558999210596085, -0.06441017985343933, 0.014783292077481747, 0.05585315823554993, 0.07436821609735489, -0.06209916993975639, 0.02911200374364853, -0.01898878626525402, 0.041063595563173294, -0.015831172466278076, 0.012243492528796196, -0.14005060493946075, 0.03549851104617119, 0.07965997606515884, -0.027920624241232872, 0.05117252096533775, -0.010185441002249718, -0.10352343320846558, -0.017800988629460335, 0.06065453961491585, 0.08412566035985947, 0.03237682208418846, -0.12006044387817383, 0.1325039565563202, -0.02603512816131115, -0.0525125116109848, -0.042937565594911575, 0.041925620287656784, -0.0036990754306316376, 0.05811933055520058, -0.11224646121263504, 0.05192643404006958, -0.14670534431934357, -0.17466312646865845, -0.06054249033331871, 0.14924927055835724, 0.08734672516584396, 0.05094490572810173, 0.0010067732073366642, 0.008481469936668873, -0.03601927310228348, -0.006431227084249258, 0.2047223299741745, 0.07879003137350082, -0.008376638405025005, 0.06602182239294052, -0.050652697682380676, -0.18023081123828888, -0.09879719465970993, -0.05007864162325859, 0.141423761844635, 0.12918955087661743, -0.03747343271970749, 0.08936887979507446, 0.1053447499871254, -0.011290863156318665, -0.25654640793800354, 0.06024342030286789, 0.07414542883634567, -0.021246423944830894, 0.09407684952020645, -0.13455143570899963, 0.18219827115535736, 0.049412813037633896, -0.007353087421506643, -0.10978718101978302, 0.03662171587347984, -0.034379784017801285, 0.13473230600357056, 0.07897788286209106, 0.3017483651638031, -0.08480039238929749, -0.04071586951613426, 0.07741161435842514, -0.14114539325237274, 0.14329040050506592, -0.17315082252025604, 0.04941737651824951, -0.025672534480690956, 0.1346166729927063, 0.07776166498661041, 0.0037706666626036167, 0.06891024857759476, -0.03542501851916313, 0.0670972391963005, -0.11119506508111954, -0.0884048268198967, 0.03949298337101936, 0.012893463484942913, 0.030599096789956093, 0.06243092194199562, -0.00039898825343698263, -0.09782462567090988, -0.02223948948085308, -0.14208044111728668, -0.02004685066640377, 0.0352497324347496, -0.10081581771373749, -0.09475255757570267, 0.12917330861091614, 0.033909764140844345, -0.042791400104761124, 0.021117087453603745, -0.14455673098564148, 0.1389377862215042, 0.055210281163454056, 0.2736304998397827, 0.010110106319189072, 0.03941776603460312, 0.022922871634364128, -0.13505277037620544, 0.01768237166106701, -0.12284217774868011, 0.02100820280611515, 0.08874153345823288, 0.03151371330022812, 0.12932607531547546, 0.04448824003338814, -0.09538616985082626, 0.02449476160109043, 0.10038244724273682, -0.1816340684890747, -0.12515957653522491, -0.08071500808000565, 0.01818697340786457, -0.11470355838537216, 0.055479180067777634, 0.13328418135643005, -0.05650901794433594, -0.009977811947464943, -0.02474590204656124, 0.005408954340964556, -0.06962466984987259, 0.12587371468544006, 0.035066138952970505, -0.0028272701893001795, -0.05026222765445709, -0.0814378410577774, 0.030674653127789497, -0.15548868477344513, 0.026833312585949898, 0.05247918516397476, -0.1267848014831543, -0.12514910101890564, -0.07218029350042343, 0.2453937828540802, -0.10196080058813095, -0.06649962812662125, -0.04224657267332077, -0.12120276689529419, 0.04614489898085594, 0.23279976844787598, 0.04514177516102791, -0.010384146124124527, -0.1005815863609314, -0.0024466263130307198, -0.018045801669359207, 0.14240895211696625, 0.09322649240493774, -0.016268528997898102, 0.02219908870756626, 0.07667866349220276, -0.023752372711896896, 0.11291287839412689, -0.08024612814188004, 0.016507819294929504, -0.0760178342461586, -0.029588954523205757, -0.20111939311027527, -0.060837116092443466, -0.005203923676162958, -0.02419571578502655, 0.027117155492305756, -0.0403967909514904, -0.030575063079595566, -0.06743314862251282, -0.053491219878196716, 0.006747412960976362, 0.10461819171905518, 0.09953249245882034, -0.05863688886165619, -0.02546742931008339, 0.07100903242826462, 0.01044748816639185, 0.17493489384651184, 0.05609019845724106, -0.022408567368984222, 0.07553169131278992, -0.2030872404575348, -0.011737062595784664, 0.09786725044250488, 0.05116609111428261, 0.015725119039416313, -0.1337434947490692, -0.02989194728434086, 0.004070242866873741, -0.055606529116630554, 0.11914835125207901, 0.12071233987808228, -0.0062554143369197845, 0.0574636235833168, 0.06451176106929779, -0.011222676374018192, -0.08573930710554123, -0.03132983297109604, -0.034369178116321564, 0.04450104013085365, 0.11895845830440521, -0.09163609147071838, 0.03246557340025902, -0.11927303671836853, -0.009221291169524193, -0.022177571430802345, -0.07569818943738937, -0.20404523611068726, -0.004976640455424786, 0.08049748837947845, 0.011230002157390118, 0.15190809965133667, -0.0519731380045414, -0.08785019814968109, 0.023586612194776535, 0.15020963549613953, 0.07854463905096054, -0.0354904942214489, 0.04044051840901375, 0.09632375836372375, -0.0759994238615036, -0.13559557497501373, 0.01237679086625576, -0.006572068203240633, -0.08593110740184784, 0.20720747113227844, 0.08782058954238892, 0.1252748966217041, -0.07174551486968994, -0.05622939392924309, 0.027473827823996544, 0.04666941240429878, -0.12231818586587906, -0.07388433068990707, -0.02114546298980713, 0.0030058943666517735, 0.07321605831384659, 0.19046075642108917, -0.0351361483335495, 0.042760398238897324, -0.11852747946977615, -0.02710210531949997, -0.07600923627614975, -0.15978294610977173, -0.030764736235141754, -0.1273675560951233, -0.005991878919303417, -0.11130805313587189, -0.01744968444108963, 0.01775861158967018, 0.08144392818212509, -0.03516906872391701, 0.1029861643910408, -0.13640819489955902, 0.02779398113489151, 0.1574753373861313, -0.015696564689278603, -0.053313106298446655, -0.14731910824775696, 0.06229338422417641, -0.0431983657181263, 0.03302690386772156, 0.022994183003902435, -0.0012457316042855382, -0.04097118228673935, -0.062486521899700165, -0.08172839134931564, -0.11060702800750732, 0.07677178829908371, -0.019873814657330513, -0.013222298584878445, 0.12545625865459442, 0.06408241391181946, 0.07322543859481812, 0.05108824744820595, 0.24138343334197998, -0.031026162207126617, 0.05221257731318474, -0.15852726995944977, 0.11620409041643143, -0.030891098082065582, 0.013363040052354336, -0.007087253034114838, -0.06665567308664322, 0.03607012704014778, 0.25431540608406067, 0.2455875426530838, -0.06058342754840851, 0.020362604409456253, -0.028395425528287888, 0.047351814806461334, 0.02719198912382126, 0.06581740081310272, 0.09710685908794403, 0.04546118155121803, -0.09177440404891968, 0.02911790832877159, -0.0635204166173935, 0.005501583218574524, 0.032635029405355453, -0.04076603055000305, 0.1380932629108429, -0.04971802234649658, -0.041808176785707474, 0.1122504323720932, -0.1190374568104744, -0.055091820657253265, -0.017793802544474602, -0.1716492623090744, -0.07136844843626022, -0.10411061346530914, 0.013406678102910519, 0.07770911604166031, 0.02724139206111431, 0.022970596328377724, 0.03156103938817978, 0.1574474275112152, 0.036635544151067734, -0.13495229184627533, -0.06723485141992569, 0.16209368407726288, 0.04489202797412872, 0.03339649736881256, -0.030863381922245026, 0.02908814325928688, 0.09371815621852875, -0.03512221574783325, -0.013047815300524235, 0.17271572351455688, -0.03253047168254852, -0.054429132491350174, 0.011197034269571304, 0.1241479441523552, 0.08346088975667953, 0.03023010492324829, 0.0700337365269661, -0.24889783561229706, -0.009076801128685474, -0.05592511594295502, -0.06918444484472275, -0.1116006001830101, 0.25149354338645935, -0.04096662998199463, 0.06951524317264557, 0.16933487355709076, -0.014376632869243622, 0.0670274868607521, -0.07249365001916885, 0.03241852670907974, 0.053416065871715546, -0.021960170939564705, 0.037449900060892105, -0.12794606387615204, 0.07079429924488068, -0.042567089200019836, -0.030124550685286522, -0.2544778287410736, -0.033437952399253845, -0.05476582795381546, 0.018460538238286972, -0.005300515331327915, 0.04058461636304855, 0.02705114521086216, 0.010441401973366737, 0.009034906513988972, -0.08323255926370621, 0.035297200083732605, 0.12860381603240967, -0.0551617331802845, -0.036916960030794144 ]
null
null
transformers
# RuBERT for Sentiment Analysis of Tweets This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on [RuTweetCorp](https://study.mokoron.com/). ## Labels 0: POSITIVE 1: NEGATIVE ## How to use ```python import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-mokoron') model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-mokoron', return_dict=True) @torch.no_grad() def predict(text): inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return predicted ``` ## Dataset used for model training **[RuTweetCorp](https://study.mokoron.com/)** > Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.
{"language": ["ru"], "tags": ["sentiment", "text-classification"], "datasets": ["RuTweetCorp"]}
text-classification
blanchefort/rubert-base-cased-sentiment-mokoron
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "text-classification", "sentiment", "ru", "dataset:RuTweetCorp", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuTweetCorp #autotrain_compatible #endpoints_compatible #region-us
# RuBERT for Sentiment Analysis of Tweets This is a DeepPavlov/rubert-base-cased-conversational model trained on RuTweetCorp. ## Labels 0: POSITIVE 1: NEGATIVE ## How to use ## Dataset used for model training RuTweetCorp > Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.
[ "# RuBERT for Sentiment Analysis of Tweets\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuTweetCorp.", "## Labels\n 0: POSITIVE\n 1: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116." ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuTweetCorp #autotrain_compatible #endpoints_compatible #region-us \n", "# RuBERT for Sentiment Analysis of Tweets\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuTweetCorp.", "## Labels\n 0: POSITIVE\n 1: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116." ]
[ 62, 42, 11, 4, 72 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuTweetCorp #autotrain_compatible #endpoints_compatible #region-us \n# RuBERT for Sentiment Analysis of Tweets\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuTweetCorp.## Labels\n 0: POSITIVE\n 1: NEGATIVE## How to use## Dataset used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116." ]
[ 0.025558527559041977, -0.045972712337970734, -0.004710712470114231, 0.06337469071149826, 0.10670731216669083, 0.018927108496427536, 0.05995048210024834, 0.08915482461452484, -0.07575318217277527, 0.002483274322003126, 0.12583892047405243, 0.05620503053069115, -0.0016999297076836228, 0.1388973444700241, -0.04930096119642258, -0.24248525500297546, -0.0026500411331653595, -0.025265490636229515, 0.07787369191646576, 0.1702525019645691, 0.1873670071363449, -0.04059266671538353, 0.09492813795804977, -0.043769922107458115, -0.14995314180850983, 0.022727936506271362, 0.07007880508899689, -0.07199735939502716, 0.11235007643699646, 0.007741948124021292, 0.09644142538309097, 0.05486490577459335, 0.03216814249753952, -0.10565026849508286, 0.06053467094898224, 0.07255661487579346, -0.050391849130392075, 0.06265436857938766, 0.06346035748720169, -0.1035839319229126, 0.1945720613002777, -0.041392359882593155, 0.052917610853910446, 0.09169550985097885, -0.1302117556333542, 0.009850496426224709, -0.07876203954219818, 0.13735061883926392, 0.09672398865222931, 0.10737147182226181, -0.058657076209783554, 0.19948549568653107, -0.10026593506336212, 0.09042170643806458, 0.13161145150661469, -0.2848965525627136, -0.0838460922241211, 0.04009983316063881, -0.037011437118053436, 0.08208321034908295, -0.09919759631156921, 0.019203368574380875, 0.08276467025279999, 0.07141871750354767, 0.02902659960091114, -0.06581759452819824, -0.028584277257323265, -0.030150124803185463, -0.09373628348112106, 0.012269060127437115, 0.21309861540794373, 0.0697975754737854, -0.02687903679907322, -0.036968059837818146, -0.04838307201862335, -0.03797491639852524, -0.015658477321267128, -0.09811992943286896, -0.08110427111387253, 0.023267140612006187, -0.09351862221956253, 0.0025232082698494196, -0.13287311792373657, 0.031493280082941055, -0.09270670264959335, 0.05940590053796768, -0.021655956283211708, 0.009909610264003277, -0.08679795265197754, 0.09248451143503189, 0.0385054387152195, -0.10019490867853165, 0.039911579340696335, -0.10896870493888855, 0.003913981840014458, -0.050390295684337616, -0.07759840041399002, -0.09575004875659943, 0.02734445594251156, 0.08695176988840103, -0.0024015975650399923, 0.033355168998241425, 0.053520627319812775, -0.008162585087120533, 0.06034835800528526, 0.03300381079316139, -0.08961901068687439, -0.06519564241170883, 0.041031431406736374, -0.05356530845165253, -0.06455205380916595, -0.009185769595205784, -0.01966453343629837, -0.021489489823579788, 0.10678713023662567, 0.008222531527280807, -0.030166257172822952, 0.11006280034780502, -0.09264639019966125, -0.02038157917559147, -0.0930095836520195, -0.05894900858402252, -0.03653085231781006, 0.018224233761429787, -0.06691810488700867, 0.0910118967294693, 0.003845776664093137, 0.04238408803939819, -0.0447654128074646, 0.021056506782770157, -0.04013441875576973, -0.04082738980650902, 0.002029231982305646, -0.09390245378017426, 0.03225940093398094, -0.042200203984975815, 0.01465978566557169, -0.22089141607284546, -0.15098579227924347, -0.05657092109322548, 0.020549237728118896, -0.04332375153899193, -0.019130412489175797, -0.051331933587789536, -0.062237150967121124, 0.03506845608353615, 0.016321947798132896, -0.029764367267489433, -0.021840373054146767, 0.09300640225410461, -0.09325849264860153, 0.04610038176178932, -0.04422605782747269, 0.022505128756165504, -0.17693381011486053, -0.04966472461819649, -0.008055726997554302, 0.1211903914809227, -0.054776813834905624, 0.1626196801662445, -0.12385658919811249, -0.07571378350257874, -0.06774194538593292, 0.00436060968786478, 0.001326843979768455, 0.17948688566684723, -0.20710377395153046, -0.03987080976366997, 0.08935993909835815, -0.08407191932201385, -0.09721113741397858, 0.18528087437152863, -0.0724976658821106, 0.2215643674135208, 0.1638076901435852, 0.14010953903198242, 0.12885424494743347, -0.0038410339038819075, -0.02291012555360794, -0.024491455405950546, -0.10344938188791275, 0.10356241464614868, 0.004324676934629679, 0.12271081656217575, -0.11100832372903824, -0.0003647025441750884, 0.026247475296258926, 0.02991677075624466, -0.08846910297870636, -0.056411262601614, 0.01188220176845789, -0.057398732751607895, 0.16723282635211945, 0.016739849001169205, 0.015570483170449734, -0.13437098264694214, -0.12540072202682495, -0.11311350017786026, 0.050857894122600555, 0.017212899401783943, -0.009497486986219883, -0.14813697338104248, -0.0031794761307537556, 0.15048757195472717, -0.002936186268925667, -0.12713606655597687, -0.032229289412498474, -0.046717818826436996, 0.222809299826622, 0.11876564472913742, 0.11112648248672485, 0.049787405878305435, -0.06798437982797623, -0.05438975244760513, -0.031296249479055405, -0.011782198213040829, 0.015480843372642994, -0.03666093200445175, -0.1360694020986557, 0.056599125266075134, -0.08175207674503326, 0.08444451540708542, -0.12950660288333893, 0.012813957408070564, 0.13257035613059998, 0.10439161956310272, 0.030721046030521393, 0.06653620302677155, 0.008190984837710857, 0.014033723622560501, -0.021897606551647186, -0.03633173555135727, 0.057494573295116425, -0.00010701848077587783, -0.09669214487075806, 0.0500948503613472, -0.03174157440662384, 0.0965762510895729, 0.11003132909536362, -0.06073760986328125, -0.18107521533966064, 0.08757670223712921, -0.04513823240995407, 0.010485333390533924, 0.012546832673251629, -0.001280726632103324, 0.20502430200576782, -0.03389875963330269, 0.027417292818427086, -0.0382252000272274, -0.038159195333719254, 0.019806111231446266, -0.10331263393163681, -0.03450866416096687, 0.08413581550121307, -0.1150171086192131, -0.33889323472976685, 0.08665776252746582, 0.14000211656093597, -0.028337888419628143, 0.15557777881622314, -0.00999861303716898, 0.02242608740925789, -0.005441433750092983, -0.021778330206871033, -0.03870059922337532, -0.021655412390828133, -0.00762598542496562, -0.015356648713350296, 0.01171762403100729, -0.036923397332429886, -0.000938552781008184, -0.0541064478456974, -0.04395603388547897, 0.016878604888916016, 0.03571082651615143, 0.014906374737620354, 0.08263985812664032, 0.022325605154037476, 0.1374601423740387, -0.001488604350015521, -0.04399489238858223, 0.05422093719244003, -0.008032234385609627, -0.16132979094982147, 0.14075493812561035, -0.10978367179632187, -0.28336772322654724, -0.002821685280650854, -0.016464591026306152, 0.003112961770966649, -0.011844729073345661, 0.08908279240131378, -0.22174789011478424, -0.02041292004287243, -0.05709966644644737, 0.008189556188881397, 0.017336444929242134, 0.037308357656002045, -0.009771298617124557, 0.014630931429564953, -0.0026020631194114685, -0.04616004601120949, -0.011213935911655426, -0.016884820535779, -0.10075534135103226, 0.113853819668293, -0.08117182552814484, 0.031078895553946495, 0.14436273276805878, -0.05175367370247841, 0.009950521402060986, -0.10168527066707611, 0.15290334820747375, -0.09888911247253418, 0.07658543437719345, 0.11787690222263336, -0.026011237874627113, 0.05990178510546684, 0.11185869574546814, -0.017725778743624687, -0.08163794130086899, 0.13255728781223297, 0.011969826184213161, -0.045587196946144104, -0.20100919902324677, -0.0968412458896637, -0.001978259300813079, 0.11779715120792389, 0.04434782639145851, 0.030004311352968216, 0.11725971102714539, 0.06639420986175537, -0.009068786166608334, -0.07647070288658142, 0.04861365258693695, 0.06314507871866226, 0.009187569841742516, 0.005727152805775404, 0.09486782550811768, -0.0700918659567833, -0.012973887845873833, 0.1467778980731964, -0.1325371116399765, 0.03299469128251076, -0.012471153400838375, -0.01764248125255108, 0.033138975501060486, 0.2378629893064499, 0.058008622378110886, 0.05562368035316467, -0.036628078669309616, -0.032633308321237564, -0.039790116250514984, -0.016657859086990356, -0.10548003762960434, 0.07149887084960938, -0.02513006515800953, -0.023989398032426834, -0.06134253367781639, 0.032885972410440445, 0.11613938212394714, 0.20673489570617676, 0.08421902358531952, -0.25571271777153015, -0.170228511095047, -0.02142494171857834, -0.07696127891540527, 0.005550026893615723, 0.0725526437163353, 0.10112874209880829, -0.1165926456451416, 0.07451054453849792, -0.029145464301109314, 0.0790679082274437, 0.053303543478250504, 0.05585816875100136, 0.02094140835106373, 0.00014893470506649464, -0.037390194833278656, 0.0818738341331482, -0.2674173414707184, 0.16309067606925964, -0.04100517928600311, 0.028387531638145447, -0.05428558588027954, -0.09671616554260254, 0.061691757291555405, 0.04884535074234009, 0.08672714978456497, 0.01686873659491539, 0.03732350841164589, -0.03142431378364563, -0.003452235134318471, 0.01809106580913067, 0.08252253383398056, -0.03653579577803612, 0.06563844531774521, -0.044556908309459686, 0.04589718207716942, 0.042864393442869186, 0.0056475261226296425, -0.1632169932126999, -0.03599445894360542, -0.02085944078862667, -0.00388320186175406, 0.07525882124900818, -0.014126046560704708, -0.0718344897031784, 0.0632006824016571, 0.1347436159849167, 0.005151896737515926, -0.017022136598825455, -0.14673106372356415, 0.11198750883340836, -0.0391385443508625, -0.09125307947397232, -0.009082992561161518, 0.01351216621696949, 0.033044781535863876, 0.008810855448246002, -0.1345779299736023, 0.09640970081090927, -0.07903057336807251, -0.13521449267864227, -0.010092931799590588, 0.12257231771945953, 0.13893872499465942, 0.040605682879686356, 0.07305554300546646, -0.03281240910291672, -0.03858407214283943, -0.09353005886077881, 0.058893050998449326, -0.05976572260260582, -0.06341791898012161, 0.0043518212623894215, 0.033037781715393066, -0.17281536757946014, -0.1565578430891037, 0.015272757969796658, 0.19893161952495575, 0.10435719788074493, -0.09144868701696396, 0.10891757160425186, 0.07817872613668442, 0.0035969193559139967, -0.27507278323173523, -0.020064545795321465, 0.04830702394247055, 0.015443868935108185, 0.07309331744909286, -0.08806271851062775, 0.09212519973516464, -0.035280317068099976, 0.052875831723213196, -0.1183423325419426, -0.1429256945848465, -0.08745541423559189, 0.13727614283561707, 0.0189875066280365, 0.21066148579120636, -0.04347187280654907, 0.0019667320884764194, -0.044380877166986465, -0.05950571969151497, 0.17865459620952606, -0.1956339031457901, 0.04961902275681496, 0.05438094586133957, 0.214377298951149, 0.019547220319509506, 0.04731345921754837, 0.02756267413496971, -0.007300324738025665, 0.04663342982530594, -0.13624568283557892, -0.07485011965036392, 0.09574764966964722, -0.009669885039329529, 0.036689724773168564, 0.012164338491857052, 0.0866749957203865, -0.14008833467960358, -0.007515625562518835, -0.13019795715808868, 0.06839235126972198, -0.021714793518185616, -0.07458215206861496, -0.07373210042715073, 0.0798405110836029, 0.08683372288942337, -0.05733654275536537, -0.013695769011974335, -0.03859178349375725, 0.13846993446350098, 0.12118741869926453, 0.19152942299842834, 0.05900220572948456, 0.04175936430692673, -0.034670375287532806, -0.06952821463346481, 0.04769356921315193, -0.18807534873485565, 0.020870018750429153, 0.0680607333779335, -0.002150364685803652, 0.08903738111257553, 0.03629793971776962, -0.08011551946401596, 0.04399535804986954, 0.10386013239622116, -0.1898609846830368, -0.06511889398097992, -0.06429163366556168, 0.0526643805205822, -0.041252825409173965, 0.019886454567313194, 0.1932385116815567, -0.12732698023319244, -0.03236597776412964, 0.00790793914347887, 0.0452803410589695, -0.09739747643470764, 0.06911975145339966, 0.05221946910023689, 0.0022738713305443525, -0.05458517745137215, 0.03067435882985592, 0.016338160261511803, -0.056446224451065063, 0.0644168108701706, 0.13166113197803497, -0.15550319850444794, -0.09334512799978256, 0.03821466863155365, 0.05500608682632446, -0.0665060356259346, 0.011343833059072495, -0.00941879115998745, -0.1226477101445198, 0.02817683480679989, 0.23851744830608368, 0.05508787930011749, 0.0805947482585907, -0.06783190369606018, -0.004531079437583685, -0.009062249213457108, 0.045903291553258896, 0.2017117738723755, -0.05156254395842552, -0.15623483061790466, 0.12221348285675049, -0.018699873238801956, 0.09763184189796448, -0.07795091718435287, 0.006255471147596836, -0.09282002598047256, -0.0059342095628380775, -0.13379782438278198, -0.018159916624426842, -0.030537504702806473, 0.002631204202771187, 0.017073629423975945, -0.06012909859418869, -0.032165296375751495, -0.03163040429353714, -0.056336309760808945, 0.017739731818437576, 0.040727321058511734, 0.07036641985177994, -0.06847959756851196, 0.002031113486737013, 0.07526355981826782, -0.004879999440163374, 0.13648657500743866, 0.10046308487653732, -0.09751340746879578, 0.10373988002538681, -0.23686367273330688, -0.005671244114637375, 0.06740579009056091, -0.03981019929051399, 0.024975579231977463, -0.02056545950472355, 0.002985406666994095, -0.012140944600105286, 0.013671748340129852, 0.04810625687241554, 0.17283384501934052, -0.053665537387132645, 0.10189574956893921, 0.025540700182318687, -0.0765426978468895, -0.12395306676626205, -0.029181523248553276, 0.028671035543084145, 0.06628081947565079, 0.1996874213218689, -0.12184695899486542, 0.08231177181005478, -0.1056574359536171, 0.0002979121927637607, 0.013141323812305927, -0.04031350091099739, -0.15582410991191864, -0.05240136757493019, 0.04915161803364754, -0.04592007398605347, -0.010311664082109928, 0.029974928125739098, -0.10562929511070251, 0.0605769120156765, 0.001063059433363378, -0.05228623002767563, 0.022587362676858902, 0.03968821093440056, -0.0035139350220561028, -0.0695679783821106, -0.07286892831325531, -0.03211522847414017, -0.014842740260064602, -0.07803261280059814, 0.20119406282901764, 0.10073159635066986, 0.08740589022636414, 0.007718748413026333, -0.03386653959751129, 0.07865837216377258, 0.06678864359855652, -0.020939121022820473, -0.07585768401622772, -0.005048844963312149, -0.044209908694028854, 0.12272460013628006, 0.21235601603984833, -0.051653649657964706, -0.0036380658857524395, -0.08580654859542847, -0.05142153799533844, -0.04481826350092888, -0.200025737285614, -0.09834099560976028, -0.11209873110055923, 0.017205113545060158, -0.10877356678247452, -0.0371769517660141, 0.012797643430531025, 0.07653152942657471, -0.06528592109680176, 0.08033115416765213, -0.09739790856838226, -0.1211148053407669, 0.19623155891895294, -0.0052859121933579445, -0.036107100546360016, 0.022933464497327805, -0.018887728452682495, -0.05796179547905922, 0.09148462861776352, -0.0018295975169166923, 0.009434396401047707, -0.04146512970328331, 0.01223263144493103, -0.08999349921941757, -0.130598247051239, 0.02085820771753788, 0.0401027649641037, -0.018111173063516617, 0.0028780284337699413, 0.049033891409635544, 0.010427691973745823, 0.0190680380910635, 0.24763059616088867, -0.033434368669986725, -0.05743516981601715, -0.15798956155776978, 0.12652499973773956, -0.038817744702100754, 0.010419078171253204, -0.00004668037217925303, -0.0849219337105751, -0.0015345513820648193, 0.17113474011421204, 0.24390390515327454, -0.07714328169822693, 0.032969869673252106, -0.10294020175933838, 0.04939815774559975, 0.016036977991461754, 0.12343519181013107, 0.06088636443018913, 0.08646813780069351, -0.09818143397569656, 0.046623822301626205, -0.0560733862221241, -0.016733963042497635, 0.0004261616850271821, 0.011414527893066406, 0.04609432443976402, -0.010860965587198734, -0.08754871785640717, 0.19115550816059113, -0.1561056524515152, -0.19397525489330292, 0.007003073580563068, -0.10928956419229507, -0.0787307620048523, -0.008797450922429562, 0.025710662826895714, 0.08586735278367996, 0.1426704227924347, -0.005377746652811766, 0.002573777223005891, 0.022444719448685646, 0.05479026585817337, -0.08717551082372665, 0.029129818081855774, 0.1311614066362381, -0.11304248124361038, 0.04555349051952362, -0.04308686777949333, 0.06430339813232422, 0.11284255981445312, -0.008502566255629063, -0.05108147859573364, 0.052157074213027954, 0.031030217185616493, 0.026843035593628883, 0.000918483710847795, 0.09105638414621353, 0.017418328672647476, 0.07538025081157684, 0.0891391932964325, -0.24604716897010803, -0.0014869109727442265, 0.019281119108200073, 0.005675438791513443, -0.08868338912725449, 0.15556898713111877, -0.038564637303352356, 0.11583098024129868, 0.15986481308937073, -0.1106000766158104, 0.024750402197241783, -0.08883162587881088, -0.02848377637565136, 0.006770382635295391, -0.08529198169708252, 0.010655042715370655, -0.14975692331790924, -0.05001930147409439, 0.030506353825330734, 0.00995415449142456, -0.1480487734079361, 0.016403740271925926, -0.09488062560558319, 0.01901303604245186, -0.07542853057384491, 0.17529179155826569, 0.03486116975545883, 0.00011221046588616446, 0.04051154479384422, -0.0004300205619074404, 0.028136588633060455, 0.1381056010723114, -0.07458612322807312, -0.04942479729652405 ]
null
null
transformers
# RuBERT for Sentiment Analysis of Product Reviews This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on [RuReviews](https://github.com/sismetanin/rureviews). ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews') model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews', return_dict=True) @torch.no_grad() def predict(text): inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return predicted ``` ## Dataset used for model training **[RuReviews](https://github.com/sismetanin/rureviews)** > RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.
{"language": ["ru"], "tags": ["sentiment", "text-classification"], "datasets": ["RuReviews"]}
text-classification
blanchefort/rubert-base-cased-sentiment-rurewiews
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "text-classification", "sentiment", "ru", "dataset:RuReviews", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuReviews #autotrain_compatible #endpoints_compatible #has_space #region-us
# RuBERT for Sentiment Analysis of Product Reviews This is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ## Dataset used for model training RuReviews > RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.
[ "# RuBERT for Sentiment Analysis of Product Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian." ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuReviews #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# RuBERT for Sentiment Analysis of Product Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian." ]
[ 64, 41, 15, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuReviews #autotrain_compatible #endpoints_compatible #has_space #region-us \n# RuBERT for Sentiment Analysis of Product Reviews\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE## How to use## Dataset used for model training\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian." ]
[ 0.01909596100449562, -0.04279862344264984, -0.0030845000874251127, 0.046009913086891174, 0.16973072290420532, 0.03818795084953308, 0.08680471777915955, 0.07083891332149506, 0.02048339881002903, -0.011602367274463177, 0.04581345245242119, 0.03429652377963066, 0.018358655273914337, 0.17376966774463654, -0.07073284685611725, -0.2346014380455017, 0.022707553580403328, -0.038033608347177505, 0.13599446415901184, 0.16163000464439392, 0.19269712269306183, -0.07540205121040344, 0.1244019940495491, -0.0049293553456664085, -0.12556597590446472, 0.0058530583046376705, 0.09489788860082626, -0.07623855024576187, 0.120326928794384, -0.0029499181546270847, 0.11099187284708023, 0.059822916984558105, 0.019338196143507957, -0.1551407426595688, 0.06105465814471245, 0.029354099184274673, -0.040825676172971725, 0.0441424623131752, 0.0983818769454956, -0.11251191794872284, 0.2596767842769623, -0.020957985892891884, 0.05061078816652298, 0.10009501874446869, -0.1092114970088005, -0.16656796634197235, -0.07674983888864517, 0.18426407873630524, 0.02601286582648754, 0.11625684052705765, -0.06954175233840942, 0.14573600888252258, -0.1380101442337036, 0.09444472938776016, 0.21993640065193176, -0.27775391936302185, -0.09177659451961517, 0.10674764215946198, -0.07233962416648865, 0.03496703505516052, -0.1158839613199234, 0.03270931914448738, 0.026371818035840988, 0.013711526989936829, 0.02481597103178501, -0.059893541038036346, -0.032828692346811295, -0.013466141186654568, -0.09015598148107529, 0.03804857283830643, 0.18943114578723907, 0.07054056972265244, -0.04832359030842781, -0.11705750226974487, -0.015925783663988113, -0.12551277875900269, -0.03487133979797363, -0.09939223527908325, -0.05031050741672516, -0.009791960939764977, -0.12686321139335632, 0.01927943341434002, -0.12104349583387375, -0.006189131643623114, -0.03591662645339966, 0.14043350517749786, -0.02689027227461338, 0.034805841743946075, 0.0023557059466838837, 0.04521852359175682, -0.05811959505081177, -0.07802260667085648, -0.06369350105524063, -0.1473434716463089, -0.03162062540650368, -0.03558493033051491, -0.08912926912307739, -0.02279437519609928, 0.06170552596449852, 0.07280126214027405, 0.011530191637575626, 0.010007530450820923, 0.02582765370607376, -0.006653832737356424, 0.018601352348923683, 0.17544066905975342, 0.03298027813434601, -0.08988382667303085, -0.06811250001192093, -0.031911782920360565, 0.0019215968204662204, 0.00881605502218008, -0.03692340850830078, -0.062492016702890396, 0.10293249040842056, 0.02365230768918991, -0.13274946808815002, 0.09492646157741547, -0.12444684654474258, -0.0034134623128920794, -0.06961147487163544, -0.03223973512649536, -0.005550547502934933, 0.04973301291465759, -0.06347604840993881, 0.10305887460708618, -0.06904663890600204, -0.0004915834288112819, -0.004084364511072636, 0.07970239967107773, 0.0013613009359687567, -0.007898879237473011, -0.05114102363586426, -0.06725745648145676, 0.04066082462668419, -0.0922463908791542, 0.05899816006422043, -0.20760901272296906, -0.1268680989742279, -0.054044079035520554, 0.0201832577586174, -0.0907241627573967, -0.016743045300245285, -0.007320082280784845, -0.038473304361104965, -0.011377308517694473, -0.005022083874791861, -0.043690964579582214, -0.05201646313071251, 0.06516526639461517, -0.045933596789836884, 0.094869464635849, 0.05044379085302353, 0.02786877565085888, -0.18361589312553406, -0.07331061363220215, 0.0022376065608114004, 0.06267049163579941, -0.11689455807209015, 0.11497002840042114, -0.08624877035617828, -0.10991128534078598, -0.038104064762592316, 0.007053051143884659, -0.06014684587717056, 0.13672465085983276, -0.22792990505695343, -0.05342205986380577, 0.09133446216583252, -0.14880618453025818, -0.05948375537991524, 0.14249545335769653, -0.05979530140757561, 0.19516637921333313, 0.12234541773796082, 0.14452630281448364, 0.026172323152422905, -0.012252598069608212, -0.060648489743471146, -0.034163229167461395, -0.12074264883995056, 0.09598717093467712, 0.02653455175459385, 0.12971214950084686, -0.05779898539185524, 0.05233240872621536, 0.015373371541500092, -0.03271607309579849, -0.06203598156571388, -0.09690122306346893, -0.015154181979596615, -0.058451782912015915, 0.18706965446472168, 0.0263688862323761, 0.009985841810703278, -0.14444385468959808, -0.1411522477865219, -0.18226976692676544, 0.06276609003543854, 0.020270735025405884, -0.02121923863887787, -0.1144593209028244, 0.13669732213020325, 0.1669774055480957, 0.009639125317335129, -0.14680947363376617, -0.012507534585893154, -0.012815906666219234, 0.1083000898361206, 0.05100144073367119, 0.15663841366767883, 0.03500751778483391, -0.11875718086957932, -0.0666397362947464, -0.03490826115012169, -0.08726705610752106, 0.0064361379481852055, 0.03561578691005707, -0.18405809998512268, 0.05421094968914986, -0.06901545822620392, 0.13342948257923126, -0.14098234474658966, -0.025701934471726418, 0.16099639236927032, 0.07012100517749786, 0.08167380094528198, 0.04959859699010849, -0.02723730355501175, 0.04063284769654274, -0.02268243208527565, -0.0034520854242146015, 0.098507359623909, -0.043140310794115067, -0.08240014314651489, 0.06188952922821045, 0.000007475207439711085, 0.12372405081987381, 0.11057915538549423, -0.061305977404117584, -0.18718139827251434, 0.01816718466579914, -0.02546386979520321, 0.04670272022485733, -0.026913771405816078, 0.10641457885503769, 0.15269100666046143, 0.013727220706641674, -0.012019324116408825, -0.015192420221865177, 0.030202405527234077, 0.026104379445314407, -0.10561753809452057, -0.05721108615398407, 0.09259369969367981, -0.10325849056243896, -0.27174103260040283, 0.10290057957172394, 0.16753028333187103, -0.02424006536602974, 0.14131836593151093, 0.0033643164206296206, 0.016043981537222862, 0.01764044724404812, -0.04405703768134117, -0.0448923297226429, 0.09040209650993347, -0.07824084907770157, -0.036105673760175705, 0.0626855194568634, -0.08386141061782837, -0.028230812400579453, -0.065299853682518, -0.013566252775490284, 0.007008039858192205, -0.013920028693974018, 0.0007317409035749733, 0.15039534866809845, 0.030567752197384834, 0.10977524518966675, 0.027282528579235077, -0.05312936007976532, 0.05384700000286102, -0.020807165652513504, -0.08204754441976547, 0.12111083418130875, -0.04607276991009712, -0.26875075697898865, -0.07839751243591309, -0.03947462886571884, -0.08641813695430756, -0.013714798726141453, 0.07011066377162933, -0.21121151745319366, -0.07848495990037918, -0.021325329318642616, 0.08765366673469543, 0.07873431593179703, -0.003371364437043667, -0.0694793090224266, 0.06079574301838875, 0.013587954454123974, -0.051768023520708084, -0.05649719014763832, -0.04081811383366585, -0.09830547869205475, 0.12434867024421692, -0.03111603669822216, 0.06075344607234001, 0.07960470020771027, -0.04835200682282448, 0.022136840969324112, -0.09643616527318954, 0.14645519852638245, -0.11957468837499619, -0.035735905170440674, 0.18628880381584167, -0.037640638649463654, 0.015542453154921532, 0.21510665118694305, -0.017532823607325554, -0.07332280278205872, 0.098973348736763, 0.016256151720881462, -0.06268526613712311, -0.19612109661102295, -0.09609745442867279, -0.01917843706905842, 0.07729215919971466, -0.03610522300004959, 0.03562058508396149, 0.036998093128204346, 0.09815355390310287, 0.003218315774574876, -0.1676959991455078, 0.015693239867687225, 0.09735532104969025, 0.11704286932945251, -0.035862091928720474, 0.12404762953519821, -0.0527050606906414, 0.0023873099125921726, 0.13607707619667053, -0.13470962643623352, 0.1457475870847702, -0.01730281487107277, 0.04100672900676727, 0.039930183440446854, 0.21250221133232117, 0.09608157724142075, 0.027760274708271027, 0.026498472318053246, -0.045530665665864944, -0.008521516807377338, -0.006330732721835375, -0.1483297497034073, 0.12871302664279938, -0.03576245903968811, 0.0033724268432706594, -0.06902379542589188, -0.011384326964616776, 0.13669048249721527, 0.25267913937568665, 0.04590652510523796, -0.2224614918231964, -0.17470861971378326, -0.002589399227872491, -0.013459376990795135, 0.0014078057138249278, 0.031952451914548874, -0.03564124181866646, -0.15874963998794556, 0.08165698498487473, -0.06505491584539413, 0.07721502333879471, 0.0013528098352253437, 0.0731067806482315, 0.03160455450415611, -0.030891316011548042, -0.011617423966526985, 0.08489049971103668, -0.24169348180294037, 0.21158026158809662, -0.04428578540682793, 0.019108736887574196, -0.06965041160583496, -0.08464308083057404, 0.07559192925691605, 0.06575935333967209, 0.08084627240896225, -0.003200691659003496, -0.029994765296578407, -0.10887790471315384, 0.06317777931690216, 0.013954454101622105, 0.08301471918821335, 0.0173270832747221, 0.06110767647624016, -0.07811637967824936, 0.04029081016778946, 0.005517605692148209, 0.12619861960411072, -0.16071970760822296, -0.047765057533979416, 0.002944035455584526, 0.0031278275419026613, 0.12299671024084091, -0.06201780214905739, -0.10615310817956924, 0.038116730749607086, 0.16322168707847595, 0.11905521899461746, -0.006782611832022667, -0.12325862795114517, 0.08872967213392258, -0.03654351457953453, -0.08964165300130844, 0.01244890782982111, -0.01586247980594635, 0.10606635361909866, 0.05950678884983063, -0.09860321134328842, 0.05888668820261955, -0.055175554007291794, -0.18822315335273743, 0.03732050955295563, 0.09078913182020187, 0.08887485414743423, 0.04143589735031128, 0.041327960789203644, 0.006587371230125427, -0.04104981943964958, -0.047165192663669586, 0.062247343361377716, 0.03447297215461731, -0.09829649329185486, 0.05265814810991287, 0.015934234485030174, -0.2357962429523468, -0.15679143369197845, -0.0330362468957901, 0.15833483636379242, 0.11424865573644638, -0.11930598318576813, 0.144158273935318, -0.014924702234566212, 0.03737032786011696, -0.232086643576622, 0.0035663708113133907, 0.05326130986213684, 0.055466428399086, 0.1078733429312706, -0.039404984563589096, 0.08821380138397217, -0.07083884626626968, -0.024275533854961395, -0.09435070306062698, -0.03394189104437828, -0.08685149252414703, 0.17568370699882507, 0.0807495266199112, 0.22289463877677917, -0.02518506534397602, 0.02407011203467846, -0.015306132845580578, -0.08576059341430664, 0.09097587317228317, -0.12071029096841812, 0.07038721442222595, 0.007585871499031782, 0.26335084438323975, 0.057200681418180466, 0.03971308842301369, 0.04829171299934387, -0.04330585524439812, 0.06821385771036148, -0.12001629173755646, -0.04101733863353729, -0.012947717681527138, -0.002146228449419141, 0.00850869994610548, 0.01365711446851492, 0.04373073950409889, -0.009371848776936531, -0.05175623670220375, -0.08451142907142639, 0.11035550385713577, -0.01808159425854683, -0.09741003066301346, -0.0840623751282692, 0.11609910428524017, 0.023618139326572418, -0.06736738234758377, 0.1066264733672142, -0.08573652803897858, 0.14170174300670624, 0.10891073942184448, 0.1399415135383606, 0.06937536597251892, 0.0004531969898380339, -0.024975256994366646, -0.06007517874240875, 0.04135765880346298, -0.10602115094661713, 0.02566472440958023, 0.0583544559776783, -0.04317718371748924, 0.10718978196382523, 0.04688268527388573, -0.08631221204996109, 0.03298911452293396, 0.10968806594610214, -0.1485910415649414, -0.12503372132778168, -0.0712796002626419, 0.006850140634924173, -0.06935280561447144, -0.008980215527117252, 0.18486414849758148, -0.10756053030490875, -0.03254861384630203, -0.013546517118811607, 0.03554452955722809, -0.043630920350551605, 0.028726503252983093, 0.0008539793780073524, 0.020243190228939056, -0.08604985475540161, 0.014129431918263435, -0.0031166409607976675, -0.14223580062389374, 0.015486808493733406, 0.01948358118534088, -0.16861100494861603, -0.11130277067422867, 0.023867612704634666, 0.15321628749370575, -0.13579033315181732, -0.060859404504299164, -0.05558286979794502, -0.19765503704547882, 0.020488182082772255, 0.12275464087724686, 0.14161884784698486, 0.04870954528450966, -0.05201077461242676, -0.015964651480317116, 0.046132609248161316, 0.10350613296031952, 0.18616697192192078, -0.04480809345841408, -0.1784822940826416, -0.04441706836223602, -0.017215095460414886, 0.07077741622924805, -0.09718802571296692, 0.007567858323454857, -0.08590252697467804, -0.042694028466939926, -0.19279694557189941, -0.0283402930945158, -0.04686276614665985, 0.04248018190264702, 0.008574252016842365, -0.024675244465470314, -0.03537391498684883, -0.0029456615447998047, -0.0949653685092926, 0.01660640351474285, 0.009943199343979359, 0.133184552192688, -0.0799974873661995, 0.02069680206477642, 0.051277898252010345, -0.001283374847844243, 0.1628943234682083, 0.1390777826309204, -0.054139845073223114, 0.132205069065094, -0.19926731288433075, 0.05116503685712814, 0.05957670882344246, -0.009285171516239643, 0.036865878850221634, -0.06888845562934875, 0.010399706661701202, -0.015003579668700695, -0.0024062637239694595, 0.055995918810367584, 0.15596632659435272, -0.07581081241369247, 0.07184183597564697, -0.0015020972350612283, -0.07266339659690857, -0.0776347666978836, 0.007291131187230349, 0.03477064520120621, 0.1302216351032257, 0.21266014873981476, -0.12807759642601013, 0.08077635616064072, -0.026179222390055656, 0.028463684022426605, -0.028666749596595764, -0.07658309489488602, -0.2188999354839325, -0.0779753103852272, 0.024010661989450455, -0.053832244127988815, 0.10979700088500977, 0.12352296710014343, 0.03683297336101532, 0.045896977186203, -0.00036668384564109147, 0.017862526699900627, -0.008953872136771679, 0.033374518156051636, 0.028617607429623604, -0.03350212052464485, -0.009783553890883923, -0.005604594945907593, -0.011449100449681282, -0.06249605864286423, 0.18889938294887543, 0.19054171442985535, 0.07211478799581528, 0.03294198587536812, -0.0376351960003376, -0.012510765343904495, 0.1149529442191124, -0.02131655625998974, -0.09897173941135406, 0.022237401455640793, -0.06626006215810776, 0.2211637645959854, 0.18708305060863495, -0.0778861939907074, 0.04321907088160515, -0.11395927518606186, -0.05376432090997696, -0.059374816715717316, -0.1855081170797348, -0.1335911750793457, -0.18904124200344086, 0.046140819787979126, -0.08593328297138214, -0.05430986359715462, -0.029070191085338593, 0.03841288387775421, -0.09473070502281189, 0.074925996363163, -0.17524586617946625, -0.08863675594329834, 0.18084704875946045, 0.021566787734627724, -0.09477508068084717, -0.0018262192606925964, 0.00950950663536787, -0.09203103184700012, 0.04776192083954811, -0.019238267093896866, -0.008232924155890942, -0.06030280143022537, -0.038856782019138336, -0.08753646165132523, -0.0919526070356369, 0.02750963717699051, 0.03491726517677307, 0.0015358689706772566, 0.0766892284154892, 0.01340468879789114, 0.03431175276637077, 0.012587825767695904, 0.3163726031780243, -0.044734325259923935, 0.011957264505326748, -0.12771394848823547, 0.12825194001197815, -0.011227869428694248, 0.014709529466927052, -0.00538463843986392, -0.09356451779603958, -0.016042063012719154, 0.15074528753757477, 0.2878788411617279, -0.02470250055193901, 0.04653436318039894, -0.08390259742736816, 0.06258079409599304, -0.04252298176288605, 0.09157765656709671, 0.03573456034064293, 0.04081976041197777, -0.06792666018009186, 0.09324761480093002, -0.06170511618256569, 0.002059442922472954, -0.00046278611989691854, -0.00292415963485837, 0.12643498182296753, -0.06724483519792557, -0.1277264654636383, 0.17645718157291412, -0.17160317301750183, -0.1263885349035263, 0.08123678714036942, -0.15172824263572693, -0.11621557176113129, -0.029714493080973625, 0.10705086588859558, 0.10014641284942627, 0.14524604380130768, -0.027797147631645203, -0.008267938159406185, 0.09848343580961227, 0.05390087142586708, -0.11474159359931946, -0.006790789309889078, 0.14172542095184326, -0.05516757071018219, 0.04933391511440277, -0.06868510693311691, 0.03197646513581276, 0.13462728261947632, -0.005024223122745752, -0.044194698333740234, 0.07892083376646042, 0.03943885117769241, -0.10699889808893204, 0.005424229893833399, 0.16662035882472992, -0.004440232180058956, 0.04590193182229996, 0.09934759885072708, -0.26621773838996887, 0.02934873290359974, -0.06722232699394226, -0.013956158421933651, -0.08858734369277954, 0.1973341703414917, -0.09522280097007751, 0.06754899024963379, 0.2125224471092224, -0.060862068086862564, -0.015042050741612911, -0.05858493223786354, 0.04019521549344063, 0.06526153534650803, -0.06817497313022614, 0.04603058844804764, -0.09810001403093338, -0.04290511831641197, 0.07978151738643646, -0.07046565413475037, -0.18165013194084167, -0.015879541635513306, -0.1047896072268486, 0.0680401548743248, -0.044817011803388596, 0.13139624893665314, -0.012389212846755981, 0.005909129045903683, 0.056409623473882675, -0.08493561297655106, 0.035143446177244186, 0.134639710187912, -0.10440575331449509, -0.08133921027183533 ]
null
null
transformers
# RuBERT for Sentiment Analysis This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on [RuSentiment](http://text-machine.cs.uml.edu/projects/rusentiment/). ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment') model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment', return_dict=True) @torch.no_grad() def predict(text): inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return predicted ``` ## Dataset used for model training **[RuSentiment](http://text-machine.cs.uml.edu/projects/rusentiment/)** > A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.
{"language": ["ru"], "tags": ["sentiment", "text-classification"], "datasets": ["RuSentiment"]}
text-classification
blanchefort/rubert-base-cased-sentiment-rusentiment
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "text-classification", "sentiment", "ru", "dataset:RuSentiment", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuSentiment #autotrain_compatible #endpoints_compatible #has_space #region-us
# RuBERT for Sentiment Analysis This is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ## Dataset used for model training RuSentiment > A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.
[ "# RuBERT for Sentiment Analysis\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018." ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuSentiment #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# RuBERT for Sentiment Analysis\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Dataset used for model training\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018." ]
[ 64, 37, 15, 4, 65 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #dataset-RuSentiment #autotrain_compatible #endpoints_compatible #has_space #region-us \n# RuBERT for Sentiment Analysis\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment.## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE## How to use## Dataset used for model training\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018." ]
[ 0.006229622755199671, 0.02619825303554535, -0.004815291613340378, 0.011574309319257736, 0.13599705696105957, -0.012778791598975658, 0.13296756148338318, 0.04113146290183067, 0.02868250012397766, 0.027296418324112892, 0.12344759702682495, 0.007844585925340652, -0.01574895903468132, 0.14844882488250732, -0.05664916709065437, -0.22085611522197723, 0.03696659207344055, -0.05547572672367096, 0.010814458131790161, 0.12199821323156357, 0.1822632998228073, -0.0757126733660698, 0.06644799560308456, -0.02840319275856018, -0.09145986288785934, 0.03206548094749451, 0.03356045484542847, -0.055689841508865356, 0.1108686551451683, 0.02346929907798767, 0.06832683831453323, 0.0701952651143074, 0.04955281317234039, -0.11135091632604599, 0.04644738510251045, 0.00023735004651825875, -0.09412803500890732, 0.03552282229065895, 0.12774373590946198, -0.14945796132087708, 0.2844430208206177, -0.13820400834083557, 0.033286888152360916, 0.03689717873930931, -0.16196362674236298, -0.05547553673386574, -0.0911451205611229, 0.11985254287719727, 0.06418949365615845, 0.11712724715471268, -0.08252093940973282, 0.0822005495429039, -0.09745899587869644, 0.0851658284664154, 0.13100919127464294, -0.2773370146751404, -0.09610242396593094, 0.10806107521057129, -0.029442673549056053, 0.07418317347764969, -0.08594018220901489, 0.0871286690235138, 0.02949591539800167, -0.0034338354598730803, 0.050911203026771545, -0.0740273967385292, 0.03158947452902794, 0.021621352061629295, -0.12872865796089172, 0.006124636624008417, 0.23580384254455566, 0.06695278733968735, 0.023843025788664818, -0.08929958939552307, -0.00657116062939167, -0.052421245723962784, -0.006372328847646713, -0.053405433893203735, -0.04607968404889107, -0.010005715303122997, -0.07088270783424377, -0.01721133477985859, -0.08863747119903564, 0.010412059724330902, -0.03755726292729378, 0.19065485894680023, -0.038451626896858215, 0.020713286474347115, -0.012899789027869701, 0.018199050799012184, -0.013153796084225178, -0.06726576387882233, 0.05981883406639099, -0.11064323782920837, -0.059556376188993454, -0.008477064780890942, -0.09905800223350525, -0.008038698695600033, 0.0060644447803497314, 0.07394473999738693, 0.003988262731581926, 0.0296791885048151, 0.06488067656755447, 0.0062189712189137936, 0.0722908303141594, 0.0730743482708931, -0.029687562957406044, -0.052244883030653, -0.052462268620729446, -0.0284732673317194, -0.016571292653679848, 0.005254173185676336, -0.07730606943368912, -0.034258853644132614, 0.0569758303463459, 0.036624785512685776, -0.049567773938179016, 0.06878911703824997, -0.09687548130750656, 0.014045272022485733, -0.09841673821210861, -0.02180529572069645, 0.004170675296336412, 0.029240652918815613, -0.07258477061986923, 0.033325061202049255, -0.050489503890275955, 0.027189141139388084, 0.02408703975379467, 0.06549298763275146, 0.006066668312996626, 0.03457286208868027, -0.006563947070389986, -0.10666372627019882, 0.050919175148010254, -0.15021224319934845, 0.04350108280777931, -0.20776112377643585, -0.1226091980934143, -0.08798635005950928, 0.010207644663751125, -0.09780827164649963, 0.0012629929697141051, -0.0940064862370491, -0.07062643021345139, 0.018249139189720154, -0.01686290092766285, 0.005287972744554281, -0.05190984532237053, 0.020698463544249535, -0.07450196146965027, 0.11106184124946594, 0.10113266855478287, 0.023981144651770592, -0.12270719558000565, -0.047681767493486404, 0.03107476234436035, 0.14414140582084656, -0.1271962970495224, 0.06886967271566391, -0.06493449956178665, -0.05618754029273987, -0.02875409834086895, 0.02028081752359867, 0.0045126029290258884, 0.23562674224376678, -0.22135664522647858, -0.05984607711434364, 0.11854967474937439, -0.06882094591856003, 0.006428766530007124, 0.14701025187969208, -0.07581935077905655, 0.11161322146654129, 0.1312820315361023, 0.13898657262325287, -0.02139049954712391, 0.03956196457147598, -0.05011007562279701, -0.06512352079153061, -0.06289827823638916, 0.13699112832546234, 0.06532899290323257, 0.12919923663139343, -0.03911896422505379, -0.0018677696352824569, 0.029890114441514015, -0.017250383272767067, -0.07782896608114243, -0.09240510314702988, 0.03223947435617447, -0.04687545821070671, 0.21528033912181854, 0.02057620696723461, 0.01795879192650318, -0.11713793128728867, -0.12269667536020279, -0.1976177841424942, 0.06617651134729385, 0.024523742496967316, 0.020841466262936592, -0.12341656535863876, 0.06873733550310135, 0.071995310485363, 0.024625560268759727, -0.15722353756427765, 0.04094957187771797, -0.05196945369243622, 0.18273574113845825, 0.08132202178239822, 0.16103801131248474, 0.053092360496520996, -0.08483728021383286, -0.07626453787088394, -0.018935004249215126, -0.04961080849170685, 0.009694564156234264, -0.0075723170302808285, -0.1994420439004898, 0.06233528256416321, -0.08440721780061722, 0.174354687333107, -0.17653228342533112, 0.0015709762228652835, 0.10957818478345871, 0.10121259838342667, 0.010312533937394619, 0.041938070207834244, -0.00759179936721921, 0.02709910273551941, -0.03261566534638405, -0.002686417894437909, 0.10304972529411316, -0.036886487156152725, -0.12715893983840942, 0.09223871678113937, -0.014799215830862522, 0.053060729056596756, 0.0833447054028511, -0.09359908103942871, -0.12728045880794525, 0.022511212155222893, -0.045196592807769775, 0.056791484355926514, 0.048850636929273605, 0.08141165226697922, 0.17637531459331512, -0.012242592871189117, 0.01837972365319729, -0.012862928211688995, 0.0087523078545928, 0.007836814038455486, -0.08664894849061966, -0.09530633687973022, 0.17914478480815887, -0.08251231163740158, -0.25814905762672424, 0.1107456162571907, 0.09467655420303345, -0.005406382959336042, 0.17866122722625732, 0.015894317999482155, 0.015261736698448658, -0.03757775202393532, -0.06828202307224274, -0.053896937519311905, 0.06857968121767044, -0.050810884684324265, -0.08073491603136063, 0.013729932717978954, -0.045974571257829666, -0.005459636449813843, -0.0753619447350502, -0.06185274198651314, 0.01490712258964777, 0.0068642920814454556, -0.007125355303287506, 0.09241051226854324, 0.013177434913814068, 0.12864908576011658, 0.038284461945295334, -0.03913236781954765, 0.03401852026581764, -0.041452571749687195, -0.1207318902015686, 0.08627000451087952, -0.08644145727157593, -0.21774792671203613, 0.017893822863698006, -0.0512392558157444, -0.06381289660930634, 0.02301689051091671, 0.04959658905863762, -0.21877968311309814, -0.022144466638565063, -0.016996625810861588, 0.06608019024133682, -0.016151374205946922, -0.011774188838899136, 0.017096584662795067, 0.04466906189918518, -0.013828381896018982, -0.011259373277425766, -0.044077713042497635, -0.08299608528614044, -0.061412665992975235, 0.11153239011764526, -0.026575440540909767, 0.06321194767951965, 0.04166854918003082, 0.0015522720059379935, -0.005054021254181862, -0.09201004356145859, 0.14419807493686676, -0.12707285583019257, 0.009197771549224854, 0.08794010430574417, -0.038230907171964645, 0.022147109732031822, 0.12205374240875244, -0.00598510866984725, -0.054394375532865524, 0.07725562155246735, 0.004135661292821169, -0.05518600717186928, -0.2096731811761856, -0.2023666948080063, -0.02985573373734951, 0.10247417539358139, 0.026580074802041054, -0.002866750583052635, 0.014169176109135151, 0.06079568341374397, -0.029155803844332695, -0.13514220714569092, 0.06264275312423706, 0.0872216746211052, 0.11121302098035812, -0.01051801722496748, 0.12590883672237396, -0.057166825979948044, -0.009937525726854801, 0.10972187668085098, -0.14858193695545197, 0.1366914063692093, 0.050650328397750854, -0.024999013170599937, 0.04054456949234009, 0.12730632722377777, 0.03903711587190628, 0.012454033829271793, 0.06857442110776901, -0.040779564529657364, -0.035356584936380386, -0.03128296136856079, -0.09294735640287399, 0.12827427685260773, 0.031964246183633804, -0.0758088007569313, -0.08566951751708984, -0.01834527961909771, 0.1379537135362625, 0.16273371875286102, 0.0525280125439167, -0.18336379528045654, -0.14366990327835083, 0.061428796499967575, -0.029376976191997528, 0.00978273618966341, 0.034631773829460144, 0.04019056260585785, -0.1432463675737381, 0.10776803642511368, -0.02844277024269104, 0.0830644816160202, 0.04447169229388237, 0.05488422513008118, -0.10252392292022705, -0.03492395579814911, -0.012343761511147022, 0.09497300535440445, -0.2376324087381363, 0.2979264259338379, -0.01778995431959629, -0.016014577820897102, -0.10866744071245193, -0.09155375510454178, 0.06244343891739845, 0.026060504838824272, 0.13216422498226166, 0.0031552501022815704, -0.05698874220252037, -0.06620404124259949, -0.004484506789594889, 0.012321941554546356, 0.07110283523797989, -0.08867338299751282, 0.09241146594285965, -0.02361309342086315, 0.02711299993097782, 0.004684858489781618, 0.0654892697930336, -0.12457022070884705, -0.10240417718887329, 0.002741185249760747, -0.019991615787148476, 0.05880825221538544, -0.020205924287438393, -0.10319552570581436, -0.08645859360694885, 0.10383493453264236, 0.04471304640173912, 0.008413853123784065, -0.09634285420179367, 0.12142661213874817, -0.02994239330291748, -0.05303927883505821, -0.02085837721824646, 0.025804340839385986, 0.07595210522413254, -0.02963036298751831, -0.06431430578231812, 0.06746727973222733, -0.09600633382797241, -0.1748911738395691, 0.010085989721119404, 0.18076638877391815, 0.17794491350650787, 0.07488218694925308, 0.018395153805613518, 0.07799527049064636, -0.02453925460577011, -0.059797272086143494, 0.09538950771093369, 0.05257537588477135, -0.048792943358421326, 0.07177717238664627, 0.006445137783885002, -0.1796608716249466, -0.15979517996311188, -0.06304093450307846, 0.17295245826244354, 0.2490795999765396, -0.14214058220386505, 0.18305820226669312, -0.013989903032779694, -0.014748644083738327, -0.25808748602867126, 0.04165841266512871, 0.03409324213862419, 0.029990335926413536, 0.08910626918077469, -0.14790908992290497, -0.003671275218948722, -0.054287638515233994, 0.0027165876235812902, -0.14185155928134918, -0.09062813967466354, -0.09832846373319626, 0.09927219152450562, -0.020707396790385246, 0.2760681211948395, -0.031143588945269585, 0.009656558744609356, -0.0608128122985363, 0.03700797259807587, 0.13467051088809967, -0.05277116969227791, 0.05938085913658142, 0.034593332558870316, 0.1443946808576584, 0.05664704367518425, 0.03929801657795906, 0.12609492242336273, -0.03738483414053917, 0.028307035565376282, -0.12949104607105255, -0.09745093435049057, 0.053862567991018295, -0.023463336750864983, -0.041274916380643845, -0.007793745491653681, 0.011953379027545452, -0.16537898778915405, -0.03861468657851219, -0.0878237709403038, 0.05102676525712013, -0.002969882683828473, -0.042408596724271774, -0.11295539885759354, 0.10846110433340073, 0.09930302947759628, -0.03619156405329704, 0.08704060316085815, -0.09083550423383713, 0.10952536016702652, 0.028503812849521637, 0.20749032497406006, 0.08042780309915543, 0.07105699926614761, 0.001864725723862648, -0.04820080101490021, 0.011202715337276459, -0.18826782703399658, -0.016021648421883583, 0.10608813911676407, -0.033186230808496475, 0.09028679132461548, 0.04212280735373497, -0.06401792913675308, 0.014850017614662647, 0.07833444327116013, -0.18912972509860992, -0.11098784953355789, -0.060325752943754196, 0.03377853333950043, -0.007534907665103674, -0.03277161344885826, 0.18625396490097046, -0.11119354516267776, -0.016767220571637154, -0.00563926063477993, 0.06691890954971313, -0.04194324091076851, 0.028255274519324303, 0.004867710173130035, 0.012773863971233368, -0.07318618893623352, 0.06711981445550919, -0.007508139591664076, -0.12195134907960892, 0.07285749912261963, 0.09956914186477661, -0.12561489641666412, -0.09164796024560928, -0.07642749696969986, 0.18260829150676727, -0.07834506779909134, -0.03475411236286163, -0.0165999922901392, -0.169281467795372, 0.06643923372030258, 0.1315828114748001, 0.08963008970022202, -0.011191882193088531, -0.04226204752922058, 0.019057946279644966, -0.0014847799902781844, 0.09196919202804565, 0.2046058624982834, -0.12002643942832947, -0.10069268196821213, 0.041604023426771164, -0.05125537887215614, 0.07834438234567642, -0.07881172001361847, 0.0020249050576239824, -0.07817527651786804, 0.015797792002558708, -0.1475464552640915, -0.05392850935459137, -0.08027540892362595, -0.0018404374131932855, -0.024556376039981842, -0.056478649377822876, -0.04939444363117218, -0.03735413774847984, -0.09637241810560226, 0.047030527144670486, -0.006184786092489958, 0.08767340332269669, -0.06244403123855591, -0.030949080362915993, 0.012970037758350372, -0.02287924289703369, 0.10137119144201279, 0.14436519145965576, -0.007539310026913881, 0.09990161657333374, -0.17373661696910858, 0.041119419038295746, 0.07512594014406204, -0.03960344195365906, 0.004018055275082588, -0.09818414598703384, -0.029564060270786285, 0.004030977841466665, 0.03626984730362892, 0.054363030940294266, 0.09029915928840637, -0.00800494384020567, 0.09174871444702148, 0.019381308928132057, -0.06885726004838943, -0.06254164129495621, 0.021761396899819374, 0.036229174584150314, 0.09256795048713684, 0.20936326682567596, -0.13373367488384247, 0.11005555838346481, -0.04796665906906128, 0.03902736306190491, -0.03539835661649704, -0.0987531766295433, -0.14648912847042084, -0.09872207790613174, 0.08206501603126526, -0.06147459149360657, 0.12266996502876282, 0.0881728008389473, -0.060401249676942825, 0.07002193480730057, 0.0474516786634922, -0.04979942366480827, 0.04497602954506874, -0.015481994487345219, 0.05911560356616974, -0.03965708240866661, -0.056382518261671066, 0.0404176339507103, 0.02224123291671276, -0.0016053082654252648, 0.17599959671497345, 0.1353924423456192, 0.1638847142457962, 0.04447171464562416, -0.029916124418377876, -0.05076989904046059, 0.06970963627099991, 0.025477716699242592, -0.13883773982524872, 0.01034765038639307, -0.09536280483007431, 0.19962717592716217, 0.12334784865379333, -0.09289387613534927, 0.04320278763771057, -0.07773945480585098, -0.031045513227581978, -0.06802713125944138, -0.1737816333770752, -0.09281980991363525, -0.11657779663801193, 0.011936433613300323, -0.09680070728063583, -0.023394210264086723, -0.012535466812551022, 0.04583917185664177, -0.083648182451725, 0.029359623789787292, -0.10738233476877213, -0.0774131566286087, 0.21430326998233795, -0.004339373204857111, -0.03126654401421547, -0.009192481637001038, -0.03773389384150505, -0.04767385497689247, 0.017573880031704903, -0.013445374555885792, 0.02317655272781849, -0.03609461337327957, -0.017316604033112526, -0.05708296224474907, -0.12122990936040878, 0.02576843835413456, 0.06963322311639786, 0.04854455962777138, 0.11806508898735046, 0.01409400999546051, 0.02270159125328064, -0.004897697828710079, 0.2904946506023407, -0.011432409286499023, 0.05248141661286354, -0.09063329547643661, 0.08973617106676102, -0.037785161286592484, 0.045076966285705566, -0.0058855097740888596, -0.07292469590902328, -0.019368581473827362, 0.14078141748905182, 0.3305225670337677, -0.006383465602993965, 0.031523432582616806, -0.10000985860824585, 0.06488043814897537, 0.032818641513586044, 0.00946511048823595, 0.04406574368476868, 0.06461116671562195, -0.10930293798446655, 0.04451306536793709, -0.0488133542239666, 0.004241807386279106, 0.019635004922747612, 0.0081178592517972, 0.07478626817464828, -0.0595775730907917, -0.08237531781196594, 0.15264473855495453, -0.1494378298521042, -0.1452590823173523, 0.029025651514530182, -0.21968846023082733, -0.08643411844968796, 0.003295646281912923, 0.05131905898451805, 0.1300671547651291, 0.1719152331352234, 0.01843828521668911, -0.02453923411667347, -0.008111299015581608, 0.0551164448261261, -0.05192531645298004, -0.012055347673594952, 0.14779497683048248, -0.02958420105278492, 0.04206708073616028, -0.0662493109703064, 0.09653782099485397, 0.12767137587070465, -0.01011603232473135, -0.0607469268143177, 0.024974577128887177, 0.051638681441545486, -0.05586973950266838, -0.007629158440977335, 0.12894217669963837, -0.01754317805171013, 0.05781402066349983, 0.158617302775383, -0.22081607580184937, 0.034373681992292404, -0.018204867839813232, -0.03637102618813515, -0.03404620662331581, 0.2195184975862503, -0.11406756192445755, 0.06444921344518661, 0.17221541702747345, -0.06717833131551743, -0.018534936010837555, -0.04837888479232788, -0.004320778418332338, 0.003368981182575226, 0.016019878908991814, 0.017678236588835716, -0.1598517894744873, -0.03478873893618584, 0.053890157490968704, 0.020141929388046265, -0.13270485401153564, -0.029039621353149414, -0.11398482322692871, 0.03130050748586655, -0.027177607640624046, 0.12346062809228897, 0.005419560242444277, -0.02188008464872837, 0.02268177457153797, -0.17447131872177124, 0.056068193167448044, 0.12395492941141129, -0.04762169346213341, -0.03049449436366558 ]
null
null
transformers
# RuBERT for Sentiment Analysis Short Russian texts sentiment classification This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on aggregated corpus of 351.797 texts. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment') model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment', return_dict=True) @torch.no_grad() def predict(text): inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return predicted ``` ## Datasets used for model training **[RuTweetCorp](https://study.mokoron.com/)** > Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116. **[RuReviews](https://github.com/sismetanin/rureviews)** > RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian. **[RuSentiment](http://text-machine.cs.uml.edu/projects/rusentiment/)** > A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018. **[Отзывы о медучреждениях](https://github.com/blanchefort/datasets/tree/master/medical_comments)** > Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта prodoctorov.ru
{"language": ["ru"], "tags": ["sentiment", "text-classification"]}
text-classification
blanchefort/rubert-base-cased-sentiment
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "text-classification", "sentiment", "ru", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #has_space #region-us
# RuBERT for Sentiment Analysis Short Russian texts sentiment classification This is a DeepPavlov/rubert-base-cased-conversational model trained on aggregated corpus of 351.797 texts. ## Labels 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ## Datasets used for model training RuTweetCorp > Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116. RuReviews > RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian. RuSentiment > A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018. Отзывы о медучреждениях > Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL
[ "# RuBERT for Sentiment Analysis\nShort Russian texts sentiment classification\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on aggregated corpus of 351.797 texts.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Datasets used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# RuBERT for Sentiment Analysis\nShort Russian texts sentiment classification\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on aggregated corpus of 351.797 texts.", "## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE", "## How to use", "## Datasets used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ 56, 50, 15, 4, 194 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #text-classification #sentiment #ru #autotrain_compatible #endpoints_compatible #has_space #region-us \n# RuBERT for Sentiment Analysis\nShort Russian texts sentiment classification\n\nThis is a DeepPavlov/rubert-base-cased-conversational model trained on aggregated corpus of 351.797 texts.## Labels\n 0: NEUTRAL\n 1: POSITIVE\n 2: NEGATIVE## How to use## Datasets used for model training\n\nRuTweetCorp\n\n> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора //Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.\n\nRuReviews\n\n> RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.\n\nRuSentiment\n\n> A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.\n\nОтзывы о медучреждениях\n\n> Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта URL" ]
[ 0.021753843873739243, 0.08815719932317734, -0.008418937213718891, -0.006120869889855385, 0.11941903829574585, 0.0016556759364902973, 0.18408173322677612, 0.07886433601379395, 0.05178210511803627, 0.047015607357025146, 0.05964174494147301, 0.008659319020807743, 0.06562689691781998, 0.24653925001621246, -0.031530510634183884, -0.18228240311145782, 0.055644065141677856, -0.06900465488433838, 0.06354685127735138, 0.1450873762369156, 0.17494450509548187, -0.04042363166809082, 0.09865588694810867, -0.07497570663690567, -0.030929051339626312, -0.00010140358790522441, 0.054537106305360794, -0.04395003244280815, 0.055352065712213516, 0.001038180897012353, 0.06044509634375572, 0.07886934280395508, -0.04074712470173836, -0.14981020987033844, 0.038945335894823074, 0.030483193695545197, -0.07360298186540604, 0.025390751659870148, 0.11993736773729324, -0.10458406805992126, 0.34255251288414, -0.15408577024936676, 0.007370787672698498, 0.06445160508155823, -0.11352405697107315, -0.021799949929118156, -0.12956388294696808, 0.09846043586730957, 0.09709209948778152, 0.10236131399869919, -0.07140237838029861, 0.0952923521399498, -0.03344953432679176, 0.06428905576467514, 0.08539528399705887, -0.18157564103603363, -0.08611321449279785, 0.09082692116498947, -0.05450315400958061, 0.10352317243814468, -0.06878899037837982, 0.05409913510084152, 0.019650457426905632, 0.027223771438002586, 0.054794177412986755, -0.05573861300945282, 0.08745178580284119, -0.009015360847115517, -0.13649266958236694, -0.004411844536662102, 0.19462069869041443, 0.08114562183618546, -0.027876801788806915, -0.10539252310991287, 0.020038967952132225, -0.11010005325078964, -0.05325507000088692, -0.05479498952627182, -0.031873784959316254, -0.024849282577633858, -0.035240937024354935, 0.0012277507921680808, -0.09437720477581024, -0.02504454366862774, -0.048498187214136124, 0.1620703637599945, -0.02461620420217514, 0.006717102602124214, 0.01383919920772314, -0.03349487856030464, 0.00286958459764719, -0.07194776833057404, 0.015156399458646774, -0.11691667884588242, -0.029896864667534828, 0.03589462861418724, -0.050439588725566864, -0.10193996876478195, 0.05448644980788231, 0.07733294367790222, -0.036462776362895966, 0.05754837766289711, 0.04836495965719223, -0.012823031283915043, 0.0703769326210022, 0.038844119757413864, -0.059897277504205704, -0.07435312122106552, -0.07506093382835388, 0.03719988465309143, 0.02563518099486828, -0.018948882818222046, -0.01813322864472866, 0.003288946347311139, 0.01946471817791462, 0.015566762536764145, -0.013144759461283684, 0.050190508365631104, -0.14246000349521637, -0.03885464742779732, 0.007424989249557257, -0.0855875313282013, -0.010533709079027176, -0.005396036431193352, -0.10767770558595657, 0.006308873649686575, -0.08373406529426575, 0.0005136237014085054, -0.023822937160730362, 0.10149691253900528, 0.008835024200379848, 0.04756028205156326, -0.049096960574388504, -0.08066491782665253, 0.02803780511021614, -0.08622125536203384, -0.010581398382782936, -0.16347962617874146, -0.11634749174118042, -0.12463682889938354, 0.004120124038308859, -0.07454285770654678, -0.0048499321565032005, -0.04134339839220047, -0.03952108696103096, 0.009132083505392075, -0.032115958631038666, 0.0010682567954063416, -0.05057642608880997, 0.024050189182162285, -0.12698791921138763, 0.10042670369148254, 0.038931023329496384, 0.03567354381084442, -0.11829230934381485, -0.06986045092344284, 0.017546338960528374, 0.14200051128864288, -0.18049004673957825, 0.04670475050806999, -0.14429134130477905, -0.04167490452528, -0.06753788143396378, 0.06086698919534683, 0.022438958287239075, 0.16654643416404724, -0.2727508246898651, -0.05198892951011658, 0.023330524563789368, -0.11063089966773987, -0.034343212842941284, 0.1279127597808838, -0.029299268499016762, 0.08401602506637573, 0.11805294454097748, 0.14317739009857178, 0.007303363177925348, 0.0617205947637558, -0.11589547246694565, -0.10938405990600586, -0.10192407667636871, 0.14422249794006348, 0.037643127143383026, 0.08081167936325073, -0.006068553775548935, 0.011282629333436489, -0.022145608440041542, -0.08374559134244919, -0.06594258546829224, -0.07987711578607559, 0.04806561395525932, -0.04470545053482056, 0.16409146785736084, -0.01599150523543358, -0.019614020362496376, -0.0934339091181755, -0.11289454996585846, -0.12656430900096893, 0.07138792425394058, 0.054044004529714584, 0.008880991488695145, -0.1525590717792511, 0.019632915034890175, 0.19941435754299164, 0.045074451714754105, -0.14334484934806824, -0.0013668383471667767, 0.015848957002162933, 0.04220068082213402, 0.0989142581820488, 0.018047500401735306, 0.04286488890647888, -0.0997680127620697, -0.03476344794034958, -0.05641278997063637, -0.1097249686717987, -0.009587054140865803, -0.0027311204466968775, -0.17038032412528992, 0.02742592990398407, -0.047153741121292114, 0.114105224609375, -0.04854288697242737, 0.011159571819007397, 0.13967075943946838, 0.09089186042547226, -0.0038051323499530554, 0.00819949246942997, 0.004662640392780304, 0.07646586745977402, -0.030127139762043953, 0.031914081424474716, 0.06614141911268234, -0.03983017057180405, -0.09378998726606369, 0.07507366687059402, -0.002643332816660404, 0.048261504620313644, 0.09809129685163498, 0.01708274707198143, -0.14074818789958954, 0.04492718726396561, -0.014845684170722961, 0.016917210072278976, 0.00311723118647933, 0.06303133815526962, 0.14609284698963165, 0.012918997555971146, -0.02465604990720749, -0.00692306412383914, 0.05402559041976929, 0.020919162780046463, -0.059340715408325195, -0.08823946863412857, 0.12337391078472137, -0.12295765429735184, -0.23766691982746124, 0.08416802436113358, 0.048923540860414505, 0.03918738290667534, 0.19114693999290466, -0.0019725156016647816, -0.005231785122305155, -0.08140566200017929, -0.06973087787628174, -0.05271148681640625, 0.04547692462801933, 0.01284000463783741, -0.003177367150783539, 0.04249200597405434, -0.04596538096666336, 0.017679518088698387, 0.008738472126424313, -0.03284192830324173, -0.019846990704536438, -0.0493476502597332, -0.021333519369363785, 0.041138842701911926, 0.04926184192299843, 0.11456586420536041, 0.01925504207611084, -0.001663349918089807, -0.012853474356234074, -0.06562542170286179, -0.10430870950222015, 0.07504882663488388, -0.08835911005735397, -0.25684815645217896, -0.0241928081959486, 0.031068105250597, -0.10784687101840973, 0.004796498920768499, 0.034462954849004745, -0.1599365472793579, -0.08986866474151611, -0.0731242299079895, 0.05947733297944069, 0.04779073968529701, 0.0003683950926642865, -0.00948234274983406, 0.06223165988922119, 0.007431612350046635, -0.011594508774578571, -0.030560985207557678, -0.07419058680534363, -0.014346206560730934, 0.09130343049764633, 0.006717209238559008, 0.09847640991210938, 0.021969003602862358, -0.012479817494750023, 0.0034935276489704847, -0.07597268372774124, 0.11417702585458755, -0.10556817799806595, 0.013148143887519836, 0.10594683885574341, 0.034169040620326996, 0.04794245585799217, 0.14363868534564972, 0.01042211800813675, -0.08689893037080765, 0.08958227187395096, 0.026234816759824753, -0.0492023229598999, -0.22763971984386444, -0.20066051185131073, 0.007111281622201204, 0.08955159783363342, 0.035241689532995224, 0.009866636246442795, 0.043422091752290726, 0.039228182286024094, -0.05601960048079491, -0.11684312671422958, 0.05299092084169388, 0.06675803661346436, 0.07815894484519958, 0.029161494225263596, 0.1290634274482727, -0.06604090332984924, 0.05817274749279022, 0.13916923105716705, -0.16842947900295258, 0.15479372441768646, 0.01965155079960823, 0.06721897423267365, 0.0674838125705719, 0.11006127297878265, 0.052561789751052856, -0.042745962738990784, 0.0768178254365921, -0.0030380261596292257, -0.0061151632107794285, -0.042064130306243896, -0.11473935097455978, 0.14330534636974335, -0.005575645714998245, -0.09470608830451965, -0.025824332609772682, 0.040393099188804626, 0.15850071609020233, 0.19196577370166779, 0.008507481776177883, -0.19677944481372833, -0.15306492149829865, 0.00725584477186203, 0.0360751748085022, 0.018160436302423477, 0.010576938278973103, 0.037079401314258575, -0.12455232441425323, 0.17451371252536774, -0.015539441257715225, 0.08685828745365143, -0.0068919481709599495, 0.06066400557756424, -0.008454368449747562, -0.005834430921822786, -0.047808289527893066, 0.06252118200063705, -0.23850782215595245, 0.2579784095287323, -0.01800188608467579, 0.020953644067049026, -0.032336920499801636, -0.06731933355331421, 0.07965830713510513, -0.0733310654759407, 0.08670162409543991, 0.018315261229872704, -0.17597690224647522, -0.09418747574090958, -0.0605558380484581, -0.0048713963478803635, 0.08448400348424911, -0.08828439563512802, 0.07849918305873871, 0.002547952113673091, 0.017214497551321983, -0.05472397804260254, -0.07636842876672745, -0.16871732473373413, -0.07243005186319351, 0.05252429097890854, 0.028341243043541908, 0.08699385821819305, -0.018357370048761368, -0.07399290800094604, 0.025752974674105644, 0.1307707577943802, -0.02644333243370056, -0.029457490891218185, -0.09910415858030319, 0.10405299067497253, 0.004234613385051489, -0.08968670666217804, 0.003890444990247488, 0.012144645676016808, 0.09577280282974243, 0.015162517316639423, -0.068987175822258, 0.0416196770966053, -0.036371294409036636, -0.15044192969799042, 0.01266459934413433, 0.12052589654922485, 0.16352134943008423, 0.0507863350212574, 0.032188739627599716, 0.03613089770078659, 0.024296125397086143, -0.09644214808940887, 0.09292421489953995, 0.05437197908759117, -0.06420673429965973, 0.14046742022037506, 0.03158007934689522, -0.3120870888233185, -0.20959940552711487, -0.06275417655706406, 0.07954537123441696, 0.17165875434875488, -0.09893756359815598, 0.13294892013072968, 0.011635268107056618, -0.02438683807849884, -0.21025006473064423, -0.010064776986837387, 0.05791926383972168, 0.008620884269475937, 0.10702330619096756, -0.17418785393238068, -0.04166039079427719, 0.012700331397354603, 0.009750504978001118, -0.1029987782239914, -0.12439129501581192, -0.12213565409183502, 0.05512043461203575, -0.023834289982914925, 0.006507860962301493, -0.03622718155384064, -0.08235348761081696, -0.05784336477518082, 0.027613408863544464, 0.15602271258831024, 0.0038706096820533276, 0.026324626058340073, 0.0050194039940834045, 0.15213124454021454, 0.06696777790784836, 0.065253347158432, 0.14142797887325287, 0.050786036998033524, 0.06378114968538284, -0.08118794113397598, -0.025907527655363083, 0.031302087008953094, -0.04111574962735176, 0.0627664253115654, 0.02098066732287407, 0.00996698159724474, -0.12012278288602829, 0.0020571681670844555, -0.07199036329984665, 0.052520833909511566, -0.009695565328001976, -0.02833505906164646, -0.09562821686267853, 0.11957807838916779, 0.049010902643203735, -0.018678029999136925, 0.12876315414905548, -0.062376637011766434, 0.07888921350240707, 0.13654044270515442, 0.13861152529716492, 0.07849305123090744, -0.0094536654651165, -0.01891038380563259, -0.00956981722265482, 0.039528295397758484, -0.16724057495594025, -0.004300865810364485, 0.08859091252088547, -0.0041511524468660355, 0.051342807710170746, -0.013363271951675415, -0.09340301156044006, 0.022500135004520416, 0.1116461455821991, -0.17190653085708618, -0.09985169023275375, -0.020764140412211418, 0.13192522525787354, -0.013560498133301735, 0.006604458671063185, 0.15655019879341125, -0.0658533051609993, -0.021520989015698433, 0.007247593719512224, 0.08425793051719666, 0.0028599377255886793, 0.06546726077795029, -0.030843371525406837, 0.014924375340342522, -0.09822490066289902, 0.08717896044254303, 0.06145501881837845, -0.134102001786232, 0.055329855531454086, 0.09175685793161392, -0.10299449414014816, -0.07743915170431137, -0.03107185661792755, 0.09081651270389557, -0.09324415773153305, -0.055075883865356445, -0.003114165738224983, -0.1483277678489685, 0.02896927110850811, 0.08815521001815796, 0.09620720148086548, 0.06081800535321236, 0.013244443573057652, -0.01026095449924469, 0.03817175328731537, 0.044923167675733566, 0.1794895976781845, -0.06388889998197556, -0.07072493433952332, -0.009710883721709251, 0.0057542514987289906, 0.01004678476601839, -0.06290930509567261, -0.025103682652115822, -0.02193712815642357, 0.0022811037488281727, -0.12085793912410736, 0.006959777791053057, -0.1134529560804367, -0.002412262372672558, -0.016910942271351814, -0.03738686069846153, -0.0943077877163887, -0.00784482341259718, -0.07545755058526993, -0.019423048943281174, -0.028341641649603844, 0.12315280735492706, -0.11629121005535126, 0.002590334275737405, 0.020371299237012863, -0.018517866730690002, 0.07928839325904846, 0.14854741096496582, -0.004458489827811718, 0.07314103096723557, -0.15347647666931152, 0.08032482862472534, 0.045370832085609436, -0.015657326206564903, 0.00030949656502343714, -0.06165752559900284, -0.0034095137380063534, -0.00765856122598052, -0.030500223860144615, 0.04755054786801338, 0.12395583838224411, -0.09254036098718643, 0.1144014522433281, 0.02112824097275734, -0.02500327304005623, -0.0442749485373497, 0.021217089146375656, 0.07983870059251785, 0.12239442020654678, 0.20708021521568298, -0.0971512719988823, 0.06596305221319199, -0.0667525976896286, 0.03542226180434227, -0.040135521441698074, -0.08374162763357162, -0.1481085866689682, -0.048331618309020996, 0.07001634687185287, -0.028169211000204086, 0.10406941175460815, 0.11045175045728683, -0.03463149443268776, 0.06892064213752747, 0.06489942967891693, -0.058101337403059006, 0.06096350774168968, -0.07620623707771301, -0.0016864048084244132, -0.05181121081113815, -0.009859911166131496, -0.04412961006164551, -0.017300060018897057, -0.04819229245185852, 0.13718962669372559, 0.12750062346458435, 0.1451440155506134, 0.044536277651786804, -0.014293824322521687, -0.03165212646126747, 0.04815862700343132, 0.09288565069437027, -0.14973203837871552, 0.03459286689758301, -0.04483877494931221, 0.11381491273641586, 0.08502554893493652, -0.13867484033107758, 0.09540736675262451, -0.04910305142402649, -0.0323583148419857, 0.013410670682787895, -0.17200659215450287, -0.10870574414730072, -0.1279977262020111, 0.0008731294074095786, -0.10539241135120392, 0.006180607248097658, 0.053604189306497574, -0.0028868233785033226, -0.04914369061589241, 0.02023397758603096, -0.1624484658241272, -0.07973185181617737, 0.19695453345775604, -0.019377190619707108, -0.0471753366291523, 0.009612440131604671, -0.03462488204240799, -0.014807955361902714, 0.0695224478840828, -0.002003123052418232, 0.04026491194963455, 0.0007438326720148325, -0.024758832529187202, -0.06924411654472351, -0.1258479207754135, 0.03829048201441765, -0.005463988520205021, 0.0195083599537611, 0.06876041740179062, 0.04185711219906807, 0.0005957988905720413, 0.027029482647776604, 0.2754714787006378, 0.044019266963005066, 0.052904386073350906, -0.08341079205274582, 0.07979601621627808, 0.007384920492768288, 0.023778298869729042, -0.016664311289787292, -0.058652326464653015, -0.04401794448494911, 0.026045147329568863, 0.23700854182243347, 0.019481338560581207, 0.024873774498701096, -0.1370595097541809, 0.0605630949139595, 0.02222520485520363, 0.033658452332019806, 0.002449186984449625, 0.07943939417600632, -0.03404203802347183, 0.0731743648648262, -0.0762086883187294, 0.023383552208542824, -0.0015733905602246523, 0.002282721223309636, 0.04563295096158981, -0.03630226105451584, -0.08814463019371033, 0.19842274487018585, -0.1421094387769699, -0.14523400366306305, 0.0162935983389616, -0.2007470428943634, -0.09988729655742645, 0.025039348751306534, 0.043240778148174286, 0.13377776741981506, 0.14848706126213074, 0.031763337552547455, -0.03727589175105095, -0.02036668173968792, 0.03655630722641945, -0.08320631831884384, -0.04933401197195053, 0.09815956652164459, -0.08391828835010529, 0.1562889814376831, -0.038446202874183655, 0.08924609422683716, 0.09888634830713272, -0.02152174897491932, -0.07384323328733444, 0.07172012329101562, 0.052773524075746536, 0.0003273329930379987, 0.06332213431596756, 0.12930245697498322, -0.04372035339474678, 0.10443461686372757, 0.14188988506793976, -0.11397624760866165, 0.021797524765133858, -0.032443203032016754, 0.002611944219097495, -0.016344472765922546, 0.17167998850345612, -0.10159535706043243, 0.05730656534433365, 0.1702827513217926, -0.06157321110367775, -0.022742873057723045, -0.026081997901201248, 0.02542594075202942, -0.051642101258039474, 0.03628448024392128, 0.018076153472065926, -0.15026919543743134, -0.01899113319814205, 0.07063820958137512, 0.04299807548522949, -0.1343819499015808, 0.010646301321685314, -0.09100048243999481, 0.07329163700342178, 0.016334012150764465, 0.11770020425319672, -0.05920564755797386, -0.04677962139248848, -0.000821371388155967, -0.08984795957803726, 0.0787242203950882, 0.1186550110578537, -0.05150661617517471, -0.05811993032693863 ]
null
null
transformers
# ss
{"tags": ["conversational"]}
text-generation
bleachybrain/DialoGPT-med-ss
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# ss
[ "# ss" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# ss" ]
[ 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# ss" ]
[ -0.024268031120300293, 0.027011793106794357, -0.007145066745579243, -0.006262112408876419, 0.16064044833183289, 0.009302747435867786, 0.10980533808469772, 0.12710551917552948, 0.02069292590022087, -0.01333542913198471, 0.15093548595905304, 0.1832849532365799, 0.012487837113440037, 0.09680309891700745, -0.07103877514600754, -0.24209894239902496, 0.08531837165355682, 0.03281093388795853, -0.007681690622121096, 0.12081203609704971, 0.07941875606775284, -0.050385478883981705, 0.08489038050174713, -0.04121847078204155, -0.1165800541639328, 0.015547600574791431, 0.037540026009082794, -0.11837701499462128, 0.10854952782392502, 0.04466035217046738, 0.056620195508003235, 0.03936349228024483, -0.045516129583120346, -0.1499272584915161, 0.02885846234858036, 0.00885354820638895, -0.052487775683403015, 0.045398060232400894, 0.03502877056598663, -0.09280680865049362, 0.06798171252012253, 0.07122685760259628, -0.012543727643787861, 0.05937418341636658, -0.1514044851064682, -0.03780992329120636, -0.006886673159897327, 0.035176362842321396, 0.07219888269901276, 0.0937192440032959, -0.029436448588967323, 0.0943518802523613, -0.09776225686073303, 0.10611098259687424, 0.10506439954042435, -0.29938361048698425, 0.006424235180020332, 0.0819718986749649, 0.012285110540688038, 0.07976081222295761, -0.03184885159134865, 0.06454131752252579, 0.007828420959413052, 0.011158140376210213, 0.008893446996808052, -0.06672374159097672, -0.07706741988658905, 0.06644552201032639, -0.08739598840475082, -0.06612685322761536, 0.23983970284461975, -0.041728682816028595, 0.06548239290714264, -0.05176616460084915, -0.10644427686929703, -0.03555995970964432, -0.030517691746354103, 0.0030495638493448496, -0.07415011525154114, 0.08121100813150406, -0.004797299392521381, -0.08838225901126862, -0.1371649205684662, -0.04835277423262596, -0.15883855521678925, 0.1533229798078537, 0.02127540111541748, 0.060761839151382446, -0.1730431318283081, 0.09149179607629776, 0.01687481813132763, -0.0860050767660141, 0.012027615681290627, -0.10260157287120819, 0.014192705973982811, 0.03979009762406349, -0.047402337193489075, -0.0627749040722847, 0.07755976915359497, 0.13940271735191345, 0.011283157393336296, 0.03042178973555565, -0.0007723315502516925, 0.08106172829866409, 0.04388973489403725, 0.08607227355241776, 0.0019952994771301746, -0.026010926812887192, 0.0329773835837841, -0.1092824935913086, 0.003186425194144249, -0.08465849608182907, -0.15654674172401428, -0.005866366904228926, 0.02470407821238041, 0.07146473228931427, 0.013881138525903225, 0.12377350777387619, -0.024917885661125183, -0.015802158042788506, 0.07767338305711746, -0.05810375139117241, -0.023491494357585907, 0.0331781841814518, 0.022129487246274948, 0.11624740809202194, 0.0022865822538733482, 0.024923495948314667, -0.13533915579319, 0.04765068739652634, -0.06696532666683197, -0.010906199924647808, -0.04398685321211815, -0.02576323226094246, -0.003859475255012512, -0.06133740395307541, -0.011197809129953384, -0.1451047658920288, -0.19947262108325958, -0.001854741363786161, -0.03174616023898125, -0.033383965492248535, -0.052329543977975845, -0.07704316079616547, -0.023450206965208054, 0.042877841740846634, -0.0807124450802803, -0.03356143832206726, -0.06385777145624161, 0.10874069482088089, -0.05451696366071701, 0.074992336332798, -0.13399973511695862, 0.07266205549240112, -0.1321326196193695, -0.02536816895008087, -0.0685078352689743, 0.11164544522762299, -0.036492183804512024, 0.09808295220136642, 0.0024155059363693, -0.033416908234357834, -0.08127271384000778, 0.06849975883960724, -0.04150203987956047, 0.24495524168014526, -0.08882873505353928, -0.11048338562250137, 0.2919630706310272, -0.07200176268815994, -0.12365991622209549, 0.128501757979393, 0.014730436727404594, 0.015540643595159054, 0.10424830764532089, 0.22670018672943115, -0.03096456453204155, 0.038475681096315384, 0.09057100862264633, 0.12166641652584076, -0.08995208144187927, -0.02842872217297554, 0.03737137094140053, -0.03208914026618004, -0.08911428600549698, 0.05934300273656845, 0.06902579963207245, 0.05069148167967796, -0.043647732585668564, -0.03463219106197357, -0.013963082805275917, -0.004955141339451075, 0.06615281850099564, -0.00282881548628211, 0.10119900107383728, -0.0570504292845726, -0.039986442774534225, -0.0458599217236042, -0.00887943897396326, -0.04201749712228775, 0.02266622893512249, -0.05465995520353317, 0.09875962138175964, 0.03278006240725517, 0.07128196209669113, -0.14711028337478638, -0.08074823021888733, -0.025701623409986496, 0.1688879132270813, 0.0343855582177639, 0.09507913142442703, 0.04846523702144623, -0.04273608699440956, -0.0010058258194476366, 0.0037323881406337023, 0.15831835567951202, -0.02070312574505806, -0.05467471852898598, -0.060366202145814896, 0.06568916887044907, -0.0476500578224659, 0.036546435207128525, -0.03446141630411148, 0.0362018421292305, 0.0626426711678505, 0.11168773472309113, -0.01091018971055746, 0.013579458929598331, -0.00105760945007205, 0.004092223010957241, -0.052907880395650864, 0.008195714093744755, 0.09242405742406845, 0.004541459959000349, -0.08535666018724442, 0.20757503807544708, -0.1790429651737213, 0.19169127941131592, 0.17000971734523773, -0.2681911289691925, 0.013235366903245449, -0.07170198857784271, -0.04368366301059723, 0.026432517915964127, 0.04983144253492355, -0.06601135432720184, 0.14868058264255524, -0.013306671753525734, 0.17984220385551453, -0.050103794783353806, -0.04542224481701851, -0.023890536278486252, -0.05909949913620949, 0.015268097631633282, 0.08216018974781036, 0.09758166968822479, -0.15027788281440735, 0.20771674811840057, 0.13294142484664917, 0.048231564462184906, 0.19330601394176483, 0.009601613506674767, -0.01208505965769291, 0.08933477103710175, -0.007376394234597683, -0.0682622566819191, -0.04650835320353508, -0.2413666546344757, -0.039422087371349335, 0.08798046410083771, 0.04083770141005516, 0.10125806927680969, -0.1010640412569046, -0.04166535288095474, -0.015557243488729, -0.02481621503829956, -0.00511783454567194, 0.07813560217618942, 0.05554545298218727, 0.13157275319099426, -0.0073541151359677315, 0.0015493420651182532, 0.0888277217745781, 0.0069648707285523415, -0.11071965843439102, 0.1987047791481018, -0.13818398118019104, -0.3603856861591339, -0.15580815076828003, -0.11582539230585098, -0.03985719382762909, 0.06843811273574829, 0.11778740584850311, -0.11838283389806747, -0.030825117602944374, -0.002283075824379921, 0.09331144392490387, -0.06041892617940903, 0.010781548917293549, -0.0578308179974556, 0.02273452654480934, -0.09905605018138885, -0.08011601120233536, -0.0622873418033123, -0.03020497038960457, -0.07762395590543747, 0.13686612248420715, -0.09336261451244354, 0.043330006301403046, 0.19687823951244354, 0.060075849294662476, 0.04752305522561073, -0.04574299976229668, 0.1839854121208191, -0.09531563520431519, -0.007686374709010124, 0.1866266131401062, -0.0666680708527565, 0.07474011927843094, 0.1105804294347763, -0.0004101310914848, -0.0849507674574852, 0.02116120606660843, -0.03776392340660095, -0.09677848219871521, -0.2225404977798462, -0.13988642394542694, -0.11570078879594803, 0.12547017633914948, -0.0021569328382611275, 0.04537690803408623, 0.15676432847976685, 0.07856990396976471, -0.05252126604318619, -0.010827393271028996, 0.022928927093744278, 0.07986719906330109, 0.2192031592130661, -0.05187702178955078, 0.15564759075641632, -0.04776986315846443, -0.13077720999717712, 0.08521062880754471, 0.04301636666059494, 0.06662065535783768, 0.03643031418323517, 0.06322361528873444, 0.01556673739105463, 0.07898270338773727, 0.11749552190303802, 0.07961716502904892, 0.026451440528035164, -0.02111544832587242, -0.03906114399433136, -0.02574598789215088, -0.09389963001012802, 0.05184121057391167, 0.04290405288338661, -0.1653548777103424, -0.04323459789156914, -0.07476823776960373, 0.09412417560815811, 0.09585744142532349, 0.05606288090348244, -0.18611839413642883, -0.037686239928007126, 0.09458617866039276, -0.02420445717871189, -0.12132491916418076, 0.09866137057542801, 0.04353242740035057, -0.1465151160955429, 0.03587229177355766, -0.012920631095767021, 0.11577706784009933, -0.06023438647389412, 0.1078072339296341, -0.06803807616233826, -0.08223535865545273, 0.022733423858880997, 0.13038606941699982, -0.278401255607605, 0.2012343555688858, -0.008860491216182709, -0.06428548693656921, -0.12308923155069351, 0.0005182449240237474, -0.007249746005982161, 0.0769442617893219, 0.12268824130296707, 0.0031988415867090225, -0.03227590397000313, -0.08203635364770889, -0.02603851445019245, 0.032092563807964325, 0.13195578753948212, -0.05871544033288956, -0.026498889550566673, -0.03937076777219772, 0.0003831258218269795, -0.03652742877602577, -0.06524322181940079, 0.060196079313755035, -0.17984327673912048, 0.09382174164056778, 0.04198804497718811, 0.08336655050516129, 0.015701215714216232, 0.014070750214159489, -0.12385759502649307, 0.2541564404964447, -0.099178247153759, -0.11063076555728912, -0.11317944526672363, -0.03235611692070961, 0.030866172164678574, -0.060586266219615936, 0.03470173850655556, -0.06625065207481384, 0.024144157767295837, -0.03856467828154564, -0.19449910521507263, 0.11973755806684494, -0.10729293525218964, -0.07043680548667908, -0.023845002055168152, 0.22623741626739502, -0.05396386608481407, 0.011723590083420277, 0.0203146543353796, 0.013499835506081581, -0.10957565903663635, -0.11712498962879181, 0.05556901544332504, -0.002776527311652899, 0.04714147746562958, 0.06397543102502823, -0.05337216705083847, -0.050096601247787476, -0.03766106069087982, -0.02195214107632637, 0.31545141339302063, 0.16391988098621368, -0.054980531334877014, 0.20870721340179443, 0.12490818649530411, -0.057133592665195465, -0.3431239426136017, -0.11950373649597168, -0.11493449658155441, -0.036498330533504486, -0.051226720213890076, -0.19787707924842834, 0.06729641556739807, 0.009913084097206593, -0.01734332926571369, 0.06699828058481216, -0.22672124207019806, -0.07843688130378723, 0.15967783331871033, -0.043054886162281036, 0.37032991647720337, -0.12050960958003998, -0.11182446777820587, -0.02878999151289463, -0.1429917961359024, 0.1574047952890396, -0.011103829368948936, 0.09690950065851212, -0.0006836394313722849, 0.1485157459974289, 0.060538068413734436, -0.03263518959283829, 0.08523623645305634, 0.010735164396464825, -0.03119945153594017, -0.10004854947328568, -0.029138678684830666, 0.024376684799790382, 0.027660666033625603, 0.026611147448420525, -0.048055727034807205, 0.04746783897280693, -0.12246908247470856, -0.03728354349732399, -0.09166543930768967, 0.02614356204867363, 0.04304727539420128, -0.07286635041236877, -0.014744113199412823, -0.07952721416950226, 0.006862805690616369, 0.018402790650725365, 0.20288556814193726, -0.08389861136674881, 0.1699306219816208, 0.09398119896650314, 0.13292407989501953, -0.15138639509677887, 0.00654979981482029, -0.0796615332365036, -0.06715741753578186, 0.06897526979446411, -0.10445471107959747, 0.06474717706441879, 0.10615669935941696, -0.03601720184087753, 0.07766455411911011, 0.10932670533657074, 0.028468266129493713, -0.009001065976917744, 0.10852357745170593, -0.2824181318283081, -0.034257933497428894, -0.0714423805475235, 0.027731146663427353, 0.0865405723452568, 0.10789098590612411, 0.18073149025440216, 0.022042466327548027, -0.042730912566185, -0.005179823376238346, 0.03999040275812149, -0.02978523075580597, 0.06467133015394211, -0.0048056854866445065, 0.04184240847826004, -0.15815049409866333, 0.0714598223567009, -0.011925095692276955, -0.13591061532497406, 0.032083746045827866, 0.15981408953666687, -0.14080284535884857, -0.11828061938285828, -0.07240236550569534, 0.05554526299238205, -0.10478448122739792, -0.014383101835846901, -0.05614219978451729, -0.13817396759986877, 0.07814312726259232, 0.12420906126499176, 0.055777642875909805, 0.09087445586919785, -0.05709662288427353, -0.006282532121986151, 0.0063201989978551865, -0.012741596437990665, -0.004074475262314081, -0.007957253605127335, -0.048552583903074265, 0.07858546078205109, -0.047766413539648056, 0.1414571851491928, -0.10036858171224594, -0.08428279310464859, -0.16032297909259796, 0.04020966589450836, -0.07388628274202347, -0.09349475800991058, -0.08977387100458145, -0.06596460938453674, 0.00012681505177170038, -0.04290986433625221, -0.035759102553129196, -0.04994808882474899, -0.12140975147485733, 0.03765852004289627, -0.0471552275121212, 0.01932341977953911, -0.08195336163043976, 0.020672017708420753, 0.0900702178478241, -0.038459256291389465, 0.15537282824516296, 0.16103778779506683, -0.10767579823732376, 0.10398010909557343, -0.14625605940818787, -0.07496648281812668, 0.11500822007656097, 0.036835528910160065, 0.023959899321198463, 0.1438291370868683, 0.005669886711984873, 0.07027100026607513, 0.01961391419172287, 0.053974539041519165, 0.030283953994512558, -0.09718285501003265, 0.09383751451969147, -0.0156764667481184, -0.1272079050540924, -0.0504964217543602, -0.062105681747198105, 0.011851956136524677, 0.029654404148459435, 0.08530537784099579, -0.058082215487957, 0.09631185233592987, -0.054098304361104965, 0.03246155008673668, 0.03464706987142563, -0.16565796732902527, -0.07379919290542603, -0.08632197976112366, 0.05128682777285576, 0.008639967069029808, 0.2644043266773224, 0.012599308975040913, -0.01621164381504059, 0.0472615510225296, 0.09085188806056976, 0.10151219367980957, 0.025017671287059784, 0.17036928236484528, 0.11075339466333389, -0.07826569676399231, -0.10676500201225281, 0.04788963496685028, -0.0014603791059926152, -0.0136743588373065, 0.14199340343475342, 0.006250111386179924, 0.025992948561906815, 0.07987035810947418, -0.03219142183661461, 0.015286954119801521, -0.11402019113302231, -0.15447421371936798, -0.05192037299275398, 0.04448696970939636, -0.04769163206219673, 0.13649581372737885, 0.12369124591350555, -0.022347165271639824, 0.04267851263284683, -0.023956747725605965, -0.05180199816823006, -0.1766156554222107, -0.14132703840732574, -0.064317986369133, -0.13907060027122498, 0.012778082862496376, -0.10661455988883972, 0.052397195249795914, 0.07421161234378815, 0.06465309113264084, -0.05073340982198715, 0.10953763127326965, 0.019056569784879684, -0.08251703530550003, 0.049809012562036514, -0.025853754952549934, 0.06165604293346405, -0.0157008059322834, -0.0268540158867836, -0.060162220150232315, 0.02662903629243374, 0.02063651755452156, 0.049377985298633575, -0.032818570733070374, -0.0048751626163721085, -0.1430857628583908, -0.08124478906393051, -0.05115024000406265, 0.060624927282333374, -0.057196393609046936, 0.11240284144878387, 0.003756516380235553, -0.019728640094399452, 0.042836155742406845, 0.23554660379886627, -0.08825033903121948, -0.055903855711221695, -0.06434692442417145, 0.19537529349327087, 0.019663382321596146, 0.11173838376998901, -0.018504435196518898, -0.012634359300136566, -0.0758928582072258, 0.34907713532447815, 0.29450488090515137, -0.08863932639360428, 0.015933595597743988, 0.007259908597916365, 0.04543529450893402, 0.11870652437210083, 0.12271913886070251, 0.09157324582338333, 0.30979326367378235, -0.07167954742908478, -0.05022823438048363, -0.005466282833367586, -0.03846098482608795, -0.09374968707561493, 0.0914185494184494, 0.030149919912219048, -0.063329316675663, -0.044440653175115585, 0.08300250768661499, -0.26587143540382385, 0.11132583767175674, -0.1133488267660141, -0.1749456524848938, -0.05295577645301819, 0.018056942149996758, 0.10225091874599457, 0.01827000267803669, 0.0806976780295372, 0.013639360666275024, -0.09209353476762772, 0.06543305516242981, 0.028606003150343895, -0.20558451116085052, 0.008970463648438454, 0.058175042271614075, -0.0804997906088829, 0.003887389786541462, -0.032488688826560974, 0.06745591759681702, 0.05777716264128685, 0.055230461061000824, -0.0009713113540783525, 0.035029880702495575, 0.008401795290410519, -0.0706632137298584, -0.0034695914946496487, 0.06460735201835632, 0.018721621483564377, -0.0710587203502655, 0.06188775599002838, -0.1686355471611023, 0.02929331548511982, 0.00760743347927928, -0.051521748304367065, 0.014237833209335804, 0.00666881212964654, -0.060390569269657135, 0.04902846738696098, 0.05384402349591255, -0.009546562097966671, -0.010779032483696938, -0.05317744240164757, -0.023879583925008774, -0.035100728273391724, -0.09192361682653427, -0.08633962273597717, -0.1707318127155304, -0.10835839807987213, 0.085739865899086, 0.005838847253471613, -0.17646247148513794, 0.02303032949566841, -0.0991864800453186, 0.09743867814540863, -0.15571022033691406, 0.08729267865419388, 0.06314696371555328, 0.007816470228135586, -0.0031242945697158575, -0.03728900104761124, 0.0634688287973404, 0.08819102495908737, -0.09193562716245651, -0.07640274614095688 ]
null
null
transformers
# RoBERTa-like language model trained on part of part of TAIGA corpus ## Training Details - about 60k steps ![]() ## Example pipeline ```python from transformers import pipeline from transformers import RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained('blinoff/roberta-base-russian-v0', max_len=512) fill_mask = pipeline( "fill-mask", model="blinoff/roberta-base-russian-v0", tokenizer=tokenizer ) fill_mask("Мозг — это машина <mask>, которая пытается снизить ошибку в прогнозе.") # { # 'sequence': '<s>Мозг — это машина города, которая пытается снизить ошибку в прогнозе.</s>', # 'score': 0.012859329581260681, # 'token': 2144, # 'token_str': 'ĠгоÑĢода' # }, # { # 'sequence': '<s>Мозг — это машина человека, которая пытается снизить ошибку в прогнозе.</s>', # 'score': 0.01185101643204689, # 'token': 1470, # 'token_str': 'ĠÑĩеловека' # }, # { # 'sequence': '<s>Мозг — это машина дома, которая пытается снизить ошибку в прогнозе.</s>', # 'score': 0.009940559044480324, # 'token': 1411, # 'token_str': 'Ġдома' # }, # { # 'sequence': '<s>Мозг — это машина женщина, которая пытается снизить ошибку в прогнозе.</s>', # 'score': 0.007794599514454603, # 'token': 2707, # 'token_str': 'ĠженÑīина' # }, # { # 'sequence': '<s>Мозг — это машина женщины, которая пытается снизить ошибку в прогнозе.</s>', # 'score': 0.007725382689386606, # 'token': 3546, # 'token_str': 'ĠженÑīинÑĭ' # } ```
{"language": "ru", "widget": [{"text": "\u041c\u043e\u0437\u0433 \u2014 \u044d\u0442\u043e \u043c\u0430\u0448\u0438\u043d\u0430 \u0432\u044b\u0432\u043e\u0434\u0430, \u043a\u043e\u0442\u043e\u0440\u0430\u044f \u043f\u044b\u0442\u0430\u0435\u0442\u0441\u044f <mask> \u043e\u0448\u0438\u0431\u043a\u0443 \u0432 \u043f\u0440\u043e\u0433\u043d\u043e\u0437\u0435.", "example_title": "brain_example"}, {"text": "\u041d\u0438\u043a\u043e\u0433\u0434\u0430 \u043d\u0435 \u0441\u043f\u043e\u0440\u044c\u0442\u0435 \u0441 \u0438\u0434\u0438\u043e\u0442\u0430\u043c\u0438, <mask> \u043e\u043f\u0443\u0441\u0442\u0438\u0442\u0435\u0441\u044c \u0434\u043e \u0438\u0445 \u0443\u0440\u043e\u0432\u043d\u044f, \u0433\u0434\u0435 \u043e\u043d\u0438 \u0432\u0430\u0441 \u0437\u0430\u0434\u0430\u0432\u044f\u0442 \u0441\u0432\u043e\u0438\u043c \u043e\u043f\u044b\u0442\u043e\u043c.", "example_title": "idiot_example"}]}
fill-mask
blinoff/roberta-base-russian-v0
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #jax #safetensors #roberta #fill-mask #ru #autotrain_compatible #endpoints_compatible #region-us
# RoBERTa-like language model trained on part of part of TAIGA corpus ## Training Details - about 60k steps ![]() ## Example pipeline
[ "# RoBERTa-like language model trained on part of part of TAIGA corpus", "## Training Details\n\n- about 60k steps\n\n![]()", "## Example pipeline" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #roberta #fill-mask #ru #autotrain_compatible #endpoints_compatible #region-us \n", "# RoBERTa-like language model trained on part of part of TAIGA corpus", "## Training Details\n\n- about 60k steps\n\n![]()", "## Example pipeline" ]
[ 47, 18, 13, 5 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #roberta #fill-mask #ru #autotrain_compatible #endpoints_compatible #region-us \n# RoBERTa-like language model trained on part of part of TAIGA corpus## Training Details\n\n- about 60k steps\n\n![]()## Example pipeline" ]
[ -0.05197075009346008, 0.0546780601143837, -0.00275677302852273, 0.07696351408958435, 0.15865740180015564, -0.010463759303092957, 0.10704828053712845, 0.07477546483278275, -0.006662611849606037, -0.004247839562594891, 0.18418718874454498, 0.14665795862674713, -0.009748551063239574, 0.1766991764307022, 0.007056348957121372, -0.3689807653427124, 0.029041461646556854, -0.034170642495155334, -0.02394658885896206, 0.11953102052211761, 0.12561830878257751, -0.05511299520730972, 0.08010074496269226, -0.030962252989411354, -0.05533578246831894, 0.019940149039030075, 0.003845985047519207, -0.15166425704956055, 0.12036321312189102, -0.022971512749791145, 0.14798469841480255, -0.020958343520760536, 0.039514992386102676, -0.06735240668058395, 0.039743900299072266, -0.01311426516622305, 0.007942777127027512, 0.040874432772397995, -0.03522133454680443, -0.06698166579008102, 0.08581246435642242, 0.02379457838833332, 0.028864964842796326, 0.008031955920159817, -0.20521250367164612, -0.0740075409412384, -0.009527136571705341, -0.02764965407550335, 0.12078934907913208, 0.14851970970630646, -0.010886063799262047, 0.16382482647895813, -0.13935618102550507, 0.08809789270162582, 0.17571890354156494, -0.28988751769065857, -0.0638483390212059, 0.10264424234628677, 0.14501576125621796, 0.1094452366232872, -0.03742362558841705, 0.027771497145295143, 0.04093703627586365, 0.025657199323177338, -0.04024462029337883, -0.10839295387268066, -0.08252114802598953, 0.009367680177092552, -0.1196134090423584, 0.005108705256134272, 0.24270708858966827, -0.05399155244231224, -0.030677326023578644, -0.02567952871322632, -0.03787555173039436, -0.06763073056936264, -0.06484044343233109, -0.03893233463168144, -0.0479765459895134, 0.017511989921331406, -0.056141145527362823, -0.047617897391319275, -0.08533187210559845, -0.05964038521051407, -0.06922534853219986, 0.18187101185321808, 0.03692319616675377, 0.021129826083779335, -0.13971757888793945, 0.07543621957302094, -0.037325721234083176, -0.10415834933519363, 0.03477140888571739, -0.08009900152683258, 0.00018060642469208688, -0.014850770123302937, -0.0034282177221029997, -0.06668450683355331, 0.10136708617210388, 0.1629481315612793, 0.007639175746589899, 0.040529076009988785, 0.10584267973899841, 0.062923863530159, -0.03839685395359993, 0.1611441671848297, -0.05893692374229431, -0.10154415667057037, 0.0228936318308115, -0.01594717800617218, -0.02336837537586689, -0.024252181872725487, -0.16982947289943695, -0.06214306876063347, -0.022586528211832047, 0.09342797100543976, -0.05660157650709152, 0.07305943965911865, -0.028074923902750015, 0.0029067411087453365, -0.060356322675943375, -0.07885689288377762, -0.024693835526704788, -0.054336436092853546, -0.014088436029851437, 0.008083240129053593, -0.007085663732141256, -0.012858894653618336, -0.060754407197237015, -0.008191457949578762, -0.04145531728863716, -0.033355772495269775, -0.11804202198982239, -0.10257319360971451, -0.0181892067193985, -0.14348889887332916, 0.038010988384485245, -0.18178901076316833, -0.15733599662780762, 0.01369717437773943, 0.1085587814450264, -0.028782833367586136, 0.005286590661853552, -0.09204225987195969, -0.04311036318540573, -0.0012154413852840662, -0.002211417304351926, -0.011464763432741165, -0.05210142955183983, 0.05636703222990036, 0.014097054488956928, 0.11790911108255386, -0.07028286159038544, 0.012826552614569664, -0.10506884008646011, 0.015851300209760666, -0.18544310331344604, 0.03652250021696091, 0.006753937806934118, 0.12228785455226898, -0.05485574156045914, -0.04136241599917412, -0.09240109473466873, 0.08758267015218735, 0.039113059639930725, 0.1695040762424469, -0.12412892282009125, -0.04753424599766731, 0.2855105400085449, -0.06196439266204834, -0.05268082022666931, 0.1408747285604477, -0.04558127745985985, 0.19216805696487427, 0.09629523009061813, 0.12744557857513428, 0.03148713335394859, -0.10439129918813705, 0.1495220959186554, 0.06488244980573654, -0.07315833121538162, -0.056351207196712494, 0.050150178372859955, -0.006864290684461594, -0.02861231565475464, 0.07016746699810028, 0.019391681998968124, 0.07017166912555695, -0.08602207154035568, -0.06173517554998398, 0.026401923969388008, -0.07600235939025879, 0.029861724004149437, -0.001079966896213591, 0.09753286093473434, -0.07049164175987244, -0.06391825526952744, -0.12101525813341141, 0.09233580529689789, -0.013404229655861855, -0.02801358513534069, -0.10646744817495346, 0.037779174745082855, 0.002388204215094447, 0.022937782108783722, -0.14925269782543182, 0.0134735107421875, -0.01601649448275566, 0.1129499077796936, 0.08058150857686996, 0.0866771936416626, 0.09231331944465637, 0.0027752723544836044, -0.01470104604959488, 0.008893932215869427, 0.046064343303442, -0.00646181171759963, -0.05963389202952385, -0.128440722823143, 0.04777141660451889, -0.09529300034046173, 0.0614197812974453, -0.13038696348667145, 0.024064185097813606, -0.10872635245323181, 0.024927275255322456, 0.02958645671606064, 0.05283011868596077, -0.009296000935137272, 0.06109055131673813, -0.06935496628284454, -0.0249498151242733, 0.06952923536300659, -0.022360075265169144, -0.06179020553827286, 0.06556419283151627, -0.10833007097244263, 0.20538903772830963, 0.15081210434436798, -0.09857691079378128, -0.09035474807024002, 0.07409083098173141, -0.0100089181214571, 0.025025641545653343, 0.010362592525780201, 0.029196329414844513, 0.10016059875488281, -0.012586730532348156, 0.16334620118141174, -0.04384025186300278, 0.019989727064967155, 0.04477141052484512, -0.15616586804389954, 0.03303370997309685, 0.15894292294979095, -0.01615186408162117, -0.21792535483837128, 0.13837140798568726, 0.1077081561088562, -0.12369237095117569, 0.21221396327018738, 0.030830688774585724, -0.034999433904886246, -0.030501138418912888, 0.07010622322559357, 0.03746984899044037, 0.11085742712020874, -0.14053834974765778, -0.06959391385316849, 0.010314635001122952, 0.012902013026177883, 0.028963064774870872, -0.12661899626255035, -0.06816820800304413, -0.017220379784703255, -0.007821592502295971, 0.005622264463454485, 0.08054839074611664, -0.06526501476764679, 0.09431889653205872, -0.004882481414824724, -0.16555126011371613, 0.04582889378070831, 0.0008851938764564693, -0.030880039557814598, 0.24728594720363617, -0.06758300960063934, -0.28694161772727966, -0.12306506931781769, -0.1660207211971283, 0.04980246350169182, 0.046090465039014816, 0.03334306925535202, -0.19722047448158264, -0.015538224019110203, 0.04976798593997955, -0.03387158736586571, -0.05633745342493057, -0.007273457013070583, -0.11824905872344971, 0.10371869057416916, -0.05896372348070145, -0.051911819726228714, -0.04988306015729904, -0.07315121591091156, -0.08801776170730591, 0.0979166105389595, -0.13793054223060608, 0.09022872149944305, 0.14141252636909485, -0.01174716092646122, 0.07746418565511703, -0.031034080311655998, 0.1533607840538025, -0.09205331653356552, -0.0020454111509025097, 0.1888652741909027, -0.05452445521950722, 0.03578510880470276, 0.13824962079524994, -0.002022399799898267, -0.08019967377185822, 0.03594481572508812, -0.057293180376291275, -0.12734933197498322, -0.21862439811229706, -0.04251200705766678, -0.11181294173002243, 0.07559436559677124, 0.06563176214694977, 0.03284969553351402, 0.03717895597219467, 0.10174889862537384, 0.06853580474853516, 0.021215340122580528, 0.025068232789635658, 0.06413266807794571, -0.01646377332508564, -0.045779094099998474, 0.1046786978840828, -0.05963196977972984, -0.189724862575531, 0.02101750858128071, 0.08540884405374527, 0.20326559245586395, 0.10785797238349915, 0.07721914350986481, 0.02077079378068447, 0.13599897921085358, 0.10310178250074387, 0.11323248594999313, 0.03765176236629486, -0.05156496539711952, -0.05465150624513626, -0.039535973221063614, -0.03105730377137661, 0.041853442788124084, 0.007680489681661129, -0.03784731402993202, -0.045906368643045425, 0.05514281615614891, 0.05383268743753433, 0.1506529152393341, 0.07493336498737335, -0.2941362261772156, -0.057759907096624374, 0.021406810730695724, -0.007132121827453375, -0.0709068775177002, 0.08540627360343933, 0.042006608098745346, -0.14110782742500305, -0.032329268753528595, -0.048221003264188766, 0.09629875421524048, -0.004409881308674812, 0.05261153355240822, -0.06812834739685059, 0.08553284406661987, -0.014683796092867851, 0.08615756034851074, -0.3281267583370209, 0.35533758997917175, -0.012396215461194515, 0.0734466016292572, -0.06206270307302475, -0.029037175700068474, 0.07281610369682312, 0.038129497319459915, 0.18971897661685944, 0.003664253745228052, -0.13758377730846405, -0.13151815533638, -0.0775466039776802, 0.03204089403152466, 0.09256472438573837, -0.025195052847266197, 0.0730566680431366, -0.019818134605884552, -0.006102312821894884, 0.005366210360080004, -0.024108562618494034, -0.06574662029743195, -0.125741109251976, -0.01686142571270466, 0.039553504437208176, -0.0518348403275013, -0.030010512098670006, -0.01874459907412529, 0.016380880028009415, 0.149725541472435, 0.041730768978595734, -0.014226449653506279, -0.07478255033493042, 0.013933354988694191, 0.10319709777832031, -0.10534513741731644, 0.04259045049548149, -0.06568454205989838, -0.008122086524963379, -0.060431431978940964, -0.051132041960954666, 0.13647951185703278, -0.13214078545570374, -0.010834287852048874, -0.06781769543886185, 0.07098045945167542, 0.04570788890123367, 0.009571687318384647, 0.03042326681315899, -0.0011855767806991935, -0.06912793964147568, -0.07012232393026352, -0.02581581100821495, -0.04395538941025734, -0.01677955873310566, 0.06982512772083282, -0.12592923641204834, -0.08425233513116837, -0.08011914789676666, -0.03768478333950043, 0.2288094162940979, 0.18290171027183533, -0.05857628211379051, 0.037223316729068756, 0.22955259680747986, -0.04856827110052109, -0.3177202343940735, -0.0498582124710083, -0.037608399987220764, 0.06802879273891449, 0.007571164984256029, -0.14734923839569092, 0.05487196147441864, 0.024675119668245316, -0.03875473514199257, 0.06054544821381569, -0.24268090724945068, -0.09447697550058365, 0.23863252997398376, 0.06503092497587204, 0.34327876567840576, -0.14051753282546997, -0.010554872453212738, -0.08712632209062576, -0.011893556453287601, 0.022794760763645172, -0.1541036069393158, 0.14369913935661316, 0.016607632860541344, 0.08242599666118622, 0.015918923541903496, -0.06341269612312317, 0.08468739688396454, -0.0561232715845108, 0.023351620882749557, -0.07944664359092712, -0.09144569933414459, 0.1280016154050827, -0.0026056950446218252, 0.048525530844926834, -0.00604978296905756, 0.016463754698634148, -0.021735627204179764, -0.04448311775922775, -0.03243892639875412, 0.0717770978808403, 0.017171967774629593, -0.09769436717033386, 0.0020955600775778294, 0.04808271676301956, -0.03132036700844765, 0.005982756149023771, 0.10211735963821411, -0.04559141770005226, 0.14772509038448334, 0.01199418492615223, 0.10797091573476791, -0.0020019980147480965, 0.028125427663326263, 0.023697927594184875, -0.058938201516866684, 0.08004774898290634, -0.048294372856616974, -0.03755711019039154, 0.05712687596678734, 0.009828793816268444, 0.09130717813968658, 0.07591357082128525, -0.04810812696814537, 0.046569522470235825, 0.11197149008512497, -0.11881797015666962, -0.055188871920108795, -0.027304574847221375, -0.024606289342045784, 0.02672877162694931, 0.05884787067770958, 0.10266101360321045, -0.044405799359083176, -0.02474259026348591, -0.04017772153019905, -0.03672410547733307, -0.09059006720781326, 0.11367247253656387, 0.09130055457353592, 0.03619002178311348, -0.07786738872528076, 0.0311396736651659, 0.02323867753148079, -0.09386405348777771, 0.03398832306265831, 0.12441933155059814, -0.11013668775558472, -0.09371691197156906, 0.01971607469022274, 0.17998063564300537, -0.06251515448093414, -0.06592237204313278, -0.12928186357021332, -0.10518412292003632, 0.019497888162732124, 0.10729169100522995, 0.09088790416717529, -0.02900189720094204, -0.04077219218015671, 0.047641851007938385, -0.06977438926696777, 0.04830286651849747, 0.07562756538391113, -0.022047458216547966, -0.12564638257026672, 0.04261534661054611, 0.010895291343331337, 0.07571001350879669, -0.05666119232773781, -0.06493066251277924, -0.20434829592704773, 0.1040063351392746, -0.03156694024801254, -0.001046599238179624, -0.07757451385259628, -0.043865084648132324, -0.03331741690635681, -0.04044710099697113, -0.04261244833469391, -0.01709180511534214, -0.10464277118444443, 0.025630272924900055, -0.018092883750796318, 0.011382224969565868, 0.021042505279183388, -0.037342049181461334, 0.05273730680346489, -0.04626418277621269, 0.06684254109859467, 0.11042256653308868, -0.06871714442968369, 0.08097018301486969, -0.19203044474124908, -0.008699951693415642, 0.060698751360177994, -0.0022309073247015476, 0.09433228522539139, 0.007302462588995695, 0.04643864557147026, -0.002359511097893119, 0.08589326590299606, 0.024329669773578644, 0.03473345562815666, -0.09452484548091888, 0.02992192842066288, -0.0005295298178680241, -0.14352448284626007, -0.05391319841146469, 0.02738800272345543, 0.08809973299503326, 0.03407025709748268, 0.11283417046070099, -0.10458403825759888, 0.08770472556352615, -0.07690533250570297, 0.0010911391582340002, -0.01735224761068821, -0.12865030765533447, -0.11071605980396271, -0.0808483436703682, 0.040114372968673706, -0.06361198425292969, 0.14319263398647308, 0.04143035039305687, 0.02807111106812954, -0.02800118550658226, -0.04567030444741249, 0.003977281507104635, 0.04194261133670807, 0.15215964615345, 0.09443017095327377, -0.04055815562605858, -0.11737241595983505, 0.06568171828985214, 0.02883158065378666, 0.04236815869808197, 0.06466427445411682, 0.10467424243688583, 0.11577664315700531, 0.12818346917629242, -0.004742298275232315, 0.06961045414209366, -0.08844640851020813, -0.050286807119846344, 0.019701140001416206, 0.013996421359479427, -0.0006243295501917601, 0.024615680798888206, 0.2989015579223633, -0.06959868222475052, 0.045809779316186905, -0.04788273945450783, -0.07004697620868683, -0.1892378032207489, -0.20585694909095764, -0.09226860851049423, -0.028284676373004913, 0.011739946901798248, -0.08558256924152374, -0.007978308014571667, 0.021613122895359993, 0.050330787897109985, -0.023157142102718353, 0.1325352042913437, 0.06447798758745193, -0.0727059543132782, 0.07329224050045013, -0.021994056180119514, 0.05654458701610565, 0.03454988822340965, -0.022428182885050774, -0.10610781610012054, -0.07280024141073227, -0.0223271232098341, -0.039586566388607025, -0.08776574581861496, 0.02875405177474022, -0.10534988343715668, -0.05585722625255585, -0.043275464326143265, 0.05519679933786392, 0.05938879773020744, 0.06934686750173569, 0.027212025597691536, -0.10379766672849655, 0.02558431215584278, 0.19248872995376587, -0.032162100076675415, -0.1884964555501938, -0.1268942952156067, 0.30712032318115234, 0.026301391422748566, 0.061816055327653885, -0.08027289062738419, 0.022338831797242165, -0.0053219273686409, 0.35080885887145996, 0.32489556074142456, -0.0959567129611969, 0.013057463802397251, 0.020144760608673096, 0.01090316753834486, -0.012547471560537815, 0.14505507051944733, 0.08681005984544754, 0.2891113758087158, -0.07992883771657944, -0.029847295954823494, -0.06103777140378952, -0.034277088940143585, -0.16493357717990875, 0.010512910783290863, 0.09894195199012756, -0.009068612940609455, -0.039400771260261536, 0.1331646591424942, -0.1803329735994339, 0.012991991825401783, -0.020007561892271042, -0.18579721450805664, -0.12438517063856125, -0.049753155559301376, 0.06308048963546753, 0.07751084119081497, 0.11878927797079086, -0.07040722668170929, -0.04940363019704819, -0.09114145487546921, 0.01841490902006626, -0.06798754632472992, -0.07398400455713272, 0.10384278744459152, 0.09512092173099518, 0.0804273709654808, -0.0390830896794796, 0.02130972594022751, 0.13632193207740784, 0.012451530434191227, -0.007471355143934488, 0.12948563694953918, 0.014298303984105587, 0.04941102862358093, 0.0281495563685894, 0.014484085142612457, -0.049641165882349014, -0.043116893619298935, 0.0194392129778862, -0.10787808150053024, 0.08290032297372818, -0.013884318992495537, -0.02362656407058239, -0.07023096829652786, 0.12260425090789795, -0.05615215003490448, 0.10657071322202682, 0.14869646728038788, -0.00469556450843811, 0.01875593699514866, -0.04485579952597618, 0.06097223609685898, 0.06572280079126358, -0.10268702358007431, -0.11858800798654556, -0.12468359619379044, -0.09141256660223007, 0.05915571004152298, -0.023102540522813797, -0.2034868746995926, -0.0044338032603263855, -0.08981695771217346, -0.0005302767385728657, -0.11224491894245148, 0.06454040110111237, 0.1465035229921341, 0.06683658808469772, 0.011234622448682785, 0.03389599546790123, -0.008171062916517258, 0.09155454486608505, -0.16185560822486877, -0.1152130737900734 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6660 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8471 | 0.58 | | No log | 2.0 | 114 | 0.8450 | 0.58 | | No log | 3.0 | 171 | 0.7846 | 0.58 | | No log | 4.0 | 228 | 0.8649 | 0.58 | | No log | 5.0 | 285 | 0.7220 | 0.68 | | No log | 6.0 | 342 | 0.7395 | 0.66 | | No log | 7.0 | 399 | 0.7198 | 0.72 | | No log | 8.0 | 456 | 0.6417 | 0.72 | | 0.7082 | 9.0 | 513 | 0.6265 | 0.74 | | 0.7082 | 10.0 | 570 | 0.6660 | 0.7 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"]}
text-classification
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 ======================================================================== This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6660 * Accuracy: 0.7 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ 56, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ -0.10087471455335617, 0.07445205003023148, -0.0018672136357054114, 0.11826130747795105, 0.18967922031879425, 0.030420133844017982, 0.12296590954065323, 0.11705076694488525, -0.0897965282201767, 0.012555219233036041, 0.12275653332471848, 0.1861649751663208, 0.0020518277306109667, 0.10130710899829865, -0.05488329753279686, -0.2777828276157379, -0.021608062088489532, 0.05884600803256035, -0.06829068064689636, 0.13765493035316467, 0.09370884299278259, -0.14887546002864838, 0.08389528095722198, 0.008579831570386887, -0.2360214740037918, 0.01208409108221531, 0.029537731781601906, -0.06604434549808502, 0.15655776858329773, 0.020534250885248184, 0.13675643503665924, 0.010262326337397099, 0.08835168927907944, -0.1649406999349594, 0.01310371607542038, 0.04397793859243393, 0.00755735021084547, 0.0942433774471283, 0.06052087992429733, -0.007056636270135641, 0.11515629291534424, -0.07371179014444351, 0.05946892872452736, 0.021689768880605698, -0.13217361271381378, -0.2126310020685196, -0.06642154604196548, 0.02727845311164856, 0.05743500962853432, 0.09789297729730606, -0.006133230868726969, 0.13622774183750153, -0.09938891977071762, 0.09681244194507599, 0.22032880783081055, -0.28256186842918396, -0.06461110711097717, 0.043785568326711655, 0.014646513387560844, 0.07640674710273743, -0.12039827555418015, -0.014144625514745712, 0.0585813969373703, 0.04299136623740196, 0.13209235668182373, -0.03688430413603783, -0.08971057087182999, 0.023791104555130005, -0.141779825091362, -0.02241506800055504, 0.1186365932226181, 0.026175886392593384, -0.027931388467550278, -0.03819325193762779, -0.05127131938934326, -0.16317535936832428, -0.0438343770802021, -0.017387235537171364, 0.04449324682354927, -0.04007164388895035, -0.0830298662185669, -0.0016397204017266631, -0.1107645034790039, -0.06427336484193802, -0.06960709393024445, 0.1529645323753357, 0.03561661019921303, 0.008191050961613655, -0.03942060098052025, 0.1089097410440445, -0.003116583451628685, -0.1283807009458542, 0.037175390869379044, 0.03050795942544937, 0.0017121904529631138, -0.06318014860153198, -0.06389949470758438, -0.07560490071773529, -0.0054520536214113235, 0.08795551210641861, -0.05356671288609505, 0.04373497888445854, 0.039178043603897095, 0.046573515981435776, -0.09148012101650238, 0.20813997089862823, -0.036197729408741, -0.009130986407399178, -0.000954429735429585, 0.04212907329201698, -0.012447568587958813, -0.009528695605695248, -0.13113956153392792, -0.003041745163500309, 0.11384139209985733, 0.010072685778141022, -0.08009220659732819, 0.07969297468662262, -0.04706133157014847, -0.03210445120930672, 0.004182311240583658, -0.09002657979726791, 0.038868069648742676, 0.00031449150992557406, -0.08443127572536469, -0.01521297823637724, 0.01800416223704815, 0.013403691351413727, -0.020411815494298935, 0.1369602233171463, -0.09691087156534195, 0.04585041105747223, -0.10298489034175873, -0.12360896915197372, 0.005544786807149649, -0.09445403516292572, 0.028048787266016006, -0.09776705503463745, -0.1468457728624344, -0.01642313413321972, 0.048322275280952454, -0.021601524204015732, -0.04933108389377594, -0.05346988886594772, -0.06828141957521439, 0.002529844641685486, -0.012349748983979225, 0.14158034324645996, -0.05274554714560509, 0.11273174732923508, 0.03212076053023338, 0.06280422955751419, -0.05475148931145668, 0.0652107521891594, -0.09677635133266449, -0.0034415952395647764, -0.19186139106750488, 0.04712645709514618, -0.040700025856494904, 0.07201069593429565, -0.0821763426065445, -0.11528884619474411, 0.017881454899907112, 0.0045051840133965015, 0.07057970762252808, 0.09806141257286072, -0.162412628531456, -0.08723504841327667, 0.15380562841892242, -0.058673568069934845, -0.10650723427534103, 0.11127647757530212, -0.07199294865131378, 0.06915052980184555, 0.08555793762207031, 0.17237983644008636, 0.07330083101987839, -0.07016393542289734, 0.03746413066983223, -0.004778741858899593, 0.04778588190674782, -0.07594197243452072, 0.05105135962367058, 0.0015088138170540333, -0.0023246698547154665, 0.03326098620891571, -0.024722347036004066, 0.059644389897584915, -0.10566816478967667, -0.08970538526773453, -0.026380063965916634, -0.096671462059021, 0.07834067940711975, 0.08191876858472824, 0.09922488778829575, -0.09693557769060135, -0.07112260907888412, 0.10247140377759933, 0.060264505445957184, -0.05659811198711395, 0.025869399309158325, -0.056365933269262314, 0.06030962988734245, -0.042948611080646515, -0.03022135980427265, -0.19571557641029358, -0.011244597844779491, 0.005565489176660776, 0.020473124459385872, 0.030352793633937836, 0.037365250289440155, 0.0727711096405983, 0.059891607612371445, -0.057853590697050095, -0.009954105131328106, -0.013413921929895878, 0.00007325362821575254, -0.1546209156513214, -0.18935628235340118, -0.02566433697938919, -0.015149794518947601, 0.11270678043365479, -0.21750064194202423, 0.04049839451909065, -0.01805323362350464, 0.06106065958738327, 0.0055373902432620525, -0.009839157573878765, -0.05142056941986084, 0.0920400619506836, -0.03185184299945831, -0.04095391184091568, 0.08654773235321045, -0.003454808611422777, -0.08718836307525635, -0.04336337372660637, -0.10840009897947311, 0.18414044380187988, 0.14098884165287018, -0.1454484462738037, -0.09236498177051544, -0.012755293399095535, -0.05156616494059563, -0.02170892059803009, -0.04523766413331032, 0.03586788475513458, 0.20059514045715332, -0.012268475256860256, 0.1612502485513687, -0.06689981371164322, -0.04583900421857834, 0.0223530326038599, -0.03364070504903793, 0.03314638137817383, 0.12456385791301727, 0.12383009493350983, -0.08955555409193039, 0.1395193487405777, 0.1415599286556244, -0.08706090599298477, 0.14398406445980072, -0.030128633603453636, -0.06498973071575165, -0.012251322157680988, -0.03653278574347496, -0.0023718972224742174, 0.09199409186840057, -0.15647822618484497, -0.01872975192964077, 0.015141311101615429, 0.015821296721696854, 0.02420075424015522, -0.22974810004234314, -0.04504149779677391, 0.03679995611310005, -0.02951870672404766, -0.011743026785552502, -0.017482250928878784, 0.013256818056106567, 0.1132611334323883, 0.004455277696251869, -0.08083771914243698, 0.03977440297603607, 0.007252393290400505, -0.08455335348844528, 0.22437596321105957, -0.07326865196228027, -0.14848440885543823, -0.1264139711856842, -0.08501695841550827, -0.03692084550857544, 0.01439812034368515, 0.05887556076049805, -0.10111205279827118, -0.021752193570137024, -0.04804990068078041, 0.022130535915493965, -0.016008267179131508, 0.035250235348939896, -0.01606730930507183, 0.000024005617888178676, 0.054995566606521606, -0.10992296785116196, -0.012746360152959824, -0.06429212540388107, -0.06623243540525436, 0.05292920023202896, 0.027794810011982918, 0.108037568628788, 0.1753002107143402, -0.04140227288007736, 0.011297591961920261, -0.03701674938201904, 0.2273317575454712, -0.0702124610543251, -0.029910041019320488, 0.12312145531177521, -0.014154007658362389, 0.051207881420850754, 0.10723748803138733, 0.08148995786905289, -0.08613479882478714, 0.0070084636099636555, 0.026971017941832542, -0.042264122515916824, -0.22022873163223267, -0.04610889405012131, -0.0532478466629982, -0.02569865994155407, 0.09923196583986282, 0.0243906881660223, 0.053167764097452164, 0.07749416679143906, 0.054372914135456085, 0.07975420355796814, -0.042837146669626236, 0.05561673268675804, 0.11992864310741425, 0.041178494691848755, 0.13108029961585999, -0.04205411672592163, -0.07842884212732315, 0.027184495702385902, -0.03142145276069641, 0.21111464500427246, 0.012256471440196037, 0.12763746082782745, 0.054450590163469315, 0.16881492733955383, 0.016810424625873566, 0.08852731436491013, -0.000012786502338713035, -0.05023816600441933, -0.009649022482335567, -0.036660656332969666, -0.039399489760398865, 0.013165823183953762, -0.0456901378929615, 0.05036661773920059, -0.13636426627635956, -0.02900124527513981, 0.04399678111076355, 0.22730059921741486, 0.030904410406947136, -0.3303312361240387, -0.08747995644807816, -0.004409965593367815, -0.02814365178346634, -0.016618741676211357, 0.015298642218112946, 0.09671124070882797, -0.10410208255052567, 0.019142666831612587, -0.07129934430122375, 0.09567778557538986, -0.047720976173877716, 0.05531203746795654, 0.06544215232133865, 0.0835597962141037, -0.005873092450201511, 0.08351713418960571, -0.3126921057701111, 0.27711209654808044, 0.005778764374554157, 0.06630592793226242, -0.08003444224596024, -0.01509715337306261, 0.030926426872611046, 0.07679086923599243, 0.055114392191171646, -0.014640505425632, -0.004996994510293007, -0.22130127251148224, -0.037120431661605835, 0.023882251232862473, 0.09651049226522446, -0.033639054745435715, 0.09181001037359238, -0.025505540892481804, 0.0076469918712973595, 0.0789426639676094, -0.020320424810051918, -0.03980683535337448, -0.08821604400873184, -0.016357718035578728, 0.008503307588398457, -0.0370405875146389, -0.054707664996385574, -0.12074162811040878, -0.13418833911418915, 0.15585695207118988, -0.0054986304603517056, -0.03657561168074608, -0.11631700396537781, 0.09414570778608322, 0.06403425335884094, -0.09031129628419876, 0.04169662296772003, 0.007905388250946999, 0.0650867372751236, 0.023276949301362038, -0.06935807317495346, 0.11569317430257797, -0.05001915246248245, -0.15496185421943665, -0.060223743319511414, 0.10384432971477509, 0.04059140384197235, 0.06356358528137207, -0.002912263385951519, 0.01480117253959179, -0.03248436748981476, -0.09006933122873306, 0.019769685342907906, -0.020521096885204315, 0.07017780840396881, 0.015280917286872864, -0.06729315966367722, 0.012287702411413193, -0.06670353561639786, -0.020423775538802147, 0.20356030762195587, 0.21988023817539215, -0.10152546316385269, 0.017125777900218964, 0.038257524371147156, -0.07485830783843994, -0.2050040066242218, 0.06558529287576675, 0.06073904037475586, 0.0072907558642327785, 0.048449527472257614, -0.17169135808944702, 0.13440638780593872, 0.09380823373794556, -0.005063493736088276, 0.11106094717979431, -0.3216880261898041, -0.13513824343681335, 0.12704159319400787, 0.15944857895374298, 0.13189969956874847, -0.1420527845621109, -0.01899045519530773, -0.020513547584414482, -0.11597258597612381, 0.10896537452936172, -0.06535527110099792, 0.12542490661144257, -0.028553416952490807, 0.09781292825937271, 0.013191691599786282, -0.059483449906110764, 0.1041710376739502, 0.026370512321591377, 0.09837990999221802, -0.06412239372730255, -0.07025934010744095, 0.04213874414563179, -0.030555158853530884, 0.0063324798829853535, -0.05739928409457207, 0.01748286373913288, -0.10120146721601486, -0.0273833479732275, -0.08622881025075912, 0.04288238286972046, -0.037829507142305374, -0.06904426217079163, -0.031890619546175, 0.025272948667407036, 0.03649219870567322, -0.01712815649807453, 0.12754672765731812, -0.00017206979100592434, 0.16839542984962463, 0.11143731325864792, 0.08624520897865295, -0.06643806397914886, -0.0680655762553215, -0.013635866343975067, -0.015448175370693207, 0.05677620321512222, -0.13587656617164612, 0.024703465402126312, 0.1463315188884735, 0.0293254517018795, 0.13956840336322784, 0.09108337014913559, -0.016175590455532074, 0.009848171845078468, 0.062446098774671555, -0.15549932420253754, -0.07894393801689148, -0.012652570381760597, -0.08286992460489273, -0.10476948320865631, 0.05083287134766579, 0.08412737399339676, -0.07291921973228455, -0.01228847075253725, -0.01220008172094822, -0.012532250955700874, -0.05991440266370773, 0.20119494199752808, 0.07473272830247879, 0.049112964421510696, -0.10324537009000778, 0.05423522740602493, 0.059235602617263794, -0.06756359338760376, -0.005590261425822973, 0.07764670997858047, -0.08241984248161316, -0.04313085973262787, 0.09108132123947144, 0.19661317765712738, -0.07557334750890732, -0.026381639763712883, -0.13812591135501862, -0.12503010034561157, 0.0752948746085167, 0.17032550275325775, 0.1168777346611023, 0.007034961134195328, -0.06915662437677383, 0.011166122741997242, -0.13221776485443115, 0.07713543623685837, 0.03492147848010063, 0.0688253864645958, -0.12926004827022552, 0.20082725584506989, 0.006491682026535273, 0.04704971984028816, -0.026859266683459282, 0.018505925312638283, -0.1156233549118042, 0.01872982084751129, -0.11804894357919693, -0.030524052679538727, -0.020023100078105927, 0.002488550031557679, -0.01170563418418169, -0.06073109805583954, -0.05017226189374924, 0.0036896364763379097, -0.12547366321086884, -0.01566261053085327, 0.03781323879957199, 0.051480237394571304, -0.1106124147772789, -0.0357719361782074, 0.015596827492117882, -0.049096908420324326, 0.060551486909389496, 0.040603190660476685, 0.011029127053916454, 0.0704314112663269, -0.14901046454906464, 0.00571257621049881, 0.06861218065023422, 0.003913934342563152, 0.07239187508821487, -0.06439506262540817, -0.0014872022438794374, -0.004179536364972591, 0.07989631593227386, 0.030029090121388435, 0.06473201513290405, -0.1428796350955963, 0.003717373125255108, -0.023107990622520447, -0.08673097938299179, -0.06917595863342285, 0.037239108234643936, 0.07201912254095078, 0.008112939074635506, 0.18997791409492493, -0.08107025921344757, 0.04985703527927399, -0.2123512625694275, -0.0034258824307471514, -0.015839487314224243, -0.11317837983369827, -0.11147201061248779, -0.07770148664712906, 0.06653372943401337, -0.05245012044906616, 0.1361333280801773, 0.0531688816845417, 0.04716285690665245, 0.03165140748023987, -0.01215999387204647, 0.013594666495919228, 0.024500884115695953, 0.21904048323631287, 0.036557089537382126, -0.041461773216724396, 0.0626106783747673, 0.07423950731754303, 0.0950976088643074, 0.12400675565004349, 0.2043699473142624, 0.14615650475025177, -0.039489734917879105, 0.08055940270423889, 0.025782953947782516, -0.036622971296310425, -0.14954398572444916, 0.030974775552749634, -0.043097931891679764, 0.09213200956583023, -0.03084328956902027, 0.2113218605518341, 0.05836709961295128, -0.17056569457054138, 0.05148068070411682, -0.053073156625032425, -0.09523463249206543, -0.10976426303386688, -0.040263086557388306, -0.08308563381433487, -0.1302037239074707, 0.003760353894904256, -0.10824208706617355, 0.016063503921031952, 0.1118280291557312, 0.007795763202011585, -0.034358538687229156, 0.15871919691562653, 0.01847602240741253, 0.02101091295480728, 0.06819093227386475, 0.003941171802580357, -0.01705554872751236, -0.12275547534227371, -0.05359440669417381, -0.025766249746084213, -0.011823983862996101, 0.027921436354517937, -0.062184035778045654, -0.07204703241586685, 0.02614426054060459, -0.025676319375634193, -0.10380465537309647, 0.01753372885286808, 0.024549825116991997, 0.07222782075405121, 0.03785202279686928, 0.0025171011220663786, 0.010276084765791893, -0.021117808297276497, 0.21757149696350098, -0.0725889801979065, -0.0768909826874733, -0.07946910709142685, 0.2860095202922821, 0.05348288267850876, -0.0017552237259224057, 0.03149405121803284, -0.0645890161395073, 0.017016947269439697, 0.26553279161453247, 0.21850821375846863, -0.09494562447071075, 0.0003310833708383143, 0.004261404741555452, -0.009674965403974056, -0.000014652546269644517, 0.13021469116210938, 0.11598257720470428, 0.04604387283325195, -0.10280904173851013, -0.026232212781906128, -0.053591545671224594, -0.012847300618886948, -0.037330057471990585, 0.07293705642223358, 0.061060208827257156, 0.005256067030131817, -0.04757178574800491, 0.06412451714277267, -0.07306212931871414, -0.09998247772455215, 0.06492608785629272, -0.2123156487941742, -0.15849162638187408, -0.01606045477092266, 0.09352979063987732, 0.00341704860329628, 0.07219978421926498, -0.025162888690829277, 0.0015745960408821702, 0.051409583538770676, -0.017110226675868034, -0.09932514280080795, -0.07319658994674683, 0.09871815890073776, -0.1166648268699646, 0.18572978675365448, -0.04479580745100975, 0.06175870820879936, 0.11920980364084244, 0.06929562985897064, -0.052779149264097214, 0.06122441589832306, 0.03398152068257332, -0.07694023847579956, 0.038557518273591995, 0.08231307566165924, -0.028508564457297325, 0.036955755203962326, 0.03263469412922859, -0.14628484845161438, 0.03771299123764038, -0.09448335319757462, -0.06003115326166153, -0.04207547754049301, -0.043769653886556625, -0.05183563008904457, 0.12642541527748108, 0.22688649594783783, -0.019478969275951385, 0.006698258686810732, -0.0734444409608841, 0.0020292436238378286, 0.05666620284318924, 0.012660848908126354, -0.08469624072313309, -0.22923652827739716, 0.0015962637262418866, 0.06408537924289703, -0.02862069196999073, -0.25650307536125183, -0.08264486491680145, -0.001982743851840496, -0.07134432345628738, -0.0932161808013916, 0.08230649679899216, 0.07807870954275131, 0.053940895944833755, -0.053267452865839005, -0.07987610250711441, -0.07627292722463608, 0.16460570693016052, -0.15345199406147003, -0.09168349951505661 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 1.3510 | 0.54 | | No log | 2.0 | 114 | 0.9606 | 0.54 | | No log | 3.0 | 171 | 0.9693 | 0.54 | | No log | 4.0 | 228 | 1.0445 | 0.54 | | No log | 5.0 | 285 | 1.0005 | 0.54 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"]}
text-classification
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2 ======================================================================== This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0005 * Accuracy: 0.54 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.003 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 56, 97, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.10349975526332855, 0.06344456970691681, -0.0019184647826477885, 0.11987123638391495, 0.19383825361728668, 0.03553709015250206, 0.11946290731430054, 0.11506819725036621, -0.0921780988574028, 0.011194009333848953, 0.12322049587965012, 0.18850217759609222, 0.0010970896109938622, 0.08295973390340805, -0.05663697421550751, -0.2735445201396942, -0.0246647410094738, 0.05330060049891472, -0.06946317851543427, 0.135460764169693, 0.09445960074663162, -0.146188884973526, 0.08417535573244095, 0.005692576989531517, -0.23398488759994507, 0.016236644238233566, 0.03216125816106796, -0.059385690838098526, 0.15740671753883362, 0.02042636275291443, 0.14010050892829895, 0.006836684420704842, 0.0890783816576004, -0.16948877274990082, 0.014642707072198391, 0.04968752712011337, 0.005074121057987213, 0.09238757938146591, 0.06538393348455429, -0.011776994913816452, 0.12884695827960968, -0.07749283313751221, 0.056903284043073654, 0.023865727707743645, -0.13188563287258148, -0.20555731654167175, -0.06734432280063629, 0.013664310798048973, 0.056952737271785736, 0.10089671611785889, -0.004098115023225546, 0.13478153944015503, -0.10412298887968063, 0.09907609969377518, 0.22220546007156372, -0.28443679213523865, -0.06638854742050171, 0.04972411319613457, 0.007902383804321289, 0.0806228369474411, -0.11729621142148972, -0.008129745721817017, 0.054393719881772995, 0.04416169598698616, 0.13132822513580322, -0.038020092993974686, -0.09691240638494492, 0.02836534008383751, -0.1407090276479721, -0.020156629383563995, 0.11667231470346451, 0.023953180760145187, -0.03011619672179222, -0.03211808204650879, -0.05178442969918251, -0.15914560854434967, -0.040777549147605896, -0.01471991278231144, 0.04294143617153168, -0.036381661891937256, -0.07734332233667374, -0.0053032273426651955, -0.11117502301931381, -0.07190420478582382, -0.07392175495624542, 0.1590186357498169, 0.036149680614471436, 0.01088380441069603, -0.03767021745443344, 0.11194378137588501, -0.0015582783380523324, -0.12744517624378204, 0.03522256016731262, 0.031644754111766815, -0.005154567304998636, -0.062154751271009445, -0.06587875634431839, -0.0824107974767685, -0.00172227225266397, 0.07819213718175888, -0.05011265352368355, 0.0448751337826252, 0.04172651097178459, 0.04531484469771385, -0.09778149425983429, 0.2005617618560791, -0.03291850909590721, -0.006867273710668087, -0.0019516113679856062, 0.03737768158316612, -0.015111275017261505, -0.013271884992718697, -0.12827883660793304, -0.005179877392947674, 0.10421895980834961, 0.012189898639917374, -0.08036947250366211, 0.07848885655403137, -0.04792110621929169, -0.03147523105144501, -0.008730198256671429, -0.0914900004863739, 0.0396302305161953, 0.003149918280541897, -0.08248874545097351, -0.022175395861268044, 0.018364133313298225, 0.016891784965991974, -0.022277481853961945, 0.13812187314033508, -0.09204432368278503, 0.046068254858255386, -0.10505478829145432, -0.12402471154928207, -0.00013229201431386173, -0.0990481972694397, 0.02580234967172146, -0.09585228562355042, -0.15151406824588776, -0.018140273168683052, 0.050865791738033295, -0.02352742664515972, -0.045944612473249435, -0.05282685533165932, -0.06611424684524536, 0.0026201284490525723, -0.009046456776559353, 0.15165206789970398, -0.05405573919415474, 0.10976162552833557, 0.030187658965587616, 0.05825664848089218, -0.05620517209172249, 0.06406164914369583, -0.09123047441244125, -0.005086524877697229, -0.17983601987361908, 0.04769642651081085, -0.0392010435461998, 0.07152712345123291, -0.08167752623558044, -0.10967840999364853, 0.011800778098404408, 0.003535629017278552, 0.07156714797019958, 0.09769883751869202, -0.17325372993946075, -0.08298186212778091, 0.15089890360832214, -0.054416049271821976, -0.10276492685079575, 0.11342766880989075, -0.0751129686832428, 0.06410781294107437, 0.08543961495161057, 0.16500547528266907, 0.08148369938135147, -0.06606651097536087, 0.04554460942745209, 0.0007238585967570543, 0.04752262309193611, -0.07413946092128754, 0.050699129700660706, -0.0024784456472843885, -0.014704499393701553, 0.03344373404979706, -0.02159540168941021, 0.05575539916753769, -0.10607803612947464, -0.09387324005365372, -0.031494129449129105, -0.09718593209981918, 0.07324177026748657, 0.08279352635145187, 0.09782934188842773, -0.09788758307695389, -0.06564809381961823, 0.08608832210302353, 0.06179545074701309, -0.05282195657491684, 0.025414662435650826, -0.050718821585178375, 0.058081161230802536, -0.03951388970017433, -0.02988150715827942, -0.19815365970134735, -0.011575696058571339, 0.004626043606549501, 0.030264893546700478, 0.030450081452727318, 0.04323921725153923, 0.0743846520781517, 0.060396213084459305, -0.05827020853757858, -0.003216044045984745, -0.011834768578410149, -0.0009273603209294379, -0.15712593495845795, -0.19882987439632416, -0.023856354877352715, -0.016807403415441513, 0.10770367830991745, -0.22501292824745178, 0.03791084513068199, -0.022971801459789276, 0.0587056465446949, 0.0024185371585190296, -0.010020165704190731, -0.053585853427648544, 0.0935823991894722, -0.03260447829961777, -0.03903326019644737, 0.08782321214675903, -0.004697255324572325, -0.09051459282636642, -0.046109575778245926, -0.10222547501325607, 0.1844615489244461, 0.1352466195821762, -0.15305031836032867, -0.08912665396928787, -0.012967649847269058, -0.04944417253136635, -0.022238854318857193, -0.052325401455163956, 0.04167763888835907, 0.20627228915691376, -0.01140100322663784, 0.16016677021980286, -0.06499595195055008, -0.04146505892276764, 0.02113158255815506, -0.032578740268945694, 0.037301573902368546, 0.12742920219898224, 0.12302359938621521, -0.0946425274014473, 0.1319817453622818, 0.13859876990318298, -0.09339684247970581, 0.14339867234230042, -0.029006466269493103, -0.06436686217784882, -0.01003218162804842, -0.030121903866529465, -0.00024357566144317389, 0.08951583504676819, -0.15847282111644745, -0.0195428729057312, 0.013582766987383366, 0.018528880551457405, 0.023226063698530197, -0.23057302832603455, -0.04769810661673546, 0.04078400135040283, -0.031961839646101, -0.012888779863715172, -0.017164386808872223, 0.011581255123019218, 0.11415606737136841, 0.0019458717433735728, -0.0836932510137558, 0.03800475597381592, 0.0032988088205456734, -0.08583945780992508, 0.22544832527637482, -0.07000870257616043, -0.13695409893989563, -0.12508736550807953, -0.0814225897192955, -0.04510823264718056, 0.01567450538277626, 0.057074639946222305, -0.10383432358503342, -0.021394316107034683, -0.04927509278059006, 0.015486709773540497, -0.02213936112821102, 0.03974810615181923, -0.024948112666606903, 0.0009653024026192725, 0.054925620555877686, -0.11074631661176682, -0.011730954982340336, -0.06496027112007141, -0.07545340061187744, 0.04962506890296936, 0.029452083632349968, 0.10861045867204666, 0.1703566461801529, -0.03815723955631256, 0.010563071817159653, -0.03295049071311951, 0.22508935630321503, -0.06789840757846832, -0.03588700294494629, 0.12103001028299332, -0.013732951134443283, 0.04993169382214546, 0.10703761130571365, 0.08411391824483871, -0.08491749316453934, 0.007716527674347162, 0.03330645337700844, -0.04401382803916931, -0.22557516396045685, -0.04345863312482834, -0.0602383054792881, -0.03406121954321861, 0.09771441668272018, 0.02816399373114109, 0.053060244768857956, 0.0778566524386406, 0.054240692406892776, 0.08224654942750931, -0.04418935254216194, 0.0515282042324543, 0.10873981565237045, 0.04451474919915199, 0.13151493668556213, -0.04425540566444397, -0.07655186206102371, 0.029729070141911507, -0.03721974790096283, 0.22580046951770782, 0.014185202307999134, 0.1280866116285324, 0.058364272117614746, 0.176515132188797, 0.013077834621071815, 0.09060919284820557, -0.0037198341451585293, -0.050707995891571045, -0.009184770286083221, -0.03844541683793068, -0.03788617253303528, 0.012511059641838074, -0.047076378017663956, 0.05248333513736725, -0.1360103189945221, -0.02391052059829235, 0.043538209050893784, 0.23324742913246155, 0.027890371158719063, -0.3213478922843933, -0.07819756120443344, -0.0009721650276333094, -0.024758731946349144, -0.017275214195251465, 0.014492114074528217, 0.10018511861562729, -0.10297562927007675, 0.017284579575061798, -0.06827205419540405, 0.09886271506547928, -0.04578384384512901, 0.05316316336393356, 0.0660601332783699, 0.08744175732135773, -0.006892805453389883, 0.08589950948953629, -0.3237849771976471, 0.28395694494247437, 0.008242788724601269, 0.07048019021749496, -0.08349333703517914, -0.014894912950694561, 0.035522766411304474, 0.07905026525259018, 0.05296725034713745, -0.013275490142405033, -0.004813314415514469, -0.21648839116096497, -0.032750893384218216, 0.027373407036066055, 0.09964877367019653, -0.035447102040052414, 0.08686181157827377, -0.02772245556116104, 0.010609190911054611, 0.08096246421337128, -0.012654272839426994, -0.04776868224143982, -0.08864118903875351, -0.01847808063030243, 0.014668532647192478, -0.05305170640349388, -0.052875593304634094, -0.11699574440717697, -0.1332307755947113, 0.15767274796962738, -0.006962991785258055, -0.031018724665045738, -0.11835809051990509, 0.08896848559379578, 0.061894603073596954, -0.08979585021734238, 0.04040545970201492, 0.005989388562738895, 0.05763566493988037, 0.027232542634010315, -0.0707092359662056, 0.11401735991239548, -0.05131986737251282, -0.15252405405044556, -0.062492355704307556, 0.09780584275722504, 0.04160023853182793, 0.06226802617311478, -0.0034040058963000774, 0.016458183526992798, -0.03671538457274437, -0.09535864740610123, 0.022061074152588844, -0.023874713107943535, 0.07350242882966995, 0.022867076098918915, -0.06791398674249649, 0.016171369701623917, -0.06489842385053635, -0.02616119384765625, 0.2027081847190857, 0.2157335877418518, -0.10244793444871902, 0.015262852422893047, 0.031168514862656593, -0.07793587446212769, -0.2035345435142517, 0.06646257638931274, 0.06060874089598656, 0.008866299875080585, 0.05186406522989273, -0.17516878247261047, 0.1359560638666153, 0.0907803401350975, -0.005239305552095175, 0.1095181480050087, -0.3182474374771118, -0.1372329145669937, 0.13015657663345337, 0.16456176340579987, 0.13879410922527313, -0.14098799228668213, -0.021381327882409096, -0.023133128881454468, -0.11130993068218231, 0.10280897468328476, -0.09105870872735977, 0.12661361694335938, -0.028904959559440613, 0.09301742166280746, 0.01325486321002245, -0.0581507571041584, 0.1092018336057663, 0.0267864428460598, 0.10427618026733398, -0.06599090993404388, -0.0636872723698616, 0.032897572964429855, -0.03075271286070347, 0.004123343154788017, -0.06993968039751053, 0.021730398759245872, -0.10300187766551971, -0.02576817199587822, -0.08291847258806229, 0.043942566961050034, -0.03852805867791176, -0.06769789755344391, -0.03018389642238617, 0.0200948603451252, 0.037443868815898895, -0.01772717572748661, 0.1294618397951126, -0.0015514512779191136, 0.17265525460243225, 0.10809183865785599, 0.09099723398685455, -0.06387651711702347, -0.06479719281196594, -0.013149767182767391, -0.011372932232916355, 0.05671946704387665, -0.1345275193452835, 0.02564227394759655, 0.14260244369506836, 0.028693046420812607, 0.13720816373825073, 0.09243103116750717, -0.012986830435693264, 0.008091685362160206, 0.06351008266210556, -0.15343067049980164, -0.08028871566057205, -0.01250691618770361, -0.08557295054197311, -0.10487332195043564, 0.05245267227292061, 0.08163101971149445, -0.06932425498962402, -0.008498728275299072, -0.013976024463772774, -0.01608145423233509, -0.06710995733737946, 0.20318272709846497, 0.07398897409439087, 0.049744486808776855, -0.10384009033441544, 0.055352553725242615, 0.059327125549316406, -0.05742562562227249, -0.007980190217494965, 0.07562851905822754, -0.08358216285705566, -0.04526730626821518, 0.1012553796172142, 0.2069450169801712, -0.06837275624275208, -0.0266976710408926, -0.13731977343559265, -0.12614916265010834, 0.07359807193279266, 0.1659143716096878, 0.11819646507501602, 0.008722851052880287, -0.07412701100111008, 0.007998622953891754, -0.12897785007953644, 0.07469549030065536, 0.03817104548215866, 0.06889194995164871, -0.13185124099254608, 0.19969190657138824, 0.007616586051881313, 0.047689441591501236, -0.02575719729065895, 0.018698519095778465, -0.11495286971330643, 0.0216696597635746, -0.12123223394155502, -0.03136717900633812, -0.0174233578145504, 0.0043129767291247845, -0.010287737473845482, -0.0631583034992218, -0.05078831687569618, 0.006869135890156031, -0.1237027496099472, -0.016879746690392494, 0.03676268830895424, 0.05450427532196045, -0.10820280015468597, -0.03752788156270981, 0.016092706471681595, -0.04827384278178215, 0.05569826066493988, 0.044024426490068436, 0.010831336490809917, 0.07103770971298218, -0.1566322147846222, 0.01091611199080944, 0.06408701837062836, 0.0065675838850438595, 0.07160694897174835, -0.06189625337719917, 0.00038459699135273695, -0.004447216633707285, 0.0845872089266777, 0.0307387113571167, 0.06613218039274216, -0.14237742125988007, 0.002804307034239173, -0.026980813592672348, -0.09023161232471466, -0.06734411418437958, 0.03833518177270889, 0.07446122169494629, 0.012540155090391636, 0.19040116667747498, -0.0822015032172203, 0.048333026468753815, -0.2137441486120224, -0.0020784721709787846, -0.014987442642450333, -0.11221219599246979, -0.11837665736675262, -0.08299413323402405, 0.06925524771213531, -0.054399386048316956, 0.13711559772491455, 0.05725104734301567, 0.04679156467318535, 0.02790519781410694, -0.009583220817148685, 0.023688701912760735, 0.021298862993717194, 0.21829554438591003, 0.04105158895254135, -0.04167182743549347, 0.06305820494890213, 0.07212510704994202, 0.09354648739099503, 0.13008879125118256, 0.20709894597530365, 0.14616477489471436, -0.03529706224799156, 0.08035825937986374, 0.027017630636692047, -0.0451776385307312, -0.14040915668010712, 0.02581770531833172, -0.040236979722976685, 0.0881812646985054, -0.03370872884988785, 0.20639170706272125, 0.06146164610981941, -0.17317695915699005, 0.05297083035111427, -0.0525209978222847, -0.09751299023628235, -0.11856675148010254, -0.04103818163275719, -0.08384183794260025, -0.12624229490756989, 0.00286424090154469, -0.1040872186422348, 0.02061736397445202, 0.11337330937385559, 0.007630578707903624, -0.031064530834555626, 0.15981294214725494, 0.0249136034399271, 0.023781869560480118, 0.06896806508302689, 0.001138563035055995, -0.0135880121961236, -0.11822670698165894, -0.054225388914346695, -0.028463106602430344, -0.020939169451594353, 0.026710253208875656, -0.06464750319719315, -0.07250060141086578, 0.028910687193274498, -0.023940807208418846, -0.10527394711971283, 0.019085530191659927, 0.020464634522795677, 0.07144217938184738, 0.047668907791376114, 0.006640610750764608, 0.011469862423837185, -0.02051307074725628, 0.2201468050479889, -0.07415705174207687, -0.0739796981215477, -0.07692272961139679, 0.2832767367362976, 0.05276748165488243, -0.0030851862393319607, 0.029309876263141632, -0.06301488727331161, 0.022996824234724045, 0.2644723057746887, 0.22198401391506195, -0.10008440166711807, 0.0017156625399366021, 0.004613433964550495, -0.010388023220002651, 0.0018297599162906408, 0.1325909048318863, 0.11125807464122772, 0.046571020036935806, -0.10323699563741684, -0.023755885660648346, -0.049729663878679276, -0.010268076322972775, -0.04195462912321091, 0.07689587026834488, 0.06326907128095627, 0.006929346360266209, -0.04516974464058876, 0.06462287157773972, -0.072083480656147, -0.09242860227823257, 0.06921996176242828, -0.20216409862041473, -0.15772706270217896, -0.0206749327480793, 0.09373711049556732, 0.0023578680120408535, 0.0706709697842598, -0.029256004840135574, 0.0015626437962055206, 0.0473693385720253, -0.018484927713871002, -0.09992912411689758, -0.07969307154417038, 0.10250192135572433, -0.10921120643615723, 0.18491916358470917, -0.04515466466546059, 0.061046674847602844, 0.11924148350954056, 0.07198408246040344, -0.052894286811351776, 0.06195247173309326, 0.03253096342086792, -0.08159077167510986, 0.0403362400829792, 0.08183104544878006, -0.03156834840774536, 0.029758037999272346, 0.03218013048171997, -0.13679613173007965, 0.04281188175082207, -0.09324603527784348, -0.06201579049229622, -0.04260540008544922, -0.04307807609438896, -0.05386063829064369, 0.12598423659801483, 0.22882278263568878, -0.016057999804615974, 0.009294208139181137, -0.07663276046514511, 0.0008400149527005851, 0.058726128190755844, 0.01929803192615509, -0.08731043338775635, -0.22688482701778412, 0.004816829692572355, 0.07894548028707504, -0.029542788863182068, -0.25978630781173706, -0.08525197952985764, 0.0028680867981165648, -0.07483229786157608, -0.08833763003349304, 0.07849226146936417, 0.08229783922433853, 0.05503910779953003, -0.05322801694273949, -0.0993819385766983, -0.07566752284765244, 0.1634988933801651, -0.15366455912590027, -0.09342646598815918 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8396 | 0.58 | | No log | 2.0 | 114 | 0.8608 | 0.58 | | No log | 3.0 | 171 | 0.7642 | 0.68 | | No log | 4.0 | 228 | 0.8196 | 0.64 | | No log | 5.0 | 285 | 0.6477 | 0.72 | | No log | 6.0 | 342 | 0.6861 | 0.72 | | No log | 7.0 | 399 | 0.6735 | 0.74 | | No log | 8.0 | 456 | 0.6516 | 0.72 | | 0.6526 | 9.0 | 513 | 0.6707 | 0.72 | | 0.6526 | 10.0 | 570 | 0.6748 | 0.72 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"]}
text-classification
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa ====================================================================== This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6748 * Accuracy: 0.72 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ 56, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ -0.10087471455335617, 0.07445205003023148, -0.0018672136357054114, 0.11826130747795105, 0.18967922031879425, 0.030420133844017982, 0.12296590954065323, 0.11705076694488525, -0.0897965282201767, 0.012555219233036041, 0.12275653332471848, 0.1861649751663208, 0.0020518277306109667, 0.10130710899829865, -0.05488329753279686, -0.2777828276157379, -0.021608062088489532, 0.05884600803256035, -0.06829068064689636, 0.13765493035316467, 0.09370884299278259, -0.14887546002864838, 0.08389528095722198, 0.008579831570386887, -0.2360214740037918, 0.01208409108221531, 0.029537731781601906, -0.06604434549808502, 0.15655776858329773, 0.020534250885248184, 0.13675643503665924, 0.010262326337397099, 0.08835168927907944, -0.1649406999349594, 0.01310371607542038, 0.04397793859243393, 0.00755735021084547, 0.0942433774471283, 0.06052087992429733, -0.007056636270135641, 0.11515629291534424, -0.07371179014444351, 0.05946892872452736, 0.021689768880605698, -0.13217361271381378, -0.2126310020685196, -0.06642154604196548, 0.02727845311164856, 0.05743500962853432, 0.09789297729730606, -0.006133230868726969, 0.13622774183750153, -0.09938891977071762, 0.09681244194507599, 0.22032880783081055, -0.28256186842918396, -0.06461110711097717, 0.043785568326711655, 0.014646513387560844, 0.07640674710273743, -0.12039827555418015, -0.014144625514745712, 0.0585813969373703, 0.04299136623740196, 0.13209235668182373, -0.03688430413603783, -0.08971057087182999, 0.023791104555130005, -0.141779825091362, -0.02241506800055504, 0.1186365932226181, 0.026175886392593384, -0.027931388467550278, -0.03819325193762779, -0.05127131938934326, -0.16317535936832428, -0.0438343770802021, -0.017387235537171364, 0.04449324682354927, -0.04007164388895035, -0.0830298662185669, -0.0016397204017266631, -0.1107645034790039, -0.06427336484193802, -0.06960709393024445, 0.1529645323753357, 0.03561661019921303, 0.008191050961613655, -0.03942060098052025, 0.1089097410440445, -0.003116583451628685, -0.1283807009458542, 0.037175390869379044, 0.03050795942544937, 0.0017121904529631138, -0.06318014860153198, -0.06389949470758438, -0.07560490071773529, -0.0054520536214113235, 0.08795551210641861, -0.05356671288609505, 0.04373497888445854, 0.039178043603897095, 0.046573515981435776, -0.09148012101650238, 0.20813997089862823, -0.036197729408741, -0.009130986407399178, -0.000954429735429585, 0.04212907329201698, -0.012447568587958813, -0.009528695605695248, -0.13113956153392792, -0.003041745163500309, 0.11384139209985733, 0.010072685778141022, -0.08009220659732819, 0.07969297468662262, -0.04706133157014847, -0.03210445120930672, 0.004182311240583658, -0.09002657979726791, 0.038868069648742676, 0.00031449150992557406, -0.08443127572536469, -0.01521297823637724, 0.01800416223704815, 0.013403691351413727, -0.020411815494298935, 0.1369602233171463, -0.09691087156534195, 0.04585041105747223, -0.10298489034175873, -0.12360896915197372, 0.005544786807149649, -0.09445403516292572, 0.028048787266016006, -0.09776705503463745, -0.1468457728624344, -0.01642313413321972, 0.048322275280952454, -0.021601524204015732, -0.04933108389377594, -0.05346988886594772, -0.06828141957521439, 0.002529844641685486, -0.012349748983979225, 0.14158034324645996, -0.05274554714560509, 0.11273174732923508, 0.03212076053023338, 0.06280422955751419, -0.05475148931145668, 0.0652107521891594, -0.09677635133266449, -0.0034415952395647764, -0.19186139106750488, 0.04712645709514618, -0.040700025856494904, 0.07201069593429565, -0.0821763426065445, -0.11528884619474411, 0.017881454899907112, 0.0045051840133965015, 0.07057970762252808, 0.09806141257286072, -0.162412628531456, -0.08723504841327667, 0.15380562841892242, -0.058673568069934845, -0.10650723427534103, 0.11127647757530212, -0.07199294865131378, 0.06915052980184555, 0.08555793762207031, 0.17237983644008636, 0.07330083101987839, -0.07016393542289734, 0.03746413066983223, -0.004778741858899593, 0.04778588190674782, -0.07594197243452072, 0.05105135962367058, 0.0015088138170540333, -0.0023246698547154665, 0.03326098620891571, -0.024722347036004066, 0.059644389897584915, -0.10566816478967667, -0.08970538526773453, -0.026380063965916634, -0.096671462059021, 0.07834067940711975, 0.08191876858472824, 0.09922488778829575, -0.09693557769060135, -0.07112260907888412, 0.10247140377759933, 0.060264505445957184, -0.05659811198711395, 0.025869399309158325, -0.056365933269262314, 0.06030962988734245, -0.042948611080646515, -0.03022135980427265, -0.19571557641029358, -0.011244597844779491, 0.005565489176660776, 0.020473124459385872, 0.030352793633937836, 0.037365250289440155, 0.0727711096405983, 0.059891607612371445, -0.057853590697050095, -0.009954105131328106, -0.013413921929895878, 0.00007325362821575254, -0.1546209156513214, -0.18935628235340118, -0.02566433697938919, -0.015149794518947601, 0.11270678043365479, -0.21750064194202423, 0.04049839451909065, -0.01805323362350464, 0.06106065958738327, 0.0055373902432620525, -0.009839157573878765, -0.05142056941986084, 0.0920400619506836, -0.03185184299945831, -0.04095391184091568, 0.08654773235321045, -0.003454808611422777, -0.08718836307525635, -0.04336337372660637, -0.10840009897947311, 0.18414044380187988, 0.14098884165287018, -0.1454484462738037, -0.09236498177051544, -0.012755293399095535, -0.05156616494059563, -0.02170892059803009, -0.04523766413331032, 0.03586788475513458, 0.20059514045715332, -0.012268475256860256, 0.1612502485513687, -0.06689981371164322, -0.04583900421857834, 0.0223530326038599, -0.03364070504903793, 0.03314638137817383, 0.12456385791301727, 0.12383009493350983, -0.08955555409193039, 0.1395193487405777, 0.1415599286556244, -0.08706090599298477, 0.14398406445980072, -0.030128633603453636, -0.06498973071575165, -0.012251322157680988, -0.03653278574347496, -0.0023718972224742174, 0.09199409186840057, -0.15647822618484497, -0.01872975192964077, 0.015141311101615429, 0.015821296721696854, 0.02420075424015522, -0.22974810004234314, -0.04504149779677391, 0.03679995611310005, -0.02951870672404766, -0.011743026785552502, -0.017482250928878784, 0.013256818056106567, 0.1132611334323883, 0.004455277696251869, -0.08083771914243698, 0.03977440297603607, 0.007252393290400505, -0.08455335348844528, 0.22437596321105957, -0.07326865196228027, -0.14848440885543823, -0.1264139711856842, -0.08501695841550827, -0.03692084550857544, 0.01439812034368515, 0.05887556076049805, -0.10111205279827118, -0.021752193570137024, -0.04804990068078041, 0.022130535915493965, -0.016008267179131508, 0.035250235348939896, -0.01606730930507183, 0.000024005617888178676, 0.054995566606521606, -0.10992296785116196, -0.012746360152959824, -0.06429212540388107, -0.06623243540525436, 0.05292920023202896, 0.027794810011982918, 0.108037568628788, 0.1753002107143402, -0.04140227288007736, 0.011297591961920261, -0.03701674938201904, 0.2273317575454712, -0.0702124610543251, -0.029910041019320488, 0.12312145531177521, -0.014154007658362389, 0.051207881420850754, 0.10723748803138733, 0.08148995786905289, -0.08613479882478714, 0.0070084636099636555, 0.026971017941832542, -0.042264122515916824, -0.22022873163223267, -0.04610889405012131, -0.0532478466629982, -0.02569865994155407, 0.09923196583986282, 0.0243906881660223, 0.053167764097452164, 0.07749416679143906, 0.054372914135456085, 0.07975420355796814, -0.042837146669626236, 0.05561673268675804, 0.11992864310741425, 0.041178494691848755, 0.13108029961585999, -0.04205411672592163, -0.07842884212732315, 0.027184495702385902, -0.03142145276069641, 0.21111464500427246, 0.012256471440196037, 0.12763746082782745, 0.054450590163469315, 0.16881492733955383, 0.016810424625873566, 0.08852731436491013, -0.000012786502338713035, -0.05023816600441933, -0.009649022482335567, -0.036660656332969666, -0.039399489760398865, 0.013165823183953762, -0.0456901378929615, 0.05036661773920059, -0.13636426627635956, -0.02900124527513981, 0.04399678111076355, 0.22730059921741486, 0.030904410406947136, -0.3303312361240387, -0.08747995644807816, -0.004409965593367815, -0.02814365178346634, -0.016618741676211357, 0.015298642218112946, 0.09671124070882797, -0.10410208255052567, 0.019142666831612587, -0.07129934430122375, 0.09567778557538986, -0.047720976173877716, 0.05531203746795654, 0.06544215232133865, 0.0835597962141037, -0.005873092450201511, 0.08351713418960571, -0.3126921057701111, 0.27711209654808044, 0.005778764374554157, 0.06630592793226242, -0.08003444224596024, -0.01509715337306261, 0.030926426872611046, 0.07679086923599243, 0.055114392191171646, -0.014640505425632, -0.004996994510293007, -0.22130127251148224, -0.037120431661605835, 0.023882251232862473, 0.09651049226522446, -0.033639054745435715, 0.09181001037359238, -0.025505540892481804, 0.0076469918712973595, 0.0789426639676094, -0.020320424810051918, -0.03980683535337448, -0.08821604400873184, -0.016357718035578728, 0.008503307588398457, -0.0370405875146389, -0.054707664996385574, -0.12074162811040878, -0.13418833911418915, 0.15585695207118988, -0.0054986304603517056, -0.03657561168074608, -0.11631700396537781, 0.09414570778608322, 0.06403425335884094, -0.09031129628419876, 0.04169662296772003, 0.007905388250946999, 0.0650867372751236, 0.023276949301362038, -0.06935807317495346, 0.11569317430257797, -0.05001915246248245, -0.15496185421943665, -0.060223743319511414, 0.10384432971477509, 0.04059140384197235, 0.06356358528137207, -0.002912263385951519, 0.01480117253959179, -0.03248436748981476, -0.09006933122873306, 0.019769685342907906, -0.020521096885204315, 0.07017780840396881, 0.015280917286872864, -0.06729315966367722, 0.012287702411413193, -0.06670353561639786, -0.020423775538802147, 0.20356030762195587, 0.21988023817539215, -0.10152546316385269, 0.017125777900218964, 0.038257524371147156, -0.07485830783843994, -0.2050040066242218, 0.06558529287576675, 0.06073904037475586, 0.0072907558642327785, 0.048449527472257614, -0.17169135808944702, 0.13440638780593872, 0.09380823373794556, -0.005063493736088276, 0.11106094717979431, -0.3216880261898041, -0.13513824343681335, 0.12704159319400787, 0.15944857895374298, 0.13189969956874847, -0.1420527845621109, -0.01899045519530773, -0.020513547584414482, -0.11597258597612381, 0.10896537452936172, -0.06535527110099792, 0.12542490661144257, -0.028553416952490807, 0.09781292825937271, 0.013191691599786282, -0.059483449906110764, 0.1041710376739502, 0.026370512321591377, 0.09837990999221802, -0.06412239372730255, -0.07025934010744095, 0.04213874414563179, -0.030555158853530884, 0.0063324798829853535, -0.05739928409457207, 0.01748286373913288, -0.10120146721601486, -0.0273833479732275, -0.08622881025075912, 0.04288238286972046, -0.037829507142305374, -0.06904426217079163, -0.031890619546175, 0.025272948667407036, 0.03649219870567322, -0.01712815649807453, 0.12754672765731812, -0.00017206979100592434, 0.16839542984962463, 0.11143731325864792, 0.08624520897865295, -0.06643806397914886, -0.0680655762553215, -0.013635866343975067, -0.015448175370693207, 0.05677620321512222, -0.13587656617164612, 0.024703465402126312, 0.1463315188884735, 0.0293254517018795, 0.13956840336322784, 0.09108337014913559, -0.016175590455532074, 0.009848171845078468, 0.062446098774671555, -0.15549932420253754, -0.07894393801689148, -0.012652570381760597, -0.08286992460489273, -0.10476948320865631, 0.05083287134766579, 0.08412737399339676, -0.07291921973228455, -0.01228847075253725, -0.01220008172094822, -0.012532250955700874, -0.05991440266370773, 0.20119494199752808, 0.07473272830247879, 0.049112964421510696, -0.10324537009000778, 0.05423522740602493, 0.059235602617263794, -0.06756359338760376, -0.005590261425822973, 0.07764670997858047, -0.08241984248161316, -0.04313085973262787, 0.09108132123947144, 0.19661317765712738, -0.07557334750890732, -0.026381639763712883, -0.13812591135501862, -0.12503010034561157, 0.0752948746085167, 0.17032550275325775, 0.1168777346611023, 0.007034961134195328, -0.06915662437677383, 0.011166122741997242, -0.13221776485443115, 0.07713543623685837, 0.03492147848010063, 0.0688253864645958, -0.12926004827022552, 0.20082725584506989, 0.006491682026535273, 0.04704971984028816, -0.026859266683459282, 0.018505925312638283, -0.1156233549118042, 0.01872982084751129, -0.11804894357919693, -0.030524052679538727, -0.020023100078105927, 0.002488550031557679, -0.01170563418418169, -0.06073109805583954, -0.05017226189374924, 0.0036896364763379097, -0.12547366321086884, -0.01566261053085327, 0.03781323879957199, 0.051480237394571304, -0.1106124147772789, -0.0357719361782074, 0.015596827492117882, -0.049096908420324326, 0.060551486909389496, 0.040603190660476685, 0.011029127053916454, 0.0704314112663269, -0.14901046454906464, 0.00571257621049881, 0.06861218065023422, 0.003913934342563152, 0.07239187508821487, -0.06439506262540817, -0.0014872022438794374, -0.004179536364972591, 0.07989631593227386, 0.030029090121388435, 0.06473201513290405, -0.1428796350955963, 0.003717373125255108, -0.023107990622520447, -0.08673097938299179, -0.06917595863342285, 0.037239108234643936, 0.07201912254095078, 0.008112939074635506, 0.18997791409492493, -0.08107025921344757, 0.04985703527927399, -0.2123512625694275, -0.0034258824307471514, -0.015839487314224243, -0.11317837983369827, -0.11147201061248779, -0.07770148664712906, 0.06653372943401337, -0.05245012044906616, 0.1361333280801773, 0.0531688816845417, 0.04716285690665245, 0.03165140748023987, -0.01215999387204647, 0.013594666495919228, 0.024500884115695953, 0.21904048323631287, 0.036557089537382126, -0.041461773216724396, 0.0626106783747673, 0.07423950731754303, 0.0950976088643074, 0.12400675565004349, 0.2043699473142624, 0.14615650475025177, -0.039489734917879105, 0.08055940270423889, 0.025782953947782516, -0.036622971296310425, -0.14954398572444916, 0.030974775552749634, -0.043097931891679764, 0.09213200956583023, -0.03084328956902027, 0.2113218605518341, 0.05836709961295128, -0.17056569457054138, 0.05148068070411682, -0.053073156625032425, -0.09523463249206543, -0.10976426303386688, -0.040263086557388306, -0.08308563381433487, -0.1302037239074707, 0.003760353894904256, -0.10824208706617355, 0.016063503921031952, 0.1118280291557312, 0.007795763202011585, -0.034358538687229156, 0.15871919691562653, 0.01847602240741253, 0.02101091295480728, 0.06819093227386475, 0.003941171802580357, -0.01705554872751236, -0.12275547534227371, -0.05359440669417381, -0.025766249746084213, -0.011823983862996101, 0.027921436354517937, -0.062184035778045654, -0.07204703241586685, 0.02614426054060459, -0.025676319375634193, -0.10380465537309647, 0.01753372885286808, 0.024549825116991997, 0.07222782075405121, 0.03785202279686928, 0.0025171011220663786, 0.010276084765791893, -0.021117808297276497, 0.21757149696350098, -0.0725889801979065, -0.0768909826874733, -0.07946910709142685, 0.2860095202922821, 0.05348288267850876, -0.0017552237259224057, 0.03149405121803284, -0.0645890161395073, 0.017016947269439697, 0.26553279161453247, 0.21850821375846863, -0.09494562447071075, 0.0003310833708383143, 0.004261404741555452, -0.009674965403974056, -0.000014652546269644517, 0.13021469116210938, 0.11598257720470428, 0.04604387283325195, -0.10280904173851013, -0.026232212781906128, -0.053591545671224594, -0.012847300618886948, -0.037330057471990585, 0.07293705642223358, 0.061060208827257156, 0.005256067030131817, -0.04757178574800491, 0.06412451714277267, -0.07306212931871414, -0.09998247772455215, 0.06492608785629272, -0.2123156487941742, -0.15849162638187408, -0.01606045477092266, 0.09352979063987732, 0.00341704860329628, 0.07219978421926498, -0.025162888690829277, 0.0015745960408821702, 0.051409583538770676, -0.017110226675868034, -0.09932514280080795, -0.07319658994674683, 0.09871815890073776, -0.1166648268699646, 0.18572978675365448, -0.04479580745100975, 0.06175870820879936, 0.11920980364084244, 0.06929562985897064, -0.052779149264097214, 0.06122441589832306, 0.03398152068257332, -0.07694023847579956, 0.038557518273591995, 0.08231307566165924, -0.028508564457297325, 0.036955755203962326, 0.03263469412922859, -0.14628484845161438, 0.03771299123764038, -0.09448335319757462, -0.06003115326166153, -0.04207547754049301, -0.043769653886556625, -0.05183563008904457, 0.12642541527748108, 0.22688649594783783, -0.019478969275951385, 0.006698258686810732, -0.0734444409608841, 0.0020292436238378286, 0.05666620284318924, 0.012660848908126354, -0.08469624072313309, -0.22923652827739716, 0.0015962637262418866, 0.06408537924289703, -0.02862069196999073, -0.25650307536125183, -0.08264486491680145, -0.001982743851840496, -0.07134432345628738, -0.0932161808013916, 0.08230649679899216, 0.07807870954275131, 0.053940895944833755, -0.053267452865839005, -0.07987610250711441, -0.07627292722463608, 0.16460570693016052, -0.15345199406147003, -0.09168349951505661 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-finetuned-pubmedqa This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3182 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8591 | 0.58 | | No log | 2.0 | 114 | 0.9120 | 0.58 | | No log | 3.0 | 171 | 0.8159 | 0.62 | | No log | 4.0 | 228 | 1.1651 | 0.54 | | No log | 5.0 | 285 | 1.2350 | 0.6 | | No log | 6.0 | 342 | 1.5563 | 0.68 | | No log | 7.0 | 399 | 2.0233 | 0.58 | | No log | 8.0 | 456 | 2.2054 | 0.5 | | 0.4463 | 9.0 | 513 | 2.2434 | 0.5 | | 0.4463 | 10.0 | 570 | 2.3182 | 0.5 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"]}
text-classification
blizrys/biobert-base-cased-v1.1-finetuned-pubmedqa
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us
biobert-base-cased-v1.1-finetuned-pubmedqa ========================================== This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.3182 * Accuracy: 0.5 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 51, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10358120501041412, 0.05779881402850151, -0.0014367330586537719, 0.11845432966947556, 0.2032744437456131, 0.038293831050395966, 0.11997881531715393, 0.10927186161279678, -0.08357654511928558, 0.0175037644803524, 0.125962033867836, 0.17450492084026337, 0.0028766244649887085, 0.08918216079473495, -0.06106366962194443, -0.27924051880836487, -0.029644381254911423, 0.04818357154726982, -0.06014212965965271, 0.13543303310871124, 0.08322501182556152, -0.1554640680551529, 0.08051394671201706, -0.0055994861759245396, -0.23335811495780945, 0.01267528161406517, 0.025751495733857155, -0.060206327587366104, 0.1552467793226242, 0.006335372570902109, 0.15761038661003113, -0.00380586925894022, 0.09591299295425415, -0.16449497640132904, 0.014347254298627377, 0.05021455138921738, 0.015027262270450592, 0.09212793409824371, 0.06769777834415436, -0.019139522686600685, 0.10329241305589676, -0.08686091750860214, 0.06546257436275482, 0.0040175532922148705, -0.13088800013065338, -0.1896478831768036, -0.05724064260721207, 0.008376134559512138, 0.054365139454603195, 0.1043473333120346, -0.013850980438292027, 0.15171320736408234, -0.10219620168209076, 0.10463982075452805, 0.21729592978954315, -0.26961514353752136, -0.07772115617990494, 0.04502367973327637, 0.004122905433177948, 0.10101787745952606, -0.12118792533874512, -0.014215854927897453, 0.058744288980960846, 0.05108538269996643, 0.12140806019306183, -0.03361033275723457, -0.09643658995628357, 0.027054214850068092, -0.14937879145145416, -0.01112122368067503, 0.09733385592699051, 0.023973509669303894, -0.021556777879595757, -0.024815188720822334, -0.05791473016142845, -0.15791136026382446, -0.038849323987960815, -0.019157283008098602, 0.037496138364076614, -0.04806632176041603, -0.09159994125366211, -0.007373708765953779, -0.10700786858797073, -0.06526284664869308, -0.06181173026561737, 0.16220834851264954, 0.03662514314055443, 0.008512559346854687, -0.04245437681674957, 0.11458199471235275, -0.003350496059283614, -0.133348286151886, 0.053487423807382584, 0.025250129401683807, -0.014697890728712082, -0.06570432335138321, -0.07392476499080658, -0.10171090066432953, -0.009235399775207043, 0.06686010956764221, -0.04496660828590393, 0.05282846465706825, 0.042839858680963516, 0.036449678242206573, -0.08843734860420227, 0.21380244195461273, -0.03690135478973389, -0.024349626153707504, -0.009545058012008667, 0.05731474608182907, -0.022657323628664017, -0.01921640895307064, -0.12238283455371857, 0.006944836582988501, 0.12563134729862213, 0.0012571512488648295, -0.08072689920663834, 0.0727684423327446, -0.04100833088159561, -0.03382868319749832, -0.03686776012182236, -0.0932091623544693, 0.04552388936281204, -0.003196057165041566, -0.09151236712932587, -0.007886800915002823, 0.008247323334217072, 0.020258111879229546, -0.02594398334622383, 0.1552378088235855, -0.09547682851552963, 0.0518038310110569, -0.11169857531785965, -0.12693685293197632, -0.00496011134237051, -0.1059439405798912, 0.023099813610315323, -0.09370430558919907, -0.15093901753425598, -0.028938081115484238, 0.04941681772470474, -0.027567783370614052, -0.03983130306005478, -0.06673035025596619, -0.06846670806407928, 0.00897375401109457, -0.005817160941660404, 0.15628941357135773, -0.053763628005981445, 0.11330036073923111, 0.031120665371418, 0.06288092583417892, -0.04962730035185814, 0.05798499658703804, -0.08561678975820541, -0.004269047174602747, -0.18587784469127655, 0.06094137206673622, -0.04072776064276695, 0.07820829749107361, -0.06904663890600204, -0.11218378692865372, 0.009949704632163048, 0.0026753328274935484, 0.08356212079524994, 0.09783729910850525, -0.17665770649909973, -0.08864407986402512, 0.1535259485244751, -0.04775223508477211, -0.09175172448158264, 0.12037567794322968, -0.0823303833603859, 0.04928178712725639, 0.0928083062171936, 0.18256120383739471, 0.06289060413837433, -0.0653446763753891, 0.03817461058497429, -0.010867072269320488, 0.06702029705047607, -0.052108053117990494, 0.0367637500166893, 0.012326628901064396, -0.013696584850549698, 0.0323793962597847, -0.0234251506626606, 0.06526126712560654, -0.11451811343431473, -0.08713994920253754, -0.030182328075170517, -0.10625958442687988, 0.08034178614616394, 0.08577790856361389, 0.1052914559841156, -0.099321648478508, -0.06550661474466324, 0.08058061450719833, 0.05808926746249199, -0.05795709043741226, 0.018411261960864067, -0.04723328724503517, 0.06610044091939926, -0.051788970828056335, -0.029738498851656914, -0.20707513391971588, -0.019852740690112114, 0.004539571236819029, 0.0520206019282341, 0.0319938138127327, 0.03623618930578232, 0.08406323939561844, 0.06097216159105301, -0.057649727910757065, -0.011180181056261063, -0.014188485220074654, -0.006001572124660015, -0.1615845113992691, -0.1984742134809494, -0.019902490079402924, -0.021158013492822647, 0.11978741735219955, -0.22799323499202728, 0.033405572175979614, -0.03615825995802879, 0.06790813058614731, 0.010518128983676434, -0.013540919870138168, -0.0509248711168766, 0.0986810103058815, -0.02507414110004902, -0.039860792458057404, 0.07973726093769073, -0.009117214940488338, -0.09249839931726456, -0.0723894014954567, -0.10825476795434952, 0.17906194925308228, 0.13616447150707245, -0.16651490330696106, -0.09619612246751785, -0.002863527275621891, -0.048838287591934204, -0.016910716891288757, -0.05081924423575401, 0.04224579036235809, 0.2270447313785553, -0.007492275908589363, 0.1574716418981552, -0.06219034269452095, -0.04254503548145294, 0.012754134833812714, -0.034391503781080246, 0.04105374589562416, 0.13054323196411133, 0.11638695001602173, -0.08979535847902298, 0.12640593945980072, 0.1355987787246704, -0.1089436262845993, 0.15261265635490417, -0.019842378795146942, -0.06898549944162369, -0.0063765281811356544, -0.03621821105480194, -0.004963691346347332, 0.09145249426364899, -0.15570323169231415, -0.030555270612239838, 0.006573381833732128, 0.021720459684729576, 0.026595700532197952, -0.23055841028690338, -0.04811711609363556, 0.03896999731659889, -0.011698192916810513, -0.008991112932562828, -0.02756485342979431, 0.021167166531085968, 0.1220044419169426, 0.002735287183895707, -0.08033424615859985, 0.024990001693367958, -0.00029730083770118654, -0.07924489676952362, 0.22489485144615173, -0.07136142998933792, -0.13784609735012054, -0.10908220708370209, -0.08577176928520203, -0.046970680356025696, 0.019639847800135612, 0.0420682355761528, -0.12284725904464722, -0.012824799865484238, -0.04073143005371094, 0.02746402472257614, -0.008404524996876717, 0.04508436843752861, -0.010164260864257812, -0.008197873830795288, 0.05470839887857437, -0.10061901062726974, -0.007501838728785515, -0.07617358863353729, -0.06759504228830338, 0.05231361463665962, 0.035329438745975494, 0.11582162976264954, 0.18027082085609436, -0.038493577390909195, 0.011821316555142403, -0.02742757461965084, 0.2407606840133667, -0.07797988504171371, -0.03681034594774246, 0.09842994809150696, -0.0379837267100811, 0.047346822917461395, 0.10060150921344757, 0.07904551923274994, -0.09086708724498749, 0.011431241407990456, 0.03267475590109825, -0.04221460595726967, -0.21650981903076172, -0.03894919902086258, -0.05174864083528519, -0.038152799010276794, 0.09539563953876495, 0.016421878710389137, 0.046148303896188736, 0.07809045165777206, 0.06356512010097504, 0.0838223472237587, -0.0518646202981472, 0.04299366846680641, 0.08933112025260925, 0.039159052073955536, 0.1305849403142929, -0.03447888046503067, -0.09191035479307175, 0.025252796709537506, -0.040617819875478745, 0.2169671654701233, -0.0021038793493062258, 0.09981096535921097, 0.04110785946249962, 0.16662055253982544, 0.010257394053041935, 0.09135090559720993, -0.003970564808696508, -0.057415321469306946, -0.006888309959322214, -0.028545306995511055, -0.046511996537446976, 0.012562445364892483, -0.032514605671167374, 0.056526925414800644, -0.13765273988246918, -0.01965603046119213, 0.05394313111901283, 0.2214595228433609, 0.03305966779589653, -0.32579782605171204, -0.07383890450000763, 0.0005856975330971181, -0.028993036597967148, -0.020345287397503853, 0.011748982593417168, 0.11363188177347183, -0.10908517241477966, 0.018202481791377068, -0.0682215467095375, 0.09620372951030731, -0.06325005739927292, 0.05663718283176422, 0.053700607270002365, 0.09599097073078156, -0.01341578271239996, 0.07743900269269943, -0.3074696958065033, 0.2772078812122345, 0.007324158679693937, 0.0694822371006012, -0.08479763567447662, -0.020560884848237038, 0.041285574436187744, 0.05624337121844292, 0.04023124650120735, -0.012893634848296642, 0.0070214285515248775, -0.21793904900550842, -0.03890835866332054, 0.03220421075820923, 0.1194089725613594, -0.0351385623216629, 0.09790105372667313, -0.019403163343667984, 0.00789687130600214, 0.07557141035795212, -0.031216232106089592, -0.04369715601205826, -0.08376059681177139, -0.023946966975927353, 0.011385948397219181, -0.05899564176797867, -0.04690735042095184, -0.12296503782272339, -0.13951845467090607, 0.14385247230529785, 0.010496153496205807, -0.02496294490993023, -0.11953537911176682, 0.11456288397312164, 0.06678125262260437, -0.08298949152231216, 0.03005019947886467, 0.017587194219231606, 0.05982642248272896, 0.028287725523114204, -0.05978679284453392, 0.11112657189369202, -0.05146387219429016, -0.15235188603401184, -0.06381435692310333, 0.09268934279680252, 0.05298261716961861, 0.06756245344877243, -0.009523740969598293, 0.015028056688606739, -0.03646937757730484, -0.09334655106067657, 0.02851441502571106, -0.025178497657179832, 0.061287425458431244, 0.0379624143242836, -0.05732453987002373, 0.007853973656892776, -0.07039256393909454, -0.006893026642501354, 0.21044211089611053, 0.21281206607818604, -0.09033837914466858, -0.003865275764837861, 0.03475711867213249, -0.07382605224847794, -0.1968725323677063, 0.0866541787981987, 0.08406449109315872, 0.011555365286767483, 0.04062666371464729, -0.17220023274421692, 0.14267829060554504, 0.08262895047664642, 0.002495020627975464, 0.11266102641820908, -0.3126635253429413, -0.13091379404067993, 0.12286323308944702, 0.1700405329465866, 0.1361604481935501, -0.13795945048332214, -0.018454663455486298, -0.019718777388334274, -0.0944688618183136, 0.09386829286813736, -0.0828736200928688, 0.12076596915721893, -0.019258864223957062, 0.10453358292579651, 0.019785910844802856, -0.06097566336393356, 0.10635937005281448, 0.024173857644200325, 0.10483340919017792, -0.06837600469589233, -0.06903586536645889, 0.025259824469685555, -0.032304923981428146, -0.007949736900627613, -0.0509500652551651, 0.0168524868786335, -0.10440470278263092, -0.025829771533608437, -0.09139425307512283, 0.028449513018131256, -0.03247161582112312, -0.06698127090930939, -0.015594561584293842, 0.020512768998742104, 0.039164949208498, -0.011343440040946007, 0.11263182014226913, -0.006690685637295246, 0.17952118813991547, 0.08753842115402222, 0.09378490597009659, -0.06760915368795395, -0.04682798683643341, -0.0054016560316085815, -0.005483238026499748, 0.055369630455970764, -0.12574586272239685, 0.02140573039650917, 0.15206371247768402, 0.027437157928943634, 0.1392446905374527, 0.09572677314281464, -0.01002343650907278, 0.011282188817858696, 0.06415637582540512, -0.1708742380142212, -0.06335358321666718, -0.017778340727090836, -0.08775640279054642, -0.10644841194152832, 0.046417608857154846, 0.09124995768070221, -0.062323570251464844, -0.011985747143626213, -0.02009192481637001, -0.01864285208284855, -0.061936210840940475, 0.21270275115966797, 0.0798899456858635, 0.0487823449075222, -0.10338003933429718, 0.0544208288192749, 0.05980629473924637, -0.0765879824757576, 0.0028082167264074087, 0.08592244982719421, -0.08230799436569214, -0.036821164190769196, 0.10170594602823257, 0.23120997846126556, -0.057931143790483475, -0.019019480794668198, -0.14427818357944489, -0.11892393231391907, 0.07103845477104187, 0.1733740121126175, 0.1171092689037323, -0.005839540623128414, -0.0781860277056694, 0.017051292583346367, -0.1357995718717575, 0.07921002805233002, 0.05481657385826111, 0.07064352929592133, -0.13647082448005676, 0.19791297614574432, 0.0011403782991692424, 0.045521605759859085, -0.030771609395742416, 0.020187625661492348, -0.11848779767751694, 0.025982927531003952, -0.12537704408168793, -0.03957723081111908, 0.0030198481399565935, 0.00038959976518526673, -0.007891620509326458, -0.06730910390615463, -0.04862106218934059, -0.005728733725845814, -0.13209784030914307, -0.017553111538290977, 0.0397711805999279, 0.03418998047709465, -0.10584161430597305, -0.03983399644494057, 0.019037194550037384, -0.05284172669053078, 0.05895841866731644, 0.05172297731041908, 0.008803405798971653, 0.07545090466737747, -0.15579217672348022, 0.0007440376793965697, 0.06471956521272659, 0.0016550584696233273, 0.0789731964468956, -0.04842275381088257, 0.0012722990941256285, -0.013131537474691868, 0.09663394093513489, 0.03374401852488518, 0.07917309552431107, -0.13256274163722992, 0.015608618035912514, -0.016414083540439606, -0.09713869541883469, -0.06776982545852661, 0.037636566907167435, 0.06371068209409714, 0.01853511482477188, 0.17896567285060883, -0.08015838265419006, 0.058897633105516434, -0.2132108360528946, -0.005766621325165033, -0.01234390027821064, -0.11469864100217819, -0.10086961090564728, -0.08149390667676926, 0.07981782406568527, -0.05808928236365318, 0.12016214430332184, 0.058535877615213394, 0.06569675356149673, 0.021144593134522438, -0.003576872171834111, 0.01572355069220066, 0.03337302431464195, 0.1993437260389328, 0.041049495339393616, -0.05117286741733551, 0.058990929275751114, 0.07962273061275482, 0.10832703113555908, 0.13652046024799347, 0.21315382421016693, 0.13573920726776123, -0.027016043663024902, 0.08400540053844452, 0.021907443180680275, -0.03915886580944061, -0.14623205363750458, 0.016984866932034492, -0.057730115950107574, 0.09302207082509995, -0.029911041259765625, 0.21035070717334747, 0.04760585352778435, -0.16937962174415588, 0.04426027089357376, -0.057707369327545166, -0.10626792907714844, -0.1047947108745575, -0.024974465370178223, -0.08043865114450455, -0.12768429517745972, 0.007662426680326462, -0.11448001116514206, 0.011656730435788631, 0.11550837010145187, 0.01438788790255785, -0.02949993498623371, 0.18109484016895294, 0.028293149545788765, 0.02873769961297512, 0.08521487563848495, 0.007845149375498295, -0.01329805888235569, -0.11325422674417496, -0.06198659911751747, -0.038480207324028015, -0.00891659501940012, 0.029085911810398102, -0.07633378356695175, -0.0886649489402771, 0.02515975944697857, -0.017547300085425377, -0.10985255241394043, 0.022711994126439095, 0.016912780702114105, 0.07304808497428894, 0.041576627641916275, -0.0014122213469818234, 0.008012368343770504, -0.029682699590921402, 0.23680438101291656, -0.08469341695308685, -0.06940598785877228, -0.09244325757026672, 0.27009961009025574, 0.0395711250603199, -0.000009295958989241626, 0.022480009123682976, -0.07133132219314575, 0.02010851353406906, 0.26389047503471375, 0.21620234847068787, -0.1270969808101654, -0.001363531337119639, 0.005314889829605818, -0.0057011134922504425, -0.00540531612932682, 0.13066235184669495, 0.11979489773511887, 0.04583674296736717, -0.11488928645849228, -0.023482102900743484, -0.0508694052696228, -0.014407274313271046, -0.026326872408390045, 0.06806671619415283, 0.07365710288286209, 0.012738853693008423, -0.06028333678841591, 0.07115283608436584, -0.08745306730270386, -0.100897878408432, 0.05681433528661728, -0.225484699010849, -0.16978615522384644, -0.01960759423673153, 0.1007891446352005, -0.002464213175699115, 0.07719725370407104, -0.025936348363757133, -0.006546495016664267, 0.04109171777963638, -0.025039032101631165, -0.07727918028831482, -0.08605588972568512, 0.09963306039571762, -0.1253133863210678, 0.17540030181407928, -0.04685105383396149, 0.059091854840517044, 0.12223844975233078, 0.06608280539512634, -0.03668865188956261, 0.0523231104016304, 0.03829411789774895, -0.08152730762958527, 0.028756802901625633, 0.1113969087600708, -0.03354546055197716, 0.034265872091054916, 0.04110616445541382, -0.14446182548999786, 0.040228236466646194, -0.09578108042478561, -0.05457255616784096, -0.03807707130908966, -0.044947300106287, -0.05534990504384041, 0.1267317682504654, 0.2381376028060913, -0.009833847172558308, 0.02290351130068302, -0.07301177829504013, 0.0009103852789849043, 0.04720219969749451, 0.03344864398241043, -0.09810997545719147, -0.24318012595176697, -0.0026385621167719364, 0.07782167941331863, -0.03417897969484329, -0.25640392303466797, -0.08660975098609924, 0.002089862711727619, -0.06850263476371765, -0.08996272087097168, 0.08269504457712173, 0.07856255024671555, 0.05460745096206665, -0.05243023484945297, -0.08494658023118973, -0.07486661523580551, 0.16582080721855164, -0.15162213146686554, -0.09023240208625793 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-finetuned-pubmedqa-adapter This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0910 - Accuracy: 0.48 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.9848 | 0.58 | | No log | 2.0 | 114 | 0.8537 | 0.58 | | No log | 3.0 | 171 | 0.9565 | 0.42 | | No log | 4.0 | 228 | 0.9659 | 0.56 | | No log | 5.0 | 285 | 0.9763 | 0.6 | | No log | 6.0 | 342 | 1.0647 | 0.66 | | No log | 7.0 | 399 | 1.4305 | 0.6 | | No log | 8.0 | 456 | 2.0545 | 0.56 | | 0.6957 | 9.0 | 513 | 2.2438 | 0.5 | | 0.6957 | 10.0 | 570 | 2.0910 | 0.48 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"], "model_index": [{"name": "biobert-v1.1-finetuned-pubmedqa-adapter", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.48}}]}]}
null
blizrys/biobert-v1.1-finetuned-pubmedqa-adapter
[ "tensorboard", "generated_from_trainer", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #generated_from_trainer #region-us
biobert-v1.1-finetuned-pubmedqa-adapter ======================================= This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.0910 * Accuracy: 0.48 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.003 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#tensorboard #generated_from_trainer #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 17, 97, 4, 34 ]
[ "passage: TAGS\n#tensorboard #generated_from_trainer #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.07540292292833328, -0.0407540500164032, -0.0007638538372702897, 0.10417835414409637, 0.21386995911598206, 0.020929459482431412, 0.12041391432285309, 0.05960815027356148, -0.11139849573373795, 0.04753031209111214, 0.12600326538085938, 0.16068175435066223, -0.0164119154214859, 0.0746191143989563, -0.05064016953110695, -0.2063300460577011, -0.0313720740377903, 0.011737807653844357, -0.0987095758318901, 0.11304520815610886, 0.0600661039352417, -0.17274560034275055, 0.06235133111476898, -0.05315553396940231, -0.3211398720741272, 0.051080089062452316, 0.03451685607433319, -0.014278470538556576, 0.130055233836174, -0.0278825331479311, 0.19129490852355957, -0.011346787214279175, 0.10811815410852432, -0.14915968477725983, 0.014545340090990067, 0.08976539969444275, 0.010001152753829956, 0.05513457953929901, 0.0540725402534008, 0.018512023612856865, 0.12653547525405884, -0.12958693504333496, 0.05577443540096283, -0.00951188150793314, -0.16156984865665436, -0.19036009907722473, -0.06963711977005005, -0.11354638636112213, 0.04063698649406433, 0.08617784082889557, -0.02351265214383602, 0.17979669570922852, -0.08437442034482956, 0.10142321139574051, 0.264234721660614, -0.2459867149591446, -0.09237400442361832, 0.11832679063081741, -0.00045039475662633777, 0.16661466658115387, -0.11249158531427383, 0.007633537519723177, 0.08594544231891632, 0.04648778960108757, 0.1198543980717659, -0.03381219506263733, -0.13929429650306702, 0.036224741488695145, -0.1555161029100418, 0.03422588109970093, 0.04127662628889084, 0.026364924386143684, 0.0037830935325473547, 0.05421006307005882, -0.08157135546207428, -0.15403760969638824, -0.0553225614130497, -0.04980766773223877, 0.10165238380432129, -0.05228447541594505, -0.10597879439592361, -0.0002546927717048675, -0.08875323832035065, -0.07120480388402939, -0.06462638080120087, 0.1725209653377533, 0.039076339453458786, 0.026793548837304115, -0.05647261068224907, 0.0666598528623581, -0.08949387818574905, -0.11104155331850052, 0.06834730505943298, 0.05916077271103859, -0.04287872835993767, -0.08415906131267548, -0.09422307461500168, -0.17487271130084991, 0.021741295233368874, 0.03448034077882767, -0.07911767810583115, 0.08478163182735443, 0.0504411906003952, 0.047945450991392136, -0.1187279224395752, 0.1672830730676651, -0.02943911775946617, -0.01071485411375761, -0.007788531016558409, 0.021129164844751358, -0.023976262658834457, -0.0047067697159945965, -0.09585851430892944, 0.04409879073500633, 0.08758719265460968, -0.010870939120650291, -0.11718571931123734, 0.017976835370063782, -0.03571650758385658, 0.011096933856606483, -0.09930367022752762, -0.08981684595346451, 0.05159278213977814, -0.036842480301856995, -0.08642379939556122, -0.010579022578895092, -0.0228084996342659, 0.020760204643011093, 0.016095055267214775, 0.14164018630981445, -0.09103551506996155, 0.099054254591465, -0.14040479063987732, -0.13527043163776398, -0.019193658605217934, -0.10352548956871033, 0.022073796018958092, -0.05755615234375, -0.1064164936542511, -0.056144025176763535, 0.0701432079076767, -0.03947994112968445, 0.016730597242712975, -0.06834331154823303, -0.06927221268415451, -0.02451368421316147, -0.00951281189918518, 0.18900926411151886, -0.05888645350933075, 0.07628524303436279, 0.02868831343948841, 0.10271748900413513, -0.09960611909627914, 0.04419844225049019, -0.05350414663553238, -0.0032931652385741472, -0.28065481781959534, 0.04552341252565384, -0.05448014289140701, 0.10497833788394928, -0.0702216699719429, -0.08178103715181351, -0.016344167292118073, 0.0007589504821226001, 0.12309321016073227, 0.04947720095515251, -0.26578161120414734, -0.06295822560787201, 0.16901031136512756, -0.04827769845724106, -0.0644942969083786, 0.08318650722503662, -0.08107972145080566, 0.08798525482416153, 0.10340645909309387, 0.2469397485256195, -0.06918397545814514, -0.1020967960357666, 0.048719100654125214, -0.05573670193552971, 0.03861979767680168, -0.07956932485103607, -0.006248386111110449, -0.0044161975383758545, 0.0633380189538002, 0.02264682576060295, 0.01455390639603138, 0.04484495893120766, -0.13214954733848572, -0.07537616044282913, -0.042812664061784744, -0.10850367695093155, -0.03989005833864212, 0.08649033308029175, 0.11597675830125809, -0.12478949874639511, -0.016444338485598564, 0.1433844119310379, 0.021548625081777573, -0.07174298912286758, 0.05305642634630203, -0.013327114284038544, 0.015310123562812805, -0.0608859546482563, -0.039868928492069244, -0.20981533825397491, -0.03347225859761238, 0.013085922226309776, 0.04747549444437027, 0.06502310931682587, 0.05626721307635307, 0.09150504320859909, 0.04812530055642128, -0.06188230961561203, 0.054721374064683914, -0.027734989300370216, -0.009071946144104004, -0.1867191046476364, -0.21670475602149963, 0.023885639384388924, -0.025263724848628044, 0.04754333943128586, -0.22976519167423248, 0.012843701057136059, -0.0387510284781456, 0.04171200841665268, 0.014631801284849644, -0.0530463382601738, -0.07455217093229294, 0.11016830801963806, 0.008182440884411335, -0.08194399625062943, 0.0685906633734703, -0.040534961968660355, -0.07356078177690506, -0.11834409832954407, -0.10742011666297913, 0.14041677117347717, 0.1317167431116104, -0.20770730078220367, -0.11258680373430252, 0.03863916173577309, -0.042478300631046295, -0.018080858513712883, -0.05195743963122368, 0.09448704868555069, 0.22235484421253204, -0.010683506727218628, 0.1281178742647171, -0.07659224420785904, -0.01788313314318657, -0.0003072007966693491, -0.0354943722486496, 0.09637082368135452, 0.11253786832094193, 0.16702356934547424, -0.042158182710409164, 0.08460161089897156, 0.15142568945884705, -0.13097158074378967, 0.0938277542591095, -0.041644513607025146, -0.08092910051345825, -0.020026428624987602, -0.004083545878529549, -0.005346597637981176, 0.11346876621246338, -0.09460634738206863, -0.016589175909757614, -0.03487526625394821, 0.039654288440942764, 0.048165321350097656, -0.25544267892837524, -0.06200117990374565, 0.015172525309026241, -0.026303140446543694, 0.013188456185162067, -0.04981183260679245, 0.0016363146714866161, 0.11343445628881454, -0.02812637947499752, -0.06078604236245155, -0.004290347918868065, -0.0012530158273875713, -0.05084790661931038, 0.2171054631471634, -0.06437113136053085, -0.0030145677737891674, -0.025658538565039635, -0.06196064129471779, -0.02473778836429119, 0.005685406271368265, 0.04243761673569679, -0.1604272723197937, -0.011629024520516396, -0.05361656844615936, 0.00975108053535223, 0.019464759156107903, 0.0504327230155468, 0.031034648418426514, -0.0018319344380870461, 0.07145597040653229, -0.11667506396770477, 0.007603433448821306, -0.12119968235492706, -0.09687710553407669, 0.05743147432804108, 0.06444384157657623, 0.12473998218774796, 0.17454397678375244, -0.039331596344709396, 0.008900654502213001, -0.01355142705142498, 0.2726666033267975, -0.07242816686630249, -0.05095749348402023, 0.03800138458609581, 0.0018093407852575183, 0.04908657819032669, 0.08044715970754623, 0.09286731481552124, -0.1591760218143463, 0.00276382127776742, 0.07022116333246231, -0.07755061239004135, -0.2271192967891693, -0.006002100184559822, -0.028740592300891876, -0.14268146455287933, 0.048304129391908646, 0.01500737015157938, -0.014527836814522743, 0.04652322828769684, 0.12242753058671951, 0.1168152466416359, -0.07774649560451508, 0.01730843260884285, 0.023732414469122887, 0.052827753126621246, 0.11671344935894012, -0.05900882929563522, -0.0685456395149231, 0.02825096994638443, -0.0563257560133934, 0.32342272996902466, 0.03262082487344742, 0.08847816288471222, 0.08207894116640091, 0.1398409903049469, -0.027127133682370186, 0.07087690383195877, 0.002843657974153757, -0.09513632208108902, -0.024021275341510773, -0.040891874581575394, 0.0022840434685349464, 0.014064648188650608, -0.09086038172245026, 0.019789496436715126, -0.07372915744781494, 0.02947390265762806, 0.06477950513362885, 0.19266073405742645, 0.004885036498308182, -0.2788732647895813, 0.009987286292016506, -0.012363833375275135, 0.0032584427390247583, 0.019480597227811813, 0.018973642960190773, 0.1712685227394104, -0.029159456491470337, 0.011294519528746605, -0.03755699098110199, 0.09340877085924149, -0.008688422851264477, 0.04579754173755646, 0.031124653294682503, 0.14987294375896454, -0.02242123894393444, 0.02185308374464512, -0.31134167313575745, 0.30907338857650757, 0.0228273905813694, 0.10176986455917358, -0.041229479014873505, -0.04172544181346893, 0.015104618854820728, 0.014905638061463833, 0.008005527779459953, -0.00983278825879097, -0.0942688137292862, -0.2051517814397812, -0.02343560755252838, 0.06359346210956573, 0.17262475192546844, 0.04525148868560791, 0.07372939586639404, 0.02608254738152027, 0.03344156965613365, 0.10858497023582458, -0.050053101032972336, -0.0966251790523529, -0.02878417819738388, -0.07967034727334976, 0.04267160966992378, -0.16291704773902893, -0.02918313629925251, -0.10020717233419418, -0.15343545377254486, 0.10881280153989792, 0.09767226874828339, 0.007931253872811794, -0.10468226671218872, 0.14596866071224213, 0.07415571063756943, -0.054381754249334335, 0.03300732001662254, 0.0415785051882267, -0.017187314108014107, 0.06106949970126152, -0.028272725641727448, 0.1302712857723236, -0.013580458238720894, -0.0871087834239006, -0.059044249355793, 0.03197050839662552, 0.0658789575099945, 0.0651342123746872, -0.031449172645807266, 0.03440834581851959, -0.007460953202098608, -0.10703036189079285, 0.04263526573777199, -0.06700422614812851, 0.044085633009672165, 0.031504593789577484, -0.04654023051261902, 0.0663435086607933, -0.047373414039611816, -0.01757749728858471, 0.16528993844985962, 0.3092266321182251, -0.06796716898679733, -0.03112334944307804, -0.0026827373076230288, -0.0863036960363388, -0.16244173049926758, 0.1728551834821701, 0.08965694904327393, -0.0210493765771389, 0.08571380376815796, -0.16408966481685638, 0.1761562079191208, 0.14842402935028076, 0.024413958191871643, 0.1457737386226654, -0.3107076585292816, -0.14902549982070923, 0.05800584703683853, 0.22598125040531158, 0.2167191505432129, -0.16781392693519592, -0.010468961670994759, -0.04028600826859474, -0.07320404052734375, 0.06917630136013031, -0.1597318798303604, 0.12024451047182083, 0.0034723172429949045, 0.0874713584780693, -0.004793606698513031, -0.06339716911315918, 0.11747953295707703, 0.05926220864057541, 0.1738085001707077, -0.05432655289769173, -0.03415319696068764, 0.07407408207654953, -0.015313575975596905, -0.0536612831056118, -0.0050112903118133545, -0.007672992069274187, -0.030816784128546715, -0.002359914593398571, -0.07259311527013779, 0.0030875876545906067, -0.020043686032295227, -0.048648424446582794, -0.0571993924677372, -0.014066317118704319, 0.04160808026790619, -0.002115703886374831, 0.12418558448553085, 0.008364807814359665, 0.1737319827079773, 0.03995068743824959, -0.0017355235759168863, -0.13684704899787903, -0.01021052896976471, 0.03458636626601219, 0.022938989102840424, 0.037503432482481, -0.19188223779201508, 0.01324955839663744, 0.1464499533176422, 0.019999174401164055, 0.10413375496864319, 0.08484811335802078, -0.019423719495534897, 0.04121962934732437, 0.06214045733213425, -0.13907986879348755, -0.0873529389500618, 0.05787328630685806, -0.11845579743385315, -0.03863237053155899, 0.05593709647655487, 0.05696297809481621, -0.04403683915734291, 0.017056917771697044, -0.038148432970047, -0.033026352524757385, -0.08561299741268158, 0.2350780963897705, 0.0856560468673706, 0.02217838354408741, -0.10922355204820633, 0.06935086846351624, 0.046558089554309845, -0.054199956357479095, 0.016643639653921127, 0.06672138720750809, -0.057183731347322464, 0.018879026174545288, 0.18709135055541992, 0.2813037931919098, -0.032710105180740356, -0.008996699005365372, -0.16053158044815063, -0.06859973073005676, 0.05275469273328781, 0.2024518996477127, 0.12178220599889755, -0.04783656448125839, -0.022090518847107887, 0.030057458207011223, -0.14725632965564728, 0.022355875000357628, 0.00940045714378357, 0.07473617047071457, -0.0891852080821991, 0.1901070922613144, 0.026736222207546234, -0.007008718326687813, -0.03166113421320915, 0.05142735689878464, -0.13012731075286865, 0.04036532714962959, -0.10192040354013443, -0.05594978109002113, 0.05023106560111046, -0.02291976474225521, 0.013167189434170723, -0.0711427628993988, -0.08832979202270508, 0.007461317349225283, -0.15171509981155396, -0.009823212400078773, 0.056093618273735046, 0.012740504927933216, -0.11560475081205368, -0.037594638764858246, -0.001736511243507266, -0.01386302337050438, 0.015964914113283157, 0.039910342544317245, 0.025803031399846077, 0.08547760546207428, -0.21452215313911438, -0.013886191882193089, 0.09329910576343536, -0.013858133926987648, 0.10502718389034271, 0.00859109777957201, -0.037042923271656036, -0.012822093442082405, 0.18120169639587402, 0.028918607160449028, 0.051758017390966415, -0.1149241179227829, 0.016467029228806496, -0.0886506587266922, -0.11518871039152145, -0.03492087125778198, -0.0029993592761456966, 0.0669509619474411, 0.04211168736219406, 0.1490532010793686, -0.07325686514377594, 0.020855091512203217, -0.21962454915046692, -0.026204314082860947, 0.009564516134560108, -0.08717731386423111, -0.07059575617313385, -0.05760791152715683, 0.08732055872678757, -0.0682356134057045, 0.16237077116966248, 0.06437833607196808, 0.05997033417224884, 0.03532371670007706, -0.007574375718832016, -0.030756935477256775, 0.023957202211022377, 0.1942257136106491, 0.05947955325245857, -0.030880866572260857, 0.08499255776405334, 0.10500096529722214, 0.13963094353675842, 0.11153025180101395, 0.2639656364917755, 0.18527282774448395, -0.06884384155273438, 0.10423695296049118, -0.0052407365292310715, -0.05339404568076134, -0.08566083759069443, 0.12701541185379028, -0.06268858909606934, 0.0738227516412735, -0.013411937281489372, 0.18957601487636566, 0.03223040699958801, -0.17405839264392853, 0.04101511836051941, -0.06325149536132812, -0.11648455262184143, -0.11235325038433075, 0.07099930197000504, -0.09534357488155365, -0.16005557775497437, 0.02617722377181053, -0.09906303882598877, 0.04467145353555679, 0.17296357452869415, 0.011538594029843807, 0.020947569981217384, 0.21535098552703857, 0.035707876086235046, 0.06789708137512207, 0.03703564405441284, -0.013132474385201931, -0.04279688373208046, -0.10562257468700409, -0.08634672313928604, -0.02038928121328354, -0.0170089453458786, 0.022789180278778076, -0.05446706339716911, -0.0804004967212677, 0.026898004114627838, -0.02428821660578251, -0.1054673120379448, 0.010717920027673244, 0.04365181922912598, 0.06072191148996353, -0.024277852848172188, -0.003013943089172244, 0.007144404109567404, -0.03807318955659866, 0.20958615839481354, -0.054958492517471313, -0.07443062961101532, -0.051108021289110184, 0.20868521928787231, 0.052765071392059326, 0.019068563356995583, -0.0236070454120636, -0.07635506987571716, 0.011299913749098778, 0.21403248608112335, 0.1522139459848404, -0.17055729031562805, -0.01957658678293228, -0.026408622041344643, -0.013544818386435509, -0.05316004902124405, 0.16938607394695282, 0.10870855301618576, -0.06168519705533981, -0.11907196044921875, -0.07101713865995407, -0.05959014222025871, -0.011179366149008274, -0.07138366997241974, -0.00025022949557751417, 0.09879161417484283, 0.041489455848932266, -0.061048779636621475, 0.08148474246263504, -0.0410405695438385, -0.12838029861450195, 0.08813507854938507, -0.22052544355392456, -0.17199298739433289, -0.0030310340225696564, 0.12971392273902893, -0.037605468183755875, 0.058834854513406754, -0.05571949481964111, -0.007746873889118433, -0.006599841173738241, -0.05590788647532463, -0.07098731398582458, -0.11524683237075806, 0.08715465664863586, -0.20145808160305023, 0.17398875951766968, -0.03988448902964592, 0.0951061099767685, 0.10677388310432434, 0.053148023784160614, -0.030708055943250656, 0.0956207886338234, 0.022831792011857033, -0.10675695538520813, -0.020483775064349174, 0.10434159636497498, -0.06203809380531311, 0.003600062569603324, 0.05044110491871834, -0.1023913323879242, 0.03468707203865051, -0.05547843128442764, -0.044342901557683945, -0.034060288220644, -0.09358777850866318, -0.09286151826381683, 0.07740537822246552, 0.20223161578178406, 0.014699838124215603, 0.08083294332027435, -0.08546378463506699, 0.007906002923846245, 0.05386843532323837, 0.061114318668842316, -0.13080130517482758, -0.25710055232048035, 0.03019610233604908, 0.13149243593215942, -0.07535038143396378, -0.1940641701221466, -0.08173292875289917, 0.015753837302327156, -0.07820693403482437, -0.06629078090190887, 0.08124746382236481, 0.08495938032865524, 0.06791015714406967, -0.056135982275009155, -0.19740448892116547, -0.0688498318195343, 0.16961225867271423, -0.12465069442987442, -0.1050846055150032 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-finetuned-pubmedqa This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7737 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8810 | 0.56 | | No log | 2.0 | 114 | 0.8139 | 0.62 | | No log | 3.0 | 171 | 0.7963 | 0.68 | | No log | 4.0 | 228 | 0.7709 | 0.66 | | No log | 5.0 | 285 | 0.7931 | 0.64 | | No log | 6.0 | 342 | 0.7420 | 0.7 | | No log | 7.0 | 399 | 0.7654 | 0.7 | | No log | 8.0 | 456 | 0.7756 | 0.68 | | 0.5849 | 9.0 | 513 | 0.7605 | 0.68 | | 0.5849 | 10.0 | 570 | 0.7737 | 0.7 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": [], "metrics": ["accuracy"]}
text-classification
blizrys/biobert-v1.1-finetuned-pubmedqa
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us
biobert-v1.1-finetuned-pubmedqa =============================== This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7737 * Accuracy: 0.7 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 51, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10333510488271713, 0.05702367052435875, -0.0014348356053233147, 0.11853138357400894, 0.20317751169204712, 0.038077495992183685, 0.12030661106109619, 0.11005394905805588, -0.08334875106811523, 0.01738586463034153, 0.1266016662120819, 0.17484842240810394, 0.0019629206508398056, 0.08818419277667999, -0.06047726050019264, -0.2798804044723511, -0.02948552370071411, 0.04776883125305176, -0.06062687188386917, 0.13573315739631653, 0.08317619562149048, -0.15439245104789734, 0.08042962104082108, -0.005145539529621601, -0.2319299578666687, 0.011662262491881847, 0.025726811960339546, -0.06006883084774017, 0.15629544854164124, 0.006230210419744253, 0.15831570327281952, -0.0037338598631322384, 0.09691574424505234, -0.1647930145263672, 0.014197234995663166, 0.05011899024248123, 0.01537317968904972, 0.09184325486421585, 0.06602785736322403, -0.01983288675546646, 0.10343275219202042, -0.08560337871313095, 0.06584487110376358, 0.004430330358445644, -0.1315222978591919, -0.19033265113830566, -0.05735154449939728, 0.008450263179838657, 0.0532824844121933, 0.10489889979362488, -0.013479511253535748, 0.1510801613330841, -0.10140783339738846, 0.104265496134758, 0.21655894815921783, -0.26820361614227295, -0.0772402435541153, 0.04448103532195091, 0.0032381871715188026, 0.10056646168231964, -0.12118013203144073, -0.014445674605667591, 0.05884551629424095, 0.05156652256846428, 0.12017728388309479, -0.0337807834148407, -0.09694581478834152, 0.026292230933904648, -0.14902064204216003, -0.01178751140832901, 0.0956500992178917, 0.02312684990465641, -0.022163374349474907, -0.02380567416548729, -0.058582670986652374, -0.15889225900173187, -0.03921607881784439, -0.01789977215230465, 0.03689814731478691, -0.04750879481434822, -0.0922863706946373, -0.007046262267976999, -0.10674437135457993, -0.06481071561574936, -0.06233888864517212, 0.163425475358963, 0.03646283596754074, 0.008820542134344578, -0.041165757924318314, 0.11487581580877304, -0.0017596159595996141, -0.13416655361652374, 0.05370323732495308, 0.026829971000552177, -0.014482252299785614, -0.06519178301095963, -0.07357905805110931, -0.09987400472164154, -0.009477591142058372, 0.06699084490537643, -0.046508919447660446, 0.052640654146671295, 0.04331822693347931, 0.03718949109315872, -0.08833340555429459, 0.2143067717552185, -0.036887820810079575, -0.02276570163667202, -0.009054867550730705, 0.05715770274400711, -0.021799236536026, -0.019614920020103455, -0.12307125329971313, 0.00826688576489687, 0.12587657570838928, 0.0016542241210117936, -0.08059827983379364, 0.07320704311132431, -0.04089144989848137, -0.033569518476724625, -0.035691823810338974, -0.093243308365345, 0.04522720351815224, -0.0036684435326606035, -0.09126905351877213, -0.008483055979013443, 0.008876276202499866, 0.0201288852840662, -0.025210218504071236, 0.15420883893966675, -0.09542032331228256, 0.05244506523013115, -0.11129170656204224, -0.12667179107666016, -0.0045929765328764915, -0.10442762076854706, 0.022627653554081917, -0.09345044195652008, -0.15143893659114838, -0.02923569828271866, 0.05031495913863182, -0.027707833796739578, -0.03981734439730644, -0.06654512137174606, -0.06864488124847412, 0.009470849297940731, -0.0058632041327655315, 0.15543855726718903, -0.05403218790888786, 0.11376675963401794, 0.030092887580394745, 0.06277712434530258, -0.049568165093660355, 0.058134350925683975, -0.0859052985906601, -0.0035354977007955313, -0.1876055747270584, 0.0619121715426445, -0.04126492142677307, 0.07807020097970963, -0.06831524521112442, -0.11189580708742142, 0.010486516170203686, 0.003127695992588997, 0.08374008536338806, 0.09741769731044769, -0.17755825817584991, -0.08870444446802139, 0.15290389955043793, -0.04846508428454399, -0.09173764288425446, 0.1207609698176384, -0.08275116980075836, 0.05028669536113739, 0.09202835708856583, 0.18218542635440826, 0.06279102712869644, -0.06449878215789795, 0.03783797845244408, -0.010796234011650085, 0.06628751009702682, -0.052140675485134125, 0.03635707497596741, 0.012767479754984379, -0.012968302704393864, 0.031822700053453445, -0.021735774353146553, 0.06524989753961563, -0.11507508903741837, -0.08704157173633575, -0.029782578349113464, -0.10558168590068817, 0.07902883738279343, 0.08608448505401611, 0.10451894998550415, -0.09935860335826874, -0.06709788739681244, 0.08053344488143921, 0.058314982801675797, -0.058637835085392, 0.01919405534863472, -0.04689939692616463, 0.06544087082147598, -0.05145040154457092, -0.029962055385112762, -0.2074255496263504, -0.021111855283379555, 0.004028416704386473, 0.05268774554133415, 0.03292553871870041, 0.03657953441143036, 0.0836450457572937, 0.06089824065566063, -0.057963740080595016, -0.010576806962490082, -0.013779999688267708, -0.00591406412422657, -0.1611507087945938, -0.19799606502056122, -0.020075641572475433, -0.021408716216683388, 0.12098619341850281, -0.2272190898656845, 0.033250339329242706, -0.03672114014625549, 0.0666489377617836, 0.01011990662664175, -0.013625888153910637, -0.05108533054590225, 0.09874691814184189, -0.025838807225227356, -0.04096517711877823, 0.07985758781433105, -0.008662663400173187, -0.09349264949560165, -0.0704282745718956, -0.10807916522026062, 0.17674817144870758, 0.1361951380968094, -0.1675439476966858, -0.09762129932641983, -0.001348912832327187, -0.04927917942404747, -0.016456227749586105, -0.0509905144572258, 0.041967131197452545, 0.22957931458950043, -0.0067420112900435925, 0.15744639933109283, -0.06183929368853569, -0.04230789840221405, 0.013072337955236435, -0.03526587039232254, 0.04160784184932709, 0.13063763082027435, 0.11636316031217575, -0.089559406042099, 0.126482293009758, 0.13345250487327576, -0.1086946502327919, 0.15137293934822083, -0.020354852080345154, -0.06817790120840073, -0.006368008442223072, -0.036672476679086685, -0.004272323567420244, 0.09126418828964233, -0.15537066757678986, -0.030438680201768875, 0.0064015439711511135, 0.022530151531100273, 0.026909593492746353, -0.23201541602611542, -0.04865400493144989, 0.038824670016765594, -0.012429386377334595, -0.008724500425159931, -0.028500637039542198, 0.02158854715526104, 0.12229250371456146, 0.002456776797771454, -0.08088928461074829, 0.02520916238427162, -0.00015051112859509885, -0.07904611527919769, 0.22519707679748535, -0.07110895216464996, -0.13769660890102386, -0.1104573979973793, -0.08614935725927353, -0.04640251770615578, 0.020293809473514557, 0.041831016540527344, -0.12237180769443512, -0.012459417805075645, -0.0410735048353672, 0.028067993000149727, -0.007950963452458382, 0.04434008151292801, -0.00997576117515564, -0.00831669382750988, 0.05484692379832268, -0.10098852217197418, -0.008465361781418324, -0.07591063529253006, -0.06796281039714813, 0.0532708615064621, 0.03474524989724159, 0.11525792628526688, 0.18218345940113068, -0.03937524929642677, 0.011841380037367344, -0.027008676901459694, 0.23933374881744385, -0.07811737060546875, -0.03584776073694229, 0.09817083925008774, -0.03759152442216873, 0.04806971549987793, 0.10055387765169144, 0.07966278493404388, -0.09132383018732071, 0.011379558593034744, 0.03318117931485176, -0.04333256557583809, -0.21562634408473969, -0.039424967020750046, -0.05090508237481117, -0.037856269627809525, 0.09508489072322845, 0.016774019226431847, 0.04494569078087807, 0.07836788147687912, 0.06370441615581512, 0.08355195820331573, -0.05223379656672478, 0.04300154745578766, 0.08948826789855957, 0.03885580599308014, 0.13031189143657684, -0.03421208634972572, -0.09222173690795898, 0.0258391872048378, -0.04067836329340935, 0.21753312647342682, -0.0026770075783133507, 0.10106001049280167, 0.04167122766375542, 0.1648472547531128, 0.01057074312120676, 0.09081575274467468, -0.004037116654217243, -0.05751541256904602, -0.007257789373397827, -0.02830929309129715, -0.04765133187174797, 0.011872503906488419, -0.034078359603881836, 0.056130703538656235, -0.13754533231258392, -0.01853160560131073, 0.05323673039674759, 0.2201623022556305, 0.03371912240982056, -0.3259112238883972, -0.07455416768789291, 0.0007563615217804909, -0.029261145740747452, -0.0205391813069582, 0.01231666561216116, 0.11326710879802704, -0.10879725217819214, 0.01758621260523796, -0.06807686388492584, 0.09659461677074432, -0.0644911378622055, 0.05614618957042694, 0.05409802868962288, 0.09519852697849274, -0.013433963991701603, 0.0780353918671608, -0.30447444319725037, 0.27809396386146545, 0.006867044139653444, 0.06882482022047043, -0.08501585572957993, -0.020557178184390068, 0.041745226830244064, 0.05680801719427109, 0.03961426019668579, -0.01244272105395794, 0.007546028587967157, -0.21943014860153198, -0.03937871381640434, 0.03169091418385506, 0.1185697540640831, -0.03434011712670326, 0.09874742478132248, -0.01946009323000908, 0.00858866237103939, 0.07544443011283875, -0.030130185186862946, -0.04164358600974083, -0.08392094820737839, -0.02469244785606861, 0.011642014607787132, -0.059208814054727554, -0.04726117104291916, -0.12303232401609421, -0.13956612348556519, 0.14507637917995453, 0.015589740127325058, -0.025737805292010307, -0.11928940564393997, 0.11470570415258408, 0.0675509050488472, -0.08350997418165207, 0.02919490821659565, 0.01707438752055168, 0.059048037976026535, 0.027674803510308266, -0.05907857045531273, 0.1103416234254837, -0.050841230899095535, -0.1524256318807602, -0.06457290053367615, 0.09216798096895218, 0.052848294377326965, 0.06823704391717911, -0.00989560317248106, 0.015363754704594612, -0.037086084485054016, -0.09386551380157471, 0.0278838649392128, -0.027025455608963966, 0.06148187071084976, 0.03728257864713669, -0.057296570390462875, 0.01126210018992424, -0.07054423540830612, -0.006965961307287216, 0.2108328491449356, 0.21323199570178986, -0.09070395678281784, -0.004337855614721775, 0.03502494469285011, -0.07296591252088547, -0.19800856709480286, 0.08477146178483963, 0.08442626148462296, 0.010853191837668419, 0.03931950405240059, -0.1719275414943695, 0.143052339553833, 0.08316196501255035, 0.0022656084038317204, 0.11384981125593185, -0.31259357929229736, -0.13104449212551117, 0.12297260016202927, 0.16932375729084015, 0.1360408514738083, -0.13860073685646057, -0.017943745478987694, -0.01969818025827408, -0.09540431946516037, 0.09414840489625931, -0.08027873933315277, 0.12215876579284668, -0.0184260793030262, 0.10673542320728302, 0.019400903955101967, -0.06092527508735657, 0.10643205046653748, 0.02546064741909504, 0.10441160202026367, -0.06848146766424179, -0.07049409300088882, 0.026021521538496017, -0.03254416212439537, -0.008019461296498775, -0.04951552674174309, 0.01713758334517479, -0.10520169138908386, -0.02613876946270466, -0.0907905101776123, 0.02829785645008087, -0.032315418124198914, -0.0677444115281105, -0.016279034316539764, 0.020767666399478912, 0.03909635916352272, -0.011866292916238308, 0.11367145925760269, -0.007085889577865601, 0.1792486011981964, 0.08800794184207916, 0.09197632968425751, -0.069939024746418, -0.045966736972332, -0.005441546905785799, -0.005602903664112091, 0.05460225045681, -0.12628479301929474, 0.02186565287411213, 0.15206392109394073, 0.027956273406744003, 0.13943220674991608, 0.09578590095043182, -0.009799225255846977, 0.012240245006978512, 0.06344480812549591, -0.16919302940368652, -0.06292782723903656, -0.017429303377866745, -0.08771850913763046, -0.10620854794979095, 0.04609373211860657, 0.09138722717761993, -0.06233292073011398, -0.011657155118882656, -0.019649343565106392, -0.018784336745738983, -0.06197642907500267, 0.2118193805217743, 0.08067067712545395, 0.0492110438644886, -0.10343965142965317, 0.05384765937924385, 0.060252800583839417, -0.07571657001972198, 0.0023670257069170475, 0.08624976128339767, -0.08204003423452377, -0.03672831505537033, 0.10139722377061844, 0.23197482526302338, -0.06002824753522873, -0.01824226602911949, -0.1446094661951065, -0.11974175274372101, 0.07130279392004013, 0.17302726209163666, 0.11723332852125168, -0.004689945839345455, -0.07878560572862625, 0.016746526584029198, -0.1362931728363037, 0.07873072475194931, 0.055105019360780716, 0.07018157094717026, -0.135887011885643, 0.19825994968414307, 0.001642804592847824, 0.04675707593560219, -0.030982766300439835, 0.019461356103420258, -0.11782259494066238, 0.026673799380660057, -0.12751083076000214, -0.03864553943276405, 0.0025578688364475965, 0.0003236242919228971, -0.007361225783824921, -0.0673007071018219, -0.04843315854668617, -0.006322041619569063, -0.1319664865732193, -0.0178611408919096, 0.03919048234820366, 0.03337879478931427, -0.10580906271934509, -0.040259286761283875, 0.018730800598859787, -0.05284161865711212, 0.05902258679270744, 0.051607176661491394, 0.008601696230471134, 0.07437563687562943, -0.1547982543706894, 0.001038790331222117, 0.06496147066354752, 0.0017310940893366933, 0.07955073565244675, -0.04891270026564598, 0.0009913129033520818, -0.013812844641506672, 0.09653312712907791, 0.03368118777871132, 0.07905177772045135, -0.1325932890176773, 0.016972340643405914, -0.01613359898328781, -0.09842365980148315, -0.06750886142253876, 0.037747763097286224, 0.06325653940439224, 0.018319910392165184, 0.179081991314888, -0.08022849261760712, 0.0599236823618412, -0.21401728689670563, -0.006066875532269478, -0.012053675018250942, -0.11378350853919983, -0.0997389554977417, -0.08168136328458786, 0.07933379709720612, -0.05754625052213669, 0.11986849457025528, 0.05862629786133766, 0.06532897055149078, 0.020695026963949203, -0.003337441710755229, 0.015563185326755047, 0.03292005881667137, 0.1992880403995514, 0.04163777455687523, -0.05101238191127777, 0.058614131063222885, 0.07890242338180542, 0.10852319002151489, 0.1353907436132431, 0.2126520276069641, 0.1349097192287445, -0.025735212489962578, 0.08318701386451721, 0.02147786132991314, -0.039011627435684204, -0.1464281529188156, 0.01681853085756302, -0.05801264941692352, 0.09169962257146835, -0.029018083587288857, 0.21045951545238495, 0.04669271782040596, -0.16858497262001038, 0.044576458632946014, -0.05728309974074364, -0.10644634068012238, -0.10488925129175186, -0.02517641708254814, -0.08016546815633774, -0.12735244631767273, 0.007721861358731985, -0.11418185383081436, 0.011699006892740726, 0.11641766130924225, 0.0147638488560915, -0.02894366905093193, 0.18018078804016113, 0.026523573324084282, 0.028624361380934715, 0.08367429673671722, 0.008717789314687252, -0.012278877198696136, -0.11386305093765259, -0.06199680641293526, -0.03830888867378235, -0.00809806864708662, 0.029031047597527504, -0.07505437731742859, -0.08757869899272919, 0.02542153373360634, -0.01775652915239334, -0.11014046519994736, 0.022286521270871162, 0.016725072637200356, 0.07393684983253479, 0.041485805064439774, -0.0017586075700819492, 0.008969517424702644, -0.029595864936709404, 0.23616357147693634, -0.08412141352891922, -0.07176029682159424, -0.09218794107437134, 0.27329614758491516, 0.037953492254018784, -0.00033307928242720664, 0.0222815852612257, -0.07124337553977966, 0.019592618569731712, 0.26468992233276367, 0.21712864935398102, -0.1283319592475891, -0.0016012826235964894, 0.005828325171023607, -0.00597271928563714, -0.005322239361703396, 0.13096614181995392, 0.11956024914979935, 0.04664252698421478, -0.11550343036651611, -0.02535298839211464, -0.05168354883790016, -0.014181780628859997, -0.027176709845662117, 0.06887350976467133, 0.07329646497964859, 0.013536307960748672, -0.061406657099723816, 0.07035426795482635, -0.08815789967775345, -0.10260528326034546, 0.058076221495866776, -0.2260308414697647, -0.16918739676475525, -0.019066134467720985, 0.10066826641559601, -0.0025395252741873264, 0.07752075046300888, -0.025568217039108276, -0.006168636493384838, 0.04141569510102272, -0.025332046672701836, -0.07731741666793823, -0.08380922675132751, 0.09888606518507004, -0.12472832947969437, 0.1758694052696228, -0.047695960849523544, 0.05871821567416191, 0.12237302958965302, 0.06629873067140579, -0.037096355110406876, 0.05322537198662758, 0.03820768743753433, -0.08083246648311615, 0.028272755444049835, 0.11016940325498581, -0.03332331404089928, 0.032750632613897324, 0.04112745821475983, -0.1459735929965973, 0.040147218853235245, -0.0944279134273529, -0.05508606508374214, -0.03774937987327576, -0.046977024525403976, -0.05517815425992012, 0.12706756591796875, 0.23784291744232178, -0.009720840491354465, 0.023290980607271194, -0.07286100834608078, -0.000002560910388638149, 0.04758267104625702, 0.03225008025765419, -0.09822677820920944, -0.24385014176368713, -0.0030146981589496136, 0.078040212392807, -0.03479839861392975, -0.2570963501930237, -0.08669403940439224, 0.0034068990498781204, -0.06871112436056137, -0.0888427346944809, 0.08299421519041061, 0.07673094421625137, 0.055366151034832, -0.05232156440615654, -0.0829143300652504, -0.07450148463249207, 0.1662084013223648, -0.15114925801753998, -0.09026945382356644 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Matthews Correlation: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5456 | 0.3973 | | 0.3481 | 2.0 | 1070 | 0.5401 | 0.5006 | | 0.242 | 3.0 | 1605 | 0.6223 | 0.5374 | | 0.1725 | 4.0 | 2140 | 0.7934 | 0.5229 | | 0.1346 | 5.0 | 2675 | 0.8478 | 0.5367 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5373623427702773, "name": "Matthews Correlation"}]}]}]}
text-classification
blizrys/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6223 * Matthews Correlation: 0.5374 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10426512360572815, 0.10433709621429443, -0.002259957604110241, 0.12249139696359634, 0.1660148948431015, 0.03348537161946297, 0.12569215893745422, 0.12749995291233063, -0.08600743860006332, 0.022487498819828033, 0.12130539864301682, 0.15879149734973907, 0.02310153841972351, 0.11628648638725281, -0.05104270204901695, -0.26310062408447266, -0.012797782197594643, 0.04824819043278694, -0.05345110222697258, 0.13410483300685883, 0.09187425673007965, -0.12191611528396606, 0.0906994491815567, 0.012523122131824493, -0.19482818245887756, -0.0029480960220098495, 0.00042572690290398896, -0.053956933319568634, 0.14694012701511383, 0.02537601813673973, 0.12314296513795853, -0.0004913617740385234, 0.08683395385742188, -0.19422951340675354, 0.010315582156181335, 0.04781133309006691, 0.005009995307773352, 0.09460025280714035, 0.04737091809511185, 0.005455106031149626, 0.1160484328866005, -0.08192814141511917, 0.05484170839190483, 0.02224828489124775, -0.11514543741941452, -0.20770631730556488, -0.08039336651563644, 0.03676752373576164, 0.07877427339553833, 0.10625603795051575, -0.005990809295326471, 0.11905906349420547, -0.0787460058927536, 0.09247059375047684, 0.2190333902835846, -0.286700576543808, -0.06601723283529282, 0.04456251114606857, 0.013659088872373104, 0.04419851675629616, -0.10103028267621994, -0.03667899966239929, 0.04668722674250603, 0.05234873667359352, 0.12773050367832184, -0.028970537707209587, -0.1218077763915062, 0.0033802713733166456, -0.14009326696395874, -0.03411950543522835, 0.17008748650550842, 0.040434580296278, -0.028836995363235474, -0.054720740765333176, -0.06081100180745125, -0.14672358334064484, -0.03682434558868408, -0.011688660830259323, 0.04699467867612839, -0.02180595137178898, -0.04085034504532814, -0.010947499424219131, -0.10869567096233368, -0.06319879740476608, -0.07729531079530716, 0.10842012614011765, 0.036131877452135086, 0.008506380021572113, -0.028935758396983147, 0.1114862859249115, -0.006415044888854027, -0.12363190948963165, 0.023490887135267258, 0.021571394056081772, 0.013030925765633583, -0.04021803289651871, -0.05357298627495766, -0.06285636126995087, 0.011701199226081371, 0.1296256184577942, -0.047466713935136795, 0.0417354553937912, 0.048748426139354706, 0.04871011897921562, -0.09200433641672134, 0.19268843531608582, -0.034906383603811264, -0.030038712546229362, 0.010833265259861946, 0.0468958243727684, 0.019004084169864655, -0.011806197464466095, -0.12342752516269684, 0.003989899531006813, 0.08965563029050827, 0.007289408706128597, -0.06077326461672783, 0.07437824457883835, -0.05541825294494629, -0.0253609586507082, 0.00386650743894279, -0.09246677905321121, 0.022484445944428444, -0.0007294954848475754, -0.07128224521875381, -0.020290985703468323, 0.03648412227630615, 0.015956250950694084, -0.021084999665617943, 0.10925419628620148, -0.08756697177886963, 0.02676578238606453, -0.09414482116699219, -0.10812705755233765, 0.018080338835716248, -0.10612281411886215, 0.021790599450469017, -0.09482768177986145, -0.18786847591400146, -0.017543887719511986, 0.06102675944566727, -0.023772550746798515, -0.061533089727163315, -0.05492522567510605, -0.06842752546072006, 0.012772813439369202, -0.009758928790688515, 0.11891642212867737, -0.06408089399337769, 0.09128986299037933, 0.019680099561810493, 0.05981069803237915, -0.04414365068078041, 0.060395292937755585, -0.10320717096328735, 0.015181172639131546, -0.15193164348602295, 0.04124220833182335, -0.05021706596016884, 0.06925851106643677, -0.08305956423282623, -0.10385692119598389, 0.007799788378179073, -0.005036167800426483, 0.06286153197288513, 0.09392543137073517, -0.1877855807542801, -0.07497616112232208, 0.15703634917736053, -0.07153391093015671, -0.12171104550361633, 0.11983588337898254, -0.059980932623147964, 0.05607984587550163, 0.05881010368466377, 0.17729079723358154, 0.08146750181913376, -0.07674693316221237, 0.0017060274258255959, 0.02487725019454956, 0.051810041069984436, -0.06745584309101105, 0.06833644211292267, 0.003987649455666542, 0.018164023756980896, 0.03621920198202133, -0.02947813645005226, 0.06423578411340714, -0.08516176044940948, -0.09827269613742828, -0.04194852337241173, -0.0823812186717987, 0.04079892858862877, 0.07540690898895264, 0.06894330680370331, -0.0905974954366684, -0.07699081301689148, 0.05027666687965393, 0.08283647894859314, -0.057200465351343155, 0.023797692731022835, -0.04974832013249397, 0.07535454630851746, -0.027170144021511078, -0.02276477962732315, -0.1820925772190094, -0.03723650798201561, 0.007776295766234398, -0.0001121047098422423, 0.016079852357506752, 0.028509872034192085, 0.06071171537041664, 0.05999923497438431, -0.0476035438477993, -0.017464617267251015, -0.03203345090150833, 0.0009492220124229789, -0.12850148975849152, -0.19165997207164764, -0.02964540384709835, -0.023648712784051895, 0.15829363465309143, -0.2059369534254074, 0.04867374897003174, -0.016797875985503197, 0.07151833921670914, 0.012727910652756691, -0.006638881750404835, -0.03739942982792854, 0.07276139408349991, -0.04526588320732117, -0.05399049073457718, 0.0806112140417099, 0.018874136731028557, -0.08801580965518951, -0.049643103033304214, -0.09715786576271057, 0.1531108021736145, 0.12844762206077576, -0.10493320971727371, -0.07572564482688904, -0.020654376596212387, -0.06728719919919968, -0.03382715582847595, -0.04939243197441101, 0.025807708501815796, 0.18722404539585114, -0.004461523145437241, 0.1508566290140152, -0.06760133057832718, -0.04336853325366974, 0.01723160594701767, -0.036057278513908386, 0.017328675836324692, 0.1265285760164261, 0.1374155431985855, -0.059712447226047516, 0.15458841621875763, 0.14715515077114105, -0.09026557952165604, 0.14469219744205475, -0.04152258485555649, -0.06488775461912155, -0.015399081632494926, -0.03186597302556038, -0.011341072618961334, 0.10118255764245987, -0.15199686586856842, 0.0017764876829460263, 0.03497067466378212, 0.01689252071082592, 0.025553934276103973, -0.2243642807006836, -0.03870183601975441, 0.034155867993831635, -0.04194335639476776, -0.003607292892411351, -0.00692207645624876, 0.0071485997177660465, 0.10098173469305038, 0.0011031328467652202, -0.08600062131881714, 0.039261557161808014, 0.0022273578215390444, -0.08415757119655609, 0.21540571749210358, -0.08334285765886307, -0.17394869029521942, -0.13083769381046295, -0.07111518830060959, -0.04867135360836983, 0.00039458886021748185, 0.06669750064611435, -0.08735331147909164, -0.03210105746984482, -0.0726284459233284, 0.022122973576188087, 0.010409518145024776, 0.024539994075894356, 0.003938174340873957, 0.004626403097063303, 0.06458874046802521, -0.11110340058803558, -0.015550504438579082, -0.05684101581573486, -0.04388412460684776, 0.04362897574901581, 0.03219163045287132, 0.1114690750837326, 0.15295127034187317, -0.014264507219195366, 0.011468439362943172, -0.029248511418700218, 0.23971162736415863, -0.06038505211472511, -0.017323501408100128, 0.14577287435531616, -0.01131322979927063, 0.05169711634516716, 0.11967752873897552, 0.07254404574632645, -0.07740233093500137, 0.004438361153006554, 0.03531082719564438, -0.036097221076488495, -0.22965286672115326, -0.058771245181560516, -0.058080822229385376, 0.008482000790536404, 0.09279254078865051, 0.02489478886127472, 0.030599800869822502, 0.07268312573432922, 0.04093388840556145, 0.07906527817249298, -0.039519891142845154, 0.055318836122751236, 0.1321485936641693, 0.03393073379993439, 0.12528666853904724, -0.04521327093243599, -0.0631549209356308, 0.04426415637135506, -0.010454464703798294, 0.22409671545028687, 0.004764808341860771, 0.12663747370243073, 0.06118015572428703, 0.16440026462078094, -0.005794202908873558, 0.07819760590791702, -0.009913095273077488, -0.03396560251712799, -0.01807704009115696, -0.038802169263362885, -0.04050105810165405, 0.025703569874167442, -0.06718948483467102, 0.062140315771102905, -0.11923284828662872, 0.015041983686387539, 0.05876095965504646, 0.24976108968257904, 0.03490309417247772, -0.32359662652015686, -0.09897902607917786, 0.0025236369110643864, -0.03214254602789879, -0.02410626783967018, 0.027108095586299896, 0.09401269257068634, -0.10150056332349777, 0.02924281731247902, -0.0762752816081047, 0.09722728282213211, -0.05291596055030823, 0.04811663180589676, 0.08359494060277939, 0.09187682718038559, 0.01273881085216999, 0.09307749569416046, -0.2858288884162903, 0.27187150716781616, -0.0001095435582101345, 0.05727545917034149, -0.07874415069818497, 0.01086416281759739, 0.04336170852184296, 0.06292960047721863, 0.08073702454566956, -0.012330491095781326, -0.027453524991869926, -0.1826833188533783, -0.07152741402387619, 0.028367064893245697, 0.06134333088994026, -0.03791256994009018, 0.08296520262956619, -0.033452264964580536, 0.007488494738936424, 0.07177787274122238, -0.0007205126457847655, -0.05129532516002655, -0.10879101604223251, -0.00538033340126276, 0.024950211867690086, -0.0590340793132782, -0.06024821102619171, -0.11951345205307007, -0.12641017138957977, 0.15740618109703064, -0.03249810263514519, -0.04079846665263176, -0.10955542325973511, 0.08575702458620071, 0.061592940241098404, -0.08935131877660751, 0.04640064388513565, -0.0002651397662702948, 0.08131054788827896, 0.02311514876782894, -0.07473637908697128, 0.10025379061698914, -0.07616567611694336, -0.15740104019641876, -0.06600521504878998, 0.10558932274580002, 0.031837981194257736, 0.06433220207691193, -0.011048474349081516, 0.008578725159168243, -0.04882335662841797, -0.09015624225139618, 0.015705324709415436, 0.01059509627521038, 0.0804133340716362, 0.01853850670158863, -0.07612992823123932, 0.0060027409344911575, -0.05939517542719841, -0.03232140839099884, 0.20830915868282318, 0.21475538611412048, -0.10217327624559402, 0.0258195698261261, 0.02200021594762802, -0.07357484102249146, -0.2013624608516693, 0.03310282528400421, 0.057223569601774216, 0.009338990785181522, 0.04134295508265495, -0.18028351664543152, 0.1395263522863388, 0.10767275094985962, -0.014254840090870857, 0.1049177423119545, -0.31948742270469666, -0.12232451885938644, 0.13675561547279358, 0.13327986001968384, 0.10010571032762527, -0.12934616208076477, -0.02182192914187908, -0.019805684685707092, -0.13585087656974792, 0.11871080845594406, -0.09001870453357697, 0.11899729818105698, -0.03491564840078354, 0.0815073773264885, 0.0023825892712920904, -0.05845170468091965, 0.11969935894012451, 0.0289877038449049, 0.09193193167448044, -0.05965009704232216, -0.03315823897719383, 0.03096715360879898, -0.04449234530329704, 0.03580469638109207, -0.09313686937093735, 0.031442079693078995, -0.10635531693696976, -0.025107571855187416, -0.06602425873279572, 0.04718546196818352, -0.042435791343450546, -0.06855174899101257, -0.03725622221827507, 0.025839144363999367, 0.05012626573443413, -0.008466712199151516, 0.12203888595104218, 0.02860250324010849, 0.1414310783147812, 0.09874077141284943, 0.07056708633899689, -0.06843950599431992, -0.07940129190683365, -0.02658763900399208, -0.01143626682460308, 0.050212763249874115, -0.1347932070493698, 0.022326458245515823, 0.15249556303024292, 0.018951259553432465, 0.1510075181722641, 0.08182299882173538, -0.018538322299718857, 0.000021221798306214623, 0.05697400122880936, -0.16726034879684448, -0.0875583365559578, -0.014363158494234085, -0.0649663656949997, -0.12047193944454193, 0.04137254133820534, 0.09413165599107742, -0.0674988403916359, -0.007067597936838865, -0.0040827360935509205, 0.01480003073811531, -0.047181155532598495, 0.18542033433914185, 0.06140720844268799, 0.04556829482316971, -0.09902192652225494, 0.07232040911912918, 0.04775995761156082, -0.07217730581760406, 0.004505601711571217, 0.07354437559843063, -0.08864618837833405, -0.054575514048337936, 0.06766585260629654, 0.19024787843227386, -0.04857509955763817, -0.04677366837859154, -0.14007768034934998, -0.12211456149816513, 0.07924559712409973, 0.13740694522857666, 0.11964695900678635, 0.011042100377380848, -0.06867233663797379, 0.00013753524399362504, -0.10835038125514984, 0.10523269325494766, 0.05095338448882103, 0.06350406259298325, -0.14289559423923492, 0.141910582780838, 0.017812194302678108, 0.048876430839300156, -0.019941730424761772, 0.025252623483538628, -0.09824269264936447, 0.005383232142776251, -0.09809642285108566, -0.0121102724224329, -0.033991310745477676, 0.012102196924388409, -0.005992238875478506, -0.047347813844680786, -0.05554035305976868, 0.010358233936131, -0.10652101784944534, -0.023995233699679375, 0.025617100298404694, 0.06924949586391449, -0.10803163796663284, -0.03712153807282448, 0.02782008796930313, -0.06190326437354088, 0.077000193297863, 0.04481126740574837, 0.01620541326701641, 0.04950089380145073, -0.13533835113048553, 0.016700081527233124, 0.07398871332406998, 0.03171689808368683, 0.06389815360307693, -0.09730371832847595, -0.006499884650111198, -0.005229889880865812, 0.03809446096420288, 0.01969943195581436, 0.07728329300880432, -0.14173462986946106, 0.002201495924964547, -0.02328886091709137, -0.08012913167476654, -0.0682433471083641, 0.02571716532111168, 0.09044670313596725, 0.021472934633493423, 0.20141401886940002, -0.07654982060194016, 0.05152589827775955, -0.21565696597099304, 0.006225933320820332, -0.009186693467199802, -0.10887595266103745, -0.1055423766374588, -0.07114649564027786, 0.05583106353878975, -0.05802374705672264, 0.1517743319272995, 0.04912406578660011, 0.022861337289214134, 0.02491481602191925, -0.007246850058436394, 0.014773547649383545, 0.011061709374189377, 0.18983176350593567, 0.030938738957047462, -0.03437184542417526, 0.0592007152736187, 0.0431998074054718, 0.10482235997915268, 0.11226430535316467, 0.20194236934185028, 0.14138156175613403, -0.00624391995370388, 0.0932706668972969, 0.040944769978523254, -0.05923188477754593, -0.15989600121974945, 0.048051681369543076, -0.037013355642557144, 0.11125864088535309, -0.020855454728007317, 0.21790654957294464, 0.058761466294527054, -0.1712712198495865, 0.04803154617547989, -0.052442826330661774, -0.0865674763917923, -0.11406191438436508, -0.05263666808605194, -0.07929245382547379, -0.127937912940979, -0.005218966398388147, -0.11683830618858337, -0.002244236646220088, 0.12685494124889374, 0.0028031114488840103, -0.028577234596014023, 0.15587973594665527, 0.006063263397663832, 0.021677058190107346, 0.05789635330438614, 0.012065466493368149, -0.03534611314535141, -0.13333582878112793, -0.059983085840940475, -0.017461296170949936, -0.006359034217894077, 0.032993730157613754, -0.06168423965573311, -0.03825095295906067, 0.03244449943304062, -0.022318247705698013, -0.0928620770573616, 0.005188292358070612, 0.012640755623579025, 0.053713541477918625, 0.04606783762574196, 0.011239070445299149, 0.019917158409953117, -0.0031351482030004263, 0.20080041885375977, -0.07217791676521301, -0.06660531461238861, -0.10717114806175232, 0.22972801327705383, 0.03417762741446495, -0.02237319014966488, 0.03579697757959366, -0.06617016345262527, 0.0030825489666312933, 0.24917256832122803, 0.2160906195640564, -0.08210866153240204, -0.007621712051331997, 0.015840673819184303, -0.00944583211094141, -0.02301640249788761, 0.10099002718925476, 0.1437874436378479, 0.05389159917831421, -0.09199661761522293, -0.046872831881046295, -0.05884753540158272, -0.018054412677884102, -0.03788604214787483, 0.07106056064367294, 0.04584185779094696, 0.0066960579715669155, -0.034526970237493515, 0.05514732748270035, -0.06887141615152359, -0.09347423166036606, 0.054371193051338196, -0.2162213772535324, -0.16998834908008575, -0.013261387124657631, 0.09828519821166992, 0.0034375409595668316, 0.05994460731744766, -0.030700774863362312, -0.0028944036457687616, 0.09509637206792831, -0.021005388349294662, -0.09704624861478806, -0.06895597279071808, 0.08762237429618835, -0.10917830467224121, 0.22248877584934235, -0.04615882411599159, 0.05427993834018707, 0.12458188831806183, 0.06982076913118362, -0.07060165703296661, 0.06350772827863693, 0.043261464685201645, -0.040720079094171524, 0.02771449275314808, 0.07004562765359879, -0.03564247861504555, 0.061437126249074936, 0.048388075083494186, -0.13911570608615875, 0.019061563536524773, -0.04958338290452957, -0.06783602386713028, -0.04561956971883774, -0.023861533030867577, -0.06201706826686859, 0.13243703544139862, 0.21538084745407104, -0.02663380280137062, -0.01076560840010643, -0.0711965560913086, 0.010668067261576653, 0.05290389806032181, 0.022487344220280647, -0.056119345128536224, -0.20987090468406677, 0.016981951892375946, 0.03965592756867409, -0.01915142871439457, -0.2438865303993225, -0.10073988139629364, 0.00047511851880699396, -0.07343509048223495, -0.09609877318143845, 0.07428222894668579, 0.08455246686935425, 0.04942093417048454, -0.057058949023485184, -0.04013773798942566, -0.0767010897397995, 0.14584758877754211, -0.1440131962299347, -0.09217162430286407 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6753 - Accuracy: 0.8206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5146 | 1.0 | 24544 | 0.4925 | 0.8049 | | 0.4093 | 2.0 | 49088 | 0.5090 | 0.8164 | | 0.3122 | 3.0 | 73632 | 0.5299 | 0.8185 | | 0.2286 | 4.0 | 98176 | 0.6753 | 0.8206 | | 0.182 | 5.0 | 122720 | 0.8372 | 0.8195 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mnli"}, "metrics": [{"type": "accuracy", "value": 0.8205807437595517, "name": "Accuracy"}]}]}]}
text-classification
blizrys/distilbert-base-uncased-finetuned-mnli
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-mnli ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6753 * Accuracy: 0.8206 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10426512360572815, 0.10433709621429443, -0.002259957604110241, 0.12249139696359634, 0.1660148948431015, 0.03348537161946297, 0.12569215893745422, 0.12749995291233063, -0.08600743860006332, 0.022487498819828033, 0.12130539864301682, 0.15879149734973907, 0.02310153841972351, 0.11628648638725281, -0.05104270204901695, -0.26310062408447266, -0.012797782197594643, 0.04824819043278694, -0.05345110222697258, 0.13410483300685883, 0.09187425673007965, -0.12191611528396606, 0.0906994491815567, 0.012523122131824493, -0.19482818245887756, -0.0029480960220098495, 0.00042572690290398896, -0.053956933319568634, 0.14694012701511383, 0.02537601813673973, 0.12314296513795853, -0.0004913617740385234, 0.08683395385742188, -0.19422951340675354, 0.010315582156181335, 0.04781133309006691, 0.005009995307773352, 0.09460025280714035, 0.04737091809511185, 0.005455106031149626, 0.1160484328866005, -0.08192814141511917, 0.05484170839190483, 0.02224828489124775, -0.11514543741941452, -0.20770631730556488, -0.08039336651563644, 0.03676752373576164, 0.07877427339553833, 0.10625603795051575, -0.005990809295326471, 0.11905906349420547, -0.0787460058927536, 0.09247059375047684, 0.2190333902835846, -0.286700576543808, -0.06601723283529282, 0.04456251114606857, 0.013659088872373104, 0.04419851675629616, -0.10103028267621994, -0.03667899966239929, 0.04668722674250603, 0.05234873667359352, 0.12773050367832184, -0.028970537707209587, -0.1218077763915062, 0.0033802713733166456, -0.14009326696395874, -0.03411950543522835, 0.17008748650550842, 0.040434580296278, -0.028836995363235474, -0.054720740765333176, -0.06081100180745125, -0.14672358334064484, -0.03682434558868408, -0.011688660830259323, 0.04699467867612839, -0.02180595137178898, -0.04085034504532814, -0.010947499424219131, -0.10869567096233368, -0.06319879740476608, -0.07729531079530716, 0.10842012614011765, 0.036131877452135086, 0.008506380021572113, -0.028935758396983147, 0.1114862859249115, -0.006415044888854027, -0.12363190948963165, 0.023490887135267258, 0.021571394056081772, 0.013030925765633583, -0.04021803289651871, -0.05357298627495766, -0.06285636126995087, 0.011701199226081371, 0.1296256184577942, -0.047466713935136795, 0.0417354553937912, 0.048748426139354706, 0.04871011897921562, -0.09200433641672134, 0.19268843531608582, -0.034906383603811264, -0.030038712546229362, 0.010833265259861946, 0.0468958243727684, 0.019004084169864655, -0.011806197464466095, -0.12342752516269684, 0.003989899531006813, 0.08965563029050827, 0.007289408706128597, -0.06077326461672783, 0.07437824457883835, -0.05541825294494629, -0.0253609586507082, 0.00386650743894279, -0.09246677905321121, 0.022484445944428444, -0.0007294954848475754, -0.07128224521875381, -0.020290985703468323, 0.03648412227630615, 0.015956250950694084, -0.021084999665617943, 0.10925419628620148, -0.08756697177886963, 0.02676578238606453, -0.09414482116699219, -0.10812705755233765, 0.018080338835716248, -0.10612281411886215, 0.021790599450469017, -0.09482768177986145, -0.18786847591400146, -0.017543887719511986, 0.06102675944566727, -0.023772550746798515, -0.061533089727163315, -0.05492522567510605, -0.06842752546072006, 0.012772813439369202, -0.009758928790688515, 0.11891642212867737, -0.06408089399337769, 0.09128986299037933, 0.019680099561810493, 0.05981069803237915, -0.04414365068078041, 0.060395292937755585, -0.10320717096328735, 0.015181172639131546, -0.15193164348602295, 0.04124220833182335, -0.05021706596016884, 0.06925851106643677, -0.08305956423282623, -0.10385692119598389, 0.007799788378179073, -0.005036167800426483, 0.06286153197288513, 0.09392543137073517, -0.1877855807542801, -0.07497616112232208, 0.15703634917736053, -0.07153391093015671, -0.12171104550361633, 0.11983588337898254, -0.059980932623147964, 0.05607984587550163, 0.05881010368466377, 0.17729079723358154, 0.08146750181913376, -0.07674693316221237, 0.0017060274258255959, 0.02487725019454956, 0.051810041069984436, -0.06745584309101105, 0.06833644211292267, 0.003987649455666542, 0.018164023756980896, 0.03621920198202133, -0.02947813645005226, 0.06423578411340714, -0.08516176044940948, -0.09827269613742828, -0.04194852337241173, -0.0823812186717987, 0.04079892858862877, 0.07540690898895264, 0.06894330680370331, -0.0905974954366684, -0.07699081301689148, 0.05027666687965393, 0.08283647894859314, -0.057200465351343155, 0.023797692731022835, -0.04974832013249397, 0.07535454630851746, -0.027170144021511078, -0.02276477962732315, -0.1820925772190094, -0.03723650798201561, 0.007776295766234398, -0.0001121047098422423, 0.016079852357506752, 0.028509872034192085, 0.06071171537041664, 0.05999923497438431, -0.0476035438477993, -0.017464617267251015, -0.03203345090150833, 0.0009492220124229789, -0.12850148975849152, -0.19165997207164764, -0.02964540384709835, -0.023648712784051895, 0.15829363465309143, -0.2059369534254074, 0.04867374897003174, -0.016797875985503197, 0.07151833921670914, 0.012727910652756691, -0.006638881750404835, -0.03739942982792854, 0.07276139408349991, -0.04526588320732117, -0.05399049073457718, 0.0806112140417099, 0.018874136731028557, -0.08801580965518951, -0.049643103033304214, -0.09715786576271057, 0.1531108021736145, 0.12844762206077576, -0.10493320971727371, -0.07572564482688904, -0.020654376596212387, -0.06728719919919968, -0.03382715582847595, -0.04939243197441101, 0.025807708501815796, 0.18722404539585114, -0.004461523145437241, 0.1508566290140152, -0.06760133057832718, -0.04336853325366974, 0.01723160594701767, -0.036057278513908386, 0.017328675836324692, 0.1265285760164261, 0.1374155431985855, -0.059712447226047516, 0.15458841621875763, 0.14715515077114105, -0.09026557952165604, 0.14469219744205475, -0.04152258485555649, -0.06488775461912155, -0.015399081632494926, -0.03186597302556038, -0.011341072618961334, 0.10118255764245987, -0.15199686586856842, 0.0017764876829460263, 0.03497067466378212, 0.01689252071082592, 0.025553934276103973, -0.2243642807006836, -0.03870183601975441, 0.034155867993831635, -0.04194335639476776, -0.003607292892411351, -0.00692207645624876, 0.0071485997177660465, 0.10098173469305038, 0.0011031328467652202, -0.08600062131881714, 0.039261557161808014, 0.0022273578215390444, -0.08415757119655609, 0.21540571749210358, -0.08334285765886307, -0.17394869029521942, -0.13083769381046295, -0.07111518830060959, -0.04867135360836983, 0.00039458886021748185, 0.06669750064611435, -0.08735331147909164, -0.03210105746984482, -0.0726284459233284, 0.022122973576188087, 0.010409518145024776, 0.024539994075894356, 0.003938174340873957, 0.004626403097063303, 0.06458874046802521, -0.11110340058803558, -0.015550504438579082, -0.05684101581573486, -0.04388412460684776, 0.04362897574901581, 0.03219163045287132, 0.1114690750837326, 0.15295127034187317, -0.014264507219195366, 0.011468439362943172, -0.029248511418700218, 0.23971162736415863, -0.06038505211472511, -0.017323501408100128, 0.14577287435531616, -0.01131322979927063, 0.05169711634516716, 0.11967752873897552, 0.07254404574632645, -0.07740233093500137, 0.004438361153006554, 0.03531082719564438, -0.036097221076488495, -0.22965286672115326, -0.058771245181560516, -0.058080822229385376, 0.008482000790536404, 0.09279254078865051, 0.02489478886127472, 0.030599800869822502, 0.07268312573432922, 0.04093388840556145, 0.07906527817249298, -0.039519891142845154, 0.055318836122751236, 0.1321485936641693, 0.03393073379993439, 0.12528666853904724, -0.04521327093243599, -0.0631549209356308, 0.04426415637135506, -0.010454464703798294, 0.22409671545028687, 0.004764808341860771, 0.12663747370243073, 0.06118015572428703, 0.16440026462078094, -0.005794202908873558, 0.07819760590791702, -0.009913095273077488, -0.03396560251712799, -0.01807704009115696, -0.038802169263362885, -0.04050105810165405, 0.025703569874167442, -0.06718948483467102, 0.062140315771102905, -0.11923284828662872, 0.015041983686387539, 0.05876095965504646, 0.24976108968257904, 0.03490309417247772, -0.32359662652015686, -0.09897902607917786, 0.0025236369110643864, -0.03214254602789879, -0.02410626783967018, 0.027108095586299896, 0.09401269257068634, -0.10150056332349777, 0.02924281731247902, -0.0762752816081047, 0.09722728282213211, -0.05291596055030823, 0.04811663180589676, 0.08359494060277939, 0.09187682718038559, 0.01273881085216999, 0.09307749569416046, -0.2858288884162903, 0.27187150716781616, -0.0001095435582101345, 0.05727545917034149, -0.07874415069818497, 0.01086416281759739, 0.04336170852184296, 0.06292960047721863, 0.08073702454566956, -0.012330491095781326, -0.027453524991869926, -0.1826833188533783, -0.07152741402387619, 0.028367064893245697, 0.06134333088994026, -0.03791256994009018, 0.08296520262956619, -0.033452264964580536, 0.007488494738936424, 0.07177787274122238, -0.0007205126457847655, -0.05129532516002655, -0.10879101604223251, -0.00538033340126276, 0.024950211867690086, -0.0590340793132782, -0.06024821102619171, -0.11951345205307007, -0.12641017138957977, 0.15740618109703064, -0.03249810263514519, -0.04079846665263176, -0.10955542325973511, 0.08575702458620071, 0.061592940241098404, -0.08935131877660751, 0.04640064388513565, -0.0002651397662702948, 0.08131054788827896, 0.02311514876782894, -0.07473637908697128, 0.10025379061698914, -0.07616567611694336, -0.15740104019641876, -0.06600521504878998, 0.10558932274580002, 0.031837981194257736, 0.06433220207691193, -0.011048474349081516, 0.008578725159168243, -0.04882335662841797, -0.09015624225139618, 0.015705324709415436, 0.01059509627521038, 0.0804133340716362, 0.01853850670158863, -0.07612992823123932, 0.0060027409344911575, -0.05939517542719841, -0.03232140839099884, 0.20830915868282318, 0.21475538611412048, -0.10217327624559402, 0.0258195698261261, 0.02200021594762802, -0.07357484102249146, -0.2013624608516693, 0.03310282528400421, 0.057223569601774216, 0.009338990785181522, 0.04134295508265495, -0.18028351664543152, 0.1395263522863388, 0.10767275094985962, -0.014254840090870857, 0.1049177423119545, -0.31948742270469666, -0.12232451885938644, 0.13675561547279358, 0.13327986001968384, 0.10010571032762527, -0.12934616208076477, -0.02182192914187908, -0.019805684685707092, -0.13585087656974792, 0.11871080845594406, -0.09001870453357697, 0.11899729818105698, -0.03491564840078354, 0.0815073773264885, 0.0023825892712920904, -0.05845170468091965, 0.11969935894012451, 0.0289877038449049, 0.09193193167448044, -0.05965009704232216, -0.03315823897719383, 0.03096715360879898, -0.04449234530329704, 0.03580469638109207, -0.09313686937093735, 0.031442079693078995, -0.10635531693696976, -0.025107571855187416, -0.06602425873279572, 0.04718546196818352, -0.042435791343450546, -0.06855174899101257, -0.03725622221827507, 0.025839144363999367, 0.05012626573443413, -0.008466712199151516, 0.12203888595104218, 0.02860250324010849, 0.1414310783147812, 0.09874077141284943, 0.07056708633899689, -0.06843950599431992, -0.07940129190683365, -0.02658763900399208, -0.01143626682460308, 0.050212763249874115, -0.1347932070493698, 0.022326458245515823, 0.15249556303024292, 0.018951259553432465, 0.1510075181722641, 0.08182299882173538, -0.018538322299718857, 0.000021221798306214623, 0.05697400122880936, -0.16726034879684448, -0.0875583365559578, -0.014363158494234085, -0.0649663656949997, -0.12047193944454193, 0.04137254133820534, 0.09413165599107742, -0.0674988403916359, -0.007067597936838865, -0.0040827360935509205, 0.01480003073811531, -0.047181155532598495, 0.18542033433914185, 0.06140720844268799, 0.04556829482316971, -0.09902192652225494, 0.07232040911912918, 0.04775995761156082, -0.07217730581760406, 0.004505601711571217, 0.07354437559843063, -0.08864618837833405, -0.054575514048337936, 0.06766585260629654, 0.19024787843227386, -0.04857509955763817, -0.04677366837859154, -0.14007768034934998, -0.12211456149816513, 0.07924559712409973, 0.13740694522857666, 0.11964695900678635, 0.011042100377380848, -0.06867233663797379, 0.00013753524399362504, -0.10835038125514984, 0.10523269325494766, 0.05095338448882103, 0.06350406259298325, -0.14289559423923492, 0.141910582780838, 0.017812194302678108, 0.048876430839300156, -0.019941730424761772, 0.025252623483538628, -0.09824269264936447, 0.005383232142776251, -0.09809642285108566, -0.0121102724224329, -0.033991310745477676, 0.012102196924388409, -0.005992238875478506, -0.047347813844680786, -0.05554035305976868, 0.010358233936131, -0.10652101784944534, -0.023995233699679375, 0.025617100298404694, 0.06924949586391449, -0.10803163796663284, -0.03712153807282448, 0.02782008796930313, -0.06190326437354088, 0.077000193297863, 0.04481126740574837, 0.01620541326701641, 0.04950089380145073, -0.13533835113048553, 0.016700081527233124, 0.07398871332406998, 0.03171689808368683, 0.06389815360307693, -0.09730371832847595, -0.006499884650111198, -0.005229889880865812, 0.03809446096420288, 0.01969943195581436, 0.07728329300880432, -0.14173462986946106, 0.002201495924964547, -0.02328886091709137, -0.08012913167476654, -0.0682433471083641, 0.02571716532111168, 0.09044670313596725, 0.021472934633493423, 0.20141401886940002, -0.07654982060194016, 0.05152589827775955, -0.21565696597099304, 0.006225933320820332, -0.009186693467199802, -0.10887595266103745, -0.1055423766374588, -0.07114649564027786, 0.05583106353878975, -0.05802374705672264, 0.1517743319272995, 0.04912406578660011, 0.022861337289214134, 0.02491481602191925, -0.007246850058436394, 0.014773547649383545, 0.011061709374189377, 0.18983176350593567, 0.030938738957047462, -0.03437184542417526, 0.0592007152736187, 0.0431998074054718, 0.10482235997915268, 0.11226430535316467, 0.20194236934185028, 0.14138156175613403, -0.00624391995370388, 0.0932706668972969, 0.040944769978523254, -0.05923188477754593, -0.15989600121974945, 0.048051681369543076, -0.037013355642557144, 0.11125864088535309, -0.020855454728007317, 0.21790654957294464, 0.058761466294527054, -0.1712712198495865, 0.04803154617547989, -0.052442826330661774, -0.0865674763917923, -0.11406191438436508, -0.05263666808605194, -0.07929245382547379, -0.127937912940979, -0.005218966398388147, -0.11683830618858337, -0.002244236646220088, 0.12685494124889374, 0.0028031114488840103, -0.028577234596014023, 0.15587973594665527, 0.006063263397663832, 0.021677058190107346, 0.05789635330438614, 0.012065466493368149, -0.03534611314535141, -0.13333582878112793, -0.059983085840940475, -0.017461296170949936, -0.006359034217894077, 0.032993730157613754, -0.06168423965573311, -0.03825095295906067, 0.03244449943304062, -0.022318247705698013, -0.0928620770573616, 0.005188292358070612, 0.012640755623579025, 0.053713541477918625, 0.04606783762574196, 0.011239070445299149, 0.019917158409953117, -0.0031351482030004263, 0.20080041885375977, -0.07217791676521301, -0.06660531461238861, -0.10717114806175232, 0.22972801327705383, 0.03417762741446495, -0.02237319014966488, 0.03579697757959366, -0.06617016345262527, 0.0030825489666312933, 0.24917256832122803, 0.2160906195640564, -0.08210866153240204, -0.007621712051331997, 0.015840673819184303, -0.00944583211094141, -0.02301640249788761, 0.10099002718925476, 0.1437874436378479, 0.05389159917831421, -0.09199661761522293, -0.046872831881046295, -0.05884753540158272, -0.018054412677884102, -0.03788604214787483, 0.07106056064367294, 0.04584185779094696, 0.0066960579715669155, -0.034526970237493515, 0.05514732748270035, -0.06887141615152359, -0.09347423166036606, 0.054371193051338196, -0.2162213772535324, -0.16998834908008575, -0.013261387124657631, 0.09828519821166992, 0.0034375409595668316, 0.05994460731744766, -0.030700774863362312, -0.0028944036457687616, 0.09509637206792831, -0.021005388349294662, -0.09704624861478806, -0.06895597279071808, 0.08762237429618835, -0.10917830467224121, 0.22248877584934235, -0.04615882411599159, 0.05427993834018707, 0.12458188831806183, 0.06982076913118362, -0.07060165703296661, 0.06350772827863693, 0.043261464685201645, -0.040720079094171524, 0.02771449275314808, 0.07004562765359879, -0.03564247861504555, 0.061437126249074936, 0.048388075083494186, -0.13911570608615875, 0.019061563536524773, -0.04958338290452957, -0.06783602386713028, -0.04561956971883774, -0.023861533030867577, -0.06201706826686859, 0.13243703544139862, 0.21538084745407104, -0.02663380280137062, -0.01076560840010643, -0.0711965560913086, 0.010668067261576653, 0.05290389806032181, 0.022487344220280647, -0.056119345128536224, -0.20987090468406677, 0.016981951892375946, 0.03965592756867409, -0.01915142871439457, -0.2438865303993225, -0.10073988139629364, 0.00047511851880699396, -0.07343509048223495, -0.09609877318143845, 0.07428222894668579, 0.08455246686935425, 0.04942093417048454, -0.057058949023485184, -0.04013773798942566, -0.0767010897397995, 0.14584758877754211, -0.1440131962299347, -0.09217162430286407 ]
null
null
transformers
# Keyphrase Boundary Infilling with Replacement (KBIR) The KBIR model as described in "Learning Rich Representations of Keyphrases from Text" from Findings of NAACL 2022 (https://aclanthology.org/2022.findings-naacl.67.pdf) builds on top of the RoBERTa architecture by adding an Infilling head and a Replacement Classification head that is used during pre-training. However, these heads are not used during the downstream evaluation of the model and we only leverage the pre-trained embeddings. Discarding the heads thereby allows us to be compatible with all AutoModel classes that RoBERTa supports. We provide examples on how to perform downstream evaluation on some of the tasks reported in the paper. ## Downstream Evaluation ### Keyphrase Extraction ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("midas/semeval2017_ke_tagged") ``` Reported Results: | Model | Inspec | SE10 | SE17 | |-----------------------|--------|-------|-------| | RoBERTa+BiLSTM-CRF | 59.5 | 27.8 | 50.8 | | RoBERTa+TG-CRF | 60.4 | 29.7 | 52.1 | | SciBERT+Hypernet-CRF | 62.1 | 36.7 | 54.4 | | RoBERTa+Hypernet-CRF | 62.3 | 34.8 | 53.3 | | RoBERTa-extended-CRF* | 62.09 | 40.61 | 52.32 | | KBI-CRF* | 62.61 | 40.81 | 59.7 | | KBIR-CRF* | 62.72 | 40.15 | 62.56 | ### Named Entity Recognition ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("conll2003") ``` Reported Results: | Model | F1 | |---------------------------------|-------| | LSTM-CRF (Lample et al., 2016) | 91.0 | | ELMo (Peters et al., 2018) | 92.2 | | BERT (Devlin et al., 2018) | 92.8 | | (Akbik et al., 2019) | 93.1 | | (Baevski et al., 2019) | 93.5 | | LUKE (Yamada et al., 2020) | 94.3 | | LUKE w/o entity attention | 94.1 | | RoBERTa (Yamada et al., 2020) | 92.4 | | RoBERTa-extended* | 92.54 | | KBI* | 92.73 | | KBIR* | 92.97 | ### Question Answering ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForQuestionAnswering.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("squad") ``` Reported Results: | Model | EM | F1 | |------------------------|-------|-------| | BERT | 84.2 | 91.1 | | XLNet | 89.0 | 94.5 | | ALBERT | 89.3 | 94.8 | | LUKE | 89.8 | 95.0 | | LUKE w/o entity attention | 89.2 | 94.7 | | RoBERTa | 88.9 | 94.6 | | RoBERTa-extended* | 88.88 | 94.55 | | KBI* | 88.97 | 94.7 | | KBIR* | 89.04 | 94.75 | ## Any other classification task As mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with. We encourage you to try fine-tuning KBIR on different datasets and report the downstream results. ## Citation Please cite this work using the following BibTeX entry: ``` @inproceedings{kulkarni-etal-2022-learning, title = "Learning Rich Representation of Keyphrases from Text", author = "Kulkarni, Mayank and Mahata, Debanjan and Arora, Ravneet and Bhowmik, Rajarshi", booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-naacl.67", doi = "10.18653/v1/2022.findings-naacl.67", pages = "891--906", abstract = "In this work, we explore how to train task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 8.16 points in F1) over SOTA, when the LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks.", } ``` ## Contact For any questions contact [email protected]
{"license": "apache-2.0"}
null
bloomberg/KBIR
[ "transformers", "pytorch", "roberta", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #license-apache-2.0 #endpoints_compatible #has_space #region-us
Keyphrase Boundary Infilling with Replacement (KBIR) ==================================================== The KBIR model as described in "Learning Rich Representations of Keyphrases from Text" from Findings of NAACL 2022 (URL builds on top of the RoBERTa architecture by adding an Infilling head and a Replacement Classification head that is used during pre-training. However, these heads are not used during the downstream evaluation of the model and we only leverage the pre-trained embeddings. Discarding the heads thereby allows us to be compatible with all AutoModel classes that RoBERTa supports. We provide examples on how to perform downstream evaluation on some of the tasks reported in the paper. Downstream Evaluation --------------------- ### Keyphrase Extraction Reported Results: ### Named Entity Recognition Reported Results: ### Question Answering Reported Results: Model: BERT, EM: 84.2, F1: 91.1 Model: XLNet, EM: 89.0, F1: 94.5 Model: ALBERT, EM: 89.3, F1: 94.8 Model: LUKE, EM: 89.8, F1: 95.0 Model: LUKE w/o entity attention, EM: 89.2, F1: 94.7 Model: RoBERTa, EM: 88.9, F1: 94.6 Model: RoBERTa-extended\*, EM: 88.88, F1: 94.55 Model: KBI\*, EM: 88.97, F1: 94.7 Model: KBIR\*, EM: 89.04, F1: 94.75 Any other classification task ----------------------------- As mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with. We encourage you to try fine-tuning KBIR on different datasets and report the downstream results. Please cite this work using the following BibTeX entry: Contact ------- For any questions contact dmahata@URL
[ "### Keyphrase Extraction\n\n\nReported Results:", "### Named Entity Recognition\n\n\nReported Results:", "### Question Answering\n\n\nReported Results:\n\n\nModel: BERT, EM: 84.2, F1: 91.1\nModel: XLNet, EM: 89.0, F1: 94.5\nModel: ALBERT, EM: 89.3, F1: 94.8\nModel: LUKE, EM: 89.8, F1: 95.0\nModel: LUKE w/o entity attention, EM: 89.2, F1: 94.7\nModel: RoBERTa, EM: 88.9, F1: 94.6\nModel: RoBERTa-extended\\*, EM: 88.88, F1: 94.55\nModel: KBI\\*, EM: 88.97, F1: 94.7\nModel: KBIR\\*, EM: 89.04, F1: 94.75\n\n\nAny other classification task\n-----------------------------\n\n\nAs mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with.\n\n\nWe encourage you to try fine-tuning KBIR on different datasets and report the downstream results.\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nContact\n-------\n\n\nFor any questions contact dmahata@URL" ]
[ "TAGS\n#transformers #pytorch #roberta #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Keyphrase Extraction\n\n\nReported Results:", "### Named Entity Recognition\n\n\nReported Results:", "### Question Answering\n\n\nReported Results:\n\n\nModel: BERT, EM: 84.2, F1: 91.1\nModel: XLNet, EM: 89.0, F1: 94.5\nModel: ALBERT, EM: 89.3, F1: 94.8\nModel: LUKE, EM: 89.8, F1: 95.0\nModel: LUKE w/o entity attention, EM: 89.2, F1: 94.7\nModel: RoBERTa, EM: 88.9, F1: 94.6\nModel: RoBERTa-extended\\*, EM: 88.88, F1: 94.55\nModel: KBI\\*, EM: 88.97, F1: 94.7\nModel: KBIR\\*, EM: 89.04, F1: 94.75\n\n\nAny other classification task\n-----------------------------\n\n\nAs mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with.\n\n\nWe encourage you to try fine-tuning KBIR on different datasets and report the downstream results.\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nContact\n-------\n\n\nFor any questions contact dmahata@URL" ]
[ 36, 11, 13, 256 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Keyphrase Extraction\n\n\nReported Results:### Named Entity Recognition\n\n\nReported Results:### Question Answering\n\n\nReported Results:\n\n\nModel: BERT, EM: 84.2, F1: 91.1\nModel: XLNet, EM: 89.0, F1: 94.5\nModel: ALBERT, EM: 89.3, F1: 94.8\nModel: LUKE, EM: 89.8, F1: 95.0\nModel: LUKE w/o entity attention, EM: 89.2, F1: 94.7\nModel: RoBERTa, EM: 88.9, F1: 94.6\nModel: RoBERTa-extended\\*, EM: 88.88, F1: 94.55\nModel: KBI\\*, EM: 88.97, F1: 94.7\nModel: KBIR\\*, EM: 89.04, F1: 94.75\n\n\nAny other classification task\n-----------------------------\n\n\nAs mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with.\n\n\nWe encourage you to try fine-tuning KBIR on different datasets and report the downstream results.\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nContact\n-------\n\n\nFor any questions contact dmahata@URL" ]
[ -0.07931769639253616, 0.06474899500608444, -0.0050156740471720695, 0.048398640006780624, 0.04830460622906685, 0.01744413562119007, 0.04362933337688446, 0.10051337629556656, 0.1415790170431137, 0.09301519393920898, 0.05291101336479187, 0.18618980050086975, 0.06556149572134018, 0.2075665295124054, -0.06128862872719765, -0.14473885297775269, -0.008821830153465271, -0.006720613222569227, 0.054178208112716675, 0.08994743973016739, 0.12229394167661667, -0.0955691784620285, 0.04944763705134392, -0.026933016255497932, -0.06550378352403641, 0.05051903799176216, -0.011134016327559948, -0.0391717255115509, 0.08231902867555618, 0.06881210952997208, 0.09616133570671082, 0.06816698610782623, 0.0008323327638208866, -0.13865084946155548, 0.014338430017232895, 0.025955205783247948, -0.028816580772399902, 0.050734441727399826, 0.08157385885715485, -0.018000327050685883, 0.09757637977600098, -0.09458666294813156, 0.007736813277006149, 0.06714779138565063, -0.10069119930267334, -0.2049741894006729, -0.10807839035987854, 0.17510466277599335, 0.1887616068124771, -0.010702353902161121, -0.05272816866636276, 0.13779360055923462, -0.05172402039170265, 0.09700678288936615, 0.09741972386837006, -0.18133781850337982, -0.025825457647442818, 0.09072888642549515, 0.0001259753480553627, 0.012267344631254673, -0.03727275878190994, -0.031861454248428345, 0.019636349752545357, 0.011192419566214085, 0.0245522428303957, -0.05178631469607353, 0.02695469930768013, -0.03366551920771599, -0.10285016149282455, -0.0482306033372879, 0.1214328482747078, 0.12113099545240402, -0.07541167736053467, -0.1662335842847824, -0.06146042421460152, -0.04827135428786278, -0.015270540490746498, -0.05348648130893707, 0.0007489968556910753, -0.05328287556767464, 0.09914419054985046, -0.03410431370139122, -0.09849690645933151, -0.05623304471373558, -0.03915839642286301, 0.0543140210211277, 0.039049651473760605, -0.013977701775729656, 0.05840903893113136, 0.09428142011165619, -0.0767040103673935, -0.14066873490810394, -0.0861465185880661, -0.09941238909959793, -0.15566878020763397, -0.026632722467184067, 0.05249162018299103, 0.05515042319893837, 0.043162498623132706, 0.2562284767627716, 0.03720777854323387, 0.07023046910762787, 0.014671210199594498, -0.010857145301997662, 0.048094429075717926, 0.09622744470834732, -0.07943487912416458, -0.032741423696279526, 0.06134071573615074, 0.042125530540943146, -0.0036359040532261133, -0.02725849859416485, -0.03754516690969467, -0.03609462082386017, 0.10769670456647873, 0.09368711709976196, 0.08068016171455383, 0.011789746582508087, -0.04914335533976555, -0.07775665074586868, 0.2281723916530609, -0.12418773025274277, 0.015079441480338573, 0.05892128124833107, -0.026149798184633255, -0.08958159387111664, 0.005829592701047659, 0.034053411334753036, -0.01938316598534584, 0.02508728764951229, -0.03656215965747833, -0.06412528455257416, -0.03904780372977257, -0.12911999225616455, 0.07290012389421463, -0.15322892367839813, 0.010705946013331413, -0.15081541240215302, -0.09622357785701752, -0.07178984582424164, 0.003691115416586399, -0.07279682159423828, -0.03168537840247154, 0.014092718251049519, -0.11405204981565475, 0.002021057764068246, -0.05279199779033661, 0.1024545282125473, -0.028338879346847534, 0.04387500882148743, 0.027010386809706688, 0.06493975222110748, 0.007720377296209335, 0.013153034262359142, -0.03498804196715355, 0.026024892926216125, -0.2291867434978485, 0.12603941559791565, -0.1305142045021057, -0.000438229413703084, -0.17360804975032806, -0.007188612595200539, 0.023896481841802597, 0.012492912821471691, 0.03369565308094025, 0.15058867633342743, -0.14054234325885773, 0.0018454341916367412, 0.06850029528141022, -0.03380044177174568, -0.06958188861608505, 0.07069934159517288, -0.019510600715875626, -0.02242097072303295, 0.04792581871151924, 0.15868549048900604, 0.10258407145738602, -0.052733372896909714, -0.11388687789440155, -0.04406067356467247, -0.03389928489923477, 0.022337671369314194, 0.0733451098203659, 0.008929177187383175, 0.07364895939826965, -0.003421294968575239, -0.028120316565036774, -0.017833352088928223, -0.04678142070770264, -0.04105633124709129, -0.010008841753005981, -0.04473156854510307, -0.015406918711960316, 0.01817048341035843, -0.008792083710432053, -0.03688078373670578, -0.10725793987512589, -0.020708849653601646, 0.10611878335475922, -0.02960810251533985, -0.060800839215517044, -0.1339792013168335, 0.08521804213523865, -0.09111780673265457, 0.01584424078464508, -0.16358281672000885, -0.07132931053638458, 0.05272909626364708, -0.07905061542987823, 0.015352693386375904, 0.055220551788806915, 0.060221437364816666, 0.015649789944291115, -0.005917674396187067, -0.09488239139318466, -0.007742782589048147, -0.0025870297104120255, -0.060535237193107605, -0.13065017759799957, -0.10765152424573898, -0.05208910256624222, 0.1394730508327484, -0.21004365384578705, 0.006771341897547245, 0.08452671766281128, 0.161165252327919, 0.01718616858124733, -0.034988876432180405, 0.01785859279334545, 0.003290732391178608, -0.03169174864888191, -0.028875773772597313, 0.02694113180041313, -0.06344563513994217, -0.08578527718782425, 0.0847637876868248, -0.07463093847036362, -0.025831449776887894, 0.05372552573680878, 0.04937634989619255, -0.06306909024715424, 0.07161811739206314, -0.06244368106126785, -0.008836311288177967, 0.04028964415192604, -0.08098170161247253, 0.11691748350858688, 0.060222480446100235, 0.07953333109617233, -0.068771131336689, -0.12234043329954147, 0.013763445429503918, -0.0034111025743186474, 0.0015848075272515416, 0.21624405682086945, 0.004744145553559065, -0.17483539879322052, 0.061192549765110016, 0.05011850595474243, 0.029878418892621994, 0.10617010295391083, -0.02074703574180603, -0.06304324418306351, -0.044136568903923035, 0.05683713033795357, 0.027734529227018356, 0.05700322613120079, -0.03520304709672928, 0.025543734431266785, 0.08367370814085007, 0.015925385057926178, 0.005832219496369362, -0.04635731130838394, 0.031189702451229095, 0.020955443382263184, -0.06748674064874649, -0.01590578444302082, 0.09954377263784409, 0.05142251029610634, 0.0738382413983345, -0.020071011036634445, 0.03578988090157509, -0.018587110564112663, -0.06613345444202423, -0.09861644357442856, 0.19138242304325104, -0.012117579579353333, -0.21540707349777222, -0.15042579174041748, -0.041947100311517715, -0.06614246964454651, -0.012072764337062836, 0.06531281024217606, -0.05935792624950409, -0.08023491501808167, -0.06938343495130539, 0.03182150423526764, 0.06437037885189056, -0.03017074055969715, -0.04780259728431702, -0.007139076944440603, 0.05908830091357231, -0.1499667912721634, -0.027725612744688988, 0.004262096248567104, -0.07785255461931229, 0.06305108219385147, 0.03470439463853836, 0.11716514080762863, 0.0999920442700386, -0.017287475988268852, 0.0022041427437216043, 0.01677476242184639, 0.2307073175907135, -0.06780869513750076, 0.09412382543087006, 0.17663249373435974, -0.04119138419628143, 0.04277504235506058, 0.14121729135513306, 0.008191454224288464, -0.06598539650440216, 0.015747051686048508, 0.08608290553092957, -0.030253175646066666, -0.2498117834329605, -0.03989385813474655, -0.02751333825290203, 0.0008598063723184168, 0.029086772352457047, 0.052935827523469925, 0.06826832890510559, 0.015465903095901012, -0.05212875083088875, -0.022334402427077293, 0.011461838148534298, 0.061514608561992645, 0.09047558903694153, 0.01809905841946602, 0.1269620805978775, -0.0650632455945015, 0.004162282217293978, 0.06621702760457993, -0.01958940550684929, 0.18579931557178497, 0.01128101721405983, 0.10727691650390625, 0.1186637133359909, 0.03044426441192627, 0.007265777792781591, 0.06699465960264206, -0.04663223773241043, 0.02113982103765011, -0.008655006065964699, -0.07226558774709702, -0.022721722722053528, 0.0597306452691555, 0.08267128467559814, -0.04598443955183029, -0.06835925579071045, -0.11503268778324127, 0.0031403768807649612, 0.12136862426996231, 0.11734083294868469, -0.21099330484867096, -0.023062976077198982, 0.050564419478178024, -0.09799331426620483, -0.056319452822208405, -0.08957978338003159, 0.05118107423186302, -0.08324950933456421, 0.03006085194647312, 0.007723282091319561, 0.10087455809116364, -0.12326505780220032, -0.026134677231311798, -0.09043464064598083, 0.03134729713201523, 0.02232505939900875, 0.06539913266897202, -0.06960513442754745, 0.22308368980884552, 0.03455944359302521, 0.0682670995593071, -0.07739122956991196, 0.0031795199029147625, 0.03880983963608742, -0.07953500002622604, 0.14666283130645752, -0.010365607216954231, 0.009953767992556095, -0.22798624634742737, -0.17119601368904114, 0.027753302827477455, 0.01305423304438591, -0.13289885222911835, 0.1123519167304039, 0.017800748348236084, -0.03261703997850418, -0.027018481865525246, 0.057452429085969925, -0.18124383687973022, -0.07067844271659851, 0.016021134331822395, 0.021274231374263763, -0.00065696204546839, -0.05805331841111183, -0.014800635166466236, 0.020339567214250565, 0.07490015774965286, -0.15706034004688263, -0.06844796240329742, -0.11756784468889236, 0.012643760070204735, 0.1699339896440506, -0.11399979144334793, 0.03586781397461891, -0.04260185733437538, 0.0869513601064682, 0.009705774486064911, -0.049464307725429535, 0.01843905821442604, -0.07615500688552856, -0.13014419376850128, 0.0026704110205173492, 0.15082688629627228, 0.08467373251914978, 0.04921920225024223, 0.05984535440802574, 0.019115494564175606, 0.02911810390651226, -0.11331577599048615, 0.02835754118859768, 0.061991799622774124, 0.09897353500127792, 0.09728102385997772, -0.03871433809399605, -0.08085665851831436, -0.09196237474679947, -0.023215990513563156, 0.08416946232318878, 0.40462955832481384, -0.06316537410020828, 0.08635824173688889, 0.09309450536966324, -0.03859439119696617, -0.19654160737991333, -0.07334623485803604, 0.09505867958068848, 0.05729011818766594, 0.029275735840201378, -0.10143384337425232, 0.058544572442770004, 0.08277984708547592, -0.030616357922554016, 0.0777985006570816, -0.13453629612922668, -0.1356426477432251, 0.12379046529531479, 0.053680598735809326, 0.016917096450924873, -0.12000677734613419, -0.08969724178314209, -0.013550229370594025, -0.18323156237602234, 0.07828852534294128, -0.019254932180047035, 0.09664978832006454, -0.032279741019010544, -0.04540124163031578, 0.034530188888311386, -0.0352623350918293, 0.14564812183380127, 0.0341656394302845, 0.06641608476638794, -0.04485469311475754, -0.04403621703386307, -0.005035695154219866, -0.09030929207801819, 0.10149117559194565, 0.02164614200592041, 0.041850246489048004, -0.2316976636648178, -0.05822514742612839, -0.0807143822312355, 0.09255137294530869, -0.03042997233569622, -0.038060180842876434, -0.03918158635497093, 0.05006972327828407, 0.03929860517382622, 0.009940268471837044, 0.028406968340277672, -0.09916304051876068, 0.020661011338233948, 0.17141474783420563, 0.13079044222831726, -0.04689185321331024, 0.0013152469182386994, 0.0005807839334011078, -0.043678443878889084, -0.0031355624087154865, -0.14701689779758453, 0.06603078544139862, 0.09223124384880066, 0.022318962961435318, 0.09286737442016602, 0.007428791373968124, -0.11682198196649551, -0.005664791911840439, 0.09366273880004883, -0.09367470443248749, -0.10700175166130066, -0.005387555807828903, -0.06681538373231888, -0.08158905059099197, -0.011303468607366085, 0.14239011704921722, 0.008522254414856434, -0.04403627663850784, 0.02464165724813938, 0.014917643740773201, 0.01697819121181965, 0.13162043690681458, 0.09087306261062622, 0.09280355274677277, -0.05820544809103012, 0.00039380797534249723, 0.042853206396102905, -0.05390097200870514, 0.027907593175768852, 0.0481482557952404, -0.0725618377327919, -0.08588770776987076, -0.059608303010463715, 0.11060654371976852, -0.03412184491753578, -0.03640833497047424, 0.01361022237688303, -0.028018813580274582, 0.061439868062734604, 0.13915643095970154, 0.04106573015451431, 0.03721291199326515, 0.0708668902516365, 0.018703902140259743, -0.05368500202894211, 0.11334429681301117, 0.08871953934431076, 0.03884172812104225, -0.16163219511508942, -0.016554901376366615, -0.020198935642838478, 0.043256230652332306, -0.015612464398145676, 0.02356105111539364, -0.111177459359169, -0.03023248352110386, -0.1150692030787468, -0.0095177898183465, -0.02742180787026882, -0.022934293374419212, -0.009546393528580666, -0.04122324287891388, -0.06038666516542435, 0.01958608441054821, -0.09474750608205795, -0.0672186091542244, -0.03943658992648125, 0.10865286737680435, -0.14044098556041718, -0.07425231486558914, 0.049701154232025146, -0.10297458618879318, 0.12571987509727478, 0.02031954936683178, 0.00879837665706873, 0.017583008855581284, -0.02085980214178562, 0.00426398916170001, 0.03438878059387207, 0.0482831634581089, 0.05531115457415581, -0.20003946125507355, 0.03072470612823963, -0.03745920583605766, -0.0034246467985212803, 0.009622418321669102, 0.02693095989525318, -0.10508588701486588, -0.03668402135372162, -0.07114879041910172, -0.07725145667791367, -0.07153458148241043, 0.07648687809705734, 0.11666543781757355, 0.08336049318313599, 0.1460193693637848, -0.022808419540524483, 0.03030047006905079, -0.19132432341575623, -0.011465204879641533, -0.03387416526675224, -0.03508348390460014, 0.05598398670554161, -0.06589513272047043, 0.05094302073121071, -0.03916122391819954, 0.10251424461603165, -0.036322616040706635, 0.009617987088859081, 0.03731071576476097, -0.07995154708623886, -0.01691826619207859, 0.03283284604549408, 0.1598980575799942, 0.006020986940711737, -0.007107368670403957, 0.030417300760746002, 0.03820638731122017, -0.022193849086761475, -0.08022940903902054, 0.08536890149116516, 0.1867128163576126, 0.015742355957627296, 0.01731147989630699, 0.12366408854722977, -0.11218413710594177, -0.05884329974651337, 0.0061453282833099365, -0.037022847682237625, 0.05034758150577545, -0.04650471359491348, 0.1342131644487381, 0.11515169590711594, -0.14259131252765656, 0.05338408425450325, -0.008013640530407429, -0.045363202691078186, -0.11123468726873398, -0.10281611979007721, -0.09884646534919739, -0.03345300629734993, 0.018568456172943115, -0.07457384467124939, 0.03728804737329483, 0.053210023790597916, 0.029618997126817703, 0.006834977772086859, 0.1235840767621994, -0.03210414946079254, 0.003722831839695573, 0.07131076604127884, -0.005015102215111256, -0.07328745722770691, 0.015650007873773575, 0.03528127446770668, 0.048105478286743164, 0.06652095913887024, 0.03763636574149132, 0.04326290637254715, -0.05469845235347748, 0.021586937829852104, -0.05053611844778061, -0.11490076780319214, -0.02198413573205471, 0.044577065855264664, 0.05934920534491539, 0.14026029407978058, 0.06424244493246078, -0.0452519990503788, -0.00009728087024996057, 0.1908976137638092, -0.030667083337903023, -0.05622010678052902, -0.09033173322677612, 0.18519297242164612, 0.03243017569184303, 0.04607277363538742, 0.00463908864185214, -0.13077549636363983, 0.025899067521095276, 0.12775073945522308, 0.09668684750795364, 0.0543668195605278, -0.0142999067902565, 0.013736658729612827, 0.0026252446696162224, -0.0357365719974041, 0.07861604541540146, 0.057854704558849335, 0.21630501747131348, -0.040543098002672195, 0.07035188376903534, 0.002218768699094653, -0.018290603533387184, -0.019288266077637672, 0.159718856215477, 0.028297405689954758, -0.04861034080386162, -0.028711708262562752, 0.09168998897075653, -0.01653251051902771, -0.21072335541248322, 0.0629565492272377, -0.10222672671079636, -0.12952405214309692, -0.012745248153805733, -0.0181596539914608, -0.020278966054320335, 0.05597078055143356, -0.04395994916558266, -0.02335400879383087, 0.11148198693990707, -0.008555728942155838, -0.0541459321975708, -0.017972351983189583, 0.04986678063869476, 0.013263453729450703, 0.1897304356098175, -0.014046430587768555, 0.13104109466075897, 0.16438037157058716, -0.058218661695718765, -0.14238102734088898, 0.03134315088391304, 0.028960300609469414, -0.10341989994049072, 0.06754383444786072, 0.1932242214679718, -0.0022988193668425083, -0.017882373183965683, 0.034554190933704376, -0.23204807937145233, -0.017577288672327995, 0.03528048098087311, -0.006776257883757353, -0.10737474262714386, 0.09161096811294556, -0.09262797236442566, 0.09199009090662003, 0.10139021277427673, -0.0376540943980217, 0.014549591578543186, -0.07558322697877884, 0.0493394210934639, 0.07309386134147644, 0.09660818427801132, -0.004603053908795118, -0.16581334173679352, 0.06559669226408005, 0.007986390963196754, 0.04600611701607704, -0.263686865568161, -0.05062156170606613, -0.0014974564546719193, -0.018685154616832733, -0.03178830444812775, 0.12942911684513092, 0.02783055603504181, 0.044064488261938095, -0.014589858241379261, -0.1309649497270584, -0.03884144127368927, 0.10439145565032959, -0.1407584547996521, -0.06045638397336006 ]
null
null
transformers
# KeyBART KeyBART as described in "Learning Rich Representations of Keyphrase from Text" published in the Findings of NAACL 2022 (https://aclanthology.org/2022.findings-naacl.67.pdf), pre-trains a BART-based architecture to produce a concatenated sequence of keyphrases in the CatSeqD format. We provide some examples on Downstream Evaluations setups and and also how it can be used for Text-to-Text Generation in a zero-shot setting. ## Downstream Evaluation ### Keyphrase Generation ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART") model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART") from datasets import load_dataset dataset = load_dataset("midas/kp20k") ``` Reported Results: #### Present Keyphrase Generation | | Inspec | | NUS | | Krapivin | | SemEval | | KP20k | | |---------------|--------|-------|-------|-------|----------|-------|---------|-------|-------|-------| | Model | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | | catSeq | 22.5 | 26.2 | 32.3 | 39.7 | 26.9 | 35.4 | 24.2 | 28.3 | 29.1 | 36.7 | | catSeqTG | 22.9 | 27 | 32.5 | 39.3 | 28.2 | 36.6 | 24.6 | 29.0 | 29.2 | 36.6 | | catSeqTG-2RF1 | 25.3 | 30.1 | 37.5 | 43.3 | 30 | 36.9 | 28.7 | 32.9 | 32.1 | 38.6 | | GANMR | 25.8 | 29.9 | 34.8 | 41.7 | 28.8 | 36.9 | N/A | N/A | 30.3 | 37.8 | | ExHiRD-h | 25.3 | 29.1 | N/A | N/A | 28.6 | 34.7 | 28.4 | 33.5 | 31.1 | 37.4 | | Transformer (Ye et al., 2021) | 28.15 | 32.56 | 37.07 | 41.91 | 31.58 | 36.55 | 28.71 | 32.52 | 33.21 | 37.71 | | BART* | 23.59 | 28.46 | 35.00 | 42.65 | 26.91 | 35.37 | 26.72 | 31.91 | 29.25 | 37.51 | | KeyBART-DOC* | 24.42 | 29.57 | 31.37 | 39.24 | 24.21 | 32.60 | 24.69 | 30.50 | 28.82 | 37.59 | | KeyBART* | 24.49 | 29.69 | 34.77 | 43.57 | 29.24 | 38.62 | 27.47 | 33.54 | 30.71 | 39.76 | | KeyBART* (Zero-shot) | 30.72 | 36.89 | 18.86 | 21.67 | 18.35 | 20.46 | 20.25 | 25.82 | 12.57 | 15.41 | #### Absent Keyphrase Generation | | Inspec | | NUS | | Krapivin | | SemEval | | KP20k | | |---------------|--------|------|------|------|----------|------|---------|------|-------|------| | Model | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | | catSeq | 0.4 | 0.8 | 1.6 | 2.8 | 1.8 | 3.6 | 1.6 | 2.8 | 1.5 | 3.2 | | catSeqTG | 0.5 | 1.1 | 1.1 | 1.8 | 1.8 | 3.4 | 1.1 | 1.8 | 1.5 | 3.2 | | catSeqTG-2RF1 | 1.2 | 2.1 | 1.9 | 3.1 | 3.0 | 5.3 | 2.1 | 3.0 | 2.7 | 5.0 | | GANMR | 1.3 | 1.9 | 2.6 | 3.8 | 4.2 | 5.7 | N/A | N/A | 3.2 | 4.5 | | ExHiRD-h | 1.1 | 2.2 | N/A | N/A | 2.2 | 4.3 | 1.7 | 2.5 | 1.6 | 3.2 | | Transformer (Ye et al., 2021) | 1.02 | 1.94 | 2.82 | 4.82 | 3.21 | 6.04 | 2.05 | 2.33 | 2.31 | 4.61 | | BART* | 1.08 | 1.96 | 1.80 | 2.75 | 2.59 | 4.91 | 1.34 | 1.75 | 1.77 | 3.56 | | KeyBART-DOC* | 0.99 | 2.03 | 1.39 | 2.74 | 2.40 | 4.58 | 1.07 | 1.39 | 1.69 | 3.38 | | KeyBART* | 0.95 | 1.81 | 1.23 | 1.90 | 3.09 | 6.08 | 1.96 | 2.65 | 2.03 | 4.26 | | KeyBART* (Zero-shot) | 1.83 | 2.92 | 1.46 | 2.19 | 1.29 | 2.09 | 1.12 | 1.45 | 0.70 | 1.14 | ### Abstractive Summarization ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART") model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART") from datasets import load_dataset dataset = load_dataset("cnn_dailymail") ``` Reported Results: | Model | R1 | R2 | RL | |--------------|-------|-------|-------| | BART (Lewis et al., 2019) | 44.16 | 21.28 | 40.9 | | BART* | 42.93 | 20.12 | 39.72 | | KeyBART-DOC* | 42.92 | 20.07 | 39.69 | | KeyBART* | 43.10 | 20.26 | 39.90 | ## Zero-shot settings ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART") model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART") ``` Alternatively use the Hosted Inference API console provided in https://huggingface.co/bloomberg/KeyBART Sample Zero Shot result: ``` Input: In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks. Output: language model;keyphrase generation;new pre-training objective;pre-training setup; ``` ## Citation Please cite this work using the following BibTeX entry: ``` @inproceedings{kulkarni-etal-2022-learning, title = "Learning Rich Representation of Keyphrases from Text", author = "Kulkarni, Mayank and Mahata, Debanjan and Arora, Ravneet and Bhowmik, Rajarshi", booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-naacl.67", doi = "10.18653/v1/2022.findings-naacl.67", pages = "891--906", abstract = "In this work, we explore how to train task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 8.16 points in F1) over SOTA, when the LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks.", } ``` Please direct all questions to [email protected]
{"license": "apache-2.0"}
text2text-generation
bloomberg/KeyBART
[ "transformers", "pytorch", "bart", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
KeyBART ======= KeyBART as described in "Learning Rich Representations of Keyphrase from Text" published in the Findings of NAACL 2022 (URL pre-trains a BART-based architecture to produce a concatenated sequence of keyphrases in the CatSeqD format. We provide some examples on Downstream Evaluations setups and and also how it can be used for Text-to-Text Generation in a zero-shot setting. Downstream Evaluation --------------------- ### Keyphrase Generation Reported Results: #### Present Keyphrase Generation #### Absent Keyphrase Generation ### Abstractive Summarization Reported Results: Zero-shot settings ------------------ Alternatively use the Hosted Inference API console provided in URL Sample Zero Shot result: Please cite this work using the following BibTeX entry: Please direct all questions to dmahata@URL
[ "### Keyphrase Generation\n\n\nReported Results:", "#### Present Keyphrase Generation", "#### Absent Keyphrase Generation", "### Abstractive Summarization\n\n\nReported Results:\n\n\n\nZero-shot settings\n------------------\n\n\nAlternatively use the Hosted Inference API console provided in URL\n\n\nSample Zero Shot result:\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nPlease direct all questions to dmahata@URL" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Keyphrase Generation\n\n\nReported Results:", "#### Present Keyphrase Generation", "#### Absent Keyphrase Generation", "### Abstractive Summarization\n\n\nReported Results:\n\n\n\nZero-shot settings\n------------------\n\n\nAlternatively use the Hosted Inference API console provided in URL\n\n\nSample Zero Shot result:\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nPlease direct all questions to dmahata@URL" ]
[ 50, 10, 7, 8, 62 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Keyphrase Generation\n\n\nReported Results:#### Present Keyphrase Generation#### Absent Keyphrase Generation### Abstractive Summarization\n\n\nReported Results:\n\n\n\nZero-shot settings\n------------------\n\n\nAlternatively use the Hosted Inference API console provided in URL\n\n\nSample Zero Shot result:\n\n\nPlease cite this work using the following BibTeX entry:\n\n\nPlease direct all questions to dmahata@URL" ]
[ -0.03612354397773743, 0.14009790122509003, -0.0033765563275665045, 0.012954792007803917, 0.033167943358421326, -0.03365686908364296, 0.1576407104730606, 0.13981017470359802, -0.04622672498226166, 0.016338398680090904, 0.18928009271621704, 0.1881651133298874, 0.014518477022647858, 0.1301501840353012, -0.08133605867624283, -0.13671736419200897, 0.045433539897203445, 0.07948146015405655, -0.01447795145213604, 0.1246146485209465, 0.05864924192428589, -0.06514324247837067, 0.04284847900271416, 0.002100135665386915, -0.05769442021846771, 0.07586433738470078, -0.026156235486268997, -0.09618176519870758, 0.08106768131256104, -0.00902946013957262, 0.0030705619137734175, 0.0707215890288353, -0.08472573757171631, -0.20940764248371124, 0.024903589859604836, 0.0325428806245327, -0.01733437180519104, 0.07669791579246521, 0.06984865665435791, -0.0026830167043954134, 0.058046504855155945, -0.020838508382439613, -0.043971553444862366, 0.044952359050512314, -0.07358140498399734, -0.2610580027103424, -0.12421144545078278, 0.10059311985969543, 0.06273634731769562, 0.04154183343052864, -0.014304123818874359, 0.18389703333377838, -0.041384320706129074, 0.08813422173261642, 0.09673044085502625, -0.3096811771392822, -0.004042193293571472, -0.014200130477547646, 0.02705598622560501, 0.07197996228933334, 0.0004528597928583622, 0.056516192853450775, 0.039350252598524094, -0.009813105687499046, 0.09090257436037064, -0.05838705971837044, -0.06845198571681976, -0.007383738178759813, -0.009234296157956123, -0.07527131587266922, 0.20707987248897552, 0.04858122020959854, -0.015273899771273136, -0.06271659582853317, -0.04889056459069252, -0.004926982801407576, -0.030623728409409523, -0.0466129295527935, 0.018733056262135506, 0.04518846422433853, -0.032654765993356705, -0.038105085492134094, -0.1248798668384552, -0.04935746267437935, -0.06703396141529083, -0.05955830216407776, 0.007833035662770271, 0.04306000471115112, -0.14660364389419556, 0.06360646337270737, -0.0034221457317471504, -0.14309218525886536, -0.047919802367687225, -0.019231431186199188, 0.09515275806188583, 0.06082535535097122, 0.00860692746937275, 0.0065750060603022575, 0.17744165658950806, 0.1175549253821373, -0.06823551654815674, -0.00807770062237978, -0.07867499440908432, 0.017901157960295677, 0.003430178388953209, 0.07057098299264908, -0.06090305373072624, -0.08557125926017761, 0.11993944644927979, -0.07384146749973297, 0.062370408326387405, -0.032489679753780365, -0.0741720199584961, 0.007472681347280741, 0.15201349556446075, 0.13274168968200684, 0.1339133232831955, 0.043790053576231, 0.012727193534374237, -0.008968805894255638, 0.17599689960479736, -0.048487309366464615, -0.01028235349804163, 0.0035966162104159594, 0.007823601365089417, 0.06823263317346573, 0.032186757773160934, 0.06185529753565788, -0.11081698536872864, -0.007961775176227093, -0.07459761947393417, -0.04733049497008324, -0.022410154342651367, -0.07952143251895905, 0.06521552056074142, -0.09966650605201721, 0.010817475616931915, -0.10887689888477325, -0.15986251831054688, -0.011022472754120827, -0.01250289473682642, -0.027711886912584305, -0.04954108968377113, -0.009592187590897083, -0.047667115926742554, 0.06160376965999603, -0.10530941933393478, 0.043675195425748825, -0.06645037233829498, 0.10371588170528412, -0.009643248282372952, 0.03405076637864113, -0.17814505100250244, 0.055329542607069016, -0.1645977646112442, 0.004901670850813389, 0.013742746785283089, 0.08339011669158936, -0.052581094205379486, 0.11334121227264404, -0.16766035556793213, -0.024526087567210197, -0.008434711955487728, -0.020278245210647583, 0.06765655428171158, 0.21415261924266815, -0.16043545305728912, -0.0332687646150589, 0.1858942061662674, -0.03394848853349686, -0.173444464802742, 0.0540299266576767, -0.006077939178794622, 0.04758919030427933, 0.09273240715265274, 0.2444263994693756, -0.036910660564899445, -0.059184566140174866, -0.02892986685037613, 0.025947242975234985, -0.01628238335251808, -0.11585143208503723, 0.07024440169334412, -0.050494689494371414, 0.023375939577817917, 0.07046768814325333, 0.14870107173919678, -0.05308590456843376, -0.00931534729897976, -0.05431697890162468, -0.024878935888409615, -0.02973121963441372, -0.13000547885894775, -0.0022680044639855623, 0.0764104425907135, -0.08234997093677521, -0.09044262021780014, 0.06398672610521317, 0.013052905909717083, -0.00045670801773667336, 0.022646551951766014, -0.03257765248417854, 0.0465729683637619, -0.17344579100608826, 0.04345055669546127, -0.08948265016078949, 0.02602093480527401, 0.005117969121783972, 0.0649513304233551, 0.055538028478622437, 0.03903493657708168, 0.012375995516777039, -0.06756921857595444, 0.027703946456313133, -0.019330743700265884, 0.15010817348957062, 0.032870035618543625, -0.10217241197824478, -0.12907849252223969, 0.027038218453526497, -0.03039977140724659, -0.0009337872033938766, 0.021634172648191452, -0.007685631513595581, 0.08273903280496597, 0.08622165769338608, -0.022827023640275, 0.0048355781473219395, 0.03648493438959122, 0.04667721316218376, -0.03388581424951553, -0.00018659117631614208, 0.05854552239179611, 0.014730775728821754, -0.11869063973426819, 0.18173864483833313, -0.1471458226442337, 0.12808330357074738, 0.176640123128891, -0.019457204267382622, 0.06797422468662262, -0.004586035385727882, -0.02156640961766243, -0.029152996838092804, 0.12796510756015778, 0.027787070721387863, 0.02004767768085003, 0.04437875747680664, 0.11108353734016418, -0.10814014077186584, -0.1150454506278038, -0.01746813952922821, -0.05975070595741272, -0.06863921135663986, 0.10116027295589447, 0.00658586947247386, -0.2653183043003082, 0.1845642328262329, 0.14377404749393463, 0.06650484353303909, 0.20200365781784058, -0.0204872228205204, -0.06970345973968506, -0.014864778146147728, -0.06683480739593506, 0.0037149647250771523, 0.061419833451509476, -0.05429889261722565, 0.0302999597042799, 0.0868578851222992, 0.01948939822614193, 0.06683476269245148, -0.07490185648202896, -0.006880675908178091, -0.017306655645370483, -0.042355749756097794, -0.08835256099700928, 0.11618073284626007, 0.02056412771344185, 0.09477842599153519, 0.024020781740546227, 0.09190912544727325, 0.03416898474097252, -0.018019840121269226, -0.10554226487874985, 0.12475107610225677, -0.12035136669874191, -0.2720053195953369, -0.060319069772958755, 0.06334435939788818, -0.03386674076318741, -0.01608765311539173, 0.1735423356294632, -0.08790124207735062, 0.0005320957861840725, -0.07658564299345016, -0.09437069296836853, -0.09973689913749695, -0.03757595270872116, -0.07529077678918839, -0.024934733286499977, 0.07307013124227524, -0.18020892143249512, -0.04019395634531975, -0.015958812087774277, -0.06586873531341553, 0.05911628156900406, -0.033239465206861496, 0.10594835132360458, 0.0749359205365181, 0.0065398141741752625, 0.013956052251160145, -0.033892903476953506, 0.21042901277542114, -0.02977781556546688, 0.02487926557660103, 0.13974569737911224, 0.038526102900505066, 0.08663947135210037, 0.14718110859394073, 0.008710294961929321, -0.04952022805809975, 0.001285351230762899, 0.04788965359330177, -0.06905004382133484, -0.21896196901798248, -0.04478210583329201, -0.06180319935083389, 0.06105807051062584, -0.020457036793231964, 0.04982077330350876, 0.1320490539073944, 0.051891524344682693, -0.09649024903774261, 0.028389176353812218, -0.07423748075962067, 0.10007370263338089, 0.1959572583436966, 0.03388199955224991, 0.13746097683906555, -0.0945284515619278, -0.02359699085354805, 0.09626729041337967, 0.08948981761932373, 0.021029403433203697, 0.01831832341849804, 0.11371862888336182, 0.10774635523557663, 0.14068767428398132, 0.04078667238354683, 0.06133151054382324, -0.0213924590498209, 0.04712783917784691, -0.050209444016218185, -0.07517042756080627, -0.056723274290561676, 0.0591081902384758, -0.00008112320210784674, -0.0749962255358696, 0.003358258167281747, -0.10362685471773148, 0.07072558999061584, 0.1994834542274475, 0.08157708495855331, -0.15355128049850464, -0.05955585837364197, 0.0663333386182785, -0.07491129636764526, -0.07263937592506409, 0.009971092455089092, -0.08463084697723389, -0.0608784556388855, 0.059256456792354584, 0.002556747989729047, 0.14823982119560242, -0.048939049243927, 0.06974200904369354, -0.1302759051322937, -0.11985611170530319, -0.016151512041687965, 0.09994734078645706, -0.3016359508037567, 0.18467792868614197, 0.02276001125574112, 0.021554304286837578, -0.06895334273576736, -0.002264280803501606, -0.0007880489574745297, -0.06510735303163528, 0.09276900440454483, -0.01086728647351265, -0.020223286002874374, -0.04248872399330139, -0.0872742161154747, 0.08326680213212967, -0.03488150238990784, -0.07458367198705673, 0.03807326406240463, 0.0029300269670784473, 0.034634269773960114, -0.018401142209768295, 0.07611675560474396, -0.16219115257263184, -0.10947073996067047, 0.05537501722574234, 0.12749359011650085, 0.006479071453213692, -0.046867735683918, 0.004959702026098967, 0.019113248214125633, 0.0861508846282959, -0.01990879327058792, -0.09818284958600998, -0.09891979396343231, -0.038302384316921234, 0.10499295592308044, -0.1033119410276413, 0.021049190312623978, -0.12181538343429565, -0.021344363689422607, -0.015682745724916458, -0.13291984796524048, 0.09827903658151627, -0.06387464702129364, -0.04480763152241707, -0.04231487214565277, 0.12919749319553375, -0.0197740625590086, -0.022059908136725426, 0.04673280194401741, 0.04638611897826195, -0.08704192191362381, -0.08510010689496994, 0.07081691920757294, -0.08848078548908234, 0.07092124223709106, -0.10267233103513718, 0.01060937438160181, -0.0019780502188950777, -0.03599177673459053, -0.0826689824461937, 0.1662372648715973, 0.2555430233478546, -0.0902954638004303, 0.1432887464761734, 0.1603836715221405, -0.09636478126049042, -0.21743144094944, -0.16165706515312195, -0.06643813103437424, -0.0639624148607254, 0.014932457357645035, -0.12550361454486847, 0.03099403716623783, 0.0372600220143795, -0.08807440102100372, 0.04170108959078789, -0.07430560141801834, -0.1030302345752716, 0.17272622883319855, 0.03145332634449005, 0.23432636260986328, -0.20206713676452637, -0.10711562633514404, -0.08534889668226242, -0.17491605877876282, 0.1738775372505188, -0.03386486694216728, 0.05969035252928734, -0.07290133833885193, 0.12348523736000061, 0.013625891879200935, -0.04353712126612663, 0.08448042720556259, -0.05557527020573616, 0.04062037542462349, -0.08122362196445465, -0.0147251533344388, -0.015382559038698673, -0.060952771455049515, 0.0780896246433258, -0.1712600588798523, 0.054686520248651505, -0.09426780790090561, -0.0014866732526570559, -0.07164379209280014, 0.06148312985897064, -0.042630214244127274, -0.07665025442838669, -0.03791433572769165, -0.048024747520685196, 0.0043962979689240456, -0.01630742847919464, 0.18557605147361755, -0.118923120200634, 0.13791143894195557, 0.18869252502918243, 0.03523675724864006, -0.05067183077335358, 0.07466840744018555, 0.0008059043902903795, -0.08121734857559204, 0.08994326740503311, -0.21501706540584564, 0.08709626644849777, 0.08576567471027374, -0.007307632360607386, 0.027049509808421135, 0.013255463913083076, -0.06824545562267303, 0.007889441214501858, 0.054379403591156006, -0.15004348754882812, -0.04471324011683464, 0.008252245374023914, -0.017288533970713615, 0.052815552800893784, 0.09424546360969543, 0.18229179084300995, -0.0173537265509367, -0.06939706206321716, 0.006611458957195282, 0.011400323361158371, -0.05316765233874321, 0.07215427607297897, 0.018865613266825676, 0.048560310155153275, -0.08996862173080444, 0.07948686927556992, 0.05816563218832016, -0.039378441870212555, 0.09352699667215347, 0.0762273296713829, -0.043904274702072144, -0.07704076170921326, -0.01922416314482689, 0.12002082914113998, -0.07382621616125107, -0.04817300662398338, -0.04853921756148338, -0.02732411026954651, 0.0803370475769043, 0.12845295667648315, 0.012872439809143543, 0.0914139449596405, -0.0018160635372623801, -0.02877371571958065, -0.07232100516557693, 0.11536632478237152, -0.025842083618044853, -0.01955721713602543, -0.06699780374765396, -0.05779096856713295, -0.012796303257346153, 0.03367457911372185, -0.02870458923280239, -0.007777603343129158, -0.12426189333200455, -0.02342887781560421, -0.23241013288497925, -0.028763219714164734, -0.10660307109355927, -0.014328447170555592, 0.002494771033525467, -0.045951373875141144, -0.05234208703041077, 0.026245852932333946, -0.08618789911270142, -0.03634015843272209, -0.01340717263519764, 0.12330502271652222, -0.16506104171276093, -0.03305653855204582, 0.04317675530910492, 0.029568960890173912, 0.12330089509487152, 0.07415260374546051, -0.06873731315135956, 0.03159867227077484, -0.16515259444713593, 0.015713423490524292, 0.0016512330621480942, 0.01920952834188938, 0.03918415680527687, 0.019306888803839684, -0.03775642439723015, 0.1060129702091217, 0.040333133190870285, 0.00553601561114192, 0.025139471516013145, -0.13149988651275635, -0.152694970369339, 0.0014142126310616732, -0.04857000708580017, -0.024331433698534966, 0.008490839041769505, 0.12074514478445053, 0.018611915409564972, 0.08875010162591934, -0.05193427577614784, 0.0735427662730217, -0.16456706821918488, 0.006607765331864357, -0.0007884087972342968, -0.12277994304895401, -0.1514044553041458, -0.03649927303195, 0.023236971348524094, -0.02827509120106697, 0.21016596257686615, -0.028686244040727615, -0.016997961327433586, 0.04523305594921112, -0.03900204971432686, 0.051636580377817154, -0.00194521842058748, 0.3168668746948242, 0.013672231696546078, -0.0049331411719322205, -0.01595393754541874, 0.03602210059762001, -0.04068160802125931, 0.09132599085569382, 0.03917260095477104, 0.11461345106363297, 0.162804514169693, 0.06284572184085846, 0.007072548847645521, -0.00415934668853879, -0.028049752116203308, -0.06504323333501816, 0.06458821892738342, 0.10611701756715775, -0.019041113555431366, -0.0011256217258051038, 0.21757623553276062, -0.08975345641374588, 0.006461225915700197, -0.030804166570305824, 0.005251062568277121, -0.14310844242572784, -0.1533425748348236, -0.08503621071577072, -0.09080132842063904, 0.030156394466757774, -0.09518786519765854, 0.05779530480504036, 0.06791268289089203, 0.04005436599254608, -0.062295034527778625, 0.05823628604412079, 0.0977695882320404, -0.04523409903049469, 0.06311196088790894, -0.010909166187047958, -0.05736808106303215, 0.0076039936393499374, 0.09740481525659561, 0.02610582299530506, 0.06498062610626221, 0.015275583602488041, 0.05029040202498436, -0.07268904149532318, 0.05267883092164993, -0.09816683828830719, -0.10184156894683838, -0.0429498665034771, 0.06884690374135971, 0.07523497194051743, 0.24576729536056519, 0.02468865178525448, -0.02481023594737053, 0.045259345322847366, 0.19769148528575897, -0.06680350750684738, -0.05317080393433571, -0.013390569016337395, 0.21476630866527557, -0.0032044388353824615, 0.022287774831056595, 0.0022864635102450848, -0.0347004234790802, 0.010393277741968632, 0.2016230672597885, 0.2677469551563263, 0.021540137007832527, -0.010857372544705868, -0.07332754135131836, 0.020630940794944763, 0.01938617415726185, 0.04788627102971077, 0.07064253091812134, 0.20743480324745178, -0.07170651853084564, 0.0698992908000946, -0.040579937398433685, -0.017283815890550613, -0.06326267868280411, 0.14618626236915588, 0.00002256972402392421, -0.09867993742227554, 0.009940718300640583, 0.10195084661245346, -0.15115350484848022, -0.11577928811311722, -0.03449495509266853, -0.05055610090494156, -0.05412786453962326, 0.0503908172249794, 0.09518781304359436, -0.02752685546875, -0.018117161467671394, -0.016116390004754066, 0.06564104557037354, 0.09541520476341248, -0.033675841987133026, -0.10467945039272308, -0.014175951480865479, 0.05918211117386818, -0.05218911170959473, 0.11781125515699387, -0.023803899064660072, 0.04841744154691696, 0.12276487052440643, 0.01592336967587471, -0.10997837781906128, 0.08124788850545883, 0.03218913823366165, -0.08847896009683609, 0.024625273421406746, -0.03743845969438553, 0.019819317385554314, 0.04233383387327194, 0.08407670259475708, -0.1319216638803482, 0.016166195273399353, 0.01607944257557392, -0.06167178228497505, -0.08181459456682205, 0.03564024344086647, -0.08843029290437698, 0.06059562787413597, 0.008016175590455532, -0.08969993144273758, -0.01950952224433422, -0.05638947710394859, 0.033014409244060516, -0.019535869359970093, -0.07601634413003922, -0.0251154825091362, -0.11467397212982178, 0.03130879998207092, 0.080115407705307, 0.02554045245051384, -0.264175683259964, 0.027257530018687248, -0.07010133564472198, -0.023323724046349525, -0.10931389778852463, 0.07069282233715057, 0.06514690071344376, -0.03648250177502632, -0.037509672343730927, -0.16925501823425293, -0.04153125733137131, 0.08305200934410095, -0.07355722784996033, -0.0312919020652771 ]
null
null
null
# `paper-rec` Model Card Last updated: 2022-02-04 ## Model Details `paper-rec` goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem. ### Model date 2022-02-04 ### Model type Recommender System model with support of a Language Model for feature extraction. ### Paper & samples The overall idea for `paper-rec` test model is inspired by this work: [NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers](https://arxiv.org/abs/2109.03955). However, for `paper-rec`, we use a different language model more suitable for longer text, namely *Sentence Transformers*: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084), in particular: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). ## Model Use The intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation. ## Data, Performance, and Limitations ### Data The data used for this model corresponds to the [RSS news feeds for arXiv updates](https://arxiv.org/help/rss) accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI: 1. [Artificial Intelligence](http://arxiv.org/rss/cs.AI) 1. [Computation and Language](http://arxiv.org/rss/cs.CL) 1. [Computer Vision and Pattern Recognition](http://arxiv.org/rss/cs.CV) 1. [Information Retrieval](http://arxiv.org/rss/cs.IR) 1. [Machine Learning (cs)](http://arxiv.org/rss/cs.LG) 1. [Machine Learning (stat)](http://arxiv.org/rss/stat.ML) ### Performance N/A ## Limitations The model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend.
{"language": ["en"], "license": "mit", "tags": ["recsys", "pytorch", "sentence_transformers"]}
null
bluebalam/paper-rec
[ "recsys", "pytorch", "sentence_transformers", "en", "arxiv:2109.03955", "arxiv:1908.10084", "license:mit", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2109.03955", "1908.10084" ]
[ "en" ]
TAGS #recsys #pytorch #sentence_transformers #en #arxiv-2109.03955 #arxiv-1908.10084 #license-mit #region-us
# 'paper-rec' Model Card Last updated: 2022-02-04 ## Model Details 'paper-rec' goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem. ### Model date 2022-02-04 ### Model type Recommender System model with support of a Language Model for feature extraction. ### Paper & samples The overall idea for 'paper-rec' test model is inspired by this work: NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers. However, for 'paper-rec', we use a different language model more suitable for longer text, namely *Sentence Transformers*: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in particular: sentence-transformers/all-MiniLM-L6-v2. ## Model Use The intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation. ## Data, Performance, and Limitations ### Data The data used for this model corresponds to the RSS news feeds for arXiv updates accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI: 1. Artificial Intelligence 1. Computation and Language 1. Computer Vision and Pattern Recognition 1. Information Retrieval 1. Machine Learning (cs) 1. Machine Learning (stat) ### Performance N/A ## Limitations The model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend.
[ "# 'paper-rec' Model Card\r\n\r\nLast updated: 2022-02-04", "## Model Details\r\n'paper-rec' goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem.", "### Model date\r\n2022-02-04", "### Model type\r\nRecommender System model with support of a Language Model for feature extraction.", "### Paper & samples\r\nThe overall idea for 'paper-rec' test model is inspired by this work: NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers.\r\n\r\nHowever, for 'paper-rec', we use a different language model more suitable for longer text, namely *Sentence Transformers*: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in particular: sentence-transformers/all-MiniLM-L6-v2.", "## Model Use\r\nThe intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation.", "## Data, Performance, and Limitations", "### Data \r\nThe data used for this model corresponds to the RSS news feeds for arXiv updates accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI:\r\n\r\n1. Artificial Intelligence\r\n1. Computation and Language\r\n1. Computer Vision and Pattern Recognition\r\n1. Information Retrieval\r\n1. Machine Learning (cs)\r\n1. Machine Learning (stat)", "### Performance \r\nN/A", "## Limitations\r\nThe model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend." ]
[ "TAGS\n#recsys #pytorch #sentence_transformers #en #arxiv-2109.03955 #arxiv-1908.10084 #license-mit #region-us \n", "# 'paper-rec' Model Card\r\n\r\nLast updated: 2022-02-04", "## Model Details\r\n'paper-rec' goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem.", "### Model date\r\n2022-02-04", "### Model type\r\nRecommender System model with support of a Language Model for feature extraction.", "### Paper & samples\r\nThe overall idea for 'paper-rec' test model is inspired by this work: NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers.\r\n\r\nHowever, for 'paper-rec', we use a different language model more suitable for longer text, namely *Sentence Transformers*: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in particular: sentence-transformers/all-MiniLM-L6-v2.", "## Model Use\r\nThe intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation.", "## Data, Performance, and Limitations", "### Data \r\nThe data used for this model corresponds to the RSS news feeds for arXiv updates accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI:\r\n\r\n1. Artificial Intelligence\r\n1. Computation and Language\r\n1. Computer Vision and Pattern Recognition\r\n1. Information Retrieval\r\n1. Machine Learning (cs)\r\n1. Machine Learning (stat)", "### Performance \r\nN/A", "## Limitations\r\nThe model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend." ]
[ 42, 14, 56, 7, 20, 114, 35, 8, 74, 6, 32 ]
[ "passage: TAGS\n#recsys #pytorch #sentence_transformers #en #arxiv-2109.03955 #arxiv-1908.10084 #license-mit #region-us \n# 'paper-rec' Model Card\r\n\r\nLast updated: 2022-02-04## Model Details\r\n'paper-rec' goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem.### Model date\r\n2022-02-04### Model type\r\nRecommender System model with support of a Language Model for feature extraction.### Paper & samples\r\nThe overall idea for 'paper-rec' test model is inspired by this work: NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers.\r\n\r\nHowever, for 'paper-rec', we use a different language model more suitable for longer text, namely *Sentence Transformers*: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in particular: sentence-transformers/all-MiniLM-L6-v2.## Model Use\r\nThe intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation.## Data, Performance, and Limitations### Data \r\nThe data used for this model corresponds to the RSS news feeds for arXiv updates accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI:\r\n\r\n1. Artificial Intelligence\r\n1. Computation and Language\r\n1. Computer Vision and Pattern Recognition\r\n1. Information Retrieval\r\n1. Machine Learning (cs)\r\n1. Machine Learning (stat)### Performance \r\nN/A## Limitations\r\nThe model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend." ]
[ 0.02965588867664337, 0.09337615966796875, -0.004602936562150717, -0.007138981483876705, 0.0221999604254961, -0.0328727588057518, 0.06180863454937935, 0.06965789943933487, 0.022222883999347687, 0.07933159172534943, 0.0715288296341896, 0.02114756777882576, 0.04703914001584053, 0.0845261886715889, 0.015572513453662395, -0.2279166728258133, 0.06458837538957596, -0.021318286657333374, 0.08847469091415405, 0.0990225076675415, 0.12279490381479263, -0.08349274098873138, 0.09894391149282455, 0.005429933313280344, 0.047845691442489624, -0.007377343717962503, -0.05701315775513649, -0.028368325904011726, 0.07127149403095245, 0.05868170037865639, 0.07732202857732773, 0.03594131022691727, 0.0650327056646347, -0.19913749396800995, 0.0015711031155660748, 0.03998497873544693, 0.007628429681062698, 0.05054013058543205, 0.08263286203145981, 0.002780663315206766, 0.2085932195186615, -0.020854566246271133, 0.07944802194833755, 0.03233163803815842, -0.0586731992661953, -0.04714182764291763, -0.05409770831465721, -0.0019121966324746609, 0.05293973162770271, 0.10315583646297455, -0.069841668009758, 0.15234149992465973, -0.08683056384325027, 0.057803113013505936, 0.25343936681747437, -0.016128791496157646, -0.021694540977478027, -0.021092718467116356, 0.1905481070280075, 0.07432033866643906, -0.03762637451291084, -0.01240839995443821, 0.020743418484926224, 0.04328816011548042, 0.05895819887518883, -0.008158352226018906, 0.07712693512439728, 0.01747136376798153, -0.168564572930336, -0.07224193215370178, 0.12486013770103455, 0.01242249459028244, -0.10069206357002258, -0.11472808569669724, -0.04283370450139046, 0.09515608102083206, -0.014351090416312218, -0.10942036658525467, 0.03854774683713913, -0.03150617703795433, 0.05339616537094116, -0.06639654189348221, -0.11408267170190811, -0.04477434232831001, -0.031262315809726715, 0.11820512264966965, 0.028769806027412415, 0.014367533847689629, -0.009657980874180794, 0.10105209052562714, 0.01823054440319538, -0.032289791852235794, -0.05513588339090347, -0.07417279481887817, -0.06094679608941078, 0.008237674832344055, -0.06130998581647873, -0.14626789093017578, -0.0023195738904178143, 0.12332123517990112, 0.041565749794244766, 0.002439341973513365, 0.08967098593711853, 0.03154454380273819, 0.08702275156974792, 0.08907730877399445, -0.10912247002124786, 0.0421433225274086, -0.038818199187517166, 0.045085735619068146, -0.015016148798167706, -0.01681923307478428, -0.014748923480510712, 0.08360949158668518, 0.105608269572258, 0.001650591497309506, 0.043093904852867126, 0.007296599913388491, -0.02907579019665718, 0.0015935312258079648, 0.14046871662139893, -0.0702083557844162, -0.006563172675669193, -0.016467126086354256, -0.055435534566640854, 0.0011453646002337337, 0.029156867414712906, 0.03425445780158043, -0.043072935193777084, 0.10427332669496536, -0.10728594660758972, -0.04436355084180832, -0.09262911975383759, -0.1440640240907669, 0.04921519011259079, -0.048750001937150955, -0.003888562321662903, -0.13260819017887115, -0.1710471212863922, -0.09045588225126266, 0.04974401369690895, -0.05775619298219681, 0.006868720520287752, -0.027871785685420036, -0.030322620645165443, -0.03266233950853348, 0.02452203817665577, 0.05311763286590576, -0.016662059351801872, 0.022977443411946297, -0.09382262825965881, 0.06492623686790466, -0.019171906635165215, 0.020267389714717865, -0.13165700435638428, 0.031058643013238907, -0.06746421009302139, 0.06926696002483368, -0.11196654289960861, 0.03096778132021427, -0.0971861332654953, -0.06262508779764175, 0.005861404351890087, 0.0478891059756279, 0.036723073571920395, 0.13046810030937195, -0.23272687196731567, -0.021142244338989258, 0.084574393928051, -0.10073354840278625, -0.062143415212631226, 0.15419837832450867, -0.053012698888778687, 0.1287001222372055, 0.11261744052171707, 0.1256183683872223, 0.019422566518187523, -0.11410002410411835, -0.09507373720407486, -0.05260305106639862, -0.061220359057188034, 0.12820352613925934, 0.09190376102924347, -0.01106353010982275, 0.05679331347346306, 0.03170301020145416, -0.09648709744215012, -0.04322853311896324, -0.03700694814324379, -0.02421899139881134, 0.013473611325025558, -0.05126562342047691, 0.014279479160904884, -0.008515688590705395, 0.0007665676530450583, -0.04019956290721893, -0.11752408742904663, 0.005959345027804375, 0.05918844789266586, -0.054839327931404114, 0.05155865103006363, -0.08359742164611816, 0.038325920701026917, 0.052819713950157166, 0.03361111134290695, -0.15695945918560028, 0.02203862927854061, 0.06528054922819138, -0.13851068913936615, 0.08264636993408203, 0.06777845323085785, 0.01718478836119175, 0.011341911740601063, -0.009230423718690872, 0.0051512336358428, -0.06677987426519394, -0.0008408640860579908, -0.09635888785123825, -0.11133139580488205, 0.0038895579054951668, -0.06869952380657196, 0.09471580386161804, -0.1426718533039093, 0.022476911544799805, 0.029891053214669228, 0.05053478851914406, 0.054032713174819946, -0.06292293220758438, 0.016959071159362793, -0.0020284391939640045, -0.04077575355768204, 0.014652974903583527, 0.004510646685957909, -0.027234967797994614, -0.05969727411866188, 0.046506281942129135, -0.11414194107055664, -0.1519642174243927, 0.020084837451577187, 0.012526046484708786, -0.036675915122032166, 0.024971643462777138, -0.04089315980672836, -0.025857601314783096, -0.11321897804737091, -0.16773708164691925, 0.19877301156520844, 0.03268011659383774, 0.020065398886799812, -0.11917351931333542, -0.07902023941278458, -0.024385539814829826, -0.07852210849523544, -0.04065418615937233, 0.13003826141357422, 0.07305492460727692, -0.11536800861358643, 0.024174589663743973, -0.03038780391216278, -0.08888112008571625, 0.06963616609573364, 0.029105456545948982, -0.11660264432430267, 0.011678568087518215, -0.058993592858314514, -0.008281197398900986, 0.06369470804929733, -0.04207374528050423, 0.019090980291366577, 0.07523784786462784, -0.013696628622710705, 0.037897106260061264, -0.06877222657203674, 0.03616686910390854, 0.019460873678326607, -0.004401711281388998, -0.04319978877902031, -0.008895708248019218, -0.03534386679530144, 0.09242098033428192, -0.028178315609693527, 0.00879153236746788, -0.06716763228178024, -0.03217053413391113, -0.1595647782087326, 0.17480574548244476, -0.03460903465747833, -0.21623007953166962, -0.15018095076084137, 0.05101693421602249, 0.02306336537003517, 0.011079341173171997, 0.05564618483185768, -0.050886120647192, -0.1065480187535286, -0.18167081475257874, -0.004578659310936928, 0.04406411200761795, -0.059865131974220276, -0.09525545686483383, 0.011637234129011631, -0.004746428225189447, -0.11690284311771393, 0.002513585612177849, -0.048683181405067444, 0.06807564198970795, 0.03627603128552437, -0.0014964902075007558, 0.16477006673812866, 0.0970449149608612, -0.0059868888929486275, -0.03686366230249405, -0.02670440822839737, 0.2960505187511444, -0.06483100354671478, 0.12406963855028152, 0.0807785615324974, -0.07726027071475983, 0.07186806946992874, 0.09646327793598175, -0.005278557538986206, -0.051967862993478775, 0.07442180067300797, 0.018653061240911484, -0.06244366243481636, -0.2591648995876312, -0.07393904030323029, 0.010920686647295952, 0.004270114935934544, 0.03397400304675102, 0.026787878945469856, 0.05098714306950569, 0.046057216823101044, -0.03781444951891899, 0.0037854397669434547, -0.005890295375138521, 0.07827844470739365, -0.007501030340790749, -0.02135205641388893, 0.0881061851978302, -0.04706880822777748, -0.03231790289282799, 0.08731935173273087, -0.07861508429050446, 0.3089583218097687, -0.012524958699941635, 0.14449523389339447, 0.08392999321222305, -0.11344568431377411, 0.017865225672721863, 0.10751096159219742, -0.06081586331129074, 0.033877305686473846, -0.06507404148578644, -0.03864660859107971, -0.011664851568639278, 0.1504179984331131, 0.011709203012287617, -0.08787484467029572, 0.00279802642762661, -0.003442585002630949, 0.04840686544775963, 0.09202840924263, 0.025029709562659264, -0.15397994220256805, -0.026693711057305336, 0.09986676275730133, -0.07702454924583435, -0.03164711594581604, -0.01781410351395607, 0.13349302113056183, -0.08991625905036926, -0.018642934039235115, -0.0062371306121349335, 0.10885374248027802, -0.06559918820858002, 0.016986817121505737, -0.06840427219867706, 0.05674328655004501, -0.020644789561629295, 0.11494377255439758, -0.14338089525699615, 0.20067453384399414, -0.03497007489204407, 0.046675972640514374, -0.09288494288921356, 0.005346009973436594, -0.006471509579569101, -0.009771150536835194, 0.1513986587524414, 0.016751118004322052, -0.09455689042806625, 0.011686713434755802, -0.07942376285791397, 0.024299027398228645, 0.03730843588709831, -0.04561120271682739, 0.11044220626354218, -0.01955711469054222, 0.012647566385567188, -0.014514246955513954, 0.06447836756706238, -0.10640842467546463, -0.155714213848114, 0.05854855477809906, -0.08763454109430313, 0.03946305066347122, -0.0727861225605011, -0.04932000860571861, -0.00018471117073204368, 0.04536088928580284, -0.08153563737869263, -0.07054485380649567, -0.09784576296806335, 0.004757724702358246, 0.1022992804646492, -0.07274322956800461, 0.008551020175218582, 0.03419119492173195, 0.10343049466609955, -0.03184320405125618, 0.008631563745439053, 0.008603432215750217, -0.1029980331659317, -0.15933099389076233, -0.06637348234653473, 0.037152621895074844, 0.16897331178188324, 0.12621915340423584, 0.01598489284515381, 0.014756659977138042, -0.09131941944360733, -0.08796068280935287, 0.001135222497396171, 0.10287725925445557, -0.010992673225700855, 0.008697683922946453, -0.05829945206642151, -0.04040323197841644, -0.13506224751472473, -0.08067728579044342, 0.1035103052854538, 0.15541891753673553, -0.03935137391090393, 0.1083996593952179, 0.19777634739875793, -0.09698016941547394, -0.19741271436214447, -0.06813541799783707, 0.07435709238052368, -0.014230124652385712, 0.010021526366472244, -0.13226386904716492, 0.05909352749586105, 0.07579505443572998, -0.005199000239372253, -0.07589361816644669, -0.1565612256526947, -0.1385691910982132, 0.12113644182682037, 0.04736538231372833, -0.005715643987059593, -0.10164876282215118, -0.050831668078899384, -0.04170121252536774, -0.043722838163375854, 0.06995126605033875, 0.01818236894905567, 0.022957980632781982, 0.035766541957855225, 0.023972511291503906, 0.018162617459893227, -0.06378182023763657, 0.16085825860500336, 0.027424393221735954, 0.05311393365263939, -0.044534217566251755, -0.06733732670545578, 0.010554861277341843, -0.026175593957304955, 0.1648809015750885, -0.023940542712807655, 0.036387138068675995, -0.05780524015426636, -0.05784907564520836, -0.08500795811414719, 0.026384873315691948, -0.01200985535979271, -0.09517478197813034, -0.15720579028129578, 0.055627863854169846, 0.07717812061309814, 0.002422185381874442, -0.045628927648067474, -0.10636229813098907, -0.027716070413589478, 0.07972890138626099, 0.20791038870811462, -0.047367893159389496, -0.041552744805812836, 0.0436239130795002, -0.01927303709089756, 0.02012799307703972, -0.08980689942836761, -0.007710047531872988, 0.11554265022277832, -0.005902180913835764, 0.1658182144165039, 0.007625619415193796, -0.16453351080417633, 0.012437950819730759, 0.05136188119649887, -0.1239253506064415, -0.2078874558210373, -0.04566425457596779, 0.1389065533876419, -0.1831781268119812, -0.06349483877420425, 0.0674016922712326, -0.06265603005886078, -0.017719946801662445, -0.029103843495249748, 0.10445750504732132, 0.039948608726263046, 0.15234145522117615, 0.06774956732988358, 0.04169447720050812, -0.0507594496011734, 0.00880435574799776, 0.08301748335361481, -0.09461404383182526, 0.049593936651945114, 0.07650553435087204, -0.06204444542527199, -0.03845622390508652, -0.051581162959337234, 0.08389867842197418, -0.033726658672094345, -0.07288387417793274, -0.0658981129527092, -0.08623992651700974, 0.06618447601795197, 0.13416244089603424, 0.04784893989562988, -0.026646435260772705, -0.02001098357141018, 0.02682464011013508, -0.03763421252369881, 0.10869935899972916, 0.06417670100927353, 0.039063725620508194, -0.044901713728904724, -0.005516502540558577, 0.012713262811303139, 0.002622725907713175, -0.03960124030709267, 0.023646565154194832, -0.06837794929742813, -0.010934371501207352, -0.08557049185037613, 0.0325358584523201, -0.0575438030064106, -0.03323384374380112, 0.01966780796647072, -0.04652544483542442, -0.011917360126972198, -0.01574116013944149, -0.060956090688705444, -0.020607352256774902, -0.005969776771962643, 0.09078469127416611, -0.10959062725305557, 0.008064712397754192, 0.1154790148139, -0.05730940401554108, 0.06288819015026093, 0.00010393991396995261, -0.04459957405924797, 0.012048259377479553, -0.08412324637174606, 0.0575941801071167, 0.036860667169094086, 0.06683368235826492, -0.02648351527750492, -0.17203134298324585, -0.04643533378839493, 0.0006629446288570762, -0.019115734845399857, -0.013024074025452137, -0.012587791308760643, -0.04524051770567894, 0.14791716635227203, 0.08348393440246582, -0.11730103194713593, -0.07517518103122711, -0.004257371183484793, 0.002485969103872776, 0.04253925010561943, 0.15685738623142242, -0.015212969854474068, 0.040797293186187744, -0.10509715229272842, 0.03369035944342613, 0.05174470692873001, -0.015852047130465508, 0.0154797974973917, -0.08196868002414703, 0.0011479253880679607, -0.0108451247215271, 0.19638079404830933, 0.01294759102165699, -0.04498673975467682, 0.05374569818377495, 0.12729208171367645, 0.033493056893348694, 0.04061519354581833, 0.014019829221069813, -0.01906873658299446, -0.03779061511158943, -0.0807173028588295, -0.04275454208254814, 0.002054703887552023, -0.06390685588121414, 0.1656508445739746, 0.13883785903453827, 0.09169064462184906, 0.07073748856782913, 0.03570994362235069, 0.013012786395847797, -0.09869316220283508, -0.007661897223442793, 0.053389668464660645, 0.023371044546365738, -0.00795950461179018, 0.25612661242485046, 0.11242927610874176, -0.12461318075656891, 0.07056809961795807, 0.012737818993628025, -0.05273723229765892, -0.0441615916788578, -0.11042289435863495, -0.06539173424243927, -0.022872252389788628, -0.027239875867962837, -0.11249284446239471, 0.019783353433012962, 0.04397248849272728, -0.010869516059756279, -0.017911698669195175, 0.06939087808132172, -0.08455498516559601, -0.06408633291721344, 0.029933340847492218, -0.024573706090450287, -0.05063151940703392, -0.04670161381363869, 0.024667147547006607, 0.01258850283920765, 0.106484055519104, 0.05285094305872917, 0.07791433483362198, -0.02740112505853176, -0.023915497586131096, -0.027953684329986572, -0.08813487738370895, -0.00952139776200056, -0.006732533220201731, -0.048346780240535736, 0.0754559263586998, 0.04725572094321251, -0.014294661581516266, 0.023510929197072983, 0.17347052693367004, -0.040281932801008224, -0.07497592270374298, -0.141855388879776, 0.14031922817230225, 0.04131476953625679, 0.039436016231775284, 0.06254512816667557, -0.13854949176311493, -0.032901838421821594, 0.2269284576177597, 0.11739255487918854, -0.01343414094299078, -0.03060724213719368, -0.016211407259106636, 0.025265978649258614, 0.01326175406575203, 0.046197209507226944, 0.023500990122556686, 0.3016984760761261, -0.08328347653150558, 0.06773390620946884, -0.05419309437274933, -0.0459883026778698, -0.025526845827698708, 0.11307063698768616, 0.06665521115064621, -0.04295928403735161, -0.07535301148891449, 0.08262959867715836, -0.09794194996356964, -0.18109230697155, -0.16252869367599487, -0.030213739722967148, -0.0571000874042511, 0.014310713857412338, 0.05021072179079056, -0.034860000014305115, 0.08441253006458282, 0.01694876328110695, 0.0011040987446904182, 0.12270846962928772, 0.03884643688797951, -0.1143137738108635, 0.022779032588005066, 0.13449406623840332, -0.05143347010016441, 0.18891294300556183, 0.015135547146201134, 0.1025419607758522, 0.09859061986207962, -0.03351140394806862, -0.10817722231149673, 0.0965813398361206, 0.033563073724508286, -0.03916473686695099, 0.04832909628748894, 0.1598898023366928, 0.01638099178671837, 0.03183954581618309, 0.07190227508544922, -0.08769171684980392, 0.05995265021920204, 0.05221438780426979, -0.011845177970826626, -0.05096777528524399, 0.09368935227394104, -0.13016246259212494, 0.12262754887342453, 0.10500330477952957, -0.01420396938920021, 0.013517200946807861, -0.044112566858530045, 0.03348751366138458, -0.01771077886223793, 0.039496321231126785, 0.025753136724233627, -0.1773928552865982, -0.007053126581013203, -0.0359080508351326, 0.04090791940689087, -0.3173917531967163, -0.037402763962745667, -0.004091597627848387, 0.012528033927083015, 0.0191742442548275, 0.058226730674505234, 0.11128824949264526, -0.03479233756661415, -0.027521390467882156, -0.008984300307929516, 0.0018666090909391642, 0.0944707989692688, -0.08493294566869736, -0.04493695870041847 ]
null
null
transformers
# Harry Potter Bot
{"tags": ["conversational"]}
text-generation
bmdonnell/DialoGPT-medium-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter Bot
[ "# Harry Potter Bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter Bot" ]
[ 51, 4 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter Bot" ]
[ 0.026644257828593254, 0.04486115649342537, -0.007239907514303923, 0.0715867355465889, 0.12511606514453888, 0.05003383755683899, 0.17409706115722656, 0.12458180636167526, 0.058117836713790894, -0.025065917521715164, 0.1273707151412964, 0.24712808430194855, -0.008743669837713242, 0.06997672468423843, -0.03584281727671623, -0.24900785088539124, 0.07522143423557281, -0.002419703174382448, -0.08045702427625656, 0.12280640006065369, 0.07113043963909149, -0.06013808026909828, 0.09089069068431854, -0.03778485953807831, -0.1609358936548233, -0.036358632147312164, 0.04005742818117142, -0.11779385805130005, 0.15534265339374542, 0.04441668093204498, 0.05863495171070099, -0.020320208743214607, -0.08583956211805344, -0.10747655481100082, 0.043793532997369766, -0.010841798037290573, -0.025944126769900322, 0.06701670587062836, 0.013539012521505356, -0.09156887233257294, 0.16711485385894775, 0.15960197150707245, 0.08539241552352905, 0.0694003626704216, -0.1425613909959793, -0.03885280340909958, -0.01085843238979578, 0.026643088087439537, -0.0282888263463974, 0.09693154692649841, -0.012254759669303894, 0.17271825671195984, -0.053220316767692566, 0.08892258256673813, 0.18252117931842804, -0.41167914867401123, -0.038506995886564255, 0.07551548629999161, 0.06055224686861038, 0.1383373737335205, -0.11453831940889359, 0.02581668458878994, -0.006924706045538187, 0.016510266810655594, -0.018801067024469376, -0.07294915616512299, -0.09655632078647614, 0.027957431972026825, -0.10966163873672485, -0.015197026543319225, 0.24609871208667755, -0.10645028203725815, 0.03352579101920128, -0.06646103411912918, -0.07975391298532486, 0.03365718945860863, -0.049143753945827484, -0.041836079210042953, -0.05098585784435272, 0.04996693506836891, -0.009373060427606106, -0.054377418011426926, -0.07857297360897064, 0.0002518565161153674, -0.11960650980472565, 0.1907435655593872, 0.04968671500682831, 0.05503183603286743, -0.21760711073875427, 0.07189825177192688, 0.11699838191270828, -0.03934847190976143, 0.011600290425121784, -0.11447799205780029, 0.034368351101875305, -0.000668363063596189, -0.038295820355415344, -0.08910879492759705, 0.05982331186532974, 0.18480496108531952, -0.028886623680591583, 0.04432336613535881, -0.017378030344843864, 0.0812792181968689, 0.07440884411334991, 0.005712093319743872, 0.03315164893865585, -0.028680745512247086, 0.03804953396320343, -0.09166644513607025, 0.021570177748799324, -0.06870333850383759, -0.16176915168762207, -0.04172314330935478, 0.03631668537855148, 0.03509429842233658, 0.05374181643128395, 0.07579994201660156, -0.022113030776381493, -0.04017810523509979, 0.023110009729862213, -0.0012867824407294393, -0.006856351625174284, -0.00029581066337414086, -0.02885865420103073, 0.14081421494483948, 0.005461954046040773, -0.020193176344037056, -0.11991868913173676, 0.1178806945681572, -0.10927870869636536, 0.016830414533615112, 0.014794624410569668, -0.04437526687979698, 0.02298947423696518, 0.0229865163564682, 0.010474804788827896, -0.15042179822921753, -0.05235809087753296, -0.0026194893289357424, -0.015458626672625542, -0.03567874804139137, -0.0823211744427681, -0.05960208177566528, -0.02006269432604313, 0.0513136200606823, -0.0016826835926622152, 0.01700710505247116, -0.05803972855210304, 0.12012499570846558, -0.07340685278177261, 0.11122135072946548, -0.0980512946844101, 0.04576306790113449, -0.10810940712690353, -0.07501768320798874, -0.14561600983142853, 0.031440094113349915, -0.03201880678534508, 0.14343596994876862, 0.02212178334593773, -0.024380460381507874, -0.018377522006630898, 0.04159699007868767, -0.08780476450920105, 0.19369176030158997, -0.038656651973724365, -0.14727361500263214, 0.2604096829891205, -0.09814494848251343, -0.1923614740371704, 0.11250179260969162, -0.01811501756310463, 0.05394316837191582, 0.12122917920351028, 0.188701793551445, -0.06436058133840561, -0.010896406136453152, 0.04232706129550934, 0.05325908586382866, -0.13655726611614227, 0.05530673637986183, 0.012029468081891537, 0.0017772155115380883, -0.09732513129711151, 0.05142798274755478, 0.08828238397836685, 0.014646314084529877, -0.024600084871053696, -0.01308117900043726, -0.009565980173647404, -0.019389217719435692, 0.13931477069854736, -0.003182648681104183, 0.13428814709186554, -0.09243739396333694, -0.036720190197229385, -0.04490841180086136, 0.018869085237383842, -0.001107892720028758, 0.07185239344835281, -0.05550629273056984, 0.12709151208400726, 0.12919344007968903, 0.07092631608247757, -0.14745141565799713, -0.03792351856827736, 0.0005955251399427652, 0.1268249899148941, 0.10735585540533066, 0.025982819497585297, 0.06517564505338669, -0.0048388149589300156, -0.043313972651958466, 0.028239645063877106, 0.11176642030477524, -0.040163811296224594, -0.11327924579381943, -0.1784486621618271, 0.04297782853245735, -0.042124271392822266, 0.10337288677692413, -0.08325621485710144, 0.032590948045253754, 0.008576571010053158, 0.0956893041729927, 0.0013484901282936335, 0.013055279850959778, 0.008220192044973373, -0.014299747534096241, -0.0873546451330185, -0.014386882074177265, 0.08442795276641846, -0.030419031158089638, -0.07512110471725464, 0.1417330503463745, -0.1332201212644577, 0.16641481220722198, 0.2363349199295044, -0.2982061207294464, -0.013743776828050613, -0.05964867025613785, -0.023341897875070572, 0.02325216867029667, 0.07413502037525177, 0.018994420766830444, 0.14240199327468872, -0.0019080779748037457, 0.15905846655368805, -0.048961907625198364, -0.0770333930850029, -0.05929899960756302, -0.032749202102422714, -0.009320919401943684, 0.07407857477664948, 0.07373114675283432, -0.11622817814350128, 0.1481752097606659, 0.1430744230747223, 0.061412300914525986, 0.15801750123500824, 0.10089734941720963, 0.0036135476548224688, 0.08271120488643646, -0.036943502724170685, -0.024332266300916672, -0.07867594808340073, -0.3081752061843872, -0.057041510939598083, 0.0815851166844368, -0.021721895784139633, 0.07857275009155273, -0.08415580540895462, -0.037019528448581696, -0.0287320613861084, 0.017915649339556694, 0.048282161355018616, 0.07788433134555817, 0.04208124428987503, 0.17911803722381592, 0.009213428013026714, -0.02161657065153122, 0.06814594566822052, 0.02594306878745556, -0.09335170686244965, 0.15746989846229553, -0.1817355751991272, -0.29939475655555725, -0.07110463082790375, -0.16356302797794342, -0.013118211179971695, 0.05377117544412613, 0.07819730788469315, -0.1409452259540558, -0.01593049429357052, 0.006671871989965439, 0.04665317386388779, -0.1983163207769394, -0.0029375492595136166, -0.12669500708580017, 0.07760734856128693, -0.1604452133178711, -0.10116671025753021, -0.027149681001901627, -0.017256587743759155, -0.07531195133924484, 0.17428265511989594, -0.1043747067451477, 0.021894900128245354, 0.19296139478683472, 0.02979738637804985, 0.03650131821632385, -0.04523328319191933, 0.18556824326515198, -0.11009835451841354, -0.028278881683945656, 0.08388353884220123, -0.028901532292366028, 0.03908773511648178, 0.05114533379673958, -0.002995833056047559, -0.11386426538228989, 0.022571144625544548, -0.061523761600255966, -0.03882989659905434, -0.27728310227394104, -0.10157372057437897, -0.09416108578443527, 0.13095995783805847, 0.06353706866502762, 0.08694369345903397, 0.13677479326725006, 0.03241296112537384, -0.03486865013837814, -0.006788457743823528, 0.11350718885660172, 0.13196755945682526, 0.1546081006526947, -0.054797545075416565, 0.10400725156068802, -0.00732640502974391, -0.06723599880933762, 0.0775177925825119, 0.010489492677152157, 0.06473548710346222, 0.03582092002034187, 0.05439159646630287, -0.03474049270153046, 0.12163657695055008, 0.12976029515266418, 0.06400913000106812, 0.07449053227901459, 0.0018762258114293218, -0.047343239188194275, -0.0023769382387399673, -0.11009418219327927, 0.06357737630605698, 0.048745810985565186, -0.1361396461725235, -0.05840175598859787, -0.023479383438825607, 0.10314234346151352, 0.030318239703774452, 0.04201050102710724, -0.14829635620117188, -0.055223651230335236, 0.08196567744016647, -0.08182991296052933, -0.14589855074882507, 0.123079814016819, -0.0020069878082722425, -0.21787337958812714, 0.059871673583984375, -0.00445617875084281, 0.09279157966375351, -0.05691356211900711, 0.05937489494681358, -0.12336664646863937, -0.14690734446048737, -0.004597262945026159, 0.07678814977407455, -0.3614218831062317, 0.10696420818567276, -0.01492918562144041, -0.034170228987932205, -0.07811900973320007, -0.029855877161026, 0.013830301351845264, 0.09424669295549393, 0.07196108996868134, 0.020148398354649544, 0.06785272806882858, -0.0406607948243618, 0.04343333840370178, -0.005423454567790031, 0.10249773412942886, -0.0017375926254317164, -0.0022391490638256073, -0.042196162045001984, -0.005115449894219637, -0.07990812510251999, -0.0676470398902893, 0.08787580579519272, -0.19311031699180603, 0.10162363201379776, -0.04432025924324989, 0.09911154210567474, 0.023297002539038658, -0.009774526581168175, -0.014873764477670193, 0.1903144121170044, -0.061184998601675034, -0.10480397194623947, -0.07800080627202988, 0.003084047930315137, 0.04311311990022659, -0.021921120584011078, 0.001714059617370367, -0.05075491592288017, 0.04557185247540474, -0.14364401996135712, -0.16942542791366577, 0.10049116611480713, -0.03986566886305809, -0.11294279247522354, -0.02521209791302681, 0.17721779644489288, -0.0034283786080777645, 0.07834594696760178, -0.0030608291272073984, 0.010859235189855099, -0.1614042967557907, -0.04489457979798317, 0.06781932711601257, -0.01755790039896965, 0.01517956331372261, 0.06319505721330643, -0.010474820621311665, 0.025478791445493698, -0.11388683319091797, 0.002701080869883299, 0.3331870138645172, 0.15942682325839996, -0.007533974014222622, 0.16389495134353638, 0.095169797539711, -0.07701768726110458, -0.20377296209335327, -0.11687740683555603, -0.14614079892635345, -0.09839248657226562, -0.11418759822845459, -0.1840914934873581, 0.0953584611415863, -0.01949978433549404, 0.0390242300927639, 0.1834079921245575, -0.26367655396461487, -0.10321856290102005, 0.11387986689805984, 0.02451213076710701, 0.34731602668762207, -0.13654576241970062, -0.05909457057714462, -0.06329049915075302, -0.13515006005764008, 0.10986652225255966, -0.048275843262672424, 0.10932222008705139, -0.07713272422552109, 0.1895398050546646, 0.014632279984652996, 0.00452010240405798, 0.08054868876934052, 0.04267682507634163, -0.04309546574950218, -0.0853574350476265, -0.11971835047006607, 0.05094245821237564, 0.04378562048077583, 0.0012319941306486726, 0.00019107430125586689, -0.00988979171961546, -0.10830558836460114, -0.02040279097855091, -0.07845893502235413, 0.030188707634806633, -0.0032264897599816322, -0.012956078164279461, -0.06363765895366669, -0.01565135270357132, -0.04096111282706261, 0.04395265132188797, 0.19462695717811584, -0.03720684349536896, 0.23511044681072235, 0.02668285183608532, 0.12747381627559662, -0.19071733951568604, -0.025029415264725685, -0.017844390124082565, -0.04071100056171417, 0.08528535813093185, -0.07439415901899338, 0.0042008887976408005, 0.1203632652759552, -0.027254542335867882, 0.04513894021511078, 0.12052612006664276, 0.007183260750025511, 0.01924232766032219, 0.05866866931319237, -0.2831539511680603, -0.06260104477405548, -0.013306834734976292, 0.003389947582036257, 0.07960876822471619, 0.029080945998430252, 0.19366589188575745, -0.010552232153713703, -0.10842732340097427, 0.017762793228030205, 0.03275830298662186, -0.02030261978507042, 0.09357069432735443, 0.0017647672211751342, 0.0005022393306717277, -0.1737007051706314, 0.07648489624261856, 0.028424246236681938, -0.12154875695705414, 0.040282927453517914, 0.23473821580410004, -0.14052385091781616, -0.11216624826192856, -0.0805232971906662, 0.06423265486955643, -0.059285249561071396, 0.03525875136256218, -0.01691962592303753, -0.14410193264484406, 0.07709000259637833, 0.08645118772983551, 0.03991714492440224, 0.08244728296995163, -0.07356026023626328, -0.01683993451297283, -0.02293669432401657, -0.015764553099870682, -0.007774999365210533, 0.02652132138609886, -0.04291326180100441, 0.1613030880689621, -0.045192670077085495, 0.09649375081062317, -0.07671203464269638, -0.10391981899738312, -0.166996568441391, 0.034507136791944504, -0.07013712078332901, -0.07280486077070236, -0.11721280962228775, -0.054082468152046204, -0.006301205139607191, -0.03604762256145477, -0.00764160230755806, -0.07937610149383545, -0.125620499253273, -0.0030617837328463793, -0.008651883341372013, 0.00847567804157734, -0.09048979729413986, 0.024212220683693886, 0.08525878936052322, -0.04752087965607643, 0.16319029033184052, 0.25355300307273865, -0.12160678952932358, 0.12206751853227615, -0.08359070867300034, -0.1338375359773636, 0.052975479513406754, 0.012324461713433266, 0.04365278780460358, 0.07718737423419952, -0.025997882708907127, 0.005234678741544485, 0.03798993304371834, 0.09308423846960068, 0.11760129779577255, -0.08418448269367218, 0.03781552240252495, -0.024084946140646935, -0.16604818403720856, -0.02558642439544201, -0.04595145583152771, 0.08855043351650238, -0.044821981340646744, 0.13422754406929016, -0.05320816487073898, 0.0693182572722435, -0.06421879678964615, 0.04796583205461502, 0.021037599071860313, -0.15891779959201813, -0.0296399537473917, -0.055398084223270416, 0.036036357283592224, -0.028313780203461647, 0.1761445850133896, -0.023282049223780632, 0.0008308379910886288, 0.06561797112226486, 0.10294128954410553, -0.06701570749282837, 0.01593802496790886, 0.09655700623989105, 0.12114819139242172, -0.08782581239938736, -0.020131045952439308, 0.037759892642498016, 0.08523480594158173, 0.04282563924789429, 0.14794856309890747, -0.007124816998839378, 0.06112099066376686, 0.06061524152755737, -0.055587492883205414, 0.06979596614837646, -0.0864967554807663, -0.07101257890462875, 0.013126743957400322, 0.016490669921040535, -0.029582500457763672, 0.18183600902557373, 0.1958584189414978, -0.019330326467752457, 0.001131141558289528, -0.025882378220558167, -0.08366626501083374, -0.1313849687576294, -0.040749166160821915, -0.0728154107928276, -0.12910713255405426, 0.007339666597545147, -0.13646093010902405, 0.01886795088648796, -0.02695559151470661, 0.07664940506219864, -0.06360716372728348, 0.015104886144399643, 0.12090817838907242, -0.09605427831411362, 0.07066947221755981, -0.02154127135872841, 0.030984265729784966, -0.0280345119535923, -0.033058684319257736, -0.11438123136758804, 0.001025551580823958, 0.009485900402069092, 0.09302517771720886, -0.10594018548727036, 0.043476402759552, -0.14587293565273285, -0.10754816234111786, -0.015195286832749844, 0.0850139856338501, -0.08747610449790955, 0.12155783921480179, 0.03344615176320076, -0.042450033128261566, 0.001519853831268847, 0.26724275946617126, -0.056416358798742294, -0.025422725826501846, -0.02092345617711544, 0.17232413589954376, 0.04200929403305054, 0.054295506328344345, 0.006604219786822796, 0.036292217671871185, -0.0919392928481102, 0.2822611927986145, 0.3500478267669678, -0.13359901309013367, -0.0014675784623250365, 0.017521612346172333, 0.04838532954454422, 0.14439399540424347, 0.10677091032266617, 0.11816283315420151, 0.2604312300682068, -0.08925234526395798, 0.028950760141015053, -0.047741133719682693, -0.008379627019166946, -0.09908035397529602, 0.03626544028520584, 0.06645840406417847, -0.07684948295354843, -0.03871142491698265, 0.05767429247498512, -0.29083186388015747, 0.08294567465782166, -0.09522955119609833, -0.1747271865606308, -0.04494473710656166, -0.0051972949877381325, 0.02525089681148529, 0.012523583136498928, 0.11822178214788437, 0.03821945562958717, -0.09951874613761902, 0.05810529738664627, 0.0248149074614048, -0.2566261887550354, -0.05607978627085686, 0.14945709705352783, -0.13654758036136627, 0.04369102790951729, -0.03613487258553505, 0.019433021545410156, 0.060110364109277725, 0.08029571175575256, -0.053139183670282364, -0.07863858342170715, -0.006672888062894344, -0.016477739438414574, -0.007054716814309359, 0.09070750325918198, 0.06352376192808151, -0.038155701011419296, 0.13140861690044403, -0.06731497496366501, 0.045702286064624786, 0.008074460551142693, 0.00014444276166614145, 0.024647017940878868, 0.028699034824967384, -0.07089978456497192, 0.03745313361287117, 0.14623993635177612, -0.028336919844150543, 0.00939762219786644, -0.044544633477926254, -0.08701327443122864, -0.024569304659962654, -0.0800858587026596, -0.1334099918603897, -0.1918977051973343, -0.1287958025932312, 0.008190964348614216, -0.022250719368457794, -0.20086853206157684, 0.015490429475903511, -0.12334953248500824, 0.0500875748693943, -0.16471049189567566, 0.10479007661342621, 0.06119938939809799, -0.0035236906260252, -0.0031029649544507265, 0.049145881086587906, 0.058569055050611496, 0.1525193303823471, -0.14604724943637848, -0.040041934698820114 ]
null
null
speechbrain
# Conformer Encoder/Decoder for Speech Translation This model was trained with [SpeechBrain](https://speechbrain.github.io), and is based on the Fisher Callhome recipie. The performance of the model is the following: | Release | CoVoSTv2 JA->EN Test BLEU | Custom Dataset Validation BLEU | Custom Dataset Test BLEU | GPUs | |:-------------:|:--------------:|:--------------:|:--------------:|:--------:| | 01-13-21 | 9.73 | 8.38 | 12.01 | 1xRTX 3090 | This model was trained on subtitled audio downloaded from YouTube, and was not fine-tuned on the CoVoSTv2 training set. When calculating the BLEU score for CoVoSTv2, the utterances were first preprocessed by the same pipeline that preprocessed the original data for the model, which includes removing all punctuation outside of apostrophes, and removing capitalization, similar to the data preprocessing done for the Fisher Callhome dataset in the speechbrain recipe. ## Pipeline description The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, install SpeechBrain with the following command: ``` pip install speechbrain ``` ### Transcribing your own audio files (Spoken Japanese, to written English) ```python from speechbrain.pretrained import EncoderDecoderASR st_model = EncoderDecoderASR.from_hparams(source="bob80333/speechbrain_ja2en_st_63M_yt600h") st_model.transcribe_file("your_file_here.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations: The model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores. The outputs of this model are unlikely to be correct, do not rely on it for any serious purpose. This model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles. The creator of this model doesn't actually know Japanese.
{"language": "en", "tags": ["speech-translation", "CTC", "Attention", "Transformer", "pytorch", "speechbrain", "automatic-speech-recognition"], "metrics": ["BLEU"]}
automatic-speech-recognition
bob80333/speechbrain_ja2en_st_63M_yt600h
[ "speechbrain", "speech-translation", "CTC", "Attention", "Transformer", "pytorch", "automatic-speech-recognition", "en", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #speechbrain #speech-translation #CTC #Attention #Transformer #pytorch #automatic-speech-recognition #en #region-us
Conformer Encoder/Decoder for Speech Translation ================================================ This model was trained with SpeechBrain, and is based on the Fisher Callhome recipie. The performance of the model is the following: This model was trained on subtitled audio downloaded from YouTube, and was not fine-tuned on the CoVoSTv2 training set. When calculating the BLEU score for CoVoSTv2, the utterances were first preprocessed by the same pipeline that preprocessed the original data for the model, which includes removing all punctuation outside of apostrophes, and removing capitalization, similar to the data preprocessing done for the Fisher Callhome dataset in the speechbrain recipe. Pipeline description -------------------- The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe\_file* if needed. Install SpeechBrain ------------------- First of all, install SpeechBrain with the following command: ### Transcribing your own audio files (Spoken Japanese, to written English) ### Inference on GPU To perform inference on the GPU, add 'run\_opts={"device":"cuda"}' when calling the 'from\_hparams' method. ### Limitations: The model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores. The outputs of this model are unlikely to be correct, do not rely on it for any serious purpose. This model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles. The creator of this model doesn't actually know Japanese.
[ "### Transcribing your own audio files (Spoken Japanese, to written English)", "### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.", "### Limitations:\n\n\nThe model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores.\nThe outputs of this model are unlikely to be correct, do not rely on it for any serious purpose.\nThis model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles.\nThe creator of this model doesn't actually know Japanese." ]
[ "TAGS\n#speechbrain #speech-translation #CTC #Attention #Transformer #pytorch #automatic-speech-recognition #en #region-us \n", "### Transcribing your own audio files (Spoken Japanese, to written English)", "### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.", "### Limitations:\n\n\nThe model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores.\nThe outputs of this model are unlikely to be correct, do not rely on it for any serious purpose.\nThis model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles.\nThe creator of this model doesn't actually know Japanese." ]
[ 42, 19, 48, 104 ]
[ "passage: TAGS\n#speechbrain #speech-translation #CTC #Attention #Transformer #pytorch #automatic-speech-recognition #en #region-us \n### Transcribing your own audio files (Spoken Japanese, to written English)### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.### Limitations:\n\n\nThe model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores.\nThe outputs of this model are unlikely to be correct, do not rely on it for any serious purpose.\nThis model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles.\nThe creator of this model doesn't actually know Japanese." ]
[ -0.07954481244087219, -0.011822487227618694, 0.002179332310333848, 0.06890212744474411, 0.14924372732639313, -0.010244171135127544, 0.09229147434234619, 0.06913883984088898, 0.09641464799642563, 0.08546993136405945, 0.042919889092445374, 0.02436748705804348, 0.11616445332765579, 0.051859237253665924, 0.031686846166849136, -0.23322348296642303, 0.10423856228590012, -0.015896271914243698, 0.19202342629432678, 0.06411951035261154, 0.03401999548077583, -0.08342500776052475, 0.06222055107355118, 0.02586466260254383, -0.18101131916046143, -0.03758828341960907, 0.1083163470029831, -0.05258438363671303, 0.07003124058246613, 0.09750740230083466, -0.01502660196274519, -0.00237064971588552, 0.056549716740846634, -0.07512543350458145, 0.040053606033325195, -0.012971118092536926, 0.029486458748579025, 0.01110592670738697, 0.0844758152961731, 0.03992439806461334, 0.04309484362602234, 0.12251543998718262, -0.04722856357693672, 0.09595140069723129, -0.08514861762523651, -0.030419806018471718, 0.035568732768297195, -0.036115653812885284, 0.014242229051887989, 0.038193777203559875, -0.12027250975370407, 0.10370798408985138, -0.13143527507781982, 0.07403664290904999, 0.1407710164785385, -0.1631746143102646, 0.02980830892920494, 0.13094189763069153, 0.0431506484746933, 0.057485926896333694, -0.01861502416431904, 0.08051221817731857, 0.09206219017505646, 0.005846075247973204, -0.11829143017530441, -0.019350668415427208, -0.027322500944137573, -0.07854057848453522, -0.08592892438173294, -0.02291545830667019, 0.1584797203540802, 0.022754020988941193, -0.044232893735170364, -0.08723276108503342, -0.031754594296216965, -0.08246825635433197, -0.041634924709796906, 0.013274150900542736, -0.037915829569101334, 0.0004365044878795743, 0.0793430432677269, 0.0069899242371320724, -0.017635557800531387, -0.17780640721321106, -0.07925424724817276, 0.1449519246816635, 0.04640498384833336, 0.04843198508024216, -0.10988323390483856, 0.09291622787714005, -0.11371137946844101, -0.03439721092581749, 0.008130471222102642, -0.09558851271867752, -0.0572160929441452, 0.08278008550405502, -0.0525970384478569, -0.020443812012672424, 0.009578658267855644, -0.03588540852069855, 0.11445054411888123, 0.04109443724155426, -0.03004968725144863, 0.10708967596292496, 0.06978492438793182, 0.09446416795253754, -0.20930080115795135, 0.027530230581760406, 0.0853821188211441, 0.05639009550213814, 0.020762765780091286, -0.060479599982500076, -0.13597838580608368, -0.05706574767827988, 0.04079277440905571, 0.03326070308685303, -0.03306882083415985, 0.07544625550508499, -0.12632334232330322, -0.044415395706892014, -0.021040653809905052, -0.06613965332508087, -0.06019217520952225, 0.05073246732354164, -0.11220411956310272, 0.11304016411304474, -0.0010393854463472962, 0.04437125474214554, -0.05311140418052673, -0.14634092152118683, -0.079242043197155, 0.02019350603222847, -0.05965514853596687, -0.09299446642398834, 0.016301989555358887, -0.07181639969348907, 0.03830311819911003, -0.12917406857013702, -0.06773832440376282, -0.038143306970596313, -0.0680522695183754, -0.039383094757795334, 0.035743337124586105, -0.13323692977428436, 0.010806427337229252, -0.02113080956041813, -0.06881215423345566, -0.05234498158097267, -0.04404522106051445, 0.08464222401380539, -0.015174603089690208, 0.09066282957792282, -0.08489947766065598, 0.08910360932350159, -0.08993207663297653, 0.02446240559220314, -0.1924072802066803, 0.16927661001682281, -0.016678696498274803, -0.08495752513408661, -0.08243376016616821, -0.02811649814248085, -0.005816753022372723, 0.10565430670976639, 0.054089292883872986, 0.17987653613090515, -0.29863011837005615, -0.04512922465801239, 0.184193417429924, -0.04840410500764847, -0.00304081616923213, 0.23809057474136353, -0.041080597788095474, 0.032387230545282364, 0.1308724284172058, 0.2463974952697754, -0.16968902945518494, -0.1056538000702858, 0.01605617068707943, -0.011077916249632835, -0.042838215827941895, 0.08617811650037766, 0.06294076144695282, 0.012104465626180172, -0.132696270942688, 0.05335914343595505, -0.05909033864736557, 0.04193840175867081, -0.05120943486690521, -0.05661796033382416, 0.04748300835490227, -0.05404312163591385, 0.014219489879906178, -0.0002963261504191905, 0.006487542297691107, 0.04411397501826286, -0.07051482796669006, -0.07481857389211655, 0.10592585057020187, -0.11792401224374771, 0.029582474380731583, -0.13997876644134521, 0.20660875737667084, -0.1209975853562355, 0.021057773381471634, -0.11756891757249832, 0.07090383768081665, 0.05563683062791824, -0.042765773832798004, 0.16419093310832977, 0.005587830673903227, -0.036280885338783264, 0.024152003228664398, 0.04958527535200119, -0.011398998089134693, 0.023150838911533356, 0.030937986448407173, 0.025866717100143433, -0.1487230658531189, 0.07466047257184982, -0.011417152360081673, 0.09972889721393585, -0.12093739956617355, -0.08090536296367645, 0.0576937198638916, 0.06657591462135315, -0.06739277392625809, 0.010715890675783157, 0.0495600625872612, 0.014814666472375393, -0.026925355195999146, 0.021904518827795982, 0.04632339999079704, -0.044782817363739014, -0.11541301012039185, 0.19713614881038666, -0.23885083198547363, -0.11647248268127441, 0.1990269273519516, -0.1327725201845169, -0.057831957936286926, -0.0071864137426018715, 0.09671179950237274, -0.042558297514915466, 0.06208963319659233, -0.0927620530128479, 0.29091593623161316, -0.04901326820254326, 0.09491849690675735, -0.14334648847579956, 0.14620858430862427, 0.11650034785270691, -0.046312958002090454, -0.01718171499669552, 0.08137809485197067, 0.14789673686027527, -0.04988564923405647, 0.06830443441867828, -0.11016316711902618, -0.060729846358299255, 0.27627047896385193, 0.013299145735800266, -0.10799024999141693, -0.01371585950255394, -0.026975620537996292, -0.06665301322937012, 0.14050500094890594, -0.10413913428783417, -0.08210073411464691, 0.05327637866139412, 0.0352427214384079, 0.027433089911937714, -0.12899833917617798, -0.0357121042907238, -0.07397107034921646, -0.058546386659145355, -0.06882315874099731, 0.04971412569284439, -0.03277072310447693, 0.08723052591085434, -0.03964921459555626, -0.09287756681442261, 0.05514615401625633, -0.05062952637672424, -0.08751170337200165, 0.0818750262260437, -0.12511689960956573, -0.24371671676635742, -0.14989067614078522, -0.00957082025706768, -0.11072362214326859, 0.10295049101114273, -0.029757428914308548, -0.0894089788198471, -0.061592280864715576, -0.041680049151182175, 0.0772169902920723, 0.01753944717347622, -0.0637877881526947, -0.13463161885738373, -0.07248128950595856, -0.047979988157749176, -0.09730588644742966, -0.008871202357113361, -0.04971516132354736, -0.053642529994249344, 0.017526401206851006, -0.1166008934378624, 0.054482601583004, 0.22897730767726898, 0.06326111406087875, 0.02254331298172474, -0.07259002327919006, 0.21697568893432617, -0.12843528389930725, -0.04250122234225273, 0.0927191823720932, -0.04636223986744881, -0.036787375807762146, 0.20129463076591492, 0.002268129028379917, -0.09251614660024643, 0.04409940540790558, -0.08267277479171753, -0.07699604332447052, -0.14540687203407288, -0.07058946788311005, -0.03940635547041893, 0.006777430884540081, -0.004650958348065615, -0.002881931606680155, 0.0872236043214798, 0.04609638825058937, -0.06031568720936775, 0.07949879765510559, 0.007715041283518076, 0.019334757700562477, 0.08157121390104294, -0.062446773052215576, 0.06759747117757797, 0.025574127212166786, 0.00011371263099135831, 0.0695406123995781, 0.0745631754398346, 0.129987433552742, -0.014135709963738918, 0.1999099850654602, 0.06327516585588455, 0.05028686672449112, 0.17006172239780426, 0.016299372538924217, 0.018826937302947044, 0.036220483481884, -0.06486008316278458, -0.08470875024795532, -0.09408680349588394, 0.10128111392259598, 0.19345442950725555, -0.013570036739110947, -0.050786782056093216, 0.05138168856501579, 0.0017437324859201908, 0.04144998639822006, 0.04565931856632233, -0.25404855608940125, -0.016983844339847565, 0.015516193583607674, 0.014649897813796997, -0.07030282914638519, 0.1772056519985199, 0.14409375190734863, -0.10048002749681473, -0.08414031565189362, 0.0708254799246788, 0.06422644108533859, -0.08435125648975372, -0.0050196475349366665, -0.1309605836868286, 0.07930358499288559, -0.007090251427143812, 0.03475061058998108, -0.2355629801750183, 0.12300760298967361, 0.01680217869579792, 0.06282088160514832, -0.022200727835297585, -0.06940560787916183, 0.085932657122612, -0.016761135309934616, 0.17963463068008423, -0.00677842739969492, 0.04752872884273529, -0.14388182759284973, -0.14124906063079834, 0.01700744405388832, 0.06036067381501198, 0.07938425987958908, -0.029703976586461067, -0.014000254683196545, 0.013312163762748241, -0.025745388120412827, -0.14837191998958588, -0.08896655589342117, -0.0010224820580333471, 0.012923382222652435, 0.11923465132713318, 0.12305209040641785, 0.040102191269397736, -0.07396046817302704, -0.1860281229019165, -0.09308343380689621, -0.17711542546749115, -0.032691825181245804, -0.02046893537044525, -0.0027897499967366457, 0.11915668100118637, -0.030060794204473495, 0.12019500881433487, -0.043715737760066986, 0.0847192108631134, 0.005681863520294428, -0.06265716254711151, 0.1601404994726181, -0.051199302077293396, -0.11174400895833969, -0.03925763815641403, 0.1096055880188942, 0.060189031064510345, 0.07557588815689087, 0.03177616745233536, 0.0008986006141640246, 0.0010233779903501272, -0.07737043499946594, -0.07297759503126144, 0.12273530662059784, -0.06773354858160019, 0.1613350659608841, 0.03105565905570984, -0.1853315681219101, -0.16246962547302246, -0.018475700169801712, 0.10962995141744614, 0.2085297703742981, -0.05896703153848648, 0.06076647713780403, 0.2654876410961151, -0.04571891948580742, -0.26314371824264526, 0.02120363898575306, 0.029255183413624763, 0.10069922357797623, -0.05811123549938202, -0.07097715884447098, 0.045075759291648865, -0.06845264136791229, -0.010437184944748878, 0.10918434709310532, -0.14013169705867767, -0.14821302890777588, 0.19834725558757782, 0.10465411096811295, 0.21212342381477356, -0.02236531302332878, -0.01788443885743618, 0.03885507211089134, -0.07098511606454849, 0.0682714581489563, -0.00696380203589797, 0.15321394801139832, 0.056563638150691986, 0.10476555675268173, 0.03073190152645111, 0.014756819233298302, 0.11182776093482971, 0.046610213816165924, 0.02371908724308014, -0.03991066291928291, -0.11749307811260223, 0.018487296998500824, 0.06391947716474533, 0.09251119941473007, 0.06449103355407715, 0.0003905933990608901, 0.002424629172310233, -0.08990740776062012, -0.07745575904846191, -0.02028825506567955, 0.03144560381770134, -0.06494533270597458, -0.062309470027685165, 0.04845602065324783, -0.013535453006625175, 0.07858093082904816, -0.03391031175851822, -0.16252262890338898, -0.1661914736032486, 0.10708054900169373, 0.1310274749994278, 0.012227093800902367, -0.022038932889699936, 0.03872804343700409, -0.07594972103834152, 0.17932696640491486, -0.012997687794268131, 0.053870704025030136, 0.09628364443778992, 0.0040625156834721565, 0.19630634784698486, 0.02098616398870945, -0.12609270215034485, 0.10623648017644882, 0.007111336104571819, -0.0737902969121933, -0.09868207573890686, -0.0018553833942860365, -0.001126337330788374, 0.16011717915534973, -0.07380331307649612, 0.10334479063749313, -0.11458967626094818, -0.00301090395078063, -0.003032463835552335, 0.030447447672486305, -0.0732710063457489, 0.049032580107450485, 0.09526214748620987, -0.010447017848491669, -0.17514003813266754, 0.10132269561290741, 0.011375985108315945, -0.10692716389894485, 0.10050603002309799, -0.06425639986991882, -0.08860398083925247, -0.035142682492733, -0.22315800189971924, 0.05355178937315941, -0.01713256537914276, -0.13517789542675018, -0.06977499276399612, -0.09926154464483261, -0.07552909106016159, 0.059919387102127075, 0.061308491975069046, 0.04378799721598625, -0.08391937613487244, -0.022978121414780617, -0.07761359959840775, 0.050853706896305084, 0.043022315949201584, -0.03458702936768532, -0.12216313928365707, 0.059185564517974854, 0.1142624095082283, 0.08784614503383636, -0.11321833729743958, -0.09561251848936081, -0.09477398544549942, 0.08905899524688721, -0.14664316177368164, 0.08297516405582428, -0.04435945674777031, -0.013893960043787956, 0.01499367505311966, -0.049183305352926254, -0.03347240760922432, 0.02110724151134491, -0.08296319842338562, 0.06693175435066223, 0.04142924025654793, 0.0665205642580986, -0.009386545047163963, -0.011937775649130344, 0.045313071459531784, -0.021191727370023727, 0.0704374834895134, 0.1217922642827034, -0.08027028292417526, 0.09092741459608078, -0.17438900470733643, 0.0028799737337976694, 0.039309658110141754, 0.04734513536095619, 0.011031349189579487, -0.02348785661160946, 0.0019520141649991274, 0.011512787081301212, 0.040572717785835266, -0.06979445368051529, 0.044729720801115036, -0.029519755393266678, -0.03308916464447975, -0.005887895822525024, 0.03560970723628998, -0.07242888957262039, 0.06067878380417824, 0.011839181184768677, 0.10716722160577774, 0.018512187525629997, -0.024184230715036392, -0.01332188956439495, 0.0004985634586773813, 0.003053562482818961, -0.0809641033411026, -0.018294360488653183, -0.03262251988053322, -0.07243529707193375, 0.05039357766509056, -0.0179976224899292, 0.25158366560935974, 0.024086931720376015, -0.054409321397542953, -0.06631424278020859, 0.03850764036178589, 0.0009821404237300158, 0.050552718341350555, 0.11568793654441833, 0.044267818331718445, 0.0561022087931633, -0.10570181161165237, 0.05537153780460358, 0.09437142312526703, 0.17638035118579865, -0.018295489251613617, -0.002999740419909358, 0.045520663261413574, 0.11229097843170166, 0.08962257951498032, -0.029524415731430054, 0.009022736921906471, 0.0209798701107502, -0.08922287821769714, 0.03498232364654541, -0.03613654896616936, 0.15051889419555664, 0.12386014312505722, -0.022922901436686516, 0.023277226835489273, -0.034800752997398376, -0.11778292059898376, -0.12440714240074158, -0.15550824999809265, -0.041541341692209244, -0.11380346119403839, 0.027899425476789474, -0.06355883181095123, 0.02563004568219185, 0.10497153550386429, 0.09025952219963074, -0.12994708120822906, 0.22728461027145386, -0.08952907472848892, -0.10038238018751144, 0.12598752975463867, 0.0012202052166685462, -0.021255088970065117, -0.027028130367398262, -0.0677415058016777, 0.1258530169725418, -0.024715706706047058, 0.048781152814626694, 0.038388047367334366, -0.04177582263946533, 0.03263822942972183, -0.01102182362228632, -0.06413386762142181, -0.025517191737890244, 0.014643851667642593, -0.022253481671214104, 0.14339183270931244, 0.09296143054962158, -0.05880444496870041, 0.009855397045612335, 0.02723984234035015, 0.01849418878555298, 0.02306075394153595, -0.10672786086797714, 0.18484434485435486, -0.11989448964595795, 0.048481009900569916, -0.03335437923669815, -0.10952536016702652, -0.04831404611468315, 0.23021617531776428, 0.15366797149181366, -0.2009868025779724, -0.0724000558257103, -0.018919246271252632, 0.01976992003619671, -0.08015040308237076, 0.16631542146205902, -0.046228569000959396, 0.2110423743724823, 0.005566371139138937, 0.05287233367562294, -0.0972972884774208, -0.09378444403409958, 0.05278356745839119, -0.07196957617998123, 0.031168339774012566, -0.05986315757036209, -0.1187124028801918, 0.02361956797540188, -0.3093836307525635, -0.0788097083568573, -0.11014995723962784, -0.02924686297774315, -0.04805566370487213, -0.030253905802965164, -0.13420791923999786, 0.13843542337417603, -0.010181653313338757, -0.10684937983751297, 0.07470191270112991, 0.054375097155570984, 0.008205212652683258, -0.07880719006061554, 0.004541712813079357, 0.021223336458206177, -0.008341703563928604, 0.14314493536949158, -0.04592818394303322, 0.18925197422504425, -0.033394839614629745, 0.09972727298736572, 0.026377201080322266, 0.1312389224767685, 0.03273595869541168, -0.08875701576471329, -0.026913803070783615, 0.1999654322862625, 0.008863881230354309, 0.023353658616542816, 0.0016928567783907056, 0.014134151861071587, 0.08791115880012512, -0.08666786551475525, -0.09085451811552048, -0.09694353491067886, 0.024899665266275406, -0.08540429174900055, 0.14184173941612244, 0.034193314611911774, -0.03146365284919739, -0.06112964451313019, -0.030112994834780693, 0.043825142085552216, 0.00426498195156455, -0.00781983695924282, 0.035962894558906555, -0.18995049595832825, 0.034903667867183685, 0.006210525520145893, 0.011815259233117104, -0.22027012705802917, 0.041792500764131546, -0.10795831680297852, -0.04897880554199219, -0.012163417413830757, 0.048701103776693344, -0.025303814560174942, 0.014181411825120449, -0.012559136375784874, -0.06243595480918884, 0.016014160588383675, 0.06914369761943817, -0.09835557639598846, -0.19981130957603455 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-wei0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7149 - Rouge1: 24.2324 - Rouge2: 11.7178 - Rougel: 20.0508 - Rougelsum: 22.8698 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9068 | 1.0 | 4786 | 1.7149 | 24.2324 | 11.7178 | 20.0508 | 22.8698 | 19.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["cnn_dailymail"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-finetuned-cnn-wei0", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "cnn_dailymail", "type": "cnn_dailymail", "args": "3.0.0"}, "metrics": [{"type": "rouge", "value": 24.2324, "name": "Rouge1"}]}]}]}
text2text-generation
bochaowei/t5-small-finetuned-cnn-wei0
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-cnn-wei0 =========================== This model is a fine-tuned version of t5-small on the cnn\_dailymail dataset. It achieves the following results on the evaluation set: * Loss: 1.7149 * Rouge1: 24.2324 * Rouge2: 11.7178 * Rougel: 20.0508 * Rougelsum: 22.8698 * Gen Len: 19.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 12 * eval\_batch\_size: 12 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 80, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.1127171516418457, 0.15341074764728546, -0.002246245974674821, 0.09727239608764648, 0.09984598308801651, 0.017721712589263916, 0.1817321926355362, 0.14620377123355865, -0.08602169901132584, 0.06366996467113495, 0.14935088157653809, 0.11173245310783386, 0.050648096948862076, 0.21978752315044403, -0.06035446375608444, -0.2199099063873291, 0.05126430094242096, 0.036925435066223145, -0.001842185971327126, 0.13711446523666382, 0.08659113943576813, -0.11839822679758072, 0.09728552401065826, 0.020120376721024513, -0.18150362372398376, -0.04508300870656967, -0.016465365886688232, -0.0754384845495224, 0.11150124669075012, 0.014192890375852585, 0.08301691710948944, 0.041114043444395065, 0.05870150029659271, -0.16204388439655304, 0.009155986830592155, 0.043869901448488235, -0.002330191433429718, 0.10605956614017487, 0.04084789752960205, -0.0076094698160886765, 0.05909062922000885, -0.0852281004190445, 0.06243573874235153, 0.006728391628712416, -0.13033364713191986, -0.20905479788780212, -0.1312320977449417, 0.057929567992687225, 0.06638659536838531, 0.08284080773591995, -0.0085463160648942, 0.1664353907108307, -0.014482613652944565, 0.09196094423532486, 0.2147097885608673, -0.3066096901893616, -0.054236650466918945, 0.009676262736320496, 0.03148699924349785, 0.08451021462678909, -0.07289379835128784, -0.03078625164926052, 0.03409109637141228, 0.041019849479198456, 0.147751584649086, -0.0026598498225212097, -0.03825406730175018, -0.020998505875468254, -0.13007739186286926, -0.08343757688999176, 0.2024753987789154, 0.05593540892004967, -0.04100653901696205, -0.07400009781122208, -0.05965980514883995, -0.19607295095920563, -0.047611054033041, 0.014362377114593983, 0.03880508989095688, -0.036564383655786514, -0.09609097987413406, -0.020294569432735443, -0.07789047062397003, -0.02969660423696041, -0.05299079418182373, 0.09938476979732513, 0.03418080136179924, 0.016328291967511177, -0.048217806965112686, 0.0780869573354721, -0.012094380334019661, -0.16053146123886108, -0.012791285291314125, 0.01261171419173479, 0.018313637003302574, -0.0422900952398777, -0.039047807455062866, -0.09225558489561081, 0.020034972578287125, 0.15903329849243164, -0.05961831659078598, 0.05872039124369621, -0.026749055832624435, 0.029499609023332596, -0.054534006863832474, 0.1705903857946396, -0.024696800857782364, -0.017381833866238594, 0.0210407767444849, 0.08997800201177597, 0.05195052921772003, -0.037331290543079376, -0.11293169111013412, 0.04490478336811066, 0.12546943128108978, 0.014773162081837654, -0.02072584256529808, 0.06585612893104553, -0.04818548262119293, -0.03014608658850193, 0.0705544501543045, -0.10014351457357407, 0.026670604944229126, -0.011797181330621243, -0.06146523356437683, -0.02992326021194458, 0.0006290515884757042, 0.017647113651037216, -0.030079422518610954, 0.06730319559574127, -0.10088173300027847, 0.005309446714818478, -0.06375973671674728, -0.12381161004304886, 0.037335701286792755, -0.10562703758478165, -0.01004757359623909, -0.08784832060337067, -0.17283205687999725, -0.023646358400583267, 0.03876015543937683, -0.0408402718603611, -0.07495994120836258, -0.07305475324392319, -0.08455639332532883, 0.043342288583517075, -0.023724963888525963, 0.08177521824836731, -0.07996534556150436, 0.08185800909996033, 0.018676646053791046, 0.06509216129779816, -0.05034273862838745, 0.04146122187376022, -0.08055446296930313, 0.038865476846694946, -0.15881972014904022, 0.07387915253639221, -0.047962699085474014, 0.0739850327372551, -0.10969230532646179, -0.0872822031378746, 0.03356415405869484, -0.03820988908410072, 0.08652741461992264, 0.10676515102386475, -0.1807413399219513, -0.05825841799378395, 0.1987023949623108, -0.07221613079309464, -0.1576261818408966, 0.12026291340589523, -0.057263292372226715, 0.020690545439720154, 0.06618187576532364, 0.21340778470039368, 0.03955359756946564, -0.08542883396148682, -0.0372554250061512, -0.05950158089399338, 0.07778054475784302, -0.07572226971387863, 0.0777360051870346, 0.012500923126935959, 0.053932853043079376, 0.01318095251917839, -0.01097925566136837, 0.031160768121480942, -0.08979466557502747, -0.08551455289125443, -0.0444706492125988, -0.07910623401403427, 0.02567395567893982, 0.019792355597019196, 0.06559387594461441, -0.1133706271648407, -0.08731501549482346, 0.03658675029873848, 0.074671670794487, -0.08194108307361603, 0.035473741590976715, -0.10276716202497482, 0.10824460536241531, -0.07719377428293228, -0.0038342250045388937, -0.17133000493049622, -0.06278136372566223, 0.03472291678190231, 0.010635715909302235, 0.02468309924006462, -0.06678080558776855, 0.060698747634887695, 0.05511076748371124, -0.028651325032114983, -0.0288949403911829, -0.03014175221323967, 0.004714258946478367, -0.11381798982620239, -0.1869269162416458, -0.04483078420162201, -0.03828602656722069, 0.1481109857559204, -0.1662156879901886, 0.037816114723682404, 0.04448672756552696, 0.112810879945755, 0.03882591426372528, -0.03407115861773491, -0.0009041057201102376, 0.0680093914270401, -0.049132075160741806, -0.07418784499168396, 0.05184933915734291, 0.03423738852143288, -0.09944827109575272, 0.009396074339747429, -0.14341802895069122, 0.13607822358608246, 0.13563169538974762, 0.02186487801373005, -0.049915097653865814, -0.017347551882267, -0.053268563002347946, -0.026406677439808846, -0.03489028289914131, 0.016225695610046387, 0.13456794619560242, 0.02927866019308567, 0.14709988236427307, -0.09305991977453232, -0.04917750135064125, 0.048634544014930725, -0.0263107530772686, -0.012126985006034374, 0.09069766104221344, 0.022222505882382393, -0.11632663756608963, 0.13992704451084137, 0.12382985651493073, -0.028364116325974464, 0.11825427412986755, -0.05800603702664375, -0.07105551660060883, -0.04294145852327347, -0.023803124204277992, 0.022587649524211884, 0.09731710702180862, -0.08807928115129471, -0.01913522556424141, 0.048286885023117065, 0.036699745804071426, 0.004160511773079634, -0.18095465004444122, -0.007644291035830975, 0.031098362058401108, -0.05969082564115524, -0.05724310502409935, -0.013202759437263012, 0.008685990236699581, 0.09951241314411163, 0.022534772753715515, -0.05804502218961716, 0.0400666818022728, 0.012020844034850597, -0.07279421389102936, 0.18109866976737976, -0.09684115648269653, -0.17997170984745026, -0.11828076094388962, -0.11681589484214783, -0.06475292891263962, -0.01068525668233633, 0.07093322277069092, -0.06521469354629517, -0.04819250479340553, -0.1200002133846283, -0.04541953280568123, 0.019996430724859238, 0.024280210956931114, 0.05296687036752701, -0.022147227078676224, 0.05068432539701462, -0.10043588280677795, -0.02173735946416855, -0.013581029139459133, 0.018858639523386955, 0.06513772159814835, -0.0012753759510815144, 0.11506983637809753, 0.1211489737033844, -0.01866767555475235, 0.04481997340917587, -0.0303364098072052, 0.263048380613327, -0.07532573491334915, -0.017549019306898117, 0.10769882798194885, -0.007706969510763884, 0.08157142996788025, 0.12728366255760193, 0.04756689816713333, -0.09565040469169617, -0.0011722553754225373, -0.00021661422215402126, -0.0440756157040596, -0.2239195704460144, -0.03868289664387703, -0.05109730362892151, -0.005952428560703993, 0.11704389750957489, 0.03462666645646095, 0.0474015548825264, 0.05424043908715248, 0.01598845236003399, 0.06915266066789627, -0.01931917481124401, 0.10320506244897842, 0.12479857355356216, 0.07135371118783951, 0.12538142502307892, -0.05152671039104462, -0.02852017618715763, 0.053956691175699234, 0.02990339882671833, 0.21672998368740082, -0.0030232020653784275, 0.21326205134391785, 0.03558330237865448, 0.16610227525234222, 0.02338865026831627, 0.06809856742620468, -0.007377361413091421, 0.005570974666625261, -0.017086636275053024, -0.04099835827946663, -0.039705563336610794, 0.018050074577331543, -0.044852688908576965, 0.007371935527771711, -0.09490254521369934, 0.008912727236747742, 0.04904188588261604, 0.3098996877670288, 0.057433802634477615, -0.40055572986602783, -0.09585826843976974, -0.0009874544339254498, -0.022295860573649406, -0.04357500374317169, -0.00950254499912262, 0.07843940705060959, -0.07489658892154694, 0.07971851527690887, -0.07080665230751038, 0.10710316896438599, -0.0842641144990921, 0.02482457086443901, 0.0490499809384346, 0.060444679111242294, -0.011822500266134739, 0.049018651247024536, -0.25662821531295776, 0.2668873965740204, 0.019666846841573715, 0.07024122774600983, -0.07818050682544708, -0.005754182115197182, 0.010078954510390759, 0.02899661660194397, 0.06102212145924568, -0.0018697647610679269, -0.08142969757318497, -0.1516873836517334, -0.13723871111869812, 0.019393231719732285, 0.06324760615825653, -0.012837988324463367, 0.12374676018953323, -0.0059175435453653336, -0.0050271316431462765, 0.028587812557816505, -0.025390202179551125, -0.04183600842952728, -0.11514948308467865, 0.033790066838264465, 0.07117959856987, 0.015812858939170837, -0.05759154632687569, -0.10925765335559845, -0.06754333525896072, 0.16228577494621277, 0.03835888206958771, -0.06499329209327698, -0.12329838424921036, 0.047430187463760376, 0.09260260313749313, -0.07701953500509262, 0.03096967563033104, 0.003513289848342538, 0.13293607532978058, 0.010770302265882492, -0.06514240801334381, 0.09036976844072342, -0.03865601494908333, -0.17244026064872742, -0.04720024764537811, 0.11066277325153351, 0.02304462157189846, 0.05383772775530815, 0.004701063968241215, 0.046420980244874954, -0.04093515872955322, -0.06869208812713623, 0.03139866515994072, 0.0032853365410119295, 0.09625176340341568, -0.02694268897175789, 0.004385477397590876, 0.021590398624539375, -0.07466834038496017, -0.027435969561338425, 0.17805656790733337, 0.26369741559028625, -0.08219227194786072, 0.05621794983744621, 0.042735978960990906, -0.046796027570962906, -0.1423652023077011, -0.007361493539065123, 0.053675781935453415, 0.012396350502967834, -0.004573810379952192, -0.1679341048002243, 0.03484123572707176, 0.1004922091960907, -0.019177822396159172, 0.08148107677698135, -0.3102376461029053, -0.12155225872993469, 0.07936880737543106, 0.11214593052864075, 0.0941912978887558, -0.13900908827781677, -0.05653385445475578, -0.021832283586263657, -0.16832365095615387, 0.1543135643005371, -0.10139442980289459, 0.11450023204088211, -0.024574480950832367, 0.1144769936800003, 0.003011151449754834, -0.05641049146652222, 0.12960593402385712, 0.03223623335361481, 0.06371571123600006, -0.06223968043923378, 0.010605125688016415, 0.10887826979160309, -0.0934986099600792, 0.055855054408311844, -0.0854615792632103, 0.04512985423207283, -0.11111181974411011, -0.017898431047797203, -0.05842852592468262, -0.005957687273621559, -0.026949966326355934, -0.024291209876537323, -0.037680212408304214, 0.019938543438911438, 0.07792314887046814, -0.01518800389021635, 0.18982398509979248, 0.0326596274971962, 0.12819531559944153, 0.13391093909740448, 0.08922218531370163, -0.10932261496782303, -0.04711846262216568, -0.01506128441542387, -0.04393850639462471, 0.030044332146644592, -0.14832289516925812, 0.030755091458559036, 0.13518010079860687, 0.009855675511062145, 0.13064728677272797, 0.058335840702056885, -0.05186881870031357, 0.03301543369889259, 0.05582708492875099, -0.1750430166721344, -0.10894400626420975, 0.018164144828915596, 0.0228768028318882, -0.14392323791980743, 0.03836728632450104, 0.13951626420021057, -0.05007309839129448, -0.03053818829357624, -0.0006308932788670063, 0.02221360057592392, -0.007001962978392839, 0.17317627370357513, 0.028491497039794922, 0.05725964531302452, -0.12153720110654831, 0.07461048662662506, 0.0695771723985672, -0.09296909719705582, 0.049985796213150024, 0.08657626062631607, -0.11950115114450455, -0.026524841785430908, 0.04090580344200134, 0.16352367401123047, -0.06520577520132065, -0.05312469229102135, -0.13991856575012207, -0.10799732059240341, 0.09668394178152084, 0.1555708348751068, 0.061639465391635895, 0.03168405964970589, -0.026021098718047142, -0.031619634479284286, -0.10861308127641678, 0.08749142289161682, 0.06322938948869705, 0.07997239381074905, -0.11397991329431534, 0.09315762668848038, -0.016452927142381668, 0.051570307463407516, -0.012723206542432308, 0.00801441166549921, -0.09287605434656143, -0.003027938539162278, -0.12235543876886368, 0.024602191522717476, -0.05379725247621536, 0.0000071418130573874805, -0.023299532011151314, -0.050523463636636734, -0.0664849802851677, 0.005786942783743143, -0.10777978599071503, -0.040339261293411255, 0.010766078718006611, 0.04159075766801834, -0.12577909231185913, -0.01812530867755413, 0.010815037414431572, -0.08709045499563217, 0.0940956398844719, 0.04958292096853256, -0.012861877679824829, 0.01615908369421959, -0.02473258227109909, -0.000012697068086708896, 0.04478259012103081, 0.008582236245274544, 0.08598986268043518, -0.11956754326820374, -0.01954030618071556, 0.01813800074160099, 0.009258925914764404, 0.03522805497050285, 0.10788508504629135, -0.11388880759477615, -0.008751987479627132, -0.012807938270270824, -0.03656764328479767, -0.06779191642999649, 0.05753354728221893, 0.10962601751089096, 0.02615269646048546, 0.18524421751499176, -0.06306158006191254, 0.014520145952701569, -0.1947062760591507, -0.0028306220192462206, 0.0016176644712686539, -0.13703492283821106, -0.0842379629611969, -0.04118683189153671, 0.07166960835456848, -0.06507594883441925, 0.14122341573238373, -0.012772402726113796, 0.016467662528157234, 0.03265083208680153, -0.009280051104724407, -0.050568316131830215, 0.01841423287987709, 0.18326367437839508, 0.02763141132891178, -0.046026524156332016, 0.0868823379278183, 0.014990965835750103, 0.07216472923755646, 0.11981681734323502, 0.19044461846351624, 0.1084694042801857, 0.09339864552021027, 0.09783728420734406, 0.034254707396030426, -0.03508615121245384, -0.1620124876499176, 0.05516419932246208, -0.04665059223771095, 0.14334283769130707, 0.002609225455671549, 0.20378132164478302, 0.09318152070045471, -0.1603599488735199, 0.034275174140930176, -0.03211866691708565, -0.08542507141828537, -0.0798996314406395, -0.09561863541603088, -0.10275674611330032, -0.13440768420696259, -0.0026920530945062637, -0.12988868355751038, 0.03665440157055855, 0.09052115678787231, 0.017315106466412544, -0.0012650134740397334, 0.0946437418460846, 0.028512977063655853, 0.01261973287910223, 0.06279406696557999, -0.009050056338310242, -0.0394403450191021, -0.06814631074666977, -0.0816609114408493, 0.013324709609150887, 0.018542736768722534, 0.06381061673164368, -0.002912900410592556, 0.018292803317308426, 0.04972388222813606, -0.030887888744473457, -0.12590289115905762, 0.00988831277936697, 0.02174692414700985, 0.06710005551576614, 0.02541995979845524, 0.02317310869693756, -0.000876443984452635, -0.00351197412237525, 0.18907424807548523, -0.05205057933926582, -0.05412202328443527, -0.1340809017419815, 0.17235451936721802, 0.00935029610991478, -0.05573435127735138, 0.043563276529312134, -0.07021105289459229, -0.0027930978685617447, 0.18176406621932983, 0.18543009459972382, -0.04737056791782379, -0.0211543757468462, -0.01992526650428772, -0.010026715695858002, -0.011007016524672508, 0.09523313492536545, 0.10617946088314056, 0.012774009257555008, -0.07299768179655075, -0.0285799577832222, -0.06914211064577103, -0.011816035956144333, -0.033548057079315186, 0.06229354441165924, 0.010263923555612564, -0.008470147848129272, -0.04546530172228813, 0.06700771301984787, -0.07246483862400055, -0.057384029030799866, 0.0138785932213068, -0.2069828063249588, -0.18229326605796814, 0.006553020793944597, 0.06073649600148201, -0.011366154067218304, 0.05163245648145676, -0.0031370592769235373, 0.010043954476714134, 0.0898069366812706, -0.033161710947752, -0.06407734006643295, -0.06848405301570892, 0.09515831619501114, -0.12835517525672913, 0.20487958192825317, -0.026783913373947144, 0.046021465212106705, 0.13477694988250732, 0.04493904113769531, -0.12411235272884369, 0.05001579970121384, 0.04454034939408302, -0.0028627654537558556, 0.0272645466029644, 0.10704801231622696, -0.03250700235366821, 0.06183065474033356, 0.05827092379331589, -0.10219856351613998, -0.017647573724389076, -0.06764949858188629, -0.0030107570346444845, -0.03233170881867409, -0.05413708835840225, -0.030678195878863335, 0.13508333265781403, 0.17549394071102142, -0.05470341071486473, -0.006186522077769041, -0.04156433790922165, 0.014868799597024918, 0.05824936181306839, -0.003988464362919331, -0.05536478012800217, -0.25413787364959717, -0.010721497237682343, 0.07779601216316223, 0.001003031269647181, -0.25871461629867554, -0.0892442986369133, -0.017223624512553215, -0.04566342756152153, -0.08355028182268143, 0.10642189532518387, 0.08730113506317139, 0.03643171116709709, -0.070976622402668, 0.03161642700433731, -0.06601471453905106, 0.157104030251503, -0.13933831453323364, -0.07699708640575409 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6819 - Rouge1: 41.1796 - Rouge2: 18.9426 - Rougel: 29.2338 - Rougelsum: 38.4087 - Gen Len: 72.7607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8582 | 1.0 | 23927 | 1.6819 | 41.1796 | 18.9426 | 29.2338 | 38.4087 | 72.7607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["cnn_dailymail"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-finetuned-cnn-wei1", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "cnn_dailymail", "type": "cnn_dailymail", "args": "3.0.0"}, "metrics": [{"type": "rouge", "value": 41.1796, "name": "Rouge1"}]}]}]}
text2text-generation
bochaowei/t5-small-finetuned-cnn-wei1
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-cnn-wei1 =========================== This model is a fine-tuned version of t5-small on the cnn\_dailymail dataset. It achieves the following results on the evaluation set: * Loss: 1.6819 * Rouge1: 41.1796 * Rouge2: 18.9426 * Rougel: 29.2338 * Rougelsum: 38.4087 * Gen Len: 72.7607 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 12 * eval\_batch\_size: 12 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 80, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-cnn_dailymail #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.1134011298418045, 0.15276066958904266, -0.002206424018368125, 0.09783855825662613, 0.10051389038562775, 0.018132874742150307, 0.18138355016708374, 0.14562676846981049, -0.08657807111740112, 0.06374701857566833, 0.14927734434604645, 0.11157327890396118, 0.050521135330200195, 0.21909400820732117, -0.060146965086460114, -0.21945087611675262, 0.05092761293053627, 0.037173062562942505, -0.0015638533513993025, 0.1367952823638916, 0.08612029999494553, -0.11891677230596542, 0.0976884737610817, 0.019842661917209625, -0.18163469433784485, -0.04482431709766388, -0.01697211153805256, -0.0754179134964943, 0.11155229061841965, 0.014137409627437592, 0.08304614573717117, 0.040536537766456604, 0.0583961084485054, -0.16089443862438202, 0.009298233315348625, 0.04374762997031212, -0.002312535885721445, 0.10604111105203629, 0.0407242476940155, -0.007620744872838259, 0.057940516620874405, -0.08549042046070099, 0.06261585652828217, 0.006781073287129402, -0.1305193156003952, -0.21063831448554993, -0.13146811723709106, 0.05710286647081375, 0.06602934002876282, 0.08380179107189178, -0.008823464624583721, 0.16600516438484192, -0.01446946058422327, 0.09229938685894012, 0.21378383040428162, -0.30755314230918884, -0.0542309433221817, 0.009897303767502308, 0.03152760490775108, 0.08480007946491241, -0.07357100397348404, -0.030419763177633286, 0.03421986103057861, 0.0415286123752594, 0.14770999550819397, -0.0025857798755168915, -0.037504274398088455, -0.020606940612196922, -0.13010621070861816, -0.08261148631572723, 0.20411913096904755, 0.05615066736936569, -0.040810711681842804, -0.07453866302967072, -0.05899837985634804, -0.19721145927906036, -0.048025861382484436, 0.01519867219030857, 0.03906635195016861, -0.037306107580661774, -0.09622557461261749, -0.01903585158288479, -0.07752009481191635, -0.028800049796700478, -0.05283476784825325, 0.09864930808544159, 0.03424776345491409, 0.016004998236894608, -0.047526583075523376, 0.07777277380228043, -0.011996867135167122, -0.16059158742427826, -0.012143947184085846, 0.012507778592407703, 0.018541082739830017, -0.04240557178854942, -0.039244819432497025, -0.09084971994161606, 0.020266462117433548, 0.15961426496505737, -0.05983416736125946, 0.05921725183725357, -0.026357918977737427, 0.0287290271371603, -0.054827604442834854, 0.17034220695495605, -0.025257829576730728, -0.018290724605321884, 0.021307216957211494, 0.09015931189060211, 0.051421333104372025, -0.037209007889032364, -0.112730473279953, 0.04540298134088516, 0.12496480345726013, 0.014892401173710823, -0.02125430293381214, 0.0670197531580925, -0.04743601754307747, -0.02983849309384823, 0.07112300395965576, -0.10045753419399261, 0.026398342102766037, -0.011716093868017197, -0.06121200695633888, -0.02951699309051037, 0.0003443487221375108, 0.01705632545053959, -0.030234090983867645, 0.06719549000263214, -0.10129953175783157, 0.004708214197307825, -0.0637688934803009, -0.12420700490474701, 0.03672874718904495, -0.10487930476665497, -0.009556137025356293, -0.0877525731921196, -0.17219455540180206, -0.024535756558179855, 0.038544170558452606, -0.040899842977523804, -0.07480792701244354, -0.07266947627067566, -0.08488232642412186, 0.043380558490753174, -0.023599538952112198, 0.08269261568784714, -0.08016973733901978, 0.0815458670258522, 0.019782764837145805, 0.06520206481218338, -0.05003030598163605, 0.04164068400859833, -0.08002278953790665, 0.03857201337814331, -0.1597026139497757, 0.07334817945957184, -0.04835032299160957, 0.07538674771785736, -0.10918696969747543, -0.08778981119394302, 0.0346650704741478, -0.03789934515953064, 0.08633408695459366, 0.10665455460548401, -0.1795768290758133, -0.058139633387327194, 0.19750063121318817, -0.0713803619146347, -0.15801650285720825, 0.12013483047485352, -0.05729527398943901, 0.019687823951244354, 0.06641208380460739, 0.21341954171657562, 0.03943977132439613, -0.08578473329544067, -0.037520796060562134, -0.059893898665905, 0.0778859332203865, -0.07525872439146042, 0.07691292464733124, 0.012824521400034428, 0.053170379251241684, 0.013690885156393051, -0.010340056382119656, 0.031135616824030876, -0.08949179202318192, -0.08529199659824371, -0.04437672346830368, -0.07915843278169632, 0.025096353143453598, 0.02012849599123001, 0.0655457153916359, -0.11404314637184143, -0.08726100623607635, 0.03494914248585701, 0.07463540881872177, -0.08207320421934128, 0.03471297398209572, -0.1026543602347374, 0.10878947377204895, -0.07740262150764465, -0.0036403462290763855, -0.1711685061454773, -0.0635727271437645, 0.03443426266312599, 0.01187897752970457, 0.02426891215145588, -0.0668000653386116, 0.060956742614507675, 0.055322762578725815, -0.028939856216311455, -0.029121115803718567, -0.02879245951771736, 0.004818924702703953, -0.11392581462860107, -0.1872650384902954, -0.0450621135532856, -0.038018759340047836, 0.14774392545223236, -0.16705536842346191, 0.037637241184711456, 0.044388577342033386, 0.11247032135725021, 0.03823528811335564, -0.03367344290018082, -0.000488856399897486, 0.06831653416156769, -0.048632800579071045, -0.07419323921203613, 0.052154846489429474, 0.034273140132427216, -0.09872543811798096, 0.008720430545508862, -0.1437739133834839, 0.13697221875190735, 0.13621792197227478, 0.021127568557858467, -0.05049740523099899, -0.017512090504169464, -0.053166139870882034, -0.026457717642188072, -0.0339173823595047, 0.015977265313267708, 0.13525617122650146, 0.028325246647000313, 0.1473197638988495, -0.09259843826293945, -0.04922645539045334, 0.04887329414486885, -0.025438105687499046, -0.011487524025142193, 0.09119941294193268, 0.021015502512454987, -0.11449803411960602, 0.13995590806007385, 0.12314486503601074, -0.027794821187853813, 0.11791082471609116, -0.05860777571797371, -0.07067380845546722, -0.042739301919937134, -0.02426496148109436, 0.02237490378320217, 0.09774847328662872, -0.08860012888908386, -0.019630135968327522, 0.04845321550965309, 0.03656105324625969, 0.004086434841156006, -0.18032225966453552, -0.007536029443144798, 0.030939793214201927, -0.05929424986243248, -0.05718276649713516, -0.013016610406339169, 0.008448971435427666, 0.09923264384269714, 0.022850053384900093, -0.058243490755558014, 0.04006758704781532, 0.012094066478312016, -0.07232853770256042, 0.18110494315624237, -0.09720626473426819, -0.17938579618930817, -0.11828003078699112, -0.11855415999889374, -0.06530559062957764, -0.010855739004909992, 0.07085415720939636, -0.06632477790117264, -0.04886530712246895, -0.11958009004592896, -0.04590699076652527, 0.01960894651710987, 0.0243074968457222, 0.05271216481924057, -0.02277718111872673, 0.05079687759280205, -0.10012373328208923, -0.02164280414581299, -0.013791920617222786, 0.018999869003891945, 0.06530515849590302, -0.0007598971715196967, 0.1153751090168953, 0.12032697349786758, -0.017943380400538445, 0.04478779435157776, -0.030191397294402122, 0.26432934403419495, -0.07575763016939163, -0.017433954402804375, 0.10761502385139465, -0.007336202077567577, 0.08104129880666733, 0.12717340886592865, 0.0481967069208622, -0.0961490273475647, -0.001282037585042417, -0.00016854227578733116, -0.0437312051653862, -0.22374482452869415, -0.03835110366344452, -0.051289595663547516, -0.006268874742090702, 0.11700696498155594, 0.03466162458062172, 0.04792063683271408, 0.05446890741586685, 0.016267593950033188, 0.06992651522159576, -0.019865509122610092, 0.10296367108821869, 0.1264241337776184, 0.07098057866096497, 0.1255970001220703, -0.05187421292066574, -0.028607187792658806, 0.05370103940367699, 0.02982991561293602, 0.21756714582443237, -0.00288459868170321, 0.21387962996959686, 0.03563673049211502, 0.16639384627342224, 0.02354838326573372, 0.06846189498901367, -0.007990803569555283, 0.00499740382656455, -0.01659196801483631, -0.04102513566613197, -0.03836864233016968, 0.01736065186560154, -0.04559830203652382, 0.007396929431706667, -0.09510132670402527, 0.0073037841357290745, 0.04891238734126091, 0.30987972021102905, 0.056738559156656265, -0.4015936255455017, -0.0962114930152893, -0.001661537797190249, -0.02204401046037674, -0.04368509352207184, -0.009230237454175949, 0.07739012688398361, -0.07455050945281982, 0.0801292434334755, -0.0707513689994812, 0.10698294639587402, -0.08471332490444183, 0.025255804881453514, 0.05023985728621483, 0.061289507895708084, -0.012397846207022667, 0.048827312886714935, -0.2570571303367615, 0.2660518288612366, 0.02000957913696766, 0.07053554803133011, -0.07806585729122162, -0.005720428191125393, 0.010444979183375835, 0.02994106337428093, 0.06086883321404457, -0.0021806161385029554, -0.08095615357160568, -0.1521044224500656, -0.1367589235305786, 0.01977919600903988, 0.06296249479055405, -0.012569781392812729, 0.12416334450244904, -0.0055411867797374725, -0.0055417269468307495, 0.02843012847006321, -0.026247236877679825, -0.04176119714975357, -0.11563087999820709, 0.03355250880122185, 0.07173944264650345, 0.016325756907463074, -0.057162873446941376, -0.10925692319869995, -0.06967692077159882, 0.1615837961435318, 0.03907627984881401, -0.065209299325943, -0.12363579869270325, 0.046568743884563446, 0.09290079772472382, -0.07628918439149857, 0.03128461912274361, 0.003389668883755803, 0.13206398487091064, 0.011455298401415348, -0.06499066948890686, 0.09054216742515564, -0.03892529010772705, -0.1722431629896164, -0.04718002304434776, 0.11062155663967133, 0.02264365367591381, 0.05335015058517456, 0.004314476624131203, 0.04690264165401459, -0.0418989434838295, -0.06883320957422256, 0.031799498945474625, 0.0015833303332328796, 0.09739583730697632, -0.027222003787755966, 0.0037529319524765015, 0.021906832233071327, -0.07455043494701385, -0.027335412800312042, 0.17696069180965424, 0.26253223419189453, -0.08174049109220505, 0.05520094931125641, 0.04281088337302208, -0.046506982296705246, -0.1417430341243744, -0.00713921245187521, 0.05287934094667435, 0.012437167577445507, -0.005506881512701511, -0.168514683842659, 0.03589954972267151, 0.09993956983089447, -0.018700912594795227, 0.08360565453767776, -0.30814340710639954, -0.12145081907510757, 0.07949548959732056, 0.11231395602226257, 0.09471471607685089, -0.1396377831697464, -0.056363075971603394, -0.021690640598535538, -0.16815614700317383, 0.15283308923244476, -0.10219616442918777, 0.11483431607484818, -0.024803008884191513, 0.11435360461473465, 0.00267747207544744, -0.05667790025472641, 0.12943977117538452, 0.032950807362794876, 0.06442468613386154, -0.0625431165099144, 0.011114888824522495, 0.10854903608560562, -0.09318356961011887, 0.05582645907998085, -0.08553668111562729, 0.04492093250155449, -0.1118226870894432, -0.01780524291098118, -0.05862851068377495, -0.006143258884549141, -0.027118129655718803, -0.02388007566332817, -0.037528373301029205, 0.01996147260069847, 0.07731407880783081, -0.015382854267954826, 0.18894048035144806, 0.032392702996730804, 0.128435879945755, 0.13267944753170013, 0.08900202810764313, -0.10943204164505005, -0.04864279925823212, -0.014445362612605095, -0.04410001263022423, 0.030144961550831795, -0.14828605949878693, 0.029964210465550423, 0.1354343742132187, 0.009327363222837448, 0.1303921937942505, 0.05853778123855591, -0.05143611878156662, 0.03253452852368355, 0.056002382189035416, -0.17536504566669464, -0.10780089348554611, 0.01807844638824463, 0.020107582211494446, -0.1436547487974167, 0.03859620541334152, 0.13916413486003876, -0.04969548434019089, -0.030251188203692436, -0.0006308492156676948, 0.021884959191083908, -0.006651301868259907, 0.17351461946964264, 0.02878839150071144, 0.05741249397397041, -0.12239962071180344, 0.0744531899690628, 0.06980067491531372, -0.09333875775337219, 0.04966055974364281, 0.08726933598518372, -0.12046397477388382, -0.0268976129591465, 0.040257878601551056, 0.16471293568611145, -0.06412478536367416, -0.05330212414264679, -0.14057345688343048, -0.10851588845252991, 0.0969269722700119, 0.15462495386600494, 0.06131814047694206, 0.03120969608426094, -0.025850538164377213, -0.03159176930785179, -0.1091914102435112, 0.08785074949264526, 0.06224829703569412, 0.08033913373947144, -0.11399433016777039, 0.09227149188518524, -0.01630762591958046, 0.051287692040205, -0.012741451151669025, 0.008164230734109879, -0.09318731725215912, -0.003226746106520295, -0.12226243317127228, 0.02392493188381195, -0.053492043167352676, 0.0002784091921057552, -0.023644983768463135, -0.04995965212583542, -0.06635809689760208, 0.006101225037127733, -0.10769214481115341, -0.04026518017053604, 0.011944664642214775, 0.041956957429647446, -0.12496455758810043, -0.01792377419769764, 0.010151386260986328, -0.08724948018789291, 0.0942194014787674, 0.049655482172966, -0.01297521311789751, 0.015934595838189125, -0.02332698367536068, -0.00008662882464705035, 0.04407655447721481, 0.008175616152584553, 0.08624826371669769, -0.11951437592506409, -0.019607283174991608, 0.017696086317300797, 0.009405798278748989, 0.03539254888892174, 0.10744783282279968, -0.11407625675201416, -0.008743527345359325, -0.01200837641954422, -0.03558974340558052, -0.06787145882844925, 0.057368699461221695, 0.11003969609737396, 0.025564488023519516, 0.18498903512954712, -0.0632505714893341, 0.014229659922420979, -0.1947270631790161, -0.003128238022327423, 0.001267773099243641, -0.13830675184726715, -0.08376999944448471, -0.04118771106004715, 0.07222841680049896, -0.06537700444459915, 0.14263416826725006, -0.012955233454704285, 0.01655644364655018, 0.03254728764295578, -0.008580266498029232, -0.05103859305381775, 0.01863461174070835, 0.18307416141033173, 0.027445711195468903, -0.04627933353185654, 0.08673495054244995, 0.015858126804232597, 0.07175832241773605, 0.12042336910963058, 0.18886645138263702, 0.10810545831918716, 0.09399989992380142, 0.09738428145647049, 0.03431286662817001, -0.03579475358128548, -0.16124901175498962, 0.055823855102062225, -0.0469585545361042, 0.14447146654129028, 0.0022043318022042513, 0.20240424573421478, 0.09282108396291733, -0.1595563292503357, 0.03458517789840698, -0.032834310084581375, -0.08546353131532669, -0.07898779958486557, -0.09435854852199554, -0.10234483331441879, -0.13474556803703308, -0.0026453768368810415, -0.13002336025238037, 0.036319661885499954, 0.0914398729801178, 0.017614029347896576, -0.0015876444522291422, 0.09613640606403351, 0.029499690979719162, 0.012984476052224636, 0.06308400630950928, -0.009124417789280415, -0.04003028944134712, -0.06771554797887802, -0.08140894025564194, 0.013070023618638515, 0.017283517867326736, 0.0632736012339592, -0.003202913561835885, 0.017849620431661606, 0.050210993736982346, -0.030194994062185287, -0.1258803755044937, 0.009952899068593979, 0.022109782323241234, 0.06720993667840958, 0.02614748291671276, 0.022470617666840553, -0.0009805166628211737, -0.0038765312638133764, 0.18837279081344604, -0.05181984603404999, -0.05326556786894798, -0.13402141630649567, 0.1716351956129074, 0.008942045271396637, -0.05652571842074394, 0.04301602020859718, -0.0698210746049881, -0.0018756968202069402, 0.18347235023975372, 0.18599820137023926, -0.046965084969997406, -0.0213483739644289, -0.01961270347237587, -0.010096260346472263, -0.010853263549506664, 0.09563582390546799, 0.10659278184175491, 0.011942550539970398, -0.07294026762247086, -0.028951819986104965, -0.06938063353300095, -0.012009663507342339, -0.03371736779808998, 0.0621040016412735, 0.011241946369409561, -0.008531945757567883, -0.04493586719036102, 0.06699218600988388, -0.07206486165523529, -0.057618480175733566, 0.014698265120387077, -0.20619451999664307, -0.1824122965335846, 0.005795297212898731, 0.060375288128852844, -0.010966106317937374, 0.05134572833776474, -0.0027359912637621164, 0.009979589842259884, 0.09077063947916031, -0.033507268875837326, -0.06349395960569382, -0.06921332329511642, 0.0953727439045906, -0.12896309792995453, 0.20442935824394226, -0.026976924389600754, 0.045951347798109055, 0.13508708775043488, 0.04471168667078018, -0.12431176751852036, 0.050236426293849945, 0.04425736144185066, -0.003670318750664592, 0.027770472690463066, 0.10675777494907379, -0.03206145390868187, 0.06135672703385353, 0.05730683356523514, -0.10129200667142868, -0.01714003086090088, -0.06759439408779144, -0.0031468835659325123, -0.03233349323272705, -0.05415179580450058, -0.030612660571932793, 0.1354931741952896, 0.17643773555755615, -0.05471676588058472, -0.006306130439043045, -0.0415441133081913, 0.014767038635909557, 0.058528389781713486, -0.005081397946923971, -0.055670879781246185, -0.25447186827659607, -0.010551881976425648, 0.07841343432664871, 0.0006384059088304639, -0.25957444310188293, -0.08878124505281448, -0.017277011647820473, -0.04556695744395256, -0.08364951610565186, 0.10609880089759827, 0.08758647739887238, 0.03688118979334831, -0.07112393528223038, 0.03370418772101402, -0.06601783633232117, 0.1569395214319229, -0.13981939852237701, -0.07727614045143127 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6289 - Rouge1: 25.7398 - Rouge2: 6.1361 - Rougel: 19.8262 - Rougelsum: 19.8284 - Gen Len: 18.7984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.858 | 1.0 | 1701 | 2.6289 | 25.7398 | 6.1361 | 19.8262 | 19.8284 | 18.7984 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-finetuned-xsum-wei0", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "xsum", "type": "xsum", "args": "default"}, "metrics": [{"type": "rouge", "value": 25.7398, "name": "Rouge1"}]}]}]}
text2text-generation
bochaowei/t5-small-finetuned-xsum-wei0
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum-wei0 ============================ This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set: * Loss: 2.6289 * Rouge1: 25.7398 * Rouge2: 6.1361 * Rougel: 19.8262 * Rougelsum: 19.8284 * Gen Len: 18.7984 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 12 * eval\_batch\_size: 12 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 77, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.1074589341878891, 0.12799325585365295, -0.0028053256683051586, 0.09292007237672806, 0.11187656968832016, -0.001165493275038898, 0.15507888793945312, 0.1627812385559082, -0.11289947479963303, 0.05975770950317383, 0.13899968564510345, 0.1276674121618271, 0.05297937989234924, 0.17660482227802277, -0.06536241620779037, -0.25123515725135803, 0.03965150937438011, 0.05438624322414398, 0.0003992293495684862, 0.12949953973293304, 0.08762653172016144, -0.11898940801620483, 0.08919588476419449, 0.02995019592344761, -0.18163250386714935, -0.02100364677608013, 0.000671680667437613, -0.0807400718331337, 0.11095846444368362, 0.02929452434182167, 0.09405191987752914, 0.033244539052248, 0.04617895558476448, -0.15886113047599792, 0.010430463589727879, 0.061024267226457596, 0.007088577374815941, 0.10549861192703247, 0.060472987592220306, -0.010193069465458393, 0.10860417038202286, -0.07006484270095825, 0.07079833000898361, 0.019244780763983727, -0.12690727412700653, -0.25989943742752075, -0.11564197391271591, 0.053539931774139404, 0.07715735584497452, 0.08503822982311249, -0.008392168208956718, 0.17918646335601807, -0.022380735725164413, 0.10955184698104858, 0.23616862297058105, -0.301705926656723, -0.05937875807285309, -0.020769614726305008, 0.05130687728524208, 0.07701262831687927, -0.07616385072469711, -0.03546581417322159, 0.026109034195542336, 0.05051794648170471, 0.147442027926445, -0.015395681373775005, -0.03122602216899395, -0.017877185717225075, -0.13752481341362, -0.07252857834100723, 0.1608085185289383, 0.031876206398010254, -0.04473784938454628, -0.07809458673000336, -0.07601255923509598, -0.18535494804382324, -0.04892900213599205, 0.006733782589435577, 0.035040512681007385, -0.03897592052817345, -0.08331018686294556, -0.019632747396826744, -0.08114973455667496, -0.033306628465652466, -0.044854044914245605, 0.11354673653841019, 0.04301145672798157, 0.01587650738656521, -0.06349728256464005, 0.0767139345407486, -0.02394190803170204, -0.1624210625886917, -0.005595758091658354, 0.012482375837862492, 0.010538674890995026, -0.04093165695667267, -0.037800803780555725, -0.12423653900623322, 0.003815684700384736, 0.15565642714500427, -0.08884792029857635, 0.07464113086462021, -0.0349605530500412, 0.03651741147041321, -0.0717720165848732, 0.19259658455848694, -0.023553958162665367, 0.002291490091010928, 0.02199062518775463, 0.08207884430885315, 0.05897872522473335, -0.036200571805238724, -0.11605463176965714, 0.04169273003935814, 0.11632619053125381, 0.02510383166372776, -0.027848001569509506, 0.053826916962862015, -0.045525144785642624, -0.03022787906229496, 0.05816280096769333, -0.102436363697052, 0.027932357043027878, -0.0148517657071352, -0.058545712381601334, -0.010440553538501263, 0.017882956191897392, 0.003906575031578541, -0.04384322091937065, 0.08423375338315964, -0.09321478009223938, 0.013192111626267433, -0.07821741700172424, -0.13760995864868164, 0.0371415838599205, -0.1024445965886116, -0.002148308791220188, -0.09123585373163223, -0.1433057188987732, -0.01317310519516468, 0.054876986891031265, -0.04342179745435715, -0.062170207500457764, -0.046888966113328934, -0.08754590898752213, 0.045874595642089844, -0.01866729184985161, 0.0876149907708168, -0.0707462728023529, 0.08943195641040802, 0.0360662080347538, 0.0685805082321167, -0.039930809289216995, 0.04765506833791733, -0.08860956877470016, 0.045223552733659744, -0.20962946116924286, 0.05933675169944763, -0.04754907265305519, 0.07903632521629333, -0.10793068259954453, -0.09932300448417664, 0.042689286172389984, -0.02735999971628189, 0.10327746719121933, 0.09618362784385681, -0.17529267072677612, -0.07057563215494156, 0.1949135661125183, -0.08731336891651154, -0.1435607522726059, 0.1325874775648117, -0.04466872662305832, 0.011136210523545742, 0.05493377521634102, 0.223547101020813, 0.056181829422712326, -0.0990501120686531, -0.01740361750125885, -0.045389290899038315, 0.07099833339452744, -0.07109340280294418, 0.07751309871673584, 0.0023585143499076366, 0.07052071392536163, 0.005243603605777025, 0.012689231894910336, 0.034162167459726334, -0.08039317280054092, -0.08164911717176437, -0.0484875850379467, -0.07058443129062653, 0.012399296276271343, 0.038198381662368774, 0.06086745485663414, -0.12674261629581451, -0.10854771733283997, 0.04867049679160118, 0.07887593656778336, -0.08262902498245239, 0.05539381504058838, -0.09694216400384903, 0.1214841827750206, -0.07226520031690598, -0.00691940076649189, -0.18165959417819977, -0.03392307087779045, 0.033785365521907806, 0.0058737220242619514, 0.013214774429798126, -0.05422939732670784, 0.06232493743300438, 0.0739889144897461, -0.03461097553372383, -0.03428993001580238, -0.019396115094423294, 0.0011325159575790167, -0.1204695999622345, -0.1931132972240448, -0.04384288191795349, -0.03676958009600639, 0.1044856384396553, -0.15663689374923706, 0.04005139321088791, 0.057807594537734985, 0.11165279895067215, 0.042884472757577896, -0.030708545818924904, -0.0011161795118823647, 0.07482491433620453, -0.048982080072164536, -0.07331216335296631, 0.06254008412361145, 0.030186453834176064, -0.0928896889090538, 0.01122109405696392, -0.16290874779224396, 0.15493647754192352, 0.13445644080638885, 0.008384795859456062, -0.06004597991704941, -0.015904994681477547, -0.05383134260773659, -0.026301277801394463, -0.022042520344257355, 0.0223483145236969, 0.16008402407169342, 0.028361763805150986, 0.15970748662948608, -0.09906795620918274, -0.054864510893821716, 0.04943578317761421, -0.02791105955839157, -0.00944508146494627, 0.1116301491856575, 0.03973492980003357, -0.124892957508564, 0.14337001740932465, 0.13232871890068054, -0.04808254912495613, 0.13333527743816376, -0.06445107609033585, -0.07428757846355438, -0.0362730473279953, -0.010166139341890812, 0.03168868273496628, 0.10714894533157349, -0.11242473125457764, -0.01936175674200058, 0.041330911219120026, 0.02666156180202961, 0.00620002206414938, -0.18825815618038177, -0.0032459604553878307, 0.04023367911577225, -0.05006387457251549, -0.05198267474770546, -0.005271914880722761, 0.009712575934827328, 0.10050874948501587, 0.01559632457792759, -0.050944551825523376, 0.030316568911075592, 0.01233154907822609, -0.06770113110542297, 0.1864948719739914, -0.10354278236627579, -0.1740916222333908, -0.12162180244922638, -0.10684869438409805, -0.055330790579319, -0.005369632039219141, 0.07807274907827377, -0.07682619243860245, -0.0461110845208168, -0.10497938096523285, -0.03543839231133461, -0.004979209508746862, 0.02320186235010624, 0.030437223613262177, -0.02313845045864582, 0.06799005717039108, -0.11041723191738129, -0.030624937266111374, -0.018625497817993164, 0.015406639315187931, 0.06238273158669472, 0.013703938573598862, 0.11482845991849899, 0.13010869920253754, -0.02098087966442108, 0.03838309273123741, -0.046375397592782974, 0.23811791837215424, -0.07431567460298538, -0.01367127988487482, 0.13553880155086517, -0.02098599076271057, 0.09147195518016815, 0.1214863732457161, 0.04666636884212494, -0.08709597587585449, -0.005266087129712105, 0.00734054995700717, -0.044817373156547546, -0.2206629514694214, -0.017371106892824173, -0.055650725960731506, 0.008142379112541676, 0.10467244684696198, 0.025216568261384964, 0.02740880288183689, 0.05058613792061806, 0.010027381591498852, 0.060303691774606705, -0.025090988725423813, 0.10917414724826813, 0.12934482097625732, 0.05378665775060654, 0.14276812970638275, -0.053639814257621765, -0.02497894875705242, 0.05140956863760948, 0.018832596018910408, 0.21368880569934845, -0.010257545858621597, 0.2037346512079239, 0.04338008537888527, 0.15966066718101501, 0.02662285976111889, 0.06757418811321259, -0.023831939324736595, -0.0044116610661149025, -0.016006769612431526, -0.04827504605054855, -0.04620913788676262, 0.01733585074543953, -0.05632296949625015, 0.03153601288795471, -0.1198943629860878, 0.015761857852339745, 0.048076361417770386, 0.2991895377635956, 0.042026814073324203, -0.37676817178726196, -0.11046711355447769, 0.006773718167096376, -0.045008234679698944, -0.043527714908123016, 0.003575146198272705, 0.09723667800426483, -0.08129101991653442, 0.07165884226560593, -0.08591920882463455, 0.10842549055814743, -0.06402673572301865, 0.03300289809703827, 0.053046807646751404, 0.08488380908966064, -0.014022774994373322, 0.051350660622119904, -0.2803294062614441, 0.26872000098228455, 0.024721721187233925, 0.06638751924037933, -0.07116779685020447, 0.01629297062754631, 0.013687439262866974, 0.04160438850522041, 0.06102291867136955, -0.010054823011159897, -0.10896262526512146, -0.16375850141048431, -0.10585761815309525, 0.015582427382469177, 0.07624634355306625, 0.009430247358977795, 0.12492696195840836, -0.016691848635673523, -0.0024821017868816853, 0.04299458488821983, -0.020089533179998398, -0.03005647286772728, -0.11201586574316025, 0.027911242097616196, 0.04303687810897827, -0.030745558440685272, -0.07434733957052231, -0.10627181082963943, -0.04800717160105705, 0.16498732566833496, 0.022521579638123512, -0.07422991096973419, -0.1305168867111206, 0.03818925842642784, 0.08241311460733414, -0.09261777997016907, 0.03267872706055641, -0.013745195232331753, 0.12206945568323135, -0.0006291373865678906, -0.07408752292394638, 0.10873030126094818, -0.05420639365911484, -0.16428184509277344, -0.052152860909700394, 0.12326045334339142, 0.009150196798145771, 0.06031205505132675, -0.01074814423918724, 0.04230894893407822, -0.03358158469200134, -0.06787849217653275, 0.02769376151263714, 0.0060342769138514996, 0.10138782858848572, -0.04542985185980797, -0.01439259760081768, 0.026224439963698387, -0.0716777965426445, -0.024496007710695267, 0.18285579979419708, 0.25262823700904846, -0.0831933543086052, 0.07062230259180069, 0.03659762069582939, -0.05696260556578636, -0.14688648283481598, 0.011284909211099148, 0.061825186014175415, 0.008426899090409279, 0.003306770231574774, -0.17859293520450592, 0.028194045647978783, 0.08815208077430725, -0.014133213087916374, 0.08526738733053207, -0.3151911795139313, -0.12428281456232071, 0.08845964819192886, 0.12659390270709991, 0.07703401893377304, -0.1558118760585785, -0.047864045947790146, -0.02309456095099449, -0.13384981453418732, 0.13757829368114471, -0.10254886746406555, 0.11499965190887451, -0.027163051068782806, 0.10781486332416534, 0.01309670228511095, -0.05944589897990227, 0.11277931183576584, -0.013463224284350872, 0.06879418343305588, -0.06467466056346893, 0.02039303444325924, 0.09348852187395096, -0.08543779700994492, 0.04378002509474754, -0.10007110983133316, 0.03445431590080261, -0.12611499428749084, -0.014140802435576916, -0.06663600355386734, 0.0035395510494709015, -0.03497513011097908, -0.03596718981862068, -0.03799371421337128, 0.01062516588717699, 0.07275927066802979, -0.024036558344960213, 0.18279287219047546, 0.015979859977960587, 0.15007543563842773, 0.14720019698143005, 0.09360025823116302, -0.11703650653362274, -0.06449494510889053, 0.0005951116909272969, -0.03377130627632141, 0.04243915155529976, -0.1583450436592102, 0.028240717947483063, 0.13700921833515167, 0.005573910661041737, 0.12456339597702026, 0.06348744034767151, -0.06396618485450745, 0.0275848601013422, 0.05241449549794197, -0.16979505121707916, -0.09977670758962631, -0.00014900513633619994, 0.04158719256520271, -0.13206593692302704, 0.03576512634754181, 0.1307540386915207, -0.05730408802628517, -0.02568771131336689, 0.0053456565365195274, 0.019397448748350143, -0.01271937508136034, 0.1769995093345642, 0.0308542400598526, 0.06430942565202713, -0.10688863694667816, 0.07775326073169708, 0.0614481195807457, -0.11417698860168457, 0.057837795466184616, 0.11324169486761093, -0.09705883264541626, -0.026858391240239143, 0.036494169384241104, 0.16921600699424744, -0.06063899025321007, -0.048185113817453384, -0.1538301259279251, -0.11517678201198578, 0.09703414887189865, 0.1840856671333313, 0.06467374414205551, 0.009808756411075592, -0.04313131421804428, -0.008685389533638954, -0.12479282170534134, 0.10302001982927322, 0.05070367082953453, 0.07747862488031387, -0.12268511205911636, 0.12256182730197906, -0.009745701216161251, 0.042307667434215546, -0.009218765422701836, 0.015988776460289955, -0.10960526764392853, 0.0033797803334891796, -0.1423777937889099, 0.00832214206457138, -0.04494244605302811, -0.0011973814107477665, -0.023193443194031715, -0.03375978022813797, -0.05914922058582306, 0.01675104722380638, -0.11260288953781128, -0.036319516599178314, 0.010412446223199368, 0.029330682009458542, -0.12630459666252136, -0.01920931786298752, 0.010201842524111271, -0.0862070694565773, 0.08357042819261551, 0.044234272092580795, -0.004748845472931862, 0.020747167989611626, -0.02305678278207779, 0.00012171916023362428, 0.04829733818769455, 0.00537034822627902, 0.07995195686817169, -0.11924608796834946, -0.013915679417550564, 0.008945612236857414, 0.01340132113546133, 0.028972944244742393, 0.115643709897995, -0.11617381870746613, -0.007972880266606808, 0.007970787584781647, -0.057109441608190536, -0.06905458867549896, 0.068453848361969, 0.09392105042934418, 0.022841304540634155, 0.18228091299533844, -0.07420357316732407, 0.035178784281015396, -0.20087119936943054, -0.0038895888719707727, 0.0049581220373511314, -0.14096827805042267, -0.06500066071748734, -0.03850414976477623, 0.06734596937894821, -0.07149671763181686, 0.11092301458120346, 0.004950069356709719, 0.03931140899658203, 0.04493129253387451, -0.03126824274659157, -0.02071281522512436, 0.015212364494800568, 0.17608197033405304, 0.02058245986700058, -0.04343518614768982, 0.08155103027820587, 0.020666198804974556, 0.081175297498703, 0.12803125381469727, 0.19913002848625183, 0.11667686700820923, 0.06320013105869293, 0.0961175486445427, 0.023615676909685135, -0.030358344316482544, -0.18801501393318176, 0.03964875265955925, -0.032345857471227646, 0.14836564660072327, -0.0047457581385970116, 0.20506168901920319, 0.12052969634532928, -0.1612660139799118, 0.048087891191244125, -0.04112517461180687, -0.08629781007766724, -0.10536807030439377, -0.09831316769123077, -0.08669181168079376, -0.13120131194591522, -0.010870601050555706, -0.12808246910572052, 0.04765982925891876, 0.061899054795503616, 0.015682265162467957, -0.006216309033334255, 0.12053301930427551, 0.028537537902593613, 0.008887127041816711, 0.06321465969085693, 0.007875645533204079, -0.034891605377197266, -0.05035153776407242, -0.07208861410617828, 0.017868410795927048, 0.00036957956035621464, 0.05477017164230347, -0.008419430814683437, -0.006293799262493849, 0.04942861199378967, -0.0280731450766325, -0.11799081414937973, 0.012490789406001568, 0.030224161222577095, 0.07340351492166519, 0.0450759083032608, 0.013756993226706982, 0.004066175781190395, -0.014913016930222511, 0.20068150758743286, -0.07401707768440247, -0.05277926102280617, -0.11658910661935806, 0.2477595955133438, 0.010925473645329475, -0.0564635768532753, 0.034320931881666183, -0.06638534367084503, -0.00799079891294241, 0.2009539008140564, 0.17506442964076996, -0.04073476046323776, -0.01607629284262657, -0.02119165100157261, -0.00929268542677164, -0.025587672367691994, 0.11024604737758636, 0.1273358315229416, 0.02946407161653042, -0.07323799282312393, -0.02998521365225315, -0.06204081326723099, -0.01574384793639183, -0.04924844577908516, 0.07520291209220886, 0.023194268345832825, -0.0025199258234351873, -0.03083890676498413, 0.054563362151384354, -0.054510220885276794, -0.06129785627126694, 0.004910604562610388, -0.21439644694328308, -0.17130769789218903, 0.004245540127158165, 0.0803946778178215, -0.01175619475543499, 0.058988574892282486, -0.0029474766924977303, 0.00823167059570551, 0.10027970373630524, -0.018093015998601913, -0.07131160795688629, -0.07739321142435074, 0.10197465121746063, -0.15690012276172638, 0.19021447002887726, -0.0312860831618309, 0.030104180797934532, 0.140971839427948, 0.05221068859100342, -0.11158500611782074, 0.05537766218185425, 0.04982685670256615, -0.04700254648923874, 0.014416840858757496, 0.1290515959262848, -0.03030751459300518, 0.07255911082029343, 0.0453176386654377, -0.1120244711637497, -0.012037028558552265, -0.09178739041090012, -0.020289523527026176, -0.01986098103225231, -0.045981504023075104, -0.04989011958241463, 0.13199079036712646, 0.19831021130084991, -0.04609641432762146, -0.007404172793030739, -0.06241052970290184, 0.009049183689057827, 0.06719040870666504, -0.010307771153748035, -0.053266700357198715, -0.2554090619087219, 0.0003185949753969908, 0.07628002762794495, -0.007989364676177502, -0.27227717638015747, -0.08573779463768005, -0.0004909297567792237, -0.043751854449510574, -0.10848870128393173, 0.0937419906258583, 0.07124421000480652, 0.04228309541940689, -0.06897798180580139, 0.005559871438890696, -0.06642989069223404, 0.1607312709093094, -0.134971484541893, -0.06209824979305267 ]
null
null
transformers
20% of the training data --- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 27.5875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5287 - Rouge1: 27.5875 - Rouge2: 7.4083 - Rougel: 21.5654 - Rougelsum: 21.5716 - Gen Len: 18.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7677 | 1.0 | 3401 | 2.5441 | 27.4235 | 7.2208 | 21.3535 | 21.3636 | 18.8311 | | 2.735 | 2.0 | 6802 | 2.5287 | 27.5875 | 7.4083 | 21.5654 | 21.5716 | 18.8205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{}
text2text-generation
bochaowei/t5-small-finetuned-xsum-wei1
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
20% of the training data ------------------------ license: apache-2.0 tags: * generated\_from\_trainer datasets: * xsum metrics: * rouge model-index: * name: t5-small-finetuned-xsum-wei1 results: + task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 27.5875 --- t5-small-finetuned-xsum-wei1 ============================ This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set: * Loss: 2.5287 * Rouge1: 27.5875 * Rouge2: 7.4083 * Rougel: 21.5654 * Rougelsum: 21.5716 * Gen Len: 18.8205 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 12 * eval\_batch\_size: 12 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 52, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.092025525867939, 0.021059297025203705, -0.0022535722237080336, 0.09244439005851746, 0.1668420433998108, 0.026458540931344032, 0.12460797280073166, 0.1251605749130249, -0.10517226159572601, 0.03372708335518837, 0.12329793721437454, 0.15999822318553925, 0.018496645614504814, 0.1343013197183609, -0.07194299250841141, -0.2830175459384918, -0.01125409547239542, 0.04781951382756233, -0.03557444363832474, 0.13735195994377136, 0.09087809175252914, -0.1400161236524582, 0.06606448441743851, -0.0043764435686171055, -0.20233136415481567, 0.01031877938657999, 0.016777049750089645, -0.06155518814921379, 0.16337159276008606, 0.028639081865549088, 0.13614076375961304, 0.017535753548145294, 0.08414473384618759, -0.19114534556865692, 0.014580664224922657, 0.0500929020345211, 0.01650644652545452, 0.08592522144317627, 0.06348997354507446, -0.014809894375503063, 0.10882236808538437, -0.10078564286231995, 0.06245925650000572, 0.0011973925866186619, -0.126919224858284, -0.18573695421218872, -0.06831873953342438, 0.0033647301606833935, 0.06960761547088623, 0.09743557125329971, -0.021046597510576248, 0.1528109759092331, -0.0862959772348404, 0.11345328390598297, 0.22132714092731476, -0.28774794936180115, -0.07076041400432587, -0.0011932477355003357, 0.03536026552319527, 0.10096988826990128, -0.10184838622808456, -0.013602633960545063, 0.04816541075706482, 0.05576743185520172, 0.1310669183731079, -0.03213924169540405, -0.11305341124534607, 0.012459848076105118, -0.14722749590873718, -0.03252565488219261, 0.11112377047538757, 0.02361993119120598, -0.025115063413977623, -0.04531358554959297, -0.0702560767531395, -0.16333749890327454, -0.046838123351335526, -0.022296568378806114, 0.03347437456250191, -0.03808383643627167, -0.09475499391555786, -0.023190684616565704, -0.1064673513174057, -0.05278218537569046, -0.06984369456768036, 0.1416577249765396, 0.03769155219197273, -0.008879192173480988, -0.04052996635437012, 0.10702786594629288, -0.01754605770111084, -0.13094504177570343, 0.03272531181573868, 0.028171103447675705, -0.02204703353345394, -0.06124139577150345, -0.07723898440599442, -0.10838014632463455, -0.005235990509390831, 0.10018433630466461, -0.0613664910197258, 0.06450363993644714, -0.0005218714941293001, 0.030912332236766815, -0.08553101867437363, 0.19482018053531647, -0.023987876251339912, -0.014803381636738777, 0.0038948047440499067, 0.056591469794511795, -0.0028504030779004097, -0.02597948908805847, -0.1036439761519432, 0.007077035028487444, 0.1401921659708023, 0.010452629998326302, -0.07427085191011429, 0.0711764320731163, -0.045921456068754196, -0.01898754946887493, -0.049376651644706726, -0.10104150325059891, 0.04149148240685463, -0.0104909036308527, -0.065595842897892, 0.008435413241386414, 0.010865379124879837, 0.029642825946211815, -0.0392947793006897, 0.1347988098859787, -0.08124557882547379, 0.04319373890757561, -0.10496651381254196, -0.1304864138364792, 0.007983183488249779, -0.05801042169332504, 0.007859393022954464, -0.09918010234832764, -0.15255790948867798, -0.023240936920046806, 0.04676961526274681, -0.032474543899297714, -0.04754624143242836, -0.06819213926792145, -0.06106838211417198, 0.02290693111717701, -0.025289831683039665, 0.17530952394008636, -0.0572882816195488, 0.11715541034936905, 0.04335159808397293, 0.0673619955778122, -0.025613956153392792, 0.050294164568185806, -0.08148317784070969, 0.0026760969776660204, -0.18371723592281342, 0.07412105798721313, -0.03128466382622719, 0.06603270024061203, -0.0809682086110115, -0.10598922520875931, 0.000760735827498138, 0.008855953812599182, 0.09803316742181778, 0.09953254461288452, -0.1682170033454895, -0.08077292889356613, 0.18211662769317627, -0.05458930507302284, -0.09405971318483353, 0.12715759873390198, -0.07287168502807617, 0.04900234937667847, 0.08071480691432953, 0.19444724917411804, 0.04150964692234993, -0.07977578788995743, 0.03304613381624222, -0.03382832184433937, 0.06349063664674759, -0.028206199407577515, 0.041368477046489716, 0.01788194105029106, 0.0004392007540445775, 0.019963907077908516, -0.0008234884589910507, 0.05685722455382347, -0.10925289243459702, -0.07837113738059998, -0.03933345898985863, -0.08431770652532578, 0.057552456855773926, 0.059577714651823044, 0.08608349412679672, -0.11394163966178894, -0.08301511406898499, 0.06929881870746613, 0.06264390796422958, -0.07695256173610687, 0.044026657938957214, -0.05890992283821106, 0.06069926172494888, -0.03917206451296806, -0.019109662622213364, -0.20783039927482605, -0.028365695849061012, 0.0077142296358942986, 0.05855676159262657, 0.03650779649615288, 0.01113954745233059, 0.07687180489301682, 0.06152243912220001, -0.05412401258945465, -0.020554523915052414, -0.014155172742903233, -0.003942030016332865, -0.1468653380870819, -0.1830207258462906, -0.011340474709868431, -0.02528906986117363, 0.12749548256397247, -0.2145901620388031, 0.025474512949585915, -0.011169265024363995, 0.08077973127365112, 0.017023857682943344, -0.0054121180437505245, -0.04412149637937546, 0.09499531239271164, -0.03543385863304138, -0.04316540062427521, 0.07784264534711838, 0.005227356217801571, -0.08639626950025558, -0.03184831142425537, -0.13696575164794922, 0.1498376578092575, 0.1280374825000763, -0.13647256791591644, -0.09393759816884995, -0.024266105145215988, -0.05343254283070564, -0.02876891940832138, -0.05071311444044113, 0.02062765508890152, 0.21501938998699188, 0.002428176812827587, 0.15516653656959534, -0.07058294117450714, -0.046879842877388, 0.013227827847003937, -0.036099281162023544, 0.035037681460380554, 0.12084318697452545, 0.09309584647417068, -0.09346884489059448, 0.11416143923997879, 0.12106036394834518, -0.09430857747793198, 0.14432711899280548, -0.03325532749295235, -0.08406824618577957, -0.010870602913200855, -0.017343666404485703, 0.00210847076959908, 0.06986092031002045, -0.13484559953212738, -0.01524506788700819, 0.015634950250387192, 0.027218185365200043, 0.025641141459345818, -0.23102769255638123, -0.02600725181400776, 0.03881128877401352, -0.03390401974320412, -0.0006280704401433468, -0.01694413460791111, 0.025726476684212685, 0.11976936459541321, 0.002205608645454049, -0.06963998079299927, 0.020615849643945694, 0.0019466778030619025, -0.08387196063995361, 0.20984558761119843, -0.07966714352369308, -0.17050659656524658, -0.09834893047809601, -0.09839694947004318, -0.024746285751461983, 0.003094971412792802, 0.05751783773303032, -0.09471980482339859, -0.027490222826600075, -0.061489950865507126, 0.024462567642331123, -0.0003645686083473265, 0.035761017352342606, -0.005213277414441109, -0.012144397012889385, 0.04946232587099075, -0.09520415961742401, -0.01588771864771843, -0.05416698381304741, -0.04787849634885788, 0.07823240011930466, 0.028834398835897446, 0.1078295186161995, 0.17022468149662018, -0.03068634867668152, 0.017976347357034683, -0.04340779036283493, 0.22536729276180267, -0.07857342809438705, -0.019949331879615784, 0.10655944794416428, -0.02743368223309517, 0.058614376932382584, 0.11029733717441559, 0.05235392227768898, -0.09561873972415924, 0.032460346817970276, 0.03178059682250023, -0.02861090935766697, -0.22254517674446106, -0.03316653519868851, -0.05960281193256378, -0.03019964136183262, 0.09098315238952637, 0.009961235336959362, 0.04697376862168312, 0.057280439883470535, 0.0527242049574852, 0.07789503037929535, -0.029469329863786697, 0.061497051268815994, 0.14768335223197937, 0.040869712829589844, 0.13876178860664368, -0.036519333720207214, -0.09385374933481216, 0.03500243276357651, -0.024165958166122437, 0.23187963664531708, 0.0026515221688896418, 0.111570343375206, 0.03779631480574608, 0.14925864338874817, 0.015026269480586052, 0.08860704302787781, -0.0026492648757994175, -0.04526486620306969, -0.017332956194877625, -0.03310352563858032, -0.04028918966650963, 0.01654653809964657, -0.032784007489681244, 0.02545916847884655, -0.12902051210403442, -0.01986360177397728, 0.05147236958146095, 0.24757300317287445, 0.04724104329943657, -0.3220520615577698, -0.07700857520103455, 0.006620192900300026, -0.06436477601528168, -0.02555685304105282, 0.01178478542715311, 0.10067669302225113, -0.10964551568031311, 0.0346783809363842, -0.08600110560655594, 0.1002446860074997, -0.05650441721081734, 0.057325854897499084, 0.03226643428206444, 0.10043131560087204, -0.010662063956260681, 0.06775511801242828, -0.3315392732620239, 0.28193730115890503, 0.009839099831879139, 0.06735062599182129, -0.07995632290840149, -0.014660867862403393, 0.03764106333255768, 0.03376587852835655, 0.032269589602947235, -0.02203722856938839, -0.061933089047670364, -0.18477727472782135, -0.056730419397354126, 0.03856237977743149, 0.12157558649778366, -0.015380606055259705, 0.12300518155097961, -0.0302848219871521, 0.009446079842746258, 0.07055404782295227, -0.026195406913757324, -0.07019644230604172, -0.09015387296676636, -0.00775063456967473, 0.01723175309598446, -0.010914744809269905, -0.05925939604640007, -0.12306902557611465, -0.10003092885017395, 0.16047054529190063, 0.030696813017129898, -0.025550948455929756, -0.12312433868646622, 0.10309860110282898, 0.07201053947210312, -0.07966116815805435, 0.02559397555887699, 0.02440391480922699, 0.07916247844696045, 0.017970208078622818, -0.06122075393795967, 0.11792541295289993, -0.05002429708838463, -0.15481352806091309, -0.05659255012869835, 0.11264026165008545, 0.025540996342897415, 0.07042457908391953, -0.011251077055931091, 0.016425225883722305, -0.02874705195426941, -0.080205537378788, 0.020358072593808174, -0.030636345967650414, 0.06817694753408432, 0.027703335508704185, -0.06062128394842148, 0.015455798245966434, -0.07543361186981201, -0.036697667092084885, 0.2303551584482193, 0.23259976506233215, -0.07166770100593567, 0.014088793657720089, 0.024778973311185837, -0.07305024564266205, -0.17965741455554962, 0.05183253064751625, 0.07672648131847382, 0.024556273594498634, 0.04414432495832443, -0.17043574154376984, 0.08163157105445862, 0.0772782638669014, 0.005478948354721069, 0.0984271690249443, -0.32121965289115906, -0.13730724155902863, 0.10422317683696747, 0.15946830809116364, 0.12346746027469635, -0.1365012228488922, -0.018522681668400764, -0.017714690417051315, -0.09379307180643082, 0.11270186305046082, -0.08477352559566498, 0.13491138815879822, -0.006719463039189577, 0.13032294809818268, 0.01842990331351757, -0.05282037332653999, 0.09729833900928497, -0.008500222116708755, 0.08541064709424973, -0.06361405551433563, -0.016371380537748337, 0.023705577477812767, -0.04112975299358368, -0.0035312441177666187, -0.06525061279535294, 0.017940690740942955, -0.0983627587556839, -0.03460584208369255, -0.07625269889831543, 0.022398212924599648, -0.03374018520116806, -0.062045078724622726, -0.020796455442905426, 0.019189637154340744, 0.046896807849407196, -0.012875028885900974, 0.10778190940618515, -0.01848190650343895, 0.15995660424232483, 0.09210173785686493, 0.10840097069740295, -0.06856945157051086, -0.02531464770436287, -0.005104046314954758, -0.015437884256243706, 0.032050155103206635, -0.13231779634952545, 0.024867868050932884, 0.1584782898426056, 0.01006227731704712, 0.1503368318080902, 0.08575227111577988, -0.03047570399940014, 0.021475493907928467, 0.06470626592636108, -0.16767719388008118, -0.08558396250009537, -0.00952786672860384, -0.05433247238397598, -0.0982886403799057, 0.0229713786393404, 0.11960815638303757, -0.06175750121474266, -0.01625063084065914, -0.011786764487624168, -0.005633166525512934, -0.053837236016988754, 0.2028617262840271, 0.04952593520283699, 0.05123584717512131, -0.0911550372838974, 0.04880587384104729, 0.051984287798404694, -0.09904883801937103, 0.025026580318808556, 0.11636702716350555, -0.07424892485141754, -0.03871932253241539, 0.09378433972597122, 0.20663967728614807, -0.052333079278469086, -0.030161604285240173, -0.14334343373775482, -0.12608815729618073, 0.0837700366973877, 0.1796724945306778, 0.08785030245780945, 0.001843577716499567, -0.07146760076284409, 0.015612290240824223, -0.1331697553396225, 0.08845842629671097, 0.07160135358572006, 0.0676351860165596, -0.11866692453622818, 0.19845840334892273, 0.0003898621944244951, 0.04634016379714012, -0.030752871185541153, 0.014021688140928745, -0.1090482696890831, 0.025157762691378593, -0.13957567512989044, -0.030659331008791924, -0.0027201997581869364, -0.0025905545335263014, -0.004428676795214415, -0.06250907480716705, -0.05745221674442291, -0.007325334474444389, -0.11844877898693085, -0.01964188553392887, 0.020883118733763695, 0.03334129974246025, -0.10573096573352814, -0.039952658116817474, 0.02941562980413437, -0.06722743809223175, 0.06969194859266281, 0.04418341815471649, -0.0006818489055149257, 0.0681208148598671, -0.1337125599384308, 0.0028897160664200783, 0.06300130486488342, 0.007741584442555904, 0.06892858445644379, -0.08273165673017502, -0.0013083178782835603, -0.0003288834705017507, 0.09637451171875, 0.034630224108695984, 0.08293324708938599, -0.12452515214681625, 0.009311501868069172, -0.0375128872692585, -0.09594202786684036, -0.06652292609214783, 0.036279402673244476, 0.04102693498134613, 0.02297755889594555, 0.1768387258052826, -0.09515709429979324, 0.052667468786239624, -0.21802163124084473, 0.0018081627786159515, -0.01255337055772543, -0.11494580656290054, -0.07456149905920029, -0.08618541061878204, 0.08041272312402725, -0.05877958983182907, 0.1178673803806305, 0.026780756190419197, 0.07764855027198792, 0.03253767266869545, -0.041088614612817764, -0.0072923568077385426, 0.032408326864242554, 0.19849994778633118, 0.03714016079902649, -0.04398658871650696, 0.047501858323812485, 0.059757571667432785, 0.10602764785289764, 0.13242457807064056, 0.2314358949661255, 0.13475918769836426, 0.0068961093202233315, 0.0948338583111763, 0.012636538594961166, -0.03879483416676521, -0.1478165090084076, 0.03759685531258583, -0.050930608063936234, 0.09924396127462387, -0.02991855889558792, 0.22110030055046082, 0.07489733397960663, -0.16194480657577515, 0.04347073286771774, -0.0581439845263958, -0.10369649529457092, -0.1087266057729721, -0.031675197184085846, -0.09430057555437088, -0.139177143573761, -0.0033139511942863464, -0.12390652298927307, 0.035777587443590164, 0.0968184843659401, 0.025875402614474297, -0.02284424938261509, 0.16384702920913696, 0.04591560363769531, 0.012283088639378548, 0.09009437263011932, 0.002051302930340171, -0.0010125241242349148, -0.09787994623184204, -0.07388018071651459, -0.02132752165198326, -0.0007146730786189437, 0.040746647864580154, -0.04704097658395767, -0.07308444380760193, 0.028159625828266144, -0.03042304329574108, -0.10795371979475021, 0.012835506349802017, 0.027358023449778557, 0.07500146329402924, 0.04468410462141037, 0.012569937855005264, -0.006242480594664812, -0.02040589414536953, 0.23652617633342743, -0.08027207106351852, -0.10106991976499557, -0.10460428148508072, 0.25859004259109497, 0.02818569354712963, -0.003931014332920313, 0.026596227660775185, -0.061472684144973755, 0.006759725045412779, 0.26033100485801697, 0.17302045226097107, -0.11728822439908981, -0.00934702716767788, 0.008371646516025066, -0.0050290548242628574, -0.01157099287956953, 0.12873998284339905, 0.1391865611076355, 0.056407056748867035, -0.10824872553348541, -0.04186071455478668, -0.05002450570464134, -0.012280497699975967, -0.04071858152747154, 0.0674251839518547, 0.05531313270330429, 0.01301455870270729, -0.04055153578519821, 0.07224944233894348, -0.07835642993450165, -0.08321834355592728, 0.0037451342213898897, -0.2194160521030426, -0.16694699227809906, -0.00574052007868886, 0.09855350106954575, -0.011169101111590862, 0.06562936305999756, -0.025889327749609947, -0.0032429404091089964, 0.054155535995960236, -0.022990861907601357, -0.053018588572740555, -0.051072828471660614, 0.0916966125369072, -0.13831274211406708, 0.1501818299293518, -0.042186494916677475, 0.06093381717801094, 0.13090910017490387, 0.06352400034666061, -0.04955007880926132, 0.07102903723716736, 0.042010825127363205, -0.07518307119607925, 0.04063045606017113, 0.11901048570871353, -0.034647777676582336, 0.03420576453208923, 0.057315926998853683, -0.14982925355434418, 0.035091038793325424, -0.09043341130018234, -0.035139959305524826, -0.027195237576961517, -0.05052787438035011, -0.057192277163267136, 0.12365052103996277, 0.22135190665721893, -0.018655642867088318, 0.031236562877893448, -0.07537055015563965, 0.0008685264619998634, 0.035131946206092834, 0.06307349354028702, -0.08515630662441254, -0.2615763545036316, -0.008068710565567017, 0.08607905358076096, -0.02717544324696064, -0.2761549651622772, -0.09772715717554092, -0.004333134740591049, -0.05943251773715019, -0.11649973690509796, 0.11193397641181946, 0.09229950606822968, 0.04053911939263344, -0.049011386930942535, -0.09392859041690826, -0.06899212300777435, 0.17839789390563965, -0.14602363109588623, -0.07377665489912033 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4131 - Rouge1: 29.2287 - Rouge2: 8.4073 - Rougel: 23.0934 - Rougelsum: 23.0954 - Gen Len: 18.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.633 | 1.0 | 17004 | 2.4131 | 29.2287 | 8.4073 | 23.0934 | 23.0954 | 18.8236 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-finetuned-xsum-wei2", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "xsum", "type": "xsum", "args": "default"}, "metrics": [{"type": "rouge", "value": 29.2287, "name": "Rouge1"}]}]}]}
text2text-generation
bochaowei/t5-small-finetuned-xsum-wei2
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum-wei2 ============================ This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set: * Loss: 2.4131 * Rouge1: 29.2287 * Rouge2: 8.4073 * Rougel: 23.0934 * Rougelsum: 23.0954 * Gen Len: 18.8236 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 12 * eval\_batch\_size: 12 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 77, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.10806673765182495, 0.1272156685590744, -0.002769108396023512, 0.09340924769639969, 0.11236200481653214, -0.000779868452809751, 0.15493476390838623, 0.16228511929512024, -0.11336699873209, 0.05980030447244644, 0.1389257311820984, 0.12752880156040192, 0.05289485305547714, 0.17613038420677185, -0.06515885144472122, -0.25074005126953125, 0.03940366581082344, 0.05467585101723671, 0.0006518431473523378, 0.12919838726520538, 0.08731631934642792, -0.11940330266952515, 0.08954981714487076, 0.029798777773976326, -0.18178357183933258, -0.020794842392206192, 0.0001980540546355769, -0.08070296049118042, 0.11095311492681503, 0.029295850545167923, 0.09412375837564468, 0.03280030936002731, 0.04588469862937927, -0.1577461063861847, 0.01057723630219698, 0.060812268406152725, 0.007023714017122984, 0.10547517985105515, 0.06024850904941559, -0.010164976119995117, 0.10765302926301956, -0.07034451514482498, 0.07093959301710129, 0.01926666498184204, -0.12700697779655457, -0.26116442680358887, -0.11583392322063446, 0.052815694361925125, 0.07677634060382843, 0.08581406623125076, -0.008652674965560436, 0.17886030673980713, -0.02232525497674942, 0.10985555499792099, 0.23514127731323242, -0.30252599716186523, -0.05944613739848137, -0.020525678992271423, 0.0513831228017807, 0.07724981009960175, -0.07671713829040527, -0.03509686142206192, 0.026310695335268974, 0.05101160705089569, 0.1474340409040451, -0.015213852748274803, -0.030688736587762833, -0.017528031021356583, -0.1375274956226349, -0.071743443608284, 0.16234451532363892, 0.032077014446258545, -0.04460039734840393, -0.07861107587814331, -0.07540878653526306, -0.18637129664421082, -0.04930505156517029, 0.007429591380059719, 0.035268038511276245, -0.03970080614089966, -0.08341949433088303, -0.018598996102809906, -0.08084549754858017, -0.03256026282906532, -0.044787611812353134, 0.112843818962574, 0.043036460876464844, 0.015595157630741596, -0.062925323843956, 0.07648226618766785, -0.023862969130277634, -0.16247715055942535, -0.005123621318489313, 0.012410723604261875, 0.010846764780580997, -0.04106120765209198, -0.03795686364173889, -0.12315893918275833, 0.004018017556518316, 0.1562771499156952, -0.08884023874998093, 0.07499609887599945, -0.034599192440509796, 0.035822510719299316, -0.0720534473657608, 0.1924165040254593, -0.02393670566380024, 0.001460531260818243, 0.022272450849413872, 0.08232830464839935, 0.05858449637889862, -0.03615611419081688, -0.11591625958681107, 0.04212285205721855, 0.11592387408018112, 0.02513233758509159, -0.02837332710623741, 0.05487271025776863, -0.044807299971580505, -0.029935762286186218, 0.058770276606082916, -0.10262396931648254, 0.02770381234586239, -0.014872772619128227, -0.05833863839507103, -0.010100997053086758, 0.017684005200862885, 0.0034124436788260937, -0.0439397394657135, 0.08414358645677567, -0.09361060708761215, 0.012675190344452858, -0.07829287648200989, -0.13802871108055115, 0.03661433607339859, -0.10171109437942505, -0.001674234983511269, -0.09123551845550537, -0.14280490577220917, -0.014010732062160969, 0.05471273511648178, -0.043461479246616364, -0.06203373521566391, -0.046662621200084686, -0.08782164007425308, 0.04597129672765732, -0.018538856878876686, 0.08851996809244156, -0.07092557847499847, 0.08911911398172379, 0.037130385637283325, 0.06870157271623611, -0.03978344425559044, 0.047794025391340256, -0.08806469291448593, 0.04492177069187164, -0.21043598651885986, 0.05879460647702217, -0.04792514443397522, 0.08031735569238663, -0.10741744935512543, -0.09973092377185822, 0.04369574785232544, -0.027014387771487236, 0.10316262394189835, 0.0960228368639946, -0.17428003251552582, -0.07046952098608017, 0.19386141002178192, -0.08666457235813141, -0.14403752982616425, 0.13253676891326904, -0.044721465557813644, 0.010372938588261604, 0.05514078959822655, 0.22357703745365143, 0.056102197617292404, -0.0994696170091629, -0.017735162749886513, -0.0457284040749073, 0.07113511115312576, -0.07076487690210342, 0.07673688977956772, 0.002799807582050562, 0.06984900683164597, 0.005679272580891848, 0.01336890272796154, 0.034139588475227356, -0.08014532923698425, -0.08146868646144867, -0.04843692481517792, -0.07067849487066269, 0.011895820498466492, 0.03844423219561577, 0.06086860969662666, -0.12744052708148956, -0.10850217193365097, 0.04717998951673508, 0.07891901582479477, -0.08274804800748825, 0.05463411659002304, -0.09695715457201004, 0.12197192013263702, -0.07239512354135513, -0.006709856912493706, -0.18144187331199646, -0.03455400466918945, 0.03351642191410065, 0.00684636365622282, 0.012928382493555546, -0.054273590445518494, 0.06259769201278687, 0.07423576712608337, -0.03490450978279114, -0.03445369005203247, -0.018286531791090965, 0.0012385204900056124, -0.12065791338682175, -0.19337698817253113, -0.04402840510010719, -0.036518391221761703, 0.10430080443620682, -0.15741609036922455, 0.039980895817279816, 0.05774307996034622, 0.11135683953762054, 0.04238174110651016, -0.030247123911976814, -0.000780009082518518, 0.07511235028505325, -0.04858120158314705, -0.07327744364738464, 0.06274375319480896, 0.030264616012573242, -0.09221655875444412, 0.010551582090556622, -0.16315357387065887, 0.15572230517864227, 0.13500210642814636, 0.0078717777505517, -0.06052997335791588, -0.016080183908343315, -0.05373125895857811, -0.026403699070215225, -0.02117941901087761, 0.02203402854502201, 0.16066038608551025, 0.027451166883111, 0.15983328223228455, -0.09867219626903534, -0.05490129813551903, 0.049624957144260406, -0.027155492454767227, -0.008850015699863434, 0.11207132041454315, 0.038598839193582535, -0.12332328408956528, 0.14337441325187683, 0.13165153563022614, -0.04766819626092911, 0.13306136429309845, -0.06500759720802307, -0.0739394798874855, -0.036055125296115875, -0.010644365102052689, 0.031535934656858444, 0.10758914798498154, -0.1129222959280014, -0.019848579540848732, 0.041459597647190094, 0.0264621339738369, 0.0062029557302594185, -0.1876697838306427, -0.003102195216342807, 0.04010656476020813, -0.04968416318297386, -0.05204157531261444, -0.00515448534861207, 0.00945199467241764, 0.10026911646127701, 0.015829887241125107, -0.05115795135498047, 0.030287500470876694, 0.012436331249773502, -0.0672282800078392, 0.1864163726568222, -0.10383100807666779, -0.17352637648582458, -0.12164200842380524, -0.10825062543153763, -0.05577792227268219, -0.005546000320464373, 0.07802946865558624, -0.07775543630123138, -0.04668805003166199, -0.10461027920246124, -0.035890690982341766, -0.005177074111998081, 0.023223944008350372, 0.030312834307551384, -0.023705653846263885, 0.06803102791309357, -0.11019199341535568, -0.030554143711924553, -0.018798815086483955, 0.015669727697968483, 0.06260823458433151, 0.014073322527110577, 0.11529991775751114, 0.12932512164115906, -0.020437611266970634, 0.0383351631462574, -0.046210575848817825, 0.23929138481616974, -0.07475080341100693, -0.013567866757512093, 0.13549277186393738, -0.020660458132624626, 0.0909508764743805, 0.12126694619655609, 0.04719601571559906, -0.08753620088100433, -0.005355204921215773, 0.007312592584639788, -0.04450710490345955, -0.22053126990795135, -0.01706893928349018, -0.05580752342939377, 0.007801666855812073, 0.10462246835231781, 0.025224559009075165, 0.02805069461464882, 0.050760667771101, 0.01029700692743063, 0.06107451394200325, -0.025600949302315712, 0.10894440114498138, 0.13068945705890656, 0.05348851531744003, 0.14300081133842468, -0.05401460826396942, -0.025072559714317322, 0.051164016127586365, 0.018698642030358315, 0.21432167291641235, -0.010227746330201626, 0.2042551338672638, 0.043395522981882095, 0.15987344086170197, 0.026793647557497025, 0.06797816604375839, -0.024428579956293106, -0.0049511450342834, -0.015577166341245174, -0.04827996715903282, -0.045103784650564194, 0.01678411290049553, -0.05700746178627014, 0.03157772496342659, -0.12003035098314285, 0.014357639476656914, 0.04797663167119026, 0.299159973859787, 0.04144086688756943, -0.3776948153972626, -0.11087673902511597, 0.006177952047437429, -0.04472586140036583, -0.043678201735019684, 0.0037484888453036547, 0.09632738679647446, -0.08089277148246765, 0.0720115602016449, -0.08583610504865646, 0.10838653147220612, -0.06433896720409393, 0.03340590372681618, 0.05409996211528778, 0.08573310077190399, -0.014599191024899483, 0.051166292279958725, -0.2807866930961609, 0.2679580748081207, 0.025039006024599075, 0.06681621074676514, -0.07114255428314209, 0.01630435883998871, 0.014066597446799278, 0.042439114302396774, 0.060819391161203384, -0.01036276388913393, -0.10864529758691788, -0.16400104761123657, -0.10553479939699173, 0.015969427302479744, 0.07591921091079712, 0.00966903567314148, 0.12531308829784393, -0.016301970928907394, -0.0029416976030915976, 0.042854830622673035, -0.020891617983579636, -0.029982570558786392, -0.1125204861164093, 0.02774382010102272, 0.043642308562994, -0.030198752880096436, -0.07394064962863922, -0.10631854087114334, -0.04979146644473076, 0.16446025669574738, 0.023252636194229126, -0.07442664355039597, -0.1307775229215622, 0.03738464042544365, 0.08263901621103287, -0.09193933755159378, 0.03290571644902229, -0.013782770372927189, 0.12130400538444519, -0.00009269014844903722, -0.07391821593046188, 0.10885076224803925, -0.05445827171206474, -0.16403107345104218, -0.052112795412540436, 0.12311423569917679, 0.00881531834602356, 0.059913069009780884, -0.011081688106060028, 0.04268891364336014, -0.03438640385866165, -0.06794685870409012, 0.028041990473866463, 0.004480825737118721, 0.10227550566196442, -0.045713432133197784, -0.014915907755494118, 0.026432566344738007, -0.07159793376922607, -0.024492042139172554, 0.18174681067466736, 0.25156864523887634, -0.08276168256998062, 0.06962382048368454, 0.03671548515558243, -0.05670325085520744, -0.14632442593574524, 0.011418895795941353, 0.061054106801748276, 0.008517286740243435, 0.0023317437153309584, -0.17905159294605255, 0.029046446084976196, 0.08763567358255386, -0.013726015575230122, 0.08725593984127045, -0.31313860416412354, -0.12423218786716461, 0.08858410269021988, 0.12671491503715515, 0.07777392864227295, -0.1563982516527176, -0.04769564047455788, -0.022925468161702156, -0.133877694606781, 0.136244997382164, -0.10336453467607498, 0.1152215451002121, -0.027404814958572388, 0.1077456921339035, 0.012816970236599445, -0.05972573161125183, 0.11270749568939209, -0.012912275269627571, 0.0694686695933342, -0.0650266483426094, 0.020899290218949318, 0.09316243976354599, -0.08524783700704575, 0.043841149657964706, -0.10023648291826248, 0.03429066017270088, -0.1265847384929657, -0.014073589816689491, -0.06680306047201157, 0.0033790564630180597, -0.03513189032673836, -0.03560264781117439, -0.03789295256137848, 0.010665098205208778, 0.07209315150976181, -0.024235811084508896, 0.1820783019065857, 0.015735678374767303, 0.15038561820983887, 0.14606772363185883, 0.09344150125980377, -0.11731575429439545, -0.06566804647445679, 0.0011922763660550117, -0.03396710380911827, 0.042572785168886185, -0.15826593339443207, 0.027515564113855362, 0.13729356229305267, 0.005047835409641266, 0.12435897439718246, 0.0636097714304924, -0.0635753720998764, 0.02713608182966709, 0.05264715105295181, -0.17008285224437714, -0.09868409484624863, -0.0002854498743545264, 0.039311159402132034, -0.1319298893213272, 0.035922929644584656, 0.13049203157424927, -0.05699620395898819, -0.025407765060663223, 0.005300797056406736, 0.01906978338956833, -0.012350017204880714, 0.17731201648712158, 0.031124861910939217, 0.06443610042333603, -0.10762083530426025, 0.07748591899871826, 0.061627477407455444, -0.1146135926246643, 0.05751054361462593, 0.11374953389167786, -0.09790290892124176, -0.02720329910516739, 0.035941869020462036, 0.17035025358200073, -0.059712737798690796, -0.04845026507973671, -0.1544320434331894, -0.11566036194562912, 0.09719152748584747, 0.18319499492645264, 0.06441406160593033, 0.00939029548317194, -0.04293776676058769, -0.00862220861017704, -0.12533394992351532, 0.10333096235990524, 0.049853816628456116, 0.07786890119314194, -0.12264146655797958, 0.12176846712827682, -0.009681985713541508, 0.042030785232782364, -0.009242122992873192, 0.016223523765802383, -0.10978978872299194, 0.003116859821602702, -0.14232484996318817, 0.007755265571177006, -0.044638849794864655, -0.0009508638177067041, -0.02344403974711895, -0.0333043672144413, -0.05905460938811302, 0.017022782936692238, -0.11254969239234924, -0.036216218024492264, 0.01149867381900549, 0.02970404364168644, -0.1255163997411728, -0.019084878265857697, 0.009608756750822067, -0.08636956661939621, 0.08361071348190308, 0.04431821405887604, -0.004796444904059172, 0.02054213359951973, -0.02182593382894993, 0.000058771733165485784, 0.0476713627576828, 0.005084346979856491, 0.0801718607544899, -0.11909998953342438, -0.013991895131766796, 0.008614384569227695, 0.013514135964214802, 0.029152655974030495, 0.11520028114318848, -0.11624829471111298, -0.007918957620859146, 0.008709955960512161, -0.056244876235723495, -0.06920377165079117, 0.06837181746959686, 0.09441853314638138, 0.022316843271255493, 0.18204966187477112, -0.07444651424884796, 0.03483397513628006, -0.20082291960716248, -0.004089004825800657, 0.00465488713234663, -0.14213742315769196, -0.0645986795425415, -0.03864581137895584, 0.06780657172203064, -0.07179949432611465, 0.11218146234750748, 0.004794209264218807, 0.03933865576982498, 0.04481394216418266, -0.03069021739065647, -0.02123802714049816, 0.015401962213218212, 0.17586402595043182, 0.020361270755529404, -0.04355262592434883, 0.08138252794742584, 0.021439464762806892, 0.0808105394244194, 0.12857182323932648, 0.19780637323856354, 0.11624474078416824, 0.06378824263811111, 0.09596213698387146, 0.023681871592998505, -0.03093722090125084, -0.18742243945598602, 0.04022693634033203, -0.032624270766973495, 0.14933063089847565, -0.0050853886641561985, 0.2038184106349945, 0.12016794085502625, -0.1604968160390854, 0.04834777116775513, -0.041838254779577255, -0.0863909125328064, -0.10448557883501053, -0.09707632660865784, -0.0863661840558052, -0.13143549859523773, -0.010860299691557884, -0.12819665670394897, 0.047365203499794006, 0.06252896040678024, 0.01592523418366909, -0.006563671864569187, 0.12181217223405838, 0.029357051476836205, 0.009312068112194538, 0.06347658485174179, 0.007714451756328344, -0.03544095903635025, -0.050072766840457916, -0.07194484770298004, 0.017617393285036087, -0.000623556028585881, 0.054248444736003876, -0.00869728997349739, -0.006664905231446028, 0.049803227186203, -0.02736487425863743, -0.11800934374332428, 0.012526542879641056, 0.030497819185256958, 0.07358354330062866, 0.04570655897259712, 0.013132987543940544, 0.003940423019230366, -0.015194343402981758, 0.20005030930042267, -0.07378960400819778, -0.05214204266667366, -0.11663410812616348, 0.24711956083774567, 0.010534247383475304, -0.057144470512866974, 0.033808931708335876, -0.06602586060762405, -0.007225691340863705, 0.2023860067129135, 0.17565765976905823, -0.0403040386736393, -0.016322005540132523, -0.020967012271285057, -0.009319585748016834, -0.025482483208179474, 0.11053445190191269, 0.12763944268226624, 0.028689829632639885, -0.07315870374441147, -0.030219754204154015, -0.06225419417023659, -0.015889449045062065, -0.04926137626171112, 0.07498694956302643, 0.024034976959228516, -0.0025520692579448223, -0.03035755455493927, 0.05449787154793739, -0.05408729240298271, -0.06149299815297127, 0.005658331327140331, -0.21372979879379272, -0.17141400277614594, 0.00367767084389925, 0.08013617247343063, -0.011379540897905827, 0.05877966806292534, -0.002591683529317379, 0.008241729810833931, 0.10111300647258759, -0.01848042570054531, -0.07073456794023514, -0.07793236523866653, 0.1022053211927414, -0.15752635896205902, 0.18991687893867493, -0.03143029659986496, 0.029999982565641403, 0.14130471646785736, 0.05197294428944588, -0.1117434948682785, 0.0555666908621788, 0.049492888152599335, -0.047728948295116425, 0.014969092793762684, 0.12879742681980133, -0.029966851696372032, 0.07209462672472, 0.04446517676115036, -0.11130565404891968, -0.011629589833319187, -0.09171950817108154, -0.02042531594634056, -0.019828850403428078, -0.04591736942529678, -0.04982694983482361, 0.1323474645614624, 0.199149489402771, -0.04610713943839073, -0.007495453581213951, -0.06228210777044296, 0.009032033383846283, 0.06748209148645401, -0.011310548521578312, -0.05355502665042877, -0.25565195083618164, 0.0004417637246660888, 0.07678067684173584, -0.00829776469618082, -0.27308762073516846, -0.0853227898478508, -0.0006328764138743281, -0.04363834485411644, -0.10859435051679611, 0.09345760196447372, 0.07175242900848389, 0.042708102613687515, -0.06907473504543304, 0.00746297650039196, -0.06651908904314041, 0.16050885617733002, -0.1353461891412735, -0.06236465275287628 ]
null
null
transformers
# GPT2-Persian bolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences: 1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable 2. Instead of BPE, google sentence piece tokenizor is used for tokenization. 3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM]) Please refer to this [blog post](https://medium.com/@khashei/a-not-so-dangerous-ai-in-the-persian-language-39172a641c84) for further detail. Also try the model [here](https://huggingface.co/bolbolzaban/gpt2-persian?text=%D8%AF%D8%B1+%DB%8C%DA%A9+%D8%A7%D8%AA%D9%81%D8%A7%D9%82+%D8%B4%DA%AF%D9%81%D8%AA+%D8%A7%D9%86%DA%AF%DB%8C%D8%B2%D8%8C+%D9%BE%DA%98%D9%88%D9%87%D8%B4%DA%AF%D8%B1%D8%A7%D9%86) or on [Bolbolzaban.com](http://www.bolbolzaban.com/text). ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline, AutoTokenizer, GPT2LMHeadModel tokenizer = AutoTokenizer.from_pretrained('bolbolzaban/gpt2-persian') model = GPT2LMHeadModel.from_pretrained('bolbolzaban/gpt2-persian') generator = pipeline('text-generation', model, tokenizer=tokenizer, config={'max_length':256}) sample = generator('در یک اتفاق شگفت انگیز، پژوهشگران') ``` If you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel. ## Fine-tuning Find a basic fine-tuning example on this [Github Repo](https://github.com/khashei/bolbolzaban-gpt2-persian). ## Special Tokens gpt-persian is trained for the purpose of research on Persian poetry. Because of that all english words and numbers are replaced with special tokens and only standard Persian alphabet is used as part of input text. Here is one example: Original text: اگر آیفون یا آیپد شما دارای سیستم عامل iOS 14.3 یا iPadOS 14.3 یا نسخه‌های جدیدتر باشد Text used in training: اگر آیفون یا آیپد شما دارای سیستم عامل [LAT] [NUM] یا [LAT] [NUM] یا نسخه‌های جدیدتر باشد Please consider normalizing your input text using [Hazm](https://github.com/sobhe/hazm) or similar libraries and ensure only Persian characters are provided as input. If you want to use classical Persian poetry as input use [BOM] (begining of mesra) at the beginning of each verse (مصرع) followed by [EOS] (end of statement) at the end of each couplet (بیت). See following links for example: [[BOM] توانا بود](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF) [[BOM] توانا بود هر که دانا بود [BOM]](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D) [[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیر](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D+%D8%B2+%D8%AF%D8%A7%D9%86%D8%B4+%D8%AF%D9%84+%D9%BE%DB%8C%D8%B1) [[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیربرنا بود [EOS]](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D+%D8%B2+%D8%AF%D8%A7%D9%86%D8%B4+%D8%AF%D9%84+%D9%BE%DB%8C%D8%B1%D8%A8%D8%B1%D9%86%D8%A7+%D8%A8%D9%88%D8%AF++%5BEOS%5D) If you like to know about structure of classical Persian poetry refer to these [blog posts](https://medium.com/@khashei). ## Acknowledgment This project is supported by Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation and Reference Please reference "bolbolzaban.com" website if you are using gpt2-persian in your research or commertial application. ## Contacts Please reachout on [Linkedin](https://www.linkedin.com/in/khashei/) or [Telegram](https://t.me/khasheia) if you have any question or need any help to use the model. Follow [Bolbolzaban](http://bolbolzaban.com/about) on [Twitter](https://twitter.com/bolbol_zaban), [Telegram](https://t.me/bolbol_zaban) or [Instagram](https://www.instagram.com/bolbolzaban/)
{"language": "fa", "license": "apache-2.0", "tags": ["farsi", "persian"]}
text-generation
bolbolzaban/gpt2-persian
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "farsi", "persian", "fa", "doi:10.57967/hf/1207", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #tf #jax #gpt2 #text-generation #farsi #persian #fa #doi-10.57967/hf/1207 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# GPT2-Persian bolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences: 1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable 2. Instead of BPE, google sentence piece tokenizor is used for tokenization. 3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM]) Please refer to this blog post for further detail. Also try the model here or on URL. ## How to use You can use this model directly with a pipeline for text generation: If you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel. ## Fine-tuning Find a basic fine-tuning example on this Github Repo. ## Special Tokens gpt-persian is trained for the purpose of research on Persian poetry. Because of that all english words and numbers are replaced with special tokens and only standard Persian alphabet is used as part of input text. Here is one example: Original text: اگر آیفون یا آیپد شما دارای سیستم عامل iOS 14.3 یا iPadOS 14.3 یا نسخه‌های جدیدتر باشد Text used in training: اگر آیفون یا آیپد شما دارای سیستم عامل [LAT] [NUM] یا [LAT] [NUM] یا نسخه‌های جدیدتر باشد Please consider normalizing your input text using Hazm or similar libraries and ensure only Persian characters are provided as input. If you want to use classical Persian poetry as input use [BOM] (begining of mesra) at the beginning of each verse (مصرع) followed by [EOS] (end of statement) at the end of each couplet (بیت). See following links for example: [[BOM] توانا بود](URL [[BOM] توانا بود هر که دانا بود [BOM]](URL [[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیر](URL [[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیربرنا بود [EOS]](URL If you like to know about structure of classical Persian poetry refer to these blog posts. ## Acknowledgment This project is supported by Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). and Reference Please reference "URL" website if you are using gpt2-persian in your research or commertial application. ## Contacts Please reachout on Linkedin or Telegram if you have any question or need any help to use the model. Follow Bolbolzaban on Twitter, Telegram or Instagram
[ "# GPT2-Persian\nbolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences:\n1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable \n2. Instead of BPE, google sentence piece tokenizor is used for tokenization.\n3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM])\n\nPlease refer to this blog post for further detail. \nAlso try the model here or on URL.", "## How to use\nYou can use this model directly with a pipeline for text generation:\n\n\nIf you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel.", "## Fine-tuning\nFind a basic fine-tuning example on this Github Repo.", "## Special Tokens\ngpt-persian is trained for the purpose of research on Persian poetry. Because of that all english words and numbers are replaced with special tokens and only standard Persian alphabet is used as part of input text. Here is one example:\n\nOriginal text: اگر آیفون یا آیپد شما دارای سیستم عامل iOS 14.3 یا iPadOS 14.3 یا نسخه‌های جدیدتر باشد\n\nText used in training: اگر آیفون یا آیپد شما دارای سیستم عامل [LAT] [NUM] یا [LAT] [NUM] یا نسخه‌های جدیدتر باشد\n\nPlease consider normalizing your input text using Hazm or similar libraries and ensure only Persian characters are provided as input.\n\nIf you want to use classical Persian poetry as input use [BOM] (begining of mesra) at the beginning of each verse (مصرع) followed by [EOS] (end of statement) at the end of each couplet (بیت). \n\nSee following links for example:\n\n[[BOM] توانا بود](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM]](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیر](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیربرنا بود [EOS]](URL\n\nIf you like to know about structure of classical Persian poetry refer to these blog posts.", "## Acknowledgment\nThis project is supported by Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).\nand Reference\nPlease reference \"URL\" website if you are using gpt2-persian in your research or commertial application.", "## Contacts\nPlease reachout on Linkedin or Telegram if you have any question or need any help to use the model.\n\nFollow Bolbolzaban on Twitter, Telegram or Instagram" ]
[ "TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #farsi #persian #fa #doi-10.57967/hf/1207 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT2-Persian\nbolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences:\n1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable \n2. Instead of BPE, google sentence piece tokenizor is used for tokenization.\n3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM])\n\nPlease refer to this blog post for further detail. \nAlso try the model here or on URL.", "## How to use\nYou can use this model directly with a pipeline for text generation:\n\n\nIf you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel.", "## Fine-tuning\nFind a basic fine-tuning example on this Github Repo.", "## Special Tokens\ngpt-persian is trained for the purpose of research on Persian poetry. Because of that all english words and numbers are replaced with special tokens and only standard Persian alphabet is used as part of input text. Here is one example:\n\nOriginal text: اگر آیفون یا آیپد شما دارای سیستم عامل iOS 14.3 یا iPadOS 14.3 یا نسخه‌های جدیدتر باشد\n\nText used in training: اگر آیفون یا آیپد شما دارای سیستم عامل [LAT] [NUM] یا [LAT] [NUM] یا نسخه‌های جدیدتر باشد\n\nPlease consider normalizing your input text using Hazm or similar libraries and ensure only Persian characters are provided as input.\n\nIf you want to use classical Persian poetry as input use [BOM] (begining of mesra) at the beginning of each verse (مصرع) followed by [EOS] (end of statement) at the end of each couplet (بیت). \n\nSee following links for example:\n\n[[BOM] توانا بود](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM]](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیر](URL\n\n[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیربرنا بود [EOS]](URL\n\nIf you like to know about structure of classical Persian poetry refer to these blog posts.", "## Acknowledgment\nThis project is supported by Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).\nand Reference\nPlease reference \"URL\" website if you are using gpt2-persian in your research or commertial application.", "## Contacts\nPlease reachout on Linkedin or Telegram if you have any question or need any help to use the model.\n\nFollow Bolbolzaban on Twitter, Telegram or Instagram" ]
[ 85, 142, 44, 21, 307, 56, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #farsi #persian #fa #doi-10.57967/hf/1207 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# GPT2-Persian\nbolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences:\n1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable \n2. Instead of BPE, google sentence piece tokenizor is used for tokenization.\n3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM])\n\nPlease refer to this blog post for further detail. \nAlso try the model here or on URL.## How to use\nYou can use this model directly with a pipeline for text generation:\n\n\nIf you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel.## Fine-tuning\nFind a basic fine-tuning example on this Github Repo." ]
[ -0.05905081704258919, 0.11201489716768265, -0.004987296648323536, 0.09325363487005234, 0.11019580066204071, 0.023312734439969063, 0.17264798283576965, 0.11999918520450592, -0.0393003411591053, 0.003335883840918541, 0.05602089688181877, 0.005405556410551071, 0.08170146495103836, 0.17169234156608582, 0.10026366263628006, -0.34750914573669434, -0.039610810577869415, -0.01775183528661728, 0.09239861369132996, 0.09273594617843628, 0.15189886093139648, -0.017464369535446167, 0.04818513244390488, 0.05790185555815697, -0.15376533567905426, 0.07197139412164688, 0.0020969195757061243, -0.08205223083496094, 0.08131382614374161, 0.05202040076255798, 0.11045541614294052, -0.009891816414892673, 0.050442151725292206, -0.10601215064525604, 0.04228649660944939, 0.07573254406452179, -0.048319872468709946, 0.05992404744029045, 0.1052292212843895, -0.08766695857048035, 0.17855392396450043, -0.02851993776857853, -0.032506849616765976, 0.05476823076605797, -0.07869002223014832, -0.11000804603099823, -0.046227216720581055, 0.17946359515190125, 0.04024266451597214, 0.08007647842168808, -0.015695981681346893, 0.012656543403863907, -0.061675287783145905, 0.0673520416021347, 0.21049916744232178, -0.2876555323600769, -0.060545772314071655, 0.09236504137516022, -0.05416232720017433, 0.06744246929883957, -0.06654782593250275, 0.01790805719792843, -0.01732676848769188, 0.019976040348410606, 0.04037012159824371, -0.034211330115795135, -0.06819391995668411, -0.028380589559674263, -0.08817336708307266, -0.0032203146256506443, 0.07502608001232147, 0.01908140629529953, -0.05369565263390541, -0.0978340432047844, -0.05620810016989708, -0.00434458814561367, -0.027594031766057014, -0.025324445217847824, 0.010952146723866463, 0.0724632665514946, 0.03151848912239075, -0.20256349444389343, -0.1386283040046692, -0.06282749772071838, -0.05319158732891083, 0.08696051687002182, 0.06754401326179504, 0.02112623117864132, -0.002038655336946249, 0.11135969310998917, -0.14967131614685059, -0.07397417724132538, -0.008974915370345116, -0.07507427036762238, -0.042303599417209625, -0.016070470213890076, -0.02267596498131752, -0.11857278645038605, -0.019584400579333305, 0.10110729932785034, 0.042114801704883575, 0.0753743052482605, 0.07205197215080261, 0.0337260477244854, -0.016573546454310417, 0.07491906732320786, -0.0691588819026947, 0.01879739761352539, 0.09973428398370743, 0.016995983198285103, -0.016545137390494347, 0.024691712111234665, -0.08200618624687195, -0.07242850214242935, 0.018505612388253212, 0.030307048931717873, -0.029168961569666862, 0.04875602200627327, -0.024074234068393707, -0.02770143561065197, 0.12331065535545349, -0.1335843801498413, -0.012869237922132015, 0.0012165294028818607, -0.0698453038930893, 0.004153542220592499, 0.07480500638484955, -0.006705994252115488, -0.1213926300406456, -0.02850310690701008, -0.03485749661922455, 0.048010800033807755, -0.04641667380928993, -0.04979148507118225, -0.01569424942135811, -0.05443456396460533, -0.012768101878464222, -0.181371808052063, -0.191594198346138, 0.023725589737296104, 0.06281544268131256, -0.04495355859398842, 0.0008259735768660903, 0.010753452777862549, 0.013857644982635975, -0.06426489353179932, -0.0008966723689809442, 0.0028782039880752563, -0.03071797452867031, 0.033498287200927734, -0.019405532628297806, 0.04303431510925293, 0.017529023811221123, 0.011188543401658535, -0.033973731100559235, -0.04599231109023094, -0.21945379674434662, 0.14524780213832855, -0.04664258658885956, 0.011202151887118816, -0.12886063754558563, -0.06018504127860069, -0.05685856193304062, -0.003869256004691124, 0.017039088532328606, 0.1085578203201294, -0.07682714611291885, -0.045501671731472015, 0.2177104353904724, -0.03215298429131508, 0.0488194115459919, 0.11859973520040512, -0.0426262691617012, 0.12043248862028122, 0.14926236867904663, 0.17749027907848358, 0.1778707504272461, -0.15466445684432983, 0.010557751171290874, 0.07618705183267593, -0.0743875801563263, 0.023379512131214142, 0.04735080897808075, -0.007721263449639082, 0.04567261040210724, 0.034568917006254196, 0.0009814436780288815, 0.08109093457460403, -0.018640803173184395, -0.0421999916434288, 0.013034210540354252, -0.09183481335639954, -0.04331352934241295, -0.005571033339947462, 0.09685759991407394, -0.027580663561820984, -0.13278569281101227, 0.0012892850209027529, 0.10642734169960022, -0.04051228240132332, -0.0008346394752152264, -0.09402268379926682, 0.04234880581498146, -0.005937139503657818, 0.00619788933545351, -0.12684571743011475, -0.026487715542316437, 0.018588725477457047, 0.0295176450163126, 0.1283048540353775, 0.03785901889204979, 0.068602055311203, 0.04539445415139198, -0.08402072638273239, 0.009331205859780312, -0.013210032135248184, -0.026965275406837463, -0.06257776916027069, -0.03824587166309357, -0.03785314783453941, 0.0004495542962104082, 0.11461815983057022, -0.06535786390304565, 0.06730286777019501, 0.04432450234889984, 0.11148342490196228, -0.0027689493726938963, -0.039518941193819046, 0.04291442781686783, -0.06408913433551788, 0.050973355770111084, -0.10710185021162033, 0.028678685426712036, 0.04777528718113899, 0.006687863264232874, 0.03077428974211216, -0.029660332947969437, -0.041212115436792374, 0.11576977372169495, 0.051779843866825104, -0.1171262115240097, -0.014629559591412544, -0.035338107496500015, 0.023497939109802246, -0.03376538306474686, -0.009835036471486092, 0.229334756731987, -0.006304347887635231, 0.1310819387435913, -0.11144315451383591, -0.01445219200104475, -0.02075572870671749, -0.05511566251516342, 0.021562423557043076, 0.04994921013712883, -0.026358695700764656, -0.1874971240758896, 0.03699573501944542, -0.07671117782592773, -0.04832293465733528, 0.17763514816761017, 0.05459904670715332, -0.06257493048906326, 0.0011374884052202106, 0.08364164084196091, 0.00593179278075695, 0.053816065192222595, 0.06116629019379616, -0.010573424398899078, 0.02472713030874729, 0.029695585370063782, 0.09797120839357376, -0.12991507351398468, 0.002256052801385522, 0.02601613849401474, -0.09934699535369873, -0.008107234723865986, 0.006426734384149313, -0.03969663754105568, 0.05873655155301094, -0.004339308012276888, 0.07093469053506851, 0.006451781373471022, 0.013929472304880619, -0.07682038098573685, 0.13628168404102325, -0.1123109832406044, -0.1954696774482727, -0.1241081953048706, -0.035141751170158386, -0.023348815739154816, 0.030556639656424522, 0.049117423593997955, -0.12935470044612885, -0.04252264276146889, -0.04875355213880539, 0.0750531479716301, -0.009396959096193314, -0.021847430616617203, -0.058131564408540726, 0.02293432131409645, 0.015357443131506443, -0.14372512698173523, -0.008383051492273808, 0.005716609302908182, -0.1207926869392395, 0.050549548119306564, -0.10258837789297104, -0.0017892596079036593, 0.04178915545344353, -0.043567195534706116, 0.036203570663928986, -0.02371828816831112, 0.2658750116825104, -0.0628732219338417, 0.13151198625564575, 0.21688446402549744, 0.10568986088037491, 0.05736343935132027, 0.0370529368519783, 0.022406594827771187, -0.044827111065387726, 0.023458357900381088, 0.06293891370296478, -0.039352573454380035, -0.21654805541038513, -0.004089859779924154, -0.054786164313554764, -0.09192422777414322, 0.07895942032337189, 0.09608405083417892, -0.009420969523489475, 0.11701776832342148, -0.056580204516649246, 0.0714123323559761, 0.06656862795352936, 0.07948444783687592, 0.046619631350040436, 0.01635972410440445, 0.06231413409113884, -0.0748000293970108, 0.012029173783957958, 0.1236448884010315, 0.11201093345880508, 0.14528167247772217, -0.08073558658361435, 0.14840348064899445, 0.03850476071238518, 0.11870628595352173, 0.04367269203066826, 0.06540295481681824, -0.014377373270690441, -0.0038054361939430237, -0.017894331365823746, -0.05430057644844055, -0.0385642908513546, 0.03295370936393738, -0.010772660374641418, -0.052043505012989044, -0.013331078924238682, 0.018635855987668037, 0.07967375218868256, 0.16787593066692352, -0.020193912088871002, -0.1937359869480133, -0.0812583863735199, -0.024788113310933113, -0.10376518964767456, -0.059261925518512726, -0.014271245338022709, 0.03198593109846115, -0.13767844438552856, 0.04115569591522217, -0.005612880922853947, 0.10006403177976608, -0.020206525921821594, -0.006023060530424118, 0.018056562170386314, 0.14554843306541443, -0.023840509355068207, 0.10553040355443954, -0.18726076185703278, 0.07368481904268265, 0.0519116036593914, 0.13613992929458618, -0.07702319324016571, 0.032810576260089874, 0.06932001560926437, 0.034284353256225586, 0.0835423544049263, 0.000484724179841578, 0.05597025528550148, -0.07919757068157196, -0.08724498748779297, 0.03542286530137062, 0.07453885674476624, -0.033017124980688095, 0.023653950542211533, -0.003971952944993973, 0.012057095766067505, -0.02871572971343994, -0.05428623408079147, -0.20581848919391632, -0.17687660455703735, 0.031814973801374435, -0.012927104718983173, 0.011392150074243546, -0.06560724973678589, -0.028741750866174698, -0.01953970640897751, 0.23256821930408478, -0.0013863632921129465, -0.16433179378509521, -0.12542898952960968, 0.06939465552568436, 0.0676620602607727, -0.10233237594366074, 0.04197121784090996, -0.01765184849500656, 0.07969836890697479, -0.04294423758983612, -0.10993833094835281, -0.005873450543731451, -0.06171310320496559, -0.01973281428217888, 0.04051187261939049, 0.12331783026456833, 0.08016780763864517, 0.027105875313282013, 0.036664433777332306, -0.0673808753490448, -0.05804862082004547, -0.11610959470272064, -0.042099032551050186, 0.027656083926558495, 0.07848551124334335, 0.015765978023409843, -0.05957484245300293, -0.007625618018209934, -0.08695158362388611, 0.021664347499608994, 0.10919834673404694, 0.17173612117767334, -0.06927862763404846, 0.08874895423650742, 0.11927761882543564, -0.02659505233168602, -0.13576748967170715, -0.028741488233208656, 0.08237718045711517, 0.03802015632390976, -0.03433002158999443, -0.27151188254356384, 0.04019038379192352, 0.07404109835624695, 0.010578607209026814, 0.015820913016796112, -0.23549441993236542, -0.11111073940992355, 0.09392553567886353, 0.041082266718149185, -0.011591717600822449, -0.13690324127674103, -0.019133659079670906, -0.02751617319881916, -0.16313287615776062, 0.08753857761621475, -0.1561567783355713, 0.14582893252372742, 0.05032762140035629, 0.11264508962631226, 0.00907190889120102, 0.005498180631548166, 0.12195070087909698, -0.01998436264693737, 0.028081471100449562, -0.048560794442892075, 0.08846380561590195, 0.0844569131731987, -0.01340063288807869, 0.10426171123981476, -0.05523144081234932, 0.056952252984046936, -0.09871622174978256, -0.09663991630077362, -0.09262530505657196, 0.04451866075396538, -0.003551783272996545, -0.10182312875986099, -0.0803212895989418, 0.044764552265405655, 0.06043514236807823, -0.015475266613066196, -0.08336718380451202, -0.0645696297287941, 0.02188541181385517, 0.06984240561723709, 0.048046041280031204, -0.11593560129404068, -0.0913088470697403, -0.04578634351491928, -0.038317203521728516, 0.07600899040699005, -0.17734277248382568, -0.01458835881203413, 0.03238610923290253, -0.01698830910027027, 0.09703796356916428, 0.0029430100694298744, -0.13216149806976318, -0.0019306524191051722, 0.07888323068618774, -0.11429601162672043, -0.10904492437839508, -0.0572461299598217, 0.00769458943977952, -0.03028230555355549, -0.029465805739164352, 0.12822437286376953, -0.08220706880092621, -0.07284964621067047, 0.026011278852820396, -0.016644377261400223, -0.07291580736637115, 0.11742233484983444, 0.09539157152175903, 0.003707602620124817, -0.0694541409611702, 0.1107008084654808, 0.07153759151697159, -0.0050714691169559956, 0.00856584683060646, 0.14049193263053894, -0.11564240604639053, -0.06775347888469696, -0.034062664955854416, 0.003731564385816455, -0.03375060483813286, -0.021638598293066025, -0.06057816743850708, -0.013463323935866356, -0.002613985212519765, -0.06599240750074387, 0.02932090498507023, -0.02799079567193985, -0.05120912939310074, 0.07520468533039093, -0.08096428215503693, 0.014690535143017769, 0.08349820971488953, 0.0052115097641944885, -0.11578540503978729, 0.18624937534332275, -0.004329390358179808, 0.0661645159125328, -0.028236165642738342, 0.03649849817156792, -0.06421907991170883, -0.0030109903309494257, -0.07414738088846207, 0.019250167533755302, -0.10811354219913483, 0.007584477309137583, -0.028733985498547554, -0.0327664352953434, -0.01418673899024725, 0.06328863650560379, -0.06686290353536606, -0.042243391275405884, -0.03893708065152168, 0.029022568836808205, -0.09963827580213547, 0.03537836670875549, 0.015402217395603657, -0.03253559768199921, 0.13373634219169617, 0.07328949123620987, -0.04237078130245209, 0.06998361647129059, -0.09809602051973343, -0.03137248754501343, 0.015084940008819103, -0.003355287481099367, 0.001946200500242412, -0.021046053618192673, 0.06783293932676315, -0.010997210629284382, 0.007700799498707056, -0.003385051852092147, 0.10499197989702225, -0.09778869152069092, -0.041409313678741455, -0.044313620775938034, 0.045574720948934555, -0.1282760500907898, 0.07302042096853256, 0.10846802592277527, 0.041881803423166275, 0.04664839431643486, -0.0773477703332901, 0.022630605846643448, -0.15641021728515625, -0.007015202660113573, -0.024711867794394493, -0.05267803743481636, -0.01960303820669651, -0.054443877190351486, 0.057455189526081085, -0.011392035521566868, 0.1165992021560669, 0.03976515308022499, -0.06278959661722183, 0.012407025322318077, -0.011031187139451504, 0.10236357152462006, -0.007586417719721794, 0.11965890973806381, 0.022009599953889847, -0.006798350717872381, -0.026136865839362144, 0.007307562977075577, 0.021235013380646706, -0.06331777572631836, 0.09496959298849106, 0.14367014169692993, -0.011475830338895321, 0.052929747849702835, -0.04509134590625763, -0.08008509874343872, -0.06477541476488113, 0.019868595525622368, -0.01623765006661415, -0.024518631398677826, -0.12563496828079224, -0.07220581918954849, 0.22801803052425385, -0.10826991498470306, 0.09363315999507904, 0.03937722370028496, -0.09028397500514984, -0.11333376914262772, -0.17822419106960297, -0.026843184605240822, -0.07025608420372009, 0.007502035703510046, -0.07691085338592529, 0.018926376476883888, 0.016278866678476334, 0.023709319531917572, -0.02926654927432537, 0.19829650223255157, -0.037470944225788116, -0.13672125339508057, 0.0684373751282692, -0.025949710980057716, 0.01044231653213501, -0.006690889596939087, -0.039643120020627975, 0.031445376574993134, 0.025843899697065353, 0.05658901855349541, 0.021344348788261414, 0.06571298837661743, 0.023320550099015236, -0.08559965342283249, -0.0007935867179185152, -0.027150528505444527, 0.030095821246504784, 0.025540625676512718, 0.13124209642410278, 0.005530869122594595, -0.08818931132555008, -0.0027622331399470568, 0.21540763974189758, 0.020165391266345978, -0.143284872174263, -0.15815772116184235, 0.14788134396076202, 0.005793801974505186, -0.01848878711462021, -0.007997607812285423, -0.07608343660831451, -0.009412378072738647, 0.21801462769508362, 0.24368564784526825, -0.07504227012395859, 0.017142046242952347, 0.0022704738657921553, -0.0058998423628509045, 0.03501124680042267, 0.13166235387325287, 0.0546940416097641, 0.15224067866802216, -0.05958855524659157, 0.08855339884757996, 0.027177361771464348, -0.008607186377048492, -0.1522897481918335, 0.12278717756271362, 0.016729945316910744, 0.015467153862118721, -0.02413707971572876, 0.08226164430379868, -0.009329608641564846, -0.09623882919549942, -0.05476958677172661, 0.002202110830694437, -0.10411487519741058, 0.00530819920822978, -0.04287504032254219, 0.023819398134946823, 0.07430554926395416, -0.008152767084538937, 0.05574222654104233, 0.11474642902612686, 0.010890288278460503, -0.10619111359119415, -0.052251897752285004, 0.11782538890838623, -0.001974075101315975, 0.11693501472473145, -0.025545503944158554, 0.04348398372530937, 0.08135499060153961, -0.02587878704071045, -0.10740009695291519, 0.0813773050904274, 0.034496087580919266, -0.0453030951321125, 0.02933793142437935, 0.07577119022607803, -0.01808221824467182, -0.08310279250144958, 0.018463606014847755, -0.05098677799105644, 0.009710931219160557, -0.025937067344784737, 0.05495424196124077, -0.1175369918346405, 0.0686437264084816, -0.1348923295736313, 0.10060559958219528, 0.1839836984872818, -0.05272902920842171, 0.009832511655986309, -0.07334159314632416, 0.042443402111530304, 0.08842790871858597, 0.031585246324539185, -0.032519709318876266, -0.12333408743143082, -0.03853694722056389, 0.009459913708269596, 0.030008770525455475, -0.15783119201660156, -0.04345085099339485, -0.03712410852313042, -0.025769082829356194, -0.06081000715494156, 0.14438778162002563, 0.05646326765418053, 0.047329824417829514, 0.012278860434889793, -0.10915710031986237, -0.044594258069992065, 0.04440414905548096, -0.1539291888475418, -0.06053895875811577 ]
null
null
transformers
# Personal DialoGPT Model
{"tags": ["conversational"]}
text-generation
bonebambi/DialoGPT-small-ThakirClone
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Personal DialoGPT Model
[ "# Personal DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Personal DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Personal DialoGPT Model" ]
[ -0.013048808090388775, 0.06021147221326828, -0.005783938802778721, 0.013958388939499855, 0.14544299244880676, -0.01806739903986454, 0.1659075766801834, 0.13064159452915192, -0.004324611742049456, -0.03570028394460678, 0.0889839380979538, 0.1748768836259842, 0.0022326563484966755, 0.05585828050971031, -0.054340802133083344, -0.29537978768348694, 0.04832177236676216, 0.04510147124528885, 0.07056012004613876, 0.11485455930233002, 0.09371862560510635, -0.03807985037565231, 0.09028392285108566, 0.024512887001037598, -0.12602056562900543, 0.009868393652141094, 0.03162707760930061, -0.11769705265760422, 0.13774262368679047, 0.06948722898960114, 0.024774452671408653, 0.010170499794185162, -0.03788784146308899, -0.15852703154087067, 0.031279515475034714, -0.009807943366467953, -0.03295792266726494, 0.02695859782397747, 0.021787768229842186, -0.07130707055330276, 0.14297670125961304, 0.13217221200466156, 0.01153564453125, 0.049784861505031586, -0.15286162495613098, -0.01863701082766056, 0.01150808110833168, 0.052107520401477814, 0.08008676767349243, 0.12553317844867706, -0.05658089369535446, 0.11134108901023865, -0.08624481409788132, 0.1009792685508728, 0.08065293729305267, -0.28938156366348267, -0.012571386992931366, 0.11251706629991531, 0.023401957005262375, 0.05789438635110855, -0.03909793868660927, 0.06880117207765579, 0.006520743481814861, 0.0164069514721632, -0.02915431372821331, -0.07124263048171997, -0.11539819091558456, 0.01408698596060276, -0.09151915460824966, -0.01628687232732773, 0.2377876490354538, -0.04440774768590927, 0.06288298964500427, -0.11140765249729156, -0.07932751625776291, -0.025691192597150803, -0.05408379063010216, -0.038010984659194946, -0.09273432195186615, 0.08850739151239395, -0.008905977942049503, -0.08443761616945267, -0.13105671107769012, -0.03211786597967148, -0.16858159005641937, 0.12765398621559143, 0.03953579068183899, 0.035142261534929276, -0.21151317656040192, 0.09634167701005936, 0.011654864065349102, -0.06431891024112701, 0.04385466128587723, -0.103164903819561, 0.02457885630428791, 0.013512092642486095, -0.02903372421860695, -0.03711957857012749, 0.08016254007816315, 0.093216173350811, 0.024390308186411858, 0.01938934251666069, -0.029608145356178284, 0.04090144485235214, 0.06566376984119415, 0.08283527195453644, 0.0002742937358561903, -0.05252537131309509, 0.015255886130034924, -0.10345696657896042, -0.018682176247239113, -0.04612671956419945, -0.1839587241411209, -0.005747679620981216, 0.030406609177589417, 0.06609699875116348, 0.04364343732595444, 0.13313931226730347, -0.0019470381084829569, -0.041563309729099274, 0.05461965128779411, -0.014835025183856487, -0.018414612859487534, 0.014959082938730717, -0.01301512774080038, 0.10896787792444229, -0.014380373060703278, 0.04491670802235603, -0.14261314272880554, -0.010789449326694012, -0.032647278159856796, -0.010131141170859337, -0.026291752234101295, -0.04117988795042038, -0.00723618920892477, -0.039525315165519714, 0.004036822821944952, -0.1620883345603943, -0.15378792583942413, -0.02163652703166008, -0.021849170327186584, -0.05586634948849678, -0.11913582682609558, -0.10146109014749527, 0.015401155687868595, 0.0322013758122921, -0.077916719019413, -0.06148559972643852, -0.07515516877174377, 0.07353732734918594, -0.025777263566851616, 0.07544145733118057, -0.09390159696340561, 0.08487721532583237, -0.08585382252931595, -0.044515542685985565, -0.026626188308000565, 0.12181751430034637, 0.013893509283661842, 0.07869051396846771, -0.0027613884303718805, -0.020436106249690056, -0.10517703741788864, 0.07599592208862305, -0.05812564119696617, 0.22568035125732422, -0.08567668497562408, -0.0980721265077591, 0.28289660811424255, -0.05314332991838455, -0.1059209480881691, 0.14318571984767914, 0.002906656125560403, 0.09663143008947372, 0.15070278942584991, 0.20353716611862183, 0.03006395511329174, 0.01416553370654583, 0.07701633125543594, 0.1289450079202652, -0.10009632259607315, -0.0030616815201938152, 0.010725573636591434, -0.02592826448380947, -0.0604068785905838, 0.03271862119436264, 0.10795938223600388, 0.07055113464593887, -0.049670230597257614, -0.03428072854876518, 0.00553296459838748, -0.008308573625981808, 0.058838482946157455, -0.02537301741540432, 0.10961899161338806, -0.039928995072841644, -0.02555195800960064, 0.008439665660262108, 0.023045402020215988, -0.05313680320978165, 0.02925197407603264, -0.0900467038154602, 0.06632155179977417, 0.024615800008177757, 0.058245521038770676, -0.13616056740283966, -0.040003519505262375, -0.028494488447904587, 0.13558417558670044, 0.060535334050655365, 0.1311691552400589, 0.053594157099723816, -0.050857383757829666, -0.01239355094730854, 0.03876267001032829, 0.1696697175502777, -0.02983245439827442, -0.06342148035764694, -0.0826948955655098, 0.10013411194086075, -0.055215589702129364, 0.11497454345226288, -0.048066046088933945, 0.01644733175635338, -0.006047913338989019, 0.07493539154529572, -0.010914694517850876, 0.03176223114132881, 0.010345591232180595, -0.007774231024086475, -0.028008950874209404, 0.008546470664441586, 0.10522263497114182, 0.0009730160236358643, -0.06128334254026413, 0.23445728421211243, -0.18253660202026367, 0.1505470871925354, 0.1660557985305786, -0.24733324348926544, 0.026825904846191406, -0.11716578900814056, -0.0435449443757534, 0.012892944738268852, 0.01922835409641266, -0.04049820452928543, 0.2704106569290161, -0.02395317144691944, 0.16761253774166107, -0.04479500651359558, -0.034993331879377365, -0.0358320027589798, -0.060178011655807495, 0.008640069514513016, 0.07240668684244156, 0.07311566919088364, -0.1354125738143921, 0.16243304312229156, 0.04871803894639015, 0.07190600782632828, 0.20464764535427094, 0.036811426281929016, 0.01478339172899723, 0.087142713367939, 0.003976028878241777, -0.07578884810209274, -0.08189460635185242, -0.3158131539821625, -0.040340155363082886, 0.0735374167561531, 0.04172460362315178, 0.1239105835556984, -0.09969688206911087, -0.025614671409130096, -0.006510540377348661, -0.037974800914525986, 0.03313430771231651, 0.09992553293704987, 0.030281847342848778, 0.1359136700630188, -0.009749316610395908, -0.04757368192076683, 0.049048710614442825, 0.007132282014936209, -0.10059182345867157, 0.1725512444972992, -0.13726384937763214, -0.37808865308761597, -0.1093190386891365, -0.20556947588920593, -0.06351924687623978, 0.06697945296764374, 0.10668784379959106, -0.13249732553958893, -0.020117441192269325, -0.009943981654942036, 0.12000758200883865, -0.06644231081008911, -0.01857275329530239, -0.056737449020147324, 0.015114144422113895, -0.12058846652507782, -0.11653778702020645, -0.04674852266907692, -0.03363294526934624, -0.07554136961698532, 0.11225232481956482, -0.12450052797794342, 0.001685097930021584, 0.23853909969329834, 0.0787336453795433, 0.045236680656671524, -0.05323633924126625, 0.21380159258842468, -0.1053624078631401, -0.0001334144180873409, 0.2019454538822174, -0.017541000619530678, 0.04567978158593178, 0.1491367518901825, -0.001966604497283697, -0.0782284289598465, 0.04346178472042084, -0.009344751015305519, -0.05556032434105873, -0.20438753068447113, -0.1632833182811737, -0.09543877840042114, 0.0967807024717331, 0.02169620618224144, 0.06668179482221603, 0.1741151362657547, 0.05568603426218033, -0.04016494378447533, 0.004428705666214228, 0.043000977486371994, 0.07813548296689987, 0.277063250541687, -0.09344352781772614, 0.13472282886505127, -0.01364726573228836, -0.17311078310012817, 0.07893466204404831, 0.05166492611169815, 0.05819439888000488, 0.058898478746414185, 0.07323353737592697, 0.010582010261714458, 0.04828035831451416, 0.1172395870089531, 0.04843248054385185, 0.02743608132004738, -0.03815118595957756, -0.0363205187022686, -0.03840228170156479, -0.04708850756287575, 0.026366114616394043, 0.07948638498783112, -0.1746499389410019, -0.014266891404986382, -0.055706217885017395, 0.07163646072149277, 0.09723170846700668, 0.09793645888566971, -0.162073016166687, -0.028623538091778755, 0.06568117439746857, -0.06517746299505234, -0.1443445384502411, 0.08555512130260468, 0.041392311453819275, -0.15051966905593872, 0.018377669155597687, 0.014869865030050278, 0.11428263038396835, -0.102552130818367, 0.09188266098499298, -0.10806574672460556, -0.08712338656187057, 0.011279277503490448, 0.10716796666383743, -0.2737039625644684, 0.19385500252246857, -0.01473439671099186, -0.059737678617239, -0.1154552549123764, -0.014638958498835564, 0.015488949604332447, 0.098875030875206, 0.0708303228020668, -0.00685368524864316, 0.043913278728723526, 0.010030361823737621, -0.0526653416454792, 0.038540031760931015, 0.09321767836809158, -0.02738896571099758, -0.03483074530959129, -0.050584692507982254, -0.0063171167857944965, -0.019451068714261055, -0.11690042912960052, -0.008422785438597202, -0.17635031044483185, 0.07646184414625168, 0.0742020532488823, 0.08932094275951385, 0.03870343416929245, -0.01013091579079628, -0.10320451855659485, 0.21811673045158386, 0.016857728362083435, -0.08027174323797226, -0.08071383833885193, -0.029856469482183456, 0.029379503801465034, -0.05008665472269058, 0.01891850307583809, -0.04686275124549866, 0.034748051315546036, -0.04674576222896576, -0.1681484580039978, 0.09092425554990768, -0.10125921666622162, -0.04367338493466377, -0.01202328596264124, 0.21669839322566986, -0.014605987817049026, 0.020537810400128365, 0.047421231865882874, -0.02938479371368885, -0.10625775903463364, -0.08851082623004913, -0.013782781548798084, 0.05056115984916687, -0.014138239435851574, 0.05074210464954376, -0.038341790437698364, -0.07724093645811081, -0.07613073289394379, -0.03447191044688225, 0.3281380534172058, 0.11583354324102402, -0.03606148064136505, 0.17881076037883759, 0.13734303414821625, -0.07013867795467377, -0.2830623686313629, -0.11347241699695587, -0.0870685800909996, -0.05094730481505394, -0.07145868241786957, -0.1813488006591797, 0.09149875491857529, -0.03868449851870537, -0.01582617312669754, 0.06410331279039383, -0.30721721053123474, -0.09287510812282562, 0.1873684525489807, -0.02296457812190056, 0.37324216961860657, -0.09648281335830688, -0.08723518997430801, -0.058371320366859436, -0.16646692156791687, 0.147234246134758, -0.012940637767314911, 0.10620693862438202, -0.00008388470450881869, 0.1661759912967682, 0.06132911890745163, 0.011935651302337646, 0.09237989038228989, 0.018879013136029243, -0.05405472218990326, -0.11344414949417114, -0.040612928569316864, -0.05192381888628006, 0.028259895741939545, 0.04297501966357231, -0.029330048710107803, 0.015450065024197102, -0.13350261747837067, -0.05927055701613426, -0.08917073160409927, 0.03609996661543846, 0.04253779724240303, -0.07261993736028671, -0.037377141416072845, -0.06154102459549904, 0.0015143761411309242, 0.02196049876511097, 0.10993031412363052, -0.12983255088329315, 0.1395028680562973, 0.052669957280159, 0.1589258313179016, -0.12566779553890228, -0.008995439857244492, -0.06884440034627914, -0.05308595672249794, 0.04460509866476059, -0.06857971101999283, 0.030744053423404694, 0.09162923693656921, -0.048752423375844955, 0.10357396304607391, 0.07599959522485733, 0.009036150760948658, 0.01399153284728527, 0.09329665452241898, -0.22266153991222382, -0.07595246285200119, -0.08116845041513443, 0.028919508680701256, 0.07100872695446014, 0.08580632507801056, 0.1923755556344986, -0.000650464033242315, -0.039354871958494186, -0.004161592572927475, 0.02264438569545746, -0.042962778359651566, 0.0755743607878685, -0.037482693791389465, 0.012392773292958736, -0.15042747557163239, 0.0634896531701088, -0.00014593951345887035, -0.09030564874410629, 0.02578072063624859, 0.1392775923013687, -0.09065494686365128, -0.13924424350261688, -0.047558631747961044, 0.09728831797838211, -0.0916738510131836, -0.03064759261906147, -0.030578818172216415, -0.15591910481452942, 0.06252940744161606, 0.10732295364141464, 0.05400609225034714, 0.08109672367572784, -0.08981561660766602, -0.00786274392157793, -0.03250380977988243, -0.01224524062126875, 0.028861558064818382, -0.038189712911844254, -0.05989081412553787, 0.08202801644802094, -0.026967395097017288, 0.11575552076101303, -0.09376074373722076, -0.12685097754001617, -0.1506149023771286, 0.04230370745062828, -0.10070512443780899, -0.09076070785522461, -0.10770498961210251, -0.028384488075971603, 0.003165848320350051, -0.014603939838707447, -0.039859380573034286, -0.058517150580883026, -0.1224692091345787, 0.040933091193437576, -0.03598189353942871, 0.022906014695763588, -0.06108416989445686, 0.05299099162220955, 0.05466795712709427, -0.004800828639417887, 0.17593684792518616, 0.1462915688753128, -0.11868622899055481, 0.10045221447944641, -0.16565142571926117, -0.05212767422199249, 0.10689632594585419, 0.026352791115641594, 0.03815722465515137, 0.06421361863613129, 0.01866389811038971, 0.0582803413271904, 0.05049237236380577, 0.05559266731142998, 0.05059659108519554, -0.09226836264133453, 0.07238586246967316, -0.0565694235265255, -0.13987931609153748, -0.04371263459324837, -0.04617593437433243, 0.009163083508610725, 0.028221068903803825, 0.08087790757417679, -0.07525266706943512, 0.06543876230716705, -0.046101897954940796, 0.04258731007575989, 0.018062012270092964, -0.1415063440799713, 0.009533987380564213, -0.09387307614088058, 0.04318857565522194, 0.02452300302684307, 0.2410578578710556, 0.05529094114899635, -0.03249230235815048, 0.016892312094569206, 0.06933804601430893, 0.048738881945610046, -0.019089164212346077, 0.18176041543483734, 0.10038843750953674, -0.06153136119246483, -0.0846366360783577, 0.07657323032617569, 0.013247720897197723, 0.042750850319862366, 0.09699449688196182, -0.028333652764558792, -0.02339785173535347, 0.09141333401203156, 0.026003288105130196, 0.0006060494342818856, -0.09768451750278473, -0.15117760002613068, -0.04700921103358269, 0.051797740161418915, -0.09248658269643784, 0.14976099133491516, 0.11805494129657745, -0.004117221105843782, 0.04413290694355965, -0.002516311127692461, -0.06346102058887482, -0.1848774552345276, -0.18269412219524384, -0.06644494831562042, -0.14888879656791687, -0.0035811830312013626, -0.12472209334373474, 0.040573518723249435, 0.007984466850757599, 0.08251039683818817, -0.082066111266613, 0.08595458418130875, 0.0018150806427001953, -0.12489297240972519, 0.08033236861228943, -0.038614992052316666, 0.09350708872079849, -0.0683898776769638, 0.0022889557294547558, -0.08606124669313431, 0.046502694487571716, 0.02076529711484909, 0.036586202681064606, -0.06233896687626839, 0.003134238999336958, -0.11637882888317108, -0.06205221265554428, -0.05513457953929901, 0.0479884147644043, -0.024248315021395683, 0.17208774387836456, 0.022425444796681404, -0.03772715851664543, 0.02221817709505558, 0.2699437737464905, -0.08261463791131973, -0.09518903493881226, -0.07998912036418915, 0.22098860144615173, 0.0039255921728909016, 0.09391161799430847, -0.010534289292991161, 0.012009406462311745, -0.1007990837097168, 0.3557683229446411, 0.3215644061565399, -0.06953628361225128, 0.01487854402512312, 0.0044026607647538185, 0.0448882058262825, 0.08740605413913727, 0.12359047681093216, 0.12762489914894104, 0.3079226613044739, -0.05740072950720787, -0.020222283899784088, 0.0014620802830904722, -0.014279074035584927, -0.08152655512094498, 0.03688944876194, 0.06075572595000267, -0.05807368829846382, -0.016145383939146996, 0.1146506816148758, -0.2588891386985779, 0.12205447256565094, -0.17010313272476196, -0.14370304346084595, -0.08409092575311661, 0.018266117200255394, 0.06969809532165527, 0.0450453944504261, 0.10705507546663284, 0.012435901910066605, -0.06925185024738312, 0.10506851971149445, 0.021182402968406677, -0.210024893283844, -0.00796404480934143, 0.09047217667102814, -0.05919202044606209, -0.026582147926092148, -0.0284173134714365, 0.07426580041646957, 0.07192851603031158, 0.05150933563709259, 0.005397267173975706, 0.08480636775493622, -0.013765847310423851, -0.07269999384880066, 0.045175567269325256, 0.05988011136651039, 0.02713518589735031, -0.061134885996580124, 0.06659010797739029, -0.13579052686691284, 0.05589422211050987, 0.007353511638939381, -0.0018502046586945653, -0.03490952029824257, 0.04098643735051155, -0.0915704220533371, 0.06733576208353043, 0.07956817746162415, -0.0008822708623483777, -0.013363691978156567, -0.026576368138194084, -0.016639577224850655, -0.0461883582174778, -0.06891319155693054, -0.08970851451158524, -0.17903664708137512, -0.11168204247951508, 0.03446175158023834, -0.008509651757776737, -0.16223573684692383, 0.01683996059000492, -0.09630490839481354, 0.0472976453602314, -0.11818549036979675, 0.101368248462677, 0.05146665871143341, 0.022344207391142845, 0.011776317842304707, -0.03980530798435211, 0.05653753876686096, 0.11240746825933456, -0.13578109443187714, -0.08306589722633362 ]
null
null
transformers
# DistilWav2Vec2 Adult/Child Speech Classifier 37M DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a distilled version of [wav2vec2-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------- | ------- | ----------- | ----------------------------------------- | | `distil-wav2vec2-adult-child-cls-37m` | 37M | wav2vec 2.0 | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.1431 | 95.89% | 0.9624 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.2586 | 1.0 | 96 | 0.2257 | 0.9298 | 0.9363 | | 0.1917 | 2.0 | 192 | 0.1743 | 0.9460 | 0.9500 | | 0.1568 | 3.0 | 288 | 0.1701 | 0.9511 | 0.9545 | | 0.0965 | 4.0 | 384 | 0.1501 | 0.9548 | 0.9584 | | 0.1179 | 5.0 | 480 | 0.1431 | 0.9589 | 0.9624 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/). All computation and development are done on Kaggle. ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distil-wav2vec2-adult-child-cls-37m", "results": []}]}
audio-classification
bookbot/distil-wav2vec2-adult-child-cls-37m
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us
DistilWav2Vec2 Adult/Child Speech Classifier 37M ================================================ DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the wav2vec 2.0 architecture. This model is a distilled version of wav2vec2-adult-child-cls on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 32 * 'eval\_batch\_size': 32 * 'seed': 42 * 'gradient\_accumulation\_steps': 4 * 'total\_train\_batch\_size': 128 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 5 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle. ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 63, 170, 79, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.07341974973678589, 0.16885074973106384, -0.003847966669127345, 0.05822892114520073, 0.07861470431089401, -0.004116253927350044, 0.14707869291305542, 0.107424795627594, -0.02463751658797264, 0.12783679366111755, 0.04930301010608673, 0.07326442003250122, 0.08419784158468246, 0.07653339952230453, -0.059100598096847534, -0.23475533723831177, 0.032690126448869705, -0.07081862539052963, -0.11169906705617905, 0.13235828280448914, 0.07712090015411377, -0.10119420289993286, 0.03923111781477928, -0.0043706693686544895, -0.08067482709884644, -0.030571065843105316, -0.029091350734233856, -0.04765314236283302, 0.06812094897031784, 0.04525856301188469, 0.08490551263093948, 0.05197741463780403, 0.048957470804452896, -0.2818554639816284, 0.004889331292361021, 0.06351612508296967, 0.046497710049152374, 0.05393262207508087, 0.09910960495471954, -0.03248085826635361, 0.18563047051429749, -0.0576392337679863, 0.04580647498369217, 0.04297329857945442, -0.11375408619642258, -0.19825787842273712, -0.08790487051010132, 0.05080043897032738, 0.13399983942508698, 0.0652850791811943, -0.06816186010837555, 0.10934312641620636, -0.043246474117040634, 0.09072574973106384, 0.18054886162281036, -0.23999838531017303, -0.04901966452598572, -0.008094457909464836, 0.029631223529577255, 0.06608414649963379, -0.11363320052623749, -0.00384578388184309, 0.054186057299375534, -0.026019500568509102, 0.03966042771935463, -0.02690996415913105, 0.07928919047117233, -0.02426949515938759, -0.16752293705940247, -0.0863383561372757, 0.13406091928482056, 0.08503945916891098, -0.05724675580859184, -0.12772798538208008, -0.005520500708371401, -0.12720659375190735, 0.009390534833073616, -0.02112695947289467, 0.004725134931504726, -0.04997027665376663, 0.0012567240046337247, -0.020730646327137947, -0.10310070961713791, -0.03352852910757065, 0.04495938867330551, 0.20801009237766266, 0.021931225433945656, -0.00865207053720951, 0.03911855071783066, 0.09441889822483063, 0.09767845273017883, -0.1631910353899002, 0.010809216648340225, -0.005049547180533409, -0.08705832064151764, -0.038769692182540894, -0.01995932310819626, 0.008553704246878624, 0.01477512065321207, 0.13155771791934967, -0.038036689162254333, 0.051021941006183624, -0.026733754202723503, -0.0030797843355685472, 0.025599094107747078, 0.12495899200439453, -0.05224670469760895, -0.048207662999629974, -0.05245637148618698, 0.09537744522094727, -0.0007471522549167275, -0.03707697615027428, -0.042409125715494156, 0.026174286380410194, 0.07378096133470535, 0.08752351999282837, 0.00501353619620204, 0.010099831968545914, -0.08875632286071777, -0.06419194489717484, 0.025815367698669434, -0.12275225669145584, 0.025953738018870354, 0.06978090852499008, -0.052408184856176376, 0.019460853189229965, -0.006116658914834261, 0.05861187353730202, -0.06064280495047569, 0.0754159614443779, -0.0630006343126297, -0.005525680724531412, -0.03163667395710945, -0.08477833867073059, 0.021920405328273773, -0.06221497431397438, -0.005647339392453432, -0.039315637201070786, -0.02366386540234089, -0.08336605131626129, 0.045802388340234756, -0.064961738884449, -0.05215635523200035, -0.07298796623945236, -0.09495691955089569, 0.03422069922089577, -0.005066830199211836, 0.1010686531662941, -0.04291790351271629, 0.09826615452766418, 0.01252171490341425, 0.030017508193850517, 0.11587262898683548, 0.05026297643780708, -0.07536657154560089, 0.06446685642004013, -0.11822853237390518, 0.1073947325348854, -0.0833040326833725, 0.0014258896699175239, -0.16535532474517822, -0.1067686453461647, 0.010412991978228092, -0.008676784113049507, 0.048781611025333405, 0.13510683178901672, -0.13062430918216705, -0.08052989840507507, 0.10554125159978867, -0.07987280189990997, -0.11804842203855515, 0.1308765858411789, -0.03651518374681473, 0.04559175297617912, 0.0461001843214035, 0.16766978800296783, 0.036667559295892715, -0.10901027917861938, -0.06382329761981964, -0.11732326447963715, 0.12027262896299362, 0.13482239842414856, 0.10452689975500107, -0.038227926939725876, 0.05283990874886513, -0.03952529653906822, -0.08186078071594238, -0.010772290639579296, -0.028864825144410133, -0.090317003428936, -0.0008520354167558253, -0.04814158380031586, 0.03925366327166557, 0.023292534053325653, -0.02119768038392067, -0.05460088700056076, -0.1386159211397171, -0.028344424441456795, 0.07139772921800613, -0.09485755115747452, 0.015217158943414688, -0.08119171112775803, 0.052640244364738464, -0.019423682242631912, -0.02372615784406662, -0.17030073702335358, -0.015890929847955704, 0.04472482204437256, -0.10150843113660812, 0.03974612429738045, -0.011746219359338284, 0.027409851551055908, 0.03300762549042702, -0.013043064624071121, -0.04831434413790703, -0.045900240540504456, 0.005056430585682392, -0.03240278735756874, -0.22718173265457153, -0.035818006843328476, -0.027132263407111168, 0.20377129316329956, -0.2428278625011444, -0.010732158087193966, 0.10320350527763367, 0.12867677211761475, 0.035564880818128586, -0.05056995898485184, 0.03149108588695526, 0.025196917355060577, -0.030914178118109703, -0.04595484957098961, 0.008586213923990726, -0.005664951168000698, -0.11928689479827881, 0.0360209122300148, -0.19638954102993011, -0.08218982815742493, 0.08628049492835999, 0.0003557232557795942, -0.08600953966379166, -0.058249928057193756, -0.0490940660238266, -0.04955286160111427, -0.01357776578515768, 0.007881478406488895, 0.18075139820575714, 0.05645492300391197, 0.0918499007821083, -0.09093333035707474, -0.07872878015041351, 0.02899160422384739, -0.018842626363039017, -0.024789979681372643, 0.1330554336309433, 0.03453954681754112, -0.1343604177236557, 0.0941319540143013, 0.12003763765096664, -0.020498165860772133, 0.1297055333852768, -0.033637698739767075, -0.11041377484798431, -0.08225614577531815, 0.034535203129053116, 0.016372453421354294, 0.04660365730524063, -0.10777617245912552, 0.021932853385806084, 0.02956360951066017, 0.0324961394071579, -0.0120500847697258, -0.16030320525169373, 0.028879135847091675, 0.04288666322827339, -0.062151726335287094, -0.021236592903733253, 0.005214817821979523, -0.00890637282282114, 0.07909011840820312, 0.009938790462911129, 0.017553964629769325, -0.023843076080083847, -0.06647709757089615, -0.11233551055192947, 0.1649516075849533, -0.0607139877974987, -0.13793841004371643, -0.1002328023314476, -0.0345379039645195, -0.046653322875499725, -0.006115737371146679, 0.03644070029258728, -0.047406405210494995, -0.05147029086947441, -0.07874642312526703, 0.03450668975710869, -0.005622323602437973, -0.015709418803453445, -0.006769545841962099, 0.021953104063868523, 0.03018670156598091, -0.08452744781970978, 0.01119308453053236, 0.026922592893242836, -0.029760349541902542, 0.0007951799198053777, 0.05502823367714882, 0.06663725525140762, 0.1666686087846756, 0.049563776701688766, -0.012175768613815308, -0.018408162519335747, 0.2240825742483139, -0.15706728398799896, 0.0061766356229782104, 0.0933748260140419, -0.0892036110162735, 0.03952842205762863, 0.18104662001132965, 0.012691052630543709, -0.10087278485298157, 0.05729493871331215, 0.06764504313468933, -0.023304253816604614, -0.29022136330604553, -0.03817116096615791, -0.04450048878788948, -0.01415756344795227, 0.08798661082983017, 0.025591164827346802, -0.014885167591273785, 0.036073654890060425, -0.06095802038908005, -0.020182112231850624, 0.033338624984025955, 0.0649522915482521, 0.1047234833240509, 0.0350891649723053, 0.08182195574045181, -0.018391387537121773, -0.033670615404844284, 0.05289458855986595, 0.02528994530439377, 0.1808650642633438, 0.0004301570006646216, 0.21576671302318573, 0.06259778887033463, 0.08421777188777924, -0.029638979583978653, 0.012498674914240837, 0.03555141016840935, 0.02992170862853527, 0.017593348398804665, -0.08133372664451599, -0.04573020339012146, 0.09800182282924652, 0.09949968755245209, -0.01664532721042633, -0.05486675724387169, -0.0024019822012633085, 0.035749953240156174, 0.329944372177124, 0.09726744890213013, -0.21032723784446716, -0.06611839681863785, 0.0549657866358757, -0.06110738590359688, -0.04152863100171089, -0.007897323928773403, 0.11362946778535843, -0.09694650024175644, 0.05902091786265373, -0.05149003118276596, 0.0705944150686264, -0.11182697862386703, -0.017956282943487167, 0.02940460667014122, -0.0007064028177410364, -0.013410807587206364, 0.06211409345269203, -0.19231845438480377, 0.25589194893836975, 0.0012578521855175495, 0.06134193390607834, -0.05696018040180206, 0.032850779592990875, 0.004739335272461176, -0.07433871924877167, 0.14452728629112244, -0.0068653663620352745, -0.03931274265050888, -0.14141732454299927, -0.09960684180259705, 0.00856787245720625, 0.15530548989772797, -0.09899413585662842, 0.13378378748893738, -0.045884497463703156, 0.004433813970535994, 0.004609881434589624, -0.06737291812896729, -0.07117041200399399, -0.0889270007610321, 0.07462102919816971, -0.009209330193698406, 0.026676423847675323, -0.04201675206422806, -0.08368347585201263, -0.07799260318279266, 0.15012148022651672, -0.14862675964832306, -0.06683581322431564, -0.10738003253936768, 0.019877316430211067, 0.15827825665473938, -0.060115426778793335, 0.025012735277414322, 0.004591183736920357, 0.14203666150569916, 0.026369329541921616, 0.01610700599849224, 0.09829941391944885, -0.045127879828214645, -0.23892386257648468, -0.024843571707606316, 0.17442955076694489, 0.05090678483247757, 0.07155971229076385, -0.013815267942845821, 0.05694654956459999, -0.0036486145108938217, -0.08681700378656387, 0.05842803418636322, -0.012972907163202763, -0.00602169893682003, 0.07597008347511292, -0.006149249151349068, -0.03095880337059498, -0.1569337397813797, -0.0645139291882515, 0.09410873800516129, 0.359358012676239, -0.057509101927280426, 0.05655863508582115, 0.09406421333551407, -0.08789906650781631, -0.1538453847169876, -0.009286491200327873, 0.1386396884918213, 0.045306846499443054, 0.04832790791988373, -0.1762830913066864, 0.05470096692442894, 0.06767293065786362, -0.028131108731031418, 0.10864941775798798, -0.28442853689193726, -0.13253220915794373, 0.06988067179918289, 0.06072073429822922, -0.10426856577396393, -0.15655680000782013, -0.07029896229505539, -0.011572131887078285, -0.0680335983633995, 0.08669833838939667, 0.0038657095283269882, 0.11149126291275024, 0.04784286022186279, 0.07845652848482132, 0.040532197803258896, -0.04124786704778671, 0.16221186518669128, 0.0314381942152977, 0.0345439612865448, -0.053146276623010635, -0.043227486312389374, -0.019973088055849075, -0.0674654021859169, 0.03314584493637085, -0.046208176761865616, 0.022591494023799896, -0.10981472581624985, -0.05455108731985092, -0.060028158128261566, 0.016309602186083794, -0.061094071716070175, -0.06429014354944229, -0.03989693522453308, 0.06836719810962677, 0.0947556346654892, -0.0005734630976803601, 0.06577086448669434, -0.0609346367418766, 0.04073312506079674, 0.17754830420017242, 0.15416547656059265, 0.1150272861123085, -0.06724285334348679, -0.02080162800848484, 0.014270121231675148, 0.04151130095124245, -0.14464588463306427, 0.06719164550304413, 0.14780758321285248, 0.0456976518034935, 0.17077523469924927, 0.002538911532610655, -0.10709605365991592, 0.007161268964409828, 0.03271349519491196, -0.10885652899742126, -0.11776662617921829, 0.0020875982008874416, 0.011320723220705986, -0.15887132287025452, -0.07228536158800125, 0.14100554585456848, -0.021372966468334198, -0.017216404899954796, 0.017143281176686287, 0.03981148824095726, -0.015435528010129929, 0.1557096242904663, 0.01609610579907894, 0.07233130931854248, -0.0590585358440876, 0.08736459910869598, 0.09141109138727188, -0.12768490612506866, 0.07265061885118484, 0.05198652669787407, -0.037807706743478775, -0.02002309262752533, -0.02457234263420105, 0.020316872745752335, 0.007672795094549656, -0.02316739782691002, -0.06471564620733261, -0.09453976154327393, 0.039356641471385956, 0.09401548653841019, 0.036887072026729584, 0.059898845851421356, -0.025662364438176155, 0.0037477193400263786, -0.12206071615219116, 0.14567646384239197, 0.042566508054733276, 0.02371411770582199, -0.11577804386615753, 0.08744155615568161, 0.004080680664628744, -0.01889868453145027, -0.0025620809756219387, -0.012367131188511848, -0.0807759165763855, 0.028066910803318024, -0.07487431168556213, 0.024269070476293564, -0.04719199612736702, -0.0034731898922473192, 0.017194675281643867, -0.07848415523767471, -0.056150540709495544, 0.017285728827118874, -0.10540253669023514, -0.03316478058695793, -0.018842831254005432, 0.11903666704893112, -0.1277827024459839, -0.046765461564064026, 0.07084055244922638, -0.11695415526628494, 0.09665621072053909, 0.003621331648901105, -0.019648516550660133, 0.035778772085905075, -0.11654376983642578, 0.052994441241025925, 0.032935068011283875, 0.025864647701382637, 0.013913379982113838, -0.2440413385629654, -0.014116308651864529, -0.023952456191182137, 0.012935515493154526, -0.0018541846657171845, 0.030193602666258812, -0.1254940629005432, -0.04537232220172882, -0.02925356663763523, -0.0695287361741066, -0.040155574679374695, 0.03816714882850647, 0.027580687776207924, 0.035823773592710495, 0.21062541007995605, -0.04016534984111786, 0.09820231050252914, -0.1633230596780777, -0.006662354338914156, -0.006853544153273106, -0.008449327200651169, -0.04852669686079025, -0.04027898237109184, 0.06217436119914055, -0.08721834421157837, 0.07586601376533508, -0.044210515916347504, 0.03677903860807419, 0.045700810849666595, -0.09011674672365189, -0.012553899548947811, 0.05229847878217697, 0.1655612289905548, 0.05847221612930298, -0.024891117587685585, 0.05727168545126915, -0.03443312644958496, 0.008821052499115467, 0.11136246472597122, 0.13386230170726776, 0.13020946085453033, 0.05884398892521858, 0.05554698780179024, 0.08636444061994553, -0.09837877750396729, -0.13200107216835022, 0.11834321171045303, -0.049884382635354996, 0.11404348909854889, -0.031116796657443047, 0.20840585231781006, 0.10055422782897949, -0.21032260358333588, 0.05900062248110771, -0.04240986332297325, -0.0961025282740593, -0.10885994136333466, -0.12254565209150314, -0.07786644995212555, -0.06479897350072861, 0.023039158433675766, -0.11306744068861008, 0.05838160961866379, 0.03290753439068794, 0.048087429255247116, -0.007385616190731525, 0.10434938967227936, -0.02625722438097, -0.036527182906866074, 0.10581567138433456, 0.02034732513129711, -0.01277783140540123, -0.00130862754303962, -0.03948226198554039, 0.04811883345246315, 0.011186708696186543, 0.07490135729312897, -0.004720646422356367, -0.06660550087690353, 0.028446031734347343, -0.05591036006808281, -0.1108817309141159, 0.019797932356595993, 0.0004159442614763975, 0.07670611888170242, 0.13789404928684235, 0.050107382237911224, 0.006904827430844307, -0.009809623472392559, 0.17744217813014984, -0.08263765275478363, -0.008814236149191856, -0.16165494918823242, 0.15405559539794922, -0.027653511613607407, 0.0057900696992874146, 0.020107343792915344, -0.11534774303436279, 0.00789670366793871, 0.11952663958072662, 0.10256225615739822, -0.013994324952363968, -0.0050791846588253975, 0.0033340617083013058, 0.025113608688116074, -0.008185382932424545, 0.039475079625844955, 0.08598899096250534, 0.07209966331720352, -0.04793643206357956, -0.012101702392101288, -0.05345753952860832, -0.07005077600479126, 0.028936095535755157, 0.08515941351652145, 0.010914844460785389, -0.022363727912306786, -0.04256041347980499, 0.14588457345962524, -0.07483641803264618, -0.20197954773902893, 0.04617483541369438, -0.13346143066883087, -0.1743156760931015, 0.004126796964555979, 0.021105527877807617, 0.05022828280925751, 0.04621544107794762, -0.0033009157050400972, -0.07992219179868698, 0.13605691492557526, 0.014348913915455341, -0.013735036365687847, -0.033869873732328415, 0.06636744737625122, -0.06299775838851929, 0.18606360256671906, 0.0035714376717805862, 0.10872502624988556, 0.09851137548685074, 0.03363829478621483, -0.07729940861463547, 0.053710468113422394, 0.09552864730358124, -0.12006272375583649, 0.030504705384373665, 0.20521558821201324, -0.04544898122549057, 0.14080283045768738, 0.09215985983610153, -0.05877376347780228, 0.03196452185511589, -0.06365945190191269, -0.044427450746297836, -0.10010722279548645, 0.02247227169573307, -0.07866107672452927, 0.1439661681652069, 0.21100081503391266, -0.06808396428823471, -0.011816482059657574, -0.03626459836959839, 0.00913473591208458, 0.030237693339586258, 0.11523406952619553, -0.024475840851664543, -0.23075269162654877, 0.03926609829068184, 0.02097664773464203, 0.05955592915415764, -0.2166491448879242, -0.05463949218392372, 0.03928564488887787, -0.024340342730283737, -0.0463411919772625, 0.11243379861116409, -0.002473023720085621, 0.03206070140004158, -0.05457917973399162, -0.11313773691654205, -0.026335885748267174, 0.16219204664230347, -0.16444915533065796, -0.07067527621984482 ]
null
null
transformers
# DistilWav2Vec2 Adult/Child Speech Classifier 52M DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a distilled version of [wav2vec2-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------- | ------- | ----------- | ----------------------------------------- | | `distil-wav2vec2-adult-child-cls-52m` | 52M | wav2vec 2.0 | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.1301 | 96.03% | 0.9639 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.212 | 1.0 | 96 | 0.1561 | 0.9561 | 0.9596 | | 0.1523 | 2.0 | 192 | 0.1408 | 0.9575 | 0.9616 | | 0.0844 | 3.0 | 288 | 0.1301 | 0.9603 | 0.9639 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distil-wav2vec2-adult-child-cls-52m", "results": []}]}
audio-classification
bookbot/distil-wav2vec2-adult-child-cls-52m
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us
DistilWav2Vec2 Adult/Child Speech Classifier 52M ================================================ DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the wav2vec 2.0 architecture. This model is a distilled version of wav2vec2-adult-child-cls on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 32 * 'eval\_batch\_size': 32 * 'seed': 42 * 'gradient\_accumulation\_steps': 4 * 'total\_train\_batch\_size': 128 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 3 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle. Framework versions ------------------ * Transformers 4.16.2 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 3", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 3", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 68, 170, 110 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 3### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.0806550532579422, 0.1737031489610672, -0.003713031532242894, 0.06088895723223686, 0.08642083406448364, 0.005234900861978531, 0.16034150123596191, 0.10433167964220047, -0.029819602146744728, 0.1078934594988823, 0.08112217485904694, 0.07895489782094955, 0.07917075604200363, 0.08513465523719788, -0.05367639288306236, -0.24874427914619446, 0.04577365145087242, -0.0691298097372055, -0.10547030717134476, 0.14427225291728973, 0.0776120126247406, -0.10344163328409195, 0.05868759751319885, 0.0021711676381528378, -0.06650450080633163, -0.05363401770591736, -0.021514268592000008, -0.06348605453968048, 0.08281716704368591, 0.04888931289315224, 0.09510161727666855, 0.08225775510072708, 0.07494194805622101, -0.2649666368961334, 0.010861605405807495, 0.07799451053142548, 0.03592199459671974, 0.0685214027762413, 0.10213477164506912, -0.050997719168663025, 0.15639877319335938, -0.058608025312423706, 0.059161681681871414, 0.045494768768548965, -0.11228476464748383, -0.22108934819698334, -0.08042488992214203, 0.04874838516116142, 0.11559014022350311, 0.06281828880310059, -0.04845666512846947, 0.0932445377111435, -0.037901390343904495, 0.09088863432407379, 0.1935037523508072, -0.25512200593948364, -0.0404752679169178, 0.017866378650069237, 0.030497580766677856, 0.0489104762673378, -0.1080736592411995, 0.012012181803584099, 0.03659743815660477, -0.021974695846438408, 0.08200688660144806, -0.02099180407822132, 0.054406750947237015, -0.0042405277490615845, -0.16206303238868713, -0.07509734481573105, 0.13603824377059937, 0.06717715412378311, -0.06767665594816208, -0.14107127487659454, -0.02599080093204975, -0.10852804780006409, 0.019736649468541145, -0.01484699733555317, 0.009467086754739285, -0.05328455939888954, -0.00995550025254488, -0.022793391719460487, -0.0803358405828476, -0.05831734091043472, 0.012224425561726093, 0.2223760038614273, 0.021740635856986046, 0.003363923169672489, 0.034610774368047714, 0.10494814813137054, 0.0797765776515007, -0.14921978116035461, -0.009409024380147457, -0.022617487236857414, -0.10705053061246872, -0.02269393391907215, -0.015184237621724606, 0.008470938540995121, 0.008550550788640976, 0.13228148221969604, -0.04810033738613129, 0.06792528182268143, 0.0005186125636100769, -0.004420677665621042, 0.01542386133223772, 0.14614354074001312, -0.0706409215927124, -0.01967167668044567, -0.04877175763249397, 0.09779670089483261, 0.004231536295264959, -0.04883139207959175, -0.05397931858897209, 0.03230579197406769, 0.08140552788972855, 0.0696796327829361, 0.0009038380230776966, 0.049241624772548676, -0.06173926591873169, -0.06781214475631714, 0.02123316191136837, -0.13752567768096924, 0.01728222705423832, 0.08049057424068451, -0.06682491302490234, 0.00982038863003254, 0.0214517954736948, 0.034372273832559586, -0.06069738790392876, 0.10377862304449081, -0.06231817230582237, -0.0076023731380701065, -0.03485346585512161, -0.10670285671949387, 0.00843377411365509, -0.08442416042089462, -0.022503957152366638, -0.04654897004365921, -0.06043111905455589, -0.06797432154417038, 0.06495915353298187, -0.05067861080169678, -0.058666978031396866, -0.07071630656719208, -0.08463065326213837, 0.045279841870069504, -0.019065560773015022, 0.08881518244743347, -0.050490766763687134, 0.08304096013307571, -0.004331687930971384, 0.0404849536716938, 0.10021447390317917, 0.05178622156381607, -0.06305134296417236, 0.07054832577705383, -0.1360703855752945, 0.11819889396429062, -0.076106496155262, -0.014185753650963306, -0.16845622658729553, -0.11192937195301056, 0.028658386319875717, 0.004004738759249449, 0.048790525645017624, 0.15878437459468842, -0.12774965167045593, -0.07741864025592804, 0.13800671696662903, -0.08686285465955734, -0.11366330832242966, 0.11563263833522797, -0.041839152574539185, 0.011949723586440086, 0.039454031735658646, 0.16147932410240173, 0.05061644688248634, -0.11566891521215439, -0.030386753380298615, -0.07390834391117096, 0.09504459798336029, 0.1347837597131729, 0.11512927711009979, -0.0450759083032608, 0.011503063142299652, -0.03015361726284027, -0.09125228971242905, -0.0395602323114872, -0.039191052317619324, -0.08358016610145569, 0.008978202939033508, -0.03975991532206535, 0.06288957595825195, 0.00942027848213911, -0.01018106285482645, -0.042725928127765656, -0.14901506900787354, 0.006336426828056574, 0.07364930212497711, -0.1132262796163559, 0.017320845276117325, -0.08665570616722107, 0.03625312075018883, 0.0013829694362357259, -0.017127923667430878, -0.16025930643081665, -0.04612087085843086, 0.031198957934975624, -0.11989166587591171, 0.040225185453891754, -0.013217923231422901, 0.03733737766742706, 0.05911584571003914, -0.02327708713710308, -0.044668592512607574, -0.03201134502887726, -0.0007887725369073451, -0.018513726070523262, -0.2256048023700714, -0.0544368177652359, -0.027594199404120445, 0.19171833992004395, -0.25206825137138367, 0.0050142742693424225, 0.07517524808645248, 0.0882827639579773, 0.017804088070988655, -0.04791763052344322, 0.03720271214842796, 0.019510744139552116, -0.03350408375263214, -0.05219781771302223, 0.029470471665263176, -0.013925096020102501, -0.13966022431850433, 0.057607054710388184, -0.21936282515525818, -0.0458257831633091, 0.10072885453701019, 0.004545269999653101, -0.07937326282262802, -0.08265512436628342, -0.04518511891365051, -0.04492860659956932, -0.02672838233411312, 0.01536369975656271, 0.19769176840782166, 0.05127199739217758, 0.10596711933612823, -0.10147068649530411, -0.07213590294122696, 0.025698572397232056, -0.004621728323400021, -0.0286614540964365, 0.13274522125720978, 0.035958629101514816, -0.10275235772132874, 0.0893130972981453, 0.10327821224927902, -0.015060247853398323, 0.1108551025390625, -0.032528650015592575, -0.0799781084060669, -0.07067181915044785, 0.026611043140292168, 0.009077845141291618, 0.057860687375068665, -0.08324220031499863, 0.018386563286185265, 0.03349456191062927, 0.03679845109581947, -0.014815721660852432, -0.1607004851102829, 0.018243148922920227, 0.04637570306658745, -0.07365293800830841, -0.05525122582912445, -0.012317219749093056, 0.00004785972851095721, 0.08223897218704224, 0.009202925488352776, 0.006625263020396233, -0.006309172138571739, -0.05951528251171112, -0.1170540302991867, 0.19616325199604034, -0.07003418356180191, -0.15985631942749023, -0.1147938072681427, -0.02741960622370243, -0.06491166353225708, 0.0007870185654610395, 0.017587019130587578, -0.03887008875608444, -0.05199965834617615, -0.09783667325973511, 0.05430253595113754, -0.02099471539258957, -0.00955809187144041, -0.0030934056267142296, 0.0034373532980680466, 0.046528831124305725, -0.09903569519519806, 0.008334992453455925, 0.00843788031488657, -0.05355975776910782, 0.007637984585016966, 0.06910310685634613, 0.04630783945322037, 0.1684933751821518, 0.03525436297059059, 0.00730146374553442, -0.02155284211039543, 0.20162230730056763, -0.12514011561870575, 0.0035875553730875254, 0.0995071530342102, -0.09046019613742828, 0.03965179622173309, 0.18152716755867004, 0.0218705665320158, -0.09568343311548233, 0.03690118342638016, 0.05679057911038399, -0.0357091948390007, -0.29481083154678345, -0.05096146836876869, -0.039132121950387955, 0.004573724698275328, 0.10369686037302017, 0.015253537334501743, -0.03169538080692291, 0.04353313520550728, -0.05490153655409813, -0.04229212924838066, 0.06422903388738632, 0.06877053529024124, 0.10045371949672699, 0.042193327099084854, 0.10629808157682419, -0.014254368841648102, -0.019790751859545708, 0.03934810683131218, 0.0035023074597120285, 0.18522168695926666, -0.01992291584610939, 0.18866194784641266, 0.07428614050149918, 0.06829963624477386, -0.0016250303015112877, 0.033806223422288895, 0.028238385915756226, 0.03038763627409935, 0.008964607492089272, -0.07945910841226578, -0.061577633023262024, 0.0827345997095108, 0.06718067824840546, -0.010912803933024406, -0.0832929015159607, 0.019008178263902664, 0.030051685869693756, 0.3001108765602112, 0.0870666429400444, -0.24586167931556702, -0.07179446518421173, 0.03767517954111099, -0.04906019568443298, -0.03863830864429474, 0.0030714760068804026, 0.12916795909404755, -0.11372558027505875, 0.09113715589046478, -0.06594423949718475, 0.07522977888584137, -0.11825189739465714, -0.008955427445471287, 0.044670045375823975, 0.037035439163446426, -0.021354379132390022, 0.061895549297332764, -0.20385494828224182, 0.2758801579475403, -0.0028973128646612167, 0.042522914707660675, -0.05422177165746689, 0.029069041833281517, 0.00335022178478539, -0.040381819009780884, 0.14061321318149567, -0.006507826037704945, -0.0694706067442894, -0.10498913377523422, -0.11391731351613998, 0.022584332153201103, 0.1444689929485321, -0.10251247882843018, 0.12251172959804535, -0.036670465022325516, 0.0028452619444578886, 0.006299708504229784, -0.023530013859272003, -0.053351324051618576, -0.1004924476146698, 0.05491693690419197, -0.04486624523997307, 0.040659647434949875, -0.050213560461997986, -0.083786241710186, -0.11228475719690323, 0.14682510495185852, -0.15566396713256836, -0.06539592146873474, -0.11124200373888016, 0.007272339425981045, 0.13492728769779205, -0.07085850089788437, 0.024898599833250046, 0.0021417897660285234, 0.11693732440471649, 0.01987808756530285, -0.01492884662002325, 0.10278825461864471, -0.04893817380070686, -0.2345326691865921, -0.024271314963698387, 0.1779795140028, 0.05142467841506004, 0.06845029443502426, -0.020576026290655136, 0.053670305758714676, 0.015381457284092903, -0.09643013775348663, 0.054899804294109344, 0.042991288006305695, 0.0076616317965090275, 0.07813531160354614, 0.003026113845407963, -0.03385284170508385, -0.12740249931812286, -0.044504426419734955, 0.1108294427394867, 0.31512272357940674, -0.07959938794374466, 0.08619381487369537, 0.11179232597351074, -0.08086617290973663, -0.18615922331809998, -0.005053736735135317, 0.1181669756770134, 0.02668727934360504, 0.020040925592184067, -0.19606630504131317, 0.06362554430961609, 0.06198734790086746, -0.022206539288163185, 0.059646666049957275, -0.2980292737483978, -0.1476368010044098, 0.09309422969818115, 0.06762758642435074, -0.08073762059211731, -0.1494472473859787, -0.06379583477973938, -0.0173043180257082, -0.08369199186563492, 0.1373259425163269, -0.022283174097537994, 0.11059041321277618, 0.03883552923798561, 0.0607028529047966, 0.03833030164241791, -0.04420386254787445, 0.1594618409872055, 0.029954073950648308, 0.0404304638504982, -0.06147655099630356, -0.023607954382896423, -0.03016749583184719, -0.06449415534734726, 0.045205846428871155, -0.0604056715965271, 0.026678038761019707, -0.09645189344882965, -0.05545885115861893, -0.058389246463775635, 0.03152212128043175, -0.06028493866324425, -0.06450643390417099, -0.025988668203353882, 0.06155143305659294, 0.09468227624893188, -0.0064848982729017735, 0.07019002735614777, -0.06500747054815292, 0.058288607746362686, 0.19280532002449036, 0.1697414219379425, 0.0850849524140358, -0.07220032811164856, -0.011560937389731407, 0.017625605687499046, 0.058694835752248764, -0.15188592672348022, 0.06199358403682709, 0.14252842962741852, 0.051478542387485504, 0.16742049157619476, 0.020227262750267982, -0.09399648755788803, -0.01168240699917078, 0.023192256689071655, -0.13556915521621704, -0.13769713044166565, 0.0008824659744277596, -0.001943678711540997, -0.153935506939888, -0.033011119812726974, 0.13478927314281464, -0.022085178643465042, -0.003045222256332636, 0.016934527084231377, 0.05115741118788719, -0.006677263416349888, 0.15423646569252014, 0.013394868932664394, 0.09346934407949448, -0.07998642325401306, 0.11176630109548569, 0.08644108474254608, -0.1402725726366043, 0.06506714224815369, 0.06358400732278824, -0.04860934987664223, -0.02068711444735527, -0.035254042595624924, 0.005152927711606026, 0.018218664452433586, -0.029119368642568588, -0.0481947660446167, -0.13003890216350555, 0.04397345334291458, 0.11091535538434982, 0.03805958107113838, 0.06903711706399918, -0.014633961021900177, -0.01043570414185524, -0.11994799226522446, 0.12906259298324585, 0.039136920124292374, 0.024041227996349335, -0.12136723101139069, 0.1058277040719986, 0.016428515315055847, 0.002851372119039297, -0.006833583116531372, -0.020287709310650826, -0.11005368828773499, 0.019472766667604446, -0.08070560544729233, 0.03498246893286705, -0.055616460740566254, 0.007391359191387892, 0.009181836619973183, -0.06704656779766083, -0.0500064492225647, 0.01563323847949505, -0.10040826350450516, -0.02297542802989483, -0.02078418619930744, 0.09599930047988892, -0.1294729858636856, -0.03538461774587631, 0.060036152601242065, -0.11530283093452454, 0.11011983454227448, 0.015323713421821594, -0.03147514909505844, 0.0207279734313488, -0.12303270399570465, 0.03524124622344971, 0.0055482229217886925, 0.023248199373483658, 0.009223096072673798, -0.24348071217536926, -0.0034435915295034647, -0.029825754463672638, -0.009656769223511219, 0.004127766937017441, 0.05252645164728165, -0.11810865998268127, -0.0271700881421566, -0.00683523528277874, -0.04346758872270584, -0.04773125797510147, 0.04204925522208214, 0.03480278328061104, 0.01708747260272503, 0.19306538999080658, -0.05126814916729927, 0.10243885964155197, -0.17868372797966003, -0.008769881911575794, -0.001124794245697558, -0.028341932222247124, -0.0464133620262146, -0.034929633140563965, 0.07654763758182526, -0.08733129501342773, 0.10741831362247467, -0.023648137226700783, 0.023687390610575676, 0.04444222152233124, -0.05193430557847023, -0.024347025901079178, 0.0649985522031784, 0.1491224318742752, 0.038540419191122055, -0.02395378053188324, 0.07564717531204224, -0.020462986081838608, 0.01041620783507824, 0.11527795344591141, 0.17342600226402283, 0.14437709748744965, 0.028679070994257927, 0.04992376267910004, 0.07492871582508087, -0.1067175343632698, -0.12588746845722198, 0.1287803053855896, -0.05165513604879379, 0.12541934847831726, -0.034580666571855545, 0.16497661173343658, 0.08508063852787018, -0.20202185213565826, 0.07053691148757935, -0.030337892472743988, -0.10691120475530624, -0.14098340272903442, -0.14837025105953217, -0.08011195063591003, -0.07669349014759064, 0.023026343435049057, -0.10710189491510391, 0.049758315086364746, 0.06047920882701874, 0.05238209292292595, 0.0023826907854527235, 0.1102454662322998, -0.0450654998421669, -0.040913164615631104, 0.08276291191577911, 0.030461471527814865, -0.012005160562694073, 0.0076252794824540615, -0.05242945998907089, 0.057726021856069565, 0.01747450791299343, 0.06854892522096634, -0.004048215691000223, -0.024030065163969994, 0.04131375998258591, -0.04555830359458923, -0.10163179785013199, 0.012087803333997726, 0.010621253401041031, 0.07940702140331268, 0.134518563747406, 0.04450994357466698, -0.007871494628489017, -0.018404215574264526, 0.20344354212284088, -0.07886644452810287, -0.030893543735146523, -0.15393003821372986, 0.2168567180633545, -0.026249095797538757, 0.007765636779367924, 0.032528992742300034, -0.08202441036701202, -0.0009730304009281099, 0.15350334346294403, 0.17454160749912262, -0.02798043005168438, -0.0032348379027098417, -0.0015060961013659835, 0.020280689001083374, 0.021307632327079773, 0.06424366682767868, 0.0844099223613739, 0.07536891102790833, -0.04785708338022232, -0.012648362666368484, -0.0446021631360054, -0.056336015462875366, 0.028415365144610405, 0.11784954369068146, 0.01530008390545845, -0.02739541605114937, -0.035890039056539536, 0.10871313512325287, -0.09718827158212662, -0.18916499614715576, 0.01622816175222397, -0.15022307634353638, -0.1582411229610443, -0.008302855305373669, 0.0276335496455431, 0.048589762300252914, 0.036897625774145126, 0.005182834342122078, -0.07007983326911926, 0.10865897685289383, 0.016466202214360237, -0.04060078039765358, -0.03348328918218613, 0.06981125473976135, -0.08749114722013474, 0.20880644023418427, 0.0015112264081835747, 0.09437426179647446, 0.09649710357189178, 0.028111634775996208, -0.0786236897110939, 0.05488317459821701, 0.08252059668302536, -0.11647073924541473, 0.0335315503180027, 0.1906864196062088, -0.039443597197532654, 0.14283011853694916, 0.07471652328968048, -0.07260674983263016, 0.026690620929002762, -0.05626089498400688, -0.06956756860017776, -0.07207424938678741, 0.01854770816862583, -0.07540525496006012, 0.1482294648885727, 0.22017523646354675, -0.06210766360163689, -0.0160202719271183, -0.04530080035328865, 0.0113079734146595, 0.004546872805804014, 0.08621694892644882, -0.005245210602879524, -0.23545020818710327, 0.031924277544021606, -0.029998524114489555, 0.0581880621612072, -0.24199052155017853, -0.05146500840783119, 0.039705757051706314, -0.0299210287630558, -0.044762201607227325, 0.10647276788949966, 0.013134490698575974, 0.046204824000597, -0.06302427500486374, -0.07208351790904999, -0.021394383162260056, 0.15952295064926147, -0.16831287741661072, -0.06721130013465881 ]
null
null
transformers
# DistilWav2Vec2 XLS-R Adult/Child Speech Classifier 64M DistilWav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a distilled version of [wav2vec2-xls-r-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-xls-r-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ----- | ----------------------------------------- | | `distil-wav2vec2-xls-r-adult-child-cls-64m` | 64M | XLS-R | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.2571 | 93.86% | 0.9425 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 16 - `eval_batch_size`: 16 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 64 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.5509 | 1.0 | 191 | 0.3685 | 0.9086 | 0.9131 | | 0.4543 | 2.0 | 382 | 0.3113 | 0.9247 | 0.9285 | | 0.409 | 3.0 | 573 | 0.2723 | 0.9372 | 0.9418 | | 0.3024 | 4.0 | 764 | 0.2786 | 0.9381 | 0.9417 | | 0.3103 | 5.0 | 955 | 0.2571 | 0.9386 | 0.9425 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distil-wav2vec2-xls-r-adult-child-cls-64m", "results": []}]}
audio-classification
bookbot/distil-wav2vec2-xls-r-adult-child-cls-64m
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2111.09296", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us
DistilWav2Vec2 XLS-R Adult/Child Speech Classifier 64M ====================================================== DistilWav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the XLS-R architecture. This model is a distilled version of wav2vec2-xls-r-adult-child-cls on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 16 * 'eval\_batch\_size': 16 * 'seed': 42 * 'gradient\_accumulation\_steps': 4 * 'total\_train\_batch\_size': 64 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 5 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- DistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle. Framework versions ------------------ * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 16\n* 'eval\\_batch\\_size': 16\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 64\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 16\n* 'eval\\_batch\\_size': 16\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 64\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 63, 170, 121 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 16\n* 'eval\\_batch\\_size': 16\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 64\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Ananto Joyoadikusumo. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.06653735041618347, 0.166920468211174, -0.003993975929915905, 0.061406608670949936, 0.08919188380241394, 0.00007299699063878506, 0.13304543495178223, 0.11407528072595596, -0.02771356701850891, 0.13155515491962433, 0.07630451768636703, 0.08751344680786133, 0.07813594490289688, 0.08478686213493347, -0.05159049481153488, -0.23204679787158966, 0.03707781434059143, -0.07235920429229736, -0.11321716010570526, 0.12833303213119507, 0.08636089414358139, -0.10234231501817703, 0.05462406203150749, -0.01463368721306324, -0.07384414225816727, -0.024338526651263237, -0.018852630630135536, -0.04805956408381462, 0.07244491577148438, 0.05542859435081482, 0.08656530827283859, 0.050486888736486435, 0.059215471148490906, -0.2939605414867401, 0.00639547361060977, 0.06718384474515915, 0.037054143846035004, 0.0602068230509758, 0.07793860137462616, -0.0349019430577755, 0.16613994538784027, -0.06262048333883286, 0.059985943138599396, 0.037934042513370514, -0.11479319632053375, -0.20181891322135925, -0.09089355170726776, 0.06277292221784592, 0.1171153336763382, 0.07265374064445496, -0.054657645523548126, 0.0800870954990387, -0.040334660559892654, 0.09604258090257645, 0.18296700716018677, -0.23457252979278564, -0.04663046449422836, -0.009878803975880146, 0.027603261172771454, 0.0677638128399849, -0.11526846140623093, -0.004555905237793922, 0.041086189448833466, -0.012102646753191948, 0.05730438232421875, -0.0285336896777153, 0.05953891947865486, -0.012827018275856972, -0.15501469373703003, -0.09538320451974869, 0.14380061626434326, 0.07115913927555084, -0.055628083646297455, -0.12015451490879059, -0.013581914827227592, -0.1504090428352356, 0.009030385874211788, -0.023598596453666687, 0.0026672326494008303, -0.04244207218289375, 0.004452661145478487, -0.016980333253741264, -0.09690927714109421, -0.04242408275604248, 0.03686422482132912, 0.19658607244491577, 0.015678932890295982, -0.0034798262640833855, 0.044033877551555634, 0.09647512435913086, 0.08178455382585526, -0.15766045451164246, 0.0012380188563838601, 0.0016731597715988755, -0.08613908290863037, -0.03623319789767265, -0.012378385290503502, 0.02237081155180931, 0.02138134278357029, 0.1456059217453003, -0.044756930321455, 0.06644242256879807, -0.012483304366469383, 0.0014481598045676947, 0.00889077689498663, 0.13345444202423096, -0.053568363189697266, -0.03225893899798393, -0.039429932832717896, 0.0978340357542038, 0.0034572980366647243, -0.047788262367248535, -0.05337672308087349, 0.03580017387866974, 0.08259635418653488, 0.07991151511669159, -0.00364925479516387, 0.021454384550452232, -0.0789351761341095, -0.055431973189115524, 0.01655544899404049, -0.1350860297679901, 0.02813517116010189, 0.07162884622812271, -0.05216340348124504, 0.004312931094318628, 0.007691604550927877, 0.04124048352241516, -0.05780034139752388, 0.07782765477895737, -0.06937222182750702, -0.007921198382973671, -0.040466148406267166, -0.09239677339792252, 0.02092762291431427, -0.06444605439901352, -0.012152976356446743, -0.048582691699266434, -0.04406524449586868, -0.07982928305864334, 0.05690572410821915, -0.05986425653100014, -0.06121028959751129, -0.07463433593511581, -0.09689988940954208, 0.05147461220622063, -0.005629647057503462, 0.09672924876213074, -0.04839612916111946, 0.10322998464107513, -0.001432794495485723, 0.03238065540790558, 0.0935266762971878, 0.059571653604507446, -0.0647505670785904, 0.07342281192541122, -0.1462109088897705, 0.11218126863241196, -0.08840997517108917, -0.0032174072694033384, -0.16545075178146362, -0.1062559261918068, 0.029849335551261902, -0.00805540569126606, 0.052430715411901474, 0.13203652203083038, -0.14924055337905884, -0.07474790513515472, 0.10695919394493103, -0.07974997907876968, -0.10370921343564987, 0.12544357776641846, -0.04232297092676163, 0.037357721477746964, 0.04229861870408058, 0.1742798537015915, 0.05836314335465431, -0.10766448825597763, -0.059831470251083374, -0.09611281752586365, 0.1035456508398056, 0.13976676762104034, 0.10258486121892929, -0.03642561286687851, 0.0357784666121006, -0.03123169019818306, -0.08002719283103943, -0.012748822569847107, -0.028161868453025818, -0.08851306140422821, 0.00540460180491209, -0.0339898057281971, 0.036728635430336, 0.0191974937915802, -0.02149542048573494, -0.04619220271706581, -0.1346958726644516, -0.008003977127373219, 0.07777632027864456, -0.10282662510871887, 0.012014733627438545, -0.08172329515218735, 0.06016117334365845, -0.005765007808804512, -0.011919371783733368, -0.16949786245822906, -0.021439382806420326, 0.03592754527926445, -0.09478193521499634, 0.043680861592292786, -0.016791364178061485, 0.03046862594783306, 0.04088107496500015, -0.017285030335187912, -0.05226757004857063, -0.05121546983718872, 0.0064763701520860195, -0.029551714658737183, -0.22793938219547272, -0.041067346930503845, -0.025609048083424568, 0.19763129949569702, -0.2532348930835724, -0.0029061445966362953, 0.09728149324655533, 0.11241919547319412, 0.03318434953689575, -0.05064334347844124, 0.01728014647960663, 0.02899204194545746, -0.033545102924108505, -0.05216025933623314, 0.012363885529339314, -0.00847073458135128, -0.11985643953084946, 0.028223399072885513, -0.20486347377300262, -0.05381406098604202, 0.08798855543136597, -0.0009009030181914568, -0.0958619937300682, -0.0683957189321518, -0.04161626845598221, -0.04619063436985016, -0.021269865334033966, 0.002657216740772128, 0.1933436095714569, 0.0507064089179039, 0.09700711816549301, -0.08300501108169556, -0.06915558874607086, 0.028893468901515007, -0.013561655767261982, -0.027431882917881012, 0.13915666937828064, 0.044723350554704666, -0.12974239885807037, 0.10591190308332443, 0.11396905034780502, -0.025105973705649376, 0.12717333436012268, -0.03351612389087677, -0.10186605155467987, -0.08568733185529709, 0.036617085337638855, 0.01585361361503601, 0.05097700282931328, -0.10428798943758011, 0.021767951548099518, 0.025984037667512894, 0.02645891159772873, -0.020066216588020325, -0.1625036746263504, 0.02338898740708828, 0.039362065494060516, -0.06931305676698685, -0.023806707933545113, -0.007719110231846571, -0.009085199795663357, 0.07885301113128662, 0.02027244120836258, 0.005985662806779146, -0.009379614144563675, -0.056679029017686844, -0.11370266228914261, 0.17271241545677185, -0.08236831426620483, -0.15191660821437836, -0.11178677529096603, -0.037212811410427094, -0.04529231786727905, 0.00014763268700335175, 0.03029540367424488, -0.04458501189947128, -0.050345972180366516, -0.08380462229251862, 0.032977934926748276, -0.01093320269137621, -0.007825165055692196, -0.010454309172928333, 0.01585225947201252, 0.03747529909014702, -0.08173687011003494, 0.0037331434432417154, 0.028873998671770096, -0.028414275497198105, 0.0017048317240551114, 0.06450382620096207, 0.06605764478445053, 0.1633317917585373, 0.039876166731119156, -0.003074360778555274, -0.015606855973601341, 0.22732791304588318, -0.14779117703437805, 0.008409315720200539, 0.09369993954896927, -0.08985280990600586, 0.045931555330753326, 0.19406349956989288, 0.018877966329455376, -0.09406784921884537, 0.04488340765237808, 0.0599847137928009, -0.022627850994467735, -0.2711193263530731, -0.03374413773417473, -0.04386425018310547, -0.006250461097806692, 0.10459258407354355, 0.030409757047891617, -0.01618446409702301, 0.030581751838326454, -0.054672133177518845, -0.010920979082584381, 0.0512414388358593, 0.06824135780334473, 0.1210101917386055, 0.02772974967956543, 0.08400847017765045, -0.012918838299810886, -0.03243507817387581, 0.04431724175810814, 0.022839754819869995, 0.18082182109355927, -0.00471216905862093, 0.20982207357883453, 0.06072208285331726, 0.0819285660982132, -0.01933603733778, 0.019536087289452553, 0.029896777123212814, 0.025886140763759613, 0.012451180256903172, -0.07999929040670395, -0.061684973537921906, 0.09380365163087845, 0.09486803412437439, -0.014655808918178082, -0.056419335305690765, 0.013024047948420048, 0.028470437973737717, 0.3236086964607239, 0.0899469256401062, -0.22144988179206848, -0.07662244141101837, 0.04905056208372116, -0.05336697772145271, -0.05080275982618332, 0.00017160060815513134, 0.13027706742286682, -0.09644770622253418, 0.06003836169838905, -0.05112961679697037, 0.06751830130815506, -0.11276557296514511, -0.014065487310290337, 0.043215326964855194, 0.020495329052209854, -0.011394165456295013, 0.06686066091060638, -0.21585610508918762, 0.24859067797660828, 0.00496110413223505, 0.05264148488640785, -0.05533219501376152, 0.037350475788116455, 0.006049973424524069, -0.05958286672830582, 0.13956403732299805, -0.004965723492205143, -0.0616769939661026, -0.15033479034900665, -0.10544411838054657, 0.0053105601109564304, 0.14307670295238495, -0.10000020265579224, 0.1281166821718216, -0.04941998049616814, 0.0003895260451827198, 0.006092623807489872, -0.05924547463655472, -0.05537324398756027, -0.11114376038312912, 0.0652683898806572, -0.010740608908236027, 0.040302399545907974, -0.04704530909657478, -0.07571389526128769, -0.06897228956222534, 0.1474541425704956, -0.16072632372379303, -0.055873069912195206, -0.10596287250518799, 0.027701305225491524, 0.14646755158901215, -0.06892456114292145, 0.029258968308568, 0.004010613076388836, 0.1354590654373169, 0.02315702848136425, 0.005327186081558466, 0.0980302095413208, -0.04236279055476189, -0.23186038434505463, -0.02467219904065132, 0.1706106960773468, 0.042342543601989746, 0.07624086737632751, -0.02102070115506649, 0.061932988464832306, 0.003608990227803588, -0.09509189426898956, 0.056700967252254486, 0.01488825585693121, -0.009147847071290016, 0.07407410442829132, -0.013527635484933853, -0.03412195295095444, -0.14258475601673126, -0.0596252903342247, 0.11737233400344849, 0.3330390453338623, -0.07110467553138733, 0.07141724228858948, 0.08470010757446289, -0.08488564938306808, -0.17548765242099762, -0.017630508169531822, 0.13545651733875275, 0.03847417235374451, 0.027126768603920937, -0.19206804037094116, 0.05582990497350693, 0.06999096274375916, -0.019133886322379112, 0.11751800775527954, -0.28663888573646545, -0.1351652890443802, 0.07449985295534134, 0.0686865821480751, -0.1034289225935936, -0.14761100709438324, -0.06801622360944748, -0.01953684724867344, -0.05210806429386139, 0.10312802344560623, -0.0013220078544691205, 0.1099790558218956, 0.0437210313975811, 0.07724855840206146, 0.03754998371005058, -0.04104297608137131, 0.16131944954395294, 0.015142984688282013, 0.04383116587996483, -0.057823095470666885, -0.05593414604663849, -0.024788735434412956, -0.06366736441850662, 0.03459545224905014, -0.05592872574925423, 0.015207603573799133, -0.10322718322277069, -0.049026042222976685, -0.05902915075421333, 0.017201997339725494, -0.06485624611377716, -0.059652697294950485, -0.0367698036134243, 0.06514255702495575, 0.09565555304288864, -0.0006399102858267725, 0.0747389942407608, -0.06193190813064575, 0.04522072896361351, 0.18440783023834229, 0.13908985257148743, 0.10774481296539307, -0.07556404173374176, -0.007957417517900467, 0.013031044974923134, 0.042763836681842804, -0.14556975662708282, 0.06406243145465851, 0.1497606784105301, 0.042767178267240524, 0.19040875136852264, 0.015584902837872505, -0.09251143783330917, 0.00237546069547534, 0.03282824158668518, -0.11966564506292343, -0.1248188391327858, -0.0021329496521502733, 0.018116462975740433, -0.1607327163219452, -0.07862789183855057, 0.137920543551445, -0.028280213475227356, -0.01150988694280386, 0.017167532816529274, 0.0497046522796154, -0.024702029302716255, 0.15449294447898865, 0.018532639369368553, 0.08385657519102097, -0.0670967623591423, 0.08702198415994644, 0.09825621545314789, -0.1408943384885788, 0.07256002724170685, 0.06107645481824875, -0.0407213494181633, -0.022253993898630142, -0.03158259391784668, 0.03408857434988022, 0.008817470632493496, -0.027378259226679802, -0.06209975481033325, -0.10759397596120834, 0.054555829614400864, 0.106890007853508, 0.03339302912354469, 0.06437283009290695, -0.03104383870959282, 0.001095289597287774, -0.11881792545318604, 0.14393550157546997, 0.02628026343882084, 0.023237479850649834, -0.12725435197353363, 0.0963861346244812, 0.010841241106390953, -0.010428247042000294, -0.0017002529930323362, -0.018108664080500603, -0.09694895893335342, 0.02439243532717228, -0.06516554206609726, 0.03477972745895386, -0.0490078367292881, 0.003799243364483118, 0.0216122604906559, -0.061259325593709946, -0.047110289335250854, 0.013333483599126339, -0.10388056188821793, -0.03717026486992836, -0.020404472947120667, 0.10768398642539978, -0.1291845142841339, -0.05148964747786522, 0.06582818180322647, -0.1190515011548996, 0.10773248970508575, 0.015226440504193306, -0.015425401739776134, 0.02356468141078949, -0.10978816449642181, 0.04744664207100868, 0.028428684920072556, 0.026613593101501465, 0.00857701525092125, -0.2446950078010559, -0.012018145062029362, -0.035331256687641144, -0.005208970978856087, 0.002076943637803197, 0.03673931583762169, -0.12522391974925995, -0.0359373539686203, -0.02274143323302269, -0.06731312721967697, -0.05272599309682846, 0.049349937587976456, 0.03300520405173302, 0.028674593195319176, 0.20083341002464294, -0.05373735353350639, 0.10120370239019394, -0.16415700316429138, -0.005984109826385975, -0.00473820511251688, -0.012618368491530418, -0.058825790882110596, -0.04175499826669693, 0.06516364961862564, -0.08938711136579514, 0.07293311506509781, -0.038634043186903, 0.026378938928246498, 0.045481543987989426, -0.08992813527584076, -0.027369359508156776, 0.05562308430671692, 0.1619402915239334, 0.05138583853840828, -0.031461093574762344, 0.06166451796889305, -0.027023732662200928, 0.015516545623540878, 0.1307251900434494, 0.13366223871707916, 0.1311478316783905, 0.05536789447069168, 0.049941983073949814, 0.07747635245323181, -0.10590724647045135, -0.12130971252918243, 0.13110733032226562, -0.05328158289194107, 0.11981070786714554, -0.03466062620282173, 0.20048768818378448, 0.09089849889278412, -0.2095297873020172, 0.059333909302949905, -0.046936094760894775, -0.10715555399656296, -0.11363847553730011, -0.12885501980781555, -0.08164357393980026, -0.07028264552354813, 0.01851789467036724, -0.11494288593530655, 0.06767302006483078, 0.027096638455986977, 0.04386860132217407, -0.0019937006291002035, 0.10064768046140671, -0.04197680577635765, -0.03647300601005554, 0.08766527473926544, 0.025728266686201096, -0.013698900118470192, -0.008158022537827492, -0.04021083191037178, 0.05128601938486099, -0.0042587523348629475, 0.07262974232435226, 0.002970554633066058, -0.03574120253324509, 0.03304888680577278, -0.05047370120882988, -0.10348685085773468, 0.021672820672392845, 0.004756633657962084, 0.07421544194221497, 0.13545049726963043, 0.045895904302597046, -0.0030295902397483587, -0.00969022698700428, 0.186097651720047, -0.08181652426719666, -0.01767531782388687, -0.1601773500442505, 0.16859093308448792, -0.021333614364266396, 0.011760277673602104, 0.016011349856853485, -0.10209552198648453, 0.0035193050280213356, 0.1248120665550232, 0.11548313498497009, -0.022055232897400856, -0.003132237121462822, 0.0032852059230208397, 0.025130044668912888, -0.005607132334262133, 0.04198120906949043, 0.09586093574762344, 0.0716080442070961, -0.05903754383325577, -0.01929120533168316, -0.057859841734170914, -0.06281262636184692, 0.014148542657494545, 0.08300764858722687, 0.010744224302470684, -0.0157407745718956, -0.042626190930604935, 0.11643342673778534, -0.08513768017292023, -0.19524163007736206, 0.04603464528918266, -0.15082482993602753, -0.1640893667936325, -0.0005162977031432092, 0.02840033546090126, 0.04387291893362999, 0.03641040623188019, 0.0028063515201210976, -0.07319912314414978, 0.1357114315032959, 0.015273425728082657, -0.0326983816921711, -0.03628434240818024, 0.06972533464431763, -0.04194948449730873, 0.1824132204055786, -0.009943063370883465, 0.10266478359699249, 0.10347607731819153, 0.0391588918864727, -0.06880529224872589, 0.05276218801736832, 0.09532371908426285, -0.11783052980899811, 0.022207314148545265, 0.19788426160812378, -0.04257624223828316, 0.14991395175457, 0.08092888444662094, -0.06719877570867538, 0.028100119903683662, -0.05327857285737991, -0.05936338007450104, -0.0823366641998291, 0.010548616759479046, -0.07296253740787506, 0.14665250480175018, 0.21328771114349365, -0.05886813998222351, -0.016304301097989082, -0.043391723185777664, 0.006611524615436792, 0.026807229965925217, 0.10816840082406998, -0.024897217750549316, -0.22751390933990479, 0.03827674686908722, 0.002207244513556361, 0.05543256923556328, -0.216522216796875, -0.06249191239476204, 0.04366740956902504, -0.02309458516538143, -0.04757710173726082, 0.11637241393327713, 0.00123480090405792, 0.04314316809177399, -0.0598565973341465, -0.1034020408987999, -0.02773991972208023, 0.16288475692272186, -0.15718597173690796, -0.06744987517595291 ]
null
null
transformers
# DistilWav2Vec2 XLS-R Adult/Child Speech Classifier 89M DistilWav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a distilled version of [wav2vec2-xls-r-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-xls-r-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ----- | ----------------------------------------- | | `distil-wav2vec2-xls-r-adult-child-cls-89m` | 89M | XLS-R | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.3048 | 93.54% | 0.9420 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.7711 | 1.0 | 96 | 0.5413 | 0.9017 | 0.9156 | | 0.5551 | 2.0 | 192 | 0.4627 | 0.9164 | 0.9272 | | 0.4166 | 3.0 | 288 | 0.3832 | 0.9261 | 0.9352 | | 0.3928 | 4.0 | 384 | 0.3242 | 0.9331 | 0.9406 | | 0.3622 | 5.0 | 480 | 0.3048 | 0.9354 | 0.9420 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distil-wav2vec2-xls-r-adult-child-cls-89m", "results": []}]}
audio-classification
bookbot/distil-wav2vec2-xls-r-adult-child-cls-89m
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2111.09296", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us
DistilWav2Vec2 XLS-R Adult/Child Speech Classifier 89M ====================================================== DistilWav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the XLS-R architecture. This model is a distilled version of wav2vec2-xls-r-adult-child-cls on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 32 * 'eval\_batch\_size': 32 * 'seed': 42 * 'gradient\_accumulation\_steps': 4 * 'total\_train\_batch\_size': 128 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 5 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- DistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle. Framework versions ------------------ * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 63, 170, 117 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 128\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nDistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08456330001354218, 0.17305520176887512, -0.003799437778070569, 0.06385703384876251, 0.09282472729682922, 0.0005753411678597331, 0.1446942239999771, 0.11928503215312958, -0.03855795040726662, 0.11360159516334534, 0.0829833447933197, 0.09783901274204254, 0.08589745312929153, 0.09148696810007095, -0.04608555883169174, -0.2337580770254135, 0.027803707867860794, -0.0678468719124794, -0.10354258865118027, 0.13236446678638458, 0.07481946796178818, -0.10892105102539062, 0.0631752610206604, -0.00017358054174110293, -0.07187177985906601, -0.03818954527378082, -0.014588086865842342, -0.06089626997709274, 0.07796496152877808, 0.05509454756975174, 0.08252938836812973, 0.06486227363348007, 0.07007555663585663, -0.2778798043727875, 0.00796290673315525, 0.07549048215150833, 0.04435401409864426, 0.07272190600633621, 0.08951554447412491, -0.03117210604250431, 0.13213717937469482, -0.0769745409488678, 0.05036188289523125, 0.04067791625857353, -0.11146599799394608, -0.2276109904050827, -0.08838027715682983, 0.05045095458626747, 0.12067598849534988, 0.06895579397678375, -0.04869745671749115, 0.08223064243793488, -0.02506411261856556, 0.09210266917943954, 0.19579488039016724, -0.2405673712491989, -0.038625627756118774, -0.006027836352586746, 0.021024322137236595, 0.06471416354179382, -0.10919824987649918, -0.0018308294238522649, 0.03926446661353111, -0.014923998154699802, 0.06335072964429855, -0.03300345689058304, 0.043794918805360794, -0.0038917523343116045, -0.14464691281318665, -0.08533279597759247, 0.15926049649715424, 0.06653967499732971, -0.06418755650520325, -0.12486321479082108, -0.012447712011635303, -0.13532832264900208, 0.016208311542868614, -0.013549085706472397, 0.005885518621653318, -0.052139632403850555, -0.016961675137281418, -0.03176859766244888, -0.0898783728480339, -0.04526953771710396, 0.020261505618691444, 0.19154952466487885, 0.022753717377781868, -0.000533729384187609, 0.03304886072874069, 0.10076140612363815, 0.09160271286964417, -0.15109655261039734, -0.008291647769510746, -0.009570603258907795, -0.10162641108036041, -0.024825364351272583, -0.009983517229557037, 0.0369856022298336, 0.013359304517507553, 0.13481645286083221, -0.04509567469358444, 0.08027180284261703, -0.0038746721111238003, 0.0006213809829205275, 0.007989239878952503, 0.14521846175193787, -0.06211106479167938, -0.02406994253396988, -0.03703509271144867, 0.09014609456062317, 0.0002959095872938633, -0.04813073202967644, -0.060769472271203995, 0.04023134708404541, 0.07983069121837616, 0.06516678631305695, 0.008067323826253414, 0.03620878607034683, -0.06866864114999771, -0.06697109341621399, 0.015260552056133747, -0.13616599142551422, 0.029297156259417534, 0.07577348500490189, -0.0638957992196083, 0.006462860386818647, 0.013044539839029312, 0.03419041261076927, -0.05953574180603027, 0.0804811343550682, -0.06262998282909393, -0.0019933697767555714, -0.03386682644486427, -0.10477104038000107, 0.013526203110814095, -0.07868167012929916, -0.013285307213664055, -0.04993961751461029, -0.050555381923913956, -0.07463464140892029, 0.062387607991695404, -0.054129716008901596, -0.06832397729158401, -0.07408982515335083, -0.08829249441623688, 0.04364239424467087, -0.0198125671595335, 0.10190252959728241, -0.04408064857125282, 0.09558320790529251, 0.006603606976568699, 0.0362735316157341, 0.095737986266613, 0.056023161858320236, -0.062341511249542236, 0.06980463117361069, -0.13895036280155182, 0.11513804644346237, -0.08073954284191132, -0.013767923228442669, -0.16766828298568726, -0.10712272673845291, 0.02213209494948387, -0.0032345782965421677, 0.05298520624637604, 0.14522773027420044, -0.14835964143276215, -0.07565955817699432, 0.11606494337320328, -0.07013827562332153, -0.10539240390062332, 0.12199503183364868, -0.04152342677116394, 0.014343450777232647, 0.03884252905845642, 0.1792990267276764, 0.06197319179773331, -0.1157359704375267, -0.05179663002490997, -0.07177051156759262, 0.10617492347955704, 0.1278148889541626, 0.10990452766418457, -0.04308564215898514, 0.025512101128697395, -0.026878058910369873, -0.08338232338428497, -0.02549339272081852, -0.03627685829997063, -0.08284320682287216, 0.004705994389951229, -0.036682166159152985, 0.05340355634689331, 0.02110368013381958, -0.008869978599250317, -0.04345571994781494, -0.13917623460292816, 0.01313543226569891, 0.07722557336091995, -0.10937421023845673, 0.019913997501134872, -0.09251639246940613, 0.04826487973332405, -0.012878580018877983, -0.018999256193637848, -0.16465505957603455, -0.024818718433380127, 0.029160894453525543, -0.09672309458255768, 0.04872800409793854, -0.005620729643851519, 0.03395787999033928, 0.04766490310430527, -0.017139004543423653, -0.049316346645355225, -0.03291993960738182, 0.004293015692383051, -0.030204106122255325, -0.22189536690711975, -0.05367707088589668, -0.024948569014668465, 0.1967557668685913, -0.2575473189353943, 0.0012741321697831154, 0.08256763964891434, 0.08903820812702179, 0.026089170947670937, -0.05211414024233818, 0.027924783527851105, 0.030302220955491066, -0.03645370528101921, -0.054497722536325455, 0.019999327138066292, -0.009535613469779491, -0.1229800283908844, 0.03379707783460617, -0.20463839173316956, -0.055474262684583664, 0.1007760688662529, -0.009687969461083412, -0.07985900342464447, -0.07366007566452026, -0.041717659682035446, -0.04660860449075699, -0.030935531482100487, 0.005913423839956522, 0.20996905863285065, 0.04970061406493187, 0.104604572057724, -0.08337768912315369, -0.07593697309494019, 0.03438635542988777, -0.013727403245866299, -0.02698720246553421, 0.1360425055027008, 0.03369557112455368, -0.08653136342763901, 0.10010804980993271, 0.09364853799343109, -0.014183741062879562, 0.11021414399147034, -0.03512953966856003, -0.090815469622612, -0.07725592702627182, 0.029781773686408997, 0.013347422704100609, 0.0568680576980114, -0.09146922081708908, 0.009064785204827785, 0.030116256326436996, 0.03617246821522713, -0.017294665798544884, -0.17021490633487701, 0.02042110450565815, 0.04502984881401062, -0.0682338997721672, -0.04696333408355713, -0.020353257656097412, -0.00023545502335764468, 0.07428184896707535, 0.014344565570354462, 0.022368790581822395, -0.003788919420912862, -0.05407252162694931, -0.11792927235364914, 0.17960572242736816, -0.07947428524494171, -0.16899743676185608, -0.11593277752399445, -0.042796336114406586, -0.04928768798708916, -0.002442065393552184, 0.02265617810189724, -0.052691757678985596, -0.039794862270355225, -0.08794009685516357, 0.031133584678173065, -0.027090532705187798, -0.0071675581857562065, -0.0015769538003951311, 0.006702912971377373, 0.05034752935171127, -0.09031304717063904, 0.008736097253859043, 0.022976823151111603, -0.037167150527238846, 0.005289893597364426, 0.06929884850978851, 0.051625728607177734, 0.1587255746126175, 0.03440564125776291, 0.009117528796195984, -0.02050648257136345, 0.21432256698608398, -0.13127021491527557, 0.0033090016804635525, 0.09642942994832993, -0.08542618155479431, 0.04198905825614929, 0.17746978998184204, 0.015233072452247143, -0.09196003526449203, 0.03516966849565506, 0.06091558188199997, -0.030126182362437248, -0.2848634719848633, -0.03776455298066139, -0.046359430998563766, 0.005627167411148548, 0.10820522904396057, 0.022941675037145615, -0.03404602035880089, 0.03516669571399689, -0.04672557860612869, -0.0062946476973593235, 0.04723574221134186, 0.06478487700223923, 0.11139597743749619, 0.0356893464922905, 0.09133805334568024, -0.015732908621430397, -0.022458551451563835, 0.042573291808366776, 0.024853060021996498, 0.18658792972564697, -0.010906870476901531, 0.19019725918769836, 0.06330519169569016, 0.08456780016422272, -0.016894903033971786, 0.01900753378868103, 0.02615164965391159, 0.024961724877357483, 0.013345166109502316, -0.07335156947374344, -0.060790497809648514, 0.08709442615509033, 0.08575987070798874, -0.012605017051100731, -0.06713643670082092, 0.02081427536904812, 0.026978900656104088, 0.2994651794433594, 0.09700001031160355, -0.22629795968532562, -0.07366074621677399, 0.048003606498241425, -0.04874560236930847, -0.04408172145485878, 0.004099526908248663, 0.13327260315418243, -0.10350651293992996, 0.07095245271921158, -0.06289572268724442, 0.07111522555351257, -0.1254258155822754, -0.013514228165149689, 0.0469348207116127, 0.028971394523978233, -0.012855185195803642, 0.0636887475848198, -0.22496892511844635, 0.25631198287010193, 0.0063399518840014935, 0.0487937368452549, -0.0587659515440464, 0.030393049120903015, -0.0038277688436210155, -0.06709067523479462, 0.14344938099384308, 0.00030192083795554936, -0.08051735907793045, -0.14797376096248627, -0.11373037844896317, 0.018424611538648605, 0.140546053647995, -0.08819299936294556, 0.11970449984073639, -0.03992227837443352, 0.0038150933105498552, 0.003018399467691779, -0.03324851393699646, -0.051400646567344666, -0.10722193121910095, 0.055931027978658676, -0.027796007692813873, 0.03222128748893738, -0.04235691577196121, -0.07557898759841919, -0.10299427807331085, 0.15351535379886627, -0.17224134504795074, -0.055852312594652176, -0.10833154618740082, 0.0241079218685627, 0.13565462827682495, -0.07153864949941635, 0.024884140118956566, 0.013146303594112396, 0.11762840300798416, 0.0221872515976429, -0.009972499683499336, 0.09731189161539078, -0.042042188346385956, -0.22726717591285706, -0.023343848064541817, 0.17204737663269043, 0.04631396010518074, 0.07902900874614716, -0.025099730119109154, 0.057764098048210144, 0.007091930136084557, -0.09218708425760269, 0.06453520804643631, 0.038962140679359436, 0.016017818823456764, 0.05920397862792015, -0.000046928442316129804, -0.02357177436351776, -0.13677974045276642, -0.05629533529281616, 0.11889250576496124, 0.3239019513130188, -0.08003277331590652, 0.07529181987047195, 0.08180759102106094, -0.08512014150619507, -0.1750451773405075, -0.0029453944880515337, 0.12466748058795929, 0.033340517431497574, 0.03064161166548729, -0.2058088630437851, 0.05621861293911934, 0.06758499890565872, -0.019818466156721115, 0.08943235129117966, -0.29209354519844055, -0.144850954413414, 0.08551313728094101, 0.06638064980506897, -0.09143614023923874, -0.15065662562847137, -0.0706571564078331, -0.012914454564452171, -0.05888105556368828, 0.11743821948766708, -0.0076939999125897884, 0.11075129359960556, 0.04543498903512955, 0.07184319198131561, 0.03809043765068054, -0.04351019114255905, 0.1608673334121704, 0.023402011021971703, 0.03843966871500015, -0.05218534544110298, -0.05243338644504547, -0.025889486074447632, -0.0608542300760746, 0.03778444603085518, -0.04980125278234482, 0.019829178228974342, -0.11901500076055527, -0.04602712765336037, -0.06309938430786133, 0.022010264918208122, -0.05877317115664482, -0.06142016500234604, -0.030462872236967087, 0.06447257846593857, 0.09004292637109756, -0.001071406528353691, 0.08857188373804092, -0.061213016510009766, 0.04588965326547623, 0.18913424015045166, 0.15396727621555328, 0.10593196749687195, -0.06827813386917114, -0.010334071703255177, 0.012260746210813522, 0.04421001672744751, -0.15397197008132935, 0.06119725853204727, 0.14633671939373016, 0.050200603902339935, 0.17731106281280518, 0.015905708074569702, -0.08909470587968826, 0.008634979836642742, 0.022530164569616318, -0.12305154651403427, -0.13120052218437195, -0.004400998819619417, 0.005600367672741413, -0.15702274441719055, -0.048317234963178635, 0.12998846173286438, -0.022735558450222015, -0.013913209550082684, 0.014711661264300346, 0.04931194707751274, -0.01953846588730812, 0.16768185794353485, 0.0246047955006361, 0.09040762484073639, -0.07535168528556824, 0.10243546962738037, 0.09126932173967361, -0.14193281531333923, 0.07337519526481628, 0.05556035414338112, -0.04148722067475319, -0.01816793903708458, -0.040404364466667175, 0.0012043663300573826, 0.03790071979165077, -0.02824225462973118, -0.05825762450695038, -0.10896812379360199, 0.04884243384003639, 0.07907848805189133, 0.028644580394029617, 0.06406310945749283, -0.023387357592582703, -0.004995113238692284, -0.12938761711120605, 0.1340354084968567, 0.038150761276483536, 0.026472702622413635, -0.13325060904026031, 0.12036879360675812, 0.01772705279290676, 0.011347443796694279, 0.0005091805942356586, -0.020019855350255966, -0.10636457800865173, 0.023415282368659973, -0.07446236163377762, 0.03474510461091995, -0.056319136172533035, 0.0005240278551355004, 0.011223808862268925, -0.06451903283596039, -0.04996354132890701, 0.020832030102610588, -0.09959691762924194, -0.028131213039159775, -0.01930842734873295, 0.09795158356428146, -0.12301594763994217, -0.04403543099761009, 0.0606345534324646, -0.11434636265039444, 0.10532422363758087, 0.017366191372275352, -0.023976579308509827, 0.013602805323898792, -0.10032370686531067, 0.037322673946619034, 0.01780867949128151, 0.03063584677875042, 0.01751217059791088, -0.2500859200954437, -0.005618638824671507, -0.030323738232254982, -0.0019144287798553705, -0.0019778981804847717, 0.06080783158540726, -0.12237438559532166, -0.030737686902284622, -0.027701906859874725, -0.05191757157444954, -0.05559102073311806, 0.05006315931677818, 0.041354939341545105, 0.02068289928138256, 0.18881437182426453, -0.053622134029865265, 0.10148707032203674, -0.18055234849452972, -0.010126437060534954, -0.006772034335881472, -0.02331141009926796, -0.03559057042002678, -0.04422930255532265, 0.0776919275522232, -0.08633480221033096, 0.09180273115634918, -0.03389458358287811, 0.021819114685058594, 0.04300655052065849, -0.07510169595479965, -0.03522821515798569, 0.058634329587221146, 0.16059660911560059, 0.0322161428630352, -0.02837633341550827, 0.0731656476855278, -0.014450631104409695, 0.01676623523235321, 0.16224195063114166, 0.14828334748744965, 0.1367989182472229, 0.02609468251466751, 0.04651767015457153, 0.07389824092388153, -0.11828272044658661, -0.13110457360744476, 0.1429249793291092, -0.05916142091155052, 0.12363775074481964, -0.03975921869277954, 0.1795196682214737, 0.09031984210014343, -0.2089710682630539, 0.062021974474191666, -0.040962010622024536, -0.11411300301551819, -0.13146249949932098, -0.1555560678243637, -0.08006031811237335, -0.0727747306227684, 0.017944125458598137, -0.11157411336898804, 0.06042538210749626, 0.04841672256588936, 0.04563094303011894, 0.006276649422943592, 0.108639195561409, -0.031834833323955536, -0.04141494259238243, 0.07761399447917938, 0.02257528156042099, -0.013660985976457596, -0.009598523378372192, -0.04737038165330887, 0.06492844223976135, -0.002626965055242181, 0.07692143321037292, -0.0027229960542172194, -0.026182660833001137, 0.04177902266383171, -0.046105317771434784, -0.10116097331047058, 0.007528861053287983, 0.00586920278146863, 0.08572905510663986, 0.14362142980098724, 0.051849909126758575, -0.005794403608888388, -0.01551622711122036, 0.19663819670677185, -0.08817970752716064, -0.016612404957413673, -0.15227024257183075, 0.1965598464012146, -0.020192397758364677, 0.0014588052872568369, 0.027341308072209358, -0.09401988983154297, 0.00982023123651743, 0.1548910140991211, 0.14947190880775452, -0.017242297530174255, -0.006288455333560705, 0.002361351391300559, 0.022886646911501884, -0.0006665565306320786, 0.060712780803442, 0.08963277190923691, 0.0661078691482544, -0.05513026565313339, -0.031095173209905624, -0.04840410500764847, -0.05676031857728958, 0.017313718795776367, 0.11147415637969971, 0.008212685585021973, -0.02051311917603016, -0.031753938645124435, 0.10642892122268677, -0.09223359823226929, -0.19114281237125397, 0.03430894389748573, -0.15437258780002594, -0.15853598713874817, 0.001800380414351821, 0.028148353099822998, 0.04736095294356346, 0.036012906581163406, -0.0010432926937937737, -0.056395310908555984, 0.12205337733030319, 0.014565803110599518, -0.04179368168115616, -0.025866977870464325, 0.06851564347743988, -0.08257449418306351, 0.18800224363803864, -0.005737920757383108, 0.10257349163293839, 0.10112296789884567, 0.03860921040177345, -0.0770917609333992, 0.05182592198252678, 0.08420061320066452, -0.11562870442867279, 0.02848202735185623, 0.19333729147911072, -0.03727751597762108, 0.15372860431671143, 0.07810429483652115, -0.06050899997353554, 0.02527714893221855, -0.04578518122434616, -0.055366430431604385, -0.07909300178289413, 0.004428527317941189, -0.07643173635005951, 0.14984656870365143, 0.20180949568748474, -0.06343908607959747, -0.017376059666275978, -0.047150831669569016, 0.0008274809806607664, 0.019240260124206543, 0.09867177903652191, -0.021259721368551254, -0.2382456511259079, 0.030272575095295906, -0.019080961123108864, 0.05480271205306053, -0.221751868724823, -0.05109642073512077, 0.045250341296195984, -0.040172070264816284, -0.042853694409132004, 0.10779131948947906, 0.0030171810649335384, 0.04714381694793701, -0.06760722398757935, -0.07362236082553864, -0.023085175082087517, 0.16688939929008484, -0.16677828133106232, -0.0643390640616417 ]
null
null
transformers
## GPT-2 Indonesian Medium Kids Stories GPT-2 Indonesian Medium Kids Stories is a causal language model based on the [OpenAI GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model. The model was originally the pre-trained [GPT2 Medium Indonesian](https://huggingface.co/flax-community/gpt2-medium-indonesian) model, which was then fine-tuned on Indonesian kids' stories from [Room To Read](https://literacycloud.org/) and [Let's Read](https://reader.letsreadasia.org/). 10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.579 and an evaluation perplexity of 35.84. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------- | ------- | ----------- | --------------------------------- | | `gpt2-indo-medium-kids-stories` | 345M | GPT2 Medium | Indonesian Kids' Stories (860 KB) | ## Evaluation Results The model was fine-tuned for 3 epochs. | Epoch | Training Loss | Validation Loss | | ----- | ------------- | --------------- | | 1 | 3.909100 | 3.627678 | | 2 | 3.375300 | 3.562854 | | 3 | 3.113300 | 3.578999 | ## How to Use (PyTorch) ### As Causal Language Model ```python from transformers import pipeline pretrained_name = "bookbot/gpt2-indo-medium-kids-stories" nlp = pipeline( "text-generation", model=pretrained_name, tokenizer=pretrained_name ) nlp("Archie sedang mengendarai roket ke planet Mars.") ``` ### Feature Extraction in PyTorch ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast pretrained_name = "bookbot/gpt2-indo-medium-kids-stories" model = GPT2LMHeadModel.from_pretrained(pretrained_name) tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name) prompt = "Archie sedang mengendarai roket ke planet Mars." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model. ## Author GPT-2 Indonesian Medium Kids Stories was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
{"language": "id", "license": "mit", "tags": ["gpt2-indo-medium-kids-stories"], "widget": [{"text": "Archie sedang mengendarai roket ke planet Mars."}]}
text-generation
bookbot/gpt2-indo-medium-kids-stories
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "gpt2-indo-medium-kids-stories", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-medium-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GPT-2 Indonesian Medium Kids Stories ------------------------------------ GPT-2 Indonesian Medium Kids Stories is a causal language model based on the OpenAI GPT-2 model. The model was originally the pre-trained GPT2 Medium Indonesian model, which was then fine-tuned on Indonesian kids' stories from Room To Read and Let's Read. 10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.579 and an evaluation perplexity of 35.84. Hugging Face's 'Trainer' class from the Transformers library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. Model ----- Evaluation Results ------------------ The model was fine-tuned for 3 epochs. Epoch: 1, Training Loss: 3.909100, Validation Loss: 3.627678 Epoch: 2, Training Loss: 3.375300, Validation Loss: 3.562854 Epoch: 3, Training Loss: 3.113300, Validation Loss: 3.578999 How to Use (PyTorch) -------------------- ### As Causal Language Model ### Feature Extraction in PyTorch Disclaimer ---------- Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model. Author ------ GPT-2 Indonesian Medium Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access.
[ "### As Causal Language Model", "### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Medium Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-medium-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### As Causal Language Model", "### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Medium Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ 72, 7, 92 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-medium-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### As Causal Language Model### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Medium Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ -0.04255077987909317, 0.016273507848381996, -0.0015324557898566127, 0.10324247926473618, 0.07839230448007584, 0.017594443634152412, 0.21767303347587585, 0.03609243407845497, -0.058402761816978455, -0.1459159106016159, 0.1243625059723854, -0.00325419707223773, 0.10648161917924881, 0.08396798372268677, -0.021217091009020805, -0.31242844462394714, 0.04196273162961006, -0.007953178137540817, 0.18049855530261993, 0.20730024576187134, 0.002641407074406743, -0.013668673112988472, 0.059848714619874954, 0.08663931488990784, -0.10616541653871536, -0.12421143054962158, 0.02721254900097847, -0.08292927592992783, 0.08262081444263458, -0.04796740785241127, 0.06395279616117477, 0.06775732338428497, -0.005191930569708347, 0.020517295226454735, 0.03384215757250786, 0.009676650166511536, -0.017342139035463333, 0.012992346659302711, 0.07104367017745972, 0.03908415511250496, 0.25228458642959595, 0.08891450613737106, -0.033291105180978775, -0.0002911034389398992, -0.1081334725022316, -0.204086571931839, 0.0340370237827301, 0.007832693867385387, 0.05684829130768776, 0.0834074541926384, -0.055761709809303284, 0.07460612803697586, -0.19380272924900055, 0.06230738013982773, 0.17242613434791565, -0.19273531436920166, -0.09286273270845413, 0.08327999711036682, 0.027810318395495415, -0.005495582707226276, -0.06652957946062088, 0.015415317378938198, 0.02656514383852482, 0.008410555310547352, 0.002675438765436411, -0.08514063060283661, -0.054905056953430176, -0.09348996728658676, -0.07591108232736588, -0.049223922193050385, 0.14419852197170258, -0.09433218091726303, -0.06454569101333618, -0.1741526871919632, -0.03767669200897217, -0.008551446720957756, 0.01131280604749918, 0.03323161229491234, -0.020838754251599312, 0.05761820077896118, 0.07471689581871033, -0.05872134491801262, -0.11893754452466965, -0.06879033893346786, 0.013540448620915413, 0.138309046626091, 0.007783219218254089, 0.06525714695453644, -0.1297610104084015, 0.1889466941356659, 0.14150123298168182, -0.12329662591218948, -0.005619936157017946, -0.07283121347427368, 0.0875127762556076, 0.08969619125127792, -0.010887051932513714, 0.07298872619867325, 0.02208525687456131, -0.005597155541181564, -0.09336119890213013, -0.016526633873581886, 0.060308922082185745, 0.04491440951824188, 0.04753761366009712, 0.07712440192699432, -0.0662267729640007, 0.04832601547241211, 0.09233564883470535, -0.002458408707752824, 0.0916142389178276, -0.020510537549853325, -0.06649342179298401, -0.023519301787018776, 0.05463779345154762, 0.06658004969358444, -0.0011861331295222044, 0.14865294098854065, -0.033208757638931274, -0.035505931824445724, 0.0342942476272583, -0.018568046391010284, -0.06792709976434708, -0.009532228112220764, -0.04204985499382019, 0.1676349639892578, 0.011181098408997059, 0.023201599717140198, -0.09026768058538437, 0.07048489898443222, -0.015441986732184887, 0.008860558271408081, 0.0028779238928109407, 0.048023976385593414, 0.059631697833538055, -0.08766596019268036, 0.0220070518553257, -0.09516318887472153, -0.27274906635284424, -0.039785634726285934, 0.04367351159453392, -0.06869541853666306, -0.025016294792294502, -0.09213719516992569, -0.06313426792621613, 0.0023201650474220514, -0.034848373383283615, 0.03155761584639549, -0.04634658247232437, 0.11583948880434036, -0.03558497875928879, 0.04561854526400566, 0.03553331270813942, -0.01732785999774933, -0.2383558601140976, 0.07937059551477432, -0.05838688090443611, 0.08676005154848099, 0.16219116747379303, 0.06446099281311035, 0.04956779256463051, -0.10673383623361588, -0.055481746792793274, -0.006000747438520193, -0.052110809832811356, 0.2281036525964737, -0.004132073372602463, -0.0707746222615242, 0.16391482949256897, -0.1396513730287552, -0.1594599336385727, 0.16332314908504486, -0.010637572035193443, 0.24847184121608734, 0.10750512778759003, 0.19531957805156708, -0.09892910718917847, 0.030507665127515793, 0.024518311023712158, -0.05360681563615799, 0.006283512804657221, 0.06985747814178467, 0.10923255980014801, 0.09938474744558334, 0.002043312881141901, 0.08274515718221664, -0.0782575011253357, 0.10993900150060654, 0.001750826952047646, -0.021268516778945923, -0.006031339056789875, -0.024365754798054695, 0.15179972350597382, 0.06904170662164688, 0.045093074440956116, -0.05266252160072327, -0.06553087383508682, -0.15830303728580475, 0.01081801950931549, -0.0940796509385109, 0.017725666984915733, -0.1030886098742485, 0.1384778618812561, -0.044116754084825516, 0.054824259132146835, -0.027793077751994133, 0.011466724798083305, -0.032335780560970306, -0.07894281297922134, -0.04454676806926727, -0.09146635234355927, 0.011767983436584473, 0.0303003191947937, -0.041124217212200165, -0.037857770919799805, 0.04534048214554787, -0.05729163438081741, 0.05080605670809746, -0.043568193912506104, 0.06020217016339302, 0.020032377913594246, 0.20334313809871674, -0.17167648673057556, 0.04565372318029404, -0.007698597386479378, 0.028764061629772186, -0.03860979899764061, -0.009615660645067692, 0.08013831824064255, -0.013084870763123035, -0.020373499020934105, -0.055759280920028687, 0.0920778140425682, 0.0744757354259491, -0.09149685502052307, 0.18299362063407898, -0.19238406419754028, 0.026364609599113464, 0.131917804479599, -0.2778882086277008, 0.019999127835035324, -0.08212260901927948, -0.005022662691771984, -0.003967169672250748, 0.004577957559376955, 0.05581594258546829, 0.2129644900560379, 0.025254547595977783, 0.141086608171463, -0.1601223200559616, -0.08028803020715714, 0.043996576219797134, -0.06241970881819725, 0.08093611150979996, 0.08817916363477707, -0.03832448273897171, -0.0783541202545166, 0.11188112199306488, 0.12924042344093323, 0.07512854784727097, 0.20670340955257416, 0.012150822207331657, 0.01061788760125637, -0.028500668704509735, -0.03573145717382431, -0.07624104619026184, -0.005642366595566273, -0.2927808165550232, 0.004837587475776672, 0.0722697526216507, 0.010639269836246967, 0.056662846356630325, -0.186619371175766, -0.09586358070373535, -0.014556574635207653, -0.011904551647603512, -0.1066422313451767, 0.09568887203931808, -0.03715885803103447, 0.07677606493234634, -0.049931176006793976, 0.09639451652765274, 0.051895350217819214, -0.013092616572976112, -0.11862924695014954, 0.21014556288719177, 0.048118263483047485, -0.3881472945213318, -0.0678175613284111, 0.007914554327726364, -0.09160421788692474, 0.026139119639992714, 0.07256880402565002, -0.06921258568763733, 0.04520789906382561, -0.059068549424409866, 0.09416815638542175, 0.06548762321472168, -0.03538123518228531, -0.06673523783683777, 0.026499852538108826, -0.1108902245759964, -0.021644221618771553, -0.05583404004573822, 0.022204814478754997, -0.16076944768428802, 0.18634763360023499, -0.12369479238986969, -0.027150293812155724, 0.17181530594825745, 0.062402285635471344, -0.02943306602537632, -0.016106177121400833, 0.15554514527320862, -0.1506403386592865, 0.02123270556330681, 0.2315102219581604, -0.14373192191123962, 0.0006427172338590026, 0.09611592441797256, -0.019016429781913757, -0.13935771584510803, 0.07420177757740021, -0.07422567158937454, -0.12408759444952011, -0.24337010085582733, -0.06475882977247238, -0.041220467537641525, 0.10039640963077545, -0.056065574288368225, 0.03656627982854843, 0.08792077004909515, 0.11815030872821808, -0.09251311421394348, 0.04050251096487045, 0.11911632120609283, 0.033477749675512314, 0.09057310968637466, -0.03141488879919052, 0.039864469319581985, -0.012402872554957867, -0.05891016870737076, 0.025772159919142723, -0.08176222443580627, 0.1725066900253296, -0.04277759790420532, 0.095846988260746, 0.04797679930925369, 0.05097265914082527, 0.0655137449502945, 0.16532930731773376, 0.0076263356022536755, -0.03578883782029152, -0.01183684915304184, -0.05091783404350281, -0.11621317267417908, 0.03544285148382187, -0.16773481667041779, 0.0241752490401268, -0.03807392343878746, -0.04980041831731796, 0.10800310224294662, 0.12632329761981964, -0.014599042013287544, -0.119159996509552, -0.07564909011125565, 0.04600844904780388, 0.025888295844197273, -0.06922194361686707, 0.08997709304094315, 0.12569935619831085, -0.21360917389392853, 0.017681699246168137, -0.04547867923974991, 0.09026162326335907, -0.1504315435886383, 0.012482357211411, -0.03865005448460579, -0.11630693078041077, -0.010998348705470562, 0.1128266230225563, -0.19644489884376526, 0.21118870377540588, -0.024404939264059067, 0.0705917477607727, -0.1651470810174942, -0.08646690845489502, 0.003990004304796457, 0.07063215970993042, 0.18992841243743896, 0.024121001362800598, 0.12824155390262604, -0.13162089884281158, -0.07996263355016708, 0.05238454043865204, 0.07506121695041656, 0.028579995036125183, 0.008130403235554695, -0.06828667223453522, 0.07672349363565445, -0.08766490966081619, 0.023937581107020378, -0.014362158253788948, -0.023087499663233757, 0.025365713983774185, -0.010279756970703602, 0.08497754484415054, -0.05665098875761032, -0.1031176820397377, -0.012710888870060444, -0.0024628934916108847, 0.0438360795378685, -0.21432626247406006, -0.03128724917769432, -0.05379501357674599, -0.020395006984472275, -0.0487796887755394, -0.01748146302998066, -0.0037066389340907335, 0.04185586795210838, 0.02807224728167057, -0.04997257888317108, 0.08792980015277863, -0.018038416281342506, -0.3067166209220886, 0.02610337920486927, 0.138636976480484, 0.0698782429099083, 0.07179062813520432, 0.032310787588357925, -0.00648601446300745, -0.041946034878492355, -0.13840484619140625, -0.06268039345741272, 0.09344086796045303, 0.007246151566505432, 0.0048647415824234486, 0.12399572879076004, 0.13638167083263397, -0.07147365063428879, -0.13450361788272858, 0.17542463541030884, 0.12280810624361038, 0.0165286622941494, 0.08165545016527176, 0.18856649100780487, -0.08866085112094879, -0.25288328528404236, -0.023395899683237076, -0.04954301938414574, -0.03232719749212265, -0.11480606347322464, -0.061792295426130295, 0.051565103232860565, 0.09864699840545654, 0.0007492959266528487, 0.03296380862593651, -0.3106105923652649, -0.1328423023223877, 0.0603543259203434, 0.0637844055891037, 0.25094857811927795, -0.16895727813243866, 0.0315154492855072, -0.04477942734956741, -0.12261130660772324, 0.08993519842624664, -0.1330101191997528, 0.08314011245965958, -0.06520397961139679, 0.019172323867678642, 0.004801888018846512, -0.048441607505083084, 0.13199079036712646, -0.06816070526838303, 0.025380272418260574, -0.1332247406244278, -0.0375332310795784, 0.0799955353140831, 0.0523492805659771, 0.043088797479867935, -0.006053577177226543, -0.04532068595290184, -0.1108722984790802, -0.14140430092811584, -0.13924334943294525, -0.041441649198532104, -0.004057150334119797, -0.10956726223230362, -0.03516127169132233, 0.0900668129324913, 0.013706029392778873, 0.03952586650848389, -0.03614667430520058, -0.0971447080373764, -0.025620965287089348, -0.03400652855634689, 0.2362818419933319, -0.15937037765979767, 0.09705417603254318, -0.09034978598356247, 0.03511960431933403, 0.016396034508943558, -0.17956580221652985, -0.043929196894168854, 0.09661812335252762, -0.006956353317946196, 0.08464685827493668, 0.07215024530887604, -0.02086581103503704, 0.09028303623199463, 0.03982904553413391, -0.14714384078979492, -0.1401476114988327, -0.11336679756641388, -0.12496325373649597, 0.04089390113949776, -0.01452871598303318, 0.06877730041742325, -0.11506444215774536, -0.03845740482211113, -0.04457524046301842, 0.03404160216450691, -0.03254251554608345, 0.07793959975242615, -0.07492068409919739, -0.0353623703122139, -0.14327967166900635, 0.1680595874786377, 0.0562317781150341, -0.021276716142892838, -0.007500651758164167, 0.08036691695451736, -0.08047164231538773, -0.028960350900888443, -0.05007975175976753, -0.0005265638465061784, 0.08178283274173737, -0.10616904497146606, -0.07094936072826385, -0.11458055675029755, -0.04095619171857834, -0.1323215514421463, 0.030915703624486923, 0.05439252033829689, -0.03546755388379097, -0.05012040212750435, -0.0623980276286602, 0.07738018780946732, 0.05492505431175232, -0.03286106511950493, -0.06662853062152863, 0.12311972677707672, 0.11834647506475449, 0.07970932871103287, -0.08938595652580261, -0.06423227488994598, -0.07235153764486313, 0.07843082398176193, -0.08643491566181183, 0.07549374550580978, -0.16216880083084106, -0.015956269577145576, -0.03485357016324997, -0.07987730205059052, -0.052653588354587555, -0.009793112985789776, -0.06395720690488815, 0.05831305310130119, 0.016147667542099953, -0.00022231449838727713, -0.011515899561345577, -0.033325694501399994, 0.09727074950933456, -0.03919777646660805, 0.12564674019813538, 0.07688488066196442, -0.11916237324476242, 0.1496688723564148, -0.2887841463088989, 0.08437638729810715, 0.044323842972517014, 0.005301788914948702, -0.047750797122716904, -0.014619913883507252, 0.023647872731089592, 0.103417307138443, -0.04319831728935242, 0.06046050786972046, 0.02685677260160446, -0.11062216758728027, -0.014458365738391876, -0.00575158791616559, -0.030784688889980316, -0.028222501277923584, -0.06350560486316681, 0.03681819885969162, -0.017581967636942863, 0.14254865050315857, -0.0514712780714035, 0.14530658721923828, -0.13451646268367767, -0.015245397575199604, 0.03152110055088997, -0.06564249843358994, 0.0024439385160803795, -0.15363098680973053, -0.0034709128085523844, 0.04367700219154358, 0.2471730262041092, 0.08117684721946716, -0.009224212728440762, -0.042133063077926636, 0.17775261402130127, 0.10636390745639801, 0.015048852190375328, 0.15125878155231476, 0.05627050995826721, -0.03593050315976143, -0.052599694579839706, 0.05407450720667839, 0.030374934896826744, 0.027336258441209793, 0.12280932068824768, -0.02279040962457657, 0.07107573747634888, 0.07172635197639465, -0.041941966861486435, 0.11356397718191147, -0.14191757142543793, -0.11829166114330292, 0.03630302473902702, 0.01535883266478777, -0.05752160772681236, 0.17326082289218903, 0.16631890833377838, -0.08678017556667328, -0.010020308196544647, -0.032416798174381256, -0.08230302482843399, -0.10791055113077164, -0.30329546332359314, -0.0313383974134922, -0.08650524169206619, 0.010210735723376274, -0.1191079169511795, -0.060839176177978516, 0.14440786838531494, 0.05174409970641136, -0.13024412095546722, 0.19183358550071716, 0.09845448285341263, -0.05462606996297836, 0.14033111929893494, 0.004336369223892689, 0.07375480234622955, -0.07328872382640839, -0.0008695082506164908, -0.006432763300836086, 0.05076258257031441, 0.08664638549089432, 0.0462309755384922, -0.1018986776471138, -0.047658707946538925, -0.09980189800262451, -0.04790894687175751, -0.04900456964969635, 0.03214290738105774, 0.05979785695672035, 0.08116745948791504, 0.0180965643376112, 0.007192638237029314, 0.017380572855472565, 0.1490243673324585, 0.0286631528288126, -0.0062999422661960125, -0.07010010629892349, 0.03078303299844265, -0.11786776781082153, -0.09338690340518951, 0.10829425603151321, -0.03845895826816559, 0.004766686819493771, 0.34794530272483826, 0.25524741411209106, 0.004079603590071201, 0.0006774360663257539, -0.05231764167547226, 0.022349001839756966, -0.030208827927708626, 0.18750561773777008, 0.07989820092916489, 0.21254199743270874, -0.06596070528030396, 0.08024148643016815, -0.056092169135808945, -0.08863367140293121, 0.08888561278581619, 0.11430531740188599, 0.04762773960828781, -0.01766432635486126, -0.09386397898197174, 0.1490551233291626, -0.23818960785865784, 0.04907524213194847, -0.018364042043685913, -0.07039809226989746, -0.06279783695936203, -0.007212233263999224, -0.008139957673847675, 0.09587075561285019, 0.056866735219955444, 0.012667961418628693, 0.06546130031347275, -0.0005299899494275451, 0.04599663242697716, -0.106425441801548, 0.016400812193751335, 0.09553097933530807, -0.06327524781227112, 0.23224927484989166, -0.0013599192025139928, 0.04847744107246399, 0.043373435735702515, 0.03321819379925728, -0.10106952488422394, 0.060324933379888535, 0.008009977638721466, 0.010489050298929214, -0.005516367964446545, 0.07982607185840607, 0.04314465820789337, -0.19953644275665283, 0.09083996713161469, 0.03764496371150017, 0.1115429550409317, 0.09162420779466629, 0.06714179366827011, -0.10537946969270706, 0.03522692993283272, -0.0680152103304863, 0.06652956455945969, 0.13077783584594727, -0.07559561729431152, -0.015892062336206436, -0.0720801055431366, 0.06694301217794418, -0.07597322762012482, -0.04294803366065025, 0.039549730718135834, -0.15288281440734863, -0.026425648480653763, 0.08384658396244049, 0.00012121503823436797, -0.12836050987243652, 0.07836499065160751, -0.09380936622619629, -0.07655257731676102, -0.0769549086689949, 0.019512534141540527, -0.07831765711307526, 0.05217881500720978, 0.021321158856153488, -0.01743224821984768, -0.04150928929448128, 0.10301994532346725, -0.0736495703458786, -0.13091176748275757 ]
null
null
transformers
## GPT-2 Indonesian Small Kids Stories GPT-2 Indonesian Small Kids Stories is a causal language model based on the [OpenAI GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model. The model was originally the pre-trained [GPT2 Small Indonesian](https://huggingface.co/flax-community/gpt2-small-indonesian) model, which was then fine-tuned on Indonesian kids' stories from [Room To Read](https://literacycloud.org/) and [Let's Read](https://reader.letsreadasia.org/). 10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.777 and an evaluation perplexity of 43.68. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ---------- | --------------------------------- | | `gpt2-indo-small-kids-stories` | 124M | GPT2 Small | Indonesian Kids' Stories (860 KB) | ## Evaluation Results The model was fine-tuned for 10 epochs. | Epoch | Training Loss | Validation Loss | | ----- | ------------- | --------------- | | 1 | 4.259600 | 4.020201 | | 2 | 3.979100 | 3.911295 | | 3 | 3.818300 | 3.849313 | | 4 | 3.691600 | 3.809931 | | 5 | 3.589300 | 3.789201 | | 6 | 3.506200 | 3.778665 | | 7 | 3.439200 | 3.774871 | | 8 | 3.387600 | 3.774859 | | 9 | 3.351300 | 3.776672 | | 10 | 3.330100 | 3.776935 | ## How to Use (PyTorch) ### As Causal Language Model ```python from transformers import pipeline pretrained_name = "bookbot/gpt2-indo-small-kids-stories" nlp = pipeline( "text-generation", model=pretrained_name, tokenizer=pretrained_name ) nlp("Archie sedang mengendarai roket ke planet Mars.") ``` ### Feature Extraction in PyTorch ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast pretrained_name = "bookbot/gpt2-indo-small-kids-stories" model = GPT2LMHeadModel.from_pretrained(pretrained_name) tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name) prompt = "Archie sedang mengendarai roket ke planet Mars." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model. ## Author GPT-2 Indonesian Small Kids Stories was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
{"language": "id", "license": "mit", "tags": ["gpt2-indo-small-kids-stories"], "widget": [{"text": "Archie sedang mengendarai roket ke planet Mars."}]}
text-generation
bookbot/gpt2-indo-small-kids-stories
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "gpt2-indo-small-kids-stories", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "id" ]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-small-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GPT-2 Indonesian Small Kids Stories ----------------------------------- GPT-2 Indonesian Small Kids Stories is a causal language model based on the OpenAI GPT-2 model. The model was originally the pre-trained GPT2 Small Indonesian model, which was then fine-tuned on Indonesian kids' stories from Room To Read and Let's Read. 10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.777 and an evaluation perplexity of 43.68. Hugging Face's 'Trainer' class from the Transformers library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. Model ----- Evaluation Results ------------------ The model was fine-tuned for 10 epochs. Epoch: 1, Training Loss: 4.259600, Validation Loss: 4.020201 Epoch: 2, Training Loss: 3.979100, Validation Loss: 3.911295 Epoch: 3, Training Loss: 3.818300, Validation Loss: 3.849313 Epoch: 4, Training Loss: 3.691600, Validation Loss: 3.809931 Epoch: 5, Training Loss: 3.589300, Validation Loss: 3.789201 Epoch: 6, Training Loss: 3.506200, Validation Loss: 3.778665 Epoch: 7, Training Loss: 3.439200, Validation Loss: 3.774871 Epoch: 8, Training Loss: 3.387600, Validation Loss: 3.774859 Epoch: 9, Training Loss: 3.351300, Validation Loss: 3.776672 Epoch: 10, Training Loss: 3.330100, Validation Loss: 3.776935 How to Use (PyTorch) -------------------- ### As Causal Language Model ### Feature Extraction in PyTorch Disclaimer ---------- Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model. Author ------ GPT-2 Indonesian Small Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access.
[ "### As Causal Language Model", "### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Small Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-small-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### As Causal Language Model", "### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Small Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ 72, 7, 92 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #gpt2-indo-small-kids-stories #id #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### As Causal Language Model### Feature Extraction in PyTorch\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.\n\n\nAuthor\n------\n\n\nGPT-2 Indonesian Small Kids Stories was trained and evaluated by Wilson Wongso. All computation and development are done on Google Colaboratory using their free GPU access." ]
[ -0.031073274090886116, -0.014923895709216595, -0.0014417374040931463, 0.12117864936590195, 0.04505523666739464, 0.01016995869576931, 0.2353733777999878, 0.06776216626167297, -0.04512723907828331, -0.1364143043756485, 0.11829527467489243, -0.01995142176747322, 0.10874899476766586, 0.06178665533661842, -0.02114093489944935, -0.30297407507896423, 0.03775130212306976, -0.0005753511213697493, 0.1803186982870102, 0.188484787940979, 0.01354310568422079, -0.019878791645169258, 0.06457843631505966, 0.1033138632774353, -0.09224051982164383, -0.1402328908443451, 0.021603452041745186, -0.09641202539205551, 0.06265147775411606, -0.06018393114209175, 0.04271302372217178, 0.03902324289083481, 0.0001546154817333445, 0.07852575927972794, 0.027198821306228638, -0.003134478349238634, 0.006669221445918083, 0.010167768225073814, 0.07155423611402512, 0.05593502148985863, 0.2390194833278656, 0.06196984648704529, -0.04121289402246475, 0.0006073300610296428, -0.08152136951684952, -0.24563515186309814, 0.03769203647971153, 0.023203587159514427, 0.036487676203250885, 0.0830387994647026, -0.045041512697935104, 0.0949966087937355, -0.25558972358703613, 0.03096850775182247, 0.2000230997800827, -0.15778180956840515, -0.08135909587144852, 0.07212219387292862, 0.004827162250876427, -0.024303307756781578, -0.0637560710310936, -0.0006835456588305533, 0.027754148468375206, 0.000597182719502598, -0.008820926770567894, -0.07185440510511398, -0.07217346876859665, -0.08991623669862747, -0.08087708055973053, -0.060829732567071915, 0.1298973560333252, -0.10093548893928528, -0.056794945150613785, -0.20160552859306335, -0.014821791090071201, -0.03188396617770195, -0.02490353398025036, 0.02680096961557865, -0.006192139349877834, 0.04657734930515289, 0.0899399146437645, -0.0350784994661808, -0.13305658102035522, -0.05791269615292549, 0.01746894046664238, 0.10757171362638474, 0.010910701006650925, 0.055244117975234985, -0.1850050538778305, 0.14070695638656616, 0.12804153561592102, -0.10561475902795792, -0.03489319607615471, -0.06564659625291824, 0.15062637627124786, 0.09063373506069183, -0.01563943363726139, 0.14240163564682007, 0.03796452656388283, 0.010002285242080688, -0.06611140072345734, -0.04716988652944565, 0.08363540470600128, 0.047992970794439316, 0.04143974557518959, 0.07340195775032043, -0.05419968441128731, 0.04078622907400131, 0.12225624918937683, 0.0065574017353355885, 0.1069590225815773, -0.003588179824873805, -0.07934384047985077, -0.028869688510894775, 0.05378922075033188, 0.0768924430012703, 0.01947665400803089, 0.1353815197944641, -0.031298648566007614, -0.028681404888629913, 0.03893430903553963, -0.014978620223701, -0.05013732239603996, 0.016731007024645805, -0.04497455433011055, 0.17410142719745636, -0.0016327082412317395, 0.012996851466596127, -0.10365530848503113, 0.062034107744693756, -0.02154827117919922, 0.005804972257465124, 0.02415754646062851, 0.06489045917987823, 0.05976549908518791, -0.05178707465529442, 0.04262833669781685, -0.10334180295467377, -0.23624972999095917, -0.022976383566856384, 0.0019156377529725432, -0.07629194855690002, -0.028607739135622978, -0.08562283217906952, -0.08222946524620056, -0.006645337678492069, -0.022772813215851784, 0.002282939152792096, -0.057868048548698425, 0.10358890146017075, -0.04262501373887062, 0.054011039435863495, 0.050668638199567795, -0.016256073489785194, -0.26732000708580017, 0.05079697072505951, -0.03714977949857712, 0.09132157266139984, 0.17287373542785645, 0.0515555776655674, 0.050556302070617676, -0.11896514892578125, -0.08302972465753555, -0.008202805183827877, -0.07511434704065323, 0.23371009528636932, 0.00956177618354559, -0.09696457535028458, 0.15048930048942566, -0.14074844121932983, -0.16150107979774475, 0.17636923491954803, 0.007215072400867939, 0.2822771966457367, 0.10151207447052002, 0.22633612155914307, -0.07697994261980057, 0.07031840831041336, 0.00839161779731512, -0.0324736014008522, 0.020560385659337044, 0.04422153905034065, 0.12115925550460815, 0.08274423331022263, 0.029547272250056267, 0.07289096713066101, -0.0747300311923027, 0.09406327456235886, 0.018255552276968956, -0.027640588581562042, -0.009169911965727806, -0.030376436188817024, 0.14075890183448792, 0.06419342011213303, 0.07198182493448257, -0.054303597658872604, -0.051032353192567825, -0.15583810210227966, 0.028852304443717003, -0.08643820136785507, -0.00009522304753772914, -0.1230490431189537, 0.16698554158210754, -0.04849991947412491, 0.047895096242427826, 0.0032541935797780752, 0.04069938510656357, -0.01570243388414383, -0.10647296160459518, -0.06365867704153061, -0.08244486898183823, 0.021847957745194435, -0.0011791146825999022, -0.011152077466249466, -0.005963482894003391, 0.041035305708646774, -0.06152983754873276, 0.05091313645243645, -0.029391974210739136, 0.034343499690294266, 0.03010816127061844, 0.22301846742630005, -0.1885160654783249, 0.024941613897681236, 0.00963549967855215, -0.0017983767902478576, -0.025785163044929504, -0.0031853807158768177, 0.07324826717376709, -0.029558274894952774, -0.025718050077557564, -0.06194178760051727, 0.09532684087753296, 0.07255138456821442, -0.05161408334970474, 0.17163905501365662, -0.17187140882015228, -0.017082901671528816, 0.13589122891426086, -0.2384602129459381, 0.02178681641817093, -0.06263775378465652, -0.023457886651158333, 0.007232003379613161, 0.011737346649169922, 0.04172559455037117, 0.18033945560455322, 0.004532638005912304, 0.13379061222076416, -0.18062041699886322, -0.10537681728601456, 0.04555843397974968, -0.06542793661355972, 0.10603567957878113, 0.09213540703058243, -0.03519180417060852, -0.047066714614629745, 0.12146888673305511, 0.12126468867063522, 0.0800996944308281, 0.199056476354599, 0.012834783643484116, -0.007910947315394878, -0.007573164068162441, -0.02570808120071888, -0.05204913765192032, -0.023552894592285156, -0.28737810254096985, 0.016471609473228455, 0.09635283797979355, 0.007585272658616304, 0.060796573758125305, -0.16751520335674286, -0.07814943790435791, 0.004757456481456757, -0.0157532449811697, -0.10222811996936798, 0.08255105465650558, -0.0254970695823431, 0.08199802786111832, -0.03471822664141655, 0.1000116690993309, 0.05275048315525055, 0.0002748947881627828, -0.1133299320936203, 0.2074097990989685, 0.09178245067596436, -0.36713090538978577, -0.06284559518098831, 0.05631249025464058, -0.057040341198444366, 0.03377886489033699, 0.08366237580776215, -0.0713382437825203, 0.04855913296341896, -0.07063036412000656, 0.09812238067388535, 0.0840146541595459, -0.052069224417209625, -0.06639154255390167, 0.04955068230628967, -0.1310432106256485, -0.039113640785217285, -0.058100394904613495, 0.02965848706662655, -0.14828486740589142, 0.1738409548997879, -0.10462125390768051, -0.07591722160577774, 0.17404529452323914, 0.0548967607319355, -0.04203784465789795, -0.02255723439157009, 0.14502066373825073, -0.13666430115699768, 0.025971848517656326, 0.2534944713115692, -0.1537407785654068, -0.012869643978774548, 0.06155269593000412, -0.028086762875318527, -0.14088088274002075, 0.06584639102220535, -0.06807305663824081, -0.11548416316509247, -0.23351171612739563, -0.0709865540266037, -0.04787833243608475, 0.14882014691829681, -0.031830720603466034, 0.039773520082235336, 0.08843064308166504, 0.13639502227306366, -0.09753541648387909, 0.05910979583859444, 0.07748113572597504, 0.03184840455651283, 0.0994599312543869, -0.0015869704075157642, 0.024573251605033875, -0.027871781960129738, -0.06289428472518921, 0.03419911861419678, -0.13819174468517303, 0.11612498760223389, -0.07076173275709152, 0.1292896568775177, 0.027312690392136574, 0.07135321199893951, 0.0868806540966034, 0.16973531246185303, -0.0048707653768360615, -0.053259219974279404, -0.009805938228964806, -0.06682344526052475, -0.1369805634021759, 0.031974948942661285, -0.1545625627040863, 0.041977543383836746, -0.04462689533829689, -0.039073459804058075, 0.08707907795906067, 0.1540568768978119, 0.03014284186065197, -0.14233876764774323, -0.10687423497438431, 0.035809408873319626, 0.02444419637322426, -0.047803718596696854, 0.08571132272481918, 0.1221526563167572, -0.21814514696598053, -0.037222106009721756, -0.017788143828511238, 0.07035399973392487, -0.16310791671276093, 0.017515137791633606, -0.06145169958472252, -0.11056007444858551, 0.014759477227926254, 0.10763589292764664, -0.1662207543849945, 0.154862180352211, -0.03716549277305603, 0.08017648756504059, -0.20429131388664246, -0.06831682473421097, 0.010871104896068573, -0.0002739015035331249, 0.18595261871814728, 0.026912253350019455, 0.12647809088230133, -0.13904038071632385, -0.09733907878398895, 0.06032891571521759, 0.07093583792448044, 0.012408222071826458, 0.015820292755961418, -0.1139678880572319, 0.08421322703361511, -0.08341380208730698, -0.015005896799266338, -0.0014862807001918554, -0.022121552377939224, 0.03502530977129936, 0.006322699133306742, 0.08602793514728546, -0.05650901794433594, -0.1029285416007042, -0.011789755895733833, -0.011506453156471252, 0.05154823511838913, -0.2211001217365265, -0.014319205656647682, -0.056533314287662506, -0.009588128887116909, -0.044975485652685165, 0.006386656314134598, 0.007805491331964731, 0.04604402184486389, 0.049616653472185135, -0.04638873040676117, 0.06896419078111649, -0.03576110303401947, -0.32946711778640747, 0.05623314902186394, 0.11851880699396133, 0.06002555042505264, 0.07984903454780579, 0.05972994491457939, -0.021105481311678886, -0.03148453310132027, -0.11935622245073318, -0.07999377697706223, 0.09929854422807693, -0.004522408824414015, 0.008773036301136017, 0.11116939038038254, 0.15501615405082703, -0.054130345582962036, -0.12387751787900925, 0.20942646265029907, 0.17469747364521027, 0.006875636056065559, 0.08514780551195145, 0.17969633638858795, -0.06298957020044327, -0.2871188819408417, -0.02640116587281227, -0.05240299552679062, -0.04856586456298828, -0.08623774349689484, -0.04121919721364975, 0.08776707202196121, 0.10825040191411972, -0.007048983126878738, 0.03358739987015724, -0.35735583305358887, -0.11284320801496506, 0.050221025943756104, 0.03719943016767502, 0.2693791091442108, -0.16000233590602875, 0.036625027656555176, -0.03414740413427353, -0.10978875309228897, 0.10142996907234192, -0.09414850175380707, 0.08791855722665787, -0.07980078458786011, 0.007544770836830139, 0.018760761246085167, -0.04204507917165756, 0.1342802345752716, -0.08831986039876938, 0.009473933838307858, -0.14787600934505463, -0.0478646382689476, 0.08687517046928406, 0.054118409752845764, 0.03847100958228111, 0.016857996582984924, -0.052493978291749954, -0.11743336170911789, -0.14076073467731476, -0.13994646072387695, -0.01919148676097393, 0.0017645101761445403, -0.11774725466966629, -0.06914551556110382, 0.0912468284368515, 0.009335813112556934, 0.04194158688187599, -0.025222765281796455, -0.09202268719673157, -0.04841816425323486, -0.07583119720220566, 0.2492549568414688, -0.16427794098854065, 0.09635122865438461, -0.08569278568029404, 0.04165719076991081, 0.015036693774163723, -0.16520772874355316, -0.02624874748289585, 0.07593360543251038, 0.009532286785542965, 0.04432795196771622, 0.07968977093696594, -0.021547356620430946, 0.0993696004152298, 0.03207624703645706, -0.10752508789300919, -0.16916082799434662, -0.09141123294830322, -0.14185118675231934, 0.01199128944426775, -0.032385677099227905, 0.07275217771530151, -0.1262732446193695, -0.061470311135053635, -0.05459784343838692, 0.031903769820928574, -0.03897261247038841, 0.08470752090215683, -0.0738576352596283, -0.04163512587547302, -0.14585058391094208, 0.17803558707237244, 0.061664141714572906, -0.03864511474967003, 0.01825675182044506, 0.07399357855319977, -0.06522674858570099, -0.03115471825003624, -0.009215163066983223, -0.020123936235904694, 0.09727154672145844, -0.10009437799453735, -0.0781605914235115, -0.11036519706249237, -0.028252365067601204, -0.169704869389534, 0.036822110414505005, 0.055290766060352325, -0.028722135350108147, -0.0374976322054863, -0.10164421051740646, 0.06946218758821487, 0.04379461333155632, -0.036870528012514114, -0.05845832824707031, 0.10661406815052032, 0.07512064278125763, 0.07802902907133102, -0.08577897399663925, -0.044915471225976944, -0.08419012278318405, 0.06001395359635353, -0.10021523386240005, 0.11067122966051102, -0.1658690720796585, -0.02237585559487343, -0.027900608256459236, -0.048233021050691605, -0.053712937980890274, -0.006018875632435083, -0.07357034832239151, 0.05815853923559189, 0.014197494834661484, 0.026601988822221756, 0.011707774363458157, -0.01012690830975771, 0.09510219097137451, -0.03374391794204712, 0.1463909149169922, 0.07064434885978699, -0.12101085484027863, 0.11773385852575302, -0.2635757625102997, 0.05589086189866066, 0.035405226051807404, -0.0007631068001501262, -0.029149159789085388, -0.017401859164237976, 0.039660077542066574, 0.10711218416690826, -0.05487615242600441, 0.05900502949953079, 0.06019066646695137, -0.11525354534387589, 0.010786149650812149, -0.01454258058220148, -0.01390992384403944, -0.017446691170334816, -0.08860385417938232, -0.0000493234874738846, -0.04366712644696236, 0.14457279443740845, -0.04323223978281021, 0.13115528225898743, -0.11947315186262131, -0.024957727640867233, 0.0020791932474821806, -0.06151428446173668, 0.00891210325062275, -0.135800302028656, 0.00010441902850288898, 0.07403683662414551, 0.21680264174938202, 0.09486622363328934, -0.02943788468837738, -0.04529225453734398, 0.14556242525577545, 0.14951561391353607, 0.01639385148882866, 0.19911248981952667, 0.07343480736017227, -0.05679451674222946, -0.046670425683259964, 0.052369795739650726, 0.05563652142882347, 0.05874559283256531, 0.16209624707698822, 0.02018037810921669, 0.051281556487083435, 0.08169592171907425, -0.05006442591547966, 0.0871395543217659, -0.14601017534732819, -0.11400675773620605, 0.06742649525403976, 0.007035769056528807, -0.07586467266082764, 0.13102351129055023, 0.18432500958442688, -0.05474727600812912, -0.009228748269379139, -0.07011596858501434, -0.054078273475170135, -0.11869478970766068, -0.2859203815460205, -0.03513818234205246, -0.08624254167079926, -0.00990728847682476, -0.10628223419189453, -0.0801803469657898, 0.17135149240493774, 0.0565229132771492, -0.14149747788906097, 0.18390212953090668, 0.06302950531244278, -0.04956825450062752, 0.1342313438653946, -0.0145427156239748, 0.05888081714510918, -0.08887838572263718, -0.025767961516976357, -0.020441878587007523, 0.06644981354475021, 0.09889914095401764, 0.052223917096853256, -0.0956120565533638, -0.053895074874162674, -0.10316592454910278, -0.04970768094062805, -0.04496321827173233, 0.019132673740386963, 0.043756917119026184, 0.05370185524225235, 0.013503964059054852, -0.002775294939056039, 0.02269638516008854, 0.14856386184692383, 0.019786834716796875, -0.04295746982097626, -0.05973679572343826, 0.035939086228609085, -0.12447599321603775, -0.0857953131198883, 0.10288409888744354, -0.04870161414146423, -0.002086507622152567, 0.3909335136413574, 0.256299763917923, 0.030277473852038383, 0.016681253910064697, -0.04184320196509361, 0.017327386885881424, -0.07892484217882156, 0.20687805116176605, 0.07857902348041534, 0.21119791269302368, -0.06592351198196411, 0.08932846784591675, -0.033084675669670105, -0.0721677765250206, 0.033095747232437134, 0.13330498337745667, 0.0368545837700367, -0.001978076295927167, -0.07396964728832245, 0.10942051559686661, -0.23777586221694946, 0.05990869179368019, -0.008913666941225529, -0.05799345672130585, -0.07097726315259933, 0.0022139842621982098, -0.018380338326096535, 0.10416731238365173, 0.07735398411750793, 0.00734822079539299, 0.05271096155047417, -0.019901610910892487, 0.032327547669410706, -0.1051185354590416, 0.03506717085838318, 0.10196837037801743, -0.07374364137649536, 0.2748984694480896, -0.003775358898565173, 0.02924491837620735, 0.05602780729532242, 0.0269350316375494, -0.15327633917331696, 0.028434863314032555, 0.01110384427011013, 0.038116779178380966, 0.0026668577920645475, 0.08897217363119125, 0.03184615448117256, -0.19335976243019104, 0.10215754806995392, 0.009702567011117935, 0.10407477617263794, 0.11083898693323135, 0.10850532352924347, -0.11253559589385986, -0.0019420088501647115, -0.057883042842149734, 0.05543942376971245, 0.10320842266082764, -0.09239450097084045, -0.03716161474585533, -0.07172446697950363, 0.09140525758266449, -0.04645344242453575, -0.03108232282102108, 0.027121132239699364, -0.1604679971933365, -0.02068127505481243, 0.07497672736644745, 0.013145345263183117, -0.10919270664453506, 0.09323962777853012, -0.07954226434230804, -0.07789785414934158, -0.08493942767381668, -0.006022095214575529, -0.06104876473546028, 0.051203370094299316, 0.022662587463855743, -0.03561093658208847, -0.05639420822262764, 0.11073629558086395, -0.06946979463100433, -0.13279809057712555 ]
null
null
transformers
# Wav2Vec2 Adult/Child Speech Classifier Wav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a fine-tuned version of [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | -------------------------- | ------- | ----------- | ----------------------------------------- | | `wav2vec2-adult-child-cls` | 91M | wav2vec 2.0 | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.1682 | 95.80% | 0.9618 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.2709 | 1.0 | 384 | 0.2616 | 0.9104 | 0.9142 | | 0.2112 | 2.0 | 768 | 0.1826 | 0.9386 | 0.9421 | | 0.1755 | 3.0 | 1152 | 0.1898 | 0.9354 | 0.9428 | | 0.0915 | 4.0 | 1536 | 0.1682 | 0.9580 | 0.9618 | | 0.1042 | 5.0 | 1920 | 0.1717 | 0.9511 | 0.9554 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "wav2vec2-base", "model-index": [{"name": "wav2vec2-adult-child-cls", "results": []}]}
audio-classification
bookbot/wav2vec2-adult-child-cls
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2006.11477", "base_model:wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2006.11477" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #base_model-wav2vec2-base #license-apache-2.0 #endpoints_compatible #has_space #region-us
Wav2Vec2 Adult/Child Speech Classifier ====================================== Wav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the wav2vec 2.0 architecture. This model is a fine-tuned version of wav2vec2-base on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 32 * 'eval\_batch\_size': 32 * 'seed': 42 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 5 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- Wav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle. Framework versions ------------------ * Transformers 4.16.2 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #base_model-wav2vec2-base #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 83, 137, 108 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2006.11477 #base_model-wav2vec2-base #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 32\n* 'eval\\_batch\\_size': 32\n* 'seed': 42\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.10256730765104294, 0.12612445652484894, -0.0025595847982913256, 0.046955425292253494, 0.09244760125875473, -0.01987423188984394, 0.17422333359718323, 0.0846189633011818, -0.04161715507507324, 0.0914444848895073, 0.06851416081190109, 0.12268886715173721, 0.09227952361106873, 0.0877198725938797, -0.0439714640378952, -0.18458454310894012, 0.03491001948714256, -0.01715395785868168, -0.06277330964803696, 0.13359138369560242, 0.06519074738025665, -0.1204070895910263, 0.04387551546096802, 0.04705045744776726, -0.11213085800409317, -0.07429926097393036, -0.012885138392448425, -0.05081479996442795, 0.07674571871757507, 0.054211582988500595, 0.10290556401014328, 0.06960168480873108, 0.026314014568924904, -0.28899890184402466, 0.016495242714881897, 0.06429583579301834, 0.0470980666577816, 0.06670383363962173, 0.07054989039897919, -0.009359659627079964, 0.07806238532066345, -0.06324765086174011, 0.0382935032248497, 0.05476551875472069, -0.10856004059314728, -0.2384025901556015, -0.10934241116046906, 0.05345277115702629, 0.15174280107021332, 0.04896922782063484, -0.06128142774105072, 0.09247143566608429, -0.03950662538409233, 0.10927581787109375, 0.22162707149982452, -0.27499300241470337, -0.04375169053673744, 0.019622119143605232, 0.03721392899751663, 0.015936294570565224, -0.12135817110538483, -0.00010802716133184731, 0.06832586973905563, -0.03849608451128006, 0.06090777367353439, -0.03958873823285103, 0.023499147966504097, -0.05248783901333809, -0.14845675230026245, -0.06784040480852127, 0.19740313291549683, 0.08598585426807404, -0.09137168526649475, -0.1503024846315384, -0.004174457862973213, -0.12565384805202484, -0.0012316361535340548, -0.021771231666207314, 0.009812318719923496, -0.06823962926864624, -0.009679204784333706, -0.06817557662725449, -0.11495649069547653, -0.054395779967308044, -0.0139542818069458, 0.2811111807823181, 0.035032957792282104, -0.00132196513004601, 0.01707952842116356, 0.11641918122768402, 0.11139029264450073, -0.14140066504478455, -0.03708275035023689, -0.0002351307775825262, -0.10572253912687302, -0.045011889189481735, -0.019143592566251755, 0.03325652331113815, 0.01118694432079792, 0.14429333806037903, -0.04100916162133217, 0.05384407192468643, -0.014699414372444153, 0.012535634450614452, 0.006880161818116903, 0.146381676197052, -0.04073493182659149, -0.011057896539568901, -0.004347620997577906, 0.06986802071332932, 0.02234520949423313, -0.04716784507036209, -0.036572474986314774, 0.018822381272912025, 0.07952413707971573, 0.05939110368490219, 0.031418781727552414, 0.06787186861038208, -0.07885157316923141, -0.06175965070724487, 0.022364282980561256, -0.1256089210510254, -0.004739483818411827, 0.09468098729848862, -0.05919778719544411, 0.01997707411646843, 0.011076927185058594, 0.04823881760239601, -0.06957001984119415, 0.05866702273488045, -0.08918353170156479, 0.007515464909374714, -0.030856948345899582, -0.09042094647884369, 0.017877941951155663, -0.026740584522485733, -0.009588061831891537, -0.05574535205960274, -0.0801013931632042, -0.0622815378010273, 0.010677790269255638, -0.002410844201222062, -0.06648910790681839, -0.08365240693092346, -0.07939739525318146, 0.014994065277278423, -0.034941621124744415, 0.10510658472776413, -0.04519855976104736, 0.0932757556438446, 0.03592879697680473, 0.019817933440208435, 0.09990007430315018, 0.0415496900677681, -0.05470529943704605, 0.046656131744384766, -0.09178005158901215, 0.13379183411598206, -0.10310047119855881, 0.00937125738710165, -0.14156511425971985, -0.11266451328992844, 0.000004348798029241152, 0.010625912807881832, 0.03770601749420166, 0.17797458171844482, -0.07207076251506805, -0.08051285147666931, 0.17143502831459045, -0.10614797472953796, -0.1318918913602829, 0.10069454461336136, -0.0432325042784214, 0.04163355007767677, 0.07980091124773026, 0.12938383221626282, 0.10334881395101547, -0.130568265914917, -0.05866037309169769, -0.05960553139448166, 0.10767391324043274, 0.08611058443784714, 0.1117214784026146, -0.049321498721838, 0.020741865038871765, 0.020447511225938797, -0.1069614514708519, -0.024244127795100212, -0.058677490800619125, -0.07336683571338654, 0.0073281326331198215, -0.06320164352655411, 0.07557330280542374, 0.024513939395546913, 0.03809143975377083, -0.03691092133522034, -0.12627191841602325, 0.02749473974108696, 0.11067520081996918, -0.1155969426035881, 0.021683219820261, -0.11163580417633057, 0.061379577964544296, -0.06337179243564606, -0.007030065171420574, -0.152706116437912, -0.08491966128349304, 0.020585285499691963, -0.09367852658033371, 0.018176501616835594, 0.023585595190525055, 0.029295574873685837, 0.03584869205951691, -0.023057954385876656, -0.051119524985551834, -0.04557128995656967, -0.00204028794541955, -0.02489565871655941, -0.1964607536792755, -0.05789438635110855, -0.028024321421980858, 0.2332436442375183, -0.25947460532188416, 0.026922205463051796, 0.10687007009983063, 0.09571649134159088, 0.03582156449556351, -0.0696529895067215, 0.027111900970339775, 0.026098674163222313, -0.03302507475018501, -0.0314566045999527, 0.030007030814886093, 0.010082068853080273, -0.11217653006315231, 0.02988230437040329, -0.19452887773513794, -0.020631449297070503, 0.1265680491924286, -0.023061927407979965, -0.06873994320631027, -0.07667016237974167, -0.054593805223703384, -0.04429461061954498, -0.042586687952280045, -0.005694595165550709, 0.16949650645256042, 0.045331694185733795, 0.10967390984296799, -0.09485183656215668, -0.08682636171579361, 0.030159849673509598, -0.029833992943167686, -0.005991969723254442, 0.12396559119224548, -0.023841911926865578, -0.07990359514951706, 0.10353910177946091, 0.04044986888766289, -0.02576524019241333, 0.11743531376123428, -0.04178956151008606, -0.0714285597205162, -0.08222811669111252, 0.06722016632556915, 0.00703297508880496, 0.09011094272136688, -0.14119784533977509, -0.0039223600178956985, 0.025846421718597412, 0.004529052879661322, 0.0032363873906433582, -0.1898934692144394, 0.01919916458427906, 0.015459418296813965, -0.06702793389558792, -0.03910161554813385, -0.008696488104760647, -0.0009640554198995233, 0.08210041373968124, -0.0215999074280262, 0.06707930564880371, 0.008354405872523785, -0.06011471524834633, -0.12012136727571487, 0.2058577984571457, -0.04599375277757645, -0.15548159182071686, -0.10812154412269592, -0.04677033796906471, -0.09442365169525146, -0.009274334646761417, 0.030230900272727013, -0.04440392553806305, -0.024859711527824402, -0.07924004644155502, 0.052695754915475845, 0.006918410304933786, -0.026749642565846443, 0.023153692483901978, -0.010865854099392891, 0.047877416014671326, -0.11541534960269928, 0.019872117787599564, -0.01944817043840885, -0.05897736921906471, 0.01800335757434368, 0.06840743869543076, 0.030108092352747917, 0.15903311967849731, 0.06439658999443054, -0.00016720300482120365, -0.045182108879089355, 0.1963219940662384, -0.14254693686962128, -0.016464602202177048, 0.105270154774189, -0.0636715367436409, 0.029332561418414116, 0.13768495619297028, 0.009364825673401356, -0.094000905752182, 0.04312843829393387, 0.06685148924589157, -0.03850330784916878, -0.30596429109573364, -0.04300546273589134, -0.07505901157855988, 0.0070661394856870174, 0.0673372745513916, 0.007369250524789095, -0.03574168682098389, 0.07444299757480621, -0.07715293020009995, 0.00020793233125004917, 0.06699977070093155, 0.07201603800058365, 0.13691842555999756, 0.021395966410636902, 0.13060200214385986, -0.030582742765545845, -0.02931600622832775, 0.02091301418840885, 0.03698084503412247, 0.1866144835948944, -0.03218834474682808, 0.17649365961551666, 0.08966542780399323, 0.12528052926063538, -0.01364259235560894, 0.024033810943365097, 0.038462135940790176, 0.011587179265916348, 0.027514319866895676, -0.07229737937450409, -0.08663589507341385, 0.08167412132024765, 0.0791136771440506, -0.0010757959680631757, -0.08349434286355972, -0.037158314138650894, 0.01759151555597782, 0.3143061697483063, 0.10896151512861252, -0.2219981700181961, -0.11010520905256271, 0.05176178738474846, -0.03992561995983124, -0.019284699112176895, 0.0015166731318458915, 0.11036652326583862, -0.1313788890838623, 0.09825077652931213, -0.05661093816161156, 0.07451726496219635, -0.1425221711397171, -0.029830673709511757, -0.0043510072864592075, 0.0025346095208078623, -0.023049211129546165, 0.05748333781957626, -0.232129767537117, 0.22336722910404205, -0.0112858135253191, 0.06614001840353012, -0.04841648414731026, 0.03219706937670708, -0.0006431450019590557, -0.04531874880194664, 0.1450960338115692, -0.001660734647884965, -0.027908945456147194, -0.17043739557266235, -0.10113793611526489, 0.022102897986769676, 0.11230898648500443, -0.09893923252820969, 0.11364695429801941, -0.02632642723619938, 0.040991928428411484, 0.0071486057713627815, -0.01023892592638731, -0.058843307197093964, -0.07745876163244247, 0.07014652341604233, -0.03632808104157448, 0.032759811729192734, -0.06003411114215851, -0.11239191889762878, -0.15453962981700897, 0.17575861513614655, -0.15836010873317719, -0.07338494807481766, -0.090779609978199, 0.0033147342037409544, 0.0816507488489151, -0.08675271272659302, 0.031564947217702866, 0.011367898434400558, 0.13416121900081635, 0.026609985157847404, 0.006173992995172739, 0.062377531081438065, -0.04572240263223648, -0.24918892979621887, -0.004396818112581968, 0.1904693990945816, 0.045594580471515656, 0.033107683062553406, 0.006205699872225523, 0.0028854317497462034, 0.02810506708920002, -0.10716640204191208, 0.05652390047907829, 0.06717060506343842, 0.029398569837212563, 0.10053640604019165, 0.00004128456566832028, -0.11884880810976028, -0.14771050214767456, -0.04547916352748871, 0.10423318296670914, 0.3866780698299408, -0.062190115451812744, 0.03682425990700722, 0.08653419464826584, -0.09421762824058533, -0.1819004863500595, 0.013390245847404003, 0.11125542968511581, 0.01816634088754654, 0.05157972127199173, -0.16222161054611206, 0.0825527086853981, 0.060107793658971786, -0.0506141223013401, 0.10940807312726974, -0.2543907165527344, -0.14908228814601898, 0.13412615656852722, 0.11804548650979996, 0.03375351428985596, -0.15832829475402832, -0.0870489627122879, 0.017658038064837456, -0.12921665608882904, 0.1642836183309555, -0.052531298249959946, 0.1163310706615448, 0.04268719255924225, 0.05124366283416748, 0.04721268266439438, -0.05881933495402336, 0.146375373005867, 0.03391899913549423, 0.04264133796095848, -0.053134746849536896, -0.05616634711623192, 0.024687688797712326, -0.060400526970624924, 0.03362274914979935, -0.012951523996889591, 0.04244706407189369, -0.10804550349712372, -0.04767666012048721, -0.09447648376226425, 0.05643882602453232, -0.07515893876552582, -0.05073348060250282, -0.057447340339422226, 0.0726250633597374, 0.07251361757516861, 0.022970443591475487, 0.09095128625631332, -0.056000884622335434, 0.0659237876534462, 0.1876031458377838, 0.1293499916791916, 0.11198078095912933, -0.06873541325330734, -0.04873191565275192, -0.007637541741132736, 0.06035769730806351, -0.10320263355970383, 0.06506678462028503, 0.12192492932081223, 0.08034414052963257, 0.16659536957740784, 0.01659701019525528, -0.10533036291599274, 0.0328628346323967, 0.013195743784308434, -0.11383625864982605, -0.16943158209323883, 0.0020185799803584814, -0.08015692979097366, -0.13571681082248688, 0.04002171382308006, 0.15683627128601074, -0.005055128131061792, -0.0043105860240757465, 0.008208065293729305, 0.034926071763038635, -0.004083090927451849, 0.14569491147994995, 0.024804282933473587, 0.08774562925100327, -0.07788094878196716, 0.06322193145751953, 0.08111602067947388, -0.09782422333955765, 0.05145852640271187, -0.04253283143043518, -0.05008789151906967, -0.03147986903786659, -0.09108776599168777, -0.03769436851143837, 0.05076323077082634, -0.027184048667550087, -0.0668930783867836, -0.1265757530927658, 0.01365066971629858, 0.06098494306206703, 0.0400475449860096, 0.08365274965763092, 0.015496999025344849, 0.03263210132718086, -0.11574918776750565, 0.1411147564649582, 0.03357551991939545, 0.02767782099545002, -0.13482581079006195, 0.13099370896816254, 0.03500288724899292, 0.030627120286226273, -0.00305554224178195, -0.039994314312934875, -0.11460170894861221, 0.029519876465201378, -0.059305496513843536, 0.037456683814525604, -0.08647570013999939, 0.008475151844322681, -0.013792441226541996, -0.09198993444442749, -0.07791220396757126, 0.03870600834488869, -0.08664921671152115, 0.0008698035380803049, 0.01579134911298752, 0.09954353421926498, -0.14403200149536133, -0.04256027191877365, 0.08338085561990738, -0.1196303591132164, 0.09905592352151871, 0.029481908306479454, -0.024427276104688644, 0.04020317271351814, -0.07833294570446014, 0.08506496250629425, 0.032116275280714035, 0.03165267035365105, -0.002062525600194931, -0.2315429002046585, -0.008751428686082363, -0.006113909650593996, 0.03394364193081856, 0.005307129118591547, 0.06611303985118866, -0.1321057379245758, -0.08485777676105499, -0.011508231051266193, -0.03391479328274727, -0.05492403358221054, 0.04037941247224808, 0.033710628747940063, 0.028791485354304314, 0.21207064390182495, -0.028696808964014053, 0.09141315519809723, -0.19263006746768951, -0.006857334170490503, 0.00864188652485609, -0.0406126044690609, -0.013868873938918114, -0.02586195059120655, 0.06737782061100006, -0.0831909254193306, 0.13385581970214844, -0.09231546521186829, 0.010054746642708778, 0.03730791062116623, -0.06817210465669632, -0.0123495664447546, 0.06404270231723785, 0.19443723559379578, 0.006183135788887739, -0.012192979454994202, 0.06282516568899155, -0.006659545004367828, 0.0061797043308615685, 0.08529030531644821, 0.16662272810935974, 0.11231172829866409, -0.02871333807706833, 0.07229115813970566, 0.04298650473356247, -0.07842344790697098, -0.11292842775583267, 0.10401222854852676, -0.09349104017019272, 0.08755761384963989, -0.032348182052373886, 0.13537484407424927, 0.12782245874404907, -0.19957560300827026, 0.07552390545606613, -0.018171504139900208, -0.10642004013061523, -0.12240347266197205, -0.16988280415534973, -0.07313326001167297, -0.08092907816171646, 0.04008864238858223, -0.12107151001691818, 0.0011382122756913304, 0.0918528363108635, 0.026967037469148636, -0.012789950706064701, 0.17264600098133087, -0.004999264143407345, -0.059667084366083145, 0.0960673913359642, 0.010422524996101856, -0.03215312212705612, -0.05068134143948555, -0.059331513941287994, 0.07182420790195465, 0.03702274337410927, 0.09495317190885544, -0.006739730015397072, -0.051958344876766205, 0.05273720994591713, -0.03225703537464142, -0.09168123453855515, 0.00258440850302577, 0.010319222696125507, 0.11085158586502075, 0.1025829166173935, 0.0542980320751667, 0.012708505615592003, -0.015597349032759666, 0.17908993363380432, -0.06617173552513123, -0.001605259720236063, -0.14500939846038818, 0.15672767162322998, -0.005627197679132223, -0.00001381234142172616, 0.056569453328847885, -0.08386226743459702, 0.03249921277165413, 0.18836946785449982, 0.1408955603837967, 0.0055366395972669125, 0.0054199532605707645, 0.000422115670517087, 0.006679662503302097, 0.013325836509466171, 0.07175164669752121, 0.056710004806518555, 0.0809122622013092, -0.029441390186548233, -0.017354147508740425, -0.0031820745207369328, -0.04154222458600998, 0.0580078661441803, 0.13751782476902008, -0.011904031969606876, -0.010814419947564602, -0.06491237878799438, 0.09695524722337723, -0.10842505842447281, -0.21218623220920563, 0.037581223994493484, -0.11407352983951569, -0.1656060516834259, 0.003567874664440751, 0.019056744873523712, 0.028062203899025917, 0.03621642664074898, -0.003548522014170885, -0.042133063077926636, 0.12881705164909363, 0.0015159130562096834, -0.006960292812436819, -0.04442933574318886, 0.08160681277513504, -0.0833621621131897, 0.20157909393310547, -0.0003926361387129873, 0.1377515345811844, 0.10218606889247894, 0.017950279638171196, -0.06502075493335724, 0.05019316449761391, 0.048730429261922836, -0.11286665499210358, 0.0317869670689106, 0.1703268438577652, -0.01821279153227806, 0.12452834099531174, 0.09253805875778198, -0.06593455374240875, 0.038650333881378174, -0.02861461415886879, -0.04062260687351227, -0.10840227454900742, 0.0339631550014019, -0.10195252299308777, 0.1266680508852005, 0.17308275401592255, -0.07614602148532867, -0.029941821470856667, -0.03256739675998688, 0.005339556373655796, 0.008582285605370998, 0.12713685631752014, -0.003390190890058875, -0.2712012529373169, 0.03615313768386841, -0.04574672132730484, 0.0558931864798069, -0.26136428117752075, -0.05255329608917236, 0.05015789717435837, -0.07384221255779266, -0.03329133987426758, 0.09404285252094269, 0.019415661692619324, 0.040057774633169174, -0.07846453785896301, -0.07816729694604874, -0.0525917150080204, 0.1631886214017868, -0.15684737265110016, -0.09421675652265549 ]
null
null
transformers
# Wav2Vec2 XLS-R Adult/Child Speech Classifier Wav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | -------------------------------- | ------- | ----- | ----------------------------------------- | | `wav2vec2-xls-r-adult-child-cls` | 300M | XLS-R | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.1851 | 94.69% | 0.9508 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.2906 | 1.0 | 383 | 0.1856 | 0.9372 | 0.9421 | | 0.1749 | 2.0 | 766 | 0.1925 | 0.9418 | 0.9465 | | 0.1681 | 3.0 | 1149 | 0.1893 | 0.9414 | 0.9459 | | 0.1295 | 4.0 | 1532 | 0.1851 | 0.9469 | 0.9508 | | 0.2031 | 5.0 | 1915 | 0.1944 | 0.9423 | 0.9460 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "wav2vec2-xls-r-adult-child-cls", "results": []}]}
audio-classification
bookbot/wav2vec2-xls-r-adult-child-cls
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "arxiv:2111.09296", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us
Wav2Vec2 XLS-R Adult/Child Speech Classifier ============================================ Wav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the XLS-R architecture. This model is a fine-tuned version of wav2vec2-xls-r-300m on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. Model ----- Evaluation Results ------------------ The model achieves the following results on evaluation: Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * 'learning\_rate': 3e-05 * 'train\_batch\_size': 8 * 'eval\_batch\_size': 8 * 'seed': 42 * 'gradient\_accumulation\_steps': 4 * 'total\_train\_batch\_size': 32 * 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08' * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_warmup\_ratio': 0.1 * 'num\_epochs': 5 ### Training results Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- Wav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle. Framework versions ------------------ * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 8\n* 'eval\\_batch\\_size': 8\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 32\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 8\n* 'eval\\_batch\\_size': 8\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 32\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5", "### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 63, 170, 115 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #en #arxiv-2111.09296 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* 'learning\\_rate': 3e-05\n* 'train\\_batch\\_size': 8\n* 'eval\\_batch\\_size': 8\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 4\n* 'total\\_train\\_batch\\_size': 32\n* 'optimizer': Adam with 'betas=(0.9,0.999)' and 'epsilon=1e-08'\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_warmup\\_ratio': 0.1\n* 'num\\_epochs': 5### Training results\n\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by Wilson Wongso. All computation and development are done on Kaggle.\n\n\nFramework versions\n------------------\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08235130459070206, 0.14090412855148315, -0.0036267207469791174, 0.0541808120906353, 0.08239728957414627, 0.0066785127855837345, 0.1466386318206787, 0.11140517145395279, -0.0338878259062767, 0.10909376293420792, 0.07632751017808914, 0.08317271620035172, 0.09659299999475479, 0.07553993910551071, -0.04756038635969162, -0.23142214119434357, 0.022985687479376793, -0.06842981278896332, -0.09411927312612534, 0.13604912161827087, 0.06407155841588974, -0.1033235713839531, 0.05923659726977348, 0.019754748791456223, -0.0761750340461731, -0.05259869247674942, -0.025305364280939102, -0.05134870111942291, 0.07665814459323883, 0.05240713804960251, 0.08588821440935135, 0.0814996063709259, 0.07600495219230652, -0.28348031640052795, 0.009981825016438961, 0.07435769587755203, 0.04097025841474533, 0.07897534966468811, 0.11057931184768677, -0.03975750878453255, 0.13765735924243927, -0.06849897652864456, 0.04767577722668648, 0.04857376962900162, -0.10821092873811722, -0.21998435258865356, -0.07873626798391342, 0.047200728207826614, 0.12527497112751007, 0.05758966505527496, -0.05411055311560631, 0.08619922399520874, -0.05107469484210014, 0.08643028140068054, 0.2031511664390564, -0.23828276991844177, -0.03503832593560219, 0.006769285537302494, 0.030436474829912186, 0.05789542198181152, -0.11490083485841751, -0.009996389970183372, 0.043863892555236816, -0.024299906566739082, 0.05074241757392883, -0.025346489623188972, 0.059587717056274414, -0.003286520019173622, -0.1550978720188141, -0.07526657730340958, 0.14216174185276031, 0.07912754267454147, -0.07169549912214279, -0.1292780041694641, -0.0131700299680233, -0.1553114354610443, 0.016082296147942543, -0.0051947301253676414, 0.007290554232895374, -0.05456992983818054, -0.02369863912463188, -0.027475498616695404, -0.08624354004859924, -0.06476307660341263, 0.020376425236463547, 0.2211349755525589, 0.030645916238427162, 0.00284675695002079, 0.028086338192224503, 0.11700000613927841, 0.11310544610023499, -0.14755387604236603, -0.008903698064386845, -0.012244479730725288, -0.12527719140052795, -0.021439088508486748, -0.022213377058506012, 0.04628116264939308, 0.010880467481911182, 0.1362985521554947, -0.028862101957201958, 0.07221316546201706, 0.002319890074431896, 0.0025105660315603018, 0.010561354458332062, 0.14620816707611084, -0.06877192109823227, -0.01572735235095024, -0.04381026700139046, 0.08047430962324142, -0.010963523760437965, -0.04606986418366432, -0.053047508001327515, 0.024082200601696968, 0.06088710576295853, 0.062027737498283386, 0.00863152276724577, 0.04604047164320946, -0.07114481180906296, -0.07315792888402939, 0.02283838950097561, -0.1304006278514862, 0.02776431292295456, 0.08937957137823105, -0.06580516695976257, 0.02100394479930401, 0.005875744856894016, 0.04166572540998459, -0.06454804539680481, 0.09290599822998047, -0.06198824197053909, -0.00003852718509733677, -0.032132674008607864, -0.09272415190935135, 0.01080300286412239, -0.06744586676359177, -0.005184444133192301, -0.0432979054749012, -0.04809420183300972, -0.07419005036354065, 0.05187392607331276, -0.05674874037504196, -0.05969275161623955, -0.07455918937921524, -0.08353597670793533, 0.03767591714859009, -0.02120175026357174, 0.14078348875045776, -0.04306771606206894, 0.0904129147529602, -0.0012152383569628, 0.03005925565958023, 0.11968395113945007, 0.05078840255737305, -0.05587445944547653, 0.06817614287137985, -0.10096610337495804, 0.1196349710226059, -0.08264929801225662, -0.01993352174758911, -0.1661815196275711, -0.10762201249599457, 0.004859509877860546, 0.0009806181769818068, 0.04104265943169594, 0.1530323028564453, -0.11086268723011017, -0.07943086326122284, 0.1273939609527588, -0.07137826830148697, -0.10336891561746597, 0.11771299690008163, -0.04108200594782829, 0.004645223263651133, 0.030768929049372673, 0.15954884886741638, 0.05276620760560036, -0.12951886653900146, -0.039046261459589005, -0.06793281435966492, 0.10190828889608383, 0.135456845164299, 0.1261543482542038, -0.04071749001741409, 0.017795661464333534, -0.024775179103016853, -0.08539856970310211, -0.029399404302239418, -0.044909652322530746, -0.07789982110261917, 0.0019216833170503378, -0.04019748792052269, 0.053407926112413406, 0.009928261861205101, -0.0036675601731985807, -0.03403206542134285, -0.1488690823316574, -0.00885203666985035, 0.08931461721658707, -0.0983089953660965, 0.0192111749202013, -0.10379751771688461, 0.03301175311207771, -0.024476809427142143, -0.014883795753121376, -0.1595757156610489, -0.020738471299409866, 0.03067641519010067, -0.10518424212932587, 0.044666457921266556, 0.017243029549717903, 0.04001902788877487, 0.0503198616206646, -0.017186669632792473, -0.05260414257645607, -0.0357486866414547, 0.0004635172081179917, -0.02085692062973976, -0.2228103131055832, -0.06330056488513947, -0.026809480041265488, 0.20714369416236877, -0.2591398358345032, 0.002942387480288744, 0.08621184527873993, 0.0856008380651474, 0.029788346961140633, -0.054026637226343155, 0.027959199622273445, 0.025332722812891006, -0.03335407003760338, -0.04261146858334541, 0.01653306558728218, -0.00861648190766573, -0.1384323686361313, 0.03947298973798752, -0.19646647572517395, -0.04552141949534416, 0.10105763375759125, -0.013403729535639286, -0.07737501710653305, -0.07973314821720123, -0.05164657160639763, -0.046249836683273315, -0.035069093108177185, 0.007303539663553238, 0.2110675424337387, 0.056003548204898834, 0.09899744391441345, -0.08998151868581772, -0.08406936377286911, 0.0341239832341671, -0.014477063901722431, -0.010341357439756393, 0.14410802721977234, 0.03446032479405403, -0.07062609493732452, 0.08005722612142563, 0.08231499046087265, -0.010003764182329178, 0.09089615195989609, -0.03719569370150566, -0.10094728320837021, -0.0787770003080368, 0.029354780912399292, 0.009673364460468292, 0.048847001045942307, -0.09507803618907928, 0.020159127190709114, 0.03519057855010033, 0.044916242361068726, -0.00601187814027071, -0.18081441521644592, 0.01591963693499565, 0.04436509683728218, -0.06685853749513626, -0.07707763463258743, -0.01927771605551243, 0.005513099022209644, 0.07556412369012833, 0.0016051065176725388, 0.031564515084028244, -0.005125655326992273, -0.06591170281171799, -0.12207309156656265, 0.1806872934103012, -0.0528862290084362, -0.14280365407466888, -0.125144362449646, -0.0656820759177208, -0.05271698534488678, -0.005397992208600044, 0.02115912176668644, -0.04922560229897499, -0.036812931299209595, -0.08306839317083359, 0.05946529284119606, -0.025892915204167366, -0.0067738196812570095, 0.003516792319715023, 0.013027791865170002, 0.05175003781914711, -0.08599244058132172, 0.020359082147479057, 0.012517611496150494, -0.052489474415779114, 0.008590102195739746, 0.07266668975353241, 0.05121377855539322, 0.16172218322753906, 0.04294460266828537, 0.005065049976110458, -0.01779910922050476, 0.20244991779327393, -0.13403423130512238, -0.008199215866625309, 0.0950726866722107, -0.09876926988363266, 0.03344932571053505, 0.16289646923542023, 0.01908862590789795, -0.09304255247116089, 0.0356319285929203, 0.057412486523389816, -0.03474375605583191, -0.3089374601840973, -0.0356251485645771, -0.04011841118335724, 0.0029829912818968296, 0.10060840100049973, 0.024851791560649872, -0.05239130184054375, 0.043754514306783676, -0.049563948065042496, -0.013177787885069847, 0.04703645035624504, 0.059376686811447144, 0.06936442852020264, 0.03849656507372856, 0.08935264497995377, -0.018328484147787094, -0.02589714340865612, 0.040565118193626404, 0.033395834267139435, 0.17897485196590424, -0.010052002035081387, 0.19859609007835388, 0.0646158829331398, 0.08181111514568329, -0.004621780011802912, 0.02316409908235073, 0.030181661248207092, 0.020502790808677673, 0.017035270109772682, -0.06704666465520859, -0.05783085897564888, 0.09184571355581284, 0.09031461179256439, -0.013394334353506565, -0.07201813906431198, -0.004000670742243528, 0.02134084887802601, 0.292237251996994, 0.08621244877576828, -0.22244110703468323, -0.06431343406438828, 0.04390157759189606, -0.05839616805315018, -0.03398476168513298, 0.006351276766508818, 0.12734076380729675, -0.11223895847797394, 0.07692263275384903, -0.05680207163095474, 0.07831522077322006, -0.12570902705192566, -0.013665647245943546, 0.03962469473481178, 0.031035447493195534, -0.017032938078045845, 0.06728879362344742, -0.20942769944667816, 0.256731241941452, -0.0009763921843841672, 0.04341385141015053, -0.06316467374563217, 0.022454340010881424, -0.010007674805819988, -0.06755075603723526, 0.1490236222743988, -0.004202347714453936, -0.07159021496772766, -0.1472751498222351, -0.11595466732978821, 0.026964720338582993, 0.1500069946050644, -0.09932085871696472, 0.1232091560959816, -0.038220737129449844, 0.011831060983240604, 0.003282905323430896, -0.02265205606818199, -0.038375016301870346, -0.09609798341989517, 0.054196953773498535, -0.048920176923274994, 0.04182693362236023, -0.042367059737443924, -0.07489608973264694, -0.1330547034740448, 0.15047413110733032, -0.16661973297595978, -0.04817434400320053, -0.11266829073429108, 0.017298700287938118, 0.13026699423789978, -0.07652796059846878, 0.010460074059665203, 0.02224688045680523, 0.1284351646900177, 0.02996763214468956, -0.007537463679909706, 0.09604005515575409, -0.03822082653641701, -0.24864451587200165, -0.02004201151430607, 0.17392556369304657, 0.05261070653796196, 0.079777292907238, -0.02668065018951893, 0.04065520316362381, -0.005539650097489357, -0.09775891900062561, 0.07975932955741882, 0.03978139907121658, 0.005710052326321602, 0.0690952017903328, 0.006588509771972895, -0.007566561456769705, -0.13349124789237976, -0.05754817649722099, 0.10599915683269501, 0.3612864315509796, -0.07502792030572891, 0.07604102045297623, 0.07788609713315964, -0.08254507929086685, -0.17410670220851898, -0.006874600891023874, 0.12469212710857391, 0.03723302111029625, 0.0384015329182148, -0.19296877086162567, 0.05520007759332657, 0.07014045864343643, -0.025644201785326004, 0.08550452440977097, -0.2743183970451355, -0.14528577029705048, 0.09190517663955688, 0.06735368818044662, -0.07536299526691437, -0.1520911157131195, -0.07535359263420105, -0.006670551840215921, -0.08386479318141937, 0.1184106394648552, -0.01512106228619814, 0.11692454665899277, 0.04039657115936279, 0.07129168510437012, 0.03943241015076637, -0.0440034382045269, 0.16667351126670837, 0.0394073985517025, 0.03459141030907631, -0.04542822390794754, -0.03429741412401199, -0.035874564200639725, -0.05249116197228432, 0.026881035417318344, -0.046903062611818314, 0.02334413304924965, -0.11631367355585098, -0.05537080764770508, -0.06466116011142731, 0.019223319366574287, -0.05841716006398201, -0.060518160462379456, -0.035348791629076004, 0.05352535843849182, 0.09367334842681885, -0.0034685928840190172, 0.07503197342157364, -0.06616394966840744, 0.03399524465203285, 0.19326967000961304, 0.15143579244613647, 0.11131895333528519, -0.06302307546138763, -0.024832943454384804, 0.012699402868747711, 0.0456371046602726, -0.14199510216712952, 0.06019198149442673, 0.13904307782649994, 0.05796322599053383, 0.17197535932064056, 0.01605142280459404, -0.096254363656044, 0.006927185226231813, 0.02101156674325466, -0.11011959612369537, -0.14000330865383148, -0.00640525110065937, -0.011442296206951141, -0.15884049236774445, -0.04235680401325226, 0.12539659440517426, -0.009788790717720985, -0.013772399164736271, 0.015458913519978523, 0.049123890697956085, -0.022767160087823868, 0.16270795464515686, 0.02402052842080593, 0.09398704022169113, -0.08188091218471527, 0.09489814937114716, 0.08745543658733368, -0.13015154004096985, 0.057894933968782425, 0.03300917521119118, -0.04164620116353035, -0.01161526795476675, -0.04075617715716362, -0.004152642097324133, 0.0344737246632576, -0.028443830087780952, -0.056342270225286484, -0.11930325627326965, 0.047882817685604095, 0.057200878858566284, 0.031246766448020935, 0.0664033591747284, -0.009257188998162746, 0.0034727901220321655, -0.12986651062965393, 0.12932483851909637, 0.03586140275001526, 0.027123935520648956, -0.12453247606754303, 0.11515435576438904, 0.02129439078271389, 0.01785043068230152, -0.003221771214157343, -0.016030579805374146, -0.10240112245082855, 0.03002914972603321, -0.0817444920539856, 0.03653505817055702, -0.05243479460477829, 0.0048135556280612946, 0.010279431007802486, -0.07700316607952118, -0.05718572437763214, 0.016920993104577065, -0.10665393620729446, -0.023009097203612328, -0.01899896189570427, 0.09596911072731018, -0.11548449099063873, -0.031226567924022675, 0.0734427347779274, -0.12110966444015503, 0.10154309868812561, 0.025796491652727127, -0.027861949056386948, 0.023326611146330833, -0.1108095794916153, 0.04972090572118759, 0.009719659574329853, 0.029886305332183838, 0.01604347489774227, -0.25271397829055786, -0.001599494251422584, -0.03348303958773613, -0.01789851114153862, -0.0069585335440933704, 0.04972441494464874, -0.1291445940732956, -0.02851223386824131, -0.029404349625110626, -0.04890558868646622, -0.05883922055363655, 0.035932302474975586, 0.02667640894651413, 0.0278178583830595, 0.18864397704601288, -0.03501874580979347, 0.11251816898584366, -0.1894008219242096, -0.011137712746858597, 0.00004168079613009468, -0.011870686896145344, -0.027086084708571434, -0.0490776002407074, 0.07948561012744904, -0.08048731088638306, 0.1297140270471573, -0.054058145731687546, 0.005804624408483505, 0.03373132273554802, -0.06259123980998993, -0.02875036746263504, 0.05760515481233597, 0.1698249727487564, 0.03617095947265625, -0.01809529960155487, 0.06767068803310394, -0.02763252519071102, 0.01562964916229248, 0.13493750989437103, 0.1570243239402771, 0.12896417081356049, 0.021958980709314346, 0.04701101407408714, 0.0742064118385315, -0.11953022330999374, -0.1292944699525833, 0.14858350157737732, -0.0585603192448616, 0.10444764047861099, -0.0411146879196167, 0.17362026870250702, 0.09550127387046814, -0.20697462558746338, 0.06252989917993546, -0.029287829995155334, -0.10260850191116333, -0.13931232690811157, -0.1494808942079544, -0.08138123899698257, -0.08648665249347687, 0.028487402945756912, -0.10740569233894348, 0.04786250740289688, 0.058892976492643356, 0.04282163456082344, 0.013107690960168839, 0.11552959680557251, -0.030362989753484726, -0.04171266406774521, 0.06619575619697571, 0.01931690238416195, -0.019527992233633995, -0.014045200310647488, -0.055185768753290176, 0.07761162519454956, 0.0019921930506825447, 0.08354440331459045, -0.012138071469962597, -0.040492746978998184, 0.04146316275000572, -0.0482412688434124, -0.09858627617359161, 0.008605276234447956, -0.0012097450671717525, 0.09128326177597046, 0.1404881775379181, 0.05041823536157608, 0.0029313769191503525, -0.02243739739060402, 0.19304263591766357, -0.08262065052986145, -0.008251930586993694, -0.1537715494632721, 0.19069135189056396, -0.02038475126028061, 0.0014659017324447632, 0.0430438369512558, -0.09309902042150497, 0.0044680689461529255, 0.16874255239963531, 0.1480247974395752, -0.02261340618133545, -0.005655236542224884, 0.014627451077103615, 0.022442294284701347, 0.008706020191311836, 0.06259790807962418, 0.08057740330696106, 0.05776146054267883, -0.04880450293421745, -0.026890605688095093, -0.0343642495572567, -0.053163886070251465, 0.048467718064785004, 0.1294611245393753, 0.008386073634028435, -0.024914879351854324, -0.0410321019589901, 0.10527314990758896, -0.11058131605386734, -0.2094099223613739, 0.03527340665459633, -0.1319710612297058, -0.1597173511981964, -0.0038201555144041777, 0.020970739424228668, 0.051954448223114014, 0.04291100800037384, -0.0049829911440610886, -0.06647486239671707, 0.11606176942586899, 0.014728306792676449, -0.030612122267484665, -0.016184668987989426, 0.06579546630382538, -0.07788129895925522, 0.1856178492307663, 0.0038749955128878355, 0.1066792830824852, 0.09466174244880676, 0.03522074967622757, -0.0838133841753006, 0.05735253915190697, 0.0724962055683136, -0.12804503738880157, 0.03232826665043831, 0.20904603600502014, -0.03625722602009773, 0.14393505454063416, 0.07973481714725494, -0.062249451875686646, 0.03147033229470253, -0.04771610349416733, -0.053193073719739914, -0.07858379930257797, 0.006012077908962965, -0.07479032129049301, 0.14670568704605103, 0.2065213918685913, -0.06618502736091614, -0.01198861375451088, -0.04439690709114075, 0.01256024930626154, 0.012637905776500702, 0.10028320550918579, -0.008557197637856007, -0.23459777235984802, 0.0306432843208313, -0.0018665776588022709, 0.058146730065345764, -0.22930695116519928, -0.049460723996162415, 0.048603255301713943, -0.048111047595739365, -0.042063094675540924, 0.10365224629640579, 0.0062867458909749985, 0.048995569348335266, -0.06546006351709366, -0.07329484820365906, -0.013114377856254578, 0.16147559881210327, -0.17522044479846954, -0.07028068602085114 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
bookemdan/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "conversational", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #conversational #endpoints_compatible #has_space #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #conversational #endpoints_compatible #has_space #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 29, 8 ]
[ "passage: TAGS\n#transformers #pytorch #conversational #endpoints_compatible #has_space #region-us \n# Harry Potter DialoGPT Model" ]
[ 0.027774613350629807, 0.07819665968418121, -0.006726363208144903, 0.05588759481906891, 0.05026226490736008, 0.045019377022981644, 0.1074274554848671, 0.09222754836082458, 0.07472135126590729, -0.012895351275801659, 0.08417999744415283, 0.16887575387954712, -0.04191965237259865, -0.002325695473700762, -0.03443197160959244, -0.32217708230018616, 0.05152413249015808, 0.01634996198117733, -0.1279572695493698, 0.10082270205020905, 0.06441010534763336, -0.09510402381420135, 0.03764994442462921, 0.0098145492374897, -0.09057946503162384, -0.021413378417491913, -0.02341240458190441, -0.06465595215559006, 0.18513379991054535, -0.004524844232946634, 0.11043669283390045, -0.014120045118033886, -0.11232348531484604, -0.1523865908384323, 0.038718730211257935, -0.030590476468205452, 0.0029944530688226223, 0.04376734420657158, -0.03563152998685837, -0.048376958817243576, 0.1481495201587677, 0.13342833518981934, 0.12277691811323166, 0.008380627259612083, -0.16134564578533173, -0.1552656888961792, -0.021297793835401535, 0.07031774520874023, -0.0798819437623024, 0.06815095245838165, -0.012355724349617958, 0.17052042484283447, -0.12865832448005676, 0.04806150496006012, 0.18540167808532715, -0.43114909529685974, -0.014118412509560585, 0.17535452544689178, 0.1243940070271492, 0.1227414458990097, -0.12177295237779617, 0.023983128368854523, -0.016376890242099762, 0.0008478513336740434, -0.004057391546666622, -0.08218664675951004, -0.06653837114572525, 0.0826532319188118, -0.1533845067024231, -0.005606825929135084, 0.23450440168380737, -0.09575598686933517, 0.049066852778196335, -0.07598047703504562, -0.07175251096487045, 0.014066291972994804, -0.03298497572541237, -0.09986431151628494, 0.011843855492770672, 0.04499613866209984, -0.01231619343161583, -0.027304943650960922, -0.09148336946964264, 0.08199360221624374, -0.16192527115345, 0.22354121506214142, 0.04394252970814705, 0.08335372805595398, -0.23394638299942017, 0.05484708771109581, -0.008222956210374832, -0.03789849206805229, 0.02013322152197361, -0.12932038307189941, 0.012891926802694798, 0.014907591044902802, -0.06095968186855316, 0.07404199242591858, 0.018849680200219154, 0.11937849968671799, -0.061802033334970474, 0.01469886302947998, 0.09417299181222916, 0.08737218379974365, 0.11848143488168716, 0.017536994069814682, 0.00636063190177083, -0.06993516534566879, -0.028978463262319565, -0.07223009318113327, 0.010886083357036114, -0.03153480216860771, -0.13713723421096802, -0.0938437283039093, 0.018243025988340378, -0.0067737954668700695, 0.07197406142950058, 0.030591031536459923, -0.014931484125554562, -0.01658678613603115, 0.00823475793004036, 0.041782863438129425, -0.0027287506964057684, -0.014024063013494015, -0.011585632339119911, 0.22883033752441406, -0.0019978575874119997, -0.008591179735958576, -0.017468251287937164, 0.10322582721710205, -0.09691889584064484, 0.013705002143979073, 0.01325986161828041, -0.04244853928685188, 0.03272189572453499, 0.04075109213590622, 0.06476756930351257, -0.13679641485214233, 0.042522087693214417, -0.00988989882171154, 0.028456982225179672, -0.000573660887312144, -0.0677102729678154, -0.0006832036888226867, -0.04279410094022751, 0.03821942210197449, -0.0031965477392077446, -0.03110668994486332, -0.06414807587862015, 0.08032146841287613, -0.07718924432992935, 0.1387067288160324, -0.09563037008047104, 0.05809210613369942, -0.04674440994858742, -0.02405610680580139, -0.14146995544433594, -0.04269304871559143, -0.013238531537353992, 0.08696377277374268, 0.06688947975635529, -0.06519497185945511, -0.07559424638748169, 0.051933836191892624, -0.08939360082149506, 0.1288667768239975, -0.05709463357925415, -0.06895691901445389, 0.18444132804870605, -0.08278973400592804, -0.19889166951179504, 0.09238807111978531, -0.050962552428245544, 0.04985383525490761, 0.05183160677552223, 0.28541237115859985, -0.00116819073446095, -0.0899522677063942, 0.015833813697099686, 0.10910948365926743, -0.11994528025388718, 0.03888317570090294, 0.05013427510857582, 0.013550740666687489, -0.00585784250870347, 0.03288138285279274, 0.024665186181664467, -0.012695450335741043, -0.05299700051546097, 0.009265575557947159, -0.03184868395328522, -0.04598037898540497, 0.17730802297592163, 0.01791832409799099, 0.11900990456342697, -0.10033910721540451, -0.021109359338879585, 0.06800779700279236, 0.06678656488656998, 0.03782081604003906, 0.10196889191865921, -0.008130200207233429, 0.11413612961769104, 0.09277722984552383, -0.0071927281096577644, -0.14886021614074707, -0.015714209526777267, -0.057631805539131165, 0.12939618527889252, 0.0800369381904602, 0.22795802354812622, 0.07835299521684647, -0.07824350148439407, -0.06184469908475876, 0.03563063591718674, 0.07337638735771179, 0.01995348557829857, -0.09659198671579361, -0.15138205885887146, -0.011455049738287926, -0.07844936102628708, 0.06172255799174309, -0.06578095257282257, 0.02992217056453228, -0.034780099987983704, 0.10795369744300842, -0.02525625377893448, 0.024128206074237823, 0.012389709241688251, 0.014139746315777302, -0.0601586252450943, 0.008510259911417961, 0.0615667849779129, -0.025404630228877068, -0.03992875665426254, 0.1605750173330307, -0.13640448451042175, 0.2707882821559906, 0.2418462038040161, -0.29299092292785645, -0.0006947524379938841, -0.08924761414527893, -0.013906504958868027, 0.05655893310904503, 0.10746360570192337, 0.03534911200404167, 0.14344573020935059, -0.015708288177847862, 0.09986519068479538, -0.021645016968250275, -0.07141393423080444, -0.10798497498035431, -0.06263259798288345, -0.03974180668592453, 0.08228461444377899, -0.03802239149808884, -0.10010918229818344, 0.14695248007774353, 0.21552011370658875, 0.05590643361210823, 0.09728338569402695, 0.10170456022024155, 0.013690108433365822, 0.006801505107432604, -0.052061643451452255, -0.07976483553647995, -0.00678562605753541, -0.37372156977653503, -0.08649976551532745, 0.09625657647848129, -0.011676524765789509, 0.09271816164255142, -0.10486295819282532, -0.06273718923330307, 0.059603121131658554, 0.0614517480134964, -0.033741679042577744, 0.13514243066310883, 0.01874231919646263, 0.12416581064462662, 0.029158834367990494, -0.07810904085636139, 0.03968186303973198, 0.018531380221247673, -0.02964092418551445, 0.11955255270004272, -0.17586998641490936, -0.21702882647514343, 0.029069432988762856, -0.15306590497493744, 0.04827791824936867, 0.00411080801859498, 0.07015323638916016, -0.09373927116394043, 0.01375383697450161, 0.017886627465486526, -0.01953967660665512, -0.3247586786746979, 0.006946707610040903, -0.1468464732170105, 0.047958649694919586, -0.21875077486038208, -0.10695996135473251, -0.03891026973724365, -0.043995313346385956, -0.03299574926495552, 0.100960873067379, -0.10235030204057693, 0.008765925653278828, 0.2199341207742691, 0.014586200006306171, 0.02758179046213627, -0.027804430574178696, 0.20033472776412964, -0.08889971673488617, -0.053776126354932785, 0.09596876800060272, 0.0017573658842593431, 0.04864317923784256, 0.10222332924604416, 0.022953633219003677, -0.02230977453291416, -0.023469187319278717, -0.09474880993366241, -0.039521925151348114, -0.21148602664470673, -0.08718303591012955, -0.1144704595208168, 0.038555700331926346, -0.03977472707629204, 0.06281625479459763, 0.11135465651750565, 0.0008129114285111427, 0.05015866830945015, -0.16246770322322845, 0.0420643575489521, 0.11279187351465225, 0.22159452736377716, -0.09964630007743835, 0.08019237965345383, -0.00691848574206233, -0.04778851941227913, 0.03376710042357445, 0.08166453242301941, 0.06707315146923065, 0.046807657927274704, -0.04213947430253029, 0.025572093203663826, 0.2135585993528366, 0.14536665380001068, -0.0012315592030063272, 0.05164925754070282, -0.02184741012752056, -0.047600023448467255, 0.018284637480974197, -0.05306361988186836, 0.08542200177907944, 0.18898028135299683, -0.12764179706573486, -0.07234203815460205, -0.11024858802556992, 0.08726874738931656, -0.10371189564466476, 0.08065234869718552, -0.05045384168624878, -0.036817267537117004, 0.08586135506629944, -0.07063250243663788, -0.08756707608699799, 0.12460485100746155, 0.05406981706619263, -0.18028347194194794, 0.009364346973598003, 0.07402385026216507, 0.07322944700717926, 0.017108112573623657, 0.05193952098488808, -0.1730530560016632, -0.21418078243732452, -0.001643385156057775, 0.024889439344406128, -0.2934213876724243, 0.18210120499134064, -0.04027281329035759, -0.08105713129043579, 0.00004148047082708217, -0.06865637749433517, 0.019030528143048286, 0.189646914601326, 0.05815809592604637, 0.04614458605647087, 0.039243124425411224, 0.03775306046009064, 0.14118508994579315, -0.04144483059644699, 0.08660281449556351, 0.05576588585972786, -0.026804743334650993, -0.01970488764345646, 0.004243059083819389, -0.03820714354515076, 0.0891643762588501, 0.1399916559457779, -0.18100900948047638, 0.07509788870811462, -0.019803069531917572, -0.012266809120774269, 0.024929450824856758, -0.021091949194669724, -0.12809263169765472, 0.09227269142866135, 0.09592460840940475, -0.07181575149297714, -0.05973535776138306, -0.10450852662324905, 0.14795993268489838, -0.004072131589055061, 0.04120422527194023, -0.028956575319170952, -0.02114599198102951, -0.17102117836475372, -0.12175964564085007, 0.08312391489744186, -0.05219464749097824, -0.037202440202236176, -0.019314829260110855, 0.17549313604831696, -0.04421965032815933, 0.11182807385921478, -0.0035289025399833918, 0.04849518835544586, -0.24153274297714233, -0.03966590389609337, 0.008358861319720745, 0.00023264165793079883, 0.03985995426774025, 0.05825114995241165, 0.08325114846229553, 0.07490609586238861, -0.01828753761947155, 0.03977976366877556, 0.26632216572761536, 0.161591038107872, -0.06491727381944656, 0.11571460962295532, 0.0704057365655899, -0.025601740926504135, -0.13095709681510925, -0.08220639824867249, -0.16852205991744995, -0.08385034650564194, -0.0371854230761528, -0.03200877085328102, 0.07823365926742554, -0.03818982094526291, -0.011658204719424248, 0.10464145988225937, -0.29870426654815674, -0.09054083377122879, 0.11519636958837509, -0.029051903635263443, 0.4250166714191437, -0.11794041097164154, 0.007987911812961102, 0.008718843571841717, -0.23556090891361237, 0.040003251284360886, -0.07000134885311127, 0.09387020021677017, -0.08081938326358795, 0.19245168566703796, 0.020414993166923523, -0.02001778967678547, 0.1291610449552536, 0.02884700521826744, -0.047383371740579605, -0.07230624556541443, -0.23196646571159363, 0.032363031059503555, -0.007933443412184715, -0.007031820714473724, 0.06268789619207382, 0.005889345426112413, -0.17255431413650513, 0.0056787896901369095, -0.12124445289373398, -0.009413342922925949, -0.02930266596376896, -0.014808782376348972, -0.12346406280994415, 0.030898310244083405, 0.008405259810388088, 0.02924003265798092, 0.1891438513994217, -0.08064785599708557, 0.23248012363910675, 0.010633745230734348, 0.08381155133247375, -0.15435999631881714, -0.17238542437553406, 0.023056747391819954, -0.05095130205154419, 0.05793885514140129, -0.11778194457292557, -0.07442063838243484, 0.1339738816022873, -0.00829667691141367, -0.008868396282196045, 0.13918541371822357, 0.02739204466342926, 0.009587321430444717, 0.053706541657447815, -0.21552322804927826, -0.16730792820453644, -0.009770460426807404, 0.0027389281895011663, 0.08537933975458145, 0.05016147345304489, 0.1402658075094223, -0.03298971801996231, -0.08136902749538422, 0.011047359555959702, 0.00915340706706047, -0.06696780771017075, 0.02044769376516342, 0.09638369828462601, 0.028316520154476166, -0.13466542959213257, 0.0405954010784626, -0.003948488272726536, -0.17066608369350433, -0.009776587598025799, 0.16627605259418488, -0.101860910654068, -0.12210845947265625, -0.11643511801958084, -0.0072049787268042564, -0.06714734435081482, 0.02164088934659958, 0.0577990896999836, -0.12836800515651703, 0.02286921627819538, 0.11464766412973404, 0.0639641135931015, 0.05871565639972687, -0.0847061350941658, -0.008614490740001202, 0.03677574172616005, -0.03146661818027496, -0.006555580534040928, 0.030103899538517, -0.07438834011554718, 0.18147709965705872, -0.07874222844839096, 0.09759703278541565, -0.07724198698997498, -0.0932595282793045, -0.15714550018310547, 0.045033812522888184, -0.033401377499103546, -0.12859635055065155, -0.17312702536582947, -0.07791779935359955, 0.013628257438540459, -0.11165116727352142, -0.00031303887953981757, -0.04670773819088936, -0.13680149614810944, 0.045394811779260635, 0.020371217280626297, -0.010461660102009773, -0.04571801424026489, 0.00013232558558229357, 0.09330207854509354, -0.03630592301487923, 0.12327173352241516, 0.2332662045955658, -0.1384984254837036, 0.09911872446537018, -0.03425626829266548, -0.18183660507202148, 0.029670778661966324, 0.006037923973053694, 0.07900139689445496, 0.03228913992643356, -0.0678965151309967, -0.011962364427745342, 0.057950351387262344, 0.07930979132652283, 0.06993205100297928, -0.04431932047009468, -0.010531296953558922, 0.0025278127286583185, -0.16972845792770386, 0.0019748839549720287, -0.07974141091108322, 0.16932708024978638, -0.0087129520252347, 0.07934553176164627, 0.008572318591177464, 0.061738356947898865, -0.06274648755788803, 0.02785220928490162, -0.009907523170113564, -0.14167934656143188, 0.1009531244635582, -0.026650339365005493, 0.0268679428845644, -0.021965395659208298, 0.24107833206653595, -0.044958360493183136, -0.03535833582282066, 0.0417187437415123, 0.049631018191576004, -0.03445810079574585, 0.01948210410773754, 0.19507889449596405, 0.10923396050930023, -0.08900231122970581, -0.00659166369587183, 0.07374591380357742, 0.04702368751168251, 0.03869997337460518, 0.0862637609243393, 0.08434724062681198, 0.09124627709388733, 0.09286174178123474, -0.03667662292718887, 0.081471748650074, -0.09765747934579849, -0.23275892436504364, 0.061239950358867645, -0.012688545510172844, -0.11428123712539673, 0.16220706701278687, 0.2136278599500656, -0.022422203794121742, 0.07400020956993103, -0.03375358134508133, -0.06189844757318497, -0.11276834458112717, 0.02645299583673477, -0.040942225605249405, -0.1492508053779602, -0.022409241646528244, -0.15089429914951324, 0.019319996237754822, 0.09190671890974045, 0.07094496488571167, -0.04095487669110298, -0.01902339793741703, 0.1452229619026184, -0.060185763984918594, 0.03149319440126419, -0.001415541279129684, 0.0835563987493515, -0.034803614020347595, -0.0047445837408304214, -0.1484406739473343, -0.05843394994735718, -0.036266472190618515, 0.054548878222703934, -0.1628149300813675, -0.01194692775607109, -0.10809408873319626, -0.07877231389284134, -0.03839778155088425, 0.08815232664346695, -0.02440144121646881, 0.16661910712718964, 0.028720306232571602, -0.04473939910531044, -0.03934907168149948, 0.29690679907798767, -0.12562644481658936, -0.04893624037504196, -0.0005521043785847723, 0.16151244938373566, 0.06729694455862045, 0.042595066130161285, 0.009602988138794899, 0.04194917157292366, -0.11422820389270782, 0.2049546092748642, 0.39154815673828125, -0.12409725785255432, 0.03294599801301956, 0.05327652767300606, 0.04204108938574791, 0.1153881698846817, 0.04851754009723663, 0.143133282661438, 0.3146371841430664, -0.10363972932100296, 0.034652259200811386, -0.05111488327383995, 0.01328846625983715, -0.05905776470899582, -0.00012679507199209183, 0.0789966955780983, -0.12290950119495392, -0.044670529663562775, 0.07138871401548386, -0.25894275307655334, 0.09776082634925842, -0.05391804873943329, -0.2491578608751297, -0.041521258652210236, -0.03209102898836136, 0.11199569702148438, -0.007958832196891308, 0.14683400094509125, 0.011499172076582909, -0.08897311985492706, 0.06369822472333908, 0.01725103333592415, -0.23099331557750702, -0.05828435346484184, 0.23333479464054108, -0.011941695585846901, -0.04084990546107292, -0.025270814076066017, 0.008841685019433498, 0.0877557024359703, 0.11126399785280228, -0.04564668983221054, -0.08340580761432648, 0.03222863748669624, -0.0825548768043518, -0.10214412212371826, 0.020743045955896378, 0.06451241672039032, -0.10108673572540283, 0.1297539323568344, -0.15191301703453064, 0.06914466619491577, 0.07559143751859665, 0.02468777634203434, -0.011237548664212227, 0.006943122483789921, -0.05255123972892761, 0.04636058956384659, 0.110951729118824, -0.03536757454276085, -0.021273771300911903, 0.023725377395749092, -0.11527075618505478, 0.020801547914743423, -0.02879597432911396, -0.15307334065437317, -0.0889091044664383, -0.10294891893863678, -0.012653311714529991, -0.0528058297932148, -0.0812055841088295, -0.036387767642736435, -0.04028214514255524, 0.04403757303953171, -0.056872375309467316, 0.05472375079989433, 0.06480881571769714, 0.016251474618911743, 0.011864803731441498, 0.07357238233089447, 0.05970631539821625, 0.13385404646396637, -0.1755414605140686, -0.02171403169631958 ]
null
null
transformers
#berk
{"tags": ["conversational"]}
text-generation
boran/berkbot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#berk
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
null
Tokenizer based on `facebook/bart-large-cnn` and trained on captions normalized by [dalle-mini](https://github.com/borisdayma/dalle-mini).
{}
null
boris/dalle-mini-tokenizer
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
Tokenizer based on 'facebook/bart-large-cnn' and trained on captions normalized by dalle-mini.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
null
## VQGAN-f16-16384 ### Model Description This is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor `f=16` and a vocabulary of `13,384` tokens. As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from [a checkpoint pre-trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/). * [Conceptual Captions 3M](https://ai.google.com/research/ConceptualCaptions/) (CC3M). * [OpenAI subset of YFCC100M](https://github.com/openai/CLIP/blob/main/data/yfcc100m.md). We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using [taming-transformers](https://github.com/CompVis/taming-transformers). The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used [this checkpoint](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887). * Fine-tuning, [Part 1](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T15-33-11_dalle_vqgan?workspace=user-borisd13). * Fine-tuning, [Part 2](https://wandb.ai/wandb/hf-flax-dalle-mini/runs/2021-07-09T21-42-07_dalle_vqgan?workspace=user-borisd13) – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card. * Conversion to JAX as [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The checkpoint can be loaded using Pytorch-Lightning. Note: `omegaconf==2.0.0` is required for loading the checkpoint. ### Related Models in the Hub * JAX version of VQGAN, trained on the same datasets described here: [`flax-community/vqgan_f16_16384`](https://huggingface.co/flax-community/vqgan_f16_16384). * [DALL·E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
{}
null
boris/vqgan_f16_16384
[ "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #has_space #region-us
## VQGAN-f16-16384 ### Model Description This is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper). The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook. This version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens. As an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens. ### Datasets Used for Training * ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet. * Conceptual Captions 3M (CC3M). * OpenAI subset of YFCC100M. We fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose. ### Training Process Finetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps: * Pre-training on ImageNet. Previously performed. We used this checkpoint. * Fine-tuning, Part 1. * Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card. * Conversion to JAX as 'flax-community/vqgan_f16_16384'. ### How to Use The checkpoint can be loaded using Pytorch-Lightning. Note: 'omegaconf==2.0.0' is required for loading the checkpoint. ### Related Models in the Hub * JAX version of VQGAN, trained on the same datasets described here: 'flax-community/vqgan_f16_16384'. * DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E. ### Other This model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline.
[ "## VQGAN-f16-16384", "### Model Description\n\nThis is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.", "### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.", "### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card.\n* Conversion to JAX as 'flax-community/vqgan_f16_16384'.", "### How to Use\n\nThe checkpoint can be loaded using Pytorch-Lightning.\n\nNote: 'omegaconf==2.0.0' is required for loading the checkpoint.", "### Related Models in the Hub\n\n* JAX version of VQGAN, trained on the same datasets described here: 'flax-community/vqgan_f16_16384'.\n* DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E.", "### Other\n\nThis model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline." ]
[ "TAGS\n#has_space #region-us \n", "## VQGAN-f16-16384", "### Model Description\n\nThis is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.", "### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.", "### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card.\n* Conversion to JAX as 'flax-community/vqgan_f16_16384'.", "### How to Use\n\nThe checkpoint can be loaded using Pytorch-Lightning.\n\nNote: 'omegaconf==2.0.0' is required for loading the checkpoint.", "### Related Models in the Hub\n\n* JAX version of VQGAN, trained on the same datasets described here: 'flax-community/vqgan_f16_16384'.\n* DALL·E mini, a Flax/JAX simplified implementation of OpenAI's DALL·E.", "### Other\n\nThis model was successfully used as part of the implementation of DALL·E mini. Our report contains more details on how to leverage it in an image encoding / generation pipeline." ]
[ 10, 9, 191, 127, 124, 39, 74, 44 ]
[ "passage: TAGS\n#has_space #region-us \n## VQGAN-f16-16384### Model Description\n\nThis is a Pytorch Lightning checkpoint of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in Taming Transformers for High-Resolution Image Synthesis (CVPR paper).\n\nThe model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.\n\nThis version of the model uses a reduction factor 'f=16' and a vocabulary of '13,384' tokens.\n\nAs an example of how the reduction factor works, images of size '256x256' are encoded to sequences of '256' tokens: '256/16 * 256/16'. Images of '512x512' would result in sequences of '1024' tokens.### Datasets Used for Training\n\n* ImageNet. We didn't train this model from scratch. Instead, we started from a checkpoint pre-trained on ImageNet.\n* Conceptual Captions 3M (CC3M).\n* OpenAI subset of YFCC100M.\n\nWe fine-tuned on CC3M and YFCC100M to improve the encoding quality of people and faces, which are not very well represented in ImageNet. We used a subset of 2,268,720 images from CC3M and YFCC100M for this purpose.### Training Process\n\nFinetuning was performed in PyTorch using taming-transformers. The full training process and model preparation includes these steps:\n\n* Pre-training on ImageNet. Previously performed. We used this checkpoint.\n* Fine-tuning, Part 1.\n* Fine-tuning, Part 2 – continuation from Part 1. The final checkpoint has been logged as an artifact in the training run and is the model present in this card.\n* Conversion to JAX as 'flax-community/vqgan_f16_16384'.### How to Use\n\nThe checkpoint can be loaded using Pytorch-Lightning.\n\nNote: 'omegaconf==2.0.0' is required for loading the checkpoint." ]
[ -0.05583365634083748, 0.1315830945968628, -0.004181893542408943, 0.029261959716677666, 0.10841598361730576, 0.03488020598888397, -0.0021499968133866787, 0.13964517414569855, -0.08720846474170685, 0.021764392033219337, 0.021371036767959595, -0.015912668779492378, 0.11447619646787643, 0.09244386106729507, 0.08455554395914078, -0.1789151132106781, 0.020452357828617096, -0.010418538935482502, -0.05337843298912048, 0.08476968109607697, 0.10347790271043777, -0.122037373483181, 0.04250490665435791, -0.01524091325700283, -0.14622049033641815, 0.02010427415370941, -0.029470348730683327, -0.004496536683291197, 0.12493107467889786, 0.044771708548069, 0.12683482468128204, -0.015633471310138702, 0.03362993150949478, -0.20753449201583862, 0.02192259207367897, 0.09069783985614777, 0.029817698523402214, 0.07542972266674042, 0.08604263514280319, 0.13942328095436096, 0.15644937753677368, -0.07307156175374985, 0.02943997271358967, 0.03202337771654129, -0.06513279676437378, -0.11995753645896912, -0.13651324808597565, 0.16706527769565582, 0.07357832044363022, 0.061456941068172455, -0.007990649901330471, 0.04691564291715622, -0.0138320317491889, 0.06326853483915329, 0.08234363049268723, -0.18151602149009705, -0.01377060730010271, 0.10602068901062012, 0.026259776204824448, -0.002590376418083906, -0.07648815959692001, -0.011498977430164814, 0.009934114292263985, 0.018683550879359245, 0.11033784598112106, -0.028843428939580917, -0.08905552327632904, -0.027784382924437523, -0.10599283128976822, -0.09799817204475403, 0.06634760648012161, 0.023680290207266808, -0.09335354715585709, -0.13965001702308655, -0.045086249709129333, -0.07734615355730057, 0.04785547032952309, -0.09875773638486862, -0.022599464282393456, 0.016788989305496216, -0.0020922438707202673, -0.14852865040302277, -0.14540137350559235, 0.008137545548379421, 0.02587917633354664, 0.05810410529375076, 0.06423062086105347, 0.05951329693198204, -0.022537166252732277, 0.15032601356506348, -0.04091738909482956, -0.022772861644625664, -0.0499214231967926, -0.06292615085840225, -0.10587309300899506, -0.041531290858983994, -0.00878306943923235, -0.08691435307264328, -0.07245790958404541, 0.14230597019195557, -0.1280490607023239, 0.045460183173418045, 0.022000666707754135, 0.03696223720908165, -0.014725413173437119, 0.19999511539936066, -0.027069469913840294, -0.004469466395676136, 0.02980097383260727, -0.0028043908532708883, 0.017679665237665176, -0.035218652337789536, -0.054148267954587936, -0.0646839588880539, 0.11346664279699326, 0.06998651474714279, -0.03312605246901512, 0.024117665365338326, -0.023527691140770912, -0.02887669950723648, 0.20670746266841888, -0.0932130217552185, 0.054519783705472946, 0.012404236011207104, -0.07483882457017899, 0.03135618939995766, 0.07237135618925095, -0.027965771034359932, -0.11825148016214371, 0.021493136882781982, -0.009236510843038559, -0.024190446361899376, -0.11218374967575073, -0.0692528635263443, 0.014203260652720928, -0.07947062700986862, -0.03898180276155472, -0.1313336193561554, -0.13941021263599396, -0.028529684990644455, 0.03658529743552208, 0.010733842849731445, -0.004243291448801756, 0.030332472175359726, -0.07599085569381714, -0.04074959456920624, 0.04022187367081642, 0.031608209013938904, 0.009758048690855503, 0.04560364410281181, -0.06073075160384178, 0.03257172927260399, -0.05341716855764389, -0.010453696362674236, -0.052879054099321365, -0.000007789552000758704, -0.15400457382202148, 0.06041404604911804, 0.02558145858347416, -0.0589616559445858, -0.04588256776332855, -0.059568773955106735, -0.05845768377184868, -0.03258584439754486, 0.0545474998652935, 0.1143200695514679, -0.13237741589546204, -0.006043024826794863, 0.0695837065577507, -0.09857048839330673, -0.0029238355346024036, 0.09953810274600983, -0.03608692064881325, 0.012489189393818378, 0.06318136304616928, 0.0455913282930851, 0.12588994204998016, -0.13156738877296448, -0.06309668719768524, 0.015350695699453354, -0.0585348904132843, 0.0463181771337986, 0.015194490551948547, -0.03184659779071808, 0.03492773324251175, 0.006606822833418846, -0.07295442372560501, -0.0018690143479034305, -0.03281015530228615, -0.06094885244965553, -0.024938438087701797, -0.04040181636810303, 0.019127173349261284, 0.007552007678896189, -0.018487391993403435, -0.013841071166098118, -0.07461369782686234, -0.12868942320346832, 0.1346055120229721, -0.08693230152130127, 0.0745830088853836, -0.07833195477724075, 0.08095462620258331, -0.023374976590275764, -0.008692000061273575, -0.13272280991077423, -0.03600170835852623, 0.08527398854494095, -0.056015387177467346, -0.024745134636759758, -0.022645121440291405, 0.018778478726744652, 0.047140270471572876, -0.03008691780269146, -0.04765214025974274, -0.13582590222358704, -0.04824702814221382, -0.018310831859707832, -0.014585819095373154, -0.1575746387243271, -0.026866570115089417, 0.16541601717472076, -0.1334368884563446, 0.016614452004432678, 0.06972486525774002, 0.08473196625709534, 0.05751378461718559, -0.08206965774297714, 0.019830012694001198, 0.02349034510552883, 0.00900314375758171, -0.09523186087608337, 0.011513336561620235, 0.06239913031458855, -0.03497447818517685, -0.0016148154390975833, -0.09279502183198929, -0.12254191935062408, 0.05506354570388794, -0.00554047804325819, -0.10976900905370712, 0.05066399276256561, -0.036284275352954865, -0.015769675374031067, -0.10577282309532166, -0.02461322583258152, 0.13486763834953308, 0.007335976231843233, 0.0919690877199173, -0.04761277884244919, -0.023760832846164703, 0.010657747276127338, 0.007763061672449112, -0.011922918260097504, -0.03184998407959938, 0.045927513390779495, -0.03244561329483986, 0.00016858434537425637, -0.004925723187625408, -0.023598944768309593, 0.11223477125167847, 0.03461598604917526, -0.07322365790605545, -0.023326853290200233, 0.016472632065415382, -0.01458954717963934, 0.14353519678115845, 0.023095428943634033, 0.00026256273849867284, 0.016539636999368668, -0.029048731550574303, 0.06774268299341202, -0.16208471357822418, 0.05959264189004898, 0.0652177482843399, -0.0396699383854866, 0.09338678419589996, 0.0019976929761469364, -0.026858456432819366, 0.025868983939290047, 0.03496261686086655, 0.05018765479326248, 0.030001966282725334, -0.029146641492843628, -0.1171698346734047, 0.15543889999389648, -0.0890987366437912, -0.3090970814228058, -0.1754062920808792, 0.10812264680862427, 0.007885842584073544, -0.011166015639901161, -0.023630527779459953, -0.03246602043509483, -0.052388809621334076, -0.08068151772022247, -0.03281547129154205, -0.04147478938102722, -0.026501907035708427, -0.024002136662602425, -0.04140207916498184, 0.03995748981833458, -0.09073933213949203, 0.026283487677574158, 0.02761898562312126, -0.08321496844291687, 0.05739493668079376, 0.023687588050961494, 0.11403574794530869, 0.1405060589313507, -0.09778641909360886, 0.013235792517662048, -0.031757205724716187, 0.2072870284318924, -0.10444310307502747, 0.13330145180225372, 0.11988278478384018, -0.024585986509919167, 0.07089219987392426, 0.04974913224577904, 0.010256498120725155, -0.0002680032339412719, 0.028193149715662003, 0.015962930396199226, -0.045990440994501114, -0.15525448322296143, -0.022643715143203735, -0.04325174540281296, -0.0728616788983345, 0.05761682242155075, 0.04335479810833931, 0.09401801973581314, 0.06323549151420593, -0.056307412683963776, -0.021218083798885345, 0.028386684134602547, 0.09166364371776581, -0.01341735478490591, 0.010081266053020954, 0.007269169203937054, -0.06240180507302284, 0.010579204186797142, 0.07279550284147263, 0.09691546112298965, 0.12831640243530273, -0.057732824236154556, 0.04114927724003792, 0.04599950462579727, 0.1728242188692093, 0.02341361530125141, 0.03923600912094116, -0.05527272820472717, 0.006954352371394634, 0.0004583807021845132, -0.04488265886902809, -0.024478847160935402, -0.006883788853883743, 0.06764562427997589, 0.023553436622023582, -0.08351046591997147, 0.03455394133925438, 0.02455899491906166, 0.18742181360721588, 0.0299668125808239, -0.13769225776195526, -0.029718955978751183, -0.01589963398873806, 0.020533068105578423, -0.10310147702693939, -0.01594618335366249, 0.1641172617673874, -0.1497800350189209, -0.0008752508438192308, -0.04249131679534912, 0.06017838418483734, -0.0904705673456192, -0.031461868435144424, 0.06990034878253937, 0.04139429330825806, 0.02163405530154705, 0.05292147025465965, -0.16242629289627075, 0.00890524685382843, 0.01065394189208746, 0.1747361123561859, -0.04972929507493973, 0.04489269480109215, 0.016175545752048492, 0.06696885824203491, 0.10688049346208572, 0.011161676608026028, -0.029198557138442993, -0.11941537261009216, 0.027424003928899765, 0.023192211985588074, 0.09433088451623917, 0.03663868084549904, 0.10313285887241364, -0.038224972784519196, 0.011661194264888763, -0.021350566297769547, 0.05209159851074219, -0.13475966453552246, -0.14754489064216614, 0.007321344222873449, 0.014073995873332024, 0.03435385972261429, -0.08374018967151642, 0.010808683931827545, -0.06741214543581009, 0.13626806437969208, -0.10844360291957855, -0.06147640198469162, -0.09710834175348282, 0.004054969642311335, 0.09541720896959305, -0.05402228608727455, 0.06020643189549446, 0.020825756713747978, 0.1891370564699173, -0.08654043078422546, -0.07356452941894531, -0.08606085181236267, -0.06862013041973114, -0.12982186675071716, 0.02374948002398014, 0.08983807265758514, 0.031808726489543915, 0.028139537200331688, 0.03503898158669472, -0.009645553305745125, -0.012056718580424786, -0.0770266130566597, 0.0337425097823143, 0.0943404883146286, -0.0027738246135413647, 0.07096302509307861, -0.01736554317176342, -0.08647435158491135, -0.0960182473063469, -0.029057415202260017, 0.10816842317581177, 0.12716010212898254, -0.11726255714893341, 0.06605175882577896, 0.16492675244808197, -0.11169270426034927, -0.17856383323669434, 0.008895653299987316, 0.01757187210023403, 0.07252132892608643, -0.04703284427523613, -0.17904680967330933, -0.008548547513782978, 0.033195484429597855, -0.01599624752998352, 0.038204699754714966, -0.3360172212123871, -0.07143881916999817, 0.03318917751312256, 0.06141557916998863, -0.028148887678980827, -0.0855758935213089, -0.006448888219892979, 0.012572686187922955, -0.10365275293588638, 0.07463159412145615, -0.024262631312012672, 0.06529365479946136, -0.0042336247861385345, 0.0029400973580777645, 0.04783089458942413, -0.05507596582174301, 0.09890783578157425, -0.05242041125893593, 0.07687874138355255, -0.018775396049022675, -0.01387796550989151, 0.0628163293004036, -0.06106735020875931, 0.10526460409164429, 0.10251382738351822, 0.0762304738163948, -0.1126294881105423, 0.016894983127713203, -0.08449193090200424, 0.0532151460647583, -0.05994356423616409, -0.05060037225484848, -0.1113705039024353, 0.0739818885922432, 0.09100517630577087, 0.007577246055006981, -0.056292206048965454, -0.0028732926584780216, 0.07646258175373077, 0.1557755172252655, -0.00037896132562309504, -0.0268692709505558, -0.14154626429080963, 0.005763320717960596, -0.0208986084908247, 0.11975531280040741, -0.01812349446117878, 0.026724861934781075, 0.08083230257034302, 0.01392225082963705, 0.1299208700656891, 0.02875526063144207, -0.15556979179382324, 0.006433645263314247, 0.03715468570590019, -0.15498937666416168, -0.0248066708445549, -0.026407085359096527, 0.02565903216600418, -0.046067703515291214, 0.009657308459281921, 0.07357331365346909, -0.08764880150556564, -0.025047238916158676, 0.0027672438882291317, 0.0489158108830452, -0.0342649482190609, 0.0822451263666153, 0.12285449355840683, 0.04272076487541199, -0.03701919689774513, 0.14882199466228485, 0.08340112119913101, -0.11723347753286362, 0.02100740373134613, 0.06791360676288605, -0.0865895226597786, -0.03769461810588837, -0.016522323712706566, 0.0320616252720356, -0.05574202910065651, -0.1185021698474884, 0.0033868656028062105, -0.06834512948989868, 0.021271714940667152, 0.011547678150236607, 0.028267180547118187, 0.10135969519615173, -0.059333350509405136, 0.012369600124657154, -0.1709476262331009, 0.05455853044986725, -0.008401939645409584, 0.017635175958275795, -0.1362719088792801, 0.18708844482898712, 0.04078476503491402, 0.07707677036523819, 7.705092457399587e-7, -0.05622881278395653, -0.02591615356504917, 0.026506971567869186, 0.03872806578874588, 0.0058425297029316425, -0.011671517975628376, -0.022658169269561768, -0.007350550498813391, 0.06096380576491356, 0.027304543182253838, 0.06334786117076874, -0.03455045074224472, -0.0551566407084465, -0.03602967783808708, -0.03617479279637337, -0.08692288398742676, -0.01230070274323225, 0.0038808125536888838, -0.08120410144329071, 0.07049349695444107, -0.04936994984745979, -0.0365777313709259, -0.014073604717850685, -0.037382032722234726, -0.03293889760971069, -0.0021818168461322784, -0.010743686929345131, -0.030431751161813736, -0.0958193987607956, -0.013520916923880577, -0.020553523674607277, -0.04561237990856171, -0.020308423787355423, 0.057515766471624374, -0.07212556153535843, 0.003467397764325142, -0.05379828065633774, 0.03746512532234192, -0.08558101952075958, 0.11912089586257935, 0.05446283891797066, 0.06886505335569382, 0.08175539970397949, -0.05388691648840904, 0.04736762493848801, -0.08980883657932281, -0.026579612866044044, 0.0013324181782081723, 0.04504306614398956, -0.08650165051221848, 0.001706487499177456, 0.054459672421216965, -0.034615304321050644, 0.05008978396654129, -0.03928423300385475, 0.0019696145318448544, -0.009101968258619308, -0.09500814974308014, -0.1531822830438614, 0.003847826039418578, 0.1513514667749405, -0.02991747297346592, -0.06958427280187607, 0.07266230881214142, 0.0026192092336714268, -0.025479957461357117, 0.10541006177663803, 0.14559221267700195, 0.07057502865791321, 0.07541229575872421, 0.11157765984535217, -0.031634729355573654, -0.04326285794377327, 0.0086650550365448, 0.01600109599530697, -0.044796187430620193, 0.04760953411459923, -0.05879542976617813, 0.07367870956659317, 0.16313022375106812, -0.16635261476039886, 0.09327112883329391, 0.04257792606949806, -0.07760482281446457, -0.05557848513126373, -0.12052863091230392, -0.022426662966609, -0.009430065751075745, -0.006556761916726828, -0.09467840939760208, 0.044283851981163025, 0.07837608456611633, 0.008079418912529945, -0.05957658216357231, 0.1410638689994812, -0.04876627400517464, -0.0867030993103981, 0.08586375415325165, 0.03307434916496277, 0.03591787815093994, 0.02632208913564682, 0.03151167184114456, 0.05972127616405487, 0.04529934749007225, 0.12689487636089325, 0.0215518306940794, 0.10102497786283493, 0.04986604303121567, 0.03198771923780441, -0.023512089625000954, 0.014837038703262806, -0.020145447924733162, 0.10210798680782318, 0.12308545410633087, 0.013653997331857681, -0.012426807545125484, -0.029349151998758316, 0.14875543117523193, -0.07046647369861603, -0.09426965564489365, -0.11825206130743027, 0.13301339745521545, 0.058055579662323, -0.028965596109628677, 0.04516538232564926, -0.11756101995706558, 0.011057449504733086, 0.19100841879844666, 0.11697466671466827, 0.015422500669956207, -0.01285227108746767, 0.03748844191431999, 0.00009482264431426302, -0.04252316430211067, 0.17000262439250946, 0.03466980904340744, 0.17735061049461365, -0.04697525128722191, 0.10881616175174713, -0.05178259313106537, -0.01709379255771637, -0.03623136132955551, 0.12263401597738266, -0.05892591178417206, 0.005436157342046499, -0.06482099741697311, 0.03305330500006676, -0.01862550526857376, -0.275473028421402, 0.10894190520048141, -0.06175830215215683, -0.04566096514463425, 0.0463099367916584, 0.039279550313949585, -0.027863116934895515, 0.07299739122390747, -0.034936923533678055, 0.03649665042757988, 0.1942155510187149, 0.036000002175569534, -0.04457264393568039, -0.04782926291227341, 0.033686112612485886, -0.04656260833144188, 0.21926607191562653, 0.035520583391189575, 0.11423544585704803, 0.05263668671250343, 0.010521801188588142, -0.13682179152965546, 0.0009396024979650974, 0.024132831022143364, 0.009064787067472935, -0.017134493216872215, 0.15419353544712067, 0.0369221530854702, 0.034524064511060715, 0.02132810652256012, -0.061933305114507675, 0.02339102514088154, -0.034524425864219666, 0.011083113960921764, -0.1054455116391182, 0.0048422375693917274, -0.06651458889245987, 0.15064984560012817, 0.1327269971370697, -0.005667447112500668, 0.009081456810235977, -0.05985499918460846, -0.01242082379758358, 0.0397460013628006, 0.10838699340820312, 0.010221918113529682, -0.06193853169679642, 0.04542949050664902, -0.16002202033996582, 0.03537442535161972, -0.12262716889381409, -0.048759013414382935, 0.049371011555194855, -0.05661538988351822, -0.009308185428380966, 0.11756247282028198, -0.006495737936347723, 0.050719253718853, -0.024303119629621506, 0.03371386602520943, -0.030824342742562294, 0.08455602824687958, -0.13157223165035248, -0.046699292957782745 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on {language} using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags. ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
{"language": "en", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "English XLSR Wav2Vec2 Large 53 with punctuation", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice en", "type": "common_voice", "args": "en"}, "metrics": [{"type": "wer", "value": 1.0, "name": "Test WER"}]}]}]}
automatic-speech-recognition
boris/xlsr-en-punctuation
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "en", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-English Fine-tuned facebook/wav2vec2-large-xlsr-53 on {language} using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French Test Result: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags. ## Training The Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
[ "# Wav2Vec2-Large-XLSR-53-English\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on {language} using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-English\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on {language} using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.", "## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ 69, 63, 20, 93, 119 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-English\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on {language} using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.## Training\n\nThe Common Voice 'train', 'validation', and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.\n\nThe script used for training can be found here # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here." ]
[ -0.1338631808757782, 0.06016654521226883, -0.003338686190545559, 0.024069542065262794, 0.1778871715068817, 0.023345284163951874, 0.14219439029693604, 0.11384625732898712, -0.0195166002959013, -0.007859094068408012, 0.004313408397138119, 0.056415993720293045, 0.05965455621480942, 0.1707592010498047, 0.0632992535829544, -0.20052912831306458, -0.00031146768014878035, -0.005260311532765627, 0.024231666699051857, 0.0646129697561264, 0.11088370531797409, -0.0693771168589592, 0.04800547659397125, 0.033246058970689774, -0.10936615616083145, 0.03116638958454132, 0.02723282389342785, -0.05599995702505112, 0.14065739512443542, 0.06504259258508682, 0.10541728883981705, 0.03139776736497879, 0.050924237817525864, -0.20622417330741882, 0.04232455790042877, 0.0863141268491745, -0.028392251580953598, 0.05192050337791443, 0.07660015672445297, -0.06644506752490997, -0.0038537452928721905, -0.04013887047767639, -0.03182018920779228, 0.0694456398487091, -0.09382696449756622, -0.1497824341058731, -0.05896168202161789, 0.016402574256062508, 0.06826791167259216, 0.1113986223936081, -0.024399779736995697, 0.06607631593942642, 0.014365936629474163, 0.06351297348737717, 0.15814952552318573, -0.10894393920898438, 0.024077869951725006, 0.1253703236579895, 0.07252416014671326, 0.05689430609345436, -0.10466364026069641, 0.01933622919023037, -0.0018845910672098398, -0.00855093915015459, 0.02863951586186886, -0.04193514585494995, -0.050401486456394196, 0.014486867003142834, -0.10114819556474686, -0.028384879231452942, 0.19107294082641602, -0.026040198281407356, -0.0671544149518013, -0.11683129519224167, -0.03293018043041229, -0.013380206190049648, -0.04468895122408867, -0.10872162878513336, 0.04133889451622963, 0.08002875000238419, -0.005814810749143362, -0.18100664019584656, -0.11973899602890015, -0.061361163854599, 0.002567061223089695, -0.04885511472821236, 0.020146546885371208, -0.03541795164346695, -0.1435215175151825, 0.14601215720176697, -0.1317739188671112, -0.02662571892142296, -0.023904690518975258, -0.04031720757484436, -0.07963141053915024, -0.06894347816705704, -0.08004461228847504, -0.1608121246099472, 0.011361440643668175, 0.02106955274939537, 0.009302270598709583, 0.004878594074398279, -0.12957903742790222, 0.0770701915025711, 0.010292514227330685, 0.13369101285934448, -0.08960828930139542, -0.0408392958343029, 0.047306548804044724, 0.023093147203326225, -0.08021840453147888, 0.0021244711242616177, -0.057415418326854706, 0.0010726181790232658, 0.04264353960752487, 0.08063125610351562, 0.06117337942123413, 0.014254042878746986, -0.0625755712389946, -0.041695304214954376, 0.08363712579011917, -0.12579141557216644, 0.02782861515879631, 0.02110472321510315, -0.023527083918452263, 0.07885053008794785, 0.12424436211585999, 0.018269626423716545, -0.10681728273630142, 0.0001405904913553968, -0.027475891634821892, 0.05712166801095009, -0.072491854429245, -0.08131478726863861, 0.011102473363280296, 0.008165739476680756, -0.01172218844294548, -0.06822515279054642, -0.2149057686328888, -0.054738592356443405, 0.018963927403092384, 0.0021341517567634583, 0.05232236534357071, -0.04027853161096573, -0.05008343979716301, -0.04243246093392372, 0.024636801332235336, 0.0053061372600495815, -0.021361850202083588, 0.03235090523958206, -0.03395910933613777, 0.004899789113551378, -0.008358662948012352, 0.07296504825353622, -0.06073234975337982, -0.04120052605867386, -0.09187252819538116, 0.13129112124443054, 0.012171201407909393, -0.10575314611196518, -0.12713930010795593, -0.07325687259435654, -0.11412140727043152, 0.05553077533841133, 0.0516158863902092, 0.1554364114999771, -0.24090386927127838, -0.052833814173936844, 0.24308809638023376, -0.1085701733827591, 0.001266045612283051, 0.14018744230270386, -0.057119954377412796, 0.19424401223659515, 0.11819995939731598, 0.09091473370790482, 0.09623491764068604, -0.18154208362102509, 0.0037139009218662977, -0.03469008952379227, -0.11587797850370407, 0.044771723449230194, 0.0398576445877552, -0.028394529595971107, 0.03704654425382614, -0.006487451959401369, -0.07983327656984329, -0.02170480042695999, -0.023238960653543472, -0.045664940029382706, -0.009478510357439518, -0.007988997735083103, 0.0413268581032753, 0.016424309462308884, 0.004079390317201614, 0.03919088467955589, -0.07713848352432251, 0.12804779410362244, 0.09128186851739883, -0.09364280104637146, 0.08304857462644577, -0.06915738433599472, 0.04950294643640518, -0.03568794205784798, 0.024159740656614304, -0.13530272245407104, 0.011258436366915703, 0.005610268097370863, 0.04464350640773773, 0.028073826804757118, 0.1674373745918274, 0.03864869475364685, 0.05294939503073692, -0.07143307477235794, -0.010153792798519135, -0.055702030658721924, -0.03879477083683014, -0.05721832066774368, -0.10657300800085068, -0.02773991785943508, -0.07658979296684265, 0.16912780702114105, -0.22229284048080444, 0.053502392023801804, 0.059016965329647064, -0.016531597822904587, 0.022526239976286888, -0.027130667120218277, 0.023559780791401863, 0.003785589011386037, -0.02599596418440342, -0.04202531650662422, 0.02045268379151821, 0.02993074432015419, -0.05845973268151283, 0.08921445906162262, -0.17775794863700867, -0.11175496131181717, 0.12701725959777832, 0.0005821731756441295, -0.0681610256433487, -0.051670949906110764, -0.0037830376531928778, -0.003172487486153841, -0.0910099670290947, -0.06286657601594925, 0.18365536630153656, 0.024829527363181114, 0.11230600625276566, -0.05437226966023445, 0.008487370796501637, -0.03172888234257698, -0.014267448335886002, 0.021737461909651756, -0.0008153491071425378, -0.011449508368968964, 0.007402820512652397, 0.040751855820417404, -0.05228734761476517, -0.034912362694740295, 0.20388048887252808, 0.05299289897084236, -0.09372302889823914, -0.013044878840446472, -0.0015151809202507138, 0.03379407525062561, 0.04031379893422127, -0.05051576346158981, 0.04608529433608055, 0.049907829612493515, 0.051754727959632874, 0.06367791444063187, -0.11717629432678223, 0.027227051556110382, 0.03995099291205406, -0.0967426672577858, -0.10090526193380356, 0.017213990911841393, 0.016158511862158775, 0.051279593259096146, -0.08793371915817261, 0.12275340408086777, 0.01633390225470066, -0.010930188931524754, -0.1361679881811142, 0.13437433540821075, -0.0931503027677536, -0.1967693269252777, -0.19232670962810516, 0.05050642043352127, 0.006329006981104612, 0.06086580827832222, 0.10337144136428833, -0.07470918446779251, -0.0041045029647648335, -0.03444951772689819, 0.08906067907810211, 0.008673264645040035, -0.08030728250741959, -0.07499255985021591, 0.01782146841287613, 0.013617735356092453, -0.14838702976703644, 0.02141396328806877, 0.02860405668616295, -0.10235641896724701, 0.009339720010757446, 0.044933296740055084, 0.03972901403903961, 0.08123063296079636, -0.019020194187760353, -0.018457641825079918, -0.008921360597014427, 0.1430416852235794, -0.11248219758272171, 0.07853540033102036, 0.16067251563072205, 0.002027431270107627, 0.048267919570207596, 0.03836569935083389, 0.00018154217104893178, -0.0510847382247448, -0.01629774458706379, 0.04179353639483452, -0.04840843752026558, -0.2279376983642578, -0.06250128895044327, -0.05357382446527481, -0.029226627200841904, 0.0386476069688797, 0.02053758129477501, 0.024041036143898964, 0.048544712364673615, -0.06249028444290161, -0.0596981979906559, 0.06025072559714317, 0.0630401074886322, -0.026910539716482162, -0.009950713254511356, 0.08117005228996277, -0.029345298185944557, 0.008622136898338795, 0.08214856684207916, 0.08291712403297424, 0.0943794772028923, -0.023515546694397926, 0.09738551080226898, 0.10350441932678223, 0.011953144334256649, 0.003853443544358015, 0.11590903252363205, -0.014276961795985699, 0.012976286932826042, -0.030457286164164543, -0.021802186965942383, 0.02052035741508007, 0.04437156021595001, 0.05228333920240402, -0.07160119712352753, -0.06323889642953873, 0.01270415261387825, 0.07640505582094193, 0.09402821213006973, -0.017873544245958328, -0.23997098207473755, -0.06614899635314941, -0.011425902135670185, -0.021313488483428955, -0.03859395533800125, -0.05654255673289299, 0.12889041006565094, -0.17025655508041382, 0.009412553161382675, -0.04397319257259369, 0.06269901245832443, 0.0031861152965575457, 0.01213881652802229, 0.0023545261938124895, 0.05038918927311897, -0.015610563568770885, 0.09221730381250381, -0.20606966316699982, 0.1487119346857071, 0.019731273874640465, 0.08778805285692215, -0.06599058955907822, 0.02078435756266117, 0.0486668162047863, 0.08580788224935532, 0.1251797080039978, -0.002644097898155451, -0.024162212386727333, -0.08467034250497818, -0.008585182949900627, 0.035877835005521774, 0.021692954003810883, -0.04178311675786972, 0.08098599314689636, -0.025277040898799896, -0.013441947288811207, 0.010911433957517147, 0.004182600881904364, -0.13149744272232056, -0.15063488483428955, 0.0719183012843132, 0.0009988559177145362, 0.20243975520133972, -0.014613043516874313, -0.0414520800113678, -0.014681526459753513, 0.1581733524799347, -0.07645163685083389, -0.011219312436878681, -0.1143665686249733, 0.0573013611137867, 0.12184199690818787, -0.08280839025974274, 0.0007687418255954981, 0.0866277664899826, 0.14475250244140625, -0.06949526816606522, -0.014021211303770542, 0.012168316170573235, -0.13399945199489594, -0.0913185253739357, -0.005203324370086193, 0.06521990895271301, 0.10375107824802399, 0.04361988231539726, 0.061027348041534424, -0.01202809251844883, -0.009638205170631409, -0.0827861800789833, 0.013816934078931808, 0.09481784701347351, 0.054478831589221954, 0.020566843450069427, -0.1545139104127884, -0.09661288559436798, -0.11874336004257202, -0.013266417197883129, 0.18505914509296417, 0.14895819127559662, -0.047400400042533875, 0.09978479146957397, 0.1277059018611908, -0.15119217336177826, -0.1625906080007553, 0.024561535567045212, -0.01443941704928875, 0.02167254500091076, 0.052549347281455994, -0.2378310263156891, 0.06828123331069946, 0.04697439819574356, 0.023950524628162384, -0.050399307161569595, -0.27891039848327637, -0.12430107593536377, 0.03978189080953598, 0.0033856022637337446, 0.10270655900239944, -0.12794393301010132, 0.007409384939819574, -0.05292045325040817, 0.02252473682165146, 0.07123269885778427, -0.19605369865894318, 0.11595801264047623, 0.04303085058927536, 0.020106999203562737, 0.026949292048811913, -0.04464811831712723, 0.08591443300247192, 0.04050339758396149, 0.04607880115509033, 0.008820803835988045, 0.08208492398262024, 0.0726969763636589, -0.037172287702560425, 0.1501074731349945, 0.033682722598314285, 0.016673047095537186, -0.0639597550034523, -0.06431731581687927, -0.06440386176109314, 0.10094340145587921, -0.0020269707310944796, -0.030884098261594772, 0.033684082329273224, 0.042423129081726074, 0.10020305961370468, -0.02265622466802597, -0.18736644089221954, -0.08530241996049881, 0.020601266995072365, 0.10801143944263458, 0.1009288877248764, 0.021147333085536957, -0.11653867363929749, 0.029394567012786865, 0.01602611504495144, 0.07250571250915527, -0.05449914187192917, 0.09820421040058136, 0.03099890798330307, -0.013120683841407299, 0.1630643606185913, 0.038536831736564636, -0.07925141602754593, 0.04202538728713989, 0.04020298272371292, -0.06793771684169769, -0.16756942868232727, -0.036314599215984344, -0.008634600788354874, -0.08560992777347565, -0.0400984026491642, 0.1324322521686554, -0.03370567038655281, -0.043741375207901, -0.0380915105342865, 0.08364058285951614, -0.07788879424333572, 0.13265284895896912, -0.00896652415394783, 0.03383179381489754, -0.07638701051473618, 0.05685504898428917, 0.029990190640091896, -0.1418118178844452, 0.07772932201623917, -0.0004807582008652389, -0.045677997171878815, -0.08217120915651321, 0.005922195501625538, 0.09147140383720398, -0.005543099716305733, -0.0852401852607727, -0.06116332486271858, 0.0385073646903038, -0.01547374576330185, 0.04098917171359062, 0.00044752354733645916, 0.0013932998990640044, -0.03137525916099548, -0.024197667837142944, -0.18297743797302246, 0.03186758607625961, 0.17088663578033447, 0.0029142487328499556, -0.026410361751914024, 0.17849218845367432, 0.02459174580872059, 0.03149208426475525, -0.014911429025232792, -0.01930125802755356, -0.04910185933113098, 0.008624833077192307, -0.006197817623615265, 0.007233588024973869, -0.05272241681814194, -0.026114199310541153, -0.009808000177145004, -0.022292740643024445, 0.018841762095689774, 0.05154813453555107, -0.08769726008176804, -0.035828281193971634, -0.034945882856845856, 0.09989697486162186, -0.1378116011619568, 0.040543295443058014, 0.08672110736370087, -0.060878776013851166, 0.08428099751472473, 0.0825236365199089, -0.09023720026016235, 0.061285536736249924, -0.1415514498949051, -0.05874408781528473, 0.010601007379591465, -0.00769947562366724, -0.017717571929097176, -0.1632838249206543, 0.05135205760598183, 0.009642530232667923, 0.04655810818076134, -0.02110428363084793, 0.1606317013502121, -0.09904837608337402, 0.0073149376548826694, -0.011935683898627758, -0.0015112035907804966, -0.04743015766143799, 0.0672493726015091, 0.07394743710756302, 0.03344935178756714, 0.14753399789333344, -0.08262959867715836, 0.07963617891073227, -0.1372608244419098, 0.012927140109241009, -0.03148727864027023, -0.0213474128395319, 0.014863848686218262, -0.10255121439695358, 0.04537466540932655, -0.02487580105662346, 0.09167969226837158, -0.029916763305664062, 0.04608329012989998, 0.0164029523730278, -0.07074712961912155, -0.06058637425303459, -0.0171675905585289, 0.0975080206990242, -0.002317846519872546, 0.007068508304655552, -0.036534398794174194, 0.09745366871356964, 0.07130157947540283, 0.11321769654750824, 0.14221154153347015, 0.21524637937545776, 0.005459978245198727, 0.08116958290338516, -0.033626969903707504, -0.08734460175037384, -0.03536398336291313, -0.011622059158980846, -0.0793786495923996, -0.0209693294018507, -0.06943774968385696, 0.015988361090421677, 0.14073501527309418, -0.13785195350646973, 0.15312807261943817, 0.04217715188860893, -0.08631858229637146, -0.10978008061647415, -0.06561753153800964, -0.02973385527729988, -0.11099354177713394, -0.00881189201027155, -0.1053566113114357, 0.05868492275476456, 0.0858745351433754, 0.030828090384602547, -0.040288206189870834, 0.16870424151420593, -0.041075289249420166, -0.11548977345228195, -0.023042596876621246, -0.06442530453205109, 0.02732781693339348, 0.00032345144427381456, -0.005685584153980017, 0.075642891228199, 0.04433080181479454, 0.10125147551298141, 0.04265119880437851, 0.10957904905080795, 0.07321252673864365, -0.1501196026802063, -0.045370396226644516, -0.026021700352430344, 0.011546440422534943, 0.047087162733078, 0.13031575083732605, 0.07477152347564697, -0.0909721776843071, 0.02524719387292862, 0.19752991199493408, -0.01547201257199049, -0.16307754814624786, -0.19833415746688843, 0.16243848204612732, 0.0989021435379982, -0.0394020602107048, -0.07107426971197128, -0.09660009294748306, 0.03802824392914772, 0.22986136376857758, 0.21141989529132843, 0.02664818987250328, 0.009155355393886566, 0.02817314863204956, 0.007583439350128174, 0.0535021536052227, -0.009963222779333591, 0.06358681619167328, 0.03837740048766136, -0.05862803012132645, 0.09959188848733902, -0.01817356050014496, -0.038289617747068405, -0.0240163654088974, 0.14738814532756805, -0.0711435005068779, -0.05088487267494202, 0.03348477929830551, 0.11183715611696243, -0.0322895273566246, -0.1825907826423645, -0.09796784073114395, -0.034215591847896576, -0.05881005525588989, -0.018515707924962044, -0.033805884420871735, 0.013252169825136662, 0.08288242667913437, 0.005165105685591698, -0.011498752050101757, 0.1811266392469406, 0.015175214037299156, -0.05493874475359917, -0.03991100192070007, 0.03813289478421211, -0.11849336326122284, 0.1547258347272873, -0.031320832669734955, 0.017123233526945114, 0.0634557455778122, 0.000024420231056865305, -0.05858651548624039, 0.039900343865156174, -0.010334877297282219, 0.028987616300582886, 0.05216626450419426, 0.12028598040342331, -0.049844611436128616, -0.012342077679932117, 0.003402137430384755, -0.14604778587818146, 0.03978433459997177, -0.1488829404115677, -0.03983060270547867, -0.059531886130571365, 0.041097693145275116, -0.08697590231895447, 0.11933261156082153, 0.1482078731060028, -0.026451097801327705, 0.03168901801109314, -0.08520840108394623, 0.06347429752349854, 0.027875298634171486, 0.03444083407521248, -0.05340278148651123, -0.20470668375492096, 0.004526898730546236, -0.007638168521225452, 0.04749992489814758, -0.21223866939544678, -0.03745405375957489, 0.1175929456949234, -0.06393164396286011, -0.018194595351815224, 0.10036322474479675, 0.09743377566337585, 0.012697900645434856, -0.02489517629146576, -0.05161362513899803, 0.01857619360089302, 0.10787727683782578, -0.13868729770183563, -0.06568900495767593 ]
null
null
transformers
For studying only
{}
text-classification
bowipawan/bert-sentimental
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us
For studying only
[]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 42 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04603995382785797, 0.07697968930006027, -0.007587090600281954, 0.040334295481443405, 0.1894233375787735, 0.03266342729330063, 0.10487726330757141, 0.12383108586072922, 0.07114987820386887, -0.00525201391428709, 0.10253765434026718, 0.25097358226776123, -0.02987755462527275, 0.053772926330566406, -0.1199457049369812, -0.2987544536590576, 0.02529042959213257, 0.08571648597717285, -0.030483629554510117, 0.09768591076135635, 0.06876937299966812, -0.10465067625045776, 0.0528610460460186, -0.02778947539627552, -0.1437736451625824, 0.03635691478848457, 0.03931419178843498, -0.1251041740179062, 0.0920763611793518, 0.054787419736385345, 0.1859414130449295, 0.04978036880493164, -0.05764761567115784, -0.11654829233884811, 0.04489264637231827, 0.01485765352845192, -0.09254759550094604, 0.06704971194267273, 0.08834836632013321, -0.12994645535945892, 0.022403404116630554, 0.0009764776332303882, 0.02570222318172455, 0.03161700814962387, -0.1174834743142128, -0.043175891041755676, -0.005370291881263256, 0.022237000986933708, 0.05965010076761246, 0.041221290826797485, -0.0005730330594815314, 0.13452528417110443, -0.09795165807008743, 0.13178953528404236, 0.07975141704082489, -0.3102419078350067, -0.0316278412938118, 0.12225354462862015, 0.027336133643984795, 0.044738732278347015, -0.05966753512620926, 0.04469624161720276, 0.019826875999569893, 0.011544160544872284, 0.03513888269662857, -0.07321186363697052, -0.10471564531326294, 0.02097994275391102, -0.09265647083520889, 0.0033277259208261967, 0.14798091351985931, -0.0682767704129219, 0.08570198714733124, -0.057520680129528046, -0.10869370400905609, -0.043445881456136703, -0.03323303535580635, 0.015165060758590698, -0.05078959837555885, 0.057163260877132416, 0.026306524872779846, -0.03208002820611, -0.12777327001094818, 0.044014688581228256, -0.22997713088989258, 0.19326399266719818, 0.010304112918674946, 0.031071512028574944, -0.16978037357330322, 0.04729142412543297, 0.05112743750214577, -0.10878967493772507, 0.07722025364637375, -0.07739537209272385, 0.005033629946410656, -0.04434605687856674, -0.05033571645617485, -0.1646299511194229, 0.09229962527751923, 0.0792732834815979, 0.02271258644759655, 0.07589870691299438, -0.02943352423608303, 0.10195162892341614, 0.03502525016665459, 0.13418622314929962, 0.01367510948330164, -0.015007480047643185, 0.03770652413368225, -0.10332653671503067, 0.02381240203976631, -0.08328819274902344, -0.17091533541679382, -0.00980136077851057, 0.07454106956720352, 0.05742347612977028, 0.010912112891674042, 0.09158407896757126, -0.0660814717411995, -0.0429697148501873, 0.06734535843133926, -0.09236454963684082, 0.0387350432574749, 0.023506851866841316, 0.02882397174835205, 0.1148211658000946, -0.0014555156230926514, -0.013479024171829224, -0.0804947167634964, 0.1312321424484253, -0.05420195683836937, 0.018140261992812157, -0.040765196084976196, -0.09668736159801483, 0.033556222915649414, -0.1942308247089386, 0.012832476757466793, -0.14952345192432404, -0.09085899591445923, 0.0031279376707971096, 0.028533341363072395, -0.01735086180269718, -0.0026152029167860746, -0.02203414961695671, -0.0102163627743721, 0.05283864587545395, -0.03304903954267502, -0.0676739290356636, -0.05507177487015724, 0.08837705850601196, -0.052004240453243256, 0.08552996814250946, -0.12362656742334366, 0.06806599348783493, -0.07196059077978134, -0.0067867920733988285, -0.15163005888462067, 0.058627646416425705, -0.06155307963490486, 0.1464628130197525, -0.001813486567698419, -0.045914359390735626, -0.08455463498830795, 0.0498102530837059, -0.03738473728299141, 0.13493332266807556, -0.13282020390033722, -0.11931726336479187, 0.18522660434246063, -0.0935104712843895, -0.10909486562013626, 0.10003595799207687, -0.019867058843374252, 0.002699471078813076, 0.08324342221021652, 0.21328146755695343, 0.12464241683483124, 0.0028257453814148903, 0.05430715158581734, 0.13919903337955475, -0.08823887258768082, -0.11714000254869461, -0.03825186565518379, 0.0018066264456138015, -0.05023888871073723, 0.052827876061201096, 0.11148220300674438, 0.07636700570583344, -0.042702414095401764, -0.046748045831918716, -0.016987726092338562, -0.007444145157933235, 0.14808255434036255, 0.08780794590711594, 0.1379544585943222, -0.06564826518297195, -0.006117431912571192, 0.0587441623210907, -0.02647368237376213, -0.026576140895485878, 0.023803580552339554, -0.07718691974878311, 0.1339673101902008, -0.013797886669635773, 0.014891697093844414, -0.24588166177272797, -0.09897125512361526, -0.015116585418581963, 0.10073293745517731, -0.005431900266557932, 0.13364331424236298, 0.07663562893867493, -0.045877762138843536, -0.014807133935391903, -0.0037892337422817945, 0.19071373343467712, 0.02251225896179676, -0.08754529803991318, -0.10135912895202637, 0.07217859476804733, -0.09146692603826523, -0.0014686144422739744, -0.10566286742687225, 0.036679767072200775, 0.10934353619813919, 0.11581508070230484, 0.0322575680911541, 0.059172991663217545, -0.009365053847432137, 0.06432660669088364, -0.07833180576562881, 0.009577843360602856, 0.1176786720752716, -0.01058810856193304, -0.10429687052965164, 0.1302568018436432, -0.1527077704668045, 0.25838297605514526, 0.20033486187458038, -0.2754853367805481, 0.0020080499816685915, -0.04659823700785637, -0.005882642697542906, 0.018667304888367653, 0.0350269190967083, 0.025228438898921013, 0.09880781173706055, 0.0010991080198436975, 0.190837100148201, -0.021153589710593224, -0.04234985634684563, -0.00043466492206789553, -0.0410488024353981, -0.05431409552693367, 0.09751458466053009, 0.09040956944227219, -0.1704697161912918, 0.18294359743595123, 0.20096078515052795, -0.031497180461883545, 0.19861248135566711, -0.019592585042119026, 0.032567303627729416, 0.0825900211930275, -0.017592541873455048, -0.006372673902660608, -0.04826289042830467, -0.2143700271844864, -0.04401913285255432, 0.06353070586919785, -0.007641746196895838, 0.07189679145812988, -0.13307592272758484, -0.015508023090660572, -0.016467437148094177, 0.019635312259197235, 0.031465865671634674, 0.08101508021354675, 0.06822001188993454, 0.1023208275437355, -0.031828563660383224, -0.08330725878477097, 0.09931344538927078, -0.0012868402991443872, -0.06186167150735855, 0.19159837067127228, -0.1355380415916443, -0.33784791827201843, -0.14171135425567627, -0.15382839739322662, -0.03614667057991028, 0.042498957365751266, 0.0781187042593956, -0.10310425609350204, -0.032773856073617935, 0.01770966500043869, -0.009754807688295841, -0.022896232083439827, 0.05171317607164383, -0.05437587574124336, 0.06398747116327286, -0.05511936545372009, -0.07351033389568329, -0.0546439103782177, -0.05728188902139664, -0.004270676523447037, 0.1619870811700821, -0.09769860655069351, 0.06409615278244019, 0.2201099991798401, -0.007712316233664751, 0.05556498467922211, -0.04209320247173309, 0.12120041996240616, -0.08795541524887085, 0.02059486322104931, 0.15421971678733826, -0.07923649996519089, 0.08098173141479492, 0.13726887106895447, 0.04435084015130997, -0.06202536076307297, 0.00956772267818451, -0.010630836710333824, -0.107969731092453, -0.2322322577238083, -0.1380920112133026, -0.12242541462182999, 0.05669332668185234, 0.05641760677099228, 0.0779140442609787, 0.12269847095012665, 0.08977797627449036, 0.040568213909864426, 0.013465355150401592, 0.01096833311021328, 0.04571719095110893, 0.2334052324295044, 0.0031826819758862257, 0.15645180642604828, -0.06712072342634201, -0.14530925452709198, 0.0757266953587532, 0.038224246352910995, 0.13289396464824677, 0.06512083858251572, 0.07363896071910858, 0.012872171588242054, 0.06836868077516556, 0.15091189742088318, 0.10524623095989227, 0.010815367102622986, -0.025864502415060997, -0.005371313542127609, -0.010978900827467442, -0.0350341759622097, 0.002318707061931491, 0.10046376287937164, -0.13667164742946625, -0.03537127375602722, -0.07865475863218307, 0.09840776771306992, 0.08403969556093216, 0.03882572427392006, -0.21059665083885193, 0.010571003891527653, 0.08295454829931259, -0.007700029294937849, -0.07526291906833649, 0.05221300944685936, 0.009621120989322662, -0.09180407226085663, 0.09416726231575012, -0.07643487304449081, 0.10554104298353195, -0.11090786755084991, 0.06416766345500946, -0.03688103333115578, -0.07657108455896378, 0.026301974430680275, 0.08470986783504486, -0.2604331076145172, 0.205475315451622, 0.016697736456990242, -0.048316534608602524, -0.08488874137401581, -0.00650798762217164, 0.0435372032225132, 0.181710347533226, 0.07844818383455276, -0.015856770798563957, -0.023163115605711937, -0.13565456867218018, -0.03051353059709072, -0.003760268446058035, 0.11238259822130203, -0.01428043283522129, -0.028583984822034836, -0.016433127224445343, -0.028177322819828987, -0.00570681830868125, -0.09235639125108719, 0.03589004650712013, -0.19368532299995422, 0.06611783802509308, 0.03342404589056969, -0.06428017467260361, 0.02925647422671318, -0.08004195988178253, -0.16517730057239532, 0.2313268929719925, -0.13491466641426086, -0.09082598984241486, -0.11070311814546585, -0.0496392622590065, 0.02026003785431385, -0.08725357800722122, 0.04926200583577156, -0.07609765976667404, 0.026254817843437195, -0.07180263847112656, -0.2214146852493286, 0.1389671266078949, -0.08847879618406296, -0.025432957336306572, -0.06931548565626144, 0.14377693831920624, -0.06066567450761795, 0.017467113211750984, 0.021506069228053093, 0.014022707007825375, -0.06208350881934166, -0.08238857239484787, 0.004993600770831108, 0.023671936243772507, 0.05603156238794327, 0.035453055053949356, -0.08977041393518448, -0.08057613670825958, -0.011197812855243683, 0.044776834547519684, 0.2891542613506317, 0.12209925800561905, -0.08025669306516647, 0.14290151000022888, 0.10878642648458481, -0.07144255936145782, -0.3543127179145813, -0.04164673388004303, -0.07900619506835938, -0.03392558917403221, -0.020990785211324692, -0.1692517101764679, 0.14245586097240448, -0.0000615489188930951, -0.01895914226770401, 0.1114436611533165, -0.21510793268680573, -0.1049436405301094, 0.1900956928730011, 0.02373528480529785, 0.31844425201416016, -0.1309761106967926, -0.10668004304170609, -0.02388131059706211, -0.06360536813735962, 0.1516016721725464, -0.05354338139295578, 0.09137018769979477, -0.009240174666047096, 0.033372484147548676, 0.04592502489686012, -0.055624183267354965, 0.086124949157238, 0.015534227713942528, 0.019867250695824623, -0.10128539800643921, -0.10478194057941437, 0.05314861610531807, -0.01335966307669878, -0.019335314631462097, -0.030992336571216583, -0.0025771053042262793, -0.13294681906700134, -0.03887597471475601, -0.05905978009104729, 0.08181441575288773, 0.04122334346175194, -0.04715103656053543, -0.002014993457123637, -0.016191530972719193, -0.012539757415652275, 0.00776049867272377, 0.2978050112724304, -0.025419797748327255, 0.15354785323143005, 0.1475812941789627, 0.14917775988578796, -0.1373811811208725, 0.0012880538124591112, -0.069809190928936, -0.04924085736274719, 0.0654655247926712, -0.08163250237703323, 0.06121481955051422, 0.1405683159828186, -0.04176536947488785, 0.06739624589681625, 0.11167377233505249, 0.039750371128320694, -0.015671327710151672, 0.1537807136774063, -0.22622083127498627, -0.03459077328443527, -0.028011951595544815, -0.07797582447528839, 0.05419991910457611, 0.09948994964361191, 0.14474579691886902, 0.058124326169490814, -0.02056090347468853, 0.027291104197502136, -0.002854485297575593, 0.02246136963367462, 0.08833222091197968, 0.07260780036449432, 0.03273298218846321, -0.1296292394399643, 0.05610274150967598, 0.057791970670223236, -0.1971728354692459, -0.007592620328068733, 0.12753580510616302, -0.13765358924865723, -0.1395956575870514, -0.00368200964294374, 0.15480469167232513, -0.0719805359840393, -0.040744781494140625, -0.08620481938123703, -0.12317974865436554, 0.05295936390757561, 0.22048485279083252, 0.11812905967235565, 0.07950117439031601, -0.07506711035966873, -0.03918588161468506, -0.015959450975060463, 0.026107730343937874, 0.009056173264980316, 0.03585343435406685, -0.12321169674396515, 0.03902330994606018, -0.013275094330310822, 0.13959747552871704, -0.10191387683153152, -0.06404422968626022, -0.16382648050785065, 0.02242553047835827, -0.09004931151866913, -0.005799910984933376, -0.08917959779500961, -0.02318430133163929, 0.0034408504143357277, -0.033649854362010956, -0.03768184408545494, -0.06568079441785812, -0.10806655883789062, 0.04703846201300621, -0.017591189593076706, 0.03405676782131195, -0.08813277631998062, -0.05076688155531883, 0.05857892706990242, -0.030288219451904297, 0.11159545183181763, 0.07041904330253601, -0.0770534873008728, 0.08952080458402634, -0.15135589241981506, -0.09286046773195267, 0.14862670004367828, 0.03597563877701759, 0.07924872636795044, 0.09267039597034454, 0.029397539794445038, 0.059773869812488556, 0.024467892944812775, 0.07071136683225632, 0.0755324587225914, -0.10952910035848618, 0.08470501005649567, -0.08085161447525024, -0.15890535712242126, -0.06223023310303688, 0.0013675987720489502, 0.08564738929271698, 0.018606536090373993, 0.15478956699371338, -0.07301109284162521, 0.08197207748889923, -0.06174205616116524, 0.01433352567255497, -0.0041921003721654415, -0.19598278403282166, -0.017797021195292473, -0.057849686592817307, 0.02677738107740879, -0.026435470208525658, 0.21437565982341766, 0.07230960577726364, 0.007385936565697193, 0.040313705801963806, 0.06414308398962021, -0.014836613088846207, 0.03390687331557274, 0.16330793499946594, 0.07705213129520416, -0.05681150406599045, -0.07325239479541779, 0.06300541758537292, 0.037690501660108566, 0.04070398584008217, 0.15186378359794617, 0.06068604812026024, -0.09053897857666016, 0.09453897923231125, 0.0013086919207125902, 0.0515473410487175, -0.1233317106962204, -0.06034238263964653, -0.07271169871091843, 0.09952261298894882, 0.022567152976989746, 0.05051688477396965, 0.0887046679854393, -0.023983240127563477, 0.04772427678108215, -0.037624310702085495, -0.08153237402439117, -0.17393338680267334, -0.14927510917186737, -0.0936640277504921, -0.06960950046777725, 0.0035707163624465466, -0.07159373164176941, -0.0395137183368206, 0.04780955985188484, 0.059553198516368866, -0.05583415925502777, 0.10025706142187119, 0.03625905141234398, -0.022445766255259514, 0.08314794301986694, -0.007469092961400747, 0.014862235635519028, -0.021018408238887787, -0.019656401127576828, -0.14086902141571045, 0.01936039887368679, -0.05302619934082031, 0.03316029906272888, -0.03159722685813904, 0.011576766148209572, -0.13239584863185883, -0.12850627303123474, -0.021544622257351875, 0.054541267454624176, -0.037967029958963394, 0.10874872654676437, 0.019593678414821625, -0.00928666815161705, 0.034212660044431686, 0.16547484695911407, -0.05578825622797012, -0.019702430814504623, -0.042297352105379105, 0.1864418089389801, 0.056279901415109634, 0.1041661724448204, 0.0004502236843109131, -0.02590130642056465, -0.07041119039058685, 0.2917492985725403, 0.3067082166671753, -0.07154642790555954, 0.06031757965683937, 0.023385006934404373, 0.02764515019953251, 0.11660000681877136, 0.13777925074100494, 0.07038599252700806, 0.24802185595035553, -0.06222294643521309, -0.08442019671201706, -0.028010902926325798, -0.025048203766345978, -0.12891323864459991, 0.07728605717420578, 0.07329729199409485, -0.033493250608444214, -0.062004923820495605, 0.10077860951423645, -0.20854933559894562, 0.08674542605876923, 0.027777856215834618, -0.2377578467130661, -0.09061086922883987, -0.026773691177368164, 0.15642909705638885, -0.02893924154341221, 0.07409939914941788, -0.01334049366414547, -0.10492754727602005, -0.006130533292889595, 0.01244515459984541, -0.21407517790794373, 0.061376385390758514, 0.033911217004060745, -0.07640945166349411, 0.007194093894213438, -0.03237824887037277, 0.027679091319441795, 0.08744186162948608, 0.08077127486467361, 0.003640656592324376, 0.028805220499634743, -0.001016925903968513, -0.03201787918806076, 0.025657953694462776, 0.02615967206656933, 0.00916578434407711, -0.11191057413816452, 0.08908887207508087, -0.11946779489517212, 0.05242010951042175, -0.1150560975074768, -0.06555624306201935, -0.020165501162409782, 0.043921004980802536, -0.055444177240133286, 0.04351620748639107, 0.09324859827756882, 0.03184846043586731, -0.02103528380393982, -0.04087841138243675, -0.051752422004938126, 0.00030713106389157474, -0.09480879455804825, -0.14768947660923004, -0.10398419201374054, -0.0784272626042366, 0.04616319760680199, 0.007821858860552311, -0.17432796955108643, -0.01485002413392067, -0.10754987597465515, 0.04383577033877373, -0.18084506690502167, 0.07133903354406357, 0.07244544476270676, 0.021627036854624748, -0.020868869498372078, -0.0057632508687675, 0.035843897610902786, 0.05677977204322815, -0.14626255631446838, -0.07018790394067764 ]
null
null
transformers
# Gollum DialoGPT Model
{"tags": ["conversational"]}
text-generation
boydster/DialoGPT-small-gollum
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Gollum DialoGPT Model
[ "# Gollum DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Gollum DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Gollum DialoGPT Model" ]
[ -0.012526074424386024, 0.1149032935500145, -0.008385661989450455, 0.041397809982299805, 0.1502750962972641, 0.0036365611013025045, 0.14726245403289795, 0.09611695259809494, -0.014671461656689644, -0.05605223774909973, 0.10034424066543579, 0.17997969686985016, -0.01177162490785122, 0.02499980293214321, -0.02713111788034439, -0.3573357164859772, 0.023700471967458725, 0.02858486957848072, -0.028103269636631012, 0.11602627485990524, 0.06460091471672058, -0.029133403673768044, 0.07186181843280792, -0.018184583634138107, -0.11743087321519852, -0.0567978173494339, -0.02806934528052807, -0.09019920229911804, 0.11231956630945206, 0.04756329581141472, -0.012174496427178383, 0.0010775570990517735, -0.08146855235099792, -0.09631888568401337, 0.05401870980858803, -0.011720811016857624, -0.027887776494026184, 0.04680857062339783, 0.00601454870775342, -0.10514496266841888, 0.1808440089225769, 0.11369244754314423, -0.008160966448485851, 0.0342753529548645, -0.15039630234241486, -0.008506599813699722, 0.01260096114128828, 0.029430653899908066, 0.007344071753323078, 0.08682063221931458, -0.03829862177371979, 0.061501212418079376, -0.08140166103839874, 0.10509943217039108, 0.11109578609466553, -0.34288933873176575, -0.032735198736190796, 0.10289376229047775, 0.06900815665721893, 0.1137971431016922, -0.0702221542596817, 0.05687800422310829, 0.012268596328794956, 0.0017406316474080086, -0.03063780628144741, -0.07589078694581985, -0.13735848665237427, 0.018290258944034576, -0.13601364195346832, 0.001993943238630891, 0.21720634400844574, -0.07366344332695007, 0.030456187203526497, -0.07870537787675858, -0.09233268350362778, -0.02423950657248497, -0.018401626497507095, -0.043175894767045975, -0.07074711471796036, 0.0708921030163765, 0.026672162115573883, -0.15132775902748108, -0.12912121415138245, -0.013075310736894608, -0.19157545268535614, 0.16599862277507782, 0.046842921525239944, 0.03638753294944763, -0.22140713036060333, 0.09841940551996231, -0.034176528453826904, -0.08764811605215073, 0.0006483443430624902, -0.07400181889533997, 0.004508524667471647, 0.010100207291543484, -0.05628484860062599, -0.019152909517288208, 0.09436662495136261, 0.12810656428337097, 0.013537411577999592, 0.020855337381362915, -0.05744402855634689, 0.07136359065771103, 0.07832860946655273, 0.062888965010643, -0.022549638524651527, -0.09184227138757706, 0.040393613278865814, -0.10187225043773651, 0.038810547441244125, -0.0796651840209961, -0.1549370288848877, -0.021886751055717468, 0.07152114063501358, 0.03743433207273483, 0.051369283348321915, 0.11123844981193542, 0.01903221569955349, -0.07747279107570648, 0.005103451665490866, -0.0033922947477549314, -0.03154252469539642, 0.016092222183942795, -0.014921065419912338, 0.11049431562423706, 0.0213482603430748, 0.025139939039945602, -0.16141203045845032, 0.039749860763549805, -0.03532103821635246, 0.047297898679971695, 0.002593305893242359, -0.02969660796225071, 0.018650460988283157, -0.05479593947529793, 0.006562295835465193, -0.13682369887828827, -0.17663198709487915, 0.030754024162888527, -0.0039349705912172794, -0.0604507215321064, -0.11396448314189911, -0.07198906689882278, -0.009272114373743534, 0.010533655993640423, -0.07776249945163727, -0.047332197427749634, -0.05759071186184883, 0.09326374530792236, -0.044959764927625656, 0.09479708224534988, -0.05760639160871506, 0.07437922805547714, -0.10181121528148651, -0.04339086264371872, -0.06821111589670181, 0.08783742785453796, 0.02137349732220173, 0.05016754940152168, -0.017203379422426224, -0.02956545166671276, -0.08418558537960052, 0.035193294286727905, -0.032419007271528244, 0.2031196653842926, -0.06681371480226517, -0.12608911097049713, 0.26194480061531067, -0.056664034724235535, -0.07873779535293579, 0.16049019992351532, 0.001072790939360857, 0.051233746111392975, 0.1260775923728943, 0.18061856925487518, 0.051721904426813126, -0.0021575158461928368, 0.1068023070693016, 0.04726388305425644, -0.10147377103567123, -0.006031163968145847, 0.0036510915961116552, -0.006563856266438961, -0.0425071120262146, 0.053112298250198364, 0.11619414389133453, 0.07100798934698105, -0.04686084762215614, 0.0049198102205991745, 0.0006474658730439842, -0.003399080131202936, 0.11174888163805008, -0.04025135561823845, 0.13175147771835327, -0.052371785044670105, -0.053749509155750275, -0.03516053408384323, -0.0043165553361177444, 0.010662289336323738, 0.05189640447497368, -0.0837373435497284, 0.1175876185297966, -0.0718197152018547, 0.08653147518634796, -0.14808854460716248, 0.005813865456730127, -0.031179985031485558, 0.18812628090381622, 0.13454782962799072, 0.07041478902101517, 0.07915826141834259, -0.025164347141981125, -0.03891594335436821, 0.07708228379487991, 0.15476340055465698, -0.03455730527639389, -0.070279560983181, -0.11231943964958191, 0.11198274046182632, -0.06586869806051254, 0.10359392315149307, -0.030542626976966858, 0.018514618277549744, -0.005242443177849054, 0.12824222445487976, -0.028587762266397476, 0.007652474567294121, 0.0300135537981987, -0.02071155607700348, -0.05347413197159767, 0.0168618131428957, 0.09770280867815018, 0.021234693005681038, -0.09019161015748978, 0.22669459879398346, -0.16548869013786316, 0.1625361293554306, 0.20450687408447266, -0.22581656277179718, 0.004007627721875906, -0.12264052033424377, -0.006811207626014948, 0.016698051244020462, 0.10515855997800827, 0.015709906816482544, 0.2604137063026428, -0.004135191906243563, 0.16484905779361725, -0.01693212054669857, -0.05218900367617607, -0.02962682396173477, -0.07423342764377594, 0.006316685117781162, 0.09958911687135696, 0.11842884868383408, -0.16122427582740784, 0.1298534870147705, 0.0991363525390625, 0.003963806200772524, 0.24037478864192963, 0.07165631651878357, 0.020756714046001434, 0.002515098312869668, 0.016919009387493134, -0.05258788913488388, -0.09167802333831787, -0.3149415850639343, 0.004427328240126371, 0.06544245034456253, 0.06643474102020264, 0.12148471176624298, -0.12295231968164444, -0.03134412318468094, -0.012978731654584408, -0.0006204381352290511, 0.056868355721235275, 0.1247185692191124, 0.020012037828564644, 0.12894690036773682, -0.04108737036585808, -0.02377849631011486, 0.06214747577905655, 0.03044438362121582, -0.06893236935138702, 0.18003037571907043, -0.14438341557979584, -0.28476256132125854, -0.08656033873558044, -0.21740971505641937, -0.10958965867757797, 0.04718048498034477, 0.10811489075422287, -0.13888727128505707, 0.013043084181845188, 0.007133237086236477, 0.09333908557891846, -0.11257372796535492, 0.01782073825597763, -0.03079824149608612, -0.04046687111258507, -0.13597652316093445, -0.07320493459701538, -0.03737140819430351, -0.07183123379945755, -0.07671615481376648, 0.1630122810602188, -0.11167141795158386, -0.027345526963472366, 0.23053120076656342, 0.07581395655870438, 0.038339145481586456, -0.02287594974040985, 0.2112147957086563, -0.07792548835277557, -0.011173450388014317, 0.23128071427345276, -0.009268357418477535, 0.08223949372768402, 0.11031761020421982, -0.006986065302044153, -0.07948926836252213, 0.02365201525390148, 0.007061803247779608, -0.08866259455680847, -0.20205439627170563, -0.09827244281768799, -0.14193783700466156, 0.08196613937616348, 0.0020609856583178043, 0.07210517674684525, 0.1814550906419754, 0.061112985014915466, -0.03244529291987419, -0.02489723637700081, 0.09381521493196487, 0.08152150362730026, 0.257086843252182, -0.10750318318605423, 0.12279250472784042, 0.009579562582075596, -0.1547715812921524, 0.05982604995369911, 0.10176900774240494, 0.10341839492321014, 0.04952362924814224, 0.036154113709926605, -0.00549432123079896, 0.009435906074941158, 0.11518837511539459, 0.03325992822647095, 0.03364500775933266, -0.018451837822794914, -0.05078878998756409, -0.03635456785559654, -0.028511079028248787, 0.04757564142346382, 0.10036135464906693, -0.15874101221561432, -0.008092115633189678, -0.019175058230757713, 0.05764807015657425, 0.03875856101512909, 0.03343456611037254, -0.16028955578804016, -0.009965331293642521, 0.08801189064979553, -0.01399786677211523, -0.11848177015781403, 0.09011945128440857, 0.006227628793567419, -0.11017905920743942, 0.054157279431819916, -0.016451461240649223, 0.10192891955375671, -0.08764835447072983, 0.07827781140804291, -0.14784786105155945, -0.07400034368038177, -0.007213719189167023, 0.08921432495117188, -0.280111700296402, 0.14175638556480408, -0.024545438587665558, -0.04409385100007057, -0.07706955820322037, -0.007006516680121422, 0.04732021316885948, 0.04106786847114563, 0.08973963558673859, 0.0019645406864583492, 0.05132684111595154, 0.019647542387247086, -0.04623014107346535, -0.005927620455622673, 0.11985255777835846, -0.024085182696580887, -0.00518929585814476, -0.03548610955476761, 0.0072584436275064945, -0.04242294654250145, -0.09809786081314087, 0.041737817227840424, -0.14618606865406036, 0.12118081003427505, 0.10228990018367767, 0.06630176305770874, 0.029621729627251625, -0.04365745931863785, -0.06638775020837784, 0.2466716766357422, -0.0830271989107132, -0.09517135471105576, -0.07809153199195862, -0.03718850016593933, 0.06161457300186157, -0.04691050201654434, 0.0013337703421711922, -0.06742243468761444, 0.006027680356055498, -0.0789857730269432, -0.14890190958976746, 0.10771635174751282, -0.0500759482383728, -0.09794842451810837, -0.04525819048285484, 0.21758903563022614, -0.014263919554650784, 0.04086361080408096, 0.0011878316290676594, -0.0009550839895382524, -0.10774419456720352, -0.0814218744635582, 0.00666575413197279, 0.055117156356573105, -0.035860851407051086, 0.05757710710167885, 0.01827933080494404, -0.0621759407222271, -0.0402364656329155, -0.03303776681423187, 0.300059974193573, 0.10600546002388, 0.000043084695789730176, 0.19706077873706818, 0.1354675143957138, -0.09176360815763474, -0.23543323576450348, -0.13548579812049866, -0.07598140835762024, -0.028977174311876297, -0.12726376950740814, -0.16687218844890594, 0.0800260677933693, -0.028867430984973907, -0.011081026867032051, 0.133534237742424, -0.2719114124774933, -0.13033893704414368, 0.16285106539726257, -0.00995247345417738, 0.41550517082214355, -0.0741441398859024, -0.07809535413980484, -0.023685364052653313, -0.11991097033023834, 0.12459124624729156, -0.00641629146412015, 0.14912313222885132, -0.013586948625743389, 0.1574503481388092, 0.061369962990283966, -0.01573881320655346, 0.12750549614429474, -0.008679362013936043, -0.06180473044514656, -0.12392771989107132, -0.0536196306347847, 0.0007465841481462121, 0.03007889911532402, 0.009635395370423794, -0.07413322478532791, -0.020370593294501305, -0.09339108318090439, -0.06266079843044281, -0.0924263447523117, 0.0028464130591601133, 0.028490493074059486, -0.044617291539907455, 0.02396109700202942, -0.018001386895775795, -0.009029112756252289, 0.009913970716297626, 0.1276092678308487, -0.11307551711797714, 0.145237997174263, 0.11046234518289566, 0.12908238172531128, -0.12367425113916397, -0.03345627710223198, -0.08252353966236115, -0.03409406170248985, 0.0826505571603775, -0.08313270658254623, -0.008298195898532867, 0.13862231373786926, -0.008264528587460518, 0.07982931286096573, 0.0839274600148201, -0.004068491980433464, 0.045473597943782806, 0.08198153972625732, -0.2319772094488144, -0.09233172237873077, -0.035605814307928085, -0.02690831571817398, 0.07979476451873779, 0.12412068247795105, 0.25754082202911377, 0.01611809991300106, -0.045176777988672256, 0.012171907350420952, 0.0656544417142868, -0.027220582589507103, 0.08352231234312057, -0.03474564105272293, 0.020898012444376945, -0.13300716876983643, 0.08167348802089691, 0.0493973009288311, -0.0809035524725914, 0.049643274396657944, 0.15636011958122253, -0.0912690982222557, -0.10524559766054153, -0.10030915588140488, 0.02629479207098484, -0.10317938774824142, 0.0004416732699610293, -0.02862958237528801, -0.14696770906448364, 0.06340236216783524, 0.14182202517986298, 0.03296438232064247, 0.039714496582746506, -0.14293518662452698, -0.0064039891585707664, -0.0180794857442379, 0.024409079924225807, 0.08565348386764526, -0.039107806980609894, -0.04686525836586952, 0.06732772290706635, -0.03678727522492409, 0.1272479146718979, -0.09270549565553665, -0.15438583493232727, -0.12452174723148346, 0.05268438905477524, -0.12813253700733185, -0.06398501992225647, -0.10554288327693939, -0.03578323870897293, -0.014310142025351524, -0.04921392351388931, -0.041177354753017426, -0.041854020208120346, -0.09498182684183121, 0.02664557285606861, -0.052901361137628555, 0.02807917259633541, -0.07928083837032318, 0.0028577842749655247, 0.07554290443658829, -0.025400176644325256, 0.1676025390625, 0.16573333740234375, -0.14119786024093628, 0.10756904631853104, -0.10785123705863953, -0.04066963121294975, 0.10241146385669708, 0.02219577319920063, 0.04004281759262085, 0.04418942332267761, 0.009021230041980743, 0.023604873567819595, 0.031476184725761414, 0.05300808325409889, 0.06270597130060196, -0.10635235160589218, -0.0225425586104393, -0.02927268296480179, -0.1489422470331192, -0.03729325905442238, -0.03620532155036926, -0.006876700557768345, 0.039075057953596115, 0.028539951890707016, -0.03577345982193947, 0.07584130018949509, -0.07460013777017593, 0.04018483683466911, 0.024558398872613907, -0.18312151730060577, 0.0008955635712482035, -0.06184305623173714, 0.05182606726884842, 0.01032202783972025, 0.17887748777866364, 0.0016571037704125047, -0.014212841168045998, 0.0015303997788578272, 0.08949276804924011, 0.029028140008449554, -0.0031951467972248793, 0.12062075734138489, 0.07706853747367859, -0.061581846326589584, -0.09649334102869034, 0.09306371957063675, 0.047130074352025986, -0.025220878422260284, 0.0674135833978653, -0.044122159481048584, 0.04203465208411217, 0.07339389622211456, -0.0494920052587986, 0.029500454664230347, -0.13390056788921356, -0.11595336347818375, 0.021924873813986778, 0.060044288635253906, -0.07370426505804062, 0.13071654736995697, 0.18552419543266296, 0.016520092263817787, 0.019255051389336586, -0.011087724007666111, -0.04860265552997589, -0.11798442155122757, -0.22415310144424438, -0.053884249180555344, -0.13309834897518158, 0.0019044671207666397, -0.1389738768339157, 0.00899586733430624, 0.01632644049823284, 0.10271605104207993, -0.06945207715034485, 0.059178728610277176, 0.10736023634672165, -0.12000951915979385, 0.06994777172803879, -0.05133843421936035, 0.1102123111486435, -0.00020970332843717188, -0.011006810702383518, -0.06624165177345276, 0.06222444772720337, 0.03110015206038952, 0.04934979975223541, -0.018479622900485992, 0.03974052146077156, -0.1275940090417862, -0.08248455077409744, -0.04341398924589157, 0.06205982714891434, -0.0020947852171957493, 0.1537812054157257, 0.01997319795191288, -0.05088172107934952, 0.01741802506148815, 0.22798430919647217, -0.06095077842473984, -0.09404516965150833, -0.037550292909145355, 0.24376532435417175, 0.03933113068342209, 0.07840923219919205, -0.007253365591168404, 0.005974192637950182, -0.13023455440998077, 0.27848386764526367, 0.3012647330760956, -0.13032026588916779, -0.009670091792941093, 0.014708367176353931, 0.038996241986751556, 0.13154368102550507, 0.04427937790751457, 0.13337883353233337, 0.3768857717514038, -0.05945013836026192, 0.014019637368619442, -0.012247311882674694, -0.016219306737184525, -0.057887330651283264, 0.0038175941444933414, 0.05427518114447594, -0.024932684376835823, -0.04695068299770355, 0.08267506211996078, -0.28418096899986267, 0.07648047059774399, -0.16737468540668488, -0.16859863698482513, -0.0990125760436058, -0.0062715234234929085, 0.07555416971445084, 0.029893115162849426, 0.08143114298582077, 0.014954779297113419, -0.10283960402011871, 0.0678190290927887, 0.010308369062840939, -0.16522042453289032, 0.019483711570501328, 0.07465485483407974, -0.06201077625155449, -0.031247606500983238, -0.04404463618993759, 0.0770372524857521, 0.08217412233352661, 0.05932769924402237, -0.0013119668001309037, 0.026965651661157608, -0.016715001314878464, -0.06334984302520752, 0.019583728164434433, 0.0614105649292469, 0.02886313386261463, -0.05073408782482147, 0.12021895498037338, -0.05161922052502632, 0.028373433277010918, -0.010531889274716377, -0.02593674138188362, -0.01020712498575449, 0.06951162219047546, -0.08218005299568176, 0.029198896139860153, 0.08856258541345596, -0.029062319546937943, -0.02254311554133892, -0.0468757264316082, -0.05572770535945892, -0.04270976781845093, -0.06541071087121964, -0.08891409635543823, -0.14474771916866302, -0.11766381561756134, 0.10511843115091324, 0.028738275170326233, -0.18788452446460724, -0.03398032486438751, -0.07810499519109726, 0.07117491960525513, -0.09276355057954788, 0.08469760417938232, 0.07638561725616455, 0.016199812293052673, -0.025627262890338898, -0.0038012985605746508, 0.010414130054414272, 0.08141913264989853, -0.16467627882957458, -0.09566494077444077 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 33199029 - CO2 Emissions (in grams): 3.667033499762825 ## Validation Metrics - Loss: 0.32653310894966125 - Accuracy: 0.9133333333333333 - Precision: 0.9005847953216374 - Recall: 0.9447852760736196 - AUC: 0.9532488468944517 - F1: 0.9221556886227544 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bozelosp/autonlp-sci-relevance-33199029 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bozelosp/autonlp-data-sci-relevance"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 3.667033499762825}
text-classification
world-wide/sent-sci-irrelevance
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bozelosp/autonlp-data-sci-relevance", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-bozelosp/autonlp-data-sci-relevance #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 33199029 - CO2 Emissions (in grams): 3.667033499762825 ## Validation Metrics - Loss: 0.32653310894966125 - Accuracy: 0.9133333333333333 - Precision: 0.9005847953216374 - Recall: 0.9447852760736196 - AUC: 0.9532488468944517 - F1: 0.9221556886227544 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 33199029\n- CO2 Emissions (in grams): 3.667033499762825", "## Validation Metrics\n\n- Loss: 0.32653310894966125\n- Accuracy: 0.9133333333333333\n- Precision: 0.9005847953216374\n- Recall: 0.9447852760736196\n- AUC: 0.9532488468944517\n- F1: 0.9221556886227544", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bozelosp/autonlp-data-sci-relevance #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 33199029\n- CO2 Emissions (in grams): 3.667033499762825", "## Validation Metrics\n\n- Loss: 0.32653310894966125\n- Accuracy: 0.9133333333333333\n- Precision: 0.9005847953216374\n- Recall: 0.9447852760736196\n- AUC: 0.9532488468944517\n- F1: 0.9221556886227544", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 70, 42, 78, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bozelosp/autonlp-data-sci-relevance #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 33199029\n- CO2 Emissions (in grams): 3.667033499762825## Validation Metrics\n\n- Loss: 0.32653310894966125\n- Accuracy: 0.9133333333333333\n- Precision: 0.9005847953216374\n- Recall: 0.9447852760736196\n- AUC: 0.9532488468944517\n- F1: 0.9221556886227544## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.15625762939453125, 0.15650425851345062, -0.0010397292207926512, 0.0637698620557785, 0.11966010183095932, 0.02177584171295166, 0.06832657754421234, 0.09205380827188492, 0.030979614704847336, 0.06454794108867645, 0.15464065968990326, 0.19884465634822845, 0.03235034644603729, 0.15718717873096466, -0.13032403588294983, -0.1494659185409546, 0.06700994819402695, 0.06581932306289673, 0.10972430557012558, 0.12493498623371124, 0.09267222136259079, -0.09706196933984756, 0.1279207468032837, 0.04516701027750969, -0.1689375787973404, -0.011062158271670341, 0.0861489474773407, -0.1266709268093109, 0.10476385802030563, 0.09550493955612183, 0.16093434393405914, 0.025578845292329788, 0.10219471156597137, -0.09531611949205399, -0.028165536001324654, -0.0015471335500478745, -0.015809746459126472, 0.10277103632688522, 0.04804512858390808, -0.045135702937841415, -0.01705808751285076, 0.0018222114304080606, 0.08877381682395935, 0.04193457216024399, -0.09542261809110641, -0.054577723145484924, -0.05938473716378212, 0.036433685570955276, 0.12646740674972534, 0.10356123000383377, -0.001089817495085299, 0.27701565623283386, -0.08882225304841995, 0.09410042315721512, 0.050845883786678314, -0.2543811500072479, -0.019466714933514595, 0.10500402003526688, -0.02871549129486084, -0.09091639518737793, -0.024667182937264442, 0.02165193110704422, 0.09144411981105804, 0.01584128476679325, 0.060304418206214905, -0.05934387817978859, -0.06167413294315338, 0.007569725159555674, -0.10696588456630707, -0.07365898042917252, 0.22156985104084015, 0.022277742624282837, -0.09602291136980057, -0.01916961930692196, -0.09636832773685455, -0.12695561349391937, -0.06387881934642792, -0.04506655037403107, -0.022915130481123924, -0.043761689215898514, -0.052519913762807846, 0.08806434273719788, -0.10747059434652328, -0.06657136231660843, -0.17253413796424866, 0.13226547837257385, -0.0014942009001970291, 0.057356640696525574, -0.028400562703609467, 0.10527167469263077, -0.07467354834079742, -0.08311448246240616, -0.010682170279324055, -0.025965366512537003, -0.06925605982542038, -0.05033478885889053, -0.029388606548309326, 0.047466427087783813, -0.008475566282868385, 0.20902912318706512, 0.06717456877231598, 0.031971827149391174, 0.046891938894987106, -0.0010503133526071906, 0.003595976158976555, 0.21413898468017578, -0.09106224030256271, -0.03179824352264404, 0.064228355884552, -0.054702091962099075, 0.03036600351333618, -0.03793534263968468, -0.08447059988975525, -0.1123179942369461, 0.15285493433475494, 0.03316453844308853, 0.01704328879714012, 0.057275570929050446, -0.08959802240133286, -0.03160857781767845, 0.08317921310663223, -0.06063259392976761, 0.026691151782870293, -0.02635711431503296, -0.07456008344888687, 0.06215827167034149, 0.10635404288768768, 0.023521821945905685, -0.074612095952034, 0.08398059010505676, -0.1220608800649643, 0.010598075576126575, -0.04279697686433792, -0.11767597496509552, 0.04306051880121231, -0.07638777047395706, 0.033844392746686935, -0.20258751511573792, -0.17576934397220612, -0.00734681636095047, -0.005544432904571295, -0.049307774752378464, -0.032511766999959946, -0.017930958420038223, -0.026454569771885872, 0.04229982942342758, -0.026530707255005836, -0.03486288711428642, -0.0414469949901104, 0.044255342334508896, 0.06420502066612244, 0.043561533093452454, -0.13488547503948212, 0.03257957473397255, -0.10109934210777283, 0.0041220164857804775, -0.1052008718252182, 0.0326165109872818, -0.02842334657907486, 0.023987984284758568, -0.14081473648548126, -0.06717736274003983, 0.10408774763345718, -0.014825514517724514, 0.08200503140687943, 0.14631305634975433, -0.06555669754743576, -0.014435596764087677, 0.05757240206003189, -0.060621120035648346, -0.11095044016838074, 0.10107190907001495, -0.040895093232393265, 0.013147511519491673, 0.06711584329605103, -0.011231375858187675, 0.12785105407238007, -0.10218456387519836, -0.05024129897356033, 0.0322304405272007, -0.037902381271123886, -0.11944673955440521, 0.055841341614723206, 0.023137860000133514, -0.17637021839618683, 0.04120917618274689, 0.052200984209775925, 0.03816400095820427, -0.061987072229385376, -0.0916355773806572, -0.05761611834168434, -0.02935502864420414, 0.03793663531541824, -0.011167463846504688, 0.06386449187994003, -0.03337983787059784, -0.07255972921848297, 0.010639830492436886, 0.12846732139587402, -0.014048892073333263, -0.021777641028165817, -0.15430240333080292, 0.11443380266427994, -0.18856871128082275, -0.052142031490802765, -0.1979668140411377, -0.022169923409819603, -0.015196967869997025, 0.03832679241895676, -0.022847043350338936, -0.03568517044186592, 0.044215716421604156, 0.03119550831615925, 0.022104529663920403, -0.02681758999824524, 0.10429675877094269, 0.0070860073901712894, -0.1365872472524643, -0.04825979843735695, -0.026863442733883858, -0.00902074109762907, 0.21830891072750092, -0.11131338775157928, -0.011858130805194378, -0.010736932046711445, 0.08321432769298553, -0.018308453261852264, 0.01964755170047283, -0.019014371559023857, 0.05391134321689606, -0.06274113804101944, -0.0032197197433561087, 0.028922609984874725, -0.02668234333395958, -0.10301826894283295, 0.021505728363990784, -0.1849856972694397, 0.21564653515815735, 0.1640915870666504, -0.07029750943183899, -0.07969430088996887, 0.014155350625514984, 0.029623927548527718, -0.0113827558234334, -0.030907487496733665, -0.0024211748968809843, 0.09133978933095932, 0.012839016504585743, 0.12734557688236237, -0.07199250161647797, -0.019086429849267006, 0.06810475140810013, -0.08679293841123581, -0.02635100670158863, 0.1380312442779541, 0.07004918158054352, -0.20071080327033997, 0.10161227732896805, 0.046855032444000244, -0.11357776820659637, 0.006529622711241245, 0.028179358690977097, -0.05106177181005478, -0.03875969350337982, -0.0644739642739296, 0.023089183494448662, 0.08368508517742157, -0.0338708870112896, 0.04043450206518173, 0.09279680997133255, -0.021477311849594116, 0.0022677977103739977, -0.1321900337934494, 0.011785242706537247, 0.02579346112906933, 0.0165417343378067, -0.07154835015535355, 0.013408779166638851, 0.04325563460588455, 0.13192182779312134, 0.022246429696679115, -0.125250905752182, 0.046633463352918625, 0.035539690405130386, -0.13865835964679718, 0.2458537518978119, -0.0960310623049736, -0.22001320123672485, -0.18141093850135803, -0.11600665748119354, -0.04958471283316612, 0.009872878901660442, 0.021829864010214806, -0.02899204008281231, -0.11979955434799194, -0.0326724611222744, -0.06974266469478607, -0.016046058386564255, 0.016655834391713142, -0.03198515623807907, -0.04217086359858513, 0.04838841035962105, -0.08568825572729111, -0.05234524607658386, -0.024611227214336395, -0.021416086703538895, 0.1370030641555786, -0.0592191144824028, 0.12230207771062851, 0.17027565836906433, -0.053607236593961716, 0.00495241628959775, 0.025342373177409172, 0.21949566900730133, -0.018950214609503746, -0.009325358085334301, 0.1746189445257187, 0.008485367521643639, 0.03138774260878563, 0.12127506732940674, 0.016535663977265358, -0.07318014651536942, -0.011620568111538887, -0.01814322918653488, -0.04356495290994644, -0.18555355072021484, -0.17510610818862915, -0.0032829823903739452, 0.006432428956031799, 0.12935307621955872, 0.004342739470303059, 0.11087673902511597, 0.16196194291114807, 0.00859582144767046, 0.07708568871021271, -0.08079706877470016, 0.11028441786766052, 0.1820855438709259, 0.02260172925889492, 0.16628575325012207, -0.0587148442864418, -0.07246141135692596, 0.06824194639921188, -0.02469155564904213, 0.07399528473615646, 0.0439794659614563, -0.03168554604053497, -0.026299649849534035, 0.1320946216583252, 0.06873785704374313, 0.15861810743808746, 0.07860831916332245, -0.03550197184085846, 0.007833708077669144, -0.038987286388874054, -0.1341591626405716, 0.03867697715759277, 0.04892444238066673, 0.024980485439300537, -0.11558323353528976, -0.02600504644215107, 0.00006770835898350924, 0.07011531293392181, 0.16316477954387665, -0.49551692605018616, -0.09676388651132584, 0.015202888287603855, -0.028461167588829994, -0.13717330992221832, -0.013948041945695877, -0.09244208037853241, -0.16142107546329498, 0.02801693044602871, -0.033748410642147064, 0.10964406281709671, -0.05026929825544357, -0.0001805491920094937, -0.10098517686128616, 0.018585212528705597, -0.02437303401529789, 0.08501541614532471, -0.23438483476638794, 0.2347581833600998, 0.05666884034872055, 0.024812690913677216, -0.09078345447778702, 0.011410295963287354, 0.005334964022040367, 0.09283813834190369, 0.11958428472280502, 0.003279173281043768, 0.042252689599990845, -0.2891899347305298, -0.15173129737377167, 0.047879576683044434, -0.029533585533499718, 0.0054779513739049435, 0.09020527452230453, 0.0028202186804264784, -0.02509790100157261, 0.00972234271466732, -0.04824850708246231, -0.07379026710987091, -0.05091099068522453, 0.04231095686554909, 0.11076555401086807, -0.022148549556732178, 0.0035989994648844004, -0.06871499121189117, -0.011833438649773598, 0.14797343313694, -0.04093077778816223, -0.07695312052965164, -0.1400877833366394, 0.019431432709097862, 0.12340465188026428, -0.11108206957578659, 0.06376125663518906, -0.04961363971233368, 0.05084342136979103, 0.007721226196736097, -0.12168379873037338, 0.11316266655921936, -0.0901700109243393, -0.04896281659603119, 0.0027510549407452345, 0.08261365443468094, 0.009468578733503819, 0.03591348975896835, 0.07035773247480392, 0.024796035140752792, -0.08079580962657928, -0.11527255922555923, 0.00176225695759058, 0.0621812529861927, 0.13780726492404938, 0.0838141068816185, 0.029620621353387833, -0.1430005133152008, -0.05651165172457695, 0.07787489891052246, 0.15880019962787628, 0.18160568177700043, -0.07921325415372849, -0.01059208158403635, 0.12542447447776794, 0.0012115968856960535, -0.2123166173696518, -0.017230944707989693, -0.01591193489730358, 0.06154796481132507, -0.11884630471467972, -0.04198838770389557, 0.11004670709371567, 0.08713891357183456, -0.04486703500151634, -0.023113131523132324, -0.19073635339736938, -0.12085197865962982, 0.2927778959274292, 0.05845791473984718, 0.18695741891860962, -0.06356417387723923, -0.02351238951086998, -0.11766308546066284, -0.27155160903930664, 0.1492091417312622, 0.02215447649359703, 0.076823391020298, -0.051406171172857285, 0.13590730726718903, 0.0559968426823616, -0.06493531167507172, 0.1560700237751007, 0.000051587681809905916, 0.02985682524740696, -0.031210456043481827, -0.07304833084344864, -0.04207862541079521, -0.06565205752849579, 0.15107452869415283, 0.034302640706300735, 0.07454074919223785, -0.19134573638439178, -0.04335296154022217, -0.03010355308651924, 0.10336575657129288, -0.015522320754826069, -0.06382090598344803, -0.022248869761824608, -0.019765479490160942, -0.013837610371410847, -0.06518322974443436, 0.01567930355668068, -0.0019388850778341293, 0.04033294692635536, 0.15788494050502777, 0.13318197429180145, -0.06466535478830338, -0.029996097087860107, 0.029436131939291954, -0.08589811623096466, 0.10709064453840256, -0.13018782436847687, 0.0809033140540123, 0.12231355160474777, -0.009960800409317017, 0.0972820520401001, 0.046424828469753265, -0.05016138777136803, -0.029636213555932045, 0.054681118577718735, -0.15800774097442627, 0.095915287733078, -0.0032564192079007626, 0.024409165605902672, -0.041694026440382004, 0.06613592058420181, 0.14726266264915466, -0.05854854732751846, -0.040146276354789734, 0.011147466488182545, -0.0043139285407960415, -0.0228599701076746, 0.22567982971668243, 0.034324031323194504, 0.07200323045253754, -0.13101987540721893, 0.038999781012535095, 0.034122318029403687, -0.043870385736227036, 0.027808165177702904, -0.040697526186704636, -0.1268782913684845, -0.08397209644317627, -0.030138259753584862, 0.12023735046386719, -0.2733217775821686, -0.07317081838846207, -0.03509977459907532, -0.09034286439418793, 0.059807490557432175, 0.21978749334812164, 0.11102034151554108, 0.05010131001472473, -0.0401831790804863, -0.09825977683067322, -0.12721867859363556, 0.0035216554533690214, 0.11783697456121445, 0.055589187890291214, -0.13823403418064117, 0.14389994740486145, -0.03176780045032501, 0.0681210458278656, -0.04710392653942108, -0.009080763906240463, -0.1575930416584015, 0.01629243604838848, -0.1569179892539978, 0.03265709802508354, -0.07925929874181747, 0.019974157214164734, 0.011603730730712414, -0.03227163478732109, -0.06970027834177017, 0.016985546797513962, -0.07283243536949158, -0.012900729663670063, 0.03078271821141243, 0.020714212208986282, -0.07371488958597183, -0.050480108708143234, 0.06689957529306412, -0.02920530177652836, 0.06180242821574211, 0.1564989537000656, 0.03916258364915848, 0.05826329439878464, -0.0928996354341507, -0.016364404931664467, 0.12297780811786652, 0.0357414111495018, 0.10433554649353027, -0.1440240442752838, 0.0670151337981224, 0.06336446106433868, 0.02046922594308853, 0.05092476308345795, 0.1259923279285431, -0.1139368861913681, -0.008108977228403091, -0.06780257821083069, -0.08047091960906982, -0.12744228541851044, 0.013683810830116272, 0.12124049663543701, 0.05665479600429535, 0.09350461512804031, -0.05013526603579521, 0.035312116146087646, -0.12529690563678741, 0.009608017280697823, -0.07791309058666229, -0.07268257439136505, -0.059308674186468124, -0.05641238018870354, 0.061760153621435165, -0.011850888840854168, 0.10258740186691284, -0.03744325414299965, 0.08733870834112167, -0.002142687328159809, 0.08349093794822693, 0.04370039328932762, -0.013231567107141018, 0.15619535744190216, 0.1063583716750145, -0.017574531957507133, 0.0437898151576519, 0.11281793564558029, 0.08234226703643799, -0.02008981816470623, 0.019191231578588486, 0.009473910555243492, -0.03560711443424225, 0.15132471919059753, 0.006580517161637545, -0.0713030993938446, -0.041976794600486755, -0.09005294740200043, -0.12798947095870972, 0.03721370920538902, 0.023013895377516747, 0.06307493150234222, 0.09779616445302963, -0.06712163239717484, -0.02735796757042408, -0.033641621470451355, -0.07552387565374374, -0.19382058084011078, -0.06211567670106888, -0.13565771281719208, -0.05410141870379448, -0.013140475377440453, -0.08824122697114944, -0.04778934270143509, 0.0963364914059639, 0.029478557407855988, -0.034606438130140305, 0.07009148597717285, -0.10133317857980728, -0.01740172877907753, -0.009211636148393154, 0.012877696193754673, 0.005792110227048397, -0.02317121811211109, -0.011041662655770779, -0.0034145466051995754, 0.02901732549071312, 0.05913528800010681, -0.0019292902434244752, 0.0382450707256794, 0.10443466901779175, -0.0034105961676687002, -0.09734810143709183, -0.042434316128492355, 0.042275894433259964, 0.06551799178123474, 0.06900110840797424, 0.02338949777185917, 0.038332805037498474, -0.015826981514692307, 0.2158644199371338, -0.10115575045347214, 0.010657229460775852, -0.1381593942642212, 0.32578036189079285, -0.0076760840602219105, 0.05091337114572525, 0.034550607204437256, -0.046887703239917755, 0.011839279904961586, 0.180965393781662, 0.11107345670461655, -0.017275068908929825, 0.005238865036517382, -0.01837794855237007, -0.01521399524062872, -0.018810050562024117, 0.034135378897190094, 0.06255064159631729, 0.190010666847229, -0.09939222037792206, 0.012474214658141136, -0.013734497129917145, -0.008146947249770164, -0.0196042712777853, 0.03204111382365227, -0.015190791338682175, -0.03259716182947159, -0.06255035102367401, 0.07670863717794418, -0.07796598225831985, 0.06643225997686386, 0.0737563893198967, -0.10342159122228622, -0.12975914776325226, 0.02941548451781273, -0.0684162825345993, -0.020577706396579742, 0.11430004239082336, -0.09499584883451462, -0.02276250533759594, 0.04643240198493004, 0.014284806326031685, -0.17744047939777374, -0.06328969448804855, 0.042438067495822906, 0.18009400367736816, 0.17871910333633423, 0.029062140733003616, 0.17597071826457977, 0.1470515877008438, 0.04881785437464714, -0.11257424205541611, 0.10061828792095184, 0.015147094614803791, -0.09966907650232315, 0.12962402403354645, 0.013284318149089813, -0.003829485969617963, 0.056408144533634186, 0.039141904562711716, -0.18283335864543915, -0.001990930875763297, -0.08258926123380661, 0.04878490790724754, -0.08041790127754211, -0.009412659332156181, -0.08102838695049286, 0.11214946955442429, 0.10837185382843018, -0.06323902308940887, -0.03789249435067177, -0.03596414253115654, 0.08006645739078522, 0.031155714765191078, -0.1125481054186821, -0.019208187237381935, -0.11507323384284973, 0.06831950694322586, -0.04512351378798485, 0.011519606225192547, -0.2186739444732666, -0.021675080060958862, -0.030375724658370018, -0.06936678290367126, -0.04215630516409874, 0.08074510842561722, 0.0042944857850670815, 0.036461472511291504, -0.046229876577854156, -0.06967760622501373, -0.0020018143113702536, 0.11376786231994629, -0.08241501450538635, -0.15073329210281372 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6434 - Precision: 0.8589 - Recall: 0.8686 - F1: 0.8637 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.615 | 1.0 | 1741 | 0.6111 | 0.8200 | 0.8652 | 0.8420 | 0.8046 | | 0.4795 | 2.0 | 3482 | 0.5366 | 0.8456 | 0.8803 | 0.8626 | 0.8301 | | 0.3705 | 3.0 | 5223 | 0.5412 | 0.8527 | 0.8786 | 0.8655 | 0.8339 | | 0.2749 | 4.0 | 6964 | 0.5906 | 0.8559 | 0.8711 | 0.8634 | 0.8316 | | 0.2049 | 5.0 | 8705 | 0.6434 | 0.8589 | 0.8686 | 0.8637 | 0.8324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": []}]}
token-classification
brad1141/bert-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #longformer #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bert-finetuned-ner ================== This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6434 * Precision: 0.8589 * Recall: 0.8686 * F1: 0.8637 * Accuracy: 0.8324 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.17.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.4 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.4\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #longformer #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.4\n* Tokenizers 0.11.6" ]
[ 49, 144, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #longformer #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.4\n* Tokenizers 0.11.6" ]
[ -0.11685390025377274, 0.1104368343949318, -0.0022971536964178085, 0.1229650229215622, 0.16037093102931976, 0.023266511037945747, 0.12552408874034882, 0.14697562158107758, -0.09987867623567581, 0.07714617997407913, 0.1278911530971527, 0.13333363831043243, 0.02327711507678032, 0.14669294655323029, -0.04665848985314369, -0.28741219639778137, -0.003035656176507473, 0.02455892786383629, -0.0930812656879425, 0.11890413612127304, 0.0756031796336174, -0.14470940828323364, 0.08442700654268265, 0.003148707328364253, -0.19583627581596375, -0.025160331279039383, -0.0021953945979475975, -0.056732725352048874, 0.12313497811555862, 0.009549986571073532, 0.1160089373588562, 0.022945040836930275, 0.08813945204019547, -0.16228725016117096, 0.0022816306445747614, 0.05283728986978531, 0.0188521146774292, 0.10111529380083084, 0.05914151296019554, -0.011791383847594261, 0.059079062193632126, -0.10917622596025467, 0.06380809843540192, 0.009537125006318092, -0.131207674741745, -0.2541915774345398, -0.09655436873435974, 0.023639481514692307, 0.06809943169355392, 0.07190345227718353, -0.0074425553902983665, 0.13595692813396454, -0.07999183237552643, 0.0914255827665329, 0.28100258111953735, -0.28434523940086365, -0.06910032778978348, 0.039542198181152344, 0.007635194808244705, 0.05587765574455261, -0.1275932639837265, -0.023578282445669174, 0.044244568794965744, 0.031261008232831955, 0.1417277455329895, -0.011815140955150127, -0.04749680310487747, 0.01548225712031126, -0.1422957479953766, -0.020488565787672997, 0.08818771690130234, 0.03359917551279068, -0.02690718322992325, -0.06039419025182724, -0.0624222457408905, -0.24037934839725494, -0.043718576431274414, -0.0018835040973499417, 0.046081189066171646, -0.06821385025978088, -0.09758210927248001, 0.03218100592494011, -0.07523810118436813, -0.0597064383327961, -0.03154512494802475, 0.1438627690076828, 0.04334323853254318, 0.006578699219971895, -0.020609714090824127, 0.10148070752620697, -0.01586819253861904, -0.16531240940093994, 0.014126865193247795, 0.03217487037181854, -0.047586485743522644, -0.05524837225675583, -0.04831919074058533, -0.04224634915590286, 0.0021005445159971714, 0.1386704444885254, -0.0543023906648159, 0.062448352575302124, 0.02334008738398552, 0.01954766921699047, -0.07841487228870392, 0.19244922697544098, -0.0696304515004158, -0.03994528949260712, -0.01303449459373951, 0.07920695096254349, 0.009890444576740265, -0.024647315964102745, -0.09785756468772888, 0.01958312839269638, 0.11813941597938538, 0.023972027003765106, -0.049966875463724136, 0.05449247732758522, -0.042394332587718964, -0.030943643301725388, 0.03476623073220253, -0.10179386287927628, 0.05578545480966568, 0.003609304316341877, -0.10619950294494629, -0.020301422104239464, -0.01041656918823719, -0.004419225268065929, -0.005156232975423336, 0.15734463930130005, -0.10894574970006943, 0.03295621648430824, -0.08727938681840897, -0.12933121621608734, 0.019545046612620354, -0.10773198306560516, 0.014535469003021717, -0.0620218962430954, -0.12529854476451874, -0.023367352783679962, 0.04585355147719383, -0.07180672138929367, -0.0337311327457428, -0.05580863729119301, -0.08595525473356247, 0.039334557950496674, -0.010191954672336578, 0.12275856733322144, -0.07021233439445496, 0.0985456109046936, 0.04209912195801735, 0.09247083216905594, 0.0005384027026593685, 0.05085507035255432, -0.08378802984952927, 0.029421094805002213, -0.23618286848068237, 0.04636650159955025, -0.06818973273038864, 0.06827805191278458, -0.1024780198931694, -0.11406553536653519, 0.04425057768821716, -0.02337237447500229, 0.09120824187994003, 0.10226122289896011, -0.17653609812259674, -0.07802696526050568, 0.17381460964679718, -0.07034143805503845, -0.10913790762424469, 0.1251661479473114, -0.04815918952226639, 0.0042050909250974655, 0.04841908812522888, 0.1649884283542633, 0.08198542892932892, -0.0845983624458313, -0.03133604675531387, -0.04996245354413986, 0.08002576977014542, -0.04395872727036476, 0.06628578901290894, 0.013721035793423653, 0.07642435282468796, 0.009505926631391048, -0.005800759885460138, 0.0434691496193409, -0.11088886111974716, -0.08448003977537155, -0.02698235958814621, -0.08485449105501175, 0.06824597716331482, 0.06607260555028915, 0.0829695612192154, -0.1001189798116684, -0.0917503833770752, 0.06716365367174149, 0.081114262342453, -0.06549303233623505, 0.02571260929107666, -0.06473083049058914, 0.0890515074133873, -0.07626495510339737, -0.02710714563727379, -0.19229310750961304, -0.06693674623966217, 0.025757906958460808, -0.0011084784055128694, 0.010889706201851368, -0.01329004392027855, 0.0881114974617958, 0.07857566326856613, -0.056249335408210754, -0.023242995142936707, -0.018580453470349312, -0.006045692600309849, -0.13459797203540802, -0.22270041704177856, -0.057233426719903946, -0.027622878551483154, 0.1049494668841362, -0.20123246312141418, 0.020860282704234123, 0.0340028777718544, 0.10550655424594879, 0.038493040949106216, -0.025810278952121735, -0.02045522816479206, 0.07671363651752472, -0.03323766961693764, -0.06813671439886093, 0.051605433225631714, -0.014412982389330864, -0.074762262403965, -0.05136709660291672, -0.13288311660289764, 0.15636993944644928, 0.12644514441490173, -0.028203384950757027, -0.1025189459323883, -0.01706552691757679, -0.05691103637218475, -0.04268069565296173, -0.045082058757543564, 0.04091895371675491, 0.1399679183959961, 0.019294189289212227, 0.1465049684047699, -0.06626036763191223, -0.051128942519426346, 0.045388396829366684, -0.015668045729398727, 0.015934821218252182, 0.12013306468725204, 0.08393359929323196, -0.0870659276843071, 0.14528334140777588, 0.11805317550897598, -0.07498352229595184, 0.13903704285621643, -0.042695656418800354, -0.09046132117509842, -0.040631331503391266, -0.02312062680721283, 0.02615540102124214, 0.11894576251506805, -0.10213818401098251, -0.025269605219364166, 0.022696880623698235, 0.03721661493182182, -0.0001487788395024836, -0.19330300390720367, -0.021610399708151817, 0.036262672394514084, -0.037719130516052246, -0.00441049225628376, -0.028409361839294434, 0.01911361888051033, 0.11258728057146072, 0.021300876513123512, -0.07738538086414337, 0.012448742054402828, 0.0038933255709707737, -0.05322539433836937, 0.20229770243167877, -0.07603248953819275, -0.11902854591608047, -0.10590559244155884, -0.09556740522384644, -0.05718725174665451, -0.0008508993778377771, 0.04653269797563553, -0.10749442875385284, -0.0240947213023901, -0.0606745108962059, 0.025487396866083145, 0.012169627472758293, 0.06210756674408913, 0.0031934166327118874, -0.0051305354572832584, 0.05350712686777115, -0.10008091479539871, -0.002178957685828209, -0.052146170288324356, -0.027657393366098404, 0.050238244235515594, 0.063178151845932, 0.10211953520774841, 0.15296535193920135, -0.015997759997844696, 0.028012653812766075, -0.030572576448321342, 0.21441268920898438, -0.07976911216974258, -0.01662059873342514, 0.08924929797649384, -0.01825229451060295, 0.06650899350643158, 0.13265086710453033, 0.07388681918382645, -0.09670280665159225, 0.006611022632569075, 0.04445343837141991, -0.03970674052834511, -0.19235017895698547, -0.029495161026716232, -0.04392477869987488, 0.01828726753592491, 0.1234361082315445, 0.018833013251423836, 0.01747298613190651, 0.05814094468951225, 0.04301447793841362, 0.055446114391088486, -0.05592475086450577, 0.06904582679271698, 0.07099278271198273, 0.05927732214331627, 0.12908704578876495, -0.03226690739393234, -0.06191873177886009, 0.033101655542850494, -0.014247296378016472, 0.22873622179031372, -0.03232303261756897, 0.1738801896572113, 0.024940861389040947, 0.1743060201406479, 0.012735799886286259, 0.09155739098787308, -0.0068103778176009655, -0.04885132610797882, 0.0005894143250770867, -0.046677395701408386, -0.025961022824048996, 0.016474561765789986, -0.014190221205353737, 0.05333273857831955, -0.13172544538974762, 0.02675352804362774, 0.05386324226856232, 0.2863484025001526, 0.08150189369916916, -0.35124075412750244, -0.09179403632879257, -0.006651381962001324, -0.022599877789616585, -0.013585694134235382, -0.0026284067425876856, 0.12275093793869019, -0.08508047461509705, 0.04506596177816391, -0.08220399171113968, 0.07871711999177933, -0.07700912654399872, 0.023973898962140083, 0.08743347972631454, 0.0985272154211998, -0.017201479524374008, 0.04951580986380577, -0.25378361344337463, 0.2864161729812622, 0.023003041744232178, 0.05666625127196312, -0.0821986272931099, 0.005590895656496286, 0.02410198003053665, 0.010252890177071095, 0.05436623841524124, -0.018374500796198845, -0.07368026673793793, -0.21560989320278168, -0.11271709203720093, 0.001275321701541543, 0.11670666933059692, -0.043677378445863724, 0.12630896270275116, -0.015155627392232418, -0.023672375828027725, 0.05558401718735695, -0.05256589502096176, -0.0051282476633787155, -0.08133203536272049, 0.015275957062840462, 0.011898854747414589, -0.04004755988717079, -0.04957939311861992, -0.12639859318733215, -0.08488338440656662, 0.16985490918159485, 0.010109899565577507, -0.03293249011039734, -0.134600430727005, 0.10678630322217941, 0.11929435282945633, -0.09600137174129486, 0.04332031309604645, 0.016549432650208473, 0.0825340747833252, 0.036732740700244904, -0.05327001214027405, 0.13909542560577393, -0.052555255591869354, -0.1916748583316803, -0.05969487875699997, 0.10996825993061066, 0.035490863025188446, 0.06756645441055298, -0.03371315076947212, 0.0444055013358593, -0.005678171757608652, -0.0867549329996109, 0.04332292452454567, -0.037213899195194244, 0.07259302586317062, 0.021739458665251732, -0.02144930139183998, 0.04213184863328934, -0.05065305158495903, -0.01485846471041441, 0.17879529297351837, 0.2733917534351349, -0.1062849834561348, 0.02113531157374382, 0.037904612720012665, -0.04028071463108063, -0.1735517531633377, 0.05450504645705223, 0.07821379601955414, 0.004856183659285307, 0.026917915791273117, -0.17508602142333984, 0.11881206184625626, 0.10741092264652252, -0.007177873980253935, 0.10954997688531876, -0.30759814381599426, -0.12971645593643188, 0.0886145532131195, 0.12200373411178589, 0.0626298114657402, -0.1514144390821457, -0.03472986817359924, 0.00878357607871294, -0.12413803488016129, 0.10643204301595688, -0.06444834917783737, 0.12989948689937592, -0.028278646990656853, 0.0656622052192688, 0.020357562229037285, -0.06932920962572098, 0.11268310993909836, 0.02636902406811714, 0.09772464632987976, -0.05539444461464882, -0.03934084624052048, 0.05707301199436188, -0.0665736272931099, 0.021350087597966194, -0.052132535725831985, 0.01429534237831831, -0.09306123107671738, -0.016912799328565598, -0.0862785279750824, 0.008749639615416527, -0.036905352026224136, -0.055599600076675415, -0.04034309461712837, 0.043808069080114365, 0.049344662576913834, -0.024217141792178154, 0.1678793877363205, 0.02828509360551834, 0.1442204713821411, 0.1219736635684967, 0.061129216104745865, -0.0752081573009491, -0.07746078073978424, 0.006316626910120249, -0.0025524755474179983, 0.044998329132795334, -0.1387494057416916, 0.036846987903118134, 0.15966768562793732, 0.03399357944726944, 0.12334675341844559, 0.08075721561908722, -0.02637980692088604, 0.017271999269723892, 0.06813623011112213, -0.15006114542484283, -0.08571235090494156, 0.016706690192222595, -0.07176823914051056, -0.1429063230752945, 0.04744051396846771, 0.10697463154792786, -0.05613863468170166, -0.009586872532963753, 0.00036182248732075095, 0.0195937417447567, -0.03074522688984871, 0.2378915548324585, 0.04840075224637985, 0.07158277928829193, -0.11372166126966476, 0.06855716556310654, 0.06815754622220993, -0.10006263852119446, 0.021395904943346977, 0.10611056536436081, -0.08002206683158875, -0.018476027995347977, 0.06817614287137985, 0.14837469160556793, -0.05761835724115372, -0.00813490990549326, -0.1678057312965393, -0.10431777685880661, 0.08223364502191544, 0.1712951362133026, 0.08604313433170319, 0.019042236730456352, -0.036924805492162704, 0.018412107601761818, -0.14455965161323547, 0.10419599711894989, 0.05950551480054855, 0.09285464882850647, -0.15061526000499725, 0.16401396691799164, -0.015046617016196251, 0.04628485068678856, -0.017775310203433037, 0.025986913591623306, -0.12892265617847443, 0.0031700441613793373, -0.09881370514631271, -0.02628890983760357, -0.04742627963423729, -0.0024813043419271708, -0.013888995163142681, -0.053281139582395554, -0.05048234015703201, -0.0024068800266832113, -0.11550119519233704, -0.037733543664216995, 0.021592119708657265, 0.029453080147504807, -0.13034120202064514, -0.03145480155944824, 0.018128015100955963, -0.08029986917972565, 0.09125842899084091, 0.0432625375688076, 0.034070130437612534, 0.03145857900381088, -0.06776212155818939, -0.0023108776658773422, 0.051704712212085724, -0.021153250709176064, 0.1047038808465004, -0.114498570561409, -0.00641576386988163, -0.03870747238397598, 0.05598817020654678, 0.028122495859861374, 0.07567135244607925, -0.1388235241174698, 0.016095755621790886, -0.04095178097486496, -0.057641346007585526, -0.06518425792455673, 0.042081210762262344, 0.08370576798915863, 0.0008931304328143597, 0.16196390986442566, -0.07103294879198074, 0.055264126509428024, -0.21620947122573853, -0.016188044100999832, -0.01652383990585804, -0.11790089309215546, -0.061503831297159195, -0.03436970338225365, 0.0878443717956543, -0.06836311519145966, 0.10225629806518555, 0.00709443399682641, 0.043757691979408264, 0.0381476953625679, -0.036640800535678864, -0.017605949193239212, 0.04651851952075958, 0.14575213193893433, 0.038009531795978546, -0.052763327956199646, 0.08461746573448181, 0.07000283896923065, 0.09748588502407074, 0.14307621121406555, 0.23057803511619568, 0.11149199306964874, 0.020454086363315582, 0.08280311524868011, 0.034974656999111176, -0.09027320146560669, -0.1997087150812149, 0.07793926447629929, -0.06832960247993469, 0.12345129251480103, -0.01572217047214508, 0.16114933788776398, 0.07003538310527802, -0.16754867136478424, 0.04525730386376381, -0.05578632652759552, -0.10308211296796799, -0.10752956569194794, -0.02658454142510891, -0.09018830955028534, -0.1433696150779724, -0.0014483585255220532, -0.11705341935157776, 0.02972467988729477, 0.11441750824451447, 0.028155775740742683, 0.013471715152263641, 0.16907744109630585, 0.04051310196518898, 0.05109061300754547, 0.06168700009584427, 0.028802737593650818, -0.018779529258608818, -0.053804002702236176, -0.060452889651060104, -0.023273760452866554, -0.013478648848831654, 0.04065142944455147, -0.058065906167030334, -0.056633442640304565, 0.05013978108763695, -0.002231177408248186, -0.1225808784365654, 0.019544025883078575, 0.011819027364253998, 0.07230300456285477, 0.03056969679892063, 0.007384825497865677, 0.01394625473767519, -0.03824608400464058, 0.22984717786312103, -0.08958908915519714, -0.033377505838871, -0.11875645816326141, 0.24067892134189606, 0.03107283264398575, -0.016490664333105087, 0.02357189543545246, -0.08330612629652023, -0.010747628286480904, 0.18001727759838104, 0.18410764634609222, -0.07095882296562195, -0.0035748600494116545, 0.009760675020515919, -0.016638124361634254, -0.018745487555861473, 0.09698410332202911, 0.1174701526761055, 0.05088459327816963, -0.09256977587938309, -0.04947831854224205, -0.04626207426190376, -0.04358384758234024, -0.042880162596702576, 0.05591105669736862, 0.0432172566652298, 0.03910258039832115, -0.050047505646944046, 0.05078638717532158, -0.05629884824156761, -0.10851293057203293, 0.07694392651319504, -0.2503175735473633, -0.19703100621700287, -0.013288039714097977, 0.07284727692604065, 0.009341620840132236, 0.07344871759414673, -0.0007714264211244881, -0.02690843492746353, 0.059814997017383575, -0.0144476518034935, -0.06640730798244476, -0.10747106373310089, 0.0892874225974083, -0.10031343251466751, 0.20163045823574066, -0.04781235009431839, 0.024716956540942192, 0.1366533488035202, 0.04945402964949608, -0.10920862853527069, 0.014929820783436298, 0.06393200904130936, -0.10079633444547653, 0.016329476609826088, 0.14657172560691833, -0.04169675335288048, 0.08417756110429764, 0.04569156467914581, -0.14121118187904358, 0.0018760489765554667, -0.0756891593337059, -0.021516401320695877, -0.03624223917722702, -0.05485100299119949, -0.029698235914111137, 0.14092853665351868, 0.23926453292369843, -0.03994458168745041, 0.006426344625651836, -0.05997280403971672, 0.0029234776739031076, 0.05430585518479347, 0.049271054565906525, -0.0805923193693161, -0.26973190903663635, 0.029267551377415657, 0.07546886801719666, -0.004898872226476669, -0.22864262759685516, -0.0953429788351059, 0.043304141610860825, -0.06439782679080963, -0.09312216937541962, 0.09800391644239426, 0.05921388790011406, 0.06554768979549408, -0.06368079036474228, -0.058140769600868225, -0.07944784313440323, 0.1566217690706253, -0.1804206669330597, -0.0930945947766304 ]
null
null
null
This is a test model
{}
null
bradyll/bert_finetuning_test_20220210
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
This is a test model
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-ner This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 - Precision: 0.9563 - Recall: 0.9652 - F1: 0.9608 - Accuracy: 0.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1419 | 1.0 | 878 | 0.0628 | 0.9290 | 0.9288 | 0.9289 | 0.9835 | | 0.0379 | 2.0 | 1756 | 0.0466 | 0.9456 | 0.9567 | 0.9511 | 0.9878 | | 0.0176 | 3.0 | 2634 | 0.0473 | 0.9539 | 0.9575 | 0.9557 | 0.9890 | | 0.0098 | 4.0 | 3512 | 0.0468 | 0.9570 | 0.9635 | 0.9603 | 0.9896 | | 0.0043 | 5.0 | 4390 | 0.0501 | 0.9563 | 0.9652 | 0.9608 | 0.9899 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "deberta-base-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9563020492186769, "name": "Precision"}, {"type": "recall", "value": 0.9652436720816018, "name": "Recall"}, {"type": "f1", "value": 0.9607520564042303, "name": "F1"}, {"type": "accuracy", "value": 0.9899205302077261, "name": "Accuracy"}]}]}]}
token-classification
geckos/deberta-base-fine-tuned-ner
[ "transformers", "pytorch", "tensorboard", "deberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #deberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
deberta-base-finetuned-ner ========================== This model is a fine-tuned version of microsoft/deberta-base on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0501 * Precision: 0.9563 * Recall: 0.9652 * F1: 0.9608 * Accuracy: 0.9899 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #deberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #deberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.10576985776424408, 0.09251377731561661, -0.002313703764230013, 0.12035571783781052, 0.17572036385536194, 0.04090975224971771, 0.12844710052013397, 0.10590467602014542, -0.09937417507171631, 0.027518562972545624, 0.13234947621822357, 0.17888541519641876, 0.0061524054035544395, 0.10288866609334946, -0.048383962363004684, -0.2740142345428467, -0.01167710404843092, 0.0550568662583828, -0.08107689023017883, 0.11973235011100769, 0.10141434520483017, -0.14026708900928497, 0.095783531665802, 0.01346813328564167, -0.2144881933927536, 0.0167938694357872, 0.011588718742132187, -0.05222030729055405, 0.14573639631271362, 0.034221697598695755, 0.15206801891326904, 0.00030658190371468663, 0.0985461100935936, -0.16606909036636353, 0.009736324660480022, 0.052569400519132614, 0.002145515289157629, 0.08458123356103897, 0.04619261249899864, 0.011645462363958359, 0.14511768519878387, -0.08119358122348785, 0.07136267423629761, 0.011649085208773613, -0.12686830759048462, -0.2034590095281601, -0.07838571071624756, 0.028418157249689102, 0.07969549298286438, 0.10089628398418427, -0.0033097220584750175, 0.13090220093727112, -0.09574951231479645, 0.08673245459794998, 0.1830054670572281, -0.2726147770881653, -0.07091643661260605, 0.04836897924542427, 0.007211450487375259, 0.031428854912519455, -0.10126792639493942, -0.03266134485602379, 0.06010891869664192, 0.04384966567158699, 0.12008097022771835, -0.034504469484090805, -0.08391817659139633, 0.022287268191576004, -0.1407899409532547, -0.023007703945040703, 0.14751660823822021, 0.03776942193508148, -0.034068960696458817, -0.0480012521147728, -0.048565275967121124, -0.1509631723165512, -0.023396654054522514, -0.03525322675704956, 0.04409933090209961, -0.03558292239904404, -0.07514526695013046, 0.004064633045345545, -0.11068044602870941, -0.07286319136619568, -0.08306602388620377, 0.14460040628910065, 0.03636500984430313, 0.004797830246388912, -0.037129905074834824, 0.11340685188770294, 0.013917303644120693, -0.1201840415596962, 0.018396230414509773, 0.024736668914556503, -0.006289680954068899, -0.06586867570877075, -0.0517692007124424, -0.06943830102682114, 0.0037325823213905096, 0.1241094172000885, -0.03234892711043358, 0.030812943354249, 0.054974514991045, 0.03194550797343254, -0.0716853216290474, 0.18361896276474, -0.055974021553993225, -0.023729106411337852, 0.002393872942775488, 0.03894168511033058, 0.012111951597034931, -0.006422626785933971, -0.12453702837228775, -0.00747452350333333, 0.09523823857307434, 0.008333887904882431, -0.07323390990495682, 0.07077047228813171, -0.05512723699212074, -0.031334612518548965, 0.018383491784334183, -0.07985479384660721, 0.03297613933682442, -0.00468507269397378, -0.08185412734746933, -0.012181016616523266, 0.005816989112645388, 0.022093459963798523, 0.011432009749114513, 0.1299637109041214, -0.10734175890684128, 0.009167804382741451, -0.10167407244443893, -0.12258701026439667, 0.01458565890789032, -0.1128089502453804, 0.050788514316082, -0.10002702474594116, -0.17955148220062256, -0.01358987670391798, 0.0464336983859539, -0.02368977665901184, -0.0525449775159359, -0.0597420334815979, -0.07204066216945648, 0.007686664815992117, -0.0063501945696771145, 0.11659588664770126, -0.05766918510198593, 0.09317654371261597, 0.029763035476207733, 0.05220092087984085, -0.04992394894361496, 0.05250980332493782, -0.09797070175409317, 0.014497744850814342, -0.15424378216266632, 0.03223815932869911, -0.04196784645318985, 0.06555289775133133, -0.08367970585823059, -0.10186763107776642, 0.014864059165120125, 0.008850879967212677, 0.07105431705713272, 0.08650103956460953, -0.1849832385778427, -0.08155325055122375, 0.13423210382461548, -0.072153739631176, -0.10830218344926834, 0.11330680549144745, -0.07928957045078278, 0.05617528408765793, 0.06970107555389404, 0.14031217992305756, 0.0858219712972641, -0.08837127685546875, 0.0017606117762625217, -0.0023183964658528566, 0.03490244597196579, -0.055366840213537216, 0.060096461325883865, 0.004577591549605131, 0.026074877008795738, 0.019457176327705383, -0.02863280475139618, 0.052106648683547974, -0.09664442390203476, -0.09093577414751053, -0.02137315459549427, -0.09216829389333725, 0.043558280915021896, 0.07958633452653885, 0.07076157629489899, -0.0942881777882576, -0.08128592371940613, 0.09756815433502197, 0.09218087792396545, -0.05594273656606674, 0.008481108583509922, -0.06639140099287033, 0.06008927896618843, -0.05411691591143608, -0.038264647126197815, -0.16061444580554962, -0.05130784958600998, -0.0007334031397476792, 0.009715333580970764, 0.010610060766339302, 0.05813714489340782, 0.07120504230260849, 0.06893270462751389, -0.04603540152311325, -0.01121821440756321, -0.04415135830640793, 0.006810788530856371, -0.12720701098442078, -0.2085256576538086, -0.04110829159617424, -0.027890125289559364, 0.14037346839904785, -0.2248314470052719, 0.03659527748823166, -0.005627315491437912, 0.08641179651021957, 0.022573597729206085, -0.013282821513712406, -0.048940449953079224, 0.0796971246600151, -0.04973210021853447, -0.05441910773515701, 0.05736725032329559, 0.0016966164112091064, -0.0886814072728157, -0.06981994956731796, -0.11079028993844986, 0.16780120134353638, 0.12723016738891602, -0.11251785606145859, -0.09480377286672592, -0.015180664137005806, -0.05689019709825516, -0.033808473497629166, -0.042465098202228546, 0.02085558883845806, 0.18324118852615356, -0.01948859915137291, 0.13983336091041565, -0.061233557760715485, -0.04669613763689995, 0.02426602877676487, -0.022900978103280067, 0.004859229549765587, 0.11646976321935654, 0.13781434297561646, -0.09852299839258194, 0.15394893288612366, 0.12968015670776367, -0.09234385192394257, 0.14930720627307892, -0.028564151376485825, -0.0779673233628273, -0.02872610092163086, -0.03440582752227783, -0.0027568084187805653, 0.12673595547676086, -0.15698285400867462, -0.008967756293714046, 0.01535777747631073, 0.013777613639831543, 0.018379170447587967, -0.2147412896156311, -0.0494559220969677, 0.04580194875597954, -0.02546674571931362, -0.015133297070860863, -0.005107154604047537, 0.001500295358709991, 0.10155346989631653, 0.009618177078664303, -0.09534231573343277, 0.04172118008136749, 0.00764209870249033, -0.07857774943113327, 0.21909114718437195, -0.073478102684021, -0.1217157319188118, -0.11360155045986176, -0.06627433747053146, -0.045831747353076935, 0.01858026161789894, 0.05405004695057869, -0.08665025979280472, -0.03157038614153862, -0.056856244802474976, 0.029652351513504982, -0.021221432834863663, 0.030267948284745216, -0.0028297603130340576, -0.0014759391779080033, 0.047313399612903595, -0.11596738547086716, -0.005017489194869995, -0.06322667747735977, -0.066499263048172, 0.03327522054314613, 0.03754094988107681, 0.12658323347568512, 0.15178649127483368, -0.021500933915376663, 0.0034636682830750942, -0.03379734978079796, 0.2371780425310135, -0.07649146765470505, -0.03287869319319725, 0.1250295639038086, -0.015773087739944458, 0.03221079707145691, 0.11725789308547974, 0.07504421472549438, -0.08661673963069916, 0.003135599661618471, 0.049293484538793564, -0.03428950905799866, -0.2103152573108673, -0.041153810918331146, -0.052068859338760376, -0.009312699548900127, 0.08873643726110458, 0.019428370520472527, 0.05298677086830139, 0.07743727415800095, 0.037542179226875305, 0.09175693988800049, -0.04453372582793236, 0.0629471018910408, 0.12062659114599228, 0.04058384522795677, 0.12564995884895325, -0.04106627777218819, -0.08078443259000778, 0.03520559147000313, -0.0056609646417200565, 0.22125142812728882, 0.017105165868997574, 0.12442943453788757, 0.060989268124103546, 0.14513027667999268, -0.01020267978310585, 0.06869905441999435, -0.0016150091541931033, -0.04638930410146713, -0.013459421694278717, -0.03333979845046997, -0.025715285912156105, 0.03153149411082268, -0.04941246658563614, 0.06046068295836449, -0.1315319836139679, 0.01861712522804737, 0.04433000832796097, 0.2218640297651291, 0.0497988685965538, -0.3405657410621643, -0.09381808340549469, 0.004205042961984873, -0.021799616515636444, -0.024774080142378807, 0.02098318561911583, 0.09474216401576996, -0.08443659543991089, 0.022260332480072975, -0.06515074521303177, 0.08194663375616074, -0.07190848886966705, 0.04353732988238335, 0.09028195589780807, 0.10446076095104218, -0.004862201400101185, 0.08016464859247208, -0.29444777965545654, 0.26793697476387024, 0.0076173474080860615, 0.07987909018993378, -0.07463791966438293, 0.0006129710236564279, 0.02436845749616623, 0.065752312541008, 0.07254309207201004, -0.020988408476114273, -0.028688525781035423, -0.2092166244983673, -0.038218334317207336, 0.027792923152446747, 0.0726998820900917, -0.03814822807908058, 0.09549932181835175, -0.023144187405705452, 0.013305706903338432, 0.08615560084581375, 0.0019351061200723052, -0.055392686277627945, -0.10072235763072968, -0.010180719196796417, 0.014290742576122284, -0.056562576442956924, -0.05833921581506729, -0.11217314749956131, -0.11618032306432724, 0.14105302095413208, -0.04618510603904724, -0.03488817438483238, -0.10965754091739655, 0.09230614453554153, 0.06526953727006912, -0.08370465785264969, 0.04686681553721428, 0.01621164195239544, 0.06767086684703827, 0.034920524805784225, -0.05846535041928291, 0.10908717662096024, -0.06739408522844315, -0.15669478476047516, -0.07811245322227478, 0.08147313445806503, 0.050646763294935226, 0.05492076277732849, -0.0021240212954580784, 0.011727754026651382, -0.031009646132588387, -0.08321472257375717, 0.029447097331285477, 0.000010599327652016655, 0.08381492644548416, 0.0005285179940983653, -0.05413660779595375, 0.037022173404693604, -0.0517776720225811, -0.018651364371180534, 0.1789723038673401, 0.23457585275173187, -0.09974949806928635, -0.0031443173065781593, 0.019027553498744965, -0.07206673920154572, -0.18725071847438812, 0.06824596971273422, 0.05144613981246948, 0.02048989199101925, 0.03264773637056351, -0.1905742734670639, 0.12777835130691528, 0.12269989401102066, -0.005533766467124224, 0.1181650385260582, -0.3201606571674347, -0.12591104209423065, 0.13868103921413422, 0.1428884118795395, 0.11301995068788528, -0.12997832894325256, -0.009198565967381, -0.01615786924958229, -0.13108114898204803, 0.11053886264562607, -0.08187147229909897, 0.10775447636842728, -0.027647580951452255, 0.08937373012304306, 0.011560672894120216, -0.05835004895925522, 0.11483762413263321, 0.029832372441887856, 0.11373622715473175, -0.05568486079573631, -0.05695364996790886, 0.0389927476644516, -0.03187099099159241, 0.015285803005099297, -0.05917096510529518, 0.023239808157086372, -0.10269373655319214, -0.03404666855931282, -0.06840866059064865, 0.0535486601293087, -0.0412679947912693, -0.08694679290056229, -0.04131271317601204, 0.030506940558552742, 0.036972884088754654, -0.020105969160795212, 0.1350242644548416, 0.027025820687413216, 0.13812141120433807, 0.06506260484457016, 0.08811341226100922, -0.04323728755116463, -0.06005062162876129, -0.010681028477847576, -0.014030780643224716, 0.06658477336168289, -0.12112085521221161, 0.020087124779820442, 0.14343573153018951, 0.028968144208192825, 0.13933983445167542, 0.0884619951248169, -0.027404915541410446, 0.014703857712447643, 0.057791199535131454, -0.14883534610271454, -0.0772852972149849, -0.0069203064776957035, -0.08341304212808609, -0.11044050008058548, 0.06679936498403549, 0.09534890949726105, -0.07255826890468597, -0.009287567809224129, -0.006894249003380537, -0.006461325101554394, -0.05777214467525482, 0.19003745913505554, 0.062220677733421326, 0.03733396902680397, -0.09268452227115631, 0.06134023889899254, 0.04395239055156708, -0.06784512847661972, 0.008326959796249866, 0.03436460345983505, -0.07276154309511185, -0.042204685509204865, 0.0442056842148304, 0.20230548083782196, -0.08069397509098053, -0.037723202258348465, -0.13609765470027924, -0.11682228744029999, 0.07282952964305878, 0.15843014419078827, 0.11031165719032288, 0.02661808766424656, -0.06254762411117554, 0.024614468216896057, -0.14170673489570618, 0.0890093594789505, 0.0347934328019619, 0.07814830541610718, -0.16086825728416443, 0.16770868003368378, -0.004176356829702854, 0.02645389921963215, -0.019560115411877632, 0.032185524702072144, -0.11330627650022507, 0.0026849478017538786, -0.11036138981580734, -0.039500195533037186, -0.04354605823755264, 0.009447156451642513, 0.005887444131076336, -0.05413568392395973, -0.056446731090545654, 0.00734232272952795, -0.1012902483344078, -0.01353178545832634, 0.05128636956214905, 0.0629344955086708, -0.10874579846858978, -0.03823751583695412, 0.01089943666011095, -0.06161528453230858, 0.06888701766729355, 0.038292936980724335, 0.04493672773241997, 0.04812377691268921, -0.12524199485778809, 0.03609552979469299, 0.07089147716760635, 0.011292306706309319, 0.07941312342882156, -0.08786523342132568, -0.008630193769931793, -0.01157909631729126, 0.04698677733540535, 0.013170742429792881, 0.054646845906972885, -0.13074065744876862, 0.0016745754983276129, -0.009344362653791904, -0.08583032339811325, -0.0694475844502449, 0.03073842078447342, 0.09576971083879471, 0.0119257103651762, 0.20226521790027618, -0.07106568664312363, 0.04541498422622681, -0.20309977233409882, -0.0027408574242144823, -0.005437910556793213, -0.09180805832147598, -0.10881876200437546, -0.05997638776898384, 0.06330984085798264, -0.06509219855070114, 0.1435692310333252, 0.0366782620549202, 0.03528699278831482, 0.026064030826091766, -0.028063734993338585, 0.038046374917030334, 0.025055179372429848, 0.21265625953674316, 0.03315499797463417, -0.038738593459129333, 0.03825518488883972, 0.05879884958267212, 0.10644180327653885, 0.1188628226518631, 0.18528638780117035, 0.14313514530658722, -0.03978057578206062, 0.08807065337896347, 0.05149129778146744, -0.07257960736751556, -0.16476382315158844, 0.02652357891201973, -0.02652399055659771, 0.0860569179058075, -0.016311179846525192, 0.20237727463245392, 0.07903122156858444, -0.167165607213974, 0.02579472027719021, -0.04739713668823242, -0.08745788782835007, -0.11436120420694351, -0.049245089292526245, -0.07896435260772705, -0.11640507727861404, 0.01098690740764141, -0.11955995112657547, 0.0009404269512742758, 0.10129866749048233, 0.004261395428329706, -0.03278457000851631, 0.1623128205537796, 0.029612349346280098, 0.04216331988573074, 0.046151820570230484, 0.023165330290794373, -0.026460831984877586, -0.11837486177682877, -0.05794220045208931, -0.02974756248295307, -0.027947811409831047, 0.022973360493779182, -0.08503628522157669, -0.04827816039323807, 0.02844052202999592, -0.004172362387180328, -0.09389572590589523, 0.010623134672641754, 0.022765405476093292, 0.0509369857609272, 0.034731876105070114, 0.008548128418624401, 0.019080379977822304, -0.013795513659715652, 0.18819542229175568, -0.06830497831106186, -0.044474583119153976, -0.10296014696359634, 0.25722241401672363, 0.047111183404922485, 0.005946931894868612, 0.03850320354104042, -0.07832030951976776, 0.020811473950743675, 0.22329285740852356, 0.21104690432548523, -0.08136337995529175, -0.004681107588112354, 0.010050706565380096, -0.011678141541779041, -0.03090522065758705, 0.10076334327459335, 0.10810870677232742, 0.06414123624563217, -0.08268051594495773, -0.04676781967282295, -0.056826282292604446, -0.0017750608967617154, -0.016561472788453102, 0.06735166907310486, 0.06270025670528412, 0.0035677324049174786, -0.03726149722933769, 0.054662059992551804, -0.063030906021595, -0.09525678306818008, 0.08873341232538223, -0.19793473184108734, -0.1575440615415573, -0.009993781335651875, 0.08401069790124893, -0.0029573317151516676, 0.07954457402229309, -0.03715681657195091, -0.009852918796241283, 0.08300072699785233, -0.012706431560218334, -0.10492322593927383, -0.07599911093711853, 0.09673092514276505, -0.05575471743941307, 0.21710696816444397, -0.05548761412501335, 0.07278916984796524, 0.1296776533126831, 0.07304586470127106, -0.07215254753828049, 0.053084488958120346, 0.05225659906864166, -0.06634305417537689, 0.027394304051995277, 0.06898266822099686, -0.03634381294250488, 0.07980683445930481, 0.04611680656671524, -0.15591961145401, 0.028900928795337677, -0.07406063377857208, -0.06715510040521622, -0.054154373705387115, -0.01646398939192295, -0.054419029504060745, 0.13641256093978882, 0.21693351864814758, -0.02129628323018551, -0.0058499169535934925, -0.06411485373973846, 0.019979899749159813, 0.07470609992742538, 0.044666681438684464, -0.0653337761759758, -0.2128547579050064, 0.01305390801280737, 0.046738553792238235, -0.025384463369846344, -0.23752404749393463, -0.08923634141683578, 0.008308700285851955, -0.08055099099874496, -0.08049432933330536, 0.0666925236582756, 0.08156424760818481, 0.05915014445781708, -0.064488485455513, -0.027353394776582718, -0.08050832897424698, 0.1456223577260971, -0.13938216865062714, -0.0991014689207077 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9303 - Recall: 0.9380 - F1: 0.9342 - Accuracy: 0.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2459 | 1.0 | 878 | 0.0696 | 0.9117 | 0.9195 | 0.9156 | 0.9808 | | 0.0513 | 2.0 | 1756 | 0.0602 | 0.9223 | 0.9376 | 0.9299 | 0.9835 | | 0.0304 | 3.0 | 2634 | 0.0606 | 0.9303 | 0.9380 | 0.9342 | 0.9842 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9303228669699323, "name": "Precision"}, {"type": "recall", "value": 0.9380243875153821, "name": "Recall"}, {"type": "f1", "value": 0.9341577540106952, "name": "F1"}, {"type": "accuracy", "value": 0.9842407104389407, "name": "Accuracy"}]}]}]}
token-classification
geckos/distilbert-base-uncased-fine-tuned-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0606 * Precision: 0.9303 * Recall: 0.9380 * F1: 0.9342 * Accuracy: 0.9842 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 69, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.10733510553836823, 0.11062104254961014, -0.0024228524416685104, 0.1325540989637375, 0.1540447324514389, 0.03060363605618477, 0.12244931608438492, 0.11245027184486389, -0.08881912380456924, 0.026323307305574417, 0.13199160993099213, 0.16142213344573975, 0.014326708391308784, 0.11677442491054535, -0.051285602152347565, -0.24676363170146942, -0.002616961020976305, 0.04186413809657097, -0.04823612794280052, 0.13163872063159943, 0.09798945486545563, -0.1322900354862213, 0.09396342933177948, 0.014917727559804916, -0.1936975121498108, -0.008667378686368465, 0.0004885847447440028, -0.05061890557408333, 0.1428566873073578, 0.01612226478755474, 0.12667229771614075, -0.01101977564394474, 0.09467042982578278, -0.17530158162117004, 0.0054322415962815285, 0.043885283172130585, 0.011817450635135174, 0.09517684578895569, 0.04061314836144447, 0.012719141319394112, 0.09476454555988312, -0.061192747205495834, 0.05955372750759125, 0.01284539420157671, -0.11939184367656708, -0.20379577577114105, -0.09321519732475281, 0.048268284648656845, 0.08315853029489517, 0.09797071665525436, 0.0037821088917553425, 0.13787192106246948, -0.09031642973423004, 0.08555306494235992, 0.20739908516407013, -0.2841174900531769, -0.067635677754879, 0.04888610541820526, 0.01076198648661375, 0.04146585986018181, -0.09858483076095581, -0.0451296791434288, 0.04323715716600418, 0.050263479351997375, 0.13029727339744568, -0.02722832001745701, -0.1111602783203125, 0.012869314290583134, -0.14384932816028595, -0.04294050857424736, 0.16539320349693298, 0.04955935850739479, -0.03458687290549278, -0.04281463846564293, -0.06295205652713776, -0.166645348072052, -0.028259368613362312, -0.012791664339601994, 0.04420492798089981, -0.026973655447363853, -0.05449998378753662, 0.003101232461631298, -0.09972875565290451, -0.06765291094779968, -0.08109655976295471, 0.1326194405555725, 0.03553297743201256, 0.01452646404504776, -0.02066841907799244, 0.11491471529006958, 0.0015989457024261355, -0.12109275162220001, 0.0210199486464262, 0.02240518294274807, 0.0028563886880874634, -0.04626097530126572, -0.05133408308029175, -0.04205423220992088, 0.007943714037537575, 0.1462206095457077, -0.03148413076996803, 0.032751552760601044, 0.05536580830812454, 0.04488501697778702, -0.08707085251808167, 0.18346360325813293, -0.04460016265511513, -0.032944537699222565, 0.0071002584882080555, 0.054712045937776566, 0.025078335776925087, -0.004087681416422129, -0.12424585968255997, 0.011819878593087196, 0.09765861928462982, 0.009443329647183418, -0.06554635614156723, 0.06497504562139511, -0.06327164173126221, -0.02802507020533085, 0.02093411423265934, -0.08538620173931122, 0.027607813477516174, -0.01002279482781887, -0.07986030727624893, -0.022588465362787247, 0.01715715229511261, 0.023761484771966934, -0.003910721279680729, 0.11077068001031876, -0.09729758650064468, 0.0200115405023098, -0.0891166552901268, -0.09994592517614365, 0.017933888360857964, -0.10969336330890656, 0.03169896453619003, -0.0952916368842125, -0.19543574750423431, -0.004506475757807493, 0.06340950727462769, -0.022701917216181755, -0.07032747566699982, -0.045640766620635986, -0.06749041378498077, 0.007868600077927113, -0.009675129316747189, 0.11952773481607437, -0.06584175676107407, 0.08975138515233994, 0.020175427198410034, 0.05778524652123451, -0.05191502720117569, 0.05246754363179207, -0.10893373936414719, 0.0250481516122818, -0.15356679260730743, 0.030609672889113426, -0.04942935332655907, 0.06505002081394196, -0.08843687921762466, -0.10045374929904938, 0.01839684508740902, -0.018529105931520462, 0.06620105355978012, 0.08561114221811295, -0.18387435376644135, -0.06270121783018112, 0.1353021115064621, -0.06175214424729347, -0.12223131954669952, 0.1241571232676506, -0.06641345471143723, 0.03996734693646431, 0.056543201208114624, 0.1534069925546646, 0.06896998733282089, -0.07612133771181107, 0.0033212739508599043, 0.010368691757321358, 0.0510115772485733, -0.06238113343715668, 0.07716860622167587, 0.006329122465103865, 0.017370929941534996, 0.02924727089703083, -0.03569210320711136, 0.05612797662615776, -0.08925527334213257, -0.10121774673461914, -0.039063382893800735, -0.09784126281738281, 0.045979876071214676, 0.06310673803091049, 0.06353359669446945, -0.08862420171499252, -0.0751408040523529, 0.05118813365697861, 0.09116843342781067, -0.04437239095568657, 0.02001636102795601, -0.06434120237827301, 0.0804983377456665, -0.044701676815748215, -0.03129509463906288, -0.17348822951316833, -0.03480542451143265, 0.012780058197677135, 0.0016857037553563714, 0.014420964755117893, 0.025209812447428703, 0.06128649041056633, 0.07350592315196991, -0.04164291173219681, -0.018568921834230423, -0.035305507481098175, 0.005344398785382509, -0.13060611486434937, -0.19191069900989532, -0.04496103525161743, -0.020163051784038544, 0.15463747084140778, -0.20235012471675873, 0.03473862633109093, -0.026673298329114914, 0.08622824400663376, 0.01485454197973013, -0.015002688392996788, -0.0415758453309536, 0.06998494267463684, -0.049204304814338684, -0.05402422696352005, 0.0654163658618927, 0.011186287738382816, -0.09080980718135834, -0.06611473113298416, -0.08704543113708496, 0.16438627243041992, 0.12520354986190796, -0.10004241019487381, -0.07507447898387909, -0.01724710315465927, -0.06491655856370926, -0.034848324954509735, -0.04989911988377571, 0.029403071850538254, 0.17465335130691528, -0.004288308788090944, 0.1416277289390564, -0.06996812671422958, -0.04497629776597023, 0.02134234644472599, -0.033759646117687225, 0.020049748942255974, 0.11603114753961563, 0.13525508344173431, -0.08187294006347656, 0.15324042737483978, 0.15256443619728088, -0.0917566642165184, 0.1156785860657692, -0.03989134356379509, -0.06247096508741379, -0.026374582201242447, -0.027938034385442734, -0.007788300048559904, 0.11578648537397385, -0.1400456577539444, 0.00737172644585371, 0.03520200029015541, 0.021789472550153732, 0.009731143712997437, -0.2204858362674713, -0.042862821370363235, 0.0374443419277668, -0.03374067321419716, -0.008755642920732498, -0.010858030058443546, 0.005916506052017212, 0.09897598624229431, 0.004599158186465502, -0.10663099586963654, 0.0462723970413208, 0.009002890437841415, -0.07239291071891785, 0.20523515343666077, -0.08611434698104858, -0.14105728268623352, -0.12465430796146393, -0.08609562367200851, -0.05775069817900658, 0.010313918814063072, 0.05369056016206741, -0.0725647583603859, -0.03530162572860718, -0.07302775979042053, 0.002309374278411269, 0.00178046606015414, 0.028186585754156113, 0.01608148030936718, -0.008914751932024956, 0.06574694067239761, -0.106041319668293, -0.011991112492978573, -0.05171400308609009, -0.04932662099599838, 0.0369059182703495, 0.04052566736936569, 0.11560428142547607, 0.1514223963022232, -0.011835269629955292, 0.006473606918007135, -0.02173341065645218, 0.2542969286441803, -0.0585908479988575, -0.02041681669652462, 0.13530290126800537, -0.01903873309493065, 0.05353762209415436, 0.12191333621740341, 0.07611624151468277, -0.08316593617200851, -0.0021904667373746634, 0.031534165143966675, -0.039452239871025085, -0.21165022253990173, -0.05376604199409485, -0.05561450496315956, -0.0052559892646968365, 0.09755057841539383, 0.024165164679288864, 0.037410710006952286, 0.08104529976844788, 0.038230329751968384, 0.09457467496395111, -0.052230559289455414, 0.0630328431725502, 0.12097108364105225, 0.045043282210826874, 0.12345694750547409, -0.03168271481990814, -0.061695292592048645, 0.0459028035402298, 0.007177123334258795, 0.2240591049194336, 0.012445276603102684, 0.12797774374485016, 0.06119520217180252, 0.17993967235088348, -0.010229526087641716, 0.07671069353818893, -0.009555589407682419, -0.03226267173886299, -0.021954011172056198, -0.03700375556945801, -0.039255641400814056, 0.026567893102765083, -0.05684264749288559, 0.07331237196922302, -0.10435587912797928, 0.021754831075668335, 0.05250055342912674, 0.25490692257881165, 0.037913817912340164, -0.3385380804538727, -0.09866002947092056, 0.00039725733222439885, -0.035920966416597366, -0.022115852683782578, 0.029983041808009148, 0.08164095878601074, -0.09612184762954712, 0.020052947103977203, -0.06478719413280487, 0.09166376292705536, -0.051739394664764404, 0.04124302789568901, 0.08205269277095795, 0.09056467562913895, 0.012361492030322552, 0.0856441929936409, -0.2705115079879761, 0.2709103524684906, 0.0011124404845759273, 0.05848463997244835, -0.07775081694126129, 0.006703331135213375, 0.03555436432361603, 0.06323380023241043, 0.07337834686040878, -0.004679467529058456, -0.018162380903959274, -0.19774138927459717, -0.06294222176074982, 0.022419258952140808, 0.058072563260793686, -0.04060147702693939, 0.08857964724302292, -0.030562501400709152, 0.00889674574136734, 0.0679696574807167, 0.00940337311476469, -0.04613585025072098, -0.10001584887504578, -0.006098082289099693, 0.036120664328336716, -0.046233292669057846, -0.06219656392931938, -0.10925440490245819, -0.12306603789329529, 0.14112649857997894, -0.0319681242108345, -0.03690791875123978, -0.10618462413549423, 0.07423456013202667, 0.0820893943309784, -0.08278810232877731, 0.05062349885702133, -0.005233006086200476, 0.0736616924405098, 0.030725495889782906, -0.058779675513505936, 0.09896454960107803, -0.08048470318317413, -0.16822980344295502, -0.07307478040456772, 0.10317803919315338, 0.03763363137841225, 0.06608660519123077, -0.006598783656954765, 0.017738111317157745, -0.05011477321386337, -0.0892515629529953, 0.02287985198199749, -0.000017353482689941302, 0.08720899373292923, 0.015477229841053486, -0.050616465508937836, 0.026952208951115608, -0.054224852472543716, -0.032860446721315384, 0.18973253667354584, 0.2337537556886673, -0.10170110315084457, 0.01936899498105049, 0.0298044141381979, -0.0616346076130867, -0.17643193900585175, 0.02528606727719307, 0.05346114933490753, 0.004031751304864883, 0.039863403886556625, -0.17719666659832, 0.14480650424957275, 0.11955806612968445, -0.018453503027558327, 0.10619935393333435, -0.32651394605636597, -0.1191754937171936, 0.1327512115240097, 0.1330595314502716, 0.10782822221517563, -0.12380607426166534, -0.019780028611421585, -0.015969395637512207, -0.1487499475479126, 0.11417325586080551, -0.07129546999931335, 0.11434805393218994, -0.03298850730061531, 0.09874825179576874, 0.0023825312964618206, -0.05758729577064514, 0.1255401074886322, 0.03689766675233841, 0.09922156482934952, -0.056995492428541183, -0.043178658932447433, 0.03287943825125694, -0.04210522770881653, 0.023589130491018295, -0.08058171719312668, 0.03715981915593147, -0.10783560574054718, -0.01999804377555847, -0.06527992337942123, 0.040899261832237244, -0.035012904554605484, -0.07360541820526123, -0.04365942254662514, 0.03051353618502617, 0.054351598024368286, -0.011413555592298508, 0.1301603615283966, 0.04844836890697479, 0.1328841745853424, 0.09691385924816132, 0.06445418298244476, -0.077752985060215, -0.086395762860775, -0.030282387509942055, -0.01589536853134632, 0.05820314958691597, -0.11751117557287216, 0.024163154885172844, 0.14540234208106995, 0.025365661829710007, 0.13743604719638824, 0.08161676675081253, -0.016070231795310974, 0.006424179766327143, 0.050535500049591064, -0.16826054453849792, -0.0711364671587944, -0.0019020880572497845, -0.03659061715006828, -0.11981002241373062, 0.05177446827292442, 0.0932018905878067, -0.07093540579080582, -0.009278872050344944, -0.0033621620386838913, 0.013357915915548801, -0.049699824303388596, 0.19043180346488953, 0.05690053105354309, 0.047820884734392166, -0.102084219455719, 0.07104768604040146, 0.055389489978551865, -0.05410180240869522, -0.004401098936796188, 0.04851002246141434, -0.0898294523358345, -0.042811427265405655, 0.04856842756271362, 0.16897179186344147, -0.07035963982343674, -0.04266275092959404, -0.13119660317897797, -0.11532279849052429, 0.08006303757429123, 0.1382775902748108, 0.11728738993406296, 0.016536174342036247, -0.06686230003833771, 0.0006611951976083219, -0.10944919288158417, 0.09770160168409348, 0.04708116874098778, 0.0734066441655159, -0.15702109038829803, 0.1359664350748062, 0.003941343631595373, 0.04041372612118721, -0.015619616955518723, 0.027891412377357483, -0.09419288486242294, 0.007938643917441368, -0.11390265822410583, -0.02122381702065468, -0.039233069866895676, 0.014458067715168, -0.0046383109875023365, -0.05716574937105179, -0.05601923167705536, 0.014524370431900024, -0.10699468106031418, -0.01928335428237915, 0.03899373114109039, 0.06291910260915756, -0.1127442866563797, -0.0373651459813118, 0.029830560088157654, -0.060435932129621506, 0.07610075175762177, 0.04539432004094124, 0.025760788470506668, 0.041388947516679764, -0.12090925872325897, 0.011362165212631226, 0.06587745994329453, 0.029135525226593018, 0.0779394805431366, -0.10033273696899414, -0.013809912838041782, -0.0036235337611287832, 0.03675238415598869, 0.014088255353271961, 0.07652497291564941, -0.13853393495082855, -0.009831419214606285, -0.009862758219242096, -0.07842090725898743, -0.06479731947183609, 0.017448456957936287, 0.1048879325389862, 0.01632278598845005, 0.21058489382266998, -0.060283590108156204, 0.04383789002895355, -0.20603863894939423, 0.00220497022382915, -0.009706608019769192, -0.10710105299949646, -0.13172513246536255, -0.0606943778693676, 0.050109315663576126, -0.05686523765325546, 0.15516485273838043, 0.025668196380138397, 0.02424066886305809, 0.02158510498702526, 0.004501462448388338, 0.02044464461505413, 0.01022712979465723, 0.19369563460350037, 0.04143132269382477, -0.035854727029800415, 0.05643327534198761, 0.039416369050741196, 0.10394105315208435, 0.10309775173664093, 0.18762512505054474, 0.13835537433624268, 0.0006479793810285628, 0.08627559244632721, 0.03793670982122421, -0.0659962147474289, -0.17356030642986298, 0.0321008674800396, -0.036479923874139786, 0.10581496357917786, -0.014568694867193699, 0.22775574028491974, 0.05537606030702591, -0.1675533652305603, 0.0337410531938076, -0.05109969899058342, -0.08056384325027466, -0.10062191635370255, -0.06422203779220581, -0.07625630497932434, -0.1254475712776184, -0.0006655273027718067, -0.11110815405845642, 0.0066540297120809555, 0.12899866700172424, 0.005776833277195692, -0.024805990979075432, 0.14498600363731384, 0.0033682985231280327, 0.03868979215621948, 0.03787379339337349, 0.013384872116148472, -0.03578371927142143, -0.1115308403968811, -0.07284858077764511, -0.0241189356893301, -0.01707078330218792, 0.03741392493247986, -0.07137462496757507, -0.036267925053834915, 0.02739904075860977, -0.011365998536348343, -0.09159814566373825, 0.006796678993850946, 0.005448846612125635, 0.04997970163822174, 0.03590784966945648, 0.005951589904725552, 0.03615834563970566, -0.008003095164895058, 0.19558702409267426, -0.07219093292951584, -0.06427428871393204, -0.10781139135360718, 0.22916629910469055, 0.027566205710172653, -0.02230616845190525, 0.04086305573582649, -0.06521167606115341, 0.005916034337133169, 0.2317272126674652, 0.2008689045906067, -0.09690136462450027, -0.013936447910964489, 0.01001159567385912, -0.013797705993056297, -0.03325854241847992, 0.09343154728412628, 0.13060081005096436, 0.046068813651800156, -0.09066332876682281, -0.03996893763542175, -0.07088183611631393, -0.01335997972637415, -0.033476538956165314, 0.05620923265814781, 0.042216911911964417, 0.005870217457413673, -0.04412734881043434, 0.04800984635949135, -0.07213880866765976, -0.08872917294502258, 0.06165574863553047, -0.19982871413230896, -0.1694580614566803, -0.011273977346718311, 0.0979483500123024, 0.004911693278700113, 0.058558445423841476, -0.03344385325908661, -0.001048139063641429, 0.0842779353260994, -0.01971886120736599, -0.09345351904630661, -0.08213888853788376, 0.10545605421066284, -0.06964312493801117, 0.23047016561031342, -0.045413050800561905, 0.07239377498626709, 0.12237795442342758, 0.06775360554456711, -0.08226149529218674, 0.05658791586756706, 0.05512154474854469, -0.05442260578274727, 0.02102680504322052, 0.06780051440000534, -0.026829630136489868, 0.08261296153068542, 0.04455665871500969, -0.1320836842060089, 0.011871784925460815, -0.04297323152422905, -0.05374489352107048, -0.04603271558880806, -0.03260395675897598, -0.054986078292131424, 0.1392628699541092, 0.2082338035106659, -0.0348820723593235, -0.014887052588164806, -0.06879091262817383, 0.022490499541163445, 0.06120410934090614, 0.00923272967338562, -0.06272074580192566, -0.21558567881584167, 0.016742533072829247, 0.04254124313592911, -0.019728971645236015, -0.21277059614658356, -0.10292027145624161, 0.0008055662619881332, -0.07509142905473709, -0.08626852184534073, 0.07076068222522736, 0.08129408955574036, 0.05211088806390762, -0.05952313914895058, -0.025473440065979958, -0.08385016024112701, 0.13497555255889893, -0.1352596879005432, -0.0900496393442154 ]
null
null
null
# [models/cnstd](models/cnstd) 存放 [cnstd](https://github.com/breezedeus/cnstd) 中使用的模型。 # [models/cnocr](models/cnocr) 存放 [cnocr](https://github.com/breezedeus/cnocr) 中使用的模型。
{}
null
breezedeus/cnstd-cnocr-models
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# models/cnstd 存放 cnstd 中使用的模型。 # models/cnocr 存放 cnocr 中使用的模型。
[ "# models/cnstd\n存放 cnstd 中使用的模型。", "# models/cnocr\n存放 cnocr 中使用的模型。" ]
[ "TAGS\n#region-us \n", "# models/cnstd\n存放 cnstd 中使用的模型。", "# models/cnocr\n存放 cnocr 中使用的模型。" ]
[ 6, 18, 17 ]
[ "passage: TAGS\n#region-us \n# models/cnstd\n存放 cnstd 中使用的模型。# models/cnocr\n存放 cnocr 中使用的模型。" ]
[ -0.03866061940789223, 0.1054900735616684, -0.00796516239643097, -0.03662026301026344, 0.05135824531316757, 0.07346411049365997, 0.08674917370080948, -0.024086331948637962, 0.07582598924636841, 0.025585364550352097, 0.143981471657753, -0.05313132703304291, -0.039602190256118774, 0.03348648548126221, -0.03051111474633217, -0.15540097653865814, 0.12413202226161957, -0.03298325464129448, -0.10650225728750229, 0.07793113589286804, 0.014013601467013359, -0.012368845753371716, 0.049723539501428604, -0.002152462024241686, -0.14080525934696198, -0.06765767931938171, 0.0229153074324131, -0.026741597801446915, 0.04550359398126602, 0.00043887447100132704, 0.2428770661354065, 0.0714302584528923, 0.08703769743442535, -0.12393329292535782, 0.03685152158141136, -0.02015962265431881, -0.07785186916589737, 0.09411168843507767, -0.06562427431344986, 0.01828545518219471, 0.18692293763160706, 0.0921994224190712, 0.09042036533355713, 0.024286162108182907, -0.1461043804883957, -0.011306269094347954, -0.0019017196027562022, 0.013108081184327602, -0.028724756091833115, 0.04830992594361305, 0.02417300082743168, 0.16414561867713928, -0.2434474378824234, -0.014362510293722153, -0.06699159741401672, -0.10508446395397186, 0.03806004300713539, 0.3986075520515442, 0.10280942171812057, 0.08911824971437454, 0.04205761104822159, 0.07808046042919159, 0.07172270119190216, -0.060911741107702255, -0.03919287770986557, 0.0029525537975132465, 0.06672201305627823, 0.06283099204301834, -0.1096721738576889, -0.07391051948070526, 0.25121134519577026, -0.012842495925724506, 0.08511929959058762, 0.005388883873820305, -0.07864461839199066, -0.020966948941349983, -0.03753238171339035, -0.06742944568395615, -0.030450018122792244, 0.09142682701349258, 0.10443522036075592, -0.02627251110970974, -0.057735376060009, -0.04880187660455704, -0.08240792900323868, 0.036798954010009766, -0.01852608472108841, 0.09382905811071396, -0.1977005898952484, 0.027002157643437386, -0.09537436068058014, -0.028731871396303177, 0.035261642187833786, -0.1354391872882843, -0.10572773963212967, -0.04711468890309334, -0.020456651225686073, 0.15393532812595367, 0.0900578573346138, 0.13932132720947266, 0.03588680177927017, -0.006458973977714777, 0.002962352940812707, 0.10620706528425217, 0.033518463373184204, 0.04427438974380493, -0.13088229298591614, 0.11114566773176193, 0.01476820558309555, -0.13733145594596863, -0.07815627008676529, -0.1264306753873825, -0.14804811775684357, 0.00628954591229558, -0.10352841764688492, 0.07151061296463013, -0.012502660043537617, 0.007078404072672129, 0.0017033338081091642, -0.04129905626177788, 0.2558854818344116, 0.0857345387339592, 0.033581946045160294, 0.07376375794410706, 0.013808952644467354, 0.13202373683452606, 0.016112150624394417, 0.07957181334495544, 0.08815552294254303, 0.08076954632997513, -0.17771051824092865, -0.04864863306283951, -0.04469830170273781, -0.05077893286943436, 0.028230445459485054, 0.10222918540239334, 0.020688224583864212, -0.11540932208299637, -0.05813554301857948, -0.00904981978237629, 0.016132336109876633, -0.003940207418054342, 0.03400745987892151, -0.02534010447561741, -0.049131691455841064, 0.011534555815160275, 0.03482107073068619, -0.1502424031496048, -0.051022328436374664, -0.025424305349588394, -0.13059145212173462, -0.013175458647310734, -0.18072988092899323, -0.030927788466215134, -0.08731978386640549, 0.06679363548755646, -0.17829710245132446, -0.041993603110313416, -0.06224721297621727, 0.0938936248421669, -0.030765732750296593, -0.03259453922510147, -0.14968723058700562, -0.00467525701969862, -0.04123177379369736, 0.14921283721923828, -0.17897318303585052, -0.0004664830048568547, 0.16107138991355896, -0.08666262030601501, -0.084199920296669, 0.006031141150742769, -0.05749634653329849, -0.020763881504535675, 0.007937643676996231, 0.1560882329940796, 0.0855475589632988, -0.13401295244693756, 0.08549090474843979, 0.043921153992414474, -0.10016901046037674, -0.09601887315511703, 0.04995905980467796, 0.014038375578820705, -0.2143019288778305, -0.027723494917154312, -0.11823903024196625, 0.025661416351795197, -0.09903255850076675, -0.04497474059462547, -0.021336426958441734, 0.010187565349042416, 0.04486991465091705, -0.01617126353085041, 0.033602286130189896, 0.015460657887160778, 0.043013401329517365, -0.02015528455376625, 0.09495473653078079, 0.013414335437119007, 0.016377529129385948, -0.06194644421339035, 0.0959186777472496, -0.0445554219186306, -0.028968658298254013, -0.0803530290722847, -0.33542776107788086, 0.047958649694919586, 0.013739032670855522, 0.05658461153507233, 0.1032179743051529, 0.030469713732600212, 0.023225057870149612, 0.05243315175175667, 0.06962485611438751, 0.030228296294808388, 0.050747599452733994, 0.02619817480444908, -0.07741228491067886, 0.07715322077274323, -0.07671303302049637, 0.14536194503307343, -0.27577894926071167, -0.015486817806959152, 0.004145542625337839, 0.06826731562614441, -0.014542539604008198, -0.0002117971598636359, -0.025461345911026, -0.0050183129496872425, 0.0001286983460886404, 0.004472098313271999, 0.017935119569301605, -0.00022966811957303435, -0.198801651597023, 0.16200962662696838, -0.16200251877307892, 0.08168736845254898, 0.09700217843055725, -0.061932966113090515, -0.03446495160460472, -0.1382218301296234, 0.015701834112405777, 0.012045996263623238, 0.08792395889759064, -0.02710193581879139, 0.072227343916893, -0.012050226330757141, 0.047278471291065216, -0.02334788627922535, 0.04820193722844124, 0.0370565690100193, -0.029256269335746765, -0.02704128436744213, 0.011428926140069962, 0.3225078880786896, -0.03672702610492706, 0.062321726232767105, 0.10218246281147003, 0.06930740922689438, 0.05203952640295029, 0.0024937239941209555, -0.06180403009057045, -0.051580291241407394, -0.050769444555044174, 0.011045663617551327, 0.07084064930677414, 0.026638556271791458, 0.0407535545527935, 0.046676456928253174, 0.040768999606370926, 0.08598557859659195, -0.09312190860509872, -0.09233233332633972, 0.03556020185351372, 0.003139668609946966, -0.14335133135318756, 0.07906454801559448, -0.03625883907079697, 0.03980028256773949, -0.01909051649272442, -0.23830559849739075, 0.007910234853625298, -0.014032211154699326, -0.08399147540330887, 0.13144172728061676, -0.12233482301235199, -0.17054453492164612, -0.09685880690813065, 0.030885770916938782, 0.04831402748823166, 0.013027013279497623, -0.061642419546842575, -0.0700833722949028, -0.07070209830999374, 0.01988941617310047, -0.09683380275964737, -0.07305248826742172, -0.09013494104146957, 0.024557817727327347, -0.015375059098005295, -0.11591890454292297, -0.09924490004777908, -0.024029355496168137, -0.04656992480158806, -0.017538724467158318, 0.04764682054519653, -0.12985651195049286, 0.11494161933660507, 0.3399501442909241, 0.04708670452237129, 0.011799190193414688, 0.04708366468548775, 0.20100252330303192, -0.09878669679164886, -0.03905373066663742, 0.006083291955292225, -0.0377158522605896, 0.03481478989124298, 0.14352969825267792, 0.11899375170469284, -0.07874607294797897, -0.005993970204144716, -0.10043540596961975, -0.13636146485805511, -0.14069576561450958, -0.24412813782691956, -0.0778193548321724, -0.062386102974414825, -0.025961071252822876, 0.04048362374305725, 0.2297181487083435, 0.03956456482410431, 0.04628950357437134, -0.06221636012196541, 0.00690564326941967, 0.06345225870609283, -0.05352059379220009, 0.009958472102880478, -0.0002286998787894845, -0.013482505455613136, -0.07937491685152054, 0.0911930724978447, 0.010166563093662262, 0.1994011402130127, 0.23659385740756989, 0.15570160746574402, 0.029774855822324753, 0.10401269793510437, 0.20997324585914612, 0.05613018572330475, 0.04064873233437538, -0.03635860234498978, -0.01834784634411335, -0.029832839965820312, 0.07963381707668304, 0.05604960024356842, 0.09242714941501617, -0.19447265565395355, 0.02722104638814926, -0.05355290323495865, 0.03253908082842827, -0.11323943734169006, 0.08253564685583115, -0.26065096259117126, 0.0563616119325161, 0.00701400451362133, 0.1401776224374771, -0.05789720267057419, 0.0626797080039978, 0.023828361183404922, -0.072551429271698, -0.09664539992809296, 0.034207914024591446, 0.08502861857414246, 0.05430043488740921, 0.01450961921364069, -0.03191565349698067, -0.020357146859169006, 0.010288333520293236, 0.015003175474703312, -0.040780387818813324, 0.23430155217647552, -0.0031571299768984318, -0.13722403347492218, -0.02154766395688057, -0.10100763291120529, -0.0007502477965317667, 0.2663742005825043, 0.11147557199001312, 0.0692099928855896, -0.18401551246643066, -0.03576265648007393, -0.18497395515441895, 0.01835402473807335, 0.08298604935407639, -0.1264456808567047, -0.05197121948003769, 0.0027838200330734253, -0.0064859879203140736, 0.0667543113231659, 0.0001813246199162677, -0.07070745527744293, -0.09878722578287125, 0.03743719309568405, 0.043992601335048676, -0.02244928479194641, 0.01448757667094469, -0.005572846159338951, -0.05145835876464844, 0.11977848410606384, 0.054782167077064514, 0.04704328626394272, -0.06847121566534042, -0.18473434448242188, 0.1885465681552887, -0.05873863399028778, 0.055672284215688705, -0.027071544900536537, 0.03347171097993851, -0.02604920044541359, -0.12394443154335022, 0.1314476579427719, -0.03972989320755005, 0.0004147778090555221, -0.08307559043169022, 0.11350942403078079, -0.016418779268860817, 0.06481077522039413, 0.06377676129341125, 0.08246790617704391, -0.004387226887047291, -0.14902037382125854, -0.0857202559709549, 0.07353128492832184, 0.020667944103479385, 0.10626719892024994, 0.03331432864069939, 0.09748867899179459, 0.02931346371769905, 0.06949525326490402, 0.1642434448003769, 0.14116719365119934, -0.11478476971387863, 0.07187007367610931, 0.22034209966659546, -0.04995521903038025, -0.21139825880527496, -0.0071163540706038475, -0.13772979378700256, -0.06018821895122528, -0.029244566336274147, -0.06056251376867294, 0.1436123102903366, 0.10472720116376877, -0.03322272747755051, 0.09475132822990417, -0.17720361053943634, -0.09246786683797836, 0.11678586900234222, -0.08372016251087189, 0.30582329630851746, -0.04872344434261322, -0.0679413452744484, -0.019237341359257698, -0.10941614210605621, 0.2287832498550415, -0.041891954839229584, -0.02249392867088318, 0.025582531467080116, 0.03508169203996658, 0.058338992297649384, -0.06895075738430023, 0.19647127389907837, 0.05644352734088898, 0.0571054182946682, -0.06722289323806763, -0.12473038583993912, 0.11493586748838425, -0.0069686537608504295, 0.038991186767816544, 0.17651477456092834, 0.07278390973806381, 0.0037642254028469324, -0.015313678421080112, -0.0061524854972958565, -0.016085583716630936, -0.026652701199054718, -0.04614124447107315, -0.09295646846294403, 0.044942669570446014, -0.0024729478172957897, -0.006943768821656704, 0.13549357652664185, -0.023291777819395065, 0.044292040169239044, -0.009498805738985538, 0.03575563803315163, 0.018912775442004204, 0.03856633976101875, 0.002746972721070051, -0.059465933591127396, 0.11800174415111542, -0.11467589437961578, 0.025565173476934433, 0.16462738811969757, -0.0291375033557415, 0.054954465478658676, 0.08263891935348511, -0.028971651569008827, -0.050506316125392914, 0.11457701772451401, -0.1405654102563858, -0.12988661229610443, -0.035947803407907486, -0.1270236372947693, 0.10174653679132462, -0.0003366968594491482, 0.07779905200004578, -0.0367162860929966, 0.023121964186429977, 0.03172720968723297, -0.004860405344516039, -0.046180009841918945, -0.03192530572414398, 0.07204903662204742, 0.017641637474298477, -0.12101955711841583, -0.037788525223731995, 0.10563354194164276, 0.049272727221250534, -0.09890913218259811, 0.044069256633520126, -0.10896140336990356, -0.06629721075296402, -0.09268800914287567, 0.17828789353370667, -0.17273277044296265, -0.035229530185461044, 0.07104836404323578, -0.028966087847948074, -0.03287694603204727, 0.16238795220851898, 0.03238417208194733, 0.04896451160311699, 0.0078672394156456, -0.031522538512945175, -0.07001019269227982, -0.07857616990804672, -0.06799822300672531, 0.03495306149125099, -0.0638345405459404, 0.015740590170025826, -0.016368433833122253, 0.04656195268034935, -0.08787074685096741, -0.06239710748195648, -0.14712859690189362, 0.023345010355114937, -0.1163472905755043, 0.00029437540797516704, -0.0351313091814518, -0.019758660346269608, 0.02341720275580883, -0.034735195338726044, -0.0027063777670264244, -0.03459774702787399, -0.07864879816770554, 0.10283765941858292, 0.0015185819938778877, 0.05976630374789238, -0.031432174146175385, 0.014874791726469994, 0.08206366002559662, 0.002978757256641984, 0.06758679449558258, 0.0959935262799263, -0.004919720813632011, 0.16904260218143463, -0.23319345712661743, 0.02368753030896187, 0.07591662555932999, 0.08796588331460953, 0.0660552978515625, 0.047666676342487335, -0.022845443338155746, 0.022009041160345078, -0.02753307856619358, 0.008070330135524273, -0.13651050627231598, -0.04054572805762291, -0.07988793402910233, -0.021833738312125206, -0.1611824929714203, 0.01490329671651125, -0.12643763422966003, 0.07712000608444214, 0.09991243481636047, 0.026281971484422684, 0.09845884144306183, 0.08473769575357437, -0.005305230151861906, -0.033548504114151, -0.0029470741283148527, 0.022466866299510002, 0.06477325409650803, -0.02186226099729538, -0.0014151553623378277, -0.04449906945228577, 0.3314724266529083, -0.0584133043885231, -0.028689373284578323, -0.029028264805674553, 0.18340089917182922, -0.004705279599875212, 0.021942604333162308, 0.1189844161272049, 0.19979327917099, -0.009442096576094627, -0.06732048094272614, 0.06339018791913986, -0.016454551368951797, -0.05632513016462326, 0.10368771106004715, -0.037513695657253265, 0.030192645266652107, -0.02328094094991684, 0.08685296773910522, -0.00045266241068020463, 0.10325498878955841, -0.05400051549077034, -0.06138744205236435, -0.03912803903222084, -0.0015833679353818297, -0.030379390344023705, 0.1544005572795868, 0.00007214926881715655, 0.015401909127831459, -0.01359484437853098, -0.08340705931186676, -0.17425791919231415, -0.2261875718832016, -0.07848179340362549, -0.08914682269096375, 0.02017536386847496, -0.09562908858060837, -0.020353930070996284, 0.15227733552455902, 0.047256968915462494, -0.009234312921762466, 0.028415849432349205, 0.004610441625118256, 0.030078638345003128, -0.04928956553339958, -0.020052626729011536, 0.03260550647974014, -0.025425752624869347, -0.04527680575847626, -0.05862021818757057, -0.002471072832122445, -0.013768932782113552, 0.005409577861428261, 0.04054351896047592, 0.01613166369497776, -0.05960244685411453, -0.060470808297395706, -0.0878283828496933, 0.010936632752418518, -0.1328853815793991, 0.05763395503163338, 0.02329370751976967, 0.017739448696374893, 0.019778748974204063, 0.08132559806108475, 0.011736160144209862, -0.007620375137776136, -0.13398899137973785, 0.11299213021993637, -0.06007882207632065, 0.1006985530257225, 0.0010915572056546807, 0.012312115170061588, -0.07349805533885956, 0.16623878479003906, 0.3005504906177521, -0.15129627287387848, 0.009374154731631279, 0.012068691663444042, 0.026453908532857895, 0.0005698743625544012, 0.17221742868423462, -0.0019630829337984324, 0.223097562789917, 0.008398463949561119, -0.10313446074724197, -0.09129054099321365, 0.006515521556138992, -0.02092389017343521, -0.05403713136911392, 0.058871395885944366, -0.07238137722015381, -0.07024656981229782, 0.1410972774028778, -0.2718396782875061, 0.06787250190973282, -0.039492812007665634, -0.032326120883226395, -0.022192824631929398, -0.037753261625766754, -0.07239103317260742, -0.033922191709280014, 0.07483869045972824, -0.09334420412778854, -0.173011913895607, -0.042430296540260315, -0.0024020506534725428, -0.20820507407188416, -0.046906210482120514, 0.07162901759147644, 0.11986017972230911, 0.20248202979564667, 0.05360860377550125, 0.06962002068758011, 0.010111391544342041, 0.061155516654253006, -0.02384156361222267, 0.04609064385294914, 0.04898510128259659, -0.04355510696768761, -0.09766530990600586, -0.03017272613942623, -0.06922177225351334, -0.04881894960999489, 0.052879698574543, -0.28110823035240173, 0.04578712210059166, 0.04505123198032379, -0.027741026133298874, -0.04003261402249336, -0.018811343237757683, -0.05358272045850754, 0.13283702731132507, 0.0696551650762558, -0.0017368955304846168, 0.014912278391420841, 0.010599424131214619, 0.02059359848499298, 0.006921648513525724, -0.009843969717621803, -0.07230661809444427, -0.009493399411439896, -0.056863583624362946, 0.06685749441385269, 0.04024048522114754, 0.03053980879485607, 0.00618083355948329, -0.08470991998910904, 0.07713890075683594, 0.03868569806218147, 0.08193765580654144, 0.12304296344518661, -0.0006123206112533808, -0.00299189449287951, -0.003398333676159382, 0.03924175724387169, 0.00444909930229187, -0.09281162917613983, -0.11531247198581696 ]
null
null
transformers
# RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
{"tags": ["conversational"]}
text-generation
brimeggi/testbot2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# RickBot built for Chai Make your own here
[ "# RickBot built for Chai\nMake your own here" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# RickBot built for Chai\nMake your own here" ]
[ 51, 11 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# RickBot built for Chai\nMake your own here" ]
[ -0.011150825768709183, 0.04145511984825134, -0.004678801167756319, 0.0336763896048069, 0.12031115591526031, -0.014753859490156174, 0.22364185750484467, 0.107642263174057, 0.07693589478731155, -0.004552277270704508, 0.12704381346702576, 0.29545801877975464, 0.01173529215157032, 0.10052672773599625, -0.06006697565317154, -0.23993316292762756, 0.03390978276729584, 0.06282949447631836, -0.0436544194817543, 0.10080074518918991, 0.09193950891494751, -0.055171772837638855, 0.13131460547447205, -0.0022037639282643795, -0.19263046979904175, 0.02514885924756527, -0.0019302413566038013, -0.10980048030614853, 0.07051794230937958, 0.032110463827848434, 0.10150935500860214, 0.055141348391771317, -0.07856587320566177, -0.03893684223294258, 0.06976044923067093, -0.025181258097290993, -0.062095027416944504, 0.043997447937726974, 0.024688854813575745, -0.0770193412899971, 0.13691559433937073, 0.12698420882225037, -0.027915870770812035, 0.07780664414167404, -0.13704533874988556, 0.07647588849067688, -0.06611359119415283, 0.07881827652454376, 0.06463135778903961, 0.10425921529531479, -0.02596363238990307, 0.08331593871116638, -0.07413201779127121, 0.09951689839363098, 0.18445415794849396, -0.23128338158130646, -0.0723869726061821, 0.15064449608325958, 0.05655790492892265, 0.04300830885767937, -0.02898770570755005, 0.04599650576710701, 0.001124891801737249, -0.0024933130480349064, -0.0740271508693695, -0.1045415922999382, -0.18575459718704224, 0.003921935334801674, -0.05921151116490364, 0.0027330040466040373, 0.20704099535942078, -0.07176541537046432, 0.055981338024139404, -0.028761442750692368, -0.08862290531396866, -0.011062022298574448, -0.039405759423971176, 0.00685728807002306, -0.09016578644514084, 0.07460368424654007, -0.017557596787810326, -0.09335976839065552, -0.1395408809185028, -0.0661342442035675, -0.09819558262825012, 0.18369238078594208, 0.0613970048725605, 0.028007537126541138, -0.24504470825195312, 0.029439760372042656, 0.08148614317178726, -0.11067121475934982, -0.009260275401175022, -0.08271189779043198, 0.06354579329490662, -0.01859266497194767, -0.02253034897148609, -0.12807348370552063, 0.1749914437532425, 0.17171591520309448, 0.022881148383021355, 0.06281881779432297, -0.04948471486568451, 0.04479441046714783, 0.032528504729270935, 0.05031536519527435, -0.0015241607325151563, 0.05272556096315384, 0.021466167643666267, -0.12812519073486328, 0.009883233346045017, -0.07998165488243103, -0.17180003225803375, 0.03479284048080444, -0.07810257375240326, 0.07381381839513779, 0.007816702127456665, 0.12310265004634857, 0.025779662653803825, -0.03711586445569992, 0.13444221019744873, -0.04278641194105148, -0.0383361279964447, 0.01390223577618599, 0.03555385395884514, 0.08330917358398438, -0.0268411748111248, 0.054944224655628204, -0.11321454495191574, -0.02689424902200699, 0.012567145749926567, 0.029751433059573174, -0.051087986677885056, 0.007765055634081364, -0.01394432969391346, 0.006440861616283655, 0.014999439008533955, -0.16489700973033905, -0.10017409175634384, -0.025622084736824036, 0.03442199528217316, -0.03650323301553726, -0.0979449450969696, -0.04939094930887222, 0.002047834452241659, 0.022807663306593895, -0.038137588649988174, -0.017916161566972733, -0.025819536298513412, 0.07114581763744354, 0.0029115523211658, 0.08987545222043991, -0.13433027267456055, 0.06878834217786789, -0.025110384449362755, -0.07848629355430603, -0.10036339610815048, 0.0835830420255661, 0.0003210864379070699, 0.12125350534915924, -0.016314852982759476, 0.08317133039236069, -0.044009018689394, 0.07932858169078827, -0.06336653232574463, 0.18989576399326324, -0.11168016493320465, -0.06718592345714569, 0.2800406217575073, -0.11450672149658203, -0.23892457783222198, 0.09331201761960983, 0.008506255224347115, 0.09211769700050354, 0.11177093535661697, 0.13636447489261627, 0.04972507059574127, 0.033792681992053986, 0.009489930234849453, 0.025595908984541893, -0.12059012800455093, -0.0903896614909172, 0.023431167006492615, 0.038586851209402084, -0.0440131239593029, -0.004476291127502918, 0.10482443869113922, 0.061741214245557785, -0.027594411745667458, -0.01595555804669857, 0.011509356088936329, -0.05410397797822952, -0.031401317566633224, -0.013392975553870201, 0.11586759984493256, -0.025759808719158173, 0.00210106885060668, -0.15279918909072876, 0.077735036611557, -0.03957529366016388, 0.007007088512182236, -0.12549236416816711, 0.07694654166698456, 0.011993481777608395, 0.06650689989328384, -0.17508769035339355, -0.02817954495549202, -0.025211086496710777, 0.17221038043498993, 0.14804713428020477, 0.07574493438005447, 0.05816996842622757, -0.05344897508621216, 0.0063308910466730595, 0.01046198420226574, 0.16087333858013153, -0.04058145731687546, -0.06521812826395035, -0.09512296319007874, 0.08002325147390366, -0.06414329260587692, 0.002938115270808339, -0.03206503018736839, 0.04721028357744217, 0.11089026182889938, 0.10249800235033035, 0.021137559786438942, 0.036570899188518524, 0.0468742661178112, -0.021904466673731804, -0.09059461951255798, -0.0025291224010288715, 0.06415865570306778, 0.008340882137417793, -0.06686529517173767, 0.244649276137352, -0.10963868349790573, -0.020582865923643112, 0.1876053810119629, -0.26701411604881287, 0.03792291879653931, -0.015711847692728043, -0.008591122925281525, 0.015337553806602955, 0.0032015759497880936, 0.029499944299459457, 0.17180974781513214, -0.006066597066819668, 0.16907382011413574, -0.015202272683382034, 0.00553446589037776, -0.06523244827985764, -0.038884907960891724, -0.013328936882317066, 0.07910837233066559, 0.16297432780265808, -0.15726783871650696, 0.17121972143650055, 0.09138107299804688, 0.012600064277648926, 0.1565595120191574, 0.023086577653884888, 0.03244199976325035, 0.08116336166858673, 0.032992757856845856, 0.02831592783331871, -0.073691725730896, -0.17130137979984283, -0.061828989535570145, 0.04863770678639412, -0.0592825673520565, 0.08131495118141174, -0.06011629477143288, -0.02735399454832077, -0.047027479857206345, -0.0196701567620039, 0.08881430327892303, 0.13349686563014984, 0.005892445798963308, 0.09967100620269775, -0.03695422410964966, -0.008113699965178967, 0.04419396445155144, 0.012379536405205727, -0.022524189203977585, 0.14095182716846466, -0.04518243670463562, -0.2987024188041687, -0.09512696415185928, -0.19621825218200684, -0.07745537161827087, 0.07019653171300888, 0.14896398782730103, -0.2216813564300537, 0.008591565303504467, 0.007431990001350641, 0.03469269350171089, 0.0057189068756997585, -0.006030987482517958, -0.015324738807976246, 0.0020695175044238567, -0.12652523815631866, -0.06469849497079849, -0.03995681554079056, -0.05886904522776604, -0.058065593242645264, 0.18388505280017853, -0.1271546185016632, 0.0748671367764473, 0.13533318042755127, 0.0488121435046196, 0.0836564302444458, -0.018208900466561317, 0.12828132510185242, -0.11489463597536087, 0.04728242754936218, 0.33297815918922424, -0.014911501668393612, 0.05447712913155556, 0.11965532600879669, -0.006807335652410984, -0.11554266512393951, 0.04613998532295227, 0.008967476896941662, -0.09810378402471542, -0.27229517698287964, -0.06620300561189651, -0.10128438472747803, 0.06990574300289154, 0.10992177575826645, 0.08760596811771393, 0.12593884766101837, 0.15041570365428925, -0.05547543242573738, 0.07711178809404373, 0.01074469555169344, 0.10777407139539719, 0.009291023947298527, -0.016701804473996162, 0.09913180023431778, -0.06781642884016037, -0.10634220391511917, 0.07089509069919586, 0.09629807621240616, 0.03884149342775345, 0.06647439301013947, 0.19313450157642365, 0.041681669652462006, 0.027318425476551056, 0.13684289157390594, 0.04659007489681244, 0.03561336547136307, -0.026196852326393127, 0.006501676514744759, -0.041376423090696335, -0.09997225552797318, 0.04355200007557869, 0.004561592824757099, -0.14705702662467957, 0.015124601311981678, 0.06202467903494835, 0.0729237049818039, 0.158702552318573, 0.007492720149457455, -0.14139723777770996, -0.004496438428759575, 0.055216897279024124, -0.02326507866382599, -0.09171844273805618, 0.07388392090797424, 0.008532962761819363, -0.07785152643918991, 0.014345762319862843, -0.04367091879248619, 0.159242644906044, -0.09109298884868622, 0.052159398794174194, -0.0778718814253807, -0.034777406603097916, 0.022839171811938286, 0.06558409333229065, -0.3533845543861389, 0.13549847900867462, 0.0010301335714757442, -0.028002653270959854, -0.154065802693367, 0.012745370157063007, 0.06702077388763428, 0.06363264471292496, 0.06907512992620468, -0.03866896778345108, -0.1959158033132553, 0.02490222454071045, -0.04112877696752548, 0.04166330024600029, 0.073206327855587, -0.13520319759845734, -0.014110401272773743, -0.02865438722074032, -0.008597485721111298, -0.07435891032218933, -0.1308484524488449, -0.0359705314040184, -0.17551545798778534, 0.09144087135791779, 0.17086191475391388, 0.10375957936048508, 0.04504114389419556, 0.027132602408528328, -0.0369754433631897, 0.21345476806163788, -0.020323697477579117, -0.1034807562828064, -0.09707645326852798, 0.00899566151201725, -0.03669795021414757, -0.14438602328300476, -0.06826160103082657, -0.08500970900058746, 0.06948389858007431, -0.05479807406663895, -0.16429416835308075, 0.0664532333612442, -0.10114073008298874, -0.013078792952001095, -0.03765523433685303, 0.12497803568840027, -0.007246227469295263, -0.008749946020543575, 0.03311752527952194, -0.030120741575956345, -0.11985611915588379, -0.08176644891500473, -0.054455190896987915, -0.03313582018017769, 0.10898244380950928, 0.03178788349032402, -0.060182321816682816, -0.029223443940281868, -0.11810410767793655, -0.06850437074899673, 0.2953953742980957, 0.048750199377536774, 0.0011476759100332856, 0.1064702570438385, 0.11998409777879715, -0.026253286749124527, -0.30850672721862793, -0.18515169620513916, -0.10324754565954208, -0.07156272232532501, -0.09736256301403046, -0.25403234362602234, 0.12436222285032272, -0.0335036963224411, -0.01675211451947689, 0.009999006986618042, -0.1482304483652115, -0.07798433303833008, 0.17459677159786224, 0.0960831344127655, 0.3324183225631714, -0.2147013396024704, -0.08125697821378708, -0.045545533299446106, -0.10183548927307129, 0.1337030977010727, -0.12427008897066116, 0.08163981884717941, -0.021709877997636795, 0.17697377502918243, 0.036356084048748016, -0.007669156417250633, 0.061197590082883835, 0.0165790356695652, -0.03576446324586868, -0.11456618458032608, -0.0949815884232521, -0.062285855412483215, -0.023734034970402718, 0.03625256195664406, -0.17582274973392487, -0.005316399037837982, -0.06139196828007698, -0.012871351093053818, -0.045776695013046265, -0.02323254384100437, 0.03540283441543579, -0.051677156239748, -0.04283729940652847, -0.02387452870607376, -0.03803243488073349, 0.0766170546412468, 0.29606303572654724, -0.12661902606487274, 0.16752280294895172, -0.0235548485070467, 0.13178594410419464, -0.1487894058227539, 0.055568672716617584, -0.09460576623678207, -0.027501055970788002, 0.08097141981124878, -0.15464220941066742, 0.09064224362373352, 0.04359215870499611, -0.05186206474900246, 0.08253858238458633, 0.06058661267161369, -0.027206817641854286, 0.050504282116889954, 0.1030048131942749, -0.1946556270122528, -0.008140803314745426, -0.06801281869411469, 0.18052810430526733, 0.062286924570798874, 0.09994987398386002, 0.1874670833349228, 0.0467493012547493, -0.09175365418195724, -0.012064900249242783, 0.013536111451685429, -0.0073389932513237, -0.028363555669784546, -0.018552642315626144, 0.021644212305545807, -0.16380125284194946, 0.0023503610864281654, 0.07252131402492523, -0.12429165095090866, 0.013667360879480839, 0.19531947374343872, -0.0851740911602974, -0.19131523370742798, 0.04346149042248726, 0.1363009363412857, -0.10759901255369186, -0.04208676889538765, -0.07584953308105469, -0.09931711107492447, 0.056875601410865784, 0.2033785730600357, 0.06292885541915894, 0.04524875432252884, 0.004822042305022478, -0.0002772643347270787, -0.1010119616985321, -0.047460515052080154, -0.08081039786338806, 0.03733786940574646, -0.10505487769842148, -0.012283687479794025, 0.005029068794101477, 0.14626851677894592, -0.06110671907663345, -0.089434914290905, -0.17466799914836884, 0.023813553154468536, -0.05858519673347473, 0.0035903272219002247, -0.14766481518745422, -0.026399163529276848, 0.02539767138659954, -0.01964368112385273, -0.004960834980010986, -0.007630054838955402, -0.11123208701610565, 0.025453854352235794, -0.025042889639735222, 0.042506176978349686, -0.10014936327934265, 0.024258971214294434, 0.0711839497089386, -0.024820713326334953, 0.11761793494224548, 0.1190042570233345, -0.11866077035665512, 0.04764719679951668, -0.15923887491226196, -0.08187411725521088, 0.022488078102469444, 0.03590327873826027, 0.03507033735513687, 0.08500542491674423, 0.010912326164543629, 0.018734728917479515, 0.06046512722969055, 0.02761923335492611, 0.11158962547779083, -0.038912855088710785, 0.08990641683340073, -0.013808606192469597, -0.12740086019039154, -0.0660703256726265, 0.0416606068611145, 0.10682083666324615, 0.035968758165836334, 0.05841828137636185, -0.03538830950856209, 0.09410617500543594, 0.013924412429332733, 0.06963547319173813, 0.04351218789815903, -0.14281147718429565, -0.04232218489050865, -0.15254423022270203, -0.0028134919703006744, 0.0072293970733881, 0.07407944649457932, -0.021257344633340836, -0.0306708887219429, 0.01805225759744644, 0.022716881707310677, 0.036802832037210464, -0.004505137447267771, 0.09737822413444519, 0.037957534193992615, -0.03651722893118858, -0.007493763230741024, 0.06138896197080612, 0.05557063966989517, 0.034625113010406494, 0.1558184027671814, 0.016855424270033836, 0.022541828453540802, 0.05459111928939819, 0.00021506089251488447, 0.09596238285303116, -0.09968727082014084, -0.18966199457645416, -0.08669472485780716, -0.04572615772485733, -0.017309989780187607, 0.07101890444755554, 0.17730264365673065, 0.025944240391254425, -0.017496660351753235, -0.02185484766960144, -0.018809257075190544, -0.13819409906864166, -0.13924674689769745, -0.09923655539751053, -0.08295009285211563, 0.010302786715328693, -0.06547936052083969, 0.008622035384178162, 0.0429561547935009, 0.07416389882564545, -0.02213001251220703, 0.11072047799825668, 0.02742348611354828, -0.05974116176366806, -0.006397634744644165, -0.06030748039484024, 0.01979765295982361, 0.0072073726914823055, 0.003625538432970643, -0.12173435837030411, 0.006730447988957167, -0.018358416855335236, 0.07507095485925674, -0.0039097946137189865, 0.04177648946642876, -0.14360228180885315, -0.1113654375076294, -0.03811272978782654, 0.034663498401641846, 0.04300718382000923, 0.16560636460781097, 0.009351578541100025, -0.022764934226870537, 0.03501512110233307, 0.17225335538387299, -0.017210962250828743, 0.009951808489859104, -0.11371740698814392, 0.1367739737033844, 0.022824157029390335, 0.00987140741199255, -0.06235736235976219, 0.052293017506599426, -0.11000658571720123, 0.3725379407405853, 0.21688275039196014, -0.082478366792202, 0.038590408861637115, -0.008527091704308987, 0.039700184017419815, 0.0383303165435791, 0.1024225652217865, 0.11315328627824783, 0.15367384254932404, -0.051926493644714355, -0.09003793448209763, 0.0053548747673630714, -0.012177581898868084, -0.1317627876996994, 0.034142687916755676, -0.023356063291430473, -0.040136344730854034, 0.018593275919556618, 0.08878863602876663, -0.21441587805747986, 0.0843212753534317, -0.03396274521946907, -0.13209901750087738, -0.06279335170984268, 0.01857992261648178, 0.06839549541473389, 0.04653763025999069, 0.07333647459745407, 0.033219270408153534, -0.06545223295688629, 0.026792118325829506, 0.031573474407196045, -0.1744329184293747, 0.05073285102844238, 0.09530770033597946, -0.14062967896461487, 0.06670670956373215, -0.04199307784438133, -0.004909933544695377, 0.11723243445158005, -0.006381740793585777, -0.04085194692015648, 0.03770015388727188, -0.0081280916929245, -0.08167796581983566, 0.04233407974243164, 0.08753055334091187, -0.034240081906318665, -0.012756445445120335, 0.06541509926319122, -0.16743704676628113, 0.0004542646056506783, 0.017856068909168243, 0.025573154911398888, 0.0025928583927452564, 0.097262442111969, -0.10714802891016006, 0.07844609767198563, 0.06521432846784592, -0.013839715160429478, 0.0012886598706245422, -0.003330953186377883, 0.014234711416065693, -0.02646373026072979, -0.10552996397018433, -0.16352126002311707, -0.13091902434825897, -0.12098806351423264, -0.019180940464138985, 0.02048540487885475, -0.2037709653377533, 0.02888486161828041, -0.11173636466264725, 0.04233136028051376, -0.16543053090572357, 0.04983004555106163, 0.1280258446931839, -0.0013291090726852417, 0.01008687075227499, -0.002106369473040104, 0.018125692382454872, 0.08920411765575409, -0.14706610143184662, -0.09701342135667801 ]
null
null
transformers
# My Awesome Model
{"tags": ["conversational"]}
text-generation
brokentx/newbrokiev2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
[ 51, 4 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Awesome Model" ]
[ -0.05259015038609505, 0.05521034821867943, -0.005910294596105814, 0.017722278833389282, 0.15250112116336823, 0.02286236733198166, 0.07657632976770401, 0.09513414651155472, -0.025391526520252228, -0.047348517924547195, 0.15119488537311554, 0.19781284034252167, -0.020334534347057343, 0.101333387196064, -0.04688440263271332, -0.3143521845340729, 0.06439975649118423, 0.05463787540793419, -0.015605635941028595, 0.12023304402828217, 0.09468326717615128, -0.0530015267431736, 0.08742043375968933, -0.012155864387750626, -0.1293085366487503, -0.0027921805158257484, -0.002384399762377143, -0.10180269181728363, 0.11194873601198196, 0.033712033182382584, 0.05166437849402428, 0.0182647667825222, -0.05843055993318558, -0.139859139919281, 0.03845210000872612, -0.015005595050752163, -0.05602653697133064, 0.05648263916373253, 0.059830192476511, -0.07164353132247925, 0.1669619083404541, 0.13275989890098572, -0.04237370565533638, 0.056127581745386124, -0.17620700597763062, 0.017941240221261978, 0.01800798624753952, 0.019184142351150513, 0.05306641012430191, 0.10830496996641159, -0.03932326287031174, 0.09217294305562973, -0.11410652846097946, 0.08313368260860443, 0.07800983637571335, -0.29151955246925354, -0.025312699377536774, 0.10440942645072937, 0.06437138468027115, 0.048375632613897324, -0.013386772945523262, 0.0621674507856369, 0.02149512618780136, 0.008602659218013287, 0.02225899137556553, -0.06727100163698196, -0.05789240449666977, 0.032748885452747345, -0.0967593789100647, -0.03634428232908249, 0.19753605127334595, -0.024647634476423264, 0.053590498864650726, -0.06265407055616379, -0.11300963163375854, -0.039751436561346054, -0.050429005175828934, -0.029761891812086105, -0.05090925097465515, 0.09489558637142181, 0.004352911841124296, -0.09534718841314316, -0.13405443727970123, -0.01370926946401596, -0.1618979275226593, 0.15892250835895538, 0.012579603120684624, 0.046201955527067184, -0.19210097193717957, 0.11465331166982651, -0.03857925534248352, -0.08259090781211853, 0.030513519421219826, -0.12010065466165543, 0.03160654753446579, -0.008132083341479301, -0.019599268212914467, -0.049325279891490936, 0.061037879437208176, 0.08101806789636612, 0.018783701583743095, 0.005755073390901089, 0.018167443573474884, 0.05343452841043472, 0.05891622602939606, 0.10033947974443436, -0.02891627699136734, -0.0625043511390686, 0.0025436533614993095, -0.12051084637641907, -0.01122665498405695, -0.05357983708381653, -0.18095199763774872, 0.002246231772005558, 0.02455340512096882, 0.05192234739661217, 0.011778532527387142, 0.09955989569425583, -0.028496338054537773, -0.026898741722106934, 0.06898727267980576, 0.002862759632989764, -0.015707949176430702, -0.005368964280933142, -0.010934269987046719, 0.11485416442155838, -0.023099146783351898, 0.04774846136569977, -0.12022071331739426, 0.020393015816807747, -0.07851235568523407, -0.0019349842332303524, -0.06214260309934616, -0.04864754155278206, -0.0019346009939908981, -0.06985589861869812, 0.021118074655532837, -0.14833110570907593, -0.17990200221538544, -0.005064866971224546, 0.021302316337823868, -0.052403319627046585, -0.09162671118974686, -0.0982397273182869, -0.02586611732840538, 0.03574685752391815, -0.05873546749353409, 0.013170980848371983, -0.06884536147117615, 0.06542801111936569, 0.0029820678755640984, 0.05682007595896721, -0.14085575938224792, 0.08719147741794586, -0.12582023441791534, -0.023288866505026817, -0.061977192759513855, 0.1109607070684433, 0.024780582636594772, 0.1267160177230835, 0.004311583004891872, -0.0033308975398540497, -0.08729329705238342, 0.08271238207817078, -0.04243258014321327, 0.22770646214485168, -0.10479787737131119, -0.08809807151556015, 0.2632525563240051, -0.05423165112733841, -0.16432519257068634, 0.10179096460342407, -0.014350244775414467, 0.12198644131422043, 0.13850919902324677, 0.16080057621002197, 0.007628654129803181, 0.03313867375254631, 0.10115300863981247, 0.08631709218025208, -0.08573295921087265, -0.0611947737634182, 0.023627014830708504, -0.011463395319879055, -0.10670105367898941, 0.046802595257759094, 0.04794782027602196, 0.08188598603010178, -0.04982871189713478, -0.028600862249732018, -0.01972118206322193, -0.044152840971946716, 0.05264130234718323, 0.007675500120967627, 0.13217447698116302, -0.03674980252981186, -0.03692879155278206, -0.023745311424136162, 0.01699630729854107, -0.03115241602063179, 0.007061392068862915, -0.05687357112765312, 0.11091547459363937, -0.03406180441379547, 0.051789235323667526, -0.16953988373279572, -0.04873261600732803, -0.02087729424238205, 0.1402055323123932, 0.04973345249891281, 0.1329866498708725, 0.06287940591573715, -0.010758201591670513, 0.00859389640390873, 0.007998145185410976, 0.13181665539741516, 0.007865442894399166, -0.07660657912492752, -0.047718439251184464, 0.09176599979400635, -0.05973208695650101, 0.06147782504558563, -0.098741315305233, -0.004747362341731787, -0.01433002483099699, 0.08674649894237518, 0.006352655589580536, 0.029382232576608658, -0.006192679051309824, 0.003654100699350238, -0.06161240115761757, 0.017873648554086685, 0.12492607533931732, -0.01421504095196724, -0.07439801841974258, 0.22084392607212067, -0.15798072516918182, 0.18006981909275055, 0.18165533244609833, -0.3081994652748108, 0.024602634832262993, -0.08860466629266739, -0.036338552832603455, 0.03426366671919823, 0.0491504967212677, -0.034147560596466064, 0.16587987542152405, -0.016766328364610672, 0.201018825173378, -0.03547777235507965, -0.01287798210978508, -0.010399105958640575, -0.03656993433833122, -0.010632630437612534, 0.09065473079681396, 0.15122920274734497, -0.1677125245332718, 0.18270380795001984, 0.1660280078649521, 0.06873020529747009, 0.17776396870613098, 0.034313347190618515, -0.006856906693428755, 0.07112615555524826, -0.022670727223157883, -0.07675548642873764, -0.049287427216768265, -0.26302891969680786, -0.027947327122092247, 0.06471601128578186, 0.04510856419801712, 0.11924877762794495, -0.10971947014331818, -0.037208184599876404, 0.010892451740801334, -0.013165894895792007, 0.02132410928606987, 0.09682225435972214, 0.01171150617301464, 0.11804302036762238, -0.021027036011219025, -0.05209195241332054, 0.0898953229188919, 0.02727191150188446, -0.0787680521607399, 0.19168277084827423, -0.10074768215417862, -0.3233809769153595, -0.11354339867830276, -0.18166927993297577, -0.017843691632151604, 0.05878754332661629, 0.08049646019935608, -0.09228580445051193, -0.02625267766416073, -0.01639235019683838, 0.0758359357714653, -0.09145816415548325, -0.015880629420280457, -0.09367848187685013, 0.034986745566129684, -0.10827737301588058, -0.07011983543634415, -0.05141967162489891, -0.03368452936410904, -0.04457031562924385, 0.13157756626605988, -0.12242637574672699, 0.06396433711051941, 0.2076517641544342, 0.06227295100688934, 0.05622440204024315, -0.0229496993124485, 0.23288212716579437, -0.10842552781105042, 0.02383521944284439, 0.1717897206544876, -0.03566030040383339, 0.0727933868765831, 0.13435456156730652, 0.006721907295286655, -0.08144525438547134, 0.03465581312775612, -0.04592517390847206, -0.08630958944559097, -0.20441576838493347, -0.14156180620193481, -0.12814727425575256, 0.07913564145565033, 0.03285396471619606, 0.05478321388363838, 0.15024253726005554, 0.11386489123106003, 0.007987297140061855, 0.00976672861725092, -0.006888182368129492, 0.05438044294714928, 0.17482298612594604, -0.05838097631931305, 0.10041683167219162, -0.037591226398944855, -0.1924494504928589, 0.08022978901863098, 0.04309763014316559, 0.08280511945486069, 0.07474655658006668, 0.0856199786067009, 0.013537914492189884, 0.03723837807774544, 0.10897084325551987, 0.1165735274553299, 0.031679023057222366, -0.038079675287008286, -0.04882059991359711, -0.026300756260752678, -0.03285675123333931, 0.05745977535843849, 0.07790146768093109, -0.1608346849679947, -0.06348084658384323, -0.06350091099739075, 0.07662643492221832, 0.09017108380794525, 0.11811108142137527, -0.21219493448734283, 0.01579318381845951, 0.092556893825531, -0.0494147390127182, -0.1304239183664322, 0.07402537018060684, -0.00466050673276186, -0.1397053301334381, 0.037663187831640244, -0.014095795340836048, 0.1359514445066452, -0.0778401643037796, 0.10336452722549438, -0.08307972550392151, -0.06147889420390129, 0.03632286190986633, 0.1355396956205368, -0.30774354934692383, 0.2137020230293274, -0.022472934797406197, -0.05296783149242401, -0.10508129745721817, -0.011727629229426384, 0.020913105458021164, 0.09079049527645111, 0.10090240091085434, -0.0025442070327699184, 0.0061299679800868034, -0.0345483273267746, -0.053218815475702286, 0.024456629529595375, 0.07957815378904343, -0.08542889356613159, 0.0017540202243253589, -0.02361489273607731, -0.004407065454870462, -0.032844748347997665, -0.01189463958144188, -0.011617658659815788, -0.16786961257457733, 0.06556065380573273, -0.002625665394589305, 0.11129079759120941, 0.03491498529911041, 0.0024013579823076725, -0.1009332686662674, 0.19977013766765594, 0.01796281896531582, -0.08052749931812286, -0.08830537647008896, -0.03254766762256622, 0.03660419583320618, -0.06121435388922691, 0.027481911703944206, -0.06916457414627075, 0.033381566405296326, -0.06441576033830643, -0.18325145542621613, 0.1268530637025833, -0.10945470631122589, -0.03609596937894821, -0.04321056231856346, 0.18323224782943726, -0.00929707009345293, -0.0011623724130913615, 0.05866571143269539, 0.0032208464108407497, -0.1347510665655136, -0.10740556567907333, 0.020214511081576347, -0.015275230631232262, 0.009142245166003704, 0.05559912323951721, -0.009665844030678272, 0.00045268211397342384, -0.039558928459882736, -0.023234419524669647, 0.32348164916038513, 0.10732097923755646, -0.04944206401705742, 0.17007054388523102, 0.13087597489356995, -0.0827672928571701, -0.30699312686920166, -0.10971353948116302, -0.10529600828886032, -0.026918673887848854, -0.037983208894729614, -0.19617970287799835, 0.09504909813404083, -0.03528566658496857, -0.022136637941002846, 0.11253651231527328, -0.2759084105491638, -0.0770430713891983, 0.1826775223016739, 0.003314757253974676, 0.3998824954032898, -0.10265109688043594, -0.08777514100074768, -0.06741699576377869, -0.1120782196521759, 0.2033512443304062, -0.05560711398720741, 0.08663415163755417, -0.00517998356372118, 0.15513743460178375, 0.055607251822948456, -0.02176513522863388, 0.08932057023048401, -0.005811662413179874, -0.0546204075217247, -0.1219351515173912, -0.03444604203104973, -0.009159418754279613, 0.007239421829581261, 0.03589896112680435, -0.04242607578635216, 0.01279151439666748, -0.1399589478969574, -0.045490626245737076, -0.0764620453119278, 0.024699507281184196, 0.021008269861340523, -0.0652410089969635, -0.01643640361726284, -0.03945036977529526, -0.012804778292775154, 0.03164318576455116, 0.15236099064350128, -0.06478006392717361, 0.1476556956768036, 0.04904455319046974, 0.15412139892578125, -0.14745712280273438, -0.02258288487792015, -0.06896031647920609, -0.05498642474412918, 0.04900865629315376, -0.10053684562444687, 0.050061121582984924, 0.1202658861875534, -0.0742902010679245, 0.0987328365445137, 0.0922594666481018, -0.01938629150390625, 0.0012483424507081509, 0.1226617842912674, -0.2489612102508545, -0.07742628455162048, -0.10509459674358368, 0.013337249867618084, 0.10138551890850067, 0.06995654851198196, 0.17304721474647522, -0.0037713919300585985, -0.036284226924180984, -0.0064643872901797295, 0.025414984673261642, -0.03540204465389252, 0.05724727362394333, -0.002706433180719614, 0.016663886606693268, -0.15213344991207123, 0.060368724167346954, -0.00024176653823815286, -0.1438901126384735, -0.013603870756924152, 0.16073721647262573, -0.11208858340978622, -0.15145981311798096, -0.007263668347150087, 0.13685113191604614, -0.13171035051345825, -0.03302847594022751, -0.03708777576684952, -0.170182466506958, 0.07439173012971878, 0.1024777740240097, 0.08549231290817261, 0.08025266975164413, -0.06620611250400543, -0.00807863101363182, -0.011656313203275204, -0.026087598875164986, 0.031810320913791656, -0.023377234116196632, -0.09044221043586731, 0.03872343525290489, -0.026654237881302834, 0.13591371476650238, -0.09607382118701935, -0.09331836551427841, -0.135749951004982, 0.039314381778240204, -0.12405620515346527, -0.08138058334589005, -0.12200927734375, -0.0591500885784626, 0.00224387738853693, -0.0001289021165575832, -0.035674065351486206, -0.06687422841787338, -0.13582271337509155, 0.04366770386695862, -0.04484611004590988, 0.0013091047294437885, -0.040241483598947525, 0.04561002552509308, 0.06766383349895477, -0.03493715822696686, 0.13722217082977295, 0.11722734570503235, -0.07864081114530563, 0.08946478366851807, -0.16657429933547974, -0.0683990865945816, 0.08854512125253677, 0.008173754438757896, 0.06165994703769684, 0.06743349134922028, 0.033807408064603806, 0.06109451875090599, 0.04151686280965805, 0.03488299250602722, 0.01739438995718956, -0.09271225333213806, 0.015541021712124348, 0.022296719253063202, -0.1294609159231186, -0.04801803454756737, -0.029226921498775482, 0.00939185917377472, 0.008117396384477615, 0.11003357172012329, -0.0426274873316288, 0.09439733624458313, -0.05888751894235611, 0.036728594452142715, 0.016222506761550903, -0.16461637616157532, -0.020102784037590027, -0.11915475130081177, 0.028684545308351517, -0.0033096212428063154, 0.25625869631767273, 0.06346847862005234, 0.020517030730843544, 0.01250078622251749, 0.08567021042108536, 0.07241600006818771, 0.02562166005373001, 0.1956365555524826, 0.10854171961545944, -0.05020022392272949, -0.12334850430488586, 0.09686340391635895, 0.034720368683338165, 0.06432123482227325, 0.13385434448719025, -0.026959087699651718, 0.002498799469321966, 0.11019360274076462, 0.011678861454129219, 0.04961980879306793, -0.09859088063240051, -0.16400282084941864, -0.00994415208697319, 0.061864156275987625, -0.04559077322483063, 0.12240655720233917, 0.11382720619440079, -0.020697353407740593, 0.03180128335952759, -0.010503606870770454, -0.05694027617573738, -0.16998925805091858, -0.1630837321281433, -0.08357038348913193, -0.11794789135456085, -0.0027763545513153076, -0.11386270076036453, 0.013879159465432167, 0.06452289968729019, 0.0604364387691021, -0.09019444137811661, 0.08891061693429947, 0.0687386617064476, -0.11843101680278778, 0.08828350901603699, -0.033263903111219406, 0.07249268144369125, 0.0015160300536081195, 0.003872724948450923, -0.13800905644893646, 0.032393742352724075, -0.008493867702782154, 0.04159298539161682, -0.09244006127119064, 0.022458361461758614, -0.11297028511762619, -0.07659684121608734, -0.07971972227096558, 0.05093973129987717, -0.03541257977485657, 0.1390930563211441, 0.001295371213927865, -0.035233911126852036, 0.024190181866288185, 0.22729112207889557, -0.06350252777338028, -0.030667411163449287, -0.0618741400539875, 0.21414142847061157, 0.024466563016176224, 0.10703565180301666, -0.016775688156485558, 0.019240234047174454, -0.0764411985874176, 0.3689337372779846, 0.344390869140625, -0.1225387305021286, -0.0015968306688591838, 0.031062176451086998, 0.036916591227054596, 0.11621878296136856, 0.12602226436138153, 0.057955991476774216, 0.2995031177997589, -0.08396036922931671, -0.002026971662417054, -0.02688612788915634, -0.03624163940548897, -0.04409930482506752, 0.10547586530447006, 0.06835740804672241, -0.03330419585108757, -0.027012333273887634, 0.1376710683107376, -0.2966996431350708, 0.12323499470949173, -0.15714547038078308, -0.1487535685300827, -0.06873904913663864, -0.005042468197643757, 0.08589684963226318, 0.04748665541410446, 0.1069009080529213, -0.019124338403344154, -0.08203735202550888, 0.05766449123620987, 0.0320524163544178, -0.22844897210597992, 0.011852608993649483, 0.08361081779003143, -0.06153005734086037, 0.011767351068556309, -0.017906347289681435, 0.038472190499305725, 0.07790610194206238, 0.025976579636335373, -0.032770540565252304, 0.06325861811637878, -0.005814229138195515, -0.05033424496650696, 0.04302205145359039, 0.05059972032904625, 0.017107632011175156, -0.1511564701795578, 0.07320158183574677, -0.1762860119342804, 0.0566408596932888, -0.005331212189048529, -0.04948166385293007, 0.000018263708625454456, 0.01998119056224823, -0.06808236241340637, 0.05880929157137871, 0.0952666699886322, -0.012173139490187168, -0.002317852806299925, -0.056667573750019073, 0.007662574760615826, -0.0679154172539711, -0.0747012197971344, -0.10497893393039703, -0.1338900774717331, -0.11392296850681305, 0.10846775025129318, -0.011928223073482513, -0.19833622872829437, 0.02906924858689308, -0.11258108913898468, 0.04933213070034981, -0.13360801339149475, 0.08599711954593658, 0.1282832771539688, 0.021543797105550766, -0.01265349704772234, 0.04020093381404877, 0.01591683179140091, 0.08550478518009186, -0.09200563281774521, -0.10515180230140686 ]
null
null
transformers
# docusco-bert ## Model description **docusco-bert** is a fine-tuned BERT model that is ready to use for **token classification**. The model was trained on data sampled from the Corpus of Contemporary American English ([COCA](https://www.english-corpora.org/coca/)) and classifies tokens and token sequences according to a system developed for the [**DocuScope**](https://www.cmu.edu/dietrich/english/research-and-publications/docuscope.html) dictionary-based tagger. Descriptions of the categories are included in a table below. ## About DocuScope DocuScope is a dicitonary-based tagger that has been developed at Carnegie Mellon University by **David Kaufer** and **Suguru Ishizaki** since the early 2000s. Its categories are rhetorical in their orientation (as opposed to part-of-speech tags, for example, which are morphosyntactic). DocuScope has been been used in [a wide variety of studies](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=docuscope&btnG=). Here, for example, is [a short analysis of King Lear](https://graphics.cs.wisc.edu/WP/vep/2017/02/14/guest-post-data-mining-king-lear/), and here is [a published study of Tweets](https://journals.sagepub.com/doi/full/10.1177/2055207619844865). ## Intended uses & limitations #### How to use The model was trained on data with tags formatted using [IOB](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("browndw/docusco-bert") model = AutoModelForTokenClassification.from_pretrained("browndw/docusco-bert") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Globalization is the process of interaction and integration among people, companies, and governments worldwide." ds_results = nlp(example) print(ds_results) ``` #### Limitations and bias This model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy. ## Training data This model was fine-tuned on data from the Corpus of Contemporary American English ([COCA](https://www.english-corpora.org/coca/)). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken. Typically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split **B + I** sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point). Additionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of: * 21,460,177 tokens * 15,796,305 chunks The specific counts for each category appear in the following table. Category|Count -|- O|3528038 Syntactic Complexity|2032808 Character|1413771 Description|1224744 Narrative|1159201 Negative|651012 Academic Terms|620932 Interactive|594908 Information Exposition|578228 Positive|463914 Force Stressed|432631 Information Topics|394155 First Person|249744 Metadiscourse Cohesive|240822 Strategic|238255 Public Terms|234213 Reasoning|213775 Information Place|187249 Information States|173146 Information ReportVerbs|119092 Confidence High|112861 Confidence Hedged|110008 Future|96101 Inquiry|94995 Contingent|94860 Information Change|89063 Metadiscourse Interactive|84033 Updates|81424 Citation|71241 Facilitate|50451 Uncertainty|35644 Academic WritingMoves|29352 Information ChangePositive|28475 Responsibility|25362 Citation Authority|22414 Information ChangeNegative|15612 Confidence Low|2876 Citation Hedged|895 -|- Total|15796305 ## Training procedure This model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805). ## Eval results ### Overall metric|test -|- f1 |.927 accuracy |.943 ### By category category|precision|recall|f1-score|support -|-|-|-|- AcademicTerms|0.91|0.92|0.92|486399 AcademicWritingMoves|0.76|0.82|0.79|20017 Character|0.94|0.95|0.94|1260272 Citation|0.92|0.94|0.93|50812 CitationAuthority|0.86|0.88|0.87|17798 CitationHedged|0.91|0.94|0.92|632 ConfidenceHedged|0.94|0.96|0.95|90393 ConfidenceHigh|0.92|0.94|0.93|113569 ConfidenceLow|0.79|0.81|0.80|2556 Contingent|0.92|0.94|0.93|81366 Description|0.87|0.89|0.88|1098598 Facilitate|0.87|0.90|0.89|41760 FirstPerson|0.96|0.98|0.97|330658 ForceStressed|0.93|0.94|0.93|436188 Future|0.90|0.93|0.92|93365 InformationChange|0.88|0.91|0.89|72813 InformationChangeNegative|0.83|0.85|0.84|12740 InformationChangePositive|0.82|0.86|0.84|22994 InformationExposition|0.94|0.95|0.95|468078 InformationPlace|0.95|0.96|0.96|147688 InformationReportVerbs|0.91|0.93|0.92|95563 InformationStates|0.95|0.95|0.95|139429 InformationTopics|0.90|0.92|0.91|328152 Inquiry|0.85|0.89|0.87|79030 Interactive|0.95|0.96|0.95|602857 MetadiscourseCohesive|0.97|0.98|0.98|195548 MetadiscourseInteractive|0.92|0.94|0.93|73159 Narrative|0.92|0.94|0.93|1023452 Negative|0.88|0.89|0.88|645810 Positive|0.87|0.89|0.88|409775 PublicTerms|0.91|0.92|0.91|184108 Reasoning|0.93|0.95|0.94|169208 Responsibility|0.83|0.87|0.85|21819 Strategic|0.88|0.90|0.89|193768 SyntacticComplexity|0.95|0.96|0.96|1635918 Uncertainty|0.87|0.91|0.89|33684 Updates|0.91|0.93|0.92|77760 -|-|-|-|- micro avg|0.92|0.93|0.93|10757736 macro avg|0.90|0.92|0.91|10757736 weighted avg|0.92|0.93|0.93|10757736 ## DocuScope Category Descriptions Category (Cluster)|Description|Examples -|-|- Academic Terms|Abstract, rare, specialized, or disciplinary-specific terms that are indicative of informationally dense writing|*market price*, *storage capacity*, *regulatory*, *distribution* Academic Writing Moves|Phrases and terms that indicate academic writing moves, which are common in research genres and are derived from the work of Swales (1981) and Cotos et al. (2015, 2017)|*in the first section*, *the problem is that*, *payment methodology*, *point of contention* Character|References multiple dimensions of a character or human being as a social agent, both individual and collective|*Pauline*, *her*, *personnel*, *representatives* Citation|Language that indicates the attribution of information to, or citation of, another source.|*according to*, *is proposing that*, *quotes from* Citation Authorized|Referencing the citation of another source that is represented as true and not arguable|*confirm that*, *provide evidence*, *common sense* Citation Hedged|Referencing the citation of another source that is presented as arguable|*suggest that*, *just one opinion* Confidence Hedged|Referencing language that presents a claim as uncertain|*tends to get*, *maybe*, *it seems that* Confidence High|Referencing language that presents a claim with certainty|*most likely*, *ensure that*, *know that*, *obviously* Confidence Low|Referencing language that presents a claim as extremely unlikely|*unlikely*, *out of the question*, *impossible* Contingent|Referencing contingency, typically contingency in the world, rather than contingency in one's knowledge|*subject to*, *if possible*, *just in case*, *hypothetically* Description|Language that evokes sights, sounds, smells, touches and tastes, as well as scenes and objects|*stay quiet*, *gas-fired*, *solar panels*, *soft*, *on my desk* Facilitate|Language that enables or directs one through specific tasks and actions|*let me*, *worth a try*, *I would suggest* First Person|This cluster captures first person.|*I*, *as soon as I*, *we have been* Force Stressed|Language that is forceful and stressed, often using emphatics, comparative forms, or superlative forms|*really good*, *the sooner the better*, *necessary* Future|Referencing future actions, states, or desires|*will be*, *hope to*, *expected changes* Information Change|Referencing changes of information, particularly changes that are more neutral|*changes*, *revised*, *growth*, *modification to* Information Change Negative|Referencing negative change|*going downhill*, *slow erosion*, *get worse* Information Change Positive|Referencing positive change|*improving*, *accrued interest*, *boost morale* Information Exposition|Information in the form of expository devices, or language that describes or explains, frequently in regards to quantities and comparisons|*final amount*, *several*, *three*, *compare*, *80%* Information Place|Language designating places|*the city*, *surrounding areas*, *Houston*, *home* Information Report Verbs|Informational verbs and verb phrases of reporting|*report*, *posted*, *release*, *point out* Information States|Referencing information states, or states of being|*is*, *are*, *existing*, *been* Information Topics|Referencing topics, usually nominal subjects or objects, that indicate the “aboutness” of a text|*time*, *money*, *stock price*, *phone interview* Inquiry|Referencing inquiry, or language that points to some kind of inquiry or investigation|*find out*, *let me know if you have any questions*, *wondering if* Interactive|Addresses from the author to the reader or from persons in the text to other persons. The address comes in the language of everyday conversation, colloquy, exchange, questions, attention-getters, feedback, interactive genre markers, and the use of the second person.|*can you*, *thank you for*, *please see*, *sounds good to me* Metadiscourse Cohesive|The use of words to build cohesive markers that help the reader navigate the text and signal linkages in the text, which are often additive or contrastive|*or*, *but*, *also*, *on the other hand*, *notwithstanding*, *that being said* Metadiscourse Interactive|The use of words to build cohesive markers that interact with the reader|*I agree*, *let’s talk*, *by the way* Narrative|Language that involves people, description, and events extending in time|*today*, *tomorrow*, *during the*, *this weekend* Negative|Referencing dimensions of negativity, including negative acts, emotions, relations, and values|*does not*, *sorry for*, *problems*, *confusion* Positive|Referencing dimensions of positivity, including actions, emotions, relations, and values|*thanks*, *approval*, *agreement*, *looks good* Public Terms|Referencing public terms, concepts from public language, media, the language of authority, institutions, and responsibility|*discussion*, *amendment*, *corporation*, *authority*, *settlement* Reasoning|Language that has a reasoning focus, supporting inferences about cause, consequence, generalization, concession, and linear inference either from premise to conclusion or conclusion to premise|*because*, *therefore*, *analysis*, *even if*, *as a result*, *indicating that* Responsibility|Referencing the language of responsibility|*supposed to*, *requirements*, *obligations* Strategic|This dimension is active when the text structures strategies activism, advantage-seeking, game-playing cognition, plans, and goal-seeking.|*plan*, *trying to*, *strategy*, *decision*, *coordinate*, *look at the* Syntactic Complexity|The features in this category are often what are called “function words,” like determiners and prepositions.|*the*, *to*, *for*, *in*, *a lot of* Uncertainty|References uncertainty, when confidence levels are unknown|*kind of*, *I have no idea*, *for some reason* Updates|References updates that anticipate someone searching for information and receiving it|*already*, *a new*, *now that*, *here are some* ### BibTeX entry and citation info ``` @incollection{ishizaki2012computer, title = {Computer-aided rhetorical analysis}, author = {Ishizaki, Suguru and Kaufer, David}, booktitle= {Applied natural language processing: Identification, investigation and resolution}, pages = {276--296}, year = {2012}, publisher= {IGI Global}, url = {https://www.igi-global.com/chapter/content/61054} } ``` ``` @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
{"language": "en", "datasets": "COCA"}
token-classification
browndw/docusco-bert
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "en", "dataset:COCA", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1810.04805" ]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #bert #token-classification #en #dataset-COCA #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us
docusco-bert ============ Model description ----------------- docusco-bert is a fine-tuned BERT model that is ready to use for token classification. The model was trained on data sampled from the Corpus of Contemporary American English (COCA) and classifies tokens and token sequences according to a system developed for the DocuScope dictionary-based tagger. Descriptions of the categories are included in a table below. About DocuScope --------------- DocuScope is a dicitonary-based tagger that has been developed at Carnegie Mellon University by David Kaufer and Suguru Ishizaki since the early 2000s. Its categories are rhetorical in their orientation (as opposed to part-of-speech tags, for example, which are morphosyntactic). DocuScope has been been used in a wide variety of studies. Here, for example, is a short analysis of King Lear, and here is a published study of Tweets. Intended uses & limitations --------------------------- #### How to use The model was trained on data with tags formatted using IOB), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*. #### Limitations and bias This model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy. Training data ------------- This model was fine-tuned on data from the Corpus of Contemporary American English (COCA). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken. Typically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split B + I sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point). Additionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of: * 21,460,177 tokens * 15,796,305 chunks The specific counts for each category appear in the following table. Training procedure ------------------ This model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the original BERT paper. Eval results ------------ ### Overall ### By category DocuScope Category Descriptions ------------------------------- Category (Cluster): Academic Terms, Description: Abstract, rare, specialized, or disciplinary-specific terms that are indicative of informationally dense writing, Examples: *market price*, *storage capacity*, *regulatory*, *distribution* Category (Cluster): Academic Writing Moves, Description: Phrases and terms that indicate academic writing moves, which are common in research genres and are derived from the work of Swales (1981) and Cotos et al. (2015, 2017), Examples: *in the first section*, *the problem is that*, *payment methodology*, *point of contention* Category (Cluster): Character, Description: References multiple dimensions of a character or human being as a social agent, both individual and collective, Examples: *Pauline*, *her*, *personnel*, *representatives* Category (Cluster): Citation, Description: Language that indicates the attribution of information to, or citation of, another source., Examples: *according to*, *is proposing that*, *quotes from* Category (Cluster): Citation Authorized, Description: Referencing the citation of another source that is represented as true and not arguable, Examples: *confirm that*, *provide evidence*, *common sense* Category (Cluster): Citation Hedged, Description: Referencing the citation of another source that is presented as arguable, Examples: *suggest that*, *just one opinion* Category (Cluster): Confidence Hedged, Description: Referencing language that presents a claim as uncertain, Examples: *tends to get*, *maybe*, *it seems that* Category (Cluster): Confidence High, Description: Referencing language that presents a claim with certainty, Examples: *most likely*, *ensure that*, *know that*, *obviously* Category (Cluster): Confidence Low, Description: Referencing language that presents a claim as extremely unlikely, Examples: *unlikely*, *out of the question*, *impossible* Category (Cluster): Contingent, Description: Referencing contingency, typically contingency in the world, rather than contingency in one's knowledge, Examples: *subject to*, *if possible*, *just in case*, *hypothetically* Category (Cluster): Description, Description: Language that evokes sights, sounds, smells, touches and tastes, as well as scenes and objects, Examples: *stay quiet*, *gas-fired*, *solar panels*, *soft*, *on my desk* Category (Cluster): Facilitate, Description: Language that enables or directs one through specific tasks and actions, Examples: *let me*, *worth a try*, *I would suggest* Category (Cluster): First Person, Description: This cluster captures first person., Examples: *I*, *as soon as I*, *we have been* Category (Cluster): Force Stressed, Description: Language that is forceful and stressed, often using emphatics, comparative forms, or superlative forms, Examples: *really good*, *the sooner the better*, *necessary* Category (Cluster): Future, Description: Referencing future actions, states, or desires, Examples: *will be*, *hope to*, *expected changes* Category (Cluster): Information Change, Description: Referencing changes of information, particularly changes that are more neutral, Examples: *changes*, *revised*, *growth*, *modification to* Category (Cluster): Information Change Negative, Description: Referencing negative change, Examples: *going downhill*, *slow erosion*, *get worse* Category (Cluster): Information Change Positive, Description: Referencing positive change, Examples: *improving*, *accrued interest*, *boost morale* Category (Cluster): Information Exposition, Description: Information in the form of expository devices, or language that describes or explains, frequently in regards to quantities and comparisons, Examples: *final amount*, *several*, *three*, *compare*, *80%* Category (Cluster): Information Place, Description: Language designating places, Examples: *the city*, *surrounding areas*, *Houston*, *home* Category (Cluster): Information Report Verbs, Description: Informational verbs and verb phrases of reporting, Examples: *report*, *posted*, *release*, *point out* Category (Cluster): Information States, Description: Referencing information states, or states of being, Examples: *is*, *are*, *existing*, *been* Category (Cluster): Information Topics, Description: Referencing topics, usually nominal subjects or objects, that indicate the “aboutness” of a text, Examples: *time*, *money*, *stock price*, *phone interview* Category (Cluster): Inquiry, Description: Referencing inquiry, or language that points to some kind of inquiry or investigation, Examples: *find out*, *let me know if you have any questions*, *wondering if* Category (Cluster): Interactive, Description: Addresses from the author to the reader or from persons in the text to other persons. The address comes in the language of everyday conversation, colloquy, exchange, questions, attention-getters, feedback, interactive genre markers, and the use of the second person., Examples: *can you*, *thank you for*, *please see*, *sounds good to me* Category (Cluster): Metadiscourse Cohesive, Description: The use of words to build cohesive markers that help the reader navigate the text and signal linkages in the text, which are often additive or contrastive, Examples: *or*, *but*, *also*, *on the other hand*, *notwithstanding*, *that being said* Category (Cluster): Metadiscourse Interactive, Description: The use of words to build cohesive markers that interact with the reader, Examples: *I agree*, *let’s talk*, *by the way* Category (Cluster): Narrative, Description: Language that involves people, description, and events extending in time, Examples: *today*, *tomorrow*, *during the*, *this weekend* Category (Cluster): Negative, Description: Referencing dimensions of negativity, including negative acts, emotions, relations, and values, Examples: *does not*, *sorry for*, *problems*, *confusion* Category (Cluster): Positive, Description: Referencing dimensions of positivity, including actions, emotions, relations, and values, Examples: *thanks*, *approval*, *agreement*, *looks good* Category (Cluster): Public Terms, Description: Referencing public terms, concepts from public language, media, the language of authority, institutions, and responsibility, Examples: *discussion*, *amendment*, *corporation*, *authority*, *settlement* Category (Cluster): Reasoning, Description: Language that has a reasoning focus, supporting inferences about cause, consequence, generalization, concession, and linear inference either from premise to conclusion or conclusion to premise, Examples: *because*, *therefore*, *analysis*, *even if*, *as a result*, *indicating that* Category (Cluster): Responsibility, Description: Referencing the language of responsibility, Examples: *supposed to*, *requirements*, *obligations* Category (Cluster): Strategic, Description: This dimension is active when the text structures strategies activism, advantage-seeking, game-playing cognition, plans, and goal-seeking., Examples: *plan*, *trying to*, *strategy*, *decision*, *coordinate*, *look at the* Category (Cluster): Syntactic Complexity, Description: The features in this category are often what are called “function words,” like determiners and prepositions., Examples: *the*, *to*, *for*, *in*, *a lot of* Category (Cluster): Uncertainty, Description: References uncertainty, when confidence levels are unknown, Examples: *kind of*, *I have no idea*, *for some reason* Category (Cluster): Updates, Description: References updates that anticipate someone searching for information and receiving it, Examples: *already*, *a new*, *now that*, *here are some* ### BibTeX entry and citation info
[ "#### How to use\n\n\nThe model was trained on data with tags formatted using IOB), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*.", "#### Limitations and bias\n\n\nThis model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned on data from the Corpus of Contemporary American English (COCA). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken.\n\n\nTypically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split B + I sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point).\n\n\nAdditionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of:\n\n\n* 21,460,177 tokens\n* 15,796,305 chunks\n\n\nThe specific counts for each category appear in the following table.\n\n\n\nTraining procedure\n------------------\n\n\nThis model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the original BERT paper.\n\n\nEval results\n------------", "### Overall", "### By category\n\n\n\nDocuScope Category Descriptions\n-------------------------------\n\n\nCategory (Cluster): Academic Terms, Description: Abstract, rare, specialized, or disciplinary-specific terms that are indicative of informationally dense writing, Examples: *market price*, *storage capacity*, *regulatory*, *distribution*\nCategory (Cluster): Academic Writing Moves, Description: Phrases and terms that indicate academic writing moves, which are common in research genres and are derived from the work of Swales (1981) and Cotos et al. (2015, 2017), Examples: *in the first section*, *the problem is that*, *payment methodology*, *point of contention*\nCategory (Cluster): Character, Description: References multiple dimensions of a character or human being as a social agent, both individual and collective, Examples: *Pauline*, *her*, *personnel*, *representatives*\nCategory (Cluster): Citation, Description: Language that indicates the attribution of information to, or citation of, another source., Examples: *according to*, *is proposing that*, *quotes from*\nCategory (Cluster): Citation Authorized, Description: Referencing the citation of another source that is represented as true and not arguable, Examples: *confirm that*, *provide evidence*, *common sense*\nCategory (Cluster): Citation Hedged, Description: Referencing the citation of another source that is presented as arguable, Examples: *suggest that*, *just one opinion*\nCategory (Cluster): Confidence Hedged, Description: Referencing language that presents a claim as uncertain, Examples: *tends to get*, *maybe*, *it seems that*\nCategory (Cluster): Confidence High, Description: Referencing language that presents a claim with certainty, Examples: *most likely*, *ensure that*, *know that*, *obviously*\nCategory (Cluster): Confidence Low, Description: Referencing language that presents a claim as extremely unlikely, Examples: *unlikely*, *out of the question*, *impossible*\nCategory (Cluster): Contingent, Description: Referencing contingency, typically contingency in the world, rather than contingency in one's knowledge, Examples: *subject to*, *if possible*, *just in case*, *hypothetically*\nCategory (Cluster): Description, Description: Language that evokes sights, sounds, smells, touches and tastes, as well as scenes and objects, Examples: *stay quiet*, *gas-fired*, *solar panels*, *soft*, *on my desk*\nCategory (Cluster): Facilitate, Description: Language that enables or directs one through specific tasks and actions, Examples: *let me*, *worth a try*, *I would suggest*\nCategory (Cluster): First Person, Description: This cluster captures first person., Examples: *I*, *as soon as I*, *we have been*\nCategory (Cluster): Force Stressed, Description: Language that is forceful and stressed, often using emphatics, comparative forms, or superlative forms, Examples: *really good*, *the sooner the better*, *necessary*\nCategory (Cluster): Future, Description: Referencing future actions, states, or desires, Examples: *will be*, *hope to*, *expected changes*\nCategory (Cluster): Information Change, Description: Referencing changes of information, particularly changes that are more neutral, Examples: *changes*, *revised*, *growth*, *modification to*\nCategory (Cluster): Information Change Negative, Description: Referencing negative change, Examples: *going downhill*, *slow erosion*, *get worse*\nCategory (Cluster): Information Change Positive, Description: Referencing positive change, Examples: *improving*, *accrued interest*, *boost morale*\nCategory (Cluster): Information Exposition, Description: Information in the form of expository devices, or language that describes or explains, frequently in regards to quantities and comparisons, Examples: *final amount*, *several*, *three*, *compare*, *80%*\nCategory (Cluster): Information Place, Description: Language designating places, Examples: *the city*, *surrounding areas*, *Houston*, *home*\nCategory (Cluster): Information Report Verbs, Description: Informational verbs and verb phrases of reporting, Examples: *report*, *posted*, *release*, *point out*\nCategory (Cluster): Information States, Description: Referencing information states, or states of being, Examples: *is*, *are*, *existing*, *been*\nCategory (Cluster): Information Topics, Description: Referencing topics, usually nominal subjects or objects, that indicate the “aboutness” of a text, Examples: *time*, *money*, *stock price*, *phone interview*\nCategory (Cluster): Inquiry, Description: Referencing inquiry, or language that points to some kind of inquiry or investigation, Examples: *find out*, *let me know if you have any questions*, *wondering if*\nCategory (Cluster): Interactive, Description: Addresses from the author to the reader or from persons in the text to other persons. The address comes in the language of everyday conversation, colloquy, exchange, questions, attention-getters, feedback, interactive genre markers, and the use of the second person., Examples: *can you*, *thank you for*, *please see*, *sounds good to me*\nCategory (Cluster): Metadiscourse Cohesive, Description: The use of words to build cohesive markers that help the reader navigate the text and signal linkages in the text, which are often additive or contrastive, Examples: *or*, *but*, *also*, *on the other hand*, *notwithstanding*, *that being said*\nCategory (Cluster): Metadiscourse Interactive, Description: The use of words to build cohesive markers that interact with the reader, Examples: *I agree*, *let’s talk*, *by the way*\nCategory (Cluster): Narrative, Description: Language that involves people, description, and events extending in time, Examples: *today*, *tomorrow*, *during the*, *this weekend*\nCategory (Cluster): Negative, Description: Referencing dimensions of negativity, including negative acts, emotions, relations, and values, Examples: *does not*, *sorry for*, *problems*, *confusion*\nCategory (Cluster): Positive, Description: Referencing dimensions of positivity, including actions, emotions, relations, and values, Examples: *thanks*, *approval*, *agreement*, *looks good*\nCategory (Cluster): Public Terms, Description: Referencing public terms, concepts from public language, media, the language of authority, institutions, and responsibility, Examples: *discussion*, *amendment*, *corporation*, *authority*, *settlement*\nCategory (Cluster): Reasoning, Description: Language that has a reasoning focus, supporting inferences about cause, consequence, generalization, concession, and linear inference either from premise to conclusion or conclusion to premise, Examples: *because*, *therefore*, *analysis*, *even if*, *as a result*, *indicating that*\nCategory (Cluster): Responsibility, Description: Referencing the language of responsibility, Examples: *supposed to*, *requirements*, *obligations*\nCategory (Cluster): Strategic, Description: This dimension is active when the text structures strategies activism, advantage-seeking, game-playing cognition, plans, and goal-seeking., Examples: *plan*, *trying to*, *strategy*, *decision*, *coordinate*, *look at the*\nCategory (Cluster): Syntactic Complexity, Description: The features in this category are often what are called “function words,” like determiners and prepositions., Examples: *the*, *to*, *for*, *in*, *a lot of*\nCategory (Cluster): Uncertainty, Description: References uncertainty, when confidence levels are unknown, Examples: *kind of*, *I have no idea*, *for some reason*\nCategory (Cluster): Updates, Description: References updates that anticipate someone searching for information and receiving it, Examples: *already*, *a new*, *now that*, *here are some*", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #en #dataset-COCA #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "#### How to use\n\n\nThe model was trained on data with tags formatted using IOB), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*.", "#### Limitations and bias\n\n\nThis model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned on data from the Corpus of Contemporary American English (COCA). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken.\n\n\nTypically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split B + I sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point).\n\n\nAdditionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of:\n\n\n* 21,460,177 tokens\n* 15,796,305 chunks\n\n\nThe specific counts for each category appear in the following table.\n\n\n\nTraining procedure\n------------------\n\n\nThis model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the original BERT paper.\n\n\nEval results\n------------", "### Overall", "### By category\n\n\n\nDocuScope Category Descriptions\n-------------------------------\n\n\nCategory (Cluster): Academic Terms, Description: Abstract, rare, specialized, or disciplinary-specific terms that are indicative of informationally dense writing, Examples: *market price*, *storage capacity*, *regulatory*, *distribution*\nCategory (Cluster): Academic Writing Moves, Description: Phrases and terms that indicate academic writing moves, which are common in research genres and are derived from the work of Swales (1981) and Cotos et al. (2015, 2017), Examples: *in the first section*, *the problem is that*, *payment methodology*, *point of contention*\nCategory (Cluster): Character, Description: References multiple dimensions of a character or human being as a social agent, both individual and collective, Examples: *Pauline*, *her*, *personnel*, *representatives*\nCategory (Cluster): Citation, Description: Language that indicates the attribution of information to, or citation of, another source., Examples: *according to*, *is proposing that*, *quotes from*\nCategory (Cluster): Citation Authorized, Description: Referencing the citation of another source that is represented as true and not arguable, Examples: *confirm that*, *provide evidence*, *common sense*\nCategory (Cluster): Citation Hedged, Description: Referencing the citation of another source that is presented as arguable, Examples: *suggest that*, *just one opinion*\nCategory (Cluster): Confidence Hedged, Description: Referencing language that presents a claim as uncertain, Examples: *tends to get*, *maybe*, *it seems that*\nCategory (Cluster): Confidence High, Description: Referencing language that presents a claim with certainty, Examples: *most likely*, *ensure that*, *know that*, *obviously*\nCategory (Cluster): Confidence Low, Description: Referencing language that presents a claim as extremely unlikely, Examples: *unlikely*, *out of the question*, *impossible*\nCategory (Cluster): Contingent, Description: Referencing contingency, typically contingency in the world, rather than contingency in one's knowledge, Examples: *subject to*, *if possible*, *just in case*, *hypothetically*\nCategory (Cluster): Description, Description: Language that evokes sights, sounds, smells, touches and tastes, as well as scenes and objects, Examples: *stay quiet*, *gas-fired*, *solar panels*, *soft*, *on my desk*\nCategory (Cluster): Facilitate, Description: Language that enables or directs one through specific tasks and actions, Examples: *let me*, *worth a try*, *I would suggest*\nCategory (Cluster): First Person, Description: This cluster captures first person., Examples: *I*, *as soon as I*, *we have been*\nCategory (Cluster): Force Stressed, Description: Language that is forceful and stressed, often using emphatics, comparative forms, or superlative forms, Examples: *really good*, *the sooner the better*, *necessary*\nCategory (Cluster): Future, Description: Referencing future actions, states, or desires, Examples: *will be*, *hope to*, *expected changes*\nCategory (Cluster): Information Change, Description: Referencing changes of information, particularly changes that are more neutral, Examples: *changes*, *revised*, *growth*, *modification to*\nCategory (Cluster): Information Change Negative, Description: Referencing negative change, Examples: *going downhill*, *slow erosion*, *get worse*\nCategory (Cluster): Information Change Positive, Description: Referencing positive change, Examples: *improving*, *accrued interest*, *boost morale*\nCategory (Cluster): Information Exposition, Description: Information in the form of expository devices, or language that describes or explains, frequently in regards to quantities and comparisons, Examples: *final amount*, *several*, *three*, *compare*, *80%*\nCategory (Cluster): Information Place, Description: Language designating places, Examples: *the city*, *surrounding areas*, *Houston*, *home*\nCategory (Cluster): Information Report Verbs, Description: Informational verbs and verb phrases of reporting, Examples: *report*, *posted*, *release*, *point out*\nCategory (Cluster): Information States, Description: Referencing information states, or states of being, Examples: *is*, *are*, *existing*, *been*\nCategory (Cluster): Information Topics, Description: Referencing topics, usually nominal subjects or objects, that indicate the “aboutness” of a text, Examples: *time*, *money*, *stock price*, *phone interview*\nCategory (Cluster): Inquiry, Description: Referencing inquiry, or language that points to some kind of inquiry or investigation, Examples: *find out*, *let me know if you have any questions*, *wondering if*\nCategory (Cluster): Interactive, Description: Addresses from the author to the reader or from persons in the text to other persons. The address comes in the language of everyday conversation, colloquy, exchange, questions, attention-getters, feedback, interactive genre markers, and the use of the second person., Examples: *can you*, *thank you for*, *please see*, *sounds good to me*\nCategory (Cluster): Metadiscourse Cohesive, Description: The use of words to build cohesive markers that help the reader navigate the text and signal linkages in the text, which are often additive or contrastive, Examples: *or*, *but*, *also*, *on the other hand*, *notwithstanding*, *that being said*\nCategory (Cluster): Metadiscourse Interactive, Description: The use of words to build cohesive markers that interact with the reader, Examples: *I agree*, *let’s talk*, *by the way*\nCategory (Cluster): Narrative, Description: Language that involves people, description, and events extending in time, Examples: *today*, *tomorrow*, *during the*, *this weekend*\nCategory (Cluster): Negative, Description: Referencing dimensions of negativity, including negative acts, emotions, relations, and values, Examples: *does not*, *sorry for*, *problems*, *confusion*\nCategory (Cluster): Positive, Description: Referencing dimensions of positivity, including actions, emotions, relations, and values, Examples: *thanks*, *approval*, *agreement*, *looks good*\nCategory (Cluster): Public Terms, Description: Referencing public terms, concepts from public language, media, the language of authority, institutions, and responsibility, Examples: *discussion*, *amendment*, *corporation*, *authority*, *settlement*\nCategory (Cluster): Reasoning, Description: Language that has a reasoning focus, supporting inferences about cause, consequence, generalization, concession, and linear inference either from premise to conclusion or conclusion to premise, Examples: *because*, *therefore*, *analysis*, *even if*, *as a result*, *indicating that*\nCategory (Cluster): Responsibility, Description: Referencing the language of responsibility, Examples: *supposed to*, *requirements*, *obligations*\nCategory (Cluster): Strategic, Description: This dimension is active when the text structures strategies activism, advantage-seeking, game-playing cognition, plans, and goal-seeking., Examples: *plan*, *trying to*, *strategy*, *decision*, *coordinate*, *look at the*\nCategory (Cluster): Syntactic Complexity, Description: The features in this category are often what are called “function words,” like determiners and prepositions., Examples: *the*, *to*, *for*, *in*, *a lot of*\nCategory (Cluster): Uncertainty, Description: References uncertainty, when confidence levels are unknown, Examples: *kind of*, *I have no idea*, *for some reason*\nCategory (Cluster): Updates, Description: References updates that anticipate someone searching for information and receiving it, Examples: *already*, *a new*, *now that*, *here are some*", "### BibTeX entry and citation info" ]
[ 64, 59, 313, 4, 2103, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #en #dataset-COCA #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n#### How to use\n\n\nThe model was trained on data with tags formatted using IOB), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*.#### Limitations and bias\n\n\nThis model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned on data from the Corpus of Contemporary American English (COCA). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken.\n\n\nTypically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split B + I sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point).\n\n\nAdditionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of:\n\n\n* 21,460,177 tokens\n* 15,796,305 chunks\n\n\nThe specific counts for each category appear in the following table.\n\n\n\nTraining procedure\n------------------\n\n\nThis model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the original BERT paper.\n\n\nEval results\n------------### Overall" ]
[ -0.06179025024175644, 0.05737819895148277, -0.0023022752720862627, 0.0438421294093132, 0.07790970057249069, 0.03191037476062775, 0.054825812578201294, 0.06086999550461769, -0.11291786283254623, 0.015417962335050106, 0.018283206969499588, -0.0077156610786914825, 0.059114329516887665, 0.15438403189182281, -0.019079571589827538, -0.2467590719461441, 0.0273280069231987, -0.04740834981203079, 0.08074448257684708, 0.058420926332473755, 0.10294414311647415, -0.060713138431310654, 0.05099586397409439, -0.01233222708106041, -0.09895295649766922, 0.015227244235575199, -0.005131837911903858, -0.032594241201877594, 0.10191035270690918, 0.11628181487321854, 0.11684908717870712, 0.02568092569708824, 0.03564336895942688, -0.1989145427942276, 0.0383746400475502, 0.08076251298189163, 0.005587737075984478, 0.0716511532664299, 0.06864751130342484, 0.029647812247276306, 0.0898432582616806, 0.01262375246733427, 0.028410160914063454, 0.038277316838502884, -0.09789882600307465, 0.014782199636101723, -0.1319912225008011, 0.04194182530045509, 0.049836043268442154, 0.05242273956537247, -0.011010689660906792, 0.0006323708221316338, -0.04796813055872917, 0.06214909255504608, 0.15979361534118652, -0.12306591123342514, -0.03962993249297142, -0.06331272423267365, 0.013837123289704323, 0.06081296503543854, -0.04419367387890816, -0.059083495289087296, 0.06181451678276062, 0.03263111785054207, 0.006082364823669195, 0.017820939421653748, -0.10177483409643173, -0.02690601535141468, -0.11324983835220337, -0.03455587849020958, 0.09389793127775192, -0.0023105612490326166, -0.08799495548009872, -0.04883632808923721, -0.010894987732172012, -0.02409021183848381, 0.0008340850472450256, 0.025738507509231567, -0.015451476909220219, 0.010329094715416431, 0.07556161284446716, -0.01625499501824379, -0.13220155239105225, -0.054307859390974045, -0.10846185684204102, 0.07748709619045258, 0.03060653805732727, 0.05201459676027298, 0.01423535868525505, 0.1171041801571846, -0.08646564930677414, -0.014188098721206188, -0.01811494305729866, -0.04992295056581497, -0.08617446571588516, -0.07082068920135498, -0.12501850724220276, -0.11940980702638626, -0.05239635333418846, 0.10848499834537506, -0.15548090636730194, -0.01942398026585579, 0.005428222939372063, -0.007839709520339966, 0.07878787815570831, -0.046119604259729385, -0.07196884602308273, 0.1040070429444313, -0.019597521051764488, 0.0032579575199633837, -0.054024651646614075, 0.008816036395728588, 0.011068669147789478, 0.054520074278116226, -0.006265352480113506, 0.030645711347460747, -0.046812254935503006, 0.002247823169454932, -0.05668358504772186, -0.028342705219984055, 0.1499030739068985, -0.1130872592329979, -0.0311869066208601, 0.015613407827913761, -0.004916108213365078, 0.026822354644536972, 0.01971258781850338, 0.00447047408670187, -0.06608513742685318, 0.06512279063463211, -0.059693675488233566, -0.02860846370458603, -0.08522740006446838, -0.11123565584421158, 0.016979726031422615, -0.05465523526072502, -0.05230429023504257, -0.09263218194246292, -0.2053583264350891, -0.059207964688539505, 0.02510925941169262, -0.06176124885678291, -0.03328423202037811, -0.03526047244668007, -0.026783982291817665, -0.006274322513490915, -0.008170761168003082, 0.18143385648727417, -0.05706525221467018, 0.02333986759185791, -0.10459498316049576, 0.038995981216430664, -0.06437047570943832, 0.05322389677166939, -0.041883938014507294, 0.02317081205546856, -0.026569057255983353, 0.10937117785215378, 0.011649216525256634, 0.04991130903363228, -0.05227091163396835, -0.028600869700312614, -0.0795622169971466, 0.018306327983736992, 0.021332984790205956, 0.08986007422208786, -0.2914396822452545, -0.037733402103185654, 0.082989901304245, -0.11000237613916397, 0.04218251630663872, 0.11473193764686584, -0.08384422212839127, 0.039123810827732086, 0.0848180428147316, 0.11823124438524246, 0.045000217854976654, -0.003917216788977385, -0.0740673840045929, -0.060119275003671646, 0.006754955276846886, 0.07979113608598709, 0.035931650549173355, -0.0021122500766068697, -0.009368553757667542, 0.009013221599161625, -0.001275755581445992, 0.05237762629985809, -0.057809118181467056, -0.03979881480336189, 0.009010892361402512, -0.07381818443536758, -0.024735866114497185, 0.004498511087149382, 0.02392813190817833, -0.04485013708472252, -0.02959323674440384, 0.03831774368882179, 0.0780395120382309, -0.019447797909379005, 0.04630635306239128, -0.04021771252155304, 0.04425966739654541, 0.012034082785248756, -0.012252863496541977, -0.19391782581806183, 0.005127508193254471, 0.045036885887384415, 0.055795732885599136, 0.056902091950178146, 0.03020128607749939, -5.247361514193472e-7, 0.04412554204463959, -0.049240048974752426, 0.02360336109995842, 0.009829693473875523, 0.006208017934113741, -0.08803091943264008, -0.11339651793241501, -0.059498921036720276, -0.04910985380411148, 0.03618485480546951, -0.14355546236038208, 0.014743363484740257, 0.01812884584069252, 0.12474950402975082, 0.028918635100126266, -0.06325583904981613, -0.005253021139651537, 0.056560542434453964, -0.05236296355724335, -0.01358318142592907, 0.009267076849937439, 0.0462028905749321, 0.01703765243291855, 0.015577820129692554, -0.062396090477705, -0.2165055125951767, 0.04556487873196602, 0.0327707938849926, -0.13055376708507538, -0.01738564856350422, -0.06242303550243378, -0.017624637112021446, -0.11367207020521164, -0.056936707347631454, 0.22469152510166168, 0.005119698122143745, 0.10086623579263687, -0.08092962205410004, -0.03169039636850357, -0.03283281996846199, 0.04137348383665085, -0.0615084245800972, 0.04552780091762543, -0.0006490215309895575, -0.12666450440883636, 0.017758792266249657, -0.04286912456154823, -0.007156725972890854, 0.18153636157512665, 0.02965935692191124, -0.13728514313697815, 0.025488117709755898, -0.02933897078037262, 0.021329136565327644, 0.028535716235637665, 0.019831795245409012, 0.0490691177546978, 0.057246170938014984, 0.023243874311447144, 0.03630721941590309, -0.11390534788370132, 0.041285108774900436, 0.02582162246108055, -0.029832730069756508, -0.07042185962200165, -0.04499145224690437, 0.008681440725922585, 0.10618453472852707, 0.029852118343114853, 0.029837382957339287, -0.009556476026773453, -0.061872128397226334, -0.091038279235363, 0.15150466561317444, -0.0799325481057167, -0.16923488676548004, -0.12463736534118652, 0.003759178100153804, 0.050138089805841446, 0.018290281295776367, 0.01678461767733097, -0.05134180560708046, -0.05627183988690376, -0.15229259431362152, 0.03411830589175224, 0.03660575672984123, 0.02799868769943714, -0.015225955285131931, 0.001959301996976137, -0.018939068540930748, -0.06690825521945953, 0.046763189136981964, -0.04008038714528084, 0.0254535973072052, 0.021788163110613823, -0.06609997898340225, 0.05573292449116707, 0.1280338317155838, 0.008593385107815266, -0.026291340589523315, -0.033636972308158875, 0.1715358942747116, -0.05799201503396034, 0.05021285638213158, 0.0762515515089035, -0.0664311945438385, 0.024981874972581863, 0.11243495345115662, 0.0096855154260993, -0.022478491067886353, 0.05878213420510292, 0.04834732785820961, -0.04399017617106438, -0.23383770883083344, -0.046817827969789505, -0.058827854692935944, -0.01066944096237421, 0.06515277922153473, 0.004827356431633234, 0.007706589996814728, 0.017237307503819466, -0.07293703407049179, 0.031069055199623108, -0.006323369685560465, 0.028305312618613243, 0.040471550077199936, -0.0026101835537701845, 0.0723528191447258, -0.03752560913562775, 0.01693711057305336, 0.1412719041109085, -0.020242303609848022, 0.2279743105173111, -0.0751870647072792, 0.19882649183273315, 0.03815079852938652, 0.029464377090334892, 0.03180123120546341, 0.10090852528810501, -0.037518542259931564, 0.007380668539553881, -0.030385777354240417, 0.006918755359947681, 0.04847060143947601, 0.09293242543935776, 0.0019095021998509765, 0.006994419731199741, -0.06196582317352295, -0.07721900194883347, 0.03566282242536545, 0.29981544613838196, 0.035668034106492996, -0.1839302033185959, -0.13007310032844543, 0.03258417174220085, -0.1506894826889038, -0.06354302167892456, -0.010953426361083984, 0.16330738365650177, -0.07854095101356506, 0.04031739756464958, 0.005662132520228624, 0.07624887675046921, -0.05191998556256294, -0.024558499455451965, 0.06691176444292068, 0.07778987288475037, -0.06151328235864639, 0.056306831538677216, -0.14360643923282623, 0.09883646667003632, -0.02140219137072563, 0.05887995660305023, -0.06090552359819412, -0.003304356010630727, 0.017489833757281303, -0.019363539293408394, 0.0648137629032135, -0.01625899225473404, -0.05330680310726166, 0.029933083802461624, -0.05230223014950752, -0.0005992102669551969, 0.0367458276450634, -0.02144516073167324, 0.08231482654809952, -0.011456118896603584, 0.02236631140112877, 0.011142896488308907, 0.0020074876956641674, -0.0874166414141655, -0.14866913855075836, 0.031647976487874985, -0.009566284716129303, 0.03004474751651287, -0.07116737216711044, -0.10351085662841797, -0.05350961908698082, 0.15437375009059906, -0.08285725116729736, -0.05638919770717621, -0.11648404598236084, 0.07814806699752808, 0.13328997790813446, 0.0045203291811048985, 0.00912356935441494, 0.03771974518895149, 0.16684763133525848, -0.03858353942632675, -0.09161709249019623, 0.02113683894276619, -0.07860177755355835, -0.16135075688362122, -0.09967450052499771, 0.08358913660049438, 0.06490195542573929, 0.0710633173584938, -0.04959260672330856, 0.018678871914744377, -0.03230108320713043, -0.06444000452756882, -0.03910498321056366, 0.013130350969731808, 0.06402819603681564, 0.1221243366599083, -0.1215711161494255, -0.12034798413515091, -0.09039568156003952, -0.11480258405208588, 0.08031436055898666, 0.1382296234369278, -0.05441588535904884, 0.11572794616222382, 0.0216217041015625, -0.09375206381082535, -0.1514594703912735, 0.00458634365350008, 0.0733916237950325, 0.056695908308029175, -0.01810412108898163, -0.1661188304424286, -0.005478410515934229, 0.09580695629119873, 0.03962528333067894, 0.04909905418753624, -0.20638780295848846, -0.13716864585876465, 0.058804359287023544, 0.026013405993580818, 0.0888422504067421, -0.07602469623088837, -0.047665175050497055, -0.06458459794521332, 0.022380247712135315, 0.15591289103031158, -0.0690237432718277, 0.07232780754566193, 0.005362601485103369, -0.010117840953171253, 0.004369667265564203, -0.027552954852581024, 0.07833923399448395, 0.04373937100172043, 0.04436272010207176, -0.043946363031864166, -0.041396573185920715, -0.032997921109199524, -0.0020645686890929937, 0.05152956768870354, 0.02632196620106697, 0.04793963581323624, -0.029613852500915527, -0.06567706167697906, -0.0904427170753479, -0.017579853534698486, -0.013337397947907448, -0.024412117898464203, -0.07162122428417206, 0.07198289036750793, 0.057145413011312485, 0.0044228932820260525, -0.03286874666810036, -0.06323179602622986, 0.07343839108943939, 0.12714070081710815, 0.12121488153934479, -0.061750851571559906, 0.033692389726638794, 0.026961054652929306, -0.0066298539750278, 0.034514810889959335, -0.05267484858632088, 0.011751211248338223, 0.12024994939565659, 0.016467800363898277, 0.14110176265239716, 0.06753813475370407, -0.08949153870344162, 0.01434928085654974, 0.0698009803891182, -0.14855296909809113, -0.09740269184112549, 0.0007302594021894038, 0.034334901720285416, -0.16494134068489075, -0.053963758051395416, 0.11638150364160538, -0.04508643224835396, -0.023372318595647812, -0.011471999809145927, 0.05525503680109978, -0.013241519220173359, 0.13505809009075165, 0.0047665187157690525, 0.00015212174912448972, -0.06870497763156891, 0.0683101937174797, 0.09986836463212967, -0.049176622182130814, -0.030426176264882088, 0.10171312093734741, -0.10194533318281174, -0.03325299918651581, -0.005834911484271288, 0.02334750071167946, -0.11256436258554459, -0.04740871489048004, -0.07233401387929916, -0.11542683839797974, 0.11300375312566757, 0.16710643470287323, 0.010558078996837139, 0.08751694113016129, -0.05360233411192894, -0.049710698425769806, -0.03984041139483452, 0.047274596989154816, 0.013041123747825623, 0.03898622840642929, -0.002499511232599616, 0.1807773858308792, -0.05460813269019127, 0.03261210396885872, -0.019749630242586136, 0.0012982606422156096, -0.02699877880513668, -0.004324574023485184, -0.10412286967039108, 0.020070817321538925, -0.10150899738073349, -0.004806896205991507, 0.027252309024333954, 0.010841632261872292, -0.00036383443512022495, -0.0016028244281187654, -0.033898402005434036, -0.012652629986405373, -0.056416675448417664, 0.06517647206783295, -0.055308084934949875, 0.009334503673017025, 0.04081738740205765, -0.04033701866865158, 0.08206955343484879, -0.0059455749578773975, -0.024601563811302185, 0.0007504558889195323, -0.0777047798037529, -0.0056569515727460384, -0.01881365291774273, 0.045931410044431686, -0.0180406104773283, -0.11202747374773026, -0.007582783233374357, 0.02956586703658104, -0.02919461391866207, 0.020745068788528442, 0.07020388543605804, -0.06310199946165085, 0.018128186464309692, 0.040730178356170654, 0.011301293969154358, -0.08958090841770172, 0.023336948826909065, 0.0763653814792633, 0.025751566514372826, 0.11884629726409912, -0.03244265168905258, 0.015257958322763443, -0.12584300339221954, 0.01889217458665371, 0.008637824095785618, -0.024315427988767624, -0.011460844427347183, -0.005182791035622358, 0.060292813926935196, 0.043795146048069, 0.16327069699764252, -0.08015911281108856, -0.03348877653479576, 0.040755338966846466, -0.051165301352739334, 0.0440966859459877, 0.07586836814880371, 0.17044883966445923, 0.012736024335026741, -0.06400454789400101, -0.06286803632974625, -0.012251018546521664, 0.000603850232437253, 0.10249123722314835, 0.19896671175956726, 0.11898354440927505, 0.1262911856174469, 0.06921451538801193, -0.007842510007321835, -0.0938894972205162, 0.06900098919868469, 0.05276917293667793, -0.04095657542347908, 0.04794589802622795, -0.00786800030618906, 0.08271954953670502, 0.08268777281045914, -0.20563159883022308, 0.10019472241401672, -0.027697650715708733, -0.0684790089726448, -0.0011752384016290307, -0.04920842498540878, -0.006835067644715309, -0.04585832357406616, -0.022043956443667412, -0.1424718201160431, 0.05068805441260338, 0.11816063523292542, 0.007465400267392397, 0.013655662536621094, 0.08688991516828537, -0.07946773618459702, -0.0753588080406189, 0.10740015655755997, -0.024492010474205017, 0.022465143352746964, -0.039293915033340454, -0.028971143066883087, 0.06732778251171112, -0.04467358440160751, 0.01284093875437975, 0.02534470148384571, 0.07557297497987747, 0.028595587238669395, 0.026908043771982193, -0.0519428551197052, 0.012927855364978313, -0.023874489590525627, 0.04264761880040169, 0.15553319454193115, 0.07580505311489105, 0.015268358401954174, 0.040116168558597565, 0.10247091203927994, -0.026145827025175095, -0.019213085994124413, -0.21457292139530182, 0.05275210365653038, 0.02906735986471176, -0.01801348477602005, 0.06240229308605194, -0.09556972235441208, 0.01338224671781063, 0.1837213635444641, 0.10595262050628662, -0.09446161985397339, -0.027722027152776718, 0.036105088889598846, -0.0012403810396790504, 0.028533654287457466, 0.06187884137034416, 0.06012454628944397, 0.1729276180267334, -0.0721321552991867, 0.0035308278165757656, 0.023328620940446854, 0.005557001102715731, -0.007233733776956797, 0.1016353890299797, -0.03700653836131096, -0.006299895700067282, -0.04532419145107269, 0.06847099214792252, -0.05945884808897972, -0.2281784862279892, 0.016519783064723015, -0.053790055215358734, -0.10129598528146744, -0.03930220752954483, -0.06068049371242523, -0.015358150005340576, 0.051197778433561325, -0.017124217003583908, 0.012728001922369003, 0.17976243793964386, -0.005283711943775415, -0.02962425909936428, -0.11237703263759613, 0.11324653029441833, -0.07207611948251724, 0.06258634477853775, -0.018897799775004387, 0.07912416011095047, 0.04416725039482117, 0.035086892545223236, -0.07210446894168854, 0.04786348715424538, 0.005528632551431656, 0.0023018831852823496, 0.051813092082738876, 0.14064042270183563, -0.0006329550524242222, 0.09816139936447144, 0.024106403812766075, -0.07785940170288086, 0.08721593022346497, 0.008679910562932491, -0.05228941887617111, -0.054302629083395004, 0.01976737752556801, -0.0910312831401825, 0.1733260452747345, 0.18970589339733124, -0.026422595605254173, 0.008655446581542492, 0.005207394249737263, 0.010695409961044788, -0.0062937489710748196, 0.11918283998966217, -0.031475722789764404, -0.2038872390985489, 0.023683475330471992, -0.021071646362543106, 0.04779786244034767, -0.23629941046237946, -0.05445537343621254, -0.015258911065757275, -0.07434716075658798, -0.02289072424173355, 0.07345610111951828, 0.094227135181427, 0.01995157264173031, -0.05031723529100418, 0.03802382946014404, 0.005252827890217304, 0.06748570501804352, -0.04925565794110298, -0.07649383693933487 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobertpt-all-finetuned-ner This model is a fine-tuned version of [pucpr/biobertpt-all](https://huggingface.co/pucpr/biobertpt-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3721 - Precision: 0.0179 - Recall: 0.0149 - F1: 0.0163 - Accuracy: 0.6790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 2.7864 | 0.0091 | 0.0448 | 0.0152 | 0.3339 | | No log | 2.0 | 2 | 2.5096 | 0.0097 | 0.0149 | 0.0118 | 0.6292 | | No log | 3.0 | 3 | 2.3721 | 0.0179 | 0.0149 | 0.0163 | 0.6790 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "biobertpt-all-finetuned-ner", "results": []}]}
token-classification
brunodorneles/biobertpt-all-finetuned-ner
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
biobertpt-all-finetuned-ner =========================== This model is a fine-tuned version of pucpr/biobertpt-all on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.3721 * Precision: 0.0179 * Recall: 0.0149 * F1: 0.0163 * Accuracy: 0.6790 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu102 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu102\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu102\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 44, 98, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu102\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.08574707061052322, 0.033294886350631714, -0.002179153962060809, 0.11498131603002548, 0.22072277963161469, 0.03585495054721832, 0.1049187108874321, 0.08272372931241989, -0.12564755976200104, 0.021849066019058228, 0.11364040523767471, 0.1781337857246399, -0.01588957943022251, 0.10135847330093384, -0.06571927666664124, -0.2594590187072754, -0.01835458166897297, 0.03133433684706688, -0.09304870665073395, 0.12647230923175812, 0.08835294842720032, -0.1562059223651886, 0.08105804026126862, -0.0076107122004032135, -0.267911821603775, 0.02656073495745659, 0.03093671053647995, -0.06173355132341385, 0.1482468545436859, 0.002661587204784155, 0.17615772783756256, -0.014227665029466152, 0.11167348176240921, -0.1597781777381897, 0.004098556470125914, 0.0567711666226387, 0.016420463100075722, 0.07185067236423492, 0.05554269254207611, -0.013961143791675568, 0.08719369769096375, -0.09294337779283524, 0.07557564973831177, 0.006679212208837271, -0.13297432661056519, -0.21085162460803986, -0.07660864293575287, -0.0016059884801506996, 0.060565341264009476, 0.08755442500114441, -0.003234084229916334, 0.1607544720172882, -0.13129951059818268, 0.09633883833885193, 0.23857395350933075, -0.255024254322052, -0.07947016507387161, 0.04086463898420334, -0.020593050867319107, 0.07493667304515839, -0.10776294767856598, -0.029550375416874886, 0.06349259614944458, 0.05940477177500725, 0.12353094667196274, -0.036531779915094376, -0.13853925466537476, 0.024800600484013557, -0.15563833713531494, 0.008129812777042389, 0.059090495109558105, 0.010731811635196209, -0.02560407482087612, 0.02187238447368145, -0.06666076928377151, -0.15363557636737823, -0.04125670716166496, -0.03433184325695038, 0.053516943007707596, -0.06147613003849983, -0.08993519097566605, 0.02952231653034687, -0.08917497843503952, -0.06567558646202087, -0.06966308504343033, 0.2088550329208374, 0.04719529673457146, 0.020332718268036842, -0.03578594699501991, 0.10522425174713135, -0.01618979685008526, -0.1266278475522995, 0.04064418002963066, 0.02620083838701248, -0.01702183485031128, -0.07364368438720703, -0.0845923125743866, -0.041366420686244965, -0.002894582226872444, 0.12019089609384537, -0.05445260927081108, 0.048433803021907806, 0.04777102172374725, 0.02231699787080288, -0.08868124336004257, 0.19863176345825195, -0.03026539832353592, -0.01703263819217682, 0.01084715873003006, 0.03426365926861763, -0.019264571368694305, -0.008985348977148533, -0.10241436213254929, 0.006796198897063732, 0.12215638160705566, 0.008773908950388432, -0.09996157139539719, 0.05530187860131264, -0.04071754962205887, -0.015091811306774616, -0.020944999530911446, -0.10437626391649246, 0.05788082256913185, -0.011317770928144455, -0.08706549555063248, 0.007543760351836681, 0.0041982196271419525, 0.02396366558969021, -0.004806093871593475, 0.17740997672080994, -0.09290032088756561, 0.05934976041316986, -0.11848591268062592, -0.11649183183908463, -0.004403416533023119, -0.05599473416805267, 0.026509881019592285, -0.10289780050516129, -0.13228783011436462, -0.014879736118018627, 0.04431144520640373, -0.026159044355154037, -0.033907778561115265, -0.04731268063187599, -0.08516120910644531, 0.004641582723706961, -0.019363176077604294, 0.15339598059654236, -0.05373377352952957, 0.10359236598014832, 0.06135264039039612, 0.06674215197563171, -0.07266418635845184, 0.054425884038209915, -0.09283299744129181, -0.00452326750382781, -0.24031654000282288, 0.04342271015048027, -0.0578366219997406, 0.06576213985681534, -0.06098579242825508, -0.12253334373235703, 0.046663809567689896, -0.008203159086406231, 0.09538056701421738, 0.07892399281263351, -0.1602635532617569, -0.0816149190068245, 0.12749315798282623, -0.06480037420988083, -0.08185068517923355, 0.10191327333450317, -0.07507898658514023, 0.02087729051709175, 0.08629047125577927, 0.13937297463417053, 0.036219336092472076, -0.07795631885528564, 0.02069086953997612, -0.0396401584148407, 0.056336890906095505, -0.04992720112204552, 0.03817509487271309, 0.028281306847929955, -0.009466608986258507, 0.030626598745584488, -0.03515760228037834, 0.06109471246600151, -0.13083204627037048, -0.08365534991025925, -0.03593355044722557, -0.1004098653793335, 0.054494936019182205, 0.06724905222654343, 0.09579387307167053, -0.10652191936969757, -0.05678794905543327, 0.13603386282920837, 0.060989879071712494, -0.03847412019968033, 0.029966779053211212, -0.0539296418428421, 0.060444846749305725, -0.04474783316254616, -0.03746289014816284, -0.2066301703453064, -0.04849487543106079, 0.011754545383155346, 0.0517057366669178, 0.034454114735126495, -0.0050093140453100204, 0.07331312447786331, 0.07980994135141373, -0.05866840481758118, -0.0018054997781291604, -0.046754274517297745, 0.00013768200005870312, -0.1567946821451187, -0.19597820937633514, -0.030448485165834427, -0.007235149387270212, 0.08950912207365036, -0.196833074092865, 0.01936146430671215, -0.03754182159900665, 0.09509456902742386, 0.002394323004409671, -0.006959832739084959, -0.08349639922380447, 0.12092719972133636, -0.020392918959259987, -0.044624608010053635, 0.06147528812289238, -0.026199810206890106, -0.06008165329694748, -0.08904282003641129, -0.08183056861162186, 0.19213683903217316, 0.13748383522033691, -0.17725254595279694, -0.10309228301048279, 0.020724790170788765, -0.05501440912485123, -0.014625022187829018, -0.0600549653172493, 0.051691245287656784, 0.20127423107624054, -0.013482670299708843, 0.1427735537290573, -0.05425586551427841, -0.039031755179166794, 0.003421296365559101, -0.030669737607240677, 0.05983404815196991, 0.10303463041782379, 0.15604493021965027, -0.058965008705854416, 0.1276164948940277, 0.14701171219348907, -0.11793574690818787, 0.0975097045302391, -0.024725740775465965, -0.06717932969331741, -0.018117358908057213, -0.05326202139258385, -0.007107182871550322, 0.08574842661619186, -0.09775900095701218, -0.01626765727996826, -0.0009771197801455855, 0.03402768820524216, 0.01946544088423252, -0.23708787560462952, -0.04304438456892967, 0.02602894976735115, -0.003704569535329938, -0.00725855166092515, -0.027572743594646454, 0.03389887511730194, 0.11764697730541229, 0.0011914119822904468, -0.08802776783704758, 0.02254614420235157, 0.007098565809428692, -0.0678364709019661, 0.2134837806224823, -0.09313873946666718, -0.08396995812654495, -0.09063097089529037, -0.09957566112279892, -0.04914283752441406, 0.015095793642103672, 0.04633362591266632, -0.12578658759593964, -0.027834219858050346, -0.01864064484834671, 0.047325197607278824, 0.005166393239051104, 0.05826205760240555, 0.007940680719912052, -0.014736885204911232, 0.05646192282438278, -0.105960413813591, -0.014873543754220009, -0.07518399506807327, -0.08969918638467789, 0.06432941555976868, 0.07001975178718567, 0.11013452708721161, 0.1685953438282013, -0.04715237393975258, 0.000025233786800527014, -0.023421745747327805, 0.27951762080192566, -0.06288733333349228, -0.05355367064476013, 0.09572754055261612, -0.02654837816953659, 0.05059071630239487, 0.09660188853740692, 0.0824151411652565, -0.1160077378153801, 0.019492991268634796, 0.04233264923095703, -0.0343753956258297, -0.20374764502048492, -0.043247662484645844, -0.03826248645782471, -0.07810012251138687, 0.07251295447349548, 0.008972959592938423, 0.014679976738989353, 0.05874541029334068, 0.06329406797885895, 0.10753832757472992, -0.06991289556026459, 0.05026654899120331, 0.11493580043315887, 0.054667744785547256, 0.12988446652889252, -0.024894896894693375, -0.09567024558782578, 0.025500906631350517, -0.055424824357032776, 0.22985942661762238, 0.006887319963425398, 0.03561151772737503, 0.04569721221923828, 0.1750505119562149, 0.004996976815164089, 0.08960584551095963, 0.012565625831484795, -0.053739484399557114, -0.00580159667879343, -0.03448297828435898, -0.04604972526431084, 0.011221260763704777, -0.05195258557796478, 0.0569409616291523, -0.13184155523777008, -0.011948646046221256, 0.06372808665037155, 0.2402798980474472, 0.01757066883146763, -0.31604668498039246, -0.0622406005859375, -0.0030199233442544937, -0.03738372400403023, -0.0037452327087521553, 0.009971121326088905, 0.08214394748210907, -0.10251060873270035, 0.026470601558685303, -0.046814028173685074, 0.0925217941403389, -0.01889006979763508, 0.049441806972026825, 0.06349195539951324, 0.12073231488466263, -0.0017091992776840925, 0.05114637687802315, -0.3070346415042877, 0.2634674608707428, 0.009445558302104473, 0.08057984709739685, -0.058145828545093536, -0.011654289439320564, 0.03830965980887413, 0.06582538783550262, -0.00024364879936911166, -0.010644407942891121, -0.024445699527859688, -0.24382850527763367, -0.030638599768280983, 0.044258423149585724, 0.13365037739276886, -0.014796745032072067, 0.10345812886953354, -0.01779002882540226, 0.005410708021372557, 0.08349651098251343, -0.025364546105265617, -0.07600059360265732, -0.049888189882040024, -0.038017306476831436, 0.011146202683448792, -0.04077397286891937, -0.050310567021369934, -0.12335960566997528, -0.12032702565193176, 0.12987130880355835, 0.0201577078551054, -0.020197072997689247, -0.1247793585062027, 0.11487389355897903, 0.08198875933885574, -0.08190113306045532, 0.04406411573290825, 0.025543197989463806, 0.049100931733846664, 0.043778207153081894, -0.06534523516893387, 0.11066820472478867, -0.0559898316860199, -0.16362547874450684, -0.062170468270778656, 0.07390934973955154, 0.05427972972393036, 0.06822264939546585, -0.024525564163923264, 0.027102096006274223, -0.013393049128353596, -0.09585569053888321, 0.019213629886507988, -0.020927147939801216, 0.0605730302631855, 0.05545017123222351, -0.053417325019836426, 0.01692192628979683, -0.06333763152360916, -0.006766193080693483, 0.178842693567276, 0.25276684761047363, -0.08562466502189636, -0.019655920565128326, 0.0224666278809309, -0.06157684326171875, -0.18320061266422272, 0.09464381635189056, 0.09393109381198883, -0.004170246422290802, 0.036324914544820786, -0.1638360172510147, 0.17911045253276825, 0.11311426013708115, 0.0028746218886226416, 0.10883774608373642, -0.2808826267719269, -0.13678708672523499, 0.10250274091959, 0.1677665114402771, 0.1598365753889084, -0.1342344880104065, 0.0013755284016951919, -0.03198333457112312, -0.13187697529792786, 0.10732948780059814, -0.0584261454641819, 0.10839500278234482, -0.023392511531710625, 0.11660736799240112, 0.0013129935832694173, -0.0477880984544754, 0.10459574311971664, 0.04458526521921158, 0.12196251004934311, -0.05385001376271248, -0.06260603666305542, 0.021763432770967484, -0.021029498428106308, -0.025808341801166534, -0.008362810127437115, 0.017940882593393326, -0.07058487832546234, -0.01129599753767252, -0.09245789051055908, 0.03401319310069084, -0.031168809160590172, -0.06749173253774643, -0.02946830354630947, 0.017028165981173515, 0.036737244576215744, -0.023533621802926064, 0.10461712628602982, 0.022892996668815613, 0.16594329476356506, 0.05382145196199417, 0.05132715031504631, -0.09325584024190903, -0.031641144305467606, 0.007858602330088615, -0.01082677859812975, 0.06887488812208176, -0.11930865049362183, 0.02704593725502491, 0.15419480204582214, 0.021009517833590508, 0.12052498012781143, 0.10376930981874466, -0.00941264908760786, 0.009922864846885204, 0.06921786069869995, -0.16041822731494904, -0.025722820311784744, 0.012464425526559353, -0.08214294165372849, -0.07777516543865204, 0.057390015572309494, 0.09033871442079544, -0.07601459324359894, -0.02171550691127777, -0.02326861396431923, -0.019058745354413986, -0.07839643955230713, 0.22376902401447296, 0.07937409728765488, 0.042232852429151535, -0.11512424051761627, 0.05501468852162361, 0.05792493000626564, -0.053482409566640854, -0.005271948408335447, 0.08284226804971695, -0.07469281554222107, -0.011763123795390129, 0.126795694231987, 0.21308907866477966, -0.09646483510732651, -0.01457120943814516, -0.13914348185062408, -0.11463214457035065, 0.0718182697892189, 0.19720196723937988, 0.1253376454114914, -0.006339407060295343, -0.04807649552822113, 0.03896945342421532, -0.13624799251556396, 0.05544903874397278, 0.03654300421476364, 0.08834608644247055, -0.13760323822498322, 0.2051357924938202, 0.0054458449594676495, 0.04859163612127304, -0.033658191561698914, 0.03408975526690483, -0.12509387731552124, 0.02787935361266136, -0.1282351016998291, -0.059763140976428986, 0.010937495157122612, -0.0010605136631056666, 0.010378647595643997, -0.08414772152900696, -0.06393129378557205, 0.012442400678992271, -0.1318516731262207, -0.020550452172756195, 0.039174679666757584, 0.029546381905674934, -0.12358888983726501, -0.04451756924390793, 0.026275457814335823, -0.056205879896879196, 0.04990920051932335, 0.072211354970932, 0.022129636257886887, 0.0905223861336708, -0.16073119640350342, -0.0383937805891037, 0.07970191538333893, -0.0009589440305717289, 0.11316674947738647, -0.05437195301055908, -0.006368640810251236, -0.008582944050431252, 0.11978026479482651, 0.02763029746711254, 0.09036856144666672, -0.13227373361587524, 0.0002957615943159908, -0.03430505841970444, -0.1123104989528656, -0.04745245352387428, -0.0022190760355442762, 0.0877269059419632, 0.01258427556604147, 0.17972847819328308, -0.07911381870508194, 0.05657210573554039, -0.20253758132457733, -0.0175416748970747, -0.025447649881243706, -0.10128291696310043, -0.12884421646595, -0.06151459738612175, 0.07750260084867477, -0.043845273554325104, 0.13143843412399292, 0.041792746633291245, 0.08544405549764633, 0.03153499588370323, -0.022223781794309616, -0.010607320815324783, 0.039702046662569046, 0.17734940350055695, 0.06698792427778244, -0.03878585994243622, 0.07120352238416672, 0.07889685034751892, 0.11871693283319473, 0.08203288167715073, 0.23145978152751923, 0.1330566257238388, -0.023013940081000328, 0.08407437056303024, 0.03089417889714241, -0.0588361881673336, -0.15404823422431946, -0.011659447103738785, -0.056316740810871124, 0.06918223947286606, -0.030092675238847733, 0.19620934128761292, 0.031047377735376358, -0.1609182208776474, 0.04150836914777756, -0.07281506806612015, -0.09235402941703796, -0.1179637461900711, 0.05692053958773613, -0.08422736823558807, -0.15686842799186707, 0.01475649792701006, -0.11218216270208359, 0.016273630782961845, 0.1343720257282257, 0.012371564283967018, -0.008257798850536346, 0.17443272471427917, 0.02720535174012184, 0.04927535355091095, 0.0466097854077816, 0.0005239838501438498, -0.019517352804541588, -0.09061490744352341, -0.07153396308422089, -0.04149410501122475, -0.0042979964055120945, 0.03664267435669899, -0.06570661067962646, -0.11256468296051025, 0.032028187066316605, -0.019210513681173325, -0.10419058799743652, 0.03288797289133072, 0.019995076581835747, 0.05835463106632233, 0.026716850697994232, -0.00512345926836133, 0.02591623365879059, -0.02741910144686699, 0.21438603103160858, -0.08546163886785507, -0.08965221792459488, -0.09284648299217224, 0.3153691589832306, 0.05801083892583847, 0.01868157461285591, 0.023583944886922836, -0.0678633525967598, -0.02045915648341179, 0.22024956345558167, 0.17474447190761566, -0.13317455351352692, -0.007468425203114748, -0.0043083736672997475, -0.015444889664649963, -0.03230234235525131, 0.14165043830871582, 0.14104105532169342, 0.0376712866127491, -0.1087118536233902, -0.04128853231668472, -0.0630766972899437, -0.012084861285984516, -0.037510816007852554, 0.02578422985970974, 0.055124860256910324, 0.016946975141763687, -0.05697031691670418, 0.05514606833457947, -0.0706215426325798, -0.10936151444911957, 0.07869172096252441, -0.20852625370025635, -0.16931094229221344, -0.0029540571849793196, 0.09533697366714478, -0.005929530132561922, 0.0794503465294838, -0.029145941138267517, -0.018643712624907494, 0.0597352460026741, -0.027470093220472336, -0.061909984797239304, -0.10781529545783997, 0.12222912907600403, -0.11008471250534058, 0.17922452092170715, -0.04285053536295891, 0.09826033562421799, 0.11578600108623505, 0.07779998332262039, -0.04995230212807655, 0.05066172778606415, 0.04351970553398132, -0.11583543568849564, 0.004253310151398182, 0.11038024723529816, -0.04208793491125107, 0.045101020485162735, 0.033856045454740524, -0.15530383586883545, 0.027953999117016792, -0.052306078374385834, -0.04391750693321228, -0.03817050904035568, -0.07025119662284851, -0.06603924185037613, 0.10920765995979309, 0.23452770709991455, -0.012081297114491463, 0.036737110465765, -0.08444595336914062, 0.01100365910679102, 0.04798204451799393, 0.043029800057411194, -0.11114457249641418, -0.2600107789039612, 0.020810222253203392, 0.09881048649549484, -0.045046139508485794, -0.19496488571166992, -0.08550649136304855, 0.012190740555524826, -0.06982191652059555, -0.09630292654037476, 0.09387215971946716, 0.047301698476076126, 0.050657693296670914, -0.049609169363975525, -0.142581969499588, -0.08669613301753998, 0.16258525848388672, -0.1494792252779007, -0.09581559896469116 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4779 - Wer: 0.3453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4307 | 4.0 | 500 | 1.4129 | 0.9980 | | 0.626 | 8.0 | 1000 | 0.4605 | 0.4499 | | 0.2199 | 12.0 | 1500 | 0.4457 | 0.3898 | | 0.1303 | 16.0 | 2000 | 0.4418 | 0.3771 | | 0.0851 | 20.0 | 2500 | 0.4647 | 0.3548 | | 0.0604 | 24.0 | 3000 | 0.4603 | 0.3499 | | 0.0461 | 28.0 | 3500 | 0.4779 | 0.3453 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
bryan6aero/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4779 * Wer: 0.3453 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.10833754390478134, 0.10381042957305908, -0.003447136841714382, 0.05311182141304016, 0.10943093150854111, -0.02224290370941162, 0.12992502748966217, 0.1490924060344696, -0.11156157404184341, 0.07095726579427719, 0.12520445883274078, 0.1469612419605255, 0.044384390115737915, 0.1459488868713379, -0.05123339593410492, -0.2855369746685028, 0.048294976353645325, 0.03550826758146286, -0.020840534940361977, 0.12408933788537979, 0.08524196594953537, -0.1261489987373352, 0.05181831493973732, 0.03754477575421333, -0.1591220498085022, -0.001641957787796855, -0.008117086254060268, -0.10824380815029144, 0.11797899007797241, 0.013362843543291092, 0.07320088893175125, 0.048765409737825394, 0.06339815258979797, -0.21467654407024384, 0.008721605874598026, 0.045480094850063324, 0.027293900027871132, 0.07399290800094604, 0.06101059168577194, -0.0253707654774189, 0.12154541909694672, -0.07785171270370483, 0.08432452380657196, 0.03452400863170624, -0.10040441900491714, -0.295693039894104, -0.0883895605802536, 0.047700464725494385, 0.07843475788831711, 0.08981457352638245, -0.00999368354678154, 0.1470525562763214, -0.057681191712617874, 0.11329855024814606, 0.2798192799091339, -0.31179121136665344, -0.04599817469716072, -0.05289574712514877, 0.05597834661602974, 0.05841030925512314, -0.0901239812374115, -0.02046792581677437, 0.010743708349764347, 0.046851977705955505, 0.13231885433197021, -0.01715417020022869, -0.06198609992861748, -0.008344883099198341, -0.1534324288368225, -0.06298980861902237, 0.11046526581048965, 0.017656773328781128, -0.042628876864910126, -0.09404584765434265, -0.05194579064846039, -0.2004159539937973, -0.06980933248996735, -0.01500130258500576, 0.039956334978342056, -0.04952618107199669, -0.10413790494203568, -0.019491255283355713, -0.06758825480937958, -0.07009370625019073, -0.03837838023900986, 0.19532173871994019, 0.06178545951843262, -0.0007504495442844927, -0.04200323671102524, 0.06930477917194366, -0.014736226759850979, -0.13804151117801666, -0.023672964423894882, 0.036250852048397064, -0.022838842123746872, -0.01682872325181961, -0.04348614066839218, -0.06593196094036102, 0.018360575661063194, 0.1567915380001068, -0.1088852807879448, 0.09793650358915329, -0.01537051610648632, 0.03874713182449341, -0.10357552021741867, 0.20873264968395233, -0.04153716564178467, 0.03293122723698616, -0.005830306094139814, 0.055414408445358276, 0.033529847860336304, -0.026014741510152817, -0.09795874357223511, 0.034854013472795486, 0.11659786105155945, 0.053310833871364594, -0.04302902892231941, 0.05821622163057327, -0.027089765295386314, -0.009910321794450283, 0.011593430303037167, -0.11522748321294785, 0.03396046161651611, 0.0198811162263155, -0.06172381713986397, 0.0008120397687889636, 0.019153296947479248, 0.004520639777183533, -0.06453731656074524, 0.08428143709897995, -0.056282371282577515, 0.033882591873407364, -0.05637597292661667, -0.12755036354064941, 0.02759174071252346, -0.10902155190706253, -0.001358338282443583, -0.10306747257709503, -0.09193158149719238, -0.010619371198117733, 0.036999672651290894, -0.03549756854772568, -0.03275611996650696, -0.07301835715770721, -0.09623170644044876, 0.04175805300474167, -0.03570253774523735, 0.0764346495270729, -0.07133547961711884, 0.09405636042356491, 0.03081537038087845, 0.08494142442941666, -0.01318286918103695, 0.062569260597229, -0.06405647844076157, 0.029027704149484634, -0.20785629749298096, 0.078687384724617, -0.09378376603126526, 0.058948077261447906, -0.12374458461999893, -0.1170143187046051, 0.03827769681811333, -0.004956687800586224, 0.10379257798194885, 0.0937594622373581, -0.16922356188297272, -0.08996674418449402, 0.2025158554315567, -0.08362291753292084, -0.08466292172670364, 0.12438537180423737, -0.023574335500597954, -0.012047374621033669, 0.05270986631512642, 0.25722435116767883, 0.0563923642039299, -0.12386839836835861, 0.01153150387108326, -0.03621745854616165, 0.047043293714523315, -0.04501413181424141, 0.05954015627503395, -0.02173132449388504, 0.07572626322507858, 0.01326675247400999, -0.006562749855220318, 0.042281605303287506, -0.08780118823051453, -0.07798930257558823, -0.040403641760349274, -0.07652655988931656, 0.013507777824997902, 0.034905679523944855, 0.06404134631156921, -0.11733686923980713, -0.11073767393827438, 0.04709266126155853, 0.08484742790460587, -0.10454373061656952, 0.07569947093725204, -0.11945994943380356, 0.08855628222227097, -0.012427026405930519, -0.0042078010737895966, -0.19148027896881104, 0.033684469759464264, 0.03369207680225372, -0.027014397084712982, 0.03843504935503006, -0.06565430760383606, 0.07286848872900009, 0.04831041023135185, -0.024084001779556274, -0.04726380854845047, -0.008630751632153988, 0.012781241908669472, -0.09038025140762329, -0.20807726681232452, -0.040402818471193314, -0.04182978719472885, 0.07309912890195847, -0.13454800844192505, 0.034716520458459854, 0.07227864861488342, 0.09292402863502502, 0.02967613935470581, -0.028521638363599777, 0.0027323609683662653, 0.09046582877635956, -0.017737697809934616, -0.06717314571142197, 0.05653621628880501, 0.023511258885264397, -0.08707185834646225, 0.048796478658914566, -0.1481570303440094, 0.127961665391922, 0.14512650668621063, -0.008458556607365608, -0.0681370198726654, 0.0027188167441636324, -0.05006382241845131, -0.0315980389714241, -0.0025538518093526363, 0.04147781804203987, 0.22176256775856018, 0.01608957350254059, 0.14620628952980042, -0.09077949076890945, -0.04409495368599892, 0.049091413617134094, -0.02334122359752655, -0.009143802337348461, 0.12483556568622589, 0.04845994710922241, -0.05674070864915848, 0.11428955942392349, 0.08967925608158112, -0.08586719632148743, 0.11837322264909744, -0.06838078796863556, -0.07681573182344437, -0.016253173351287842, 0.006750784814357758, 0.028568439185619354, 0.09584370255470276, -0.15449927747249603, -0.04031454026699066, 0.02691691555082798, 0.020981546491384506, 0.02508392371237278, -0.20947007834911346, 0.014041672460734844, 0.03178508207201958, -0.08192425966262817, -0.043465156108140945, -0.0011847163550555706, 0.012034800834953785, 0.09432540088891983, 0.013446008786559105, -0.09667441248893738, 0.009430745616555214, 0.0037322519347071648, -0.07600316405296326, 0.17992286384105682, -0.12140516191720963, -0.17771458625793457, -0.10324431955814362, -0.0862940177321434, -0.032839421182870865, -0.006773955188691616, 0.0887315422296524, -0.09486573934555054, -0.044363152235746384, -0.08358942717313766, -0.023079875856637955, -0.03151819482445717, 0.04283427074551582, 0.03156427666544914, -0.01136570330709219, 0.06314032524824142, -0.11243854463100433, -0.019515544176101685, -0.041744768619537354, 0.004032604396343231, 0.05496735870838165, 0.03658017888665199, 0.10614565014839172, 0.1565544754266739, -0.015423845499753952, 0.04914018139243126, -0.04671413451433182, 0.1867409497499466, -0.07426898181438446, -0.041470639407634735, 0.1136881560087204, -0.007811855059117079, 0.06949979066848755, 0.10878996551036835, 0.04568083956837654, -0.09368357807397842, -0.013869465328752995, -0.000707953586243093, -0.04555567353963852, -0.22215522825717926, -0.036037545651197433, -0.04656601697206497, -0.00568003486841917, 0.10165924578905106, 0.040871743112802505, 0.02505088411271572, 0.018389305099844933, 0.028121553361415863, 0.00035212599323131144, 0.0012278348440304399, 0.09916964918375015, 0.1341795027256012, 0.0387304350733757, 0.1326872706413269, -0.043069735169410706, -0.03335773944854736, 0.03271381929516792, -0.0015795581275597215, 0.23355889320373535, 0.014797404408454895, 0.18411597609519958, 0.05663689598441124, 0.16338348388671875, 0.04172950237989426, 0.06686992943286896, -0.004308757837861776, -0.011605213396251202, 0.012266881763935089, -0.051825493574142456, -0.042994026094675064, 0.022489888593554497, 0.0273785088211298, 0.004465919919312, -0.1159159392118454, 0.0005170528893359005, 0.04267645999789238, 0.3521466553211212, 0.026302076876163483, -0.33115461468696594, -0.0937834158539772, -0.011363771744072437, -0.09160836786031723, -0.029828879982233047, 0.04430842027068138, 0.08963862806558609, -0.07562659680843353, 0.06577971577644348, -0.06103985011577606, 0.09144850075244904, -0.059319667518138885, 0.029836803674697876, 0.03289255127310753, 0.07434683293104172, 0.005700880195945501, 0.03577127307653427, -0.2962503433227539, 0.28073421120643616, 0.005631123203784227, 0.07630942016839981, -0.059538017958402634, 0.012447638437151909, 0.02244623191654682, 0.021201057359576225, 0.0854242816567421, -0.025091901421546936, -0.12549014389514923, -0.16572368144989014, -0.09539511799812317, 0.015275818295776844, 0.12291479855775833, 0.03043687902390957, 0.11055338382720947, -0.008221535012125969, -0.016779381781816483, 0.04930062219500542, -0.10247119516134262, -0.0565626323223114, -0.09930874407291412, 0.013917908072471619, 0.06958311051130295, 0.017841244116425514, -0.07698749750852585, -0.10803275555372238, -0.07963237911462784, 0.161455899477005, -0.04690762236714363, -0.049646005034446716, -0.12043671309947968, 0.009213562123477459, 0.10760517418384552, -0.08037063479423523, 0.0627606213092804, 0.007560367230325937, 0.1034381240606308, 0.003693344769999385, -0.06942233443260193, 0.11578889191150665, -0.06958215683698654, -0.16740162670612335, -0.023777656257152557, 0.14403222501277924, 0.029652034863829613, 0.06261475384235382, -0.010333992540836334, 0.03588103502988815, -0.02198963798582554, -0.0782666876912117, 0.03668055683374405, 0.0313185378909111, 0.04941844940185547, -0.018752507865428925, -0.014451628550887108, -0.005778694525361061, -0.0897565484046936, -0.01813792996108532, 0.20751960575580597, 0.24517950415611267, -0.09391327947378159, 0.095774345099926, 0.06509755551815033, -0.03955508768558502, -0.17117023468017578, -0.009669424965977669, 0.07201457023620605, -0.00040477776201441884, -0.03234190493822098, -0.1950286626815796, 0.02182387374341488, 0.06428606063127518, -0.02105681411921978, 0.07620948553085327, -0.3114224076271057, -0.1389889419078827, 0.14483876526355743, 0.11684533208608627, 0.057372041046619415, -0.14682094752788544, -0.05427340418100357, -0.009698581881821156, -0.08959914743900299, 0.09872198104858398, -0.07368794083595276, 0.13339248299598694, -0.02151283621788025, 0.0900125801563263, 0.011481883004307747, -0.05909395590424538, 0.10904435813426971, 0.006878409069031477, 0.05564282089471817, -0.04371855780482292, 0.02109719254076481, 0.04945603385567665, -0.06575894355773926, 0.05426900461316109, -0.07870833575725555, 0.0321306437253952, -0.08992088586091995, -0.030698301270604134, -0.08440285176038742, 0.012920956127345562, -0.012694328092038631, -0.027571629732847214, -0.038240376859903336, 0.00040720109245739877, 0.06439678370952606, -0.012324657291173935, 0.15859998762607574, -0.0258988868445158, 0.1213768869638443, 0.16440238058567047, 0.10472052544355392, -0.10338187217712402, -0.06646968424320221, 0.006159121636301279, -0.03442716598510742, 0.05600771680474281, -0.12481767684221268, 0.0331452377140522, 0.13678844273090363, 0.02906477451324463, 0.11560565233230591, 0.0657036304473877, -0.07196593284606934, 0.029690509662032127, 0.03940979763865471, -0.14030630886554718, -0.1259399950504303, 0.012432526797056198, 0.04283227026462555, -0.07060881704092026, 0.07352157682180405, 0.11225481331348419, -0.05890776589512825, -0.019077425822615623, -0.0010647890157997608, 0.014384094625711441, -0.039235200732946396, 0.19945017993450165, 0.04253912717103958, 0.06556674838066101, -0.12472614645957947, 0.07962489128112793, 0.04067164659500122, -0.13785240054130554, 0.06680858135223389, 0.11523443460464478, -0.09564115107059479, -0.029312387108802795, 0.03305184841156006, 0.1058652251958847, -0.027327246963977814, -0.07625725865364075, -0.14180098474025726, -0.14805257320404053, 0.11542604118585587, 0.20982274413108826, 0.05477139726281166, 0.011962365359067917, -0.05966893583536148, 0.016742343083024025, -0.12094023823738098, 0.07404458522796631, 0.040687933564186096, 0.06161949783563614, -0.12236526608467102, 0.15302594006061554, 0.01823774166405201, 0.04901929199695587, -0.014212665148079395, -0.008479558862745762, -0.11560764163732529, 0.04105975478887558, -0.1377730667591095, 0.007889210246503353, -0.06813781708478928, 0.002953618997707963, 0.002498693997040391, -0.04447924718260765, -0.062049854546785355, 0.03951378911733627, -0.12002760171890259, -0.02218621037900448, -0.004193393047899008, 0.029725441709160805, -0.12637798488140106, -0.009144372306764126, 0.007749427575618029, -0.09551648050546646, 0.09743473678827286, 0.08704204112291336, -0.02983301691710949, 0.050036896020174026, -0.04546830430626869, -0.03167468309402466, 0.08094117045402527, -0.003110236721113324, 0.055044252425432205, -0.13397149741649628, -0.019748948514461517, 0.014943324960768223, 0.03051268868148327, 0.02191765606403351, 0.11163926869630814, -0.11216187477111816, 0.002342303516343236, -0.02661878988146782, -0.052631352096796036, -0.0695110633969307, 0.0566021203994751, 0.10603443533182144, 0.028557132929563522, 0.16374637186527252, -0.09526465833187103, 0.030032064765691757, -0.16133320331573486, 0.004723858553916216, -0.02056591957807541, -0.12526042759418488, -0.043614841997623444, -0.031058959662914276, 0.08091603964567184, -0.06501792371273041, 0.12357719242572784, -0.027396967634558678, 0.03133884072303772, 0.039567429572343826, -0.08330715447664261, -0.04500983655452728, 0.04368012025952339, 0.19865919649600983, 0.037938669323921204, -0.04089481383562088, 0.07326071709394455, 0.017733758315443993, 0.07938048988580704, 0.12459861487150192, 0.1737319976091385, 0.15788210928440094, 0.060173243284225464, 0.11847540736198425, 0.05435815453529358, -0.058412231504917145, -0.16708436608314514, 0.08628037571907043, -0.06032026931643486, 0.13355810940265656, -0.011683795601129532, 0.23349842429161072, 0.126515194773674, -0.15185151994228363, 0.06547676026821136, -0.01775580458343029, -0.08892745524644852, -0.11879414319992065, -0.059978779405355453, -0.08449370414018631, -0.17035658657550812, 0.007223862688988447, -0.10407434403896332, 0.060791682451963425, 0.04036923497915268, 0.0406450591981411, 0.017503537237644196, 0.13356520235538483, 0.025533415377140045, 0.0011981537099927664, 0.0938468649983406, -0.0034534884616732597, -0.05139409005641937, -0.0654342845082283, -0.08168738335371017, 0.03930104151368141, -0.011124776676297188, 0.05700472742319107, -0.0044067357666790485, -0.06600939482450485, 0.05390038341283798, -0.035257499665021896, -0.09521207958459854, 0.02477937377989292, 0.02138591930270195, 0.07421143352985382, 0.053345803171396255, 0.0343724749982357, -0.03974883630871773, -0.0016492705326527357, 0.19061097502708435, -0.0947212427854538, -0.09959877282381058, -0.10897103697061539, 0.2683177888393402, 0.03826966509222984, -0.01721738465130329, 0.022094130516052246, -0.058050334453582764, -0.03629877790808678, 0.2044251561164856, 0.17119856178760529, -0.010132716968655586, 0.004274469800293446, -0.01581609807908535, -0.005809308495372534, -0.043228887021541595, 0.08381844311952591, 0.15583012998104095, 0.06372498720884323, -0.06269604712724686, -0.06358547508716583, -0.05333370715379715, -0.034645576030015945, -0.06843351572751999, 0.07628190517425537, 0.014270270243287086, -0.02650071680545807, -0.03774745762348175, 0.0622498095035553, -0.09407172352075577, -0.08780978620052338, 0.01707332581281662, -0.1899011880159378, -0.1541675627231598, 0.007431644015014172, 0.06914526224136353, 0.013699430041015148, 0.03485763445496559, 0.0046659428626298904, -0.013051481917500496, 0.08807174861431122, 0.0005368085112422705, -0.08228840678930283, -0.060809750109910965, 0.092787005007267, -0.14782628417015076, 0.15854524075984955, -0.03908930718898773, 0.04669244587421417, 0.12287257611751556, 0.08951910585165024, -0.08050762861967087, 0.08849873393774033, 0.04622596129775047, -0.10895267128944397, 0.02583940513432026, 0.15606917440891266, -0.03488616645336151, 0.0890420526266098, 0.02996581420302391, -0.11539477854967117, 0.010171609930694103, -0.10265477001667023, -0.03983833268284798, -0.03537425026297569, -0.04617121443152428, -0.04696659743785858, 0.10657443851232529, 0.1665657013654709, -0.045781467109918594, 0.004395944532006979, -0.053576916456222534, 0.008421660400927067, 0.046719495207071304, 0.003148264018818736, -0.05753806233406067, -0.2782512605190277, 0.011577482335269451, 0.027842320501804352, 0.00722676794975996, -0.2543206810951233, -0.08786150068044662, 0.010264093987643719, -0.04437977075576782, -0.08825569599866867, 0.08789321780204773, 0.07012148946523666, 0.04342355951666832, -0.058009400963783264, -0.04866177216172218, -0.03920764848589897, 0.18731571733951569, -0.17453256249427795, -0.0540112666785717 ]
null
null
transformers
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained all HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <li id:n-sitesupport><a>Donate to Wikipedia</a></li> <li id:n-shoplink><a>Wikipedia store</a></li> </ul></div></div><div class:portal id:p-interaction><h3 id:p-interaction-label>Interaction</h3> <div class:body><ul><li id:n-help><a>Help</a></li> <li id:n-aboutsite><a>About Wikipedia</a></li> <li id:n-portal><a>Community portal</a></li> <li id:n-recentchanges><a>Recent changes</a></li> <li id:n-contactpage><a>Contact page</a></li> </ul></div></div><div class:portal id:p-tb><h3 id:p-tb-label>Tools</h3> <div class:body><ul><li id:t-whatlinkshere><a>What links here</a></li> <li id:t-recentchangeslinked><a>Related changes</a></li> <li id:t-upload><a>Upload file</a></li> <li id:t-specialpages><a>Special pages</a></li> <li id:t-permalink><a>Permanent link</a></li> <li id:t-info><a>Page information</a></li> <li id:t-wikibase><a>Wikidata item</a></li> <li id:t-cite><a>Cite this page</a></li> </ul></div></div><div class:portal id:p-coll-print_export><h3 id:p-coll-print_export-label>Print/export</h3> <div class:body><ul><li id:coll-create_a_book><a>Create a book</a></li> <li id:coll-download-as-rdf2latex><a>Download as PDF</a></li> <li id:t-print><a>Printable version</a></li> </ul></div></div><div class:portal id:p-lang><h3 id:p-lang-label>Languages</h3> <div class:body><ul><li class:interlanguage-link interwiki-ca><a class:interlanguage-link-target>Català</a></li> <li class:interlanguage-link interwiki-da><a class:interlanguage-link-target>Dansk</a></li> <li class:interlanguage-link interwiki-de><a class:interlanguage-link-target>Deutsch</a></li> <li class:interlanguage-link interwiki-es><a class:interlanguage-link-target>Español</a></li> <li class:interlanguage-link interwiki-eu><a class:interlanguage-link-target>Euskara</a></li> <li class:interlanguage-link interwiki-fa><a class:interlanguage-link-target>فارسی</a></li> <li class:interlanguage-link interwiki-fr><a class:interlanguage-link-target>Français</a></li> <li class:interlanguage-link interwiki-id><a class:interlanguage-link-target>Bahasa Indonesia</a></li> <li class:interlanguage-link interwiki-nl><a class:interlanguage-link-target>Nederlands</a></li> <li class:interlanguage-link interwiki-pt><a class:interlanguage-link-target>Português</a></li> <li class:interlanguage-link interwiki-fi><a class:interlanguage-link-target>Suomi</a></li> <li class:interlanguage-link interwiki-vi><a class:interlanguage-link-target>Tiếng Việt</a></li> <button class:mw-interlanguage-selector mw-ui-button>5 more</button> </ul><div class:after-portlet after-portlet-lang><span class:wb-langlinks-edit wb-langlinks-link><a class:wbc-editpage>Edit links</a></span></div> </div></div></ ```
{"widget": [{"text": " htmlOn ||| <div"}]}
text-generation
bs-modeling-metadata/html-metadata-exp1-subexp1-1857108
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of gpt2. Dataset:Natural_Questions_HTML_reduced_all 50% of the examples in the training data contained all HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text. Training example with metadata:
[ "# Work In Progress", "# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained all HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Work In Progress", "# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained all HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ 47, 5, 48, 72 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Work In Progress# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained all HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ -0.0566776767373085, 0.03406408801674843, -0.00035880168434232473, 0.039425548166036606, 0.21293963491916656, 0.0606042705476284, 0.08346728980541229, 0.1406218260526657, -0.0348978154361248, -0.03721633180975914, 0.172393798828125, 0.1027710884809494, -0.01481769047677517, 0.09721840173006058, -0.010905969887971878, -0.19611245393753052, -0.021974295377731323, 0.08434294909238815, -0.01160364132374525, 0.12029436230659485, 0.07739058136940002, -0.08508637547492981, 0.0813530907034874, 0.021682582795619965, -0.1844148486852646, -0.007642805110663176, 0.006544292438775301, -0.06515566259622574, 0.11967496573925018, -0.017047755420207977, 0.06049061194062233, -0.01205169502645731, 0.040055498480796814, -0.1678674966096878, 0.023133547976613045, 0.05651479586958885, 0.013775128871202469, 0.06678963452577591, 0.05351285636425018, -0.06377548724412918, 0.012040764093399048, 0.010829341597855091, 0.01836094819009304, 0.0995149090886116, -0.14268121123313904, -0.07732828706502914, -0.035390470176935196, 0.0012025788892060518, 0.11436140537261963, 0.1221064031124115, -0.02908242866396904, 0.008381186984479427, -0.13335151970386505, 0.06300708651542664, 0.20222806930541992, -0.19357751309871674, -0.03544533625245094, 0.06230204179883003, 0.019568394869565964, -0.010058739222586155, -0.06931421905755997, 0.06056768074631691, 0.03439505398273468, 0.050649479031562805, -0.005013441201299429, -0.02589612454175949, -0.15099705755710602, 0.01742122694849968, -0.07858342677354813, -0.030701057985424995, 0.298516184091568, 0.005296168848872185, -0.024185679852962494, -0.10980623215436935, -0.012824878096580505, -0.04779033362865448, -0.04356354847550392, 0.017811719328165054, -0.04440693557262421, 0.07158326357603073, -0.05374077335000038, -0.12147731333971024, -0.14502626657485962, -0.10371796786785126, -0.004215597175061703, 0.034308843314647675, 0.01448158547282219, -0.0006200168281793594, -0.10378804057836533, 0.17281083762645721, 0.005753593053668737, -0.03601973503828049, 0.01608589105308056, -0.06561241298913956, 0.025663264095783234, -0.013672097586095333, -0.12592877447605133, -0.16066361963748932, 0.04845719039440155, 0.10304999351501465, 0.0642247274518013, 0.015648700296878815, 0.024721486493945122, 0.06221316009759903, -0.08591428399085999, 0.09714536368846893, 0.008541855029761791, 0.00845605693757534, 0.048012446612119675, -0.0529278963804245, -0.07505021244287491, -0.01912374049425125, -0.13606084883213043, -0.07363497465848923, 0.0032690262887626886, 0.05713469907641411, -0.011984082870185375, 0.10366030037403107, -0.07496702671051025, -0.013266801834106445, -0.058908939361572266, -0.10327060520648956, -0.011079872958362103, -0.004425802733749151, 0.026159709319472313, -0.016226565465331078, 0.09745723754167557, 0.02284299209713936, -0.07964522391557693, -0.04308929666876793, -0.042474694550037384, 0.04168499633669853, -0.09362976998090744, -0.01506481971591711, -0.023890912532806396, -0.07679888606071472, -0.022312574088573456, -0.08893562108278275, -0.22150173783302307, -0.006719058845192194, 0.08115237951278687, 0.021105492487549782, 0.016889067366719246, -0.06151643022894859, 0.012554967775940895, -0.00047778236330486834, 0.005757635459303856, 0.09345579147338867, -0.04208308458328247, 0.08261646330356598, 0.002780307549983263, 0.0698980987071991, -0.055277422070503235, 0.0787775069475174, -0.136412113904953, -0.02601306326687336, -0.07285317778587341, 0.10952863097190857, 0.09666930884122849, 0.06268417090177536, -0.05725072696805, -0.0052488865330815315, -0.053894732147455215, 0.024303661659359932, 0.021520990878343582, 0.18307620286941528, -0.08509597927331924, -0.06476296484470367, 0.1935233622789383, -0.0020404525566846132, -0.07419976592063904, 0.05707355961203575, -0.026483546942472458, 0.2185954451560974, 0.10978365689516068, 0.14633946120738983, 0.00694079976528883, -0.007208284921944141, 0.12798690795898438, 0.05905609950423241, -0.042078711092472076, -0.007088201120495796, -0.016450034454464912, -0.08968739211559296, -0.13323865830898285, 0.05946322903037071, -0.04653944820165634, 0.08908350765705109, -0.0738309919834137, -0.06716618686914444, -0.037569496780633926, -0.05238139256834984, 0.13089844584465027, 0.06647355854511261, 0.08045733720064163, -0.01612854190170765, -0.07576189935207367, -0.031162457540631294, 0.011104614473879337, -0.11714417487382889, 0.03553958237171173, -0.03201743960380554, 0.06823208928108215, -0.07221470773220062, 0.009453765116631985, -0.18018251657485962, -0.11800462752580643, -0.020283406600356102, 0.18993420898914337, 0.04103820398449898, 0.005111935082823038, 0.06795504689216614, -0.014642292633652687, -0.06276825070381165, 0.007410694379359484, -0.006601358763873577, -0.02528437413275242, -0.10477977246046066, -0.12028947472572327, -0.013000315986573696, -0.03787478804588318, 0.10558504611253738, -0.1298907846212387, 0.05318880453705788, -0.030002111569046974, 0.08734158426523209, 0.010420388542115688, -0.0488126277923584, 0.031543295830488205, 0.0033334121108055115, -0.024863921105861664, -0.0438656359910965, 0.08917684853076935, 0.008691930212080479, -0.0794907808303833, 0.023230385035276413, -0.0076566096395254135, -0.04626046493649483, 0.12073524296283722, -0.21177521347999573, -0.12720677256584167, -0.020283931866288185, -0.051534876227378845, 0.015419908799231052, -0.11274569481611252, -0.025148101150989532, 0.22579817473888397, -0.019700458273291588, 0.12312056869268417, -0.013714289292693138, -0.06681670993566513, -0.018561124801635742, -0.047239698469638824, 0.0665624663233757, 0.017781151458621025, 0.09752023220062256, -0.035125549882650375, 0.11329414695501328, 0.012441293336451054, -0.04492954909801483, 0.19634070992469788, 0.008028233423829079, -0.07396584004163742, 0.07910964637994766, 0.024962889030575752, -0.030731813982129097, 0.03869789466261864, -0.2783295810222626, -0.07252757996320724, 0.057160183787345886, 0.02149033546447754, 0.06441346555948257, -0.18413423001766205, -0.027098840102553368, -0.0241317767649889, -0.06315649300813675, -0.0047475057654082775, 0.02477189712226391, -0.020307054743170738, 0.08968669921159744, 0.04205578938126564, 0.04428935423493385, 0.11743143200874329, 0.019241461530327797, -0.1400424838066101, 0.15362174808979034, -0.02938789874315262, -0.19948464632034302, -0.07604876160621643, -0.02925994247198105, -0.055809974670410156, 0.07556936144828796, 0.08674878627061844, -0.18696942925453186, -0.041924431920051575, 0.020175522193312645, -0.0012151270639151335, -0.0037949890829622746, 0.048599615693092346, -0.03634736314415932, 0.009665611200034618, -0.02455361932516098, -0.10111746191978455, -0.003598712384700775, -0.01453342754393816, -0.05311069265007973, 0.07235348224639893, -0.12505044043064117, 0.09551180154085159, 0.18354426324367523, -0.03804720565676689, 0.0894709974527359, -0.027962541207671165, 0.1862964779138565, -0.09305021166801453, -0.005425375420600176, 0.13339729607105255, -0.010587524622678757, 0.01532112155109644, 0.05580700933933258, 0.023128937929868698, -0.07039088755846024, 0.05207350477576256, 0.047690633684396744, -0.06338837742805481, -0.23332346975803375, -0.03946975991129875, -0.11742541193962097, -0.04745671898126602, 0.07426915317773819, 0.04470844566822052, 0.10707678645849228, 0.1051061823964119, -0.05038342624902725, 0.06732446700334549, 0.06315937638282776, 0.1258733570575714, 0.08358966559171677, 0.024687228724360466, 0.10644926875829697, -0.02768116630613804, -0.06966785341501236, 0.01658862829208374, -0.010885217227041721, 0.2147822231054306, -0.017041433602571487, 0.018236443400382996, 0.03438685089349747, 0.07582240551710129, 0.01802968420088291, 0.13282857835292816, -0.021763933822512627, -0.012803482823073864, -0.0163005031645298, -0.025233596563339233, -0.029377548024058342, 0.05161860212683678, -0.05136698856949806, -0.09564328193664551, -0.1116742417216301, -0.05974338948726654, 0.09455382823944092, 0.19969552755355835, 0.10711047053337097, -0.2553209066390991, -0.05492054298520088, -0.017544040456414223, -0.04634498432278633, -0.12513597309589386, 0.024354003369808197, 0.01191036682575941, -0.15683406591415405, 0.02600739523768425, -0.03299464285373688, 0.13048525154590607, 0.012700884602963924, 0.03169581666588783, 0.05125534534454346, -0.06283016502857208, -0.026924602687358856, 0.1396503448486328, -0.2973422706127167, 0.09921185672283173, 0.03541387617588043, 0.07880625873804092, -0.13090504705905914, 0.006495073437690735, 0.03333130106329918, 0.09025552123785019, 0.10842350125312805, -0.013356605544686317, 0.15907029807567596, -0.06706389039754868, 0.009084236808121204, 0.054543349891901016, 0.09254734218120575, -0.057253241539001465, 0.028687840327620506, -0.03812088072299957, 0.003559867385774851, 0.04534551873803139, -0.10505764931440353, -0.1693103313446045, -0.1411483883857727, 0.023103345185518265, 0.017244720831513405, 0.16794323921203613, 0.002127395709976554, -0.025163503363728523, -0.00445137033239007, 0.2895555794239044, 0.017019586637616158, -0.10582322627305984, -0.12833209335803986, 0.027223598212003708, 0.01919475942850113, -0.01029207743704319, 0.07494963705539703, -0.030813127756118774, 0.07323504239320755, 0.012996670790016651, -0.09163334965705872, 0.10305404663085938, -0.07716681063175201, -0.1306416243314743, -0.06308647245168686, 0.08614759147167206, 0.05534329265356064, 0.013191387057304382, 0.06732536852359772, -0.026782555505633354, -0.08300231397151947, -0.10169937461614609, 0.031037382781505585, 0.019565729424357414, 0.1679467260837555, 0.04796391353011131, -0.09317738562822342, 0.036152150481939316, -0.05047878250479698, -0.058253634721040726, 0.280306339263916, 0.057802341878414154, -0.08357944339513779, 0.07443871349096298, 0.06113755702972412, -0.07477448135614395, -0.24487486481666565, 0.06638653576374054, 0.013274976052343845, -0.020962728187441826, -0.08565080165863037, -0.228577122092247, 0.09360554814338684, -0.02178122289478779, -0.005175701808184385, 0.09587511420249939, -0.2327284961938858, -0.08613024652004242, 0.10136933624744415, 0.03967545926570892, 0.18940071761608124, -0.1202307641506195, 0.000568636110983789, -0.043962422758340836, -0.13636134564876556, 0.10757055133581161, -0.11290273070335388, 0.11380257457494736, -0.020366892218589783, 0.09029266983270645, 0.01667601615190506, -0.06003972515463829, 0.09658077359199524, 0.024473465979099274, 0.023974936455488205, -0.021329645067453384, 0.02056110091507435, 0.1468181312084198, -0.007331074681133032, 0.09752321988344193, 0.025284182280302048, 0.017728092148900032, -0.13466951251029968, -0.08672717213630676, -0.0896381139755249, 0.03360733017325401, 0.041429463773965836, -0.12975738942623138, -0.014472376555204391, -0.07671086490154266, 0.05452895537018776, 0.014526117593050003, 0.032198693603277206, -0.10551145672798157, 0.0969821959733963, -0.025245757773518562, 0.15122206509113312, -0.12576824426651, -0.05666491761803627, -0.009184383787214756, -0.059669505804777145, 0.08216391503810883, -0.136895090341568, 0.07895295321941376, 0.04484563693404198, 0.019648045301437378, 0.13879023492336273, 0.1382906287908554, 0.04028793424367905, 0.027180140838027, 0.055970191955566406, -0.15673603117465973, 0.022595321759581566, -0.06210968643426895, -0.1350807547569275, -0.10095508396625519, 0.07876476645469666, 0.04451707378029823, -0.02607305720448494, -0.04984261095523834, 0.004954760894179344, 0.011866649612784386, -0.10956951975822449, 0.04857839271426201, 0.057583630084991455, 0.007232774514704943, -0.09923011809587479, 0.022179342806339264, 0.02001372165977955, -0.01877976395189762, 0.026351451873779297, 0.04593224823474884, -0.13295906782150269, -0.08617269992828369, 0.09491796046495438, 0.24688667058944702, -0.09847228229045868, -0.04900142177939415, -0.07379554957151413, -0.0743173286318779, 0.06161129102110863, -0.010592578910291195, 0.045592907816171646, 0.015922488644719124, -0.028211073949933052, 0.02122998796403408, -0.1483834832906723, 0.017065923660993576, 0.05962684005498886, 0.02553996443748474, -0.07844872027635574, 0.14712651073932648, -0.00620470242574811, 0.0750994011759758, -0.06317520141601562, -0.032917674630880356, -0.08163153380155563, 0.08732625097036362, -0.11941580474376678, -0.020361904054880142, -0.08144077658653259, -0.03680482134222984, 0.0033279277849942446, -0.02180738002061844, -0.001799928373657167, 0.00370837957598269, -0.07572881132364273, -0.004512039478868246, -0.021703200414776802, 0.028194420039653778, -0.06622899323701859, 0.004881695378571749, 0.03149335831403732, -0.053636182099580765, 0.11224937438964844, 0.05402922257781029, -0.07002574950456619, 0.0319911390542984, -0.1702600121498108, -0.0350172184407711, 0.06924981623888016, -0.032636530697345734, -0.04793888330459595, 0.019712897017598152, 0.025504494085907936, -0.0026335534639656544, 0.038020387291908264, 0.055235959589481354, 0.14556993544101715, -0.12038882076740265, 0.0023208661004900932, -0.05695067718625069, -0.061883069574832916, -0.08882302790880203, 0.04063120111823082, 0.027365414425730705, 0.09713051468133926, 0.10866837203502655, -0.07437068969011307, 0.08473442494869232, -0.08157476037740707, 0.022436462342739105, -0.004299817141145468, -0.010653635486960411, -0.06610359996557236, -0.09893488138914108, 0.059538766741752625, -0.01571415551006794, 0.20531390607357025, 0.03293094038963318, 0.01740262657403946, -0.009422956965863705, 0.028573663905262947, 0.1074947863817215, -0.00963591318577528, 0.19999608397483826, 0.039494991302490234, -0.01244763471186161, 0.004148144740611315, 0.13282422721385956, 0.0618765614926815, 0.05603903904557228, 0.1731691062450409, -0.012701335363090038, -0.01728508248925209, 0.08631355315446854, -0.15679675340652466, -0.058687567710876465, -0.1306379735469818, -0.008431602269411087, 0.056885577738285065, 0.05825427547097206, -0.09689649939537048, 0.04962775483727455, 0.17506539821624756, -0.11321312934160233, 0.03294495493173599, -0.03644457086920738, -0.07433080673217773, -0.09847822040319443, -0.12407934665679932, -0.018071405589580536, -0.16175247728824615, 0.00409707659855485, -0.08359388262033463, -0.006143564358353615, 0.049551818519830704, -0.002286003204062581, -0.005685469135642052, 0.16534145176410675, 0.05913920700550079, -0.08964434266090393, 0.050220366567373276, -0.065432608127594, 0.07003063708543777, -0.06398919224739075, -0.04465099796652794, -0.02179744653403759, -0.04632618650794029, 0.05830945819616318, 0.024069197475910187, -0.04203488677740097, 0.00943849142640829, -0.08803638070821762, -0.05756024271249771, -0.03486526384949684, 0.0809657871723175, 0.03764752298593521, 0.14254285395145416, 0.004082448780536652, -0.0456109419465065, 0.02046898379921913, 0.2206643968820572, -0.08889824897050858, -0.11660934239625931, -0.1412883847951889, 0.16274315118789673, 0.06917347759008408, -0.03717152774333954, 0.011949140578508377, -0.11114206910133362, 0.05696375295519829, 0.3312082588672638, 0.17083969712257385, -0.01722225360572338, 0.0032203523442149162, 0.04527569189667702, -0.013001143001019955, 0.0710480734705925, 0.06528586894273758, 0.05402258783578873, 0.14707444608211517, -0.11640525609254837, -0.022240497171878815, 0.018742186948657036, -0.05677850544452667, -0.09052205085754395, 0.07189279049634933, 0.04197729006409645, -0.04374244436621666, -0.030894989147782326, 0.10535070300102234, -0.10431963950395584, 0.025707246735692024, 0.05940292030572891, -0.03400067985057831, -0.06631434708833694, -0.004139459226280451, -0.04166393354535103, -0.039779629558324814, 0.05208462104201317, 0.000010874291547224857, 0.0072783962823450565, 0.13270355761051178, 0.017672963440418243, -0.124097540974617, -0.034724410623311996, 0.08746042847633362, -0.022736286744475365, 0.1097133457660675, -0.012374780140817165, 0.08465288579463959, 0.032850466668605804, 0.03384612873196602, -0.06309442222118378, 0.027906781062483788, 0.0016392081743106246, 0.06545290350914001, 0.06027704477310181, 0.04434004798531532, -0.02664465270936489, -0.0826067328453064, -0.014612146653234959, -0.1475154459476471, 0.059179533272981644, -0.01828865520656109, -0.029995054006576538, -0.08594825863838196, -0.02189585380256176, -0.06333231925964355, 0.11833591759204865, 0.11426369845867157, -0.039379630237817764, -0.0019962650258094072, -0.066829614341259, 0.008030805736780167, 0.06895291060209274, -0.0722922682762146, -0.11671452969312668, -0.13956612348556519, -0.021938201040029526, 0.18244504928588867, 0.0074723707512021065, -0.17017382383346558, -0.01198898907750845, 0.018080584704875946, -0.02611350454390049, -0.10103931277990341, 0.08351483196020126, 0.08562871068716049, -0.008722907863557339, -0.018319901078939438, -0.051638517528772354, 0.0033086210023611784, 0.10791590809822083, -0.16463489830493927, -0.09946959465742111 ]
null
null
transformers
# Work In Progress # How to use? This model can only generate regular text. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 100% of the examples were just plain text. Training example: ``` start up firms to succeed.[4] Firms like power companies, cable television companies and wireless communication companies with large start up costs fall within this category. A company wishing to enter such industries must have the financial ability to spend millions of dollars before starting operations and generating any revenue.[5] Similarly established firms also have a competitive advantage over new firms. An established firm threatened by a new competitor can lower prices to drive out the competition. Microsoft is a firm that has substantial pricing or market power due to technological superiority in its design and production processes.[4] Finally government created barriers to entry can be a source of market power. A prime example are patents granted to pharmaceutical companies. These patents give the drug companies a virtual monopoly in the protected product for the term of the patent. Measurement[edit] Concentration ratios are the most common measures of market power.[6] The four-firm concentration ratio measures the percentage of total industry output attributable to the top four companies. For monopolies the four firm ratio is 100 per cent while the ratio is zero for perfect competition.[7] The four firm concentration domestic (U.S) ratios for cigarettes is 93%; for automobiles, 84% and for beer, 85%.[8] Another measure of concentration is the Herfindahl-Hirschman Index (HHI) which is calculated by "summing the squares of the percentage market shares of all participants in the market".[8] The HHI index for perfect competition is zero; for monopoly, 10,000. U.S. courts almost never consider a firm to possess market power if it has a market share of less than 50 percent.[9] Elasticity of demand[edit] Market power is the ability to raise price above marginal cost (MC) and earn a positive profit.[10] The degree to which a firm can raise price (P) above marginal cost depends on the shape of the demand curve at the profit maximizing output.[10] That is, elasticity is the critical factor in determining market power. The relationship between market power and the price elasticity of demand (PED) can be summarized by the equation: P M C = P E D 1 + P E D. {\displaystyle {\frac {P}{MC}}={\frac {PED}{1+PED}}.} Note that PED will be negative, so the ratio is always greater than one. The higher the P/MC ratio, the more market power the firm possesses. As PED increases in magnitude, the P/MC ratio approaches one, and market power approaches zero.[11] The equation is derived from the monopolist pricing rule: P − M C P = − 1 P E D. {\displaystyle {\frac {P-MC}{P}}=-{\frac {1}{PED}}.} Nobel Memorial Prize[edit] Jean Tirole was awarded the 2014 Nobel Memorial Prize in Economic Sciences for his analysis of market power and economic regulation. See also[edit] Bargaining power Imperfect competition Market concentration Natural monopoly Predatory pricing Price discrimination Dominance (economics) References[edit] Jump up ^ Vatiero Massimiliano (2010). "The Ordoliberal notion of market power: an institutionalist reassessment". European Competition Journal. 6 (3): 689–707. doi:10.5235/ecj.v6n3.689. Jump up ^ Vatiero M. (2009), "An Institutionalist Explanation of Market Dominances". World Competition. Law and Economics Review, 32(2):221–226. Jump up ^ If the power company raised rates the customer either pays the increase or does without power. ^ Jump up to: a b c d e Krugman & Wells, Microeconomics 2d ed. (Worth 2009) Jump up ^ Often such natural monopolies will also have the benefit of government granted monopolies. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183–184. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183. ^ Jump up to: a b Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 184. Jump up ^ J. Gregory Sidak & Hal J. Singer, Überregulation Without Economics: The World Trade Organization’s Decision in the U.S.-Mexico Arbitration on Telecommunications Services, General Agreement on Trade in Services, GATS, 57 FED. COMM. L.J. 1, 34 (2004), http://www.repository.law.indiana.edu/cgi/viewcontent.cgi?article=1388&context=fclj. ^ Jump up to: a b ```
{}
text-generation
bs-modeling-metadata/html-metadata-exp1-subexp2-1929863
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Work In Progress # How to use? This model can only generate regular text. # Training details We continued the pre-training of gpt2. Dataset:Natural_Questions_HTML_reduced_all 100% of the examples were just plain text. Training example:
[ "# Work In Progress", "# How to use?\n\nThis model can only generate regular text.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n\n100% of the examples were just plain text.\n\nTraining example:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Work In Progress", "# How to use?\n\nThis model can only generate regular text.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n\n100% of the examples were just plain text.\n\nTraining example:" ]
[ 47, 5, 13, 42 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Work In Progress# How to use?\n\nThis model can only generate regular text.# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n\n100% of the examples were just plain text.\n\nTraining example:" ]
[ -0.04571015387773514, 0.031126508489251137, -0.0008552896906621754, 0.04394849017262459, 0.15504036843776703, 0.049813203513622284, 0.10480301827192307, 0.15874680876731873, -0.0682179406285286, -0.01844627410173416, 0.20731712877750397, 0.14596936106681824, 0.0014297551242634654, 0.12699636816978455, -0.01155886147171259, -0.26702430844306946, 0.0121035510674119, 0.06026294082403183, -0.03263358399271965, 0.14422614872455597, 0.11421510577201843, -0.04459042102098465, 0.06772457808256149, 0.014196579344570637, -0.19052830338478088, -0.02819206565618515, 0.0013771939557045698, -0.11353974044322968, 0.13788802921772003, 0.04534050077199936, 0.05291064828634262, 0.03012349084019661, 0.032638970762491226, -0.14688533544540405, 0.023033831268548965, 0.040734000504016876, 0.0035793851129710674, 0.08532848954200745, 0.03601066768169403, -0.04617581516504288, 0.13308288156986237, 0.010796324349939823, 0.015628565102815628, 0.06537258625030518, -0.1432255506515503, -0.030286027118563652, -0.023694714531302452, 0.018506797030568123, 0.10642971098423004, 0.12725049257278442, -0.041299063712358475, 0.09096068888902664, -0.117939293384552, 0.06917493045330048, 0.08729390799999237, -0.24200434982776642, -0.05297733470797539, 0.1302012801170349, 0.04072583094239235, 0.03194691240787506, -0.02353709191083908, 0.09436699002981186, 0.07075810432434082, 0.0703377053141594, -0.020763617008924484, -0.012106793001294136, -0.10580462962388992, 0.011830233037471771, -0.10277558118104935, -0.06551472097635269, 0.23552711308002472, -0.0471552349627018, -0.011927570216357708, -0.14284755289554596, -0.053093746304512024, -0.05698907747864723, -0.014942294918000698, -0.022339297458529472, -0.07460756599903107, 0.06616563349962234, -0.07797776162624359, -0.13373970985412598, -0.11933283507823944, -0.136724591255188, -0.04859281703829765, 0.03819592669606209, 0.027470579370856285, 0.01884312927722931, -0.10583847761154175, 0.19874311983585358, -0.021547790616750717, -0.046733543276786804, 0.01760001853108406, -0.10206234455108643, 0.029338890686631203, -0.0023937446530908346, -0.08264053612947464, -0.08695266395807266, 0.0536954328417778, 0.09305441379547119, 0.0459553487598896, 0.02669467404484749, 0.023308537900447845, 0.057091180235147476, -0.009786012582480907, 0.08992438018321991, -0.01566767878830433, 0.0288259144872427, 0.053636182099580765, -0.006574684288352728, -0.059812892228364944, -0.04005177319049835, -0.132467120885849, -0.06144978106021881, 0.051535654813051224, 0.085209921002388, 0.02166755497455597, 0.10827389359474182, -0.03394864499568939, -0.028494473546743393, -0.02283421903848648, -0.07321659475564957, -0.05466824769973755, -0.03043181821703911, -0.019578734412789345, -0.003585210768505931, 0.06242749094963074, 0.03711504116654396, -0.09180481731891632, -0.040296752005815506, -0.03555936738848686, -0.019209425896406174, -0.08429685235023499, -0.038504708558321, -0.030828198418021202, -0.07985589653253555, -0.012556750327348709, -0.0999288558959961, -0.25864797830581665, -0.02159106358885765, 0.038783952593803406, -0.03245863690972328, -0.057004135102033615, -0.08526645600795746, 0.0059660994447767735, 0.020690595731139183, -0.035660117864608765, 0.09862879663705826, -0.05192453786730766, 0.09117316454648972, -0.00018181510677095503, 0.07077854871749878, -0.02355997823178768, 0.04227418452501297, -0.10462027043104172, -0.021434316411614418, -0.018119029700756073, 0.11603325605392456, 0.01015302911400795, 0.04715178161859512, -0.09374196827411652, -0.06422801315784454, -0.05104469135403633, 0.05643845349550247, 0.022516457363963127, 0.2119714617729187, -0.1111694872379303, -0.04946903884410858, 0.21631236374378204, -0.03206963464617729, -0.10239926725625992, 0.11339321732521057, -0.038102272897958755, 0.2182629406452179, 0.1175459772348404, 0.13879790902137756, -0.005259703379124403, 0.03019600175321102, 0.11883898824453354, 0.07924516499042511, -0.040096770972013474, 0.03583608567714691, -0.0008215743000619113, -0.058268360793590546, -0.15000249445438385, 0.04062475636601448, -0.008015180937945843, 0.039690278470516205, -0.10011406987905502, -0.08049627393484116, -0.03741028159856796, -0.04664715379476547, 0.10779903829097748, 0.02099856361746788, 0.13217689096927643, -0.03105149045586586, -0.0937046930193901, -0.046753671020269394, 0.04261614754796028, -0.08872060477733612, 0.00737627362832427, -0.06405455619096756, 0.05359664186835289, -0.08498810231685638, 0.035808369517326355, -0.15625910460948944, -0.09967372566461563, -0.0158808883279562, 0.16225557029247284, 0.03835642710328102, 0.08755102008581161, 0.08193615078926086, 0.001029122737236321, -0.03984272480010986, 0.008350759744644165, 0.020525533705949783, -0.02065301313996315, -0.11337128281593323, -0.10820966958999634, 0.020668694749474525, -0.0504344217479229, 0.08031506836414337, -0.1633160263299942, 0.047672078013420105, -0.046806059777736664, 0.06382360309362411, -0.052578844130039215, -0.006592017598450184, 0.03022095188498497, -0.0061895051039755344, -0.035805054008960724, -0.07143095135688782, 0.10813324898481369, 0.001164534711278975, -0.08440904319286346, 0.08578941971063614, -0.05366094410419464, 0.02537653036415577, 0.13335414230823517, -0.14207272231578827, -0.1015554741024971, 0.018420644104480743, -0.06747747957706451, 0.012051169760525227, -0.08231914788484573, -0.023359015583992004, 0.26542025804519653, -0.019597306847572327, 0.13428431749343872, -0.04260177165269852, -0.028612196445465088, -0.01748599112033844, -0.05870562791824341, 0.07537513226270676, 0.0444849357008934, 0.11172368377447128, -0.10535190999507904, 0.10463089495897293, -0.016137687489390373, -0.005825631320476532, 0.22866342961788177, 0.019870422780513763, -0.0565841980278492, 0.06621658802032471, 0.02723117172718048, -0.022980056703090668, 0.023010872304439545, -0.20078295469284058, -0.05100920796394348, 0.06576836109161377, 0.047599200159311295, 0.11258723586797714, -0.17269966006278992, -0.04486191272735596, 0.004609846975654364, -0.060140252113342285, -0.036547474563121796, 0.06846974045038223, -0.047613050788640976, 0.1102096438407898, 0.012415706180036068, 0.03375055640935898, 0.09227815270423889, 0.005527970846742392, -0.13276369869709015, 0.17690762877464294, -0.05104620382189751, -0.23635804653167725, -0.10587559640407562, 0.03813637048006058, -0.026872677728533745, 0.08350813388824463, 0.07148070633411407, -0.1576618105173111, -0.037216365337371826, 0.00056970224250108, 0.06521885842084885, -0.05147072672843933, 0.014689031057059765, -0.0415620319545269, -0.006714287213981152, -0.04592747241258621, -0.13938355445861816, -0.016857240349054337, -0.025502221658825874, -0.1089872494339943, 0.08296286314725876, -0.15932141244411469, 0.05923888087272644, 0.1858452707529068, 0.018334273248910904, 0.07109799981117249, -0.04970511794090271, 0.24267831444740295, -0.10097150504589081, 0.003405011724680662, 0.13929663598537445, 0.002505362033843994, -0.0011534433579072356, -0.001333496067672968, 0.003555690636858344, -0.09768082201480865, 0.04355796426534653, 0.00472666509449482, -0.08543924987316132, -0.25863534212112427, -0.07382649183273315, -0.07444380223751068, 0.031937796622514725, 0.08205016702413559, 0.04431798309087753, 0.1422395557165146, 0.11483392864465714, -0.02878953516483307, 0.0764632299542427, 0.023227784782648087, 0.08142830431461334, 0.10484112054109573, -0.002395468298345804, 0.13617193698883057, -0.05432910844683647, -0.09557034075260162, 0.0573989674448967, -0.0333188995718956, 0.2135137915611267, -0.01094609685242176, 0.03362942487001419, 0.025347121059894562, 0.06492848694324493, 0.08571568131446838, 0.15737195312976837, 0.0075992401689291, -0.025980085134506226, -0.051716506481170654, -0.027141859754920006, -0.09214063733816147, 0.0580456480383873, -0.0169978104531765, -0.1142992451786995, -0.0798707902431488, -0.030268758535385132, 0.0698084905743599, 0.13336403667926788, 0.09764795005321503, -0.2508530616760254, -0.0706804096698761, 0.00834178738296032, -0.006123896222561598, -0.13474635779857635, 0.0671028420329094, 0.028240952640771866, -0.1907995045185089, -0.030369814485311508, -0.050309255719184875, 0.14090339839458466, -0.019104959443211555, 0.04276876151561737, -0.041344109922647476, -0.05429399386048317, -0.0420401357114315, 0.16466686129570007, -0.29183828830718994, 0.18036648631095886, 0.011570445261895657, 0.08300367742776871, -0.12108194828033447, 0.0032606779132038355, 0.03493044152855873, 0.09171129018068314, 0.14699237048625946, -0.010457534343004227, 0.03760668635368347, -0.02456248365342617, -0.09257420897483826, 0.07912047207355499, 0.06858392059803009, -0.04399656876921654, 0.03858282044529915, -0.005845424719154835, 0.04173408821225166, 0.04040961340069771, -0.13731631636619568, -0.1368895173072815, -0.11980151385068893, 0.05818244442343712, -0.04978107288479805, 0.10502417385578156, -0.016641464084386826, -0.06419333815574646, -0.01933096908032894, 0.28953632712364197, 0.05111270397901535, -0.10195091366767883, -0.1238890066742897, 0.017556022852659225, 0.1046115979552269, -0.007875163108110428, 0.0627254992723465, -0.01223880983889103, 0.020432284101843834, -0.008633344434201717, -0.09419626742601395, 0.0980309471487999, -0.10859785974025726, -0.16368195414543152, -0.034506648778915405, 0.12517675757408142, 0.01120060309767723, 0.03477786108851433, 0.07165290415287018, 0.006137725431472063, -0.0948013961315155, -0.15606752038002014, 0.051148612052202225, 0.004366617649793625, 0.06054490804672241, 0.016397912055253983, -0.035877205431461334, 0.10002938657999039, -0.04791627079248428, -0.0768669843673706, 0.28639814257621765, 0.13071812689304352, -0.07075423747301102, 0.09105879813432693, 0.058803558349609375, -0.0873216763138771, -0.23278078436851501, -0.010586747899651527, -0.006053881254047155, 0.010389232076704502, -0.10185591131448746, -0.2072819024324417, 0.008541266433894634, -0.0008604038157500327, -0.0033508678898215294, 0.05622677505016327, -0.33203789591789246, -0.10413237661123276, 0.13961030542850494, 0.06133129447698593, 0.2242690771818161, -0.1105777844786644, -0.03030765801668167, -0.04556239768862724, -0.13027827441692352, 0.12846697866916656, -0.09544350206851959, 0.11925477534532547, -0.01302627008408308, 0.11511676013469696, 0.03537474572658539, -0.07944546639919281, 0.144987091422081, -0.010765565559267998, -0.008199283853173256, -0.05309978127479553, 0.027116239070892334, 0.09771732240915298, 0.0255692508071661, 0.09449061006307602, 0.0006073294207453728, 0.06208193674683571, -0.168474942445755, -0.09537944942712784, -0.07287416607141495, 0.04060622304677963, 0.02006204053759575, -0.1294715255498886, -0.009225426241755486, -0.05105502903461456, 0.03775068372488022, -0.004999670200049877, 0.00580682372674346, -0.10246144235134125, 0.10467270016670227, 0.008032765239477158, 0.1307564377784729, -0.03374418616294861, -0.03794645145535469, 0.005704648792743683, -0.048579949885606766, 0.08087196201086044, -0.16883325576782227, 0.027967605739831924, 0.10044284909963608, 0.0013438253663480282, 0.10134456306695938, 0.11757508665323257, 0.013464299030601978, 0.023873722180724144, 0.0552312396466732, -0.18664050102233887, -0.04769942909479141, -0.06626972556114197, -0.07537411153316498, -0.0006359985563904047, 0.055303674191236496, 0.07625818997621536, -0.05925546586513519, -0.044734735041856766, -0.0056620631366968155, -0.009261669591069221, -0.08276107162237167, 0.14742618799209595, 0.024261735379695892, 0.017427688464522362, -0.10492827743291855, 0.028938155621290207, 0.009135624393820763, -0.034734297543764114, 0.05321768671274185, 0.024975650012493134, -0.12263449281454086, -0.09223920851945877, 0.07796375453472137, 0.16771802306175232, -0.08998585492372513, -0.035084888339042664, -0.10015051811933517, -0.08032883703708649, 0.04781336337327957, 0.007181140594184399, 0.06437071412801743, 0.05199826881289482, -0.08407386392354965, 0.00296915415674448, -0.13555586338043213, -0.005803146865218878, 0.10669328272342682, 0.009404432028532028, -0.05391650274395943, 0.1807999461889267, -0.003491924377158284, 0.07335851341485977, -0.08978581428527832, -0.0370611697435379, -0.10644277185201645, 0.08103101700544357, -0.14750626683235168, -0.05112931877374649, -0.06535235047340393, -0.06111215427517891, -0.0039771562442183495, -0.027426274493336678, -0.01086332369595766, -0.012961512431502342, -0.09847843647003174, 0.007467328105121851, -0.039443906396627426, 0.010853325016796589, -0.04079928994178772, 0.0202726311981678, 0.0550617091357708, -0.06268738955259323, 0.1167730912566185, 0.09182123094797134, -0.04792163148522377, 0.061625488102436066, -0.1341770440340042, 0.005423842463642359, 0.05412967503070831, -0.026027627289295197, -0.03746722638607025, -0.011482927948236465, 0.041066527366638184, -0.001609697355888784, 0.037995029240846634, 0.08150427043437958, 0.06568189710378647, -0.1165214255452156, 0.027599114924669266, -0.027192987501621246, -0.060779206454753876, -0.0731472447514534, 0.038941338658332825, -0.006192103028297424, 0.12413564324378967, 0.10601004958152771, -0.0768299475312233, 0.08370030671358109, -0.07627614587545395, 0.018554240465164185, -0.022720670327544212, -0.053925883024930954, -0.016420450061559677, -0.08187765628099442, 0.06999850273132324, -0.014429139904677868, 0.24994640052318573, 0.015962889418005943, 0.034155890345573425, -0.021755803376436234, 0.024872208014130592, 0.06733065098524094, -0.0206169281154871, 0.24493734538555145, 0.06260111182928085, 0.02211538888514042, -0.05228559300303459, 0.09524737298488617, 0.02991286851465702, 0.01246440690010786, 0.17017675936222076, -0.02099202387034893, -0.010377472266554832, 0.11622951179742813, -0.08050751686096191, -0.06191404163837433, -0.09821359068155289, -0.03451629728078842, 0.04263506829738617, 0.05071943998336792, -0.062262993305921555, -0.00816527009010315, 0.15266641974449158, -0.08993540704250336, 0.030418245121836662, -0.03848550096154213, -0.09985649585723877, -0.14282864332199097, -0.09591031074523926, -0.04726814106106758, -0.12411707639694214, 0.029111912474036217, -0.10745833069086075, 0.004675357602536678, 0.03683966398239136, 0.05320456251502037, -0.04788228124380112, 0.16395875811576843, 0.022290894761681557, -0.10876459628343582, 0.0676335021853447, -0.0600680448114872, 0.08092240244150162, -0.1089569702744484, -0.02796044945716858, -0.06864411383867264, -0.00019527098629623652, 0.04811754450201988, 0.008503993973135948, -0.05147166550159454, -0.0006365832523442805, -0.04988280311226845, -0.027749456465244293, -0.06800936907529831, 0.07986383885145187, 0.05406643822789192, 0.13042451441287994, 0.007566430605947971, -0.04858599230647087, 0.01601790450513363, 0.28083568811416626, -0.07637922465801239, -0.19767387211322784, -0.1543778032064438, 0.2521328330039978, 0.02224528044462204, 0.00728145707398653, 0.014690801501274109, -0.04123038798570633, 0.02996525913476944, 0.32060691714286804, 0.26256808638572693, -0.06538024544715881, -0.011328311637043953, 0.023531440645456314, 0.0011067744344472885, 0.08076684176921844, 0.10397224873304367, 0.0596902035176754, 0.1696273684501648, -0.1170850619673729, -0.03760433569550514, -0.01707853563129902, -0.032810911536216736, -0.07168977707624435, 0.09166553616523743, 0.08210558444261551, -0.04268466681241989, -0.02739763632416725, 0.12090613692998886, -0.13689208030700684, 0.025758732110261917, -0.06629146635532379, -0.0774931013584137, -0.10811324417591095, 0.02853504754602909, -0.015737012028694153, -0.030850324779748917, 0.09087392687797546, -0.026688672602176666, -0.013327458873391151, 0.08537052571773529, 0.022731056436896324, -0.1186041459441185, 0.013323287479579449, 0.08814572542905807, 0.011137763038277626, 0.10806011408567429, 0.0031315942760556936, 0.09595684707164764, 0.05684081092476845, -0.013006236404180527, -0.07169108092784882, 0.08017507940530777, 0.0009511671378277242, 0.026461802423000336, 0.06120004877448082, 0.05286932364106178, 0.004020386375486851, -0.09075475484132767, 0.01252367440611124, -0.16019639372825623, 0.04305659979581833, 0.012037698179483414, -0.007972550578415394, -0.0770919993519783, 0.0016704470617696643, -0.07721739262342453, 0.12285615503787994, 0.12912113964557648, -0.04295601695775986, 0.015978598967194557, -0.07322704046964645, 0.06878259778022766, 0.01979692094027996, -0.01979057677090168, -0.09093066304922104, -0.16696248948574066, -0.06042615696787834, 0.10913237929344177, -0.03244129195809364, -0.19230502843856812, -0.023158524185419083, -0.041742466390132904, -0.02466615103185177, -0.07534359395503998, 0.10755181312561035, 0.0920075848698616, 0.005429149605333805, -0.0030527091585099697, 0.02840290777385235, -0.017102086916565895, 0.07948600500822067, -0.13891702890396118, -0.09696359187364578 ]
null
null
transformers
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained `h1`, `h2`, ..., `h6` and `p` HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <h1 id:firstHeading class:firstHeading>Market power</h1> From Wikipedia, the free encyclopedia Jump to: navigation, search Competition law Basic concepts History of competition law Monopoly Coercive monopoly Natural monopoly Barriers to entry Herfindahl–Hirschman Index Market concentration Market power SSNIP test Relevant market Merger control Anti-competitive practices Monopolization Collusion Formation of cartels Price fixing Bid rigging Product bundling and tying Refusal to deal Group boycott Essential facilities Exclusive dealing Dividing territories Conscious parallelism Predatory pricing Misuse of patents and copyrights Enforcement authorities and organizations International Competition Network List of competition regulators v t e <p>In economics and particularly in industrial organization, market power is the ability of a firm to profitably raise the market price of a good or service over marginal cost. In perfectly competitive markets, market participants have no market power. A firm with total market power can raise prices without losing any customers to competitors. Market participants that have market power are therefore sometimes referred to as "price makers" or "price setters", while those without are sometimes called "price takers". Significant market power occurs when prices exceed marginal cost and long run average cost, so the firm makes profit.</p> <p>A firm with market power has the ability to individually affect either the total quantity or the prevailing price in the market. Price makers face a downward-sloping demand curve, such that price increases lead to a lower quantity demanded. The decrease in supply as a result of the exercise of market power creates an economic deadweight loss which is often viewed as socially undesirable. As a result, many countries have anti-trust or other legislation intended to limit the ability of firms to accrue market power. Such legislation often regulates mergers and sometimes introduces a judicial power to compel divestiture.</p> <p>A firm usually has market power by virtue of controlling a large portion of the market. In extreme cases—monopoly and monopsony—the firm controls the entire market. However, market size alone is not the only indicator of market power. Highly concentrated markets may be contestable if there are no barriers to entry or exit, limiting the incumbent firm's ability to raise its price above competitive levels.</p> <p>Market power gives firms the ability to engage in unilateral anti-competitive behavior.[1] Some of the behaviours that firms with market power are accused of engaging in include predatory pricing, product tying, and creation of overcapacity or other barriers to entry. If no individual participant in the market has significant market power, then anti-competitive behavior can take place only through collusion, or the exercise of a group of participants' collective market power.</p> <p>The Lerner index and Herfindahl index may be used to measure market power.</p> <p></p><h2>Contents</h2> [hide] 1 Oligopoly 2 Monopoly power 3 Source 4 Measurement 5 Elasticity of demand 6 Nobel Memorial Prize 7 See also 8 References 9 Further references <p></p><h2>Oligopoly[edit]</h2> <p>When several firms control a significant share of market sales, the resulting market structure is called an oligopoly or oligopsony. An oligopoly may engage in collusion, either tacit or overt, and thereby exercise market power. A group of firms that explicitly agree to affect market price or output is called a cartel.</p> <h2>Monopoly power[edit]</h2> <p>Monopoly power is an example of market failure which occurs when one or more of the participants has the ability to influence the price or other outcomes in some general or specialized market. The most commonly discussed form of market power is that of a monopoly, but other forms such as monopsony, and more moderate versions of these two extremes, exist.</p> <p>A well-known example of monopolistic market power is Microsoft's market share in PC operating systems. The United States v. Microsoft case dealt with an allegation that Microsoft illegally exercised its market power by bundling its web browser with its operating system. In this respect, the notion of dominance and dominant position in EU Antitrust Law is a strictly related aspect.[2]</p> <h2>Source[edit]</h2> <p>A monopoly can raise prices and retain customers because the monopoly has no competitors. If a customer has no other place to go to obtain the goods or services, they either pay the increased price or do without.[3] Thus the key to market power is to preclude competition through high barriers of entry. Barriers to entry that are significant sources ```
{"widget": [{"text": " htmlOn ||| <h1"}]}
text-generation
bs-modeling-metadata/html-metadata-exp1-subexp3-1898197
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of gpt2. Dataset:Natural_Questions_HTML_reduced_all 50% of the examples in the training data contained 'h1', 'h2', ..., 'h6' and 'p' HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text. Training example with metadata:
[ "# Work In Progress", "# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained 'h1', 'h2', ..., 'h6' and 'p' HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Work In Progress", "# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.", "# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained 'h1', 'h2', ..., 'h6' and 'p' HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ 47, 5, 48, 91 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Work In Progress# How to use?\n\nTo generate text with HTML, the sentence must start with ' htmlOn |||' (note the space at the beginning ). To generate normal text, you don't need to add anything.# Training details\n\nWe continued the pre-training of gpt2.\n\nDataset:Natural_Questions_HTML_reduced_all\n50% of the examples in the training data contained 'h1', 'h2', ..., 'h6' and 'p' HTML tags with only their 'id' and 'class' attributes. 50% of the examples were just plain text.\n\nTraining example with metadata:" ]
[ -0.05037961155176163, 0.05559840053319931, -0.0006311305332928896, 0.023181993514299393, 0.1912783533334732, 0.054096974432468414, 0.07837308198213577, 0.152407705783844, -0.024461261928081512, -0.034051500260829926, 0.16964423656463623, 0.08576386421918869, -0.0018731668824329972, 0.08069802820682526, -0.04895714670419693, -0.1869286298751831, -0.0204708743840456, 0.07026976346969604, -0.05517420545220375, 0.09865067154169083, 0.08015436679124832, -0.09214577078819275, 0.07608074694871902, 0.004544184077531099, -0.17570137977600098, 0.021796952933073044, 0.014408677816390991, -0.0369504950940609, 0.12627506256103516, -0.002673159586265683, 0.06485455483198166, 0.035129062831401825, 0.057057105004787445, -0.1774819791316986, 0.024688439443707466, 0.04802466556429863, 0.013426434248685837, 0.06948865950107574, 0.030498165637254715, -0.052402839064598083, 0.027985841035842896, -0.018033521249890327, -0.007184267044067383, 0.09420330077409744, -0.11236096173524857, -0.09824423491954803, -0.05020548030734062, -0.020023159682750702, 0.1173207014799118, 0.10787861049175262, -0.02285614237189293, 0.008592997677624226, -0.12912003695964813, 0.048929374665021896, 0.23849964141845703, -0.17967642843723297, -0.011850576847791672, 0.06809975206851959, 0.0026868917047977448, 0.003381277434527874, -0.05536121129989624, 0.060299135744571686, 0.042268674820661545, 0.04017151892185211, 0.003772841999307275, -0.04101313278079033, -0.13311445713043213, 0.03196259215474129, -0.06175805255770683, -0.03864601254463196, 0.31422919034957886, 0.01727849431335926, -0.008395574986934662, -0.07001341879367828, -0.03220929205417633, -0.06273029744625092, -0.0356900654733181, 0.02589176595211029, -0.03263724222779274, 0.02954559028148651, -0.026678310707211494, -0.13840307295322418, -0.15475106239318848, -0.09278115630149841, 0.02717374451458454, 0.03089098073542118, 0.030176622793078423, 0.005088488105684519, -0.0786842554807663, 0.17316420376300812, 0.026978883892297745, -0.05935822054743767, 0.02986585721373558, -0.04764567315578461, 0.010982206091284752, 0.002152678556740284, -0.13940483331680298, -0.1683533638715744, 0.07408803701400757, 0.07376651465892792, -0.021563824266195297, 0.03966520354151726, 0.017771156504750252, 0.054243192076683044, -0.07741230726242065, 0.06709129363298416, -0.010703971609473228, 0.032431747764348984, 0.06977880746126175, -0.023016298189759254, -0.07110563665628433, -0.028208788484334946, -0.14677347242832184, -0.07006043195724487, 0.0397568941116333, 0.05480237677693367, -0.026022283360362053, 0.09553215652704239, -0.04378542676568031, -0.010608211159706116, -0.07075686007738113, -0.13192963600158691, -0.0354602187871933, 0.007917121984064579, 0.01533531304448843, -0.03277863562107086, 0.08094584941864014, 0.025237975642085075, -0.09972713142633438, -0.030912546440958977, -0.0298159159719944, 0.03418542817234993, -0.09262912720441818, -0.010648886673152447, -0.019353313371539116, -0.06020619720220566, -0.027731815353035927, -0.08349897712469101, -0.19331304728984833, -0.01610388420522213, 0.09537437558174133, 0.011425905860960484, 0.010117515921592712, -0.05581164360046387, -0.00993003137409687, -0.008333450183272362, -0.015079664997756481, 0.09175930172204971, -0.04038940742611885, 0.09102383255958557, -0.010335910134017467, 0.07404135167598724, -0.09661449491977692, 0.07807863503694534, -0.09874715656042099, -0.00855162926018238, -0.08931449800729752, 0.08868645131587982, 0.07491947710514069, 0.059394411742687225, -0.055407457053661346, -0.015196333639323711, -0.0067992848344147205, 0.02076096460223198, 0.03032713197171688, 0.1656230390071869, -0.08159308135509491, -0.04672331362962723, 0.15916043519973755, 0.010072167962789536, -0.0805722177028656, 0.07456260174512863, -0.03531849756836891, 0.18107740581035614, 0.09210410714149475, 0.15665043890476227, -0.005485346540808678, -0.02647331915795803, 0.1294591724872589, 0.06892170757055283, -0.023651933297514915, -0.01551580149680376, -0.014109847135841846, -0.08079767227172852, -0.13147279620170593, 0.055299144238233566, -0.06157013401389122, 0.059188198298215866, -0.05372443050146103, -0.07604356855154037, -0.027019357308745384, -0.05396446958184242, 0.11132292449474335, 0.0730879008769989, 0.0982232317328453, -0.0077613298781216145, -0.07933522015810013, -0.0197038222104311, 0.031277019530534744, -0.1292993277311325, 0.049484983086586, -0.014288350008428097, 0.09357766062021255, -0.04293154180049896, 0.0068368311040103436, -0.17239849269390106, -0.09314431250095367, -0.029477039352059364, 0.14652474224567413, 0.04612391069531441, 0.06698230654001236, 0.04369032382965088, -0.00743126031011343, -0.08247922360897064, -0.0005887110019102693, -0.01144985668361187, -0.007770818192511797, -0.08478280156850815, -0.13815352320671082, -0.030804287642240524, -0.022225014865398407, 0.18017815053462982, -0.14075526595115662, 0.0439370721578598, -0.02206275798380375, 0.11726064234972, -0.009397836402058601, -0.014335918240249157, 0.007140832021832466, -0.0031903411727398634, -0.010184776969254017, -0.03592144697904587, 0.09625041484832764, 0.008880789391696453, -0.09279832243919373, 0.003921589348465204, -0.022053712978959084, -0.07049746066331863, 0.1084398701786995, -0.20677492022514343, -0.10262289643287659, -0.02807915210723877, -0.05294353887438774, 0.007407168857753277, -0.09653978794813156, -0.033132582902908325, 0.20410257577896118, -0.017727194353938103, 0.14229780435562134, -0.038741420954465866, -0.07990176230669022, -0.031660500913858414, -0.058100249618291855, 0.062225840985774994, 0.009562053717672825, 0.07231806218624115, -0.06750184297561646, 0.08855041861534119, 0.012357581406831741, -0.08395794779062271, 0.23017895221710205, -0.014303915202617645, -0.07291793078184128, 0.05995848402380943, 0.04154326021671295, -0.052160102874040604, 0.05260568857192993, -0.23186498880386353, -0.05137467384338379, 0.05007457360625267, 0.013819406740367413, 0.08040221035480499, -0.19354960322380066, -0.003940775990486145, -0.049569472670555115, -0.06545600295066833, 0.023409685119986534, 0.02563590742647648, -0.002273761434480548, 0.09140536189079285, 0.05090222880244255, 0.03672214224934578, 0.10732059925794601, -0.012025467120110989, -0.145280122756958, 0.16795262694358826, -0.041143350303173065, -0.19671975076198578, -0.05756871774792671, -0.03341729938983917, -0.06751969456672668, 0.04597833752632141, 0.08748982101678848, -0.16033896803855896, -0.03168352693319321, 0.012318200431764126, -0.010991642251610756, -0.009130039252340794, 0.020600929856300354, -0.0484427772462368, 0.017985709011554718, 0.0013741075526922941, -0.08597449213266373, -0.008586145006120205, -0.022438371554017067, -0.04674537852406502, 0.08174848556518555, -0.0986097976565361, 0.07370080798864365, 0.17896564304828644, -0.053863849490880966, 0.10346197336912155, -0.024313796311616898, 0.1669130027294159, -0.07692159712314606, -0.00007654365617781878, 0.11523096263408661, -0.016021128743886948, 0.03668169304728508, 0.09914930909872055, 0.02987593598663807, -0.05963229760527611, 0.04419030249118805, 0.052058637142181396, -0.03688140958547592, -0.2456197440624237, -0.043383363634347916, -0.10338026285171509, -0.07611531019210815, 0.0641123577952385, 0.037716638296842575, 0.1035647839307785, 0.0732884630560875, -0.0517234280705452, 0.06187645345926285, 0.043720077723264694, 0.10543154180049896, 0.11376499384641647, 0.02596289850771427, 0.07600273936986923, -0.019084185361862183, -0.06598015129566193, 0.0055470275692641735, 0.013431982137262821, 0.19633065164089203, -0.05292662978172302, 0.014946362003684044, 0.048363830894231796, 0.07984928786754608, 0.004905360285192728, 0.10342016071081161, -0.02230067551136017, -0.009339327923953533, -0.013213072903454304, -0.03415605425834656, -0.022844534367322922, 0.05752263590693474, -0.026346219703555107, -0.1010013297200203, -0.11784744262695312, -0.03145745396614075, 0.07099020481109619, 0.19721846282482147, 0.12608879804611206, -0.21995475888252258, -0.0192091204226017, 0.0033487766049802303, -0.03169765695929527, -0.131786048412323, 0.028079252690076828, 0.02400539256632328, -0.15132412314414978, 0.040114521980285645, -0.03521190583705902, 0.11128265410661697, 0.009484123438596725, 0.04400797560811043, 0.029611509293317795, -0.030561186373233795, -0.01655948907136917, 0.14575855433940887, -0.29492199420928955, 0.1386677324771881, 0.042990006506443024, 0.06316180527210236, -0.12657530605793, -0.0029748568776994944, 0.038004808127880096, 0.07667867839336395, 0.10539560765028, -0.006560537964105606, 0.10943733900785446, -0.052578117698431015, 0.03989659249782562, 0.0783686488866806, 0.08677258342504501, -0.04011330381035805, 0.03763258829712868, -0.03599127009510994, -0.0029074533376842737, 0.037159644067287445, -0.08991247415542603, -0.16678111255168915, -0.13955748081207275, 0.05159289389848709, -0.002090967260301113, 0.15245173871517181, -0.01554233767092228, -0.01782415062189102, -0.020227093249559402, 0.2536965012550354, 0.047196898609399796, -0.11842437088489532, -0.13014647364616394, 0.07577933371067047, 0.009446412324905396, -0.024373695254325867, 0.037698712199926376, -0.021913982927799225, 0.06543236970901489, 0.005162764806300402, -0.09538263827562332, 0.09717121720314026, -0.041802339255809784, -0.12158066034317017, -0.05111781880259514, 0.11476034671068192, 0.050611626356840134, 0.026869237422943115, 0.0490945428609848, -0.04528533294796944, -0.06246979907155037, -0.09483925253152847, 0.023764198645949364, -0.004312688484787941, 0.18391142785549164, 0.06998094916343689, -0.09898246079683304, 0.04370812326669693, -0.049376845359802246, -0.050055161118507385, 0.2920994758605957, 0.11461557447910309, -0.08826374262571335, 0.09623511880636215, 0.08465991914272308, -0.054953377693891525, -0.27654364705085754, 0.04207586124539375, 0.025088684633374214, -0.032005954533815384, -0.10680907964706421, -0.20633064210414886, 0.08925089985132217, -0.02554069645702839, -0.010169305838644505, 0.06548069417476654, -0.19616881012916565, -0.08878950774669647, 0.11437562108039856, 0.04634217545390129, 0.18837398290634155, -0.10696098208427429, -0.007481754757463932, -0.08874796330928802, -0.17437443137168884, 0.08431144058704376, -0.15544955432415009, 0.11038874089717865, -0.028481727465987206, 0.08542896807193756, 0.011921979486942291, -0.06176942586898804, 0.09822790324687958, 0.02417929284274578, 0.036573294550180435, -0.0168402548879385, 0.011907978914678097, 0.1375388652086258, -0.0377681665122509, 0.10277210175991058, -0.01570509560406208, 0.022653954103589058, -0.12908783555030823, -0.06253767758607864, -0.11130087077617645, 0.04845086485147476, 0.012495561502873898, -0.11898865550756454, -0.013897470198571682, -0.06191376596689224, 0.08551307022571564, 0.009411865845322609, 0.02628629095852375, -0.1080959215760231, 0.11318600922822952, 0.038511745631694794, 0.14660902321338654, -0.17766173183918, 0.0005081603303551674, 0.002610029885545373, -0.04644739627838135, 0.08034642785787582, -0.1530238538980484, 0.08487891405820847, 0.06794480234384537, 0.017616314813494682, 0.15373112261295319, 0.11854569613933563, 0.014220581389963627, 0.009744571521878242, 0.044810421764850616, -0.17456461489200592, 0.0042763627134263515, -0.08729765564203262, -0.12148960679769516, -0.10033760964870453, 0.07235130667686462, 0.06560055166482925, -0.028546195477247238, -0.038127217441797256, 0.009272675029933453, 0.010663649998605251, -0.10049322247505188, 0.0412980318069458, 0.07677976787090302, 0.037633173167705536, -0.11161410063505173, 0.02673383429646492, 0.01978500746190548, -0.017450639978051186, 0.031504079699516296, 0.09219376742839813, -0.13073304295539856, -0.09498464316129684, 0.08836504817008972, 0.24718132615089417, -0.09186617285013199, -0.0638636127114296, -0.08551585674285889, -0.09660261124372482, 0.045492447912693024, 0.0009352120105177164, 0.050962429493665695, -0.005642176140099764, -0.007739467080682516, -0.012155982665717602, -0.154816135764122, 0.05086960271000862, 0.029189327731728554, 0.02690032124519348, -0.07728555798530579, 0.13369043171405792, -0.0008116018143482506, 0.11044324934482574, -0.05535205453634262, -0.03562123328447342, -0.08031261712312698, 0.07686225324869156, -0.1706515997648239, -0.02215917594730854, -0.06965764611959457, -0.0376485250890255, 0.015176039189100266, -0.015164783224463463, -0.003560683922842145, 0.019900918006896973, -0.09517423808574677, -0.0092872753739357, -0.02783690020442009, 0.028906328603625298, -0.05071144178509712, -0.010462069883942604, 0.009628897532820702, -0.061250198632478714, 0.11796196550130844, 0.042917124927043915, -0.0815163403749466, 0.06929764896631241, -0.12632538378238678, -0.07263772934675217, 0.04271158576011658, -0.01617865078151226, -0.012955786660313606, -0.021069886162877083, -0.005062534008175135, -0.005751417949795723, 0.06163327768445015, 0.03767499327659607, 0.12072905153036118, -0.10587383806705475, 0.0026480937376618385, -0.08813407272100449, -0.04547034949064255, -0.09559988975524902, 0.04698353633284569, -0.0026703812181949615, 0.08380004018545151, 0.09489244222640991, -0.07981420308351517, 0.0775383859872818, -0.08679871261119843, 0.005485810339450836, 0.010001706890761852, -0.011184095405042171, -0.07391775399446487, -0.09092508256435394, 0.06404724717140198, -0.04532020911574364, 0.19256891310214996, 0.015858393162488937, 0.024163760244846344, 0.006078075617551804, 0.008008291944861412, 0.08775854110717773, -0.0021143530029803514, 0.19118693470954895, 0.017530208453536034, -0.013590076938271523, 0.01845407672226429, 0.10700953751802444, 0.049127839505672455, 0.0937795415520668, 0.21701285243034363, -0.0018842191202566028, 0.021331731230020523, 0.0830090269446373, -0.12079384922981262, -0.05438540503382683, -0.1212267354130745, 0.04831244796514511, 0.05948065221309662, 0.0718071311712265, -0.09799972921609879, 0.051264215260744095, 0.19404569268226624, -0.12511852383613586, 0.03328970819711685, -0.05987674370408058, -0.09407215565443039, -0.10904650390148163, -0.10692577064037323, -0.031873900443315506, -0.18019986152648926, -0.001362879411317408, -0.08546547591686249, 0.00183002813719213, 0.08688998222351074, -0.0024576338473707438, -0.010964810848236084, 0.1585192084312439, 0.09887133538722992, -0.09332185238599777, 0.035084664821624756, -0.054619427770376205, 0.0776362195611, -0.03427765518426895, -0.02850026823580265, 0.0035255001857876778, -0.05693932995200157, 0.041346531361341476, 0.019255515187978745, -0.03474019467830658, 0.009156813845038414, -0.08361310511827469, -0.0643819198012352, -0.013525165617465973, 0.09058314561843872, 0.06117071956396103, 0.15106439590454102, 0.006563164759427309, -0.05385446175932884, 0.011709189973771572, 0.20619522035121918, -0.10164932906627655, -0.1418599933385849, -0.13997504115104675, 0.21511991322040558, 0.08761761337518692, -0.0406041257083416, 0.04206922650337219, -0.1275637000799179, 0.047590222209692, 0.3084791600704193, 0.1751507818698883, -0.023435061797499657, 0.009391081519424915, 0.04776322841644287, -0.011431548744440079, 0.030990757048130035, 0.07735908031463623, 0.06825537234544754, 0.13165543973445892, -0.11264730244874954, -0.04533868283033371, 0.022246968001127243, -0.06788985431194305, -0.11002043634653091, 0.08989155292510986, 0.046679627150297165, -0.06047654151916504, -0.006091950926929712, 0.07414087653160095, -0.07631712406873703, -0.0455305241048336, 0.041403427720069885, -0.0337318480014801, -0.05832811817526817, 0.002117831725627184, -0.0316447876393795, -0.043703075498342514, 0.03630242496728897, -0.024548154324293137, 0.002009111223742366, 0.17049020528793335, 0.004513515159487724, -0.11213085800409317, -0.0059165130369365215, 0.10983214527368546, -0.061441656202077866, 0.09673050791025162, -0.008974711410701275, 0.10696595907211304, 0.048238348215818405, 0.0359010249376297, -0.04540165513753891, 0.05126308649778366, 0.035892270505428314, 0.020350923761725426, 0.053840670734643936, 0.08561455458402634, -0.018864354118704796, -0.07220157235860825, -0.009702411480247974, -0.15894097089767456, 0.03809628635644913, 0.01118828821927309, -0.039998363703489304, -0.08218851685523987, -0.02383166179060936, -0.06515459716320038, 0.11839921772480011, 0.115425243973732, -0.035573381930589676, 0.014135830104351044, -0.0741955116391182, -0.01051426213234663, 0.058192405849695206, -0.06171172857284546, -0.11044101417064667, -0.13717709481716156, 0.007510934956371784, 0.16915422677993774, -0.0020446062553673983, -0.17918646335601807, 0.010278192348778248, 0.02796827256679535, -0.020502954721450806, -0.09586475044488907, 0.10081816464662552, 0.07730679959058762, 0.00030784725095145404, -0.02140389382839203, -0.057151611894369125, -0.03214067593216896, 0.10829474776983261, -0.18815717101097107, -0.09491800516843796 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
text-classification
bshlgrs/autonlp-classification-9522090
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9522090", "## Validation Metrics\n\n- Loss: 0.3541755676269531\n- Accuracy: 0.8759671179883946\n- Macro F1: 0.5330133182738012\n- Micro F1: 0.8759671179883946\n- Weighted F1: 0.8482773065757196\n- Macro Precision: 0.537738108882869\n- Micro Precision: 0.8759671179883946\n- Weighted Precision: 0.8241048710814852\n- Macro Recall: 0.5316621214820499\n- Micro Recall: 0.8759671179883946\n- Weighted Recall: 0.8759671179883946", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9522090", "## Validation Metrics\n\n- Loss: 0.3541755676269531\n- Accuracy: 0.8759671179883946\n- Macro F1: 0.5330133182738012\n- Micro F1: 0.8759671179883946\n- Weighted F1: 0.8482773065757196\n- Macro Precision: 0.537738108882869\n- Micro Precision: 0.8759671179883946\n- Weighted Precision: 0.8241048710814852\n- Macro Recall: 0.5316621214820499\n- Micro Recall: 0.8759671179883946\n- Weighted Recall: 0.8759671179883946", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 59, 25, 149, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9522090## Validation Metrics\n\n- Loss: 0.3541755676269531\n- Accuracy: 0.8759671179883946\n- Macro F1: 0.5330133182738012\n- Micro F1: 0.8759671179883946\n- Weighted F1: 0.8482773065757196\n- Macro Precision: 0.537738108882869\n- Micro Precision: 0.8759671179883946\n- Weighted Precision: 0.8241048710814852\n- Macro Recall: 0.5316621214820499\n- Micro Recall: 0.8759671179883946\n- Weighted Recall: 0.8759671179883946## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.06786561012268066, 0.17361539602279663, -0.002672463422641158, 0.11000768840312958, 0.09727243334054947, 0.05605144053697586, 0.10872629284858704, 0.1494981348514557, 0.05574570596218109, 0.12881387770175934, 0.09412495791912079, 0.15672653913497925, 0.060445260256528854, 0.13870938122272491, -0.10420013219118118, -0.16131116449832916, 0.013311325572431087, 0.029515065252780914, 0.09003909677267075, 0.06696450710296631, 0.08235664665699005, -0.07248422503471375, 0.11330047994852066, -0.04897173494100571, -0.13703513145446777, 0.03472188115119934, 0.09201226383447647, -0.06918961554765701, 0.07530247420072556, 0.09135092794895172, 0.11416243016719818, -0.01823110692203045, 0.06857883930206299, -0.11743941158056259, -0.025883769616484642, 0.038914598524570465, -0.03269163891673088, 0.08471262454986572, 0.12913276255130768, -0.037392012774944305, 0.014519613236188889, -0.08950173854827881, 0.07821065187454224, 0.08148835599422455, -0.08069298416376114, -0.14789190888404846, -0.12250964343547821, 0.07890327274799347, 0.0782918632030487, 0.036283571273088455, -0.0045669227838516235, 0.16402721405029297, -0.037894271314144135, 0.11506839841604233, 0.06858783960342407, -0.2342757284641266, -0.03515153005719185, 0.2239142656326294, -0.053737591952085495, -0.003950492478907108, -0.010685352608561516, 0.017606722190976143, 0.05577496066689491, 0.009125993587076664, 0.001457687932997942, -0.051326312124729156, -0.07508072257041931, 0.0007494303863495588, -0.11897294223308563, -0.034405667334795, 0.15537096560001373, 0.01444239355623722, -0.04971437528729439, -0.10783404856920242, -0.07976026087999344, -0.09124363958835602, -0.05263838171958923, -0.021541070193052292, 0.013725082390010357, -0.031343378126621246, -0.05966513603925705, 0.07544037699699402, -0.009204499423503876, -0.06599295884370804, -0.15367676317691803, 0.037785764783620834, -0.003498554229736328, 0.049819834530353546, 0.0073861475102603436, 0.03449040278792381, -0.0652577131986618, -0.06590502709150314, 0.008104441687464714, 0.026193181052803993, -0.10550475865602493, -0.07474161684513092, 0.009656698442995548, 0.030573386698961258, 0.023681025952100754, 0.20112693309783936, 0.021828588098287582, 0.11978612840175629, -0.01596931740641594, -0.018999863415956497, -0.054067280143499374, 0.12559650838375092, -0.06838250160217285, -0.13461464643478394, 0.02969919890165329, -0.00878328550606966, 0.026019055396318436, -0.033538684248924255, -0.09682387858629227, -0.07938595861196518, 0.08290272206068039, 0.046181727200746536, 0.017773181200027466, 0.04477790370583534, -0.07663077116012573, -0.07225946336984634, 0.033890657126903534, -0.10791295766830444, 0.06005755066871643, 0.00797327421605587, -0.11216109246015549, 0.049580659717321396, 0.06186019629240036, 0.009701470844447613, -0.0836767926812172, 0.028876012191176414, -0.10916446894407272, 0.0058469208888709545, -0.0769512876868248, -0.1365731656551361, 0.056276559829711914, -0.025558779016137123, -0.02193315513432026, -0.09016521275043488, -0.19743527472019196, -0.07308920472860336, -0.002567039802670479, -0.10452473908662796, -0.03749832883477211, -0.012891002930700779, 0.00978834368288517, 0.05153851583600044, 0.008250757120549679, 0.060440462082624435, -0.02010461688041687, 0.04011701047420502, 0.063998281955719, 0.10481196641921997, -0.04576681926846504, 0.03195463865995407, -0.044179029762744904, 0.010190144181251526, -0.14912694692611694, 0.1077408567070961, -0.09373205900192261, 0.05165649205446243, -0.16164159774780273, -0.013837669044733047, 0.08337962627410889, -0.02231098897755146, 0.036512963473796844, 0.09577394276857376, -0.1643800288438797, -0.014083214104175568, 0.09973013401031494, -0.06338202953338623, -0.10538890957832336, 0.10203000158071518, -0.022051000967621803, 0.015839237719774246, 0.06751560419797897, 0.11631157249212265, 0.12888644635677338, -0.055231817066669464, -0.07385443150997162, 0.010756568983197212, 0.015216332860291004, -0.050509992986917496, 0.09314823150634766, -0.03218591958284378, -0.14609287679195404, 0.014248628169298172, 0.06661446392536163, -0.02321796864271164, -0.010866262018680573, -0.06652805954217911, -0.024563906714320183, -0.01822700724005699, 0.03044114261865616, 0.013548014685511589, 0.03186727687716484, -0.04169132933020592, -0.022478943690657616, 0.08882592618465424, 0.1419791281223297, -0.02105974406003952, -0.03296351060271263, -0.13852939009666443, 0.045239005237817764, -0.10994386672973633, -0.029921231791377068, -0.20863382518291473, -0.06722375005483627, 0.030086854472756386, -0.09969605505466461, 0.025613002479076385, -0.031928468495607376, 0.08889669924974442, 0.014176805503666401, 0.012224586680531502, 0.041074663400650024, 0.1385577768087387, -0.042229317128658295, -0.10805058479309082, -0.06058919057250023, -0.05636000633239746, -0.0014167663175612688, 0.21702681481838226, -0.18781128525733948, 0.013067623600363731, 0.0846904069185257, 0.0726352259516716, 0.010586883872747421, -0.042864833027124405, -0.03916886821389198, 0.054277800023555756, 0.013081567361950874, -0.052440524101257324, 0.06591587513685226, -0.04217399284243584, -0.09622353315353394, -0.03792142868041992, -0.24062125384807587, 0.16537536680698395, 0.11497880518436432, 0.024391327053308487, -0.057782132178545, -0.09644852578639984, 0.040088530629873276, -0.04112276807427406, -0.01847400702536106, 0.020005173981189728, 0.10864764451980591, 0.037130728363990784, 0.10660865902900696, -0.07151563465595245, -0.06420294940471649, -0.005184763111174107, -0.03612837567925453, -0.03144703805446625, 0.18134990334510803, 0.02704266831278801, -0.16505874693393707, 0.10442905873060226, -0.014046757481992245, -0.09259431809186935, 0.09257380664348602, 0.02637636661529541, -0.020730243995785713, -0.08256930112838745, -0.009329406544566154, 0.048191726207733154, 0.007288149558007717, -0.01296592690050602, 0.04260409623384476, 0.07994118332862854, -0.0247221477329731, 0.01767057180404663, -0.08339551836252213, 0.030434632673859596, 0.010959617793560028, -0.04937080666422844, -0.025982942432165146, 0.0006650951690971851, 0.05506855994462967, 0.12252193689346313, 0.025321969762444496, 0.009973783977329731, 0.030018331483006477, -0.015443667769432068, -0.10098905861377716, 0.20907297730445862, -0.10031627863645554, -0.13146443665027618, -0.1743680089712143, -0.18294809758663177, -0.10458096861839294, -0.03547509387135506, -0.03236577287316322, -0.07646159082651138, -0.09859509766101837, -0.045652396976947784, -0.024601373821496964, -0.005412259604781866, -0.05829242244362831, 0.010489121079444885, -0.017006438225507736, 0.0865185484290123, -0.12516966462135315, -0.032752908766269684, 0.0009415848180651665, -0.10472941398620605, 0.05002110078930855, 0.007892750203609467, 0.068546362221241, 0.1579282134771347, -0.022444913163781166, 0.035773809999227524, -0.013748017139732838, 0.19584740698337555, -0.011728750541806221, -0.002425572369247675, 0.17421801388263702, 0.049068108201026917, 0.05184509605169296, 0.1327092945575714, 0.06136574596166611, -0.08496307581663132, 0.008547226898372173, 0.07950706779956818, -0.01925315521657467, -0.2016776204109192, -0.17975881695747375, 0.005976121872663498, 0.06983053684234619, 0.14786209166049957, 0.020884528756141663, 0.07052821666002274, 0.1059817522764206, 0.008392995223402977, 0.1405775547027588, -0.02615485154092312, 0.06834781914949417, 0.14543603360652924, 0.03135932981967926, 0.14809492230415344, -0.08314090967178345, -0.004885923117399216, 0.11739332973957062, 0.026479527354240417, 0.07016008347272873, 0.04426944628357887, 0.13850490748882294, -0.029674433171749115, 0.09597466140985489, 0.05375465750694275, 0.09369860589504242, 0.0022283485159277916, -0.024759415537118912, 0.02341221645474434, -0.06783190369606018, -0.10906840860843658, 0.008987859822809696, 0.04172106087207794, 0.038147106766700745, -0.06114547699689865, -0.008171037770807743, 0.007069653831422329, 0.08512847870588303, 0.052999045699834824, -0.4321748912334442, -0.051193490624427795, 0.06923038512468338, -0.02223990485072136, -0.10138167440891266, -0.03596929833292961, 0.003371458500623703, -0.1272958219051361, 0.08165611326694489, -0.038481999188661575, 0.11242032051086426, -0.09566058963537216, -0.022153595462441444, -0.04405958205461502, 0.07840856909751892, -0.006258002948015928, 0.061278898268938065, -0.1918763816356659, 0.14617887139320374, 0.07099796086549759, 0.015325425192713737, -0.09550845623016357, 0.029290175065398216, 0.044764257967472076, -0.005917159840464592, 0.11356481164693832, 0.0019229712197557092, -0.10852055996656418, -0.2921583354473114, -0.09553412348031998, 0.002008322859182954, -0.0012760369572788477, -0.0400250107049942, 0.07559143006801605, -0.046003036201000214, -0.004555037245154381, -0.021901000291109085, -0.058828070759773254, -0.053852587938308716, -0.07313553243875504, 0.02917208895087242, 0.08747568726539612, -0.02188596874475479, -0.02875036559998989, -0.0264018252491951, -0.02307405136525631, 0.11431007087230682, -0.1283310502767563, -0.060589686036109924, -0.15143699944019318, 0.02221655659377575, 0.12801893055438995, -0.12296006083488464, 0.03105292282998562, -0.02536950632929802, 0.08497121930122375, -0.030647652223706245, -0.13729418814182281, 0.08834867179393768, -0.04286562278866768, -0.053861331194639206, 0.012283192947506905, 0.04487480968236923, -0.011934962123632431, 0.07466858625411987, 0.0349883958697319, 0.02798704244196415, -0.016219720244407654, -0.11380423605442047, -0.0007195695652626455, 0.047278568148612976, 0.10945487767457962, 0.09603126347064972, -0.01734280027449131, -0.11425498127937317, -0.04428420960903168, 0.08662229031324387, 0.165511354804039, 0.23784247040748596, -0.06867945194244385, 0.002615859266370535, 0.10870467126369476, -0.04116002097725868, -0.23318395018577576, -0.005409163888543844, 0.005859818775206804, 0.004936231300234795, -0.05285906046628952, -0.11018598079681396, 0.13197879493236542, 0.1774367392063141, -0.030812714248895645, -0.023769589141011238, -0.23408301174640656, -0.1248500794172287, 0.1723039448261261, 0.07673019170761108, 0.07929990440607071, -0.1457063853740692, -0.08398905396461487, -0.13929545879364014, -0.11549726128578186, 0.13690342009067535, -0.08052728325128555, 0.0654611811041832, -0.04465944319963455, 0.09970808029174805, 0.04720347374677658, -0.05531221628189087, 0.14241185784339905, 0.036201346665620804, 0.07550109177827835, -0.0703062191605568, -0.07898416370153427, -0.06929781287908554, -0.09307558089494705, 0.1397196501493454, 0.02099667489528656, 0.046132974326610565, -0.2433874011039734, -0.007592806592583656, 0.0014128244947642088, 0.06125297024846077, -0.03857797756791115, -0.035991474986076355, -0.02977697178721428, 0.036701053380966187, -0.04174354672431946, -0.038657501339912415, 0.03488410636782646, -0.041769832372665405, 0.09988812357187271, 0.21316686272621155, 0.1273903101682663, -0.05060908943414688, -0.0345831997692585, 0.04959949851036072, -0.0523994155228138, 0.0604323148727417, -0.1315118819475174, 0.07318603247404099, 0.10904379934072495, 0.013896231539547443, 0.1181042268872261, 0.04234450310468674, -0.038518667221069336, -0.019989287480711937, 0.046030957251787186, -0.12081975489854813, 0.020839428529143333, 0.0038000098429620266, -0.006451890338212252, -0.1026775911450386, -0.04458305239677429, 0.13328039646148682, 0.02898133173584938, -0.026970205828547478, 0.020688239485025406, -0.004708316642791033, -0.014377908781170845, 0.22467385232448578, 0.01482112891972065, 0.09097341448068619, -0.13141444325447083, 0.09183070063591003, 0.10487860441207886, -0.11146966367959976, 0.016475358977913857, 0.11946458369493484, -0.07653260976076126, -0.06431148201227188, -0.01456517819315195, 0.17273904383182526, -0.12626661360263824, -0.035357389599084854, -0.03033587895333767, -0.10215558856725693, 0.06612288951873779, 0.22641336917877197, 0.09838429093360901, 0.020658452063798904, -0.023826517164707184, -0.0699506625533104, -0.1148291528224945, 0.05017426982522011, 0.06658735871315002, 0.023498481139540672, -0.10912184417247772, 0.17335709929466248, -0.033214785158634186, -0.013956543058156967, -0.02040468342602253, 0.011328494176268578, -0.2119111567735672, -0.036974769085645676, -0.07334030419588089, 0.036498717963695526, -0.0503755584359169, 0.05891728401184082, -0.009330358356237411, 0.021175170317292213, -0.04067489877343178, 0.0013731407234445214, -0.08437413722276688, -0.054527271538972855, 0.019680000841617584, 0.08124221861362457, -0.09373243898153305, -0.02405591309070587, 0.06038116291165352, -0.019567551091313362, 0.06136113777756691, 0.05609283596277237, 0.07383375614881516, -0.00158564536832273, -0.035675179213285446, -0.019219664856791496, 0.06156926602125168, 0.022034883499145508, 0.07218345999717712, -0.16243457794189453, 0.048753365874290466, -0.009648087434470654, 0.048413656651973724, 0.0733187273144722, 0.11468535661697388, -0.10784585773944855, 0.03681180626153946, -0.1104266494512558, -0.07642221450805664, -0.10662297159433365, 0.04475022852420807, 0.14610204100608826, 0.05254749953746796, 0.07468272000551224, -0.08273791521787643, 0.025077350437641144, -0.2018127292394638, -0.009035098366439342, -0.034991368651390076, -0.07027626037597656, -0.07332836091518402, -0.011519690044224262, 0.08319978415966034, -0.010431998409330845, 0.0970681682229042, -0.0037222299724817276, -0.015412699431180954, 0.028070207685232162, 0.1292572021484375, -0.02939828298985958, -0.03429540991783142, 0.15541806817054749, 0.10076690465211868, -0.003966066054999828, 0.11162394285202026, 0.09786836802959442, 0.037220023572444916, 0.01886431872844696, 0.0025771991349756718, 0.07095590233802795, -0.08859623968601227, 0.0705084428191185, 0.052026718854904175, -0.08690329641103745, -0.041414327919483185, 0.13289347290992737, -0.11874683201313019, 0.016712334007024765, -0.0680471658706665, 0.03249634429812431, 0.10476823896169662, -0.12436389178037643, 0.03232616186141968, 0.023822549730539322, -0.06848294287919998, -0.21604299545288086, -0.11665244400501251, -0.13989397883415222, -0.033832427114248276, -0.0277628805488348, -0.1116304099559784, 0.025187961757183075, 0.16293159127235413, 0.013494996353983879, 0.02839038521051407, 0.07998939603567123, -0.26418912410736084, -0.0049712639302015305, -0.02312135137617588, -0.00021053594537079334, -0.022652355954051018, -0.011970482766628265, -0.02679537422955036, 0.026491068303585052, 0.025437312200665474, 0.08391157537698746, 0.012994928285479546, 0.04680335521697998, 0.06549352407455444, -0.010395104065537453, -0.090214803814888, -0.029749613255262375, 0.024398380890488625, 0.03287789225578308, 0.15709547698497772, 0.018968431279063225, 0.004226443357765675, -0.03933501988649368, 0.17387482523918152, -0.09698493778705597, 0.004332102835178375, -0.11523417383432388, 0.24585922062397003, -0.00980711542069912, 0.0761386901140213, -0.0018042400479316711, -0.016981571912765503, 0.012967471964657307, 0.14595864713191986, 0.11037055402994156, -0.0011576565448194742, -0.022486157715320587, 0.023678593337535858, -0.005490300711244345, -0.021361229941248894, 0.10880126804113388, 0.025141652673482895, 0.12494713068008423, -0.05224988982081413, 0.0511978380382061, 0.03516645357012749, -0.03973478823900223, -0.07103239744901657, 0.06421373039484024, -0.0029650789219886065, 0.005449211224913597, 0.013943457044661045, 0.07874289155006409, -0.0436011478304863, 0.08879044651985168, 0.08848583698272705, -0.11745098233222961, -0.14341507852077484, 0.026386922225356102, -0.021588675677776337, -0.043951526284217834, 0.07213770598173141, -0.024154148995876312, -0.005888916552066803, 0.02592300996184349, -0.023331375792622566, -0.22311389446258545, -0.10022208094596863, 0.010866622440516949, 0.15098294615745544, 0.262179970741272, 0.018720552325248718, 0.08110513538122177, 0.16987311840057373, -0.04216577112674713, -0.14288663864135742, 0.08926188945770264, -0.00984434224665165, -0.12042960524559021, 0.08673262596130371, 0.07969687134027481, -0.0372026227414608, 0.17849579453468323, 0.056771669536828995, -0.18993233144283295, -0.010128594003617764, -0.011585928499698639, 0.01889048144221306, -0.09036793559789658, 0.008712491020560265, -0.09354692697525024, 0.12615899741649628, 0.1850648820400238, -0.020640432834625244, -0.014331123791635036, -0.052979208528995514, 0.055153489112854004, -0.006182064767926931, 0.034422729164361954, -0.04105168953537941, -0.09264498203992844, 0.056938331574201584, -0.17676717042922974, -0.014318970032036304, -0.28733450174331665, -0.03300654888153076, -0.022374307736754417, -0.04090716317296028, -0.07705093920230865, 0.08910217136144638, 0.040826380252838135, 0.017655327916145325, -0.03309132158756256, -0.2707986831665039, 0.022102337330579758, 0.11666838824748993, -0.1124747171998024, -0.10640855133533478 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9532137 ## Validation Metrics - Loss: 0.34556105732917786 - Accuracy: 0.8749890724713699 - Macro F1: 0.5243623959669343 - Micro F1: 0.8749890724713699 - Weighted F1: 0.8638030768409057 - Macro Precision: 0.5016762404900895 - Micro Precision: 0.8749890724713699 - Weighted Precision: 0.8547962562614184 - Macro Recall: 0.5529674694200845 - Micro Recall: 0.8749890724713699 - Weighted Recall: 0.8749890724713699 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-classification_with_all_labellers"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
text-classification
bshlgrs/autonlp-classification_with_all_labellers-9532137
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification_with_all_labellers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification_with_all_labellers #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9532137 ## Validation Metrics - Loss: 0.34556105732917786 - Accuracy: 0.8749890724713699 - Macro F1: 0.5243623959669343 - Micro F1: 0.8749890724713699 - Weighted F1: 0.8638030768409057 - Macro Precision: 0.5016762404900895 - Micro Precision: 0.8749890724713699 - Weighted Precision: 0.8547962562614184 - Macro Recall: 0.5529674694200845 - Micro Recall: 0.8749890724713699 - Weighted Recall: 0.8749890724713699 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9532137", "## Validation Metrics\n\n- Loss: 0.34556105732917786\n- Accuracy: 0.8749890724713699\n- Macro F1: 0.5243623959669343\n- Micro F1: 0.8749890724713699\n- Weighted F1: 0.8638030768409057\n- Macro Precision: 0.5016762404900895\n- Micro Precision: 0.8749890724713699\n- Weighted Precision: 0.8547962562614184\n- Macro Recall: 0.5529674694200845\n- Micro Recall: 0.8749890724713699\n- Weighted Recall: 0.8749890724713699", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification_with_all_labellers #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9532137", "## Validation Metrics\n\n- Loss: 0.34556105732917786\n- Accuracy: 0.8749890724713699\n- Macro F1: 0.5243623959669343\n- Micro F1: 0.8749890724713699\n- Weighted F1: 0.8638030768409057\n- Macro Precision: 0.5016762404900895\n- Micro Precision: 0.8749890724713699\n- Weighted Precision: 0.8547962562614184\n- Macro Recall: 0.5529674694200845\n- Micro Recall: 0.8749890724713699\n- Weighted Recall: 0.8749890724713699", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 67, 25, 150, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-classification_with_all_labellers #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 9532137## Validation Metrics\n\n- Loss: 0.34556105732917786\n- Accuracy: 0.8749890724713699\n- Macro F1: 0.5243623959669343\n- Micro F1: 0.8749890724713699\n- Weighted F1: 0.8638030768409057\n- Macro Precision: 0.5016762404900895\n- Micro Precision: 0.8749890724713699\n- Weighted Precision: 0.8547962562614184\n- Macro Recall: 0.5529674694200845\n- Micro Recall: 0.8749890724713699\n- Weighted Recall: 0.8749890724713699## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.05354078486561775, 0.2018890678882599, -0.0028793944511562586, 0.12102517485618591, 0.10504767298698425, 0.049827903509140015, 0.09537854045629501, 0.13884712755680084, 0.0009958823211491108, 0.12137550860643387, 0.10383302718400955, 0.1528237909078598, 0.05274273082613945, 0.11177245527505875, -0.09628409147262573, -0.1417008340358734, 0.008727425709366798, 0.02381497621536255, 0.05422403663396835, 0.06652554124593735, 0.06906628608703613, -0.07360021024942398, 0.11910472065210342, -0.03800972178578377, -0.13733439147472382, 0.03217190504074097, 0.07229356467723846, -0.062311965972185135, 0.053035348653793335, 0.09345091134309769, 0.12226027250289917, -0.027018295601010323, 0.09307900071144104, -0.10438655316829681, -0.025855733081698418, 0.05191432312130928, -0.015544279478490353, 0.08714564144611359, 0.15112903714179993, -0.02483461983501911, 0.03956565260887146, -0.1028938964009285, 0.08345406502485275, 0.08397591859102249, -0.08230626583099365, -0.11364709585905075, -0.108375683426857, 0.0632532611489296, 0.09690278768539429, 0.044390540570020676, -0.010785997845232487, 0.18385761976242065, -0.05223802477121353, 0.12139125168323517, 0.047898076474666595, -0.21128909289836884, -0.05380425602197647, 0.19122925400733948, -0.06345673650503159, -0.037738312035799026, 0.0021594492718577385, 0.021365072578191757, 0.05919966474175453, 0.02007933147251606, -0.00843273289501667, -0.062357451766729355, -0.06680731475353241, -0.020591534674167633, -0.14089377224445343, -0.014381926506757736, 0.16117382049560547, 0.018668627366423607, -0.05987238883972168, -0.08286580443382263, -0.06566070020198822, -0.08934227377176285, -0.0702093318104744, -0.012441565282642841, 0.01565239019691944, -0.05077517777681351, -0.04388374835252762, 0.06926820427179337, -0.002145956037566066, -0.06153792515397072, -0.17274488508701324, 0.05192943662405014, 0.0021890071220695972, 0.05340830609202385, 0.0017868030117824674, 0.016820786520838737, -0.014256272464990616, -0.04376913979649544, 0.021053120493888855, 0.025817522779107094, -0.1059068813920021, -0.10525951534509659, 0.0035276664420962334, 0.062462665140628815, 0.03738874942064285, 0.16219279170036316, 0.001984567614272237, 0.1115574985742569, 0.03758009150624275, -0.02979709394276142, -0.026633670553565025, 0.06958761066198349, -0.09230589866638184, -0.0986475944519043, 0.02814839407801628, -0.04081427678465843, 0.019896015524864197, -0.025006012991070747, -0.09336758404970169, -0.0784209594130516, 0.061608266085386276, 0.044817712157964706, 0.019278613850474358, 0.04714512079954147, -0.04651327431201935, -0.09189341217279434, 0.008752070367336273, -0.11192377656698227, 0.04398064687848091, 0.034151285886764526, -0.12409862130880356, 0.07972587645053864, 0.017390791326761246, 0.010334007441997528, -0.12031640857458115, 0.026248695328831673, -0.12256203591823578, 0.00760030560195446, -0.08701781183481216, -0.13367117941379547, 0.05053098872303963, 0.02173067443072796, -0.014385051093995571, -0.08045821636915207, -0.19700942933559418, -0.07303070276975632, -0.006650647614151239, -0.12048749625682831, -0.04537303000688553, -0.008235948160290718, 0.010100197046995163, 0.049598246812820435, 0.016936827450990677, 0.1145055815577507, -0.03480476140975952, 0.013454489409923553, 0.07861055433750153, 0.08470198512077332, -0.034558773040771484, 0.025583820417523384, -0.027152031660079956, 0.010363470762968063, -0.09710743278265, 0.09591256082057953, -0.07735484093427658, 0.04913335293531418, -0.17799288034439087, -0.04529310017824173, 0.11121757328510284, -0.011519244872033596, 0.02842099405825138, 0.12052054703235626, -0.14443829655647278, 0.004322185646742582, 0.10371535271406174, -0.05297449976205826, -0.08342543989419937, 0.06304644048213959, -0.01387585885822773, -0.019127964973449707, 0.05715940520167351, 0.09179607033729553, 0.16452600061893463, -0.046950068324804306, -0.04365517199039459, 0.02463432215154171, 0.03182973340153694, -0.07254622876644135, 0.1139122024178505, -0.02380385249853134, -0.1424361914396286, 0.015563974156975746, 0.04955138638615608, -0.02173626609146595, -0.03209846094250679, -0.05659567937254906, -0.021901676431298256, -0.04050644487142563, 0.013051104731857777, 0.010892597958445549, 0.06108869984745979, -0.023983580991625786, -0.016395822167396545, 0.08820069581270218, 0.1776035726070404, -0.01744372397661209, -0.05751319229602814, -0.15782617032527924, 0.053090900182724, -0.11680716276168823, -0.035812441259622574, -0.2076202780008316, -0.07379397004842758, 0.015691161155700684, -0.14067064225673676, 0.0228214580565691, -0.02368306741118431, 0.08584500104188919, 0.026136038824915886, 0.016102738678455353, 0.04556580260396004, 0.1352982521057129, -0.03213338926434517, -0.08498570322990417, -0.08649599552154541, -0.06804297864437103, 0.003359764814376831, 0.18634802103042603, -0.20705775916576385, 0.0015504976036027074, 0.051708996295928955, 0.0729253888130188, -0.0003957925655413419, -0.049546144902706146, -0.02594696171581745, 0.05672118812799454, 0.017765995115041733, -0.06248202174901962, 0.08430973440408707, -0.042153939604759216, -0.06330399960279465, -0.058858003467321396, -0.24295121431350708, 0.1439015120267868, 0.10903805494308472, 0.025048580020666122, -0.07556918263435364, -0.07074874639511108, 0.03943197429180145, -0.01995188184082508, -0.02434913069009781, 0.06823868304491043, 0.10860326886177063, 0.040835894644260406, 0.10053332149982452, -0.07202128320932388, -0.07321008294820786, 0.008094539865851402, -0.03678601235151291, -0.02877860516309738, 0.21239596605300903, 0.06176408752799034, -0.18395498394966125, 0.0963987410068512, -0.020436713472008705, -0.10274901986122131, 0.06420204788446426, 0.009900783188641071, -0.02419763058423996, -0.09461736679077148, -0.008568624965846539, 0.03615080192685127, 0.01260604802519083, -0.0013233382487669587, 0.06383669376373291, 0.07193583250045776, -0.025181371718645096, 0.018085336312651634, -0.06699604541063309, 0.028818883001804352, 0.01375990267843008, -0.037785422056913376, -0.025062276050448418, -0.016735997051000595, 0.05519116297364235, 0.13606317341327667, 0.008475842885673046, 0.013692153617739677, 0.0007887376705184579, -0.01489444449543953, -0.10964296013116837, 0.22704757750034332, -0.0841648280620575, -0.11797028034925461, -0.15347453951835632, -0.177782341837883, -0.12027294933795929, -0.044934988021850586, -0.07048238813877106, -0.08096051216125488, -0.1047084704041481, -0.0669277161359787, -0.0310844536870718, -0.019638169556856155, -0.07805577665567398, 0.040475498884916306, -0.007621432188898325, 0.0998973697423935, -0.1130688488483429, -0.018858719617128372, 0.010192311368882656, -0.09401799738407135, 0.034579724073410034, 0.04024102911353111, 0.03703952208161354, 0.1683911383152008, -0.016173485666513443, 0.030396033078432083, -0.00046203911188058555, 0.22074992954730988, -0.008920644409954548, -0.012035329826176167, 0.1838129311800003, 0.05309239402413368, 0.020714275538921356, 0.11439809203147888, 0.06702326238155365, -0.0960584208369255, 0.008421777747571468, 0.0896516740322113, 0.0030129451770335436, -0.17917120456695557, -0.21440188586711884, 0.009028620086610317, 0.046301502734422684, 0.1427171677350998, 0.0074890851974487305, -0.016564469784498215, 0.09270138293504715, 0.0071587408892810345, 0.08992631733417511, -0.05388806015253067, 0.059787213802337646, 0.14677096903324127, 0.023970523849129677, 0.1556127518415451, -0.07334941625595093, -0.02119765803217888, 0.11883661150932312, -0.003507372224703431, 0.05703480914235115, 0.02644113078713417, 0.09889945387840271, -0.030461156740784645, 0.08395195007324219, 0.04668755456805229, 0.09776189178228378, 0.025191590189933777, -0.020133044570684433, 0.030433060601353645, -0.06434667855501175, -0.10000129789113998, -0.021506745368242264, 0.035189446061849594, 0.022643763571977615, -0.09415193647146225, -0.0033011585474014282, -0.020161984488368034, 0.11667096614837646, 0.07000650465488434, -0.43170368671417236, -0.05588240176439285, 0.06098340451717377, -0.03629307448863983, -0.0963435173034668, -0.03579608350992203, 0.011877210810780525, -0.12351375073194504, 0.07875931262969971, -0.02592792920768261, 0.11014599353075027, -0.09661594778299332, -0.02234482765197754, -0.028088387101888657, 0.05616476759314537, -0.007593289948999882, 0.06760834902524948, -0.16877877712249756, 0.1313779205083847, 0.054873500019311905, 0.028270725160837173, -0.07581846415996552, 0.04001538082957268, 0.02279212698340416, 0.018549250438809395, 0.12183581292629242, 0.024020865559577942, -0.1630818247795105, -0.30000555515289307, -0.09258589148521423, 0.00574153009802103, -0.011594055220484734, -0.014022709801793098, 0.07349610328674316, -0.048719774931669235, 0.00527541758492589, -0.020596353337168694, -0.05857555568218231, -0.04142668843269348, -0.07588770240545273, 0.03173461928963661, 0.054134659469127655, -0.05628226324915886, -0.007898632436990738, -0.024787919595837593, -0.032824404537677765, 0.10843123495578766, -0.12080550193786621, -0.05223691090941429, -0.15023314952850342, 0.03734719380736351, 0.11572091281414032, -0.11930873245000839, 0.03548095375299454, -0.02053520828485489, 0.08395295590162277, 0.011315672658383846, -0.13939224183559418, 0.06515563279390335, -0.04444286227226257, -0.05296246334910393, 0.023549411445856094, 0.00628588767722249, -0.01331470999866724, 0.06686389446258545, 0.03706066682934761, 0.007998156361281872, -0.0007158697699196637, -0.11848846077919006, -0.01179138757288456, 0.04475198686122894, 0.15377359092235565, 0.07897240668535233, -0.04866860434412956, -0.12546667456626892, -0.03519701957702637, 0.07681571692228317, 0.17523938417434692, 0.28695857524871826, -0.05339585617184639, -0.02100514993071556, 0.0677366778254509, -0.051271598786115646, -0.23068949580192566, -0.008656098507344723, 0.01048089936375618, -0.014713214710354805, -0.04556016996502876, -0.10494984686374664, 0.17788971960544586, 0.19267980754375458, -0.022328680381178856, -0.01241613645106554, -0.26901042461395264, -0.12109560519456863, 0.1951368749141693, 0.10037026554346085, 0.08929591625928879, -0.14686277508735657, -0.05939779430627823, -0.13061976432800293, -0.09056096524000168, 0.17209464311599731, -0.059613849967718124, 0.0598011240363121, -0.042728740721940994, 0.10975035279989243, 0.05025476589798927, -0.05955054983496666, 0.13653573393821716, 0.018535230308771133, 0.07951010018587112, -0.07417583465576172, -0.07310914248228073, -0.10648909211158752, -0.07161056250333786, 0.1055348813533783, 0.013750570826232433, 0.06736268103122711, -0.2552928924560547, -0.009199022315442562, -0.005528146866708994, 0.07952385395765305, -0.05173400416970253, -0.034153908491134644, -0.015619148500263691, 0.06969082355499268, -0.02531210333108902, -0.03312481567263603, -0.007412171922624111, -0.04293881356716156, 0.05368310585618019, 0.1999531239271164, 0.10136266052722931, -0.026071680709719658, -0.0326363630592823, 0.045056745409965515, -0.031520552933216095, 0.06318625807762146, -0.08593426644802094, 0.08055984973907471, 0.10786829888820648, 0.0345945879817009, 0.09944179654121399, 0.035720743238925934, -0.00359544949606061, -0.047708213329315186, 0.029720967635512352, -0.11334341764450073, 0.02021140046417713, 0.02069886401295662, 0.019464507699012756, -0.09766965359449387, -0.049717310816049576, 0.15116554498672485, 0.045833978801965714, -0.03516549989581108, 0.024559564888477325, 0.01330446545034647, -0.0020509986206889153, 0.2305067628622055, 0.0018346490105614066, 0.08245553076267242, -0.12515108287334442, 0.08263532817363739, 0.11837530136108398, -0.13118088245391846, 0.030029477551579475, 0.09085802733898163, -0.07209935784339905, -0.08165796101093292, 0.07132238894701004, 0.16235420107841492, -0.13705472648143768, -0.028619466349482536, -0.008700085803866386, -0.10405043512582779, 0.07087766379117966, 0.21016831696033478, 0.09623072296380997, 0.0009894786635413766, -0.013378788717091084, -0.08690325170755386, -0.12308021634817123, 0.05340128391981125, 0.07120978832244873, 0.01332789845764637, -0.11351615935564041, 0.1972469985485077, -0.04551108554005623, -0.028237447142601013, -0.02132517285645008, 0.021679705008864403, -0.23275303840637207, -0.037498168647289276, -0.07752683758735657, 0.052311114966869354, -0.06725787371397018, 0.06105753406882286, -0.009406937286257744, 0.031370408833026886, -0.05782648175954819, -0.006787009071558714, -0.06805278360843658, -0.047851115465164185, 0.020720381289720535, 0.0787658840417862, -0.08593796193599701, -0.019609039649367332, 0.05411291867494583, -0.006616227328777313, 0.03677260875701904, 0.0633661299943924, 0.07745520025491714, -0.003990157041698694, -0.0015280097723007202, 0.0021294117905199528, 0.046162836253643036, 0.03131505101919174, 0.07450167834758759, -0.19559869170188904, 0.06737173348665237, 0.0030377914663404226, 0.04920181632041931, 0.0778874009847641, 0.12874388694763184, -0.11334292590618134, 0.017870936542749405, -0.08592910319566727, -0.06809185445308685, -0.12108822166919708, 0.039462167769670486, 0.13283465802669525, 0.029617497697472572, 0.09963305294513702, -0.07967445254325867, 0.03974072262644768, -0.18545030057430267, -0.0038296766579151154, -0.016309838742017746, -0.05428338423371315, -0.06569668650627136, 0.01924450509250164, 0.08250989019870758, -0.03942900151014328, 0.09805496037006378, -0.005145295988768339, -0.01448514312505722, 0.03403167799115181, 0.100454181432724, -0.03493122383952141, 0.00019098003394901752, 0.19150938093662262, 0.08616433292627335, -0.009639067575335503, 0.1104118824005127, 0.10286709666252136, 0.04542091488838196, 0.013406436890363693, 0.0178945604711771, 0.11516676843166351, -0.16056258976459503, 0.058953531086444855, 0.027501804754137993, -0.1072535440325737, -0.0006228763959370553, 0.16997641324996948, -0.12182225286960602, 0.039162881672382355, -0.06939258426427841, 0.024620266631245613, 0.08608020097017288, -0.12406748533248901, 0.03662416338920593, -0.004331379197537899, -0.0713026151061058, -0.2182742804288864, -0.1272290050983429, -0.13337188959121704, -0.026461683213710785, -0.017525985836982727, -0.12383958697319031, 0.011700005270540714, 0.15195316076278687, 0.018609819933772087, 0.010670548304915428, 0.07116415351629257, -0.2669263482093811, -0.017941201105713844, -0.02816210687160492, 0.011171636171638966, -0.029068710282444954, -0.02747153863310814, -0.022613195702433586, 0.02379748970270157, 0.037421755492687225, 0.09418243914842606, 0.008076546713709831, 0.03133755922317505, 0.05802759528160095, -0.024201590567827225, -0.07908651977777481, -0.03527915105223656, -0.003543037222698331, 0.033759716898202896, 0.1347515732049942, 0.008363851346075535, -0.0008467532461509109, -0.04851914942264557, 0.18389426171779633, -0.09456650912761688, 0.006124137435108423, -0.11759469658136368, 0.2727586627006531, -0.016546355560421944, 0.07329034805297852, 0.021747907623648643, 0.0034245343413203955, -0.0033656612504273653, 0.16739068925380707, 0.14170081913471222, -0.019683849066495895, -0.0373840406537056, 0.0260548647493124, -0.012676766142249107, -0.024728944525122643, 0.12051210552453995, 0.027261922135949135, 0.06300767511129379, -0.058854423463344574, 0.04794666916131973, 0.047341879457235336, -0.0173321645706892, -0.07575451582670212, 0.10534206032752991, 0.03370346128940582, 0.023568371310830116, 0.014541608281433582, 0.08242140710353851, -0.07955709844827652, 0.09779976308345795, 0.06997980922460556, -0.07198112457990646, -0.16453881561756134, 0.03262527659535408, -0.06622464954853058, -0.052316851913928986, 0.08373261243104935, -0.028775542974472046, -0.014849245548248291, -0.007130816113203764, -0.020205330103635788, -0.19545911252498627, -0.12390965968370438, 0.032654598355293274, 0.14294445514678955, 0.26397743821144104, 0.024056831374764442, 0.0799286738038063, 0.17121334373950958, -0.06495148688554764, -0.15016327798366547, 0.06307061016559601, -0.011814560741186142, -0.10461290180683136, 0.11936967074871063, 0.09055296331644058, -0.03416988626122475, 0.19298972189426422, 0.047987014055252075, -0.17518137395381927, -0.02424856647849083, -0.015172259882092476, 0.05473354086279869, -0.07502590119838715, 0.029016142711043358, -0.10105352848768234, 0.12559399008750916, 0.18080922961235046, -0.02056194096803665, -0.009562351740896702, -0.055784571915864944, 0.07318969070911407, -0.02227046713232994, 0.04741506278514862, -0.03531832620501518, -0.11282209306955338, 0.05862381309270859, -0.24730360507965088, 0.0022437286097556353, -0.3156374394893646, -0.015024678781628609, -0.005792559124529362, -0.054204490035772324, -0.07037433981895447, 0.09981486946344376, 0.052276551723480225, 0.020026901736855507, -0.050121042877435684, -0.21293170750141144, 0.016469638794660568, 0.11085104942321777, -0.0958489254117012, -0.11693250387907028 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 10022181 ## Validation Metrics - Loss: 0.369505375623703 - Accuracy: 0.8706206896551724 - Macro F1: 0.5410226656476808 - Micro F1: 0.8706206896551724 - Weighted F1: 0.8515634683886795 - Macro Precision: 0.5159711665622992 - Micro Precision: 0.8706206896551724 - Weighted Precision: 0.8346991124101657 - Macro Recall: 0.5711653346601209 - Micro Recall: 0.8706206896551724 - Weighted Recall: 0.8706206896551724 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-old-data-trained-10022181 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-old-data-trained"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
text-classification
bshlgrs/autonlp-old-data-trained-10022181
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-old-data-trained", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-old-data-trained #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 10022181 ## Validation Metrics - Loss: 0.369505375623703 - Accuracy: 0.8706206896551724 - Macro F1: 0.5410226656476808 - Micro F1: 0.8706206896551724 - Weighted F1: 0.8515634683886795 - Macro Precision: 0.5159711665622992 - Micro Precision: 0.8706206896551724 - Weighted Precision: 0.8346991124101657 - Macro Recall: 0.5711653346601209 - Micro Recall: 0.8706206896551724 - Weighted Recall: 0.8706206896551724 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 10022181", "## Validation Metrics\n\n- Loss: 0.369505375623703\n- Accuracy: 0.8706206896551724\n- Macro F1: 0.5410226656476808\n- Micro F1: 0.8706206896551724\n- Weighted F1: 0.8515634683886795\n- Macro Precision: 0.5159711665622992\n- Micro Precision: 0.8706206896551724\n- Weighted Precision: 0.8346991124101657\n- Macro Recall: 0.5711653346601209\n- Micro Recall: 0.8706206896551724\n- Weighted Recall: 0.8706206896551724", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-old-data-trained #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 10022181", "## Validation Metrics\n\n- Loss: 0.369505375623703\n- Accuracy: 0.8706206896551724\n- Macro F1: 0.5410226656476808\n- Micro F1: 0.8706206896551724\n- Weighted F1: 0.8515634683886795\n- Macro Precision: 0.5159711665622992\n- Micro Precision: 0.8706206896551724\n- Weighted Precision: 0.8346991124101657\n- Macro Recall: 0.5711653346601209\n- Micro Recall: 0.8706206896551724\n- Weighted Recall: 0.8706206896551724", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 63, 26, 153, 17 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-bshlgrs/autonlp-data-old-data-trained #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 10022181## Validation Metrics\n\n- Loss: 0.369505375623703\n- Accuracy: 0.8706206896551724\n- Macro F1: 0.5410226656476808\n- Micro F1: 0.8706206896551724\n- Weighted F1: 0.8515634683886795\n- Macro Precision: 0.5159711665622992\n- Micro Precision: 0.8706206896551724\n- Weighted Precision: 0.8346991124101657\n- Macro Recall: 0.5711653346601209\n- Micro Recall: 0.8706206896551724\n- Weighted Recall: 0.8706206896551724## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.07872708886861801, 0.19660229980945587, -0.0022387311328202486, 0.10613835602998734, 0.10842139273881912, 0.042551252990961075, 0.07750429958105087, 0.1677345186471939, -0.0007890004781074822, 0.13753646612167358, 0.10119763016700745, 0.13467927277088165, 0.06815805286169052, 0.1294824630022049, -0.08809568732976913, -0.16572248935699463, 0.004231477156281471, 0.034964218735694885, 0.10005641728639603, 0.07936783134937286, 0.06977830827236176, -0.0966939926147461, 0.1052321195602417, -0.03712764009833336, -0.14088784158229828, 0.026460308581590652, 0.07051370292901993, -0.08234164863824844, 0.0647466629743576, 0.06778295338153839, 0.09845465421676636, -0.047097496688365936, 0.07995855063199997, -0.06803872436285019, -0.017713574692606926, 0.04447218403220177, 0.0010251940693706274, 0.08270138502120972, 0.165619358420372, -0.020980728790163994, 0.03153905272483826, -0.09199250489473343, 0.06592068076133728, 0.07601243257522583, -0.07513229548931122, -0.15570256114006042, -0.12209957838058472, 0.08599931001663208, 0.09808596968650818, 0.0692518949508667, -0.008268855512142181, 0.16002938151359558, -0.06054297462105751, 0.09995496273040771, 0.08211227506399155, -0.22312121093273163, -0.04361678659915924, 0.19064165651798248, -0.05755456164479256, -0.026479998603463173, -0.0013415234861895442, 0.010762068443000317, 0.05135411396622658, 0.03154899924993515, -0.0007150170858949423, -0.04117407277226448, -0.07894787937402725, 0.020331695675849915, -0.1354389637708664, -0.030605057254433632, 0.14200444519519806, -0.0027936764527112246, -0.05208945274353027, -0.09530523419380188, -0.06679224967956543, -0.06527911126613617, -0.07851669192314148, -0.027891194447875023, 0.005378182511776686, -0.04339084401726723, -0.06873434036970139, 0.0453362874686718, -0.001066685188561678, -0.05578664690256119, -0.1669502854347229, 0.012276466004550457, 0.01582867093384266, 0.055989403277635574, -0.007367551792412996, 0.019846558570861816, -0.00949921179562807, -0.046119458973407745, 0.0019418090814724565, 0.02993137203156948, -0.06208273768424988, -0.08122611790895462, 0.0019230743637308478, 0.05851125717163086, 0.02207105979323387, 0.15857288241386414, -0.008339367806911469, 0.09417469054460526, 0.022504271939396858, -0.025183184072375298, -0.04877179116010666, 0.08984606713056564, -0.11132415384054184, -0.11913438886404037, 0.04412095621228218, -0.015652166679501534, 0.001765458844602108, -0.020474297925829887, -0.07999405264854431, -0.0675482377409935, 0.09771928191184998, 0.05476473644375801, 0.019660377874970436, 0.029489366337656975, -0.03787961229681969, -0.0759797990322113, -0.012145588174462318, -0.11569716036319733, 0.05971347913146019, 0.031411152333021164, -0.15440994501113892, 0.07799236476421356, 0.029430033639073372, -0.0005782424123026431, -0.13506077229976654, 0.02991139516234398, -0.1066918894648552, -0.001510472153313458, -0.09366381913423538, -0.1252351850271225, 0.05206391587853432, -0.0064217704348266125, -0.02070893533527851, -0.07108734548091888, -0.2317553013563156, -0.07545939832925797, -0.011114604771137238, -0.11966106295585632, -0.03496694564819336, -0.020598864182829857, -0.014480031095445156, 0.04109611734747887, 0.00924922525882721, 0.10323365032672882, -0.024566365405917168, 0.04514474421739578, 0.03884129226207733, 0.08223272860050201, -0.00518586253747344, 0.03649303689599037, -0.0431930236518383, -0.0018385117873549461, -0.08866170048713684, 0.07858983427286148, -0.0566951222717762, 0.013011216185986996, -0.1673247069120407, -0.044954217970371246, 0.08749976754188538, -0.012084001675248146, 0.04321970045566559, 0.1003643274307251, -0.14578740298748016, -0.006545417942106724, 0.10466636717319489, -0.03473929315805435, -0.09364719688892365, 0.09125831723213196, -0.01580391265451908, 0.00833837129175663, 0.05473918840289116, 0.10178157687187195, 0.12206399440765381, -0.044834960252046585, -0.07644515484571457, -0.0010660459520295262, 0.031117910519242287, -0.07059682160615921, 0.08844617754220963, -0.024619799107313156, -0.10849538445472717, 0.009116840548813343, 0.05250339210033417, -0.023501388728618622, -0.03786337003111839, -0.06162174046039581, -0.024432310834527016, -0.031004074960947037, -0.00009593670984031633, 0.005442640744149685, 0.049777042120695114, -0.03856061398983002, -0.02695799246430397, 0.08728594332933426, 0.1538827270269394, -0.022005470469594002, -0.048986464738845825, -0.15108650922775269, 0.10190786421298981, -0.09405851364135742, -0.032928843051195145, -0.21607482433319092, -0.04007487744092941, 0.023995768278837204, -0.11938036978244781, -0.009634568355977535, -0.02862706407904625, 0.08447006344795227, 0.026218624785542488, 0.037684518843889236, 0.04505181312561035, 0.11785487830638885, -0.04761457443237305, -0.09613754600286484, -0.05200643837451935, -0.05155307054519653, 0.015938345342874527, 0.1988896280527115, -0.1983303725719452, -0.0008226896752603352, 0.0423155203461647, 0.07159547507762909, -0.015202612616121769, -0.043750111013650894, -0.028051050379872322, 0.04685423523187637, 0.031623370945453644, -0.05351421609520912, 0.09342142939567566, -0.031059682369232178, -0.034912947565317154, -0.024584639817476273, -0.25551167130470276, 0.12874700129032135, 0.11407866328954697, 0.01654680073261261, -0.05220513790845871, -0.04831311106681824, 0.03154817223548889, -0.03267126530408859, -0.036830753087997437, 0.05183834582567215, 0.13953444361686707, 0.03364505618810654, 0.11280597001314163, -0.07954607903957367, -0.08778885006904602, -0.004226498305797577, -0.03006383404135704, -0.019239237532019615, 0.1828967183828354, 0.04872221499681473, -0.15478335320949554, 0.10218948870897293, -0.006513666827231646, -0.09041853994131088, 0.07956502586603165, 0.011887483298778534, -0.04077539220452309, -0.07195188105106354, -0.011891039088368416, 0.037737321108579636, 0.01457160897552967, 0.03366696834564209, 0.057339444756507874, 0.0844402089715004, -0.02106354385614395, 0.02696436271071434, -0.09868094325065613, 0.03487590327858925, 0.010819792747497559, -0.04862966015934944, 0.009874148294329643, 0.010061725042760372, 0.08157780021429062, 0.1356019377708435, 0.022176582366228104, 0.025921758264303207, 0.009886117652058601, -0.01355932466685772, -0.10631436854600906, 0.2310294210910797, -0.10031712055206299, -0.1341526359319687, -0.13663256168365479, -0.1559152454137802, -0.07988078147172928, -0.0619330070912838, -0.05657641589641571, -0.06553038209676743, -0.09527865797281265, -0.05132658779621124, -0.015630552545189857, -0.02560747228562832, -0.08340616524219513, 0.026635389775037766, -0.027493834495544434, 0.08333936333656311, -0.12161194533109665, -0.027173051610589027, 0.0012703026877716184, -0.11518139392137527, 0.04061073064804077, 0.04493151605129242, 0.04187781736254692, 0.1351734846830368, -0.016511991620063782, 0.04460841417312622, -0.00837976485490799, 0.2127462476491928, -0.00007683510921197012, -0.01345015224069357, 0.21494032442569733, 0.06353779137134552, 0.03152882307767868, 0.07732273638248444, 0.045581523329019547, -0.07916861772537231, -0.009887170046567917, 0.09984403848648071, 0.0001483636151533574, -0.18542258441448212, -0.19519613683223724, 0.01653079129755497, 0.07571666687726974, 0.13977159559726715, 0.019456738606095314, 0.018914561718702316, 0.08874907344579697, -0.009412530809640884, 0.09110910445451736, -0.0720573216676712, 0.04985629394650459, 0.13561581075191498, 0.028034526854753494, 0.1387687772512436, -0.058332283049821854, -0.002023175125941634, 0.11881077289581299, -0.0028051421977579594, 0.06130082532763481, 0.017441848292946815, 0.07198203355073929, -0.025915294885635376, 0.1024816706776619, 0.05064273998141289, 0.10428262501955032, -0.0016989430878311396, -0.02387997880578041, 0.026761600747704506, -0.07438020408153534, -0.08280213922262192, -0.02724943682551384, 0.03005274571478367, 0.05399008467793465, -0.08550948649644852, -0.000874814169947058, -0.006051858887076378, 0.12036871165037155, 0.04913020133972168, -0.443508505821228, -0.0634344145655632, 0.0463380366563797, -0.025519514456391335, -0.10535483062267303, -0.02596805989742279, 0.0018610454862937331, -0.15033400058746338, 0.03330252319574356, -0.053209781646728516, 0.11414594203233719, -0.07506729662418365, -0.009812305681407452, -0.015216611325740814, 0.09217683970928192, 0.0050085983239114285, 0.06732986867427826, -0.16917411983013153, 0.11642943322658539, 0.053151436150074005, 0.04353189840912819, -0.1048918217420578, 0.019557181745767593, 0.035851988941431046, -0.05514277517795563, 0.12134286761283875, 0.01416326779872179, -0.12855689227581024, -0.2747369706630707, -0.11542510241270065, 0.007586006075143814, -0.0033608046360313892, -0.004103892017155886, 0.09936363995075226, -0.05596652626991272, 0.0031995743047446012, -0.03191857412457466, -0.05037279427051544, -0.056089501827955246, -0.06477932631969452, 0.02317366562783718, 0.06947837769985199, -0.03823317214846611, -0.025040313601493835, -0.03108060173690319, -0.024989934638142586, 0.09935639798641205, -0.1426064819097519, -0.060340337455272675, -0.15299591422080994, 0.07343324273824692, 0.12982110679149628, -0.11220305413007736, 0.04419238492846489, -0.020496530458331108, 0.08124390244483948, -0.014698824845254421, -0.14414642751216888, 0.06309955567121506, -0.06269790977239609, -0.061764828860759735, 0.03125119209289551, 0.02136950194835663, 0.0008559559937566519, 0.0758160799741745, 0.02765060029923916, 0.024919377639889717, -0.034895967692136765, -0.10817986726760864, -0.020332079380750656, 0.05372745543718338, 0.1601119488477707, 0.07117031514644623, -0.05057009309530258, -0.08321089297533035, -0.03554953262209892, 0.08115161210298538, 0.20187611877918243, 0.23861803114414215, -0.06018013134598732, -0.0035447992850095034, 0.07878834754228592, -0.0367894321680069, -0.26270031929016113, -0.013814478181302547, 0.01902385987341404, 0.01479695737361908, -0.06985140591859818, -0.12115302681922913, 0.15753598511219025, 0.1869601309299469, -0.029528452083468437, -0.02785763330757618, -0.308705598115921, -0.11133979260921478, 0.17559559643268585, 0.08592531085014343, 0.112381212413311, -0.13582777976989746, -0.05435745418071747, -0.09026754647493362, -0.07146763801574707, 0.1505485326051712, -0.07910488545894623, 0.06602658331394196, -0.05765116587281227, 0.12159226834774017, 0.049658216536045074, -0.06885399669408798, 0.11638971418142319, -0.012791869230568409, 0.05947750806808472, -0.07564309239387512, -0.058464862406253815, -0.08973708748817444, -0.06981756538152695, 0.12271612137556076, 0.025049373507499695, 0.0657012015581131, -0.26708924770355225, -0.000013637092706630938, -0.013917645439505577, 0.0641416385769844, -0.0521111898124218, -0.03084489330649376, -0.01776849292218685, 0.05571994557976723, -0.026530548930168152, -0.03655734285712242, -0.026374023407697678, -0.018819844350218773, 0.08029326796531677, 0.15535025298595428, 0.08380595594644547, -0.027755405753850937, -0.04761015623807907, 0.03817363455891609, -0.025810902938246727, 0.058451730757951736, -0.09424573928117752, 0.05425140634179115, 0.1152360662817955, 0.02528274618089199, 0.09947708994150162, 0.047557588666677475, -0.04926434904336929, -0.028134671971201897, 0.0206247940659523, -0.14359506964683533, 0.023586632683873177, 0.01133468933403492, 0.046873539686203, -0.10327330976724625, -0.08221735060214996, 0.12466535717248917, 0.013224628753960133, -0.04527486860752106, 0.008157658390700817, 0.010396448895335197, 0.003650140017271042, 0.24220652878284454, 0.006217145826667547, 0.07871643453836441, -0.12288131564855576, 0.104259192943573, 0.11113832145929337, -0.14043092727661133, 0.03716934844851494, 0.1233072280883789, -0.06632047891616821, -0.07098269462585449, 0.07696586847305298, 0.17040567100048065, -0.12402437627315521, -0.045531343668699265, -0.030374400317668915, -0.1179162785410881, 0.10249359160661697, 0.2093622386455536, 0.07939376682043076, -0.0042401766404509544, -0.020788324996829033, -0.08635082840919495, -0.12674908339977264, 0.06501387059688568, 0.08804909139871597, -0.003985477611422539, -0.08764687180519104, 0.19372187554836273, -0.04420628026127815, -0.0011447696015238762, -0.021150263026356697, 0.027039630338549614, -0.21425321698188782, -0.03349177911877632, -0.0982847511768341, 0.046595752239227295, -0.056072384119033813, 0.028403041884303093, -0.03171592578291893, 0.03701949492096901, -0.04942813515663147, 0.010974958539009094, -0.07833769172430038, -0.058489978313446045, 0.012252460233867168, 0.06488373130559921, -0.0878901481628418, -0.0041522253304719925, 0.04878545552492142, -0.006169463042169809, 0.0524737611413002, 0.08634880185127258, 0.07534702122211456, 0.004417812917381525, -0.01313876360654831, -0.05205614119768143, 0.03545183688402176, 0.026346420869231224, 0.09093683958053589, -0.18369705975055695, 0.06919994205236435, -0.0012260129442438483, 0.0291218850761652, 0.07119100540876389, 0.1193428486585617, -0.09720434248447418, 0.03838619217276573, -0.10360206663608551, -0.02448674850165844, -0.1169855073094368, 0.03507372736930847, 0.11487563699483871, 0.043347083032131195, 0.07222968339920044, -0.08982671797275543, 0.03836857154965401, -0.1900513470172882, -0.007496298756450415, -0.05302528664469719, -0.06789425015449524, -0.07345809787511826, 0.009801557287573814, 0.09847795218229294, -0.015422006137669086, 0.07026012986898422, -0.0016624232521280646, -0.01122105773538351, 0.03149758279323578, 0.11517580598592758, -0.04606817290186882, -0.017736762762069702, 0.16375231742858887, 0.09373775869607925, -0.00922313891351223, 0.12941592931747437, 0.10363154113292694, 0.04979514330625534, 0.04987788572907448, 0.03984452411532402, 0.12855839729309082, -0.08512642234563828, 0.06798921525478363, 0.03279170021414757, -0.12482433766126633, -0.009061058983206749, 0.15739068388938904, -0.11125408858060837, 0.032804373651742935, -0.07960041612386703, 0.03911319375038147, 0.11785772442817688, -0.12440841645002365, 0.03342295065522194, -0.005001695826649666, -0.06410001218318939, -0.2214563488960266, -0.10945074260234833, -0.13523045182228088, -0.0034976082388311625, -0.019340721890330315, -0.12554383277893066, 0.04218379408121109, 0.14370672404766083, 0.0271990317851305, 0.010531822219491005, 0.0735556110739708, -0.2532211244106293, -0.03417302668094635, -0.01880798302590847, 0.005128142889589071, -0.0005164009053260088, -0.03013494238257408, -0.02751801535487175, 0.02408722974359989, 0.02656644582748413, 0.1092359647154808, -0.0001398869208060205, 0.048398274928331375, 0.07264450937509537, -0.040656767785549164, -0.06891047209501266, -0.027794718742370605, -0.002258151536807418, 0.049952637404203415, 0.13403961062431335, 0.018739640712738037, 0.006918298080563545, -0.044286224991083145, 0.21006935834884644, -0.09274651110172272, -0.01585296168923378, -0.10924125462770462, 0.24444691836833954, 0.01283947192132473, 0.054024871438741684, 0.027292389422655106, 0.0008623148896731436, -0.0007827749941498041, 0.2030927836894989, 0.1285199671983719, -0.0289496798068285, -0.030556805431842804, 0.032355744391679764, -0.010341973975300789, -0.04409698396921158, 0.11790865659713745, 0.06494194269180298, 0.12038593739271164, -0.062321435660123825, 0.039781585335731506, 0.00858172308653593, -0.037505630403757095, -0.11427487432956696, 0.10213615000247955, 0.021801479160785675, 0.008201445452868938, 0.039277251809835434, 0.07181121408939362, -0.07117167860269547, 0.08244162052869797, 0.04444232955574989, -0.12261729687452316, -0.1730538010597229, 0.026660608127713203, -0.041348669677972794, -0.014279537834227085, 0.09011966735124588, -0.021099288016557693, -0.0006233942112885416, -0.0012915186816826463, -0.01590178720653057, -0.20071162283420563, -0.09413211792707443, 0.019007278606295586, 0.1247146874666214, 0.2917688488960266, 0.03316810727119446, 0.06096825376152992, 0.17302699387073517, -0.0611906461417675, -0.16130536794662476, 0.07424961775541306, 0.0020526612643152475, -0.1193438246846199, 0.10353069007396698, 0.10304129123687744, -0.03357357531785965, 0.15814633667469025, 0.05014033243060112, -0.16086065769195557, -0.019960302859544754, -0.014239300042390823, 0.03609246015548706, -0.06529106944799423, 0.01577080227434635, -0.08391014486551285, 0.12953656911849976, 0.18580013513565063, -0.03968627378344536, 0.0012197699397802353, -0.06856309622526169, 0.06560782343149185, -0.02129627950489521, 0.06966179609298706, -0.0131224999204278, -0.11179332435131073, 0.06172272190451622, -0.24832521378993988, -0.00013392016990110278, -0.29632508754730225, -0.0059361532330513, -0.009210391901433468, -0.05248979106545448, -0.08844053000211716, 0.0883665680885315, 0.0491335429251194, 0.004736937582492828, -0.0395720936357975, -0.18948297202587128, 0.0075248293578624725, 0.11445502191781998, -0.10025592893362045, -0.10413645952939987 ]
null
null
transformers
## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral ## Training details: - The training script is provided here: https://github.com/bsinghpratap/roberta_train_goEmotion - Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible. - The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise'] - I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance. - Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job. ## Model Performance ============================================================<br> Emotion: admiration<br> ============================================================<br> GoEmotions Paper: 0.65<br> RoBERTa: 0.62<br> Support: 504<br> ============================================================<br> Emotion: amusement<br> ============================================================<br> GoEmotions Paper: 0.80<br> RoBERTa: 0.78<br> Support: 252<br> ============================================================<br> Emotion: anger<br> ============================================================<br> GoEmotions Paper: 0.47<br> RoBERTa: 0.44<br> Support: 197<br> ============================================================<br> Emotion: annoyance<br> ============================================================<br> GoEmotions Paper: 0.34<br> RoBERTa: 0.22<br> Support: 286<br> ============================================================<br> Emotion: approval<br> ============================================================<br> GoEmotions Paper: 0.36<br> RoBERTa: 0.31<br> Support: 318<br> ============================================================<br> Emotion: caring<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.24<br> Support: 114<br> ============================================================<br> Emotion: confusion<br> ============================================================<br> GoEmotions Paper: 0.37<br> RoBERTa: 0.29<br> Support: 139<br> ============================================================<br> Emotion: curiosity<br> ============================================================<br> GoEmotions Paper: 0.54<br> RoBERTa: 0.48<br> Support: 233<br> ============================================================<br> Emotion: disappointment<br> ============================================================<br> GoEmotions Paper: 0.28<br> RoBERTa: 0.18<br> Support: 127<br> ============================================================<br> Emotion: disapproval<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.26<br> Support: 220<br> ============================================================<br> Emotion: gratitude<br> ============================================================<br> GoEmotions Paper: 0.86<br> RoBERTa: 0.84<br> Support: 288<br> ============================================================<br> Emotion: joy<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.47<br> Support: 116<br> ============================================================<br> Emotion: love<br> ============================================================<br> GoEmotions Paper: 0.78<br> RoBERTa: 0.68<br> Support: 169<br> ============================================================<br> Emotion: neutral<br> ============================================================<br> GoEmotions Paper: 0.68<br> RoBERTa: 0.61<br> Support: 1606<br> ============================================================<br> Emotion: optimism<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.52<br> Support: 120<br> ============================================================<br> Emotion: realization<br> ============================================================<br> GoEmotions Paper: 0.21<br> RoBERTa: 0.15<br> Support: 109<br> ============================================================<br> Emotion: sadness<br> ============================================================<br> GoEmotions Paper: 0.49<br> RoBERTa: 0.42<br> Support: 108
{"language": "en", "license": "mit", "tags": ["text-classification", "pytorch", "roberta", "emotions"], "datasets": ["go_emotions"], "widget": [{"text": "I am not feeling well today."}]}
text-classification
bsingh/roberta_goEmotion
[ "transformers", "pytorch", "roberta", "text-classification", "emotions", "en", "dataset:go_emotions", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #emotions #en #dataset-go_emotions #license-mit #autotrain_compatible #endpoints_compatible #region-us
## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral ## Training details: - The training script is provided here: URL - Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible. - The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise'] - I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance. - Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job. ## Model Performance ============================================================<br> Emotion: admiration<br> ============================================================<br> GoEmotions Paper: 0.65<br> RoBERTa: 0.62<br> Support: 504<br> ============================================================<br> Emotion: amusement<br> ============================================================<br> GoEmotions Paper: 0.80<br> RoBERTa: 0.78<br> Support: 252<br> ============================================================<br> Emotion: anger<br> ============================================================<br> GoEmotions Paper: 0.47<br> RoBERTa: 0.44<br> Support: 197<br> ============================================================<br> Emotion: annoyance<br> ============================================================<br> GoEmotions Paper: 0.34<br> RoBERTa: 0.22<br> Support: 286<br> ============================================================<br> Emotion: approval<br> ============================================================<br> GoEmotions Paper: 0.36<br> RoBERTa: 0.31<br> Support: 318<br> ============================================================<br> Emotion: caring<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.24<br> Support: 114<br> ============================================================<br> Emotion: confusion<br> ============================================================<br> GoEmotions Paper: 0.37<br> RoBERTa: 0.29<br> Support: 139<br> ============================================================<br> Emotion: curiosity<br> ============================================================<br> GoEmotions Paper: 0.54<br> RoBERTa: 0.48<br> Support: 233<br> ============================================================<br> Emotion: disappointment<br> ============================================================<br> GoEmotions Paper: 0.28<br> RoBERTa: 0.18<br> Support: 127<br> ============================================================<br> Emotion: disapproval<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.26<br> Support: 220<br> ============================================================<br> Emotion: gratitude<br> ============================================================<br> GoEmotions Paper: 0.86<br> RoBERTa: 0.84<br> Support: 288<br> ============================================================<br> Emotion: joy<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.47<br> Support: 116<br> ============================================================<br> Emotion: love<br> ============================================================<br> GoEmotions Paper: 0.78<br> RoBERTa: 0.68<br> Support: 169<br> ============================================================<br> Emotion: neutral<br> ============================================================<br> GoEmotions Paper: 0.68<br> RoBERTa: 0.61<br> Support: 1606<br> ============================================================<br> Emotion: optimism<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.52<br> Support: 120<br> ============================================================<br> Emotion: realization<br> ============================================================<br> GoEmotions Paper: 0.21<br> RoBERTa: 0.15<br> Support: 109<br> ============================================================<br> Emotion: sadness<br> ============================================================<br> GoEmotions Paper: 0.49<br> RoBERTa: 0.42<br> Support: 108
[ "## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions\n- admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral", "## Training details:\n- The training script is provided here: URL\n- Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible.\n- The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise']\n- I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance.\n- Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job.", "## Model Performance\n============================================================<br>\nEmotion: admiration<br>\n============================================================<br>\nGoEmotions Paper: 0.65<br>\nRoBERTa: 0.62<br>\nSupport: 504<br>\n============================================================<br>\nEmotion: amusement<br>\n============================================================<br>\nGoEmotions Paper: 0.80<br>\nRoBERTa: 0.78<br>\nSupport: 252<br>\n============================================================<br>\nEmotion: anger<br>\n============================================================<br>\nGoEmotions Paper: 0.47<br>\nRoBERTa: 0.44<br>\nSupport: 197<br>\n============================================================<br>\nEmotion: annoyance<br>\n============================================================<br>\nGoEmotions Paper: 0.34<br>\nRoBERTa: 0.22<br>\nSupport: 286<br>\n============================================================<br>\nEmotion: approval<br>\n============================================================<br>\nGoEmotions Paper: 0.36<br>\nRoBERTa: 0.31<br>\nSupport: 318<br>\n============================================================<br>\nEmotion: caring<br>\n============================================================<br>\nGoEmotions Paper: 0.39<br>\nRoBERTa: 0.24<br>\nSupport: 114<br>\n============================================================<br>\nEmotion: confusion<br>\n============================================================<br>\nGoEmotions Paper: 0.37<br>\nRoBERTa: 0.29<br>\nSupport: 139<br>\n============================================================<br>\nEmotion: curiosity<br>\n============================================================<br>\nGoEmotions Paper: 0.54<br>\nRoBERTa: 0.48<br>\nSupport: 233<br>\n============================================================<br>\nEmotion: disappointment<br>\n============================================================<br>\nGoEmotions Paper: 0.28<br>\nRoBERTa: 0.18<br>\nSupport: 127<br>\n============================================================<br>\nEmotion: disapproval<br>\n============================================================<br>\nGoEmotions Paper: 0.39<br>\nRoBERTa: 0.26<br>\nSupport: 220<br>\n============================================================<br>\nEmotion: gratitude<br>\n============================================================<br>\nGoEmotions Paper: 0.86<br>\nRoBERTa: 0.84<br>\nSupport: 288<br>\n============================================================<br>\nEmotion: joy<br>\n============================================================<br>\nGoEmotions Paper: 0.51<br>\nRoBERTa: 0.47<br>\nSupport: 116<br>\n============================================================<br>\nEmotion: love<br>\n============================================================<br>\nGoEmotions Paper: 0.78<br>\nRoBERTa: 0.68<br>\nSupport: 169<br>\n============================================================<br>\nEmotion: neutral<br>\n============================================================<br>\nGoEmotions Paper: 0.68<br>\nRoBERTa: 0.61<br>\nSupport: 1606<br>\n============================================================<br>\nEmotion: optimism<br>\n============================================================<br>\nGoEmotions Paper: 0.51<br>\nRoBERTa: 0.52<br>\nSupport: 120<br>\n============================================================<br>\nEmotion: realization<br>\n============================================================<br>\nGoEmotions Paper: 0.21<br>\nRoBERTa: 0.15<br>\nSupport: 109<br>\n============================================================<br>\nEmotion: sadness<br>\n============================================================<br>\nGoEmotions Paper: 0.49<br>\nRoBERTa: 0.42<br>\nSupport: 108" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #emotions #en #dataset-go_emotions #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions\n- admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral", "## Training details:\n- The training script is provided here: URL\n- Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible.\n- The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise']\n- I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance.\n- Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job.", "## Model Performance\n============================================================<br>\nEmotion: admiration<br>\n============================================================<br>\nGoEmotions Paper: 0.65<br>\nRoBERTa: 0.62<br>\nSupport: 504<br>\n============================================================<br>\nEmotion: amusement<br>\n============================================================<br>\nGoEmotions Paper: 0.80<br>\nRoBERTa: 0.78<br>\nSupport: 252<br>\n============================================================<br>\nEmotion: anger<br>\n============================================================<br>\nGoEmotions Paper: 0.47<br>\nRoBERTa: 0.44<br>\nSupport: 197<br>\n============================================================<br>\nEmotion: annoyance<br>\n============================================================<br>\nGoEmotions Paper: 0.34<br>\nRoBERTa: 0.22<br>\nSupport: 286<br>\n============================================================<br>\nEmotion: approval<br>\n============================================================<br>\nGoEmotions Paper: 0.36<br>\nRoBERTa: 0.31<br>\nSupport: 318<br>\n============================================================<br>\nEmotion: caring<br>\n============================================================<br>\nGoEmotions Paper: 0.39<br>\nRoBERTa: 0.24<br>\nSupport: 114<br>\n============================================================<br>\nEmotion: confusion<br>\n============================================================<br>\nGoEmotions Paper: 0.37<br>\nRoBERTa: 0.29<br>\nSupport: 139<br>\n============================================================<br>\nEmotion: curiosity<br>\n============================================================<br>\nGoEmotions Paper: 0.54<br>\nRoBERTa: 0.48<br>\nSupport: 233<br>\n============================================================<br>\nEmotion: disappointment<br>\n============================================================<br>\nGoEmotions Paper: 0.28<br>\nRoBERTa: 0.18<br>\nSupport: 127<br>\n============================================================<br>\nEmotion: disapproval<br>\n============================================================<br>\nGoEmotions Paper: 0.39<br>\nRoBERTa: 0.26<br>\nSupport: 220<br>\n============================================================<br>\nEmotion: gratitude<br>\n============================================================<br>\nGoEmotions Paper: 0.86<br>\nRoBERTa: 0.84<br>\nSupport: 288<br>\n============================================================<br>\nEmotion: joy<br>\n============================================================<br>\nGoEmotions Paper: 0.51<br>\nRoBERTa: 0.47<br>\nSupport: 116<br>\n============================================================<br>\nEmotion: love<br>\n============================================================<br>\nGoEmotions Paper: 0.78<br>\nRoBERTa: 0.68<br>\nSupport: 169<br>\n============================================================<br>\nEmotion: neutral<br>\n============================================================<br>\nGoEmotions Paper: 0.68<br>\nRoBERTa: 0.61<br>\nSupport: 1606<br>\n============================================================<br>\nEmotion: optimism<br>\n============================================================<br>\nGoEmotions Paper: 0.51<br>\nRoBERTa: 0.52<br>\nSupport: 120<br>\n============================================================<br>\nEmotion: realization<br>\n============================================================<br>\nGoEmotions Paper: 0.21<br>\nRoBERTa: 0.15<br>\nSupport: 109<br>\n============================================================<br>\nEmotion: sadness<br>\n============================================================<br>\nGoEmotions Paper: 0.49<br>\nRoBERTa: 0.42<br>\nSupport: 108" ]
[ 55, 108, 208, 1010 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #emotions #en #dataset-go_emotions #license-mit #autotrain_compatible #endpoints_compatible #region-us \n## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions\n- admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral## Training details:\n- The training script is provided here: URL\n- Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible.\n- The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise']\n- I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance.\n- Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job." ]
[ -0.032077547162771225, 0.02740655280649662, -0.0059502944350242615, 0.04314001649618149, 0.1097431480884552, 0.054898012429475784, -0.020536962896585464, 0.106776662170887, 0.10717599838972092, 0.07738594710826874, 0.04381665959954262, 0.11144295334815979, 0.01134608406573534, 0.042700860649347305, -0.021139925345778465, -0.2346932590007782, 0.005442509427666664, -0.03012579306960106, 0.13749946653842926, 0.09461618959903717, 0.11239808797836304, -0.05860808119177818, 0.06017375364899635, -0.06387196481227875, -0.030897358432412148, 0.017607398331165314, -0.009399617090821266, 0.006718365475535393, 0.08846139162778854, 0.013363336212933064, 0.12653979659080505, 0.03527203947305679, -0.022477956488728523, -0.228147953748703, 0.04745020717382431, 0.07035571336746216, 0.02246759459376335, 0.039071377366781235, -0.0015985857462510467, -0.12202386558055878, 0.14187368750572205, -0.21248097717761993, 0.07250258326530457, 0.0764814242720604, -0.1263926476240158, -0.21894752979278564, -0.0843273252248764, 0.05043872445821762, 0.116920605301857, 0.07900696247816086, -0.10037556290626526, 0.1542617827653885, -0.13703462481498718, 0.03946692496538162, 0.27297526597976685, -0.2263920158147812, -0.030697796493768692, 0.0002563120215199888, 0.09556904435157776, -0.02585325390100479, -0.14137819409370422, 0.026392677798867226, 0.016814103350043297, 0.0480935275554657, -0.0499018095433712, -0.0009958179434761405, 0.22412237524986267, -0.04546515643596649, -0.0999443456530571, -0.06650612503290176, 0.06918364018201828, 0.1442076563835144, -0.09395062923431396, -0.17599906027317047, -0.028554560616612434, -0.08932014554738998, -0.037396155297756195, -0.08244085311889648, 0.014493006281554699, 0.012241944670677185, 0.020576216280460358, -0.016661621630191803, -0.1473916471004486, 0.0549931637942791, -0.04213675111532211, 0.03622924163937569, -0.02106454409658909, -0.012802032753825188, 0.03372267633676529, 0.0075315251015126705, -0.043070316314697266, -0.0573396272957325, -0.03405096009373665, -0.10658396035432816, -0.1421113908290863, -0.009825125336647034, -0.13027812540531158, -0.09228702634572983, -0.012744038365781307, 0.148023784160614, -0.0040056053549051285, 0.01895933412015438, 0.022851187735795975, 0.013093029148876667, 0.14171551167964935, 0.11304159462451935, -0.016894394531846046, -0.09588810056447983, -0.07034265249967575, 0.059600524604320526, 0.02371956966817379, -0.0034306077286601067, 0.03259854018688202, 0.03862926363945007, 0.03982025757431984, 0.0422247014939785, -0.020442917943000793, 0.08640483021736145, -0.10399644821882248, 0.004371624905616045, -0.02298392355442047, -0.10048576444387436, 0.0068761915899813175, 0.033103253692388535, -0.03001384064555168, 0.09992709010839462, -0.020115794613957405, 0.018839584663510323, 0.01370721310377121, -0.0032558387611061335, -0.039114248007535934, -0.05977826938033104, -0.12622348964214325, -0.0645509883761406, 0.06306637823581696, -0.047204118221998215, -0.013559077866375446, -0.10239121317863464, -0.18979190289974213, -0.059816669672727585, 0.062036607414484024, -0.06334589421749115, 0.003994904924184084, -0.031086836010217667, -0.013064156286418438, -0.0127401202917099, 0.023442354053258896, 0.019345439970493317, -0.004636999685317278, 0.03057359904050827, -0.0108132129535079, 0.12125520408153534, 0.06243133172392845, -0.004901442676782608, -0.13824164867401123, 0.0005157776176929474, -0.20397774875164032, 0.08849722146987915, -0.11092884838581085, 0.10592183470726013, -0.0882209911942482, -0.026372278109192848, 0.06073892489075661, 0.06916685402393341, -0.02387150004506111, 0.16055864095687866, -0.18952560424804688, -0.08381520956754684, 0.12355933338403702, -0.09757380932569504, 0.021165575832128525, 0.15767976641654968, -0.062392525374889374, 0.1046694666147232, 0.1209343671798706, 0.1188054010272026, -0.05465763062238693, -0.0813155248761177, -0.10136034339666367, -0.014207388274371624, -0.12205258011817932, 0.1822846531867981, 0.011498675681650639, 0.0136005450040102, 0.031242897734045982, 0.02928995154798031, 0.09152978658676147, 0.027522660791873932, -0.04676467180252075, -0.06558141112327576, -0.015193594619631767, -0.025898903608322144, 0.05380759388208389, 0.05349656194448471, -0.056481461971998215, -0.08097260445356369, -0.20548364520072937, -0.13085299730300903, 0.0881158635020256, 0.002495463704690337, 0.0017516890075057745, -0.1061059907078743, 0.08822119235992432, 0.10093100368976593, 0.0067057982087135315, -0.17593710124492645, -0.05317295342683792, 0.01178790908306837, -0.020290972664952278, 0.0430702343583107, 0.11306137591600418, 0.09094865620136261, -0.05174807831645012, -0.02429724670946598, -0.0137453842908144, -0.07799462229013443, -0.004842168651521206, -0.030257336795330048, -0.21859753131866455, -0.0018519448349252343, -0.09704407304525375, 0.1871810108423233, -0.17869655787944794, -0.0028274531941860914, 0.05384340509772301, 0.10646229237318039, 0.044835541397333145, -0.03535361960530281, 0.0039452118799090385, -0.015383650548756123, 0.002321530133485794, 0.0033886749297380447, 0.10357151925563812, -0.006699902005493641, -0.0463947169482708, 0.055427540093660355, -0.060243505984544754, -0.22539390623569489, 0.1052294597029686, -0.03442133963108063, -0.14879202842712402, 0.09181132912635803, -0.09340592473745346, 0.06016148254275322, -0.010463332757353783, 0.01271942537277937, 0.12064395844936371, 0.08024520426988602, 0.04834628477692604, -0.03443514555692673, -0.011693393811583519, 0.013827201910316944, -0.0818871334195137, -0.07957778871059418, 0.11804316192865372, -0.01778045855462551, -0.1967354267835617, 0.02607908472418785, 0.09036871790885925, -0.0781613290309906, 0.1841513216495514, 0.028171125799417496, -0.09601714462041855, -0.07479266822338104, -0.02548212744295597, -0.025143828243017197, 0.02785140834748745, -0.09758204966783524, -0.011770565062761307, 0.04507558047771454, -0.04068595916032791, 0.0021808031015098095, -0.06745114922523499, -0.021945232525467873, 0.023786917328834534, 0.04235757514834404, 0.03376028314232826, 0.08318483829498291, 0.018726229667663574, 0.08454682677984238, 0.02017197757959366, -0.05981685593724251, -0.031312279403209686, -0.014348920434713364, -0.04513752833008766, 0.11814018338918686, -0.05932602658867836, -0.2637559771537781, -0.02824152261018753, 0.06175151839852333, -0.014477488584816456, 0.02295982837677002, 0.047686561942100525, -0.24005159735679626, -0.039044711738824844, -0.01681686006486416, 0.021420270204544067, 0.004229656420648098, -0.010888106189668179, 0.04758397489786148, 0.006115893833339214, -0.007622320670634508, -0.06806396692991257, -0.013040059246122837, -0.06667137891054153, -0.12926451861858368, 0.04097995534539223, -0.04589805379509926, 0.0744444727897644, 0.10987293720245361, 0.077766552567482, -0.00019490037811920047, -0.08968961238861084, 0.23533682525157928, -0.11202278733253479, -0.0033846416044980288, 0.086501844227314, -0.00701954634860158, 0.09650393575429916, 0.13013491034507751, 0.0011037496151402593, -0.10543043166399002, 0.046033043414354324, 0.16141705214977264, 0.008705566637217999, -0.21827831864356995, -0.012575054541230202, 0.004797454923391342, 0.036433469504117966, -0.06686202436685562, 0.037525102496147156, 0.13519814610481262, 0.0020645123440772295, -0.020518943667411804, -0.10999095439910889, -0.05267959088087082, 0.0964057520031929, 0.06432131677865982, -0.051079291850328445, 0.05953868851065636, -0.02535780891776085, -0.06271723657846451, 0.08145369589328766, -0.09003672003746033, 0.2600444257259369, 0.014243937097489834, 0.12423665821552277, 0.09651245921850204, -0.006100951228290796, -0.033394116908311844, -0.008806885220110416, -0.04197027161717415, -0.03575035557150841, -0.11853751540184021, -0.004089874215424061, -0.08435243368148804, 0.06105393171310425, 0.12928049266338348, 0.03543592616915703, -0.11976080387830734, 0.02236444316804409, 0.12584665417671204, 0.22856654226779938, 0.06976024061441422, -0.10613096505403519, -0.0663490816950798, 0.024521030485630035, -0.08085808157920837, 0.0065084779635071754, -0.06677036732435226, -0.11247267574071884, -0.09620237350463867, 0.06470552086830139, 0.01384938508272171, 0.02028028853237629, -0.08106008172035217, 0.07644776254892349, -0.10962722450494766, 0.002738260431215167, 0.02459123358130455, 0.060527700930833817, -0.2076464742422104, 0.2757992446422577, 0.002245353301987052, 0.0696953684091568, -0.05456429719924927, -0.004127422347664833, 0.061529893428087234, -0.02044132724404335, 0.16946382820606232, -0.017300834879279137, 0.004757726565003395, -0.0733812227845192, 0.03354402631521225, 0.037693995982408524, 0.10421652346849442, -0.06013786047697067, 0.12390138953924179, -0.01630435138940811, -0.007725871168076992, -0.003460349515080452, 0.15313035249710083, -0.18351592123508453, -0.10057329386472702, 0.06168109178543091, -0.06103047356009483, -0.04092990979552269, -0.0243965033441782, -0.07388915121555328, 0.06110316514968872, 0.2378322184085846, 0.006946169305592775, 0.014183026738464832, -0.10730277001857758, 0.08030491322278976, 0.040552180260419846, -0.0799821987748146, -0.046033840626478195, 0.008957123383879662, 0.10286667943000793, -0.01971154473721981, -0.028751743957400322, 0.06621111184358597, -0.02850005030632019, -0.14918014407157898, -0.09438912570476532, 0.057650696486234665, 0.08039233088493347, 0.08042340725660324, 0.04352934658527374, 0.026048121973872185, 0.010780996643006802, -0.037417955696582794, 0.107376329600811, 0.038981687277555466, -0.0015292427269741893, 0.02785816602408886, -0.04417841508984566, -0.051559388637542725, -0.10901240259408951, -0.07696317136287689, 0.16507360339164734, 0.3267245590686798, -0.062149059027433395, 0.09614267945289612, 0.09184976667165756, -0.09215930849313736, -0.15509334206581116, -0.06824637204408646, 0.13846901059150696, -0.01888228952884674, -0.00243915943428874, -0.20505864918231964, 0.04010983183979988, 0.054631903767585754, -0.013367886655032635, -0.15581496059894562, -0.11974424123764038, -0.04873251914978027, 0.07769183069467545, 0.02820049785077572, 0.20867201685905457, -0.1638098806142807, 0.002812102437019348, -0.035753995180130005, -0.08297751098871231, 0.16878774762153625, -0.09448903799057007, 0.12995897233486176, 0.05381762608885765, 0.13811545073986053, 0.03214683383703232, -0.039197444915771484, 0.13681110739707947, 0.031551286578178406, 0.08151713758707047, -0.08274102210998535, -0.005092756822705269, 0.050390906631946564, -0.07354103028774261, 0.06500695645809174, -0.05254247784614563, -0.04821677505970001, -0.1889730840921402, -0.08219477534294128, -0.15431571006774902, 0.05668892711400986, -0.04637369140982628, -0.05595620721578598, -0.02418714389204979, 0.11196639388799667, 0.06475293636322021, -0.028037266805768013, -0.07730697840452194, -0.09403912723064423, 0.0031763948500156403, -0.07472441345453262, 0.11070159822702408, 0.03636329621076584, -0.22376082837581635, -0.0011438162764534354, -0.03149339184165001, 0.00007305135659407824, -0.13875065743923187, -0.004875434096902609, 0.07882101833820343, -0.04246765002608299, 0.18290670216083527, 0.029751958325505257, -0.15318383276462555, 0.06004448980093002, 0.12281728535890579, -0.06943320482969284, -0.14735738933086395, 0.037996988743543625, -0.05623920261859894, -0.10405924916267395, -0.11072065681219101, 0.13936620950698853, 0.013021135702729225, -0.03649121895432472, -0.02689482644200325, 0.012919226661324501, -0.0038949516601860523, -0.021518506109714508, -0.009728292003273964, 0.02029132843017578, -0.052221573889255524, 0.025106709450483322, 0.05238134413957596, -0.21055035293102264, 0.11481042951345444, 0.09550849348306656, -0.032034240663051605, -0.07224992662668228, 0.005967273376882076, 0.2243904322385788, -0.08523812890052795, 0.02176477760076523, -0.05588913336396217, -0.058471549302339554, 0.057771481573581696, 0.17970813810825348, 0.05027609318494797, -0.0017235652776435018, -0.007339143194258213, 0.035554349422454834, -0.0401388444006443, 0.041540052741765976, 0.12273989617824554, -0.05010795220732689, -0.04792628437280655, 0.05037027597427368, -0.005791586823761463, -0.013981220312416553, -0.01312006264925003, -0.020893890410661697, -0.1005830243229866, -0.02446005679666996, -0.14704887568950653, -0.04262356087565422, -0.009446687996387482, -0.005351679865270853, 0.03130495175719261, 0.01609760709106922, -0.0059239622205495834, -0.03309227153658867, -0.06836256384849548, -0.0360727421939373, 0.05662011727690697, 0.07399888336658478, -0.18247847259044647, -0.06397046893835068, 0.09258360415697098, -0.07159505784511566, 0.08469291031360626, 0.03653350844979286, 0.02172068879008293, 0.08378533273935318, -0.1869925707578659, 0.0075246915221214294, 0.0229936633259058, -0.048349812626838684, 0.007862081751227379, -0.056517984718084335, 0.050279900431632996, -0.05792376399040222, 0.05284310504794121, 0.04775108024477959, 0.08005882054567337, -0.09146349132061005, 0.00467498367652297, 0.1796269565820694, -0.08740736544132233, -0.07481642067432404, -0.018632445484399796, 0.027591286227107048, 0.03577296435832977, 0.17318116128444672, -0.05192558839917183, 0.03392072021961212, -0.17194794118404388, 0.006342428270727396, 0.0056861466728150845, 0.023222114890813828, -0.03285432234406471, -0.07695063203573227, 0.03726794198155403, -0.04792265221476555, 0.0458892323076725, 0.019581764936447144, 0.09051990509033203, 0.040852054953575134, -0.02931540086865425, -0.025259485468268394, 0.005495396908372641, 0.02759382128715515, 0.10436694324016571, -0.03871814161539078, -0.006331661716103554, 0.016063394024968147, 0.057477205991744995, -0.039188649505376816, 0.14462247490882874, 0.1612475961446762, 0.22939008474349976, 0.08016946911811829, -0.010595009662210941, -0.0160163976252079, -0.03177141025662422, 0.04514686018228531, -0.07399909943342209, 0.10599355399608612, -0.05459277331829071, 0.12121511250734329, 0.16718259453773499, 0.015731116756796837, 0.12545928359031677, -0.08796621114015579, -0.039189908653497696, -0.07295041531324387, -0.11531883478164673, -0.07567646354436874, -0.03036350943148136, 0.08860121667385101, -0.08376600593328476, 0.021647732704877853, -0.06398025155067444, 0.02150350622832775, -0.029776381328701973, -0.020622262731194496, -0.024687113240361214, -0.02471667155623436, 0.14896854758262634, -0.05800745263695717, -0.0421164333820343, 0.028834957629442215, 0.047949351370334625, 0.008018333464860916, 0.022345632314682007, 0.029157834127545357, 0.06475681066513062, -0.12093779444694519, 0.02765033021569252, -0.0811295136809349, -0.12008069455623627, 0.018851496279239655, 0.007785415276885033, -0.02187502384185791, 0.07394122332334518, -0.012949848547577858, -0.0028720004484057426, 0.007156883366405964, 0.20488415658473969, -0.02007248066365719, -0.03996570408344269, -0.18196134269237518, 0.23551417887210846, 0.05366740748286247, 0.05073122680187225, -0.007203459274023771, -0.1220417395234108, -0.0011719680624082685, 0.1427675038576126, 0.11013636738061905, -0.01237388327717781, 0.00003691491292556748, 0.049426354467868805, 0.030683055520057678, -0.04499350115656853, 0.018465232104063034, 0.12929320335388184, 0.12376102805137634, -0.11683172732591629, 0.1101967915892601, -0.027521681040525436, -0.037952568382024765, -0.030952544882893562, 0.07285144180059433, 0.05657988786697388, 0.04318666458129883, -0.05887987092137337, 0.08915029466152191, -0.04662853479385376, -0.21852053701877594, 0.05457857996225357, -0.08647307008504868, -0.09699393063783646, -0.041779760271310806, 0.08352762460708618, 0.10526258498430252, 0.15007181465625763, 0.08126559108495712, -0.09036818146705627, 0.23051097989082336, -0.030585048720240593, -0.1274176985025406, -0.038459550589323044, 0.14314086735248566, -0.04089817404747009, 0.12879525125026703, -0.02070510759949684, 0.04266524687409401, 0.1393001228570938, -0.04062687233090401, -0.05983886495232582, 0.05054629594087601, 0.044056475162506104, -0.0549355149269104, 0.022889969870448112, 0.22826170921325684, -0.021794544532895088, 0.008874276652932167, 0.07714467495679855, -0.16006731986999512, 0.06785130500793457, -0.026414774358272552, -0.042070936411619186, -0.05545744672417641, 0.1992291957139969, -0.13364669680595398, 0.05808575078845024, 0.1966513842344284, 0.024525482207536697, 0.03524129092693329, -0.11395745724439621, -0.050581760704517365, 0.0513949953019619, -0.008921848610043526, -0.08324772864580154, -0.09618958085775375, 0.012735842727124691, 0.1622762829065323, 0.06323163211345673, -0.2554260492324829, -0.10884933173656464, 0.06604603677988052, 0.03147406503558159, -0.061334580183029175, 0.061727724969387054, 0.06884552538394928, 0.050552744418382645, -0.007478257641196251, -0.13390974700450897, 0.03133908286690712, 0.13647224009037018, -0.10291197150945663, -0.031087292358279228 ]
null
null
transformers
# Yoda DialoGPT Model
{"tags": ["conversational"]}
text-generation
bspans/DialoGPT-small-yoda
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Yoda DialoGPT Model
[ "# Yoda DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Yoda DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Yoda DialoGPT Model" ]
[ -0.019523952156305313, 0.08738385140895844, -0.0057960688136518, 0.01156123448163271, 0.1749093234539032, -0.005737789440900087, 0.16108189523220062, 0.12950651347637177, 0.0008764049271121621, -0.05426200106739998, 0.09532385319471359, 0.12720444798469543, 0.03391678258776665, 0.09928861260414124, -0.06926876306533813, -0.3217432498931885, 0.050389744341373444, 0.04106822982430458, -0.03284084424376488, 0.11956336349248886, 0.0893711969256401, -0.02720244787633419, 0.08215956389904022, 0.021456509828567505, -0.1412605494260788, 0.00343534373678267, 0.00905965268611908, -0.15076036751270294, 0.12530973553657532, 0.06549831479787827, 0.025502733886241913, 0.011720659211277962, -0.055777207016944885, -0.13874663412570953, 0.03698261082172394, -0.019788799807429314, -0.04485246539115906, 0.03194704279303551, 0.018043240532279015, -0.09553586691617966, 0.09889886528253555, 0.10606331378221512, -0.025147615000605583, 0.05249358341097832, -0.17657004296779633, -0.02725200541317463, 0.020698128268122673, 0.040154147893190384, 0.10159304738044739, 0.09707565605640411, -0.05108032003045082, 0.053304221481084824, -0.06052464619278908, 0.089447520673275, 0.06357408314943314, -0.300363153219223, -0.022725332528352737, 0.12468787282705307, 0.040617212653160095, 0.04498717561364174, -0.050432171672582626, 0.07051602005958557, 0.03045903705060482, 0.0019289364572614431, -0.0628027394413948, -0.0716988816857338, 0.0019597059581428766, 0.012008442543447018, -0.09656941890716553, -0.010923312976956367, 0.2560465335845947, -0.031599145382642746, 0.05677775293588638, -0.06123391166329384, -0.11553069949150085, -0.004293516743928194, -0.05804640054702759, -0.011375603266060352, -0.09449518471956253, 0.10447583347558975, 0.008482451550662518, -0.07451125234365463, -0.11656408756971359, -0.017828039824962616, -0.15149115025997162, 0.180460125207901, 0.03413243591785431, 0.036579426378011703, -0.22433871030807495, 0.08802085369825363, -0.03587491065263748, -0.09692022949457169, 0.02450793795287609, -0.10433249175548553, 0.020796045660972595, 0.032108258455991745, -0.026830539107322693, -0.07390373945236206, 0.0917741060256958, 0.11511855572462082, 0.02032558061182499, 0.012341717258095741, -0.03310564160346985, 0.04163290932774544, 0.07095904648303986, 0.09903064370155334, -0.011971370317041874, -0.08492200821638107, 0.03229416161775589, -0.0944281667470932, 0.009367357939481735, -0.06431592255830765, -0.18728888034820557, -0.03857465833425522, 0.06471797078847885, 0.05468624457716942, 0.025072120130062103, 0.12597984075546265, -0.00022867369989398867, -0.04822615906596184, 0.08977240324020386, -0.026426630094647408, -0.02923239953815937, -0.006165133323520422, -0.0009879893623292446, 0.10979928076267242, -0.002538383938372135, 0.05451763793826103, -0.09801647067070007, 0.001588058890774846, -0.05145164579153061, -0.013760016299784184, -0.01988789066672325, -0.029027733951807022, -0.009274656884372234, -0.026272330433130264, 0.03811375051736832, -0.1553666889667511, -0.1921958476305008, -0.0037082363851368427, -0.0074559166096150875, -0.061466533690690994, -0.09020272642374039, -0.10401469469070435, -0.03174158185720444, 0.04081694781780243, -0.06298784166574478, -0.03399362415075302, -0.057806551456451416, 0.10336291790008545, -0.020108068361878395, 0.08822479844093323, -0.09634412825107574, 0.06400231271982193, -0.09735651314258575, 0.00434221513569355, -0.04047475382685661, 0.13150398433208466, 0.010459667071700096, 0.06504938006401062, -0.015651753172278404, 0.0007718545966781676, -0.07933813333511353, 0.06354745477437973, -0.030909189954400063, 0.2477322816848755, -0.06748250871896744, -0.10917367786169052, 0.3046492636203766, -0.057712018489837646, -0.12073205411434174, 0.12596748769283295, 0.005363780539482832, 0.09644947946071625, 0.1331852227449417, 0.21487672626972198, -0.01984696462750435, -0.0068543353118002415, 0.06968425214290619, 0.06471166014671326, -0.07364511489868164, -0.007237342651933432, 0.02287183701992035, -0.0028508794493973255, -0.05827122554183006, 0.02750004082918167, 0.11182942241430283, 0.10710450261831284, -0.0436226911842823, -0.04278378188610077, 0.0026933399494737387, -0.011849762871861458, 0.07116065174341202, -0.0365264005959034, 0.11617828905582428, -0.028566621243953705, -0.0537077821791172, -0.013959919102489948, 0.02254384569823742, -0.03388066589832306, 0.03580782935023308, -0.09874553233385086, 0.0741543099284172, -0.06825221329927444, 0.0752701386809349, -0.10730817168951035, -0.017628977075219154, -0.034241046756505966, 0.20684359967708588, 0.03826877474784851, 0.06472475081682205, 0.06203655153512955, -0.04675152152776718, -0.02051282301545143, 0.023833075538277626, 0.14890873432159424, -0.014275558292865753, -0.0662805438041687, -0.0635322779417038, 0.10819830000400543, -0.039758771657943726, 0.1025112122297287, -0.04390538111329079, 0.02048656903207302, 0.028846506029367447, 0.09316487610340118, -0.011549445800483227, 0.04302366077899933, 0.030832676216959953, -0.007349775172770023, -0.06696102023124695, 0.0017331854905933142, 0.08373831957578659, -0.005132065620273352, -0.10288438200950623, 0.2222297638654709, -0.17195571959018707, 0.1359700709581375, 0.17662493884563446, -0.17865830659866333, 0.017574386671185493, -0.10005436837673187, -0.037142314016819, -0.00025902545894496143, 0.06969170272350311, -0.036339011043310165, 0.16891242563724518, -0.022703181952238083, 0.17872141301631927, -0.030542802065610886, 0.010599200613796711, -0.01142777968198061, -0.08117922395467758, 0.003259657183662057, 0.07835908234119415, 0.10237734764814377, -0.1326715499162674, 0.18860146403312683, 0.08570080995559692, 0.045992374420166016, 0.22627609968185425, 0.028362713754177094, 0.008782551623880863, 0.06298546493053436, -0.01865970715880394, -0.03125203028321266, -0.04416363313794136, -0.25625625252723694, -0.0290618184953928, 0.07478655874729156, 0.06145786494016647, 0.11144622415304184, -0.09655871987342834, -0.04936106875538826, -0.013494624756276608, -0.021363334730267525, 0.062416840344667435, 0.12828034162521362, 0.013264449313282967, 0.1167183592915535, -0.0059207468293607235, -0.03929155319929123, 0.06159475818276405, 0.02072814479470253, -0.06096654012799263, 0.17215952277183533, -0.12527748942375183, -0.3565032482147217, -0.10248059034347534, -0.24221158027648926, -0.056703414767980576, 0.08034399151802063, 0.11166344583034515, -0.14502766728401184, -0.016429679468274117, 0.02560395747423172, 0.12267337739467621, -0.09008996188640594, 0.0014080893015488982, -0.020322594791650772, 0.007355939596891403, -0.13421140611171722, -0.06806187331676483, -0.04745855927467346, -0.021423274651169777, -0.045107994228601456, 0.13724087178707123, -0.1646089106798172, 0.04772131145000458, 0.2324029505252838, 0.07655342668294907, 0.04489736631512642, -0.04226483777165413, 0.24265289306640625, -0.14229315519332886, 0.04625394567847252, 0.22603121399879456, -0.03659775108098984, 0.053787652403116226, 0.16097471117973328, -0.02670721709728241, -0.10324563086032867, 0.045783743262290955, -0.03113577328622341, -0.0995752215385437, -0.20755931735038757, -0.12694452702999115, -0.11706919223070145, 0.10899513214826584, 0.02387518808245659, 0.06351396441459656, 0.16105690598487854, 0.09651904553174973, -0.04736444354057312, 0.03199975565075874, 0.04159309342503548, 0.07883670926094055, 0.24515806138515472, -0.06764056533575058, 0.13209126889705658, 0.007306548301130533, -0.16198775172233582, 0.066169373691082, 0.14288395643234253, 0.05947096645832062, 0.051575370132923126, 0.07941140234470367, 0.01768209971487522, 0.021771052852272987, 0.14529356360435486, 0.016733845695853233, 0.03093128651380539, -0.02891351655125618, -0.04478578642010689, -0.030718382447957993, -0.036213118582963943, 0.07220549136400223, 0.0417274534702301, -0.1399887055158615, -0.0054369899444282055, -0.027707338333129883, 0.0770663470029831, 0.037722669541835785, 0.06967300176620483, -0.15600547194480896, -0.03203626349568367, 0.09158895164728165, -0.024593599140644073, -0.12873585522174835, 0.08975482732057571, -0.01908034272491932, -0.14002364873886108, 0.043596696108579636, -0.028919989243149757, 0.11619032919406891, -0.06838040798902512, 0.07618727535009384, -0.12877094745635986, -0.059359580278396606, -0.008672763593494892, 0.11440369486808777, -0.31111884117126465, 0.15767203271389008, -0.011538026854395866, -0.04392215237021446, -0.11061955243349075, 0.0045563094317913055, 0.016024133190512657, 0.08876042813062668, 0.10492165386676788, -0.01760014146566391, 0.08012101799249649, 0.027847539633512497, -0.07334725558757782, 0.03266557678580284, 0.07878436148166656, -0.04987972602248192, -0.014850550331175327, -0.04197229817509651, -0.0000978057796601206, -0.02876323089003563, -0.07210519909858704, 0.02252531237900257, -0.1819554567337036, 0.06710727512836456, 0.06405352056026459, 0.1427077203989029, 0.03037877008318901, -0.020968027412891388, -0.10803697258234024, 0.23970577120780945, 0.0012306334683671594, -0.1268099993467331, -0.09241144359111786, -0.018575552850961685, 0.049345701932907104, -0.05837111175060272, 0.021209344267845154, -0.06610070914030075, 0.02726023644208908, -0.07309141755104065, -0.1779344379901886, 0.11890455335378647, -0.09634703397750854, -0.05284712091088295, -0.03711375594139099, 0.2057812213897705, -0.016008200123906136, 0.017970696091651917, 0.03375663608312607, -0.012173106893897057, -0.12149205058813095, -0.07905389368534088, 0.001352551393210888, 0.04623747617006302, -0.011133072897791862, 0.009968928061425686, 0.007712570484727621, -0.0597420334815979, -0.08887357264757156, -0.057483602315187454, 0.28739267587661743, 0.1576206237077713, -0.017131688073277473, 0.1775549054145813, 0.10761696845293045, -0.06094074249267578, -0.2615423798561096, -0.13595062494277954, -0.06465941667556763, 0.0035373596474528313, -0.1157761812210083, -0.16934320330619812, 0.05419965088367462, -0.008816462010145187, -0.032214414328336716, 0.14025019109249115, -0.28583794832229614, -0.10500112920999527, 0.15566395223140717, -0.013431021012365818, 0.4354375898838043, -0.12307620793581009, -0.07617643475532532, -0.04080875217914581, -0.14442025125026703, 0.1490771323442459, 0.07389727234840393, 0.11531392484903336, -0.008173860609531403, 0.15738078951835632, 0.04668857157230377, 0.002615033183246851, 0.1104152500629425, 0.005060439929366112, -0.06574253737926483, -0.09679088741540909, -0.05511532723903656, -0.0028297093231230974, 0.024284876883029938, -0.00009939500159816816, -0.030338723212480545, 0.01801430620253086, -0.09141166508197784, -0.07678817212581635, -0.08509235829114914, 0.01889665052294731, 0.03825429826974869, -0.11536121368408203, -0.019585909321904182, -0.037963904440402985, -0.003683168673887849, 0.010112706571817398, 0.19379524886608124, -0.10160581767559052, 0.1345922350883484, 0.08849729597568512, 0.0978013128042221, -0.11799908429384232, 0.036970704793930054, -0.07255762815475464, -0.06529514491558075, 0.08426868915557861, -0.14844943583011627, 0.028706392273306847, 0.09113392233848572, -0.03548480570316315, 0.09999995678663254, 0.0803898423910141, -0.02706962078809738, 0.03362881392240524, 0.10125748813152313, -0.2189195454120636, -0.06930802762508392, -0.08704355359077454, 0.0006127272499725223, 0.09254586696624756, 0.08337843418121338, 0.22132565081119537, -0.01883464679121971, -0.05001356080174446, 0.018195856362581253, 0.03584945946931839, -0.031703848391771317, 0.06505109369754791, 0.00213877996429801, 0.008921983651816845, -0.14074736833572388, 0.044212136417627335, 0.012137535959482193, -0.09707194566726685, 0.051778193563222885, 0.1244431734085083, -0.11344485729932785, -0.0967695489525795, -0.10089945048093796, 0.08107870072126389, -0.1365201473236084, -0.023028064519166946, -0.04981016367673874, -0.12355407327413559, 0.05571397766470909, 0.07273027300834656, 0.04666009917855263, 0.07333047688007355, -0.09213495254516602, -0.011618593707680702, -0.03820956125855446, 0.009861210361123085, 0.018628379330039024, -0.02314133197069168, -0.08309488743543625, 0.011602655053138733, -0.030296947807073593, 0.13917332887649536, -0.09529707580804825, -0.11700040102005005, -0.15952196717262268, 0.05111368000507355, -0.1322380006313324, -0.07627776265144348, -0.13031302392482758, -0.051525820046663284, -0.01730186678469181, -0.03715847432613373, -0.037025559693574905, -0.041578467935323715, -0.10939093679189682, 0.034663423895835876, -0.0555557943880558, 0.00482974061742425, -0.04300270602107048, 0.02639732137322426, 0.054452694952487946, -0.024436473846435547, 0.14131103456020355, 0.12744934856891632, -0.10868880152702332, 0.08113951236009598, -0.1163242906332016, -0.03841060400009155, 0.11817452311515808, 0.0023974007926881313, 0.05620858818292618, 0.0823453813791275, 0.0043671284802258015, 0.04781347140669823, 0.027568669989705086, 0.04239194467663765, 0.017047427594661713, -0.09182713180780411, 0.04498209431767464, -0.049205485731363297, -0.09966055303812027, -0.034835997968912125, -0.020566027611494064, 0.017175476998090744, 0.0443974994122982, 0.06539114564657211, -0.05885276943445206, 0.0998002365231514, -0.05283541604876518, 0.029093701392412186, -0.0015582863707095385, -0.1496967375278473, 0.004565210547298193, -0.09400121122598648, 0.03080974519252777, 0.025354906916618347, 0.20674514770507812, 0.02143581211566925, 0.019811976701021194, 0.0045729028061032295, 0.04262814298272133, 0.02662437967956066, 0.0008452392648905516, 0.23246945440769196, 0.1169443354010582, -0.04213881120085716, -0.06708279997110367, 0.08681177347898483, 0.0431700199842453, 0.027975047007203102, 0.02720009721815586, -0.056879859417676926, 0.006275257561355829, 0.08592189103364944, -0.033538904041051865, 0.03673096001148224, -0.14662985503673553, -0.12037275731563568, -0.0617678165435791, 0.030360406264662743, -0.03882453218102455, 0.08190231025218964, 0.16327977180480957, -0.025331970304250717, 0.015857765451073647, -0.005972431041300297, -0.06087341904640198, -0.156987726688385, -0.181394562125206, -0.08188193291425705, -0.161268413066864, 0.021071013063192368, -0.1318165510892868, 0.00724777951836586, 0.059222158044576645, 0.07390937209129333, -0.07776957005262375, 0.07912173867225647, 0.0745166540145874, -0.12757854163646698, 0.06997381895780563, -0.02983960136771202, 0.07618314027786255, -0.015161785297095776, -0.009188877418637276, -0.08158104121685028, 0.04870324581861496, 0.01555937435477972, 0.046702876687049866, -0.04176706448197365, 0.018237605690956116, -0.13165713846683502, -0.07299299538135529, -0.05454114452004433, 0.08630012720823288, 0.003979259170591831, 0.13670922815799713, 0.008452602662146091, -0.03317524120211601, 0.03557967767119408, 0.2741837501525879, -0.057093679904937744, -0.08502321690320969, -0.08896739035844803, 0.22083306312561035, -0.008874064311385155, 0.08963079005479813, -0.029141085222363472, -0.009722059592604637, -0.08967766910791397, 0.3410298526287079, 0.2846130430698395, -0.11068493872880936, -0.0002095689851557836, 0.008463584817945957, 0.03799765184521675, 0.09002353250980377, 0.09882869571447372, 0.10552507638931274, 0.2919275760650635, -0.0717669129371643, -0.0322408489882946, -0.027761828154325485, -0.0499984435737133, -0.0662522241473198, 0.07452364265918732, 0.032165635377168655, -0.06851378083229065, -0.026024173945188522, 0.12049338966608047, -0.2906939685344696, 0.08247104287147522, -0.16907718777656555, -0.1853809803724289, -0.10582920908927917, 0.011834150180220604, 0.07125915586948395, 0.0504484660923481, 0.08101130276918411, -0.0026515850331634283, -0.05465413257479668, 0.05746897682547569, 0.028347624465823174, -0.15475796163082123, 0.049650706350803375, 0.07204406708478928, -0.03681061789393425, -0.06864535808563232, -0.030581865459680557, 0.00870884582400322, 0.06940717250108719, 0.06984347850084305, -0.004045487847179174, 0.046936336904764175, 0.005699544679373503, -0.02268660068511963, 0.03353185951709747, 0.052910007536411285, 0.026234135031700134, -0.09257465600967407, 0.0860561802983284, -0.16123923659324646, 0.029919596388936043, 0.030013414099812508, -0.01809672638773918, -0.02339254878461361, 0.05425231531262398, -0.08251561969518661, 0.0731799378991127, 0.0658644437789917, -0.019834263250231743, -0.02088710106909275, -0.02824585512280464, 0.01647145487368107, -0.03324836492538452, -0.08249709755182266, -0.09985757619142532, -0.1549200713634491, -0.13455232977867126, 0.08409097045660019, -0.004433628171682358, -0.1798699051141739, 0.03165286034345627, -0.13443686068058014, 0.06604624539613724, -0.14470809698104858, 0.10480460524559021, 0.06017756834626198, 0.024408267810940742, -0.00063045893330127, 0.01005895622074604, 0.050300873816013336, 0.07121419906616211, -0.1316031962633133, -0.08455201238393784 ]
null
null
transformers
# hseBERT **hseBert-it-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences. # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "bullmount/hseBert-it-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
{"language": "it", "license": "mit", "widget": [{"text": "\u00c8 stata pubblicata la [MASK] di conversione del D.L. 24 dicembre 2021 n. 221 ."}, {"text": "La legge fornisce l\u2019esatta [MASK] di Green pass base."}, {"text": "Il datore di lavoro organizza e predispone i posti di lavoro di cui all'articolo 173, in [MASK] ai requisiti minimi di cui all'allegato XXXIV."}, {"text": "Le principali novit\u00e0 riguardano la quarantena precauzionale e il [MASK] di autosorveglianza."}]}
fill-mask
bullmount/hseBert-it-cased
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "it", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #it #license-mit #autotrain_compatible #endpoints_compatible #region-us
# hseBERT hseBert-it-cased is a BERT model obtained by MLM adaptive-tuning bert-base-italian-xxl-cased on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences. # Usage
[ "# hseBERT\n\nhseBert-it-cased is a BERT model obtained by MLM adaptive-tuning bert-base-italian-xxl-cased on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences.", "# Usage" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #it #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# hseBERT\n\nhseBert-it-cased is a BERT model obtained by MLM adaptive-tuning bert-base-italian-xxl-cased on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences.", "# Usage" ]
[ 47, 95, 3 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #it #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# hseBERT\n\nhseBert-it-cased is a BERT model obtained by MLM adaptive-tuning bert-base-italian-xxl-cased on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences.# Usage" ]
[ -0.07277893275022507, -0.07551196217536926, -0.003667302895337343, 0.07105502486228943, 0.05911112204194069, 0.0021237567998468876, 0.1371840536594391, 0.0860380232334137, 0.17947006225585938, 0.0004654456570278853, 0.1148022785782814, 0.0795484408736229, -0.033747024834156036, -0.02183746173977852, -0.05807880312204361, -0.22230412065982819, 0.05732748284935951, 0.09648949652910233, -0.06691063195466995, 0.07037387788295746, 0.10563920438289642, -0.05213996767997742, 0.08175522089004517, 0.01671067625284195, -0.03163299337029457, 0.06971463561058044, 0.04185430333018303, -0.04815249890089035, 0.14887635409832, 0.09163524210453033, 0.14793074131011963, 0.054084412753582, 0.05480330437421799, -0.04485197365283966, 0.014356125146150589, -0.029882680624723434, -0.05414752662181854, 0.032049935311079025, -0.007784601766616106, 0.046473175287246704, 0.009861258789896965, 0.03055371530354023, -0.02577485330402851, -0.022169409319758415, -0.06363539397716522, 0.08246274292469025, 0.005780953913927078, -0.03956039994955063, 0.009685703553259373, 0.10094956308603287, 0.004365458618849516, 0.14315801858901978, -0.16019858419895172, 0.05352295562624931, 0.1631789356470108, -0.29469266533851624, -0.02400715835392475, 0.022875340655446053, 0.0376119390130043, 0.003375053871423006, -0.016017170622944832, 0.0837404727935791, 0.08378493785858154, 0.02171963080763817, -0.029304340481758118, -0.11448770761489868, 0.10318824648857117, 0.026791738346219063, -0.10782875120639801, 0.0697929784655571, 0.22650909423828125, -0.013327854685485363, -0.055301032960414886, 0.012363692745566368, -0.03144604340195656, 0.06083221733570099, 0.011343882419168949, -0.09431327879428864, 0.009493588469922543, -0.0010584060801193118, 0.08622497320175171, 0.010932892560958862, -0.11624817550182343, -0.04569278284907341, -0.14697298407554626, 0.25123101472854614, 0.017444957047700882, -0.031085999682545662, -0.025621360167860985, 0.0005155848921276629, -0.09776514768600464, -0.07582255452871323, -0.0018403830472379923, 0.001519002951681614, 0.0899525135755539, -0.011353947222232819, -0.06582703441381454, -0.13947482407093048, 0.023314548656344414, -0.05224524810910225, 0.023798871785402298, -0.006399133708328009, 0.018674127757549286, 0.09237232059240341, 0.014281218871474266, 0.1282486766576767, -0.07897703349590302, -0.07250496745109558, 0.0003384247829671949, 0.011916653253138065, 0.03897379711270332, -0.021606186404824257, -0.18451440334320068, -0.05470800772309303, -0.050222691148519516, -0.026502614840865135, -0.07455500960350037, 0.07295119762420654, -0.06890470534563065, -0.02408450096845627, 0.003806962165981531, -0.11823153495788574, -0.007073497399687767, -0.014811712317168713, 0.01098465546965599, 0.047276291996240616, -0.040549375116825104, 0.007280910387635231, -0.045745305716991425, 0.1344098597764969, -0.10769068449735641, -0.01384344045072794, -0.04583454504609108, -0.11492019891738892, 0.01639634557068348, -0.07635495811700821, 0.007360133342444897, -0.1407405287027359, -0.025748640298843384, 0.03288351744413376, 0.01947476528584957, -0.06288104504346848, 0.045472923666238785, -0.019116321578621864, 0.02674132212996483, -0.010816723108291626, 0.009574257768690586, -0.07727466523647308, -0.04448554292321205, 0.060049619525671005, -0.05549443140625954, 0.03252604603767395, -0.22486400604248047, 0.027091896161437035, -0.11797785758972168, -0.031814176589250565, -0.17844708263874054, -0.03502984344959259, -0.05624246224761009, -0.0315876379609108, -0.05073625594377518, -0.02717018686234951, -0.048927877098321915, 0.08935682475566864, 0.06633167713880539, 0.16422320902347565, -0.15249207615852356, -0.09625221788883209, 0.039212338626384735, -0.10923906415700912, -0.10648209601640701, 0.16196846961975098, -0.018758799880743027, 0.12294898927211761, 0.06683734059333801, 0.19217778742313385, -0.06312073767185211, -0.17332780361175537, 0.028437435626983643, 0.12237707525491714, 0.014640897512435913, -0.01765027455985546, 0.08084630221128464, -0.015950217843055725, -0.07891342043876648, 0.028221821412444115, -0.14471912384033203, -0.0373818539083004, -0.028192367404699326, -0.05006479099392891, 0.040551137179136276, -0.006546677555888891, 0.07357762008905411, -0.005553329363465309, 0.07115396112203598, -0.060016658157110214, -0.08498761802911758, 0.03740199655294418, 0.028624102473258972, -0.022529492154717445, 0.04924141615629196, -0.08491139113903046, 0.16360284388065338, 0.03512183576822281, -0.02229498140513897, -0.020100142806768417, -0.012981938198208809, 0.01741175912320614, 0.10669898241758347, 0.040292419493198395, 0.1756095439195633, 0.05008145421743393, 0.014202479273080826, -0.07251285016536713, 0.05079719424247742, 0.011505037546157837, 0.03743467852473259, -0.06251107156276703, -0.19526922702789307, 0.018410174176096916, -0.04712170362472534, 0.027968095615506172, -0.0309390090405941, -0.007206061389297247, 0.0944334864616394, 0.030972182750701904, -0.04194781929254532, 0.050079770386219025, -0.1188349649310112, 0.01855364255607128, -0.03457050025463104, 0.07695210725069046, 0.08474421501159668, 0.02773123048245907, -0.11120742559432983, 0.16240251064300537, -0.06847210973501205, 0.18782714009284973, 0.1309197098016739, -0.11636868119239807, -0.03915092349052429, -0.1421797126531601, -0.004775161389261484, 0.017700674012303352, 0.00589792849496007, -0.11188271641731262, 0.1908888816833496, -0.006565275602042675, 0.08755454421043396, -0.11186715960502625, 0.04099750891327858, 0.0381828173995018, -0.050743743777275085, -0.09244424849748611, 0.061802711337804794, 0.12332630902528763, -0.12509199976921082, 0.09626193344593048, 0.27742597460746765, -0.09196244180202484, 0.23783724009990692, 0.03146858513355255, -0.05397875979542732, -0.02406134083867073, 0.044256266206502914, -0.03930798918008804, 0.10620276629924774, -0.27613091468811035, 0.008417348377406597, 0.0006778018432669342, -0.00783359631896019, 0.020465467125177383, -0.10703667253255844, -0.05438388139009476, 0.0003209850110579282, 0.011303822509944439, -0.04544102028012276, 0.00032274494878947735, -0.0773952454328537, 0.0992196649312973, 0.04669641703367233, -0.2607683837413788, 0.07724670320749283, 0.004495509434491396, -0.08546032011508942, 0.1536431461572647, -0.11289235204458237, -0.20823435485363007, -0.10202183574438095, -0.050035662949085236, -0.06814064085483551, 0.043459974229335785, 0.027635864913463593, -0.06181216239929199, -0.04160269349813461, 0.013908499851822853, 0.052606888115406036, -0.017024055123329163, -0.004297714680433273, 0.01420689933001995, -0.01388401910662651, -0.07514270395040512, -0.08735758066177368, -0.0982171967625618, -0.1035907194018364, -0.08655905723571777, -0.009428881108760834, -0.16290508210659027, 0.09873662143945694, 0.1356445699930191, -0.016473904252052307, 0.029307791963219643, -0.04960669204592705, 0.11556890606880188, -0.04155917093157768, 0.012598750181496143, 0.06691436469554901, -0.060762692242860794, 0.031088780611753464, 0.19598102569580078, 0.08965162932872772, -0.007981807924807072, -0.03008205257356167, 0.030076872557401657, -0.042790599167346954, -0.1469438076019287, -0.09902864694595337, -0.08166831731796265, 0.07507114112377167, -0.007114064879715443, 0.022922448813915253, 0.018342677503824234, 0.07284995168447495, 0.03758874163031578, -0.051879774779081345, 0.010417559184134007, 0.04517007991671562, 0.1821611374616623, -0.05998316407203674, 0.13186024129390717, 0.010342705994844437, -0.13936536014080048, 0.09191783517599106, 0.01719720847904682, 0.06814723461866379, 0.05636867880821228, 0.03663257136940956, 0.0626329705119133, 0.046511210501194, 0.016957636922597885, 0.06823979318141937, -0.03505369648337364, -0.08829306066036224, -0.06862205266952515, -0.09898024797439575, 0.01374859269708395, 0.08482254296541214, -0.016535649076104164, -0.08626766502857208, -0.04746004566550255, 0.020354915410280228, 0.059481289237737656, 0.09754728525876999, 0.11634108424186707, -0.12754009664058685, 0.007987760938704014, -0.023391321301460266, 0.05722573772072792, -0.02348806895315647, 0.07767806947231293, 0.09355971217155457, -0.03641393408179283, 0.02808317169547081, 0.006958622485399246, 0.037130944430828094, 0.04378088563680649, 0.10250366479158401, -0.039311811327934265, -0.00815507024526596, -0.026320694014430046, 0.07831597328186035, -0.2617456614971161, 0.35349270701408386, 0.03578293323516846, -0.00929408147931099, -0.0851832702755928, -0.02172384038567543, 0.015107858926057816, 0.18254454433918, 0.20968590676784515, 0.013127616606652737, 0.10488680750131607, -0.10634589195251465, 0.012270419858396053, 0.008131776005029678, 0.10778040438890457, 0.0466572530567646, -0.012734055519104004, -0.028469901531934738, 0.018058523535728455, 0.07976803928613663, 0.16752788424491882, -0.04570610076189041, -0.11334704607725143, 0.099282406270504, 0.0773473009467125, -0.07134348899126053, -0.005560457240790129, -0.14969266951084137, -0.11802598834037781, 0.21999911963939667, 0.03173701837658882, -0.005999759305268526, -0.07500078529119492, -0.035066310316324234, -0.049372296780347824, -0.08968182653188705, -0.025312285870313644, -0.05721375718712807, 0.01593996211886406, -0.08871398121118546, -0.01043248176574707, 0.17129023373126984, -0.08373894542455673, 0.03112531453371048, -0.0771549642086029, 0.12773412466049194, 0.021679336205124855, 0.06055336445569992, 0.06928374618291855, -0.03709561377763748, 0.02335198223590851, -0.061263710260391235, -0.021541541442275047, -0.1391163021326065, 0.05412702262401581, -0.01159603800624609, -0.21899667382240295, 0.011687363497912884, -0.013360005803406239, -0.0035046529956161976, 0.16639915108680725, 0.10152827948331833, -0.029894618317484856, 0.050070568919181824, 0.26605960726737976, -0.06622738391160965, -0.33482420444488525, 0.00963693019002676, -0.0031079044565558434, -0.014845646917819977, 0.004459950141608715, -0.09631180018186569, 0.13427402079105377, 0.13715720176696777, 0.0009762249537743628, -0.011338038370013237, -0.08488811552524567, -0.09733002632856369, 0.10616640746593475, 0.035315025597810745, 0.34509149193763733, -0.005417261738330126, -0.02738131396472454, -0.009780886583030224, -0.1672600507736206, 0.014930116944015026, 0.011944852769374847, 0.09077165275812149, 0.03037027083337307, -0.007817170582711697, 0.011380041018128395, -0.027900446206331253, 0.10012778639793396, 0.007320045493543148, 0.01344059593975544, -0.03773348033428192, -0.2316737323999405, 0.0668945237994194, 0.048488061875104904, 0.03267316520214081, -0.07397747784852982, -0.07817624509334564, 0.0019524759845808148, -0.042654138058423996, -0.06291165202856064, 0.09978166222572327, -0.04030730575323105, -0.12783578038215637, 0.028369024395942688, 0.07295747101306915, -0.02068682760000229, -0.02650213986635208, 0.16200187802314758, -0.1219107061624527, 0.05292983725667, 0.1074405238032341, 0.09768179804086685, -0.2217288762331009, -0.00807399395853281, 0.02896174229681492, -0.0665682703256607, 0.056221578270196915, 0.08859178423881531, 0.049519386142492294, 0.1186772957444191, 0.006179977208375931, 0.09265639632940292, 0.07955056428909302, 0.005326799117028713, -0.05001546069979668, 0.10720154643058777, -0.11758057028055191, 0.001696040970273316, -0.08854646235704422, -0.04081987589597702, -0.0075743719935417175, 0.06622638553380966, 0.1682213544845581, -0.04464561492204666, 0.012610036879777908, -0.013659479096531868, -0.032217249274253845, -0.07943450659513474, 0.0931912437081337, -0.000889953167643398, -0.016507169231772423, -0.05654756352305412, 0.038478121161460876, -0.030957158654928207, -0.10295969247817993, 0.047976940870285034, 0.009635252878069878, -0.07903193682432175, -0.07655669748783112, -0.09013359993696213, 0.16419224441051483, -0.14779843389987946, -0.050107192248106, -0.16647101938724518, -0.13792984187602997, 0.0351497121155262, 0.13187743723392487, 0.1296432614326477, -0.008164137601852417, -0.0976482629776001, -0.04701995104551315, -0.009620933793485165, 0.06872348487377167, 0.010104977525770664, 0.0037198755890130997, -0.012375964783132076, 0.057389065623283386, 0.010345663875341415, 0.027680106461048126, -0.07487154006958008, -0.04203559830784798, -0.1392824947834015, 0.01847134903073311, -0.10578358918428421, -0.03264564275741577, -0.04457135871052742, -0.05654791370034218, 0.00031686649890616536, -0.03881421312689781, -0.0888516753911972, -0.002784206997603178, -0.08070947974920273, 0.0651087760925293, 0.05803019180893898, 0.028431134298443794, -0.0323859341442585, -0.006424286402761936, 0.04015842080116272, 0.0038513634353876114, 0.020844046026468277, 0.0076978071592748165, -0.03520139306783676, 0.08031334728002548, -0.1336965262889862, 0.02526545152068138, 0.03180641308426857, 0.031416550278663635, 0.04382186383008957, -0.057781822979450226, 0.02900146320462227, 0.09802407771348953, 0.031635113060474396, 0.02064121514558792, 0.10732699185609818, -0.037946779280900955, 0.11071330308914185, 0.04728290066123009, -0.19339706003665924, -0.020075228065252304, 0.06386101990938187, 0.061128776520490646, 0.02952059730887413, 0.09788382798433304, -0.05318831279873848, -0.008707490749657154, -0.004326631780713797, 0.02004290744662285, 0.017707187682390213, -0.10778115689754486, -0.1387905776500702, -0.08271375298500061, -0.0061654821038246155, -0.012878740206360817, 0.10893957316875458, 0.07394368201494217, -0.02382185310125351, 0.06000611558556557, 0.014467760920524597, 0.08748861402273178, -0.031124601140618324, 0.12258797138929367, -0.005587113555520773, -0.011827082373201847, -0.13237358629703522, 0.06722806394100189, 0.02953164465725422, 0.14525896310806274, 0.14668318629264832, 0.07229864597320557, 0.08185852319002151, 0.12212201207876205, 0.07688561081886292, -0.009954370558261871, -0.12371310591697693, -0.12590448558330536, 0.050300586968660355, 0.08629050105810165, -0.05892156437039375, 0.1274457573890686, 0.12104086577892303, -0.0771367996931076, 0.04379015788435936, -0.05467469245195389, -0.08355782181024551, -0.1707722395658493, -0.1820979118347168, -0.03486917167901993, -0.08174645900726318, 0.006730018649250269, -0.07505512237548828, 0.022261515259742737, 0.032372377812862396, 0.06279337406158447, -0.02204577438533306, 0.1442277580499649, -0.2010038197040558, -0.05632574111223221, 0.07472685724496841, -0.003963501192629337, 0.10129675269126892, -0.05277107283473015, -0.045922040939331055, -0.10202439874410629, -0.013512330129742622, -0.05279054492712021, -0.011356249451637268, 0.060240112245082855, -0.11127710342407227, -0.011896533891558647, -0.039075225591659546, -0.04390639811754227, -0.015370420180261135, 0.03418566659092903, 0.20131126046180725, -0.03796285390853882, -0.02034745365381241, 0.014719138853251934, 0.1114301085472107, -0.03547929227352142, -0.04265199601650238, -0.08660777658224106, 0.16232110559940338, 0.04543018713593483, 0.14054977893829346, -0.04487547278404236, -0.013113211840391159, 0.0181724913418293, 0.25621289014816284, 0.24363812804222107, -0.09239732474088669, 0.04115289822220802, 0.05488105118274689, 0.044844850897789, 0.05857498198747635, 0.08482653647661209, -0.003074247157201171, 0.25542357563972473, -0.060540731996297836, -0.043012585490942, -0.08295463025569916, 0.01650966703891754, -0.05234149843454361, 0.03269610553979874, 0.10757958143949509, -0.04850698262453079, -0.09105966240167618, 0.010757490992546082, 0.07449416816234589, -0.09824302792549133, -0.02712334878742695, -0.1799563616514206, -0.03900374472141266, -0.030768947675824165, 0.028265614062547684, 0.011362903751432896, 0.15655164420604706, -0.016333801671862602, -0.010269558988511562, 0.06322826445102692, 0.0410502627491951, -0.1478872001171112, -0.11990973353385925, 0.1152111291885376, -0.010502733290195465, 0.1554267555475235, -0.007371162995696068, 0.11734168976545334, 0.08249034732580185, 0.10905168205499649, 0.05360936000943184, 0.08775375038385391, 0.049619078636169434, -0.08744072914123535, -0.05119097977876663, -0.12973062694072723, -0.06281891465187073, 0.06432101130485535, 0.018700286746025085, -0.132529154419899, 0.0909426286816597, -0.03991098701953888, -0.15154840052127838, -0.04390029236674309, 0.11474774777889252, -0.12901237607002258, 0.11621715873479843, 0.14527852833271027, 0.05877261236310005, -0.07499067485332489, -0.06582003831863403, 0.013771380297839642, 0.10004675388336182, -0.04701502248644829, -0.045811090618371964, -0.15926820039749146, 0.011145868338644505, 0.042994193732738495, -0.0024411766789853573, -0.2191149890422821, -0.08007529377937317, -0.04691212251782417, 0.033389851450920105, -0.08028160035610199, -0.022747954353690147, 0.0676540806889534, -0.002936344360932708, 0.014828904531896114, -0.1250675767660141, 0.02579987794160843, 0.02214694395661354, -0.055350758135318756, -0.08264188468456268 ]
null
null
transformers
tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.9097618003799502 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1417 - F1: 0.9098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2754 | 1.0 | 834 | 0.1683 | 0.8717 | | 0.1366 | 2.0 | 1668 | 0.1449 | 0.8921 | | 0.0863 | 3.0 | 2502 | 0.1417 | 0.9098 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "widget": [{"text": "Luigi \u00e8 nato a Roma."}, {"text": "Antonio ha chiesto ad Alessia di recarsi alla sede INAIL."}]}
token-classification
bullmount/xlm-roberta-base-finetuned-panx-it
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #token-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us
tags: * generated\_from\_trainer datasets: * xtreme metrics: * f1 model-index: * name: xlm-roberta-base-finetuned-panx-it results: + task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: URL metrics: - name: F1 type: f1 value: 0.9097618003799502 --- xlm-roberta-base-finetuned-panx-it ================================== This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set: * Loss: 0.1417 * F1: 0.9098 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 50, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10683615505695343, 0.04097318276762962, -0.0015042561572045088, 0.10815544426441193, 0.20283709466457367, 0.03254285454750061, 0.10996439307928085, 0.10387466102838516, -0.09940650314092636, 0.01965448632836342, 0.11378271132707596, 0.19544577598571777, 0.002150478772819042, 0.10531587898731232, -0.07472489029169083, -0.2552812695503235, -0.024636216461658478, 0.04404507577419281, -0.08209066838026047, 0.12562741339206696, 0.08894611895084381, -0.1578873097896576, 0.07164544612169266, -0.00401840778067708, -0.2547611892223358, 0.012686985544860363, 0.04043234512209892, -0.059539344161748886, 0.15448381006717682, 0.018760263919830322, 0.15470540523529053, 0.009688249789178371, 0.1078699603676796, -0.1488005667924881, 0.00960344448685646, 0.05618904158473015, 0.008773392997682095, 0.08749496936798096, 0.058099955320358276, 0.0023979980032891035, 0.08059809356927872, -0.10786716639995575, 0.053614672273397446, 0.009169748984277248, -0.11613278836011887, -0.22135913372039795, -0.079383984208107, 0.0041810013353824615, 0.06368269771337509, 0.09070656448602676, 0.002771790372207761, 0.19492009282112122, -0.10499308258295059, 0.09762131422758102, 0.20662343502044678, -0.29672762751579285, -0.07767347991466522, 0.0612156018614769, 0.0208571869879961, 0.08219639211893082, -0.11501266062259674, -0.004776538349688053, 0.06640030443668365, 0.04604140669107437, 0.12360206246376038, -0.043816938996315, -0.10541880875825882, 0.030368071049451828, -0.14906539022922516, -0.0063984389416873455, 0.0823012962937355, 0.014857074245810509, -0.03528944030404091, -0.017030702903866768, -0.05819535255432129, -0.15024513006210327, -0.04741890728473663, -0.02138076350092888, 0.05577891319990158, -0.06063684821128845, -0.09469932317733765, 0.013826912268996239, -0.10331116616725922, -0.05717596411705017, -0.0866919457912445, 0.19584138691425323, 0.03921845182776451, 0.019717223942279816, -0.02885318174958229, 0.10389178991317749, 0.004820198751986027, -0.12960919737815857, 0.0345882847905159, 0.0341167077422142, -0.03676564618945122, -0.06626386195421219, -0.06672008335590363, -0.06864362955093384, 0.009828475303947926, 0.08604796230792999, -0.054362379014492035, 0.04702307656407356, 0.04139578714966774, 0.04111592099070549, -0.09132102876901627, 0.20453809201717377, -0.031838592141866684, -0.015641778707504272, 0.014551959931850433, 0.03474672883749008, -0.005266216583549976, -0.005448652897030115, -0.1142241358757019, 0.005556819494813681, 0.10830437391996384, 0.023609863594174385, -0.07102943956851959, 0.06640439480543137, -0.03689761459827423, -0.021077772602438927, -0.017745550721883774, -0.09436957538127899, 0.05365670472383499, -0.015955358743667603, -0.08249531686306, -0.009112824685871601, -0.0037146087270230055, 0.01278697233647108, -0.009674283675849438, 0.16259630024433136, -0.09838683158159256, 0.05062616616487503, -0.11748481541872025, -0.11606039851903915, 0.00001643653195060324, -0.07161791622638702, 0.021433109417557716, -0.10082810372114182, -0.13260318338871002, -0.016033513471484184, 0.05350218713283539, -0.027776727452874184, -0.044287241995334625, -0.027770310640335083, -0.0743594542145729, 0.0062506129033863544, -0.02049962617456913, 0.18540233373641968, -0.05253069847822189, 0.11247780174016953, 0.050606872886419296, 0.06362906098365784, -0.04294796660542488, 0.044827744364738464, -0.09344829618930817, -0.001984403468668461, -0.19236038625240326, 0.025331560522317886, -0.06156744807958603, 0.07730059325695038, -0.06470208615064621, -0.11303458362817764, 0.03668667748570442, -0.000024446972020086832, 0.07282450050115585, 0.07205995172262192, -0.16801242530345917, -0.07874787598848343, 0.13261888921260834, -0.05329686030745506, -0.09766042977571487, 0.10593801736831665, -0.0656752660870552, 0.023405475541949272, 0.07415773719549179, 0.14543446898460388, 0.05293973907828331, -0.10144913196563721, 0.017701560631394386, -0.019110998138785362, 0.031299930065870285, -0.09123094379901886, 0.03955869749188423, 0.03204727545380592, -0.008042366243898869, 0.033152926713228226, -0.05307818204164505, 0.05260170251131058, -0.11164107918739319, -0.08450651168823242, -0.04910752549767494, -0.0941028967499733, 0.0351998433470726, 0.08363547921180725, 0.08254624158143997, -0.11139784008264542, -0.06612528860569, 0.09504056721925735, 0.06477958709001541, -0.035692453384399414, 0.017052721232175827, -0.060557007789611816, 0.06282974034547806, -0.06310182064771652, -0.033533208072185516, -0.19251075387001038, -0.04381470009684563, 0.00022947389516048133, 0.03269113227725029, 0.03481700271368027, 0.051996249705553055, 0.06849009543657303, 0.0619124136865139, -0.05572156980633736, -0.006071621552109718, -0.004613372031599283, -0.000990897649899125, -0.14957423508167267, -0.19629590213298798, -0.027014346793293953, -0.019607141613960266, 0.08451423794031143, -0.1954420655965805, 0.01919148676097393, -0.04789946228265762, 0.07270286977291107, 0.0043899500742554665, 0.006574282422661781, -0.0693175420165062, 0.10041922330856323, -0.02453623339533806, -0.04272332414984703, 0.07161284983158112, -0.0012469339417293668, -0.0634850561618805, -0.05192047730088234, -0.10650444030761719, 0.2165801227092743, 0.14618979394435883, -0.13652750849723816, -0.0937538668513298, 0.015788478776812553, -0.05386967957019806, -0.01912013255059719, -0.06383614987134933, 0.060223523527383804, 0.17011572420597076, -0.01780698448419571, 0.15290842950344086, -0.06259465962648392, -0.04928981885313988, 0.024872900918126106, -0.03797314316034317, 0.038242094218730927, 0.10759253799915314, 0.14668110013008118, -0.10407159477472305, 0.13093961775302887, 0.13628235459327698, -0.11143464595079422, 0.11912654340267181, -0.03610312566161156, -0.06241393834352493, -0.025864286348223686, -0.0337800495326519, 0.0074884057976305485, 0.12292952090501785, -0.09257670491933823, -0.008271687664091587, 0.013118231669068336, 0.018971197307109833, 0.018904654309153557, -0.240179643034935, -0.0509757436811924, 0.02021675556898117, -0.018939606845378876, -0.005866101942956448, -0.022736532613635063, 0.024423660710453987, 0.11933613568544388, -0.00813310593366623, -0.09738575667142868, 0.027484161779284477, 0.007368510589003563, -0.07425704598426819, 0.21422447264194489, -0.06837578117847443, -0.12482515722513199, -0.09616003185510635, -0.08456388860940933, -0.04080714285373688, -0.0000473098480142653, 0.039537206292152405, -0.09844183176755905, -0.03968941792845726, -0.02644599974155426, 0.0003784647269640118, -0.003839347744360566, 0.05144635960459709, -0.010110427625477314, 0.004692524671554565, 0.06722568720579147, -0.10424645245075226, -0.011040679179131985, -0.07157819718122482, -0.0685780942440033, 0.05779885873198509, 0.07015710324048996, 0.11240451782941818, 0.16643570363521576, -0.04759897664189339, 0.0036347899585962296, -0.02776673249900341, 0.2249801903963089, -0.07286687940359116, -0.039883993566036224, 0.10163664072751999, -0.003930757287889719, 0.048045169562101364, 0.11066700518131256, 0.0866934135556221, -0.09760529547929764, 0.0021226226817816496, 0.029744748026132584, -0.04038788750767708, -0.21372996270656586, -0.04909203201532364, -0.05956420674920082, -0.04930466040968895, 0.07504309713840485, 0.033061519265174866, 0.04748227819800377, 0.066460520029068, 0.05682065337896347, 0.08495889604091644, -0.08343112468719482, 0.05396818742156029, 0.11410211771726608, 0.05508068576455116, 0.14088141918182373, -0.04918118193745613, -0.09134229272603989, 0.026275519281625748, -0.019053027033805847, 0.236675426363945, 0.01865624077618122, 0.0782182589173317, 0.04858676344156265, 0.18847785890102386, 0.014556040987372398, 0.08074595779180527, 0.008583351969718933, -0.07259362190961838, -0.003297365503385663, -0.03282510116696358, -0.012673452496528625, 0.009931111708283424, -0.03152116760611534, 0.04496786370873451, -0.10788962990045547, -0.027532050386071205, 0.05509228631854057, 0.21911613643169403, 0.020861448720097542, -0.31764212250709534, -0.06392065435647964, -0.004612716846168041, -0.03803084045648575, -0.003369963262230158, -0.0018290742300450802, 0.08973480761051178, -0.09553717821836472, 0.028571955859661102, -0.08075781911611557, 0.0925719141960144, -0.018230577930808067, 0.04352030158042908, 0.0759444534778595, 0.11811979115009308, -0.0013736224500462413, 0.06597819924354553, -0.3130641579627991, 0.2866200804710388, 0.014431553892791271, 0.0885244682431221, -0.07682368904352188, -0.010117745958268642, 0.03666957840323448, 0.06051069498062134, 0.03672831505537033, -0.021937860175967216, -0.05879279971122742, -0.21634769439697266, -0.026179321110248566, 0.037249889224767685, 0.10883191227912903, 0.0016916224267333746, 0.10262652486562729, -0.026637466624379158, -0.0034565969835966825, 0.07837001979351044, -0.033280596137046814, -0.05236164852976799, -0.07171345502138138, -0.021022971719503403, 0.012114845216274261, -0.08400122076272964, -0.05251460522413254, -0.12408973276615143, -0.1553165167570114, 0.16403499245643616, 0.011498959735035896, -0.017319614067673683, -0.12088324874639511, 0.09780587255954742, 0.06837479770183563, -0.08028173446655273, 0.04285675659775734, 0.014629855751991272, 0.04684416577219963, 0.026844030246138573, -0.07294876128435135, 0.11269993335008621, -0.06784303486347198, -0.1502106934785843, -0.06417279690504074, 0.08496811985969543, 0.01736474595963955, 0.0673334002494812, -0.010651919059455395, 0.0288509763777256, -0.026204172521829605, -0.09708449989557266, 0.037672508507966995, -0.04915861785411835, 0.0754372626543045, 0.011323636397719383, -0.04553218558430672, -0.007408654782921076, -0.059236232191324234, -0.028799185529351234, 0.17696140706539154, 0.23982587456703186, -0.10274548828601837, -0.005549288354814053, 0.01615467295050621, -0.06341763585805893, -0.19830264151096344, 0.08255014568567276, 0.06216806173324585, 0.008419104851782322, 0.05636247619986534, -0.13971194624900818, 0.14453396201133728, 0.10249421745538712, -0.009280884638428688, 0.12656913697719574, -0.31325221061706543, -0.13354001939296722, 0.09627562016248703, 0.17093788087368011, 0.1441386193037033, -0.1378307193517685, -0.012400035746395588, -0.008680460043251514, -0.09552542865276337, 0.11398555338382721, -0.06194211542606354, 0.1261398047208786, -0.02367290109395981, 0.09341850131750107, 0.004906702321022749, -0.06778282672166824, 0.10534351319074631, 0.0027237595058977604, 0.11582639813423157, -0.05705719441175461, -0.057684414088726044, 0.03193723410367966, -0.022317267954349518, -0.006670762784779072, -0.05817635729908943, 0.020353898406028748, -0.06381531059741974, -0.019195126369595528, -0.08422243595123291, 0.04931620880961418, -0.031068451702594757, -0.06371812522411346, -0.04077243432402611, 0.03321288526058197, 0.01912543550133705, -0.03697865828871727, 0.11412595957517624, 0.020106473937630653, 0.15394820272922516, 0.1045311838388443, 0.07701766490936279, -0.07963130623102188, -0.055959925055503845, -0.004509780555963516, -0.018719427287578583, 0.06083660200238228, -0.1232188269495964, 0.015951642766594887, 0.148636594414711, 0.025842424482107162, 0.11400626599788666, 0.09183110296726227, -0.013063883408904076, 0.013153381645679474, 0.07823879271745682, -0.15035685896873474, -0.09108298271894455, 0.011180066503584385, -0.07832586020231247, -0.08024219423532486, 0.060225002467632294, 0.07792165875434875, -0.07886912673711777, -0.011747624725103378, -0.008097159676253796, -0.01763138733804226, -0.05916029214859009, 0.22576037049293518, 0.08101631700992584, 0.04772621765732765, -0.10589192807674408, 0.044772788882255554, 0.06045854836702347, -0.07184193283319473, -0.015516618266701698, 0.08871378004550934, -0.07214518636465073, -0.03284451737999916, 0.12163364887237549, 0.19100207090377808, -0.08594595640897751, -0.024551885202527046, -0.15176407992839813, -0.12330945581197739, 0.06805167347192764, 0.17673644423484802, 0.11273205280303955, -0.004468568600714207, -0.05713219568133354, 0.023618176579475403, -0.1428784430027008, 0.08162181824445724, 0.03840327635407448, 0.08822306990623474, -0.1510881781578064, 0.20096971094608307, 0.00967887882143259, 0.056198231875896454, -0.033579371869564056, 0.03729552403092384, -0.1157800480723381, 0.023040538653731346, -0.12111905962228775, -0.042030543088912964, -0.005798863247036934, -0.00448305020108819, -0.00207668193615973, -0.07671225816011429, -0.06944349408149719, 0.013286206871271133, -0.12512065470218658, -0.015201927162706852, 0.050786275416612625, 0.02628776989877224, -0.10913550853729248, -0.038342706859111786, 0.01608913205564022, -0.04475685954093933, 0.03756329044699669, 0.03801123797893524, 0.02270568534731865, 0.07704290002584457, -0.15314094722270966, -0.01377369835972786, 0.07437403500080109, 0.010549924336373806, 0.1036900207400322, -0.07176283001899719, 0.005964313168078661, 0.01328126061707735, 0.1031729057431221, 0.02876165136694908, 0.06846075505018234, -0.14223964512348175, 0.009685343131422997, -0.04219204932451248, -0.09678538888692856, -0.0613420233130455, 0.016497671604156494, 0.07945306599140167, 0.008007333613932133, 0.1950826644897461, -0.08967018127441406, 0.04570625349879265, -0.22023777663707733, -0.013296764343976974, -0.025988470762968063, -0.11611033231019974, -0.11400308459997177, -0.055993519723415375, 0.07787170261144638, -0.050683751702308655, 0.13156180083751678, 0.058876924216747284, 0.062045566737651825, 0.037756506353616714, -0.011101153679192066, 0.006422529928386211, 0.029639622196555138, 0.20434029400348663, 0.039473846554756165, -0.022816821932792664, 0.05264555662870407, 0.07509376108646393, 0.09413610398769379, 0.07897426933050156, 0.22184783220291138, 0.1496228277683258, -0.005866227205842733, 0.08586940914392471, 0.03531652316451073, -0.0680239275097847, -0.162404865026474, 0.02907877042889595, -0.07271768152713776, 0.08993012458086014, -0.03107922337949276, 0.18057002127170563, 0.06922924518585205, -0.16337142884731293, 0.0447227880358696, -0.07045484334230423, -0.08814484626054764, -0.10928524285554886, -0.0116264708340168, -0.08879414200782776, -0.13854779303073883, 0.013301101513206959, -0.096592977643013, 0.02237365022301674, 0.12270944565534592, 0.009030572138726711, -0.02842417173087597, 0.15943841636180878, 0.04570535570383072, 0.04450208693742752, 0.05218619480729103, 0.01144077442586422, -0.016196805983781815, -0.09528663009405136, -0.04473979026079178, -0.04802989959716797, -0.026881836354732513, 0.03432775288820267, -0.0698263868689537, -0.086609847843647, 0.040375832468271255, -0.016123076900839806, -0.09906876087188721, 0.023612236604094505, 0.024951769039034843, 0.07663260400295258, 0.039312075823545456, 0.004920803476125002, 0.02676120400428772, -0.027295682579278946, 0.21365293860435486, -0.08166255801916122, -0.0976674035191536, -0.08251187205314636, 0.2840653657913208, 0.03393873572349548, -0.00250906846486032, 0.03373156115412712, -0.05862848088145256, 0.010165777988731861, 0.24173957109451294, 0.20585662126541138, -0.11717480421066284, -0.0018027470214292407, -0.0008746950188651681, -0.015937432646751404, -0.03669455647468567, 0.1508186012506485, 0.1293751299381256, 0.08627160638570786, -0.10879699140787125, -0.04518071934580803, -0.06795763224363327, -0.006349444389343262, -0.04285857826471329, 0.04925071448087692, 0.04851069673895836, 0.008384432643651962, -0.04230181500315666, 0.05803648754954338, -0.0500839427113533, -0.0961291566491127, 0.09019067883491516, -0.19642241299152374, -0.16907663643360138, -0.00399376405403018, 0.12740348279476166, -0.013817706145346165, 0.06080381199717522, -0.03546006605029106, 0.0007587769068777561, 0.03960249200463295, -0.03115997090935707, -0.0773441344499588, -0.09131912142038345, 0.1042492613196373, -0.10953594744205475, 0.1850593537092209, -0.047531742602586746, 0.09218685328960419, 0.11989860981702805, 0.06572117656469345, -0.0687599927186966, 0.06589935719966888, 0.04341399297118187, -0.11874373257160187, 0.045813221484422684, 0.09362736344337463, -0.025201138108968735, 0.04555230960249901, 0.03738481551408768, -0.12605592608451843, 0.0388665497303009, -0.09410636872053146, -0.033344727009534836, -0.04701795056462288, -0.040548596531152725, -0.0565774142742157, 0.12247946113348007, 0.21550790965557098, -0.009036307223141193, 0.02550194226205349, -0.07976392656564713, 0.012310720980167389, 0.05572950839996338, 0.05110480636358261, -0.09180036932229996, -0.24912960827350616, 0.0204634889960289, 0.07317287474870682, -0.03268589451909065, -0.2167896330356598, -0.09207865595817566, -0.0009371929918415844, -0.08475879579782486, -0.09517937898635864, 0.08145812153816223, 0.08979341387748718, 0.05279810354113579, -0.05544363707304001, -0.110825315117836, -0.07812155783176422, 0.14647260308265686, -0.1453765630722046, -0.08099633455276489 ]
null
null
null
mmmm
{}
null
bumhead/SnarlyTrain
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
mmmm
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 - Precision: 0.9390 - Recall: 0.9554 - F1: 0.9471 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0877 | 1.0 | 1756 | 0.0662 | 0.9081 | 0.9344 | 0.9210 | 0.9827 | | 0.0376 | 2.0 | 3512 | 0.0599 | 0.9362 | 0.9502 | 0.9431 | 0.9862 | | 0.0209 | 3.0 | 5268 | 0.0586 | 0.9390 | 0.9554 | 0.9471 | 0.9873 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9389679126695336, "name": "Precision"}, {"type": "recall", "value": 0.9554022214742511, "name": "Recall"}, {"type": "f1", "value": 0.9471137804471137, "name": "F1"}, {"type": "accuracy", "value": 0.9873138282215812, "name": "Accuracy"}]}]}]}
token-classification
butchland/bert-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-finetuned-ner ================== This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0586 * Precision: 0.9390 * Recall: 0.9554 * F1: 0.9471 * Accuracy: 0.9873 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.14.1 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.1074492484331131, 0.11698339134454727, -0.002382210921496153, 0.1228412538766861, 0.15522177517414093, 0.034925371408462524, 0.12759685516357422, 0.12138662487268448, -0.09012874215841293, 0.023809487000107765, 0.1260349005460739, 0.1622915118932724, 0.019299766048789024, 0.10621467232704163, -0.04514283314347267, -0.25333675742149353, -0.0017165860626846552, 0.0517612099647522, -0.06100789085030556, 0.13198880851268768, 0.09229730814695358, -0.1326514184474945, 0.09054055064916611, 0.015087531879544258, -0.19073572754859924, 0.004297820385545492, 0.006543699651956558, -0.05684104934334755, 0.14740616083145142, 0.022828247398138046, 0.12947258353233337, -0.002718306379392743, 0.09081345051527023, -0.19105727970600128, 0.0076556941494345665, 0.052574705332517624, 0.005916724447160959, 0.09870415180921555, 0.04674506187438965, 0.012507249601185322, 0.1093934029340744, -0.05999625101685524, 0.058369364589452744, 0.017845958471298218, -0.11371832340955734, -0.2193291187286377, -0.09011918306350708, 0.052433986216783524, 0.07725948095321655, 0.09823783487081528, 0.002000556094571948, 0.14198370277881622, -0.0872398167848587, 0.0857541486620903, 0.22507791221141815, -0.29311639070510864, -0.0643317922949791, 0.045756224542856216, 0.00894700363278389, 0.04477374628186226, -0.10443688184022903, -0.03683751821517944, 0.047344665974378586, 0.04718010127544403, 0.13055557012557983, -0.030835913494229317, -0.11140602827072144, 0.017103519290685654, -0.14745162427425385, -0.03813447803258896, 0.1578463315963745, 0.05014149472117424, -0.03117956407368183, -0.040708888322114944, -0.061766866594552994, -0.16966094076633453, -0.029884710907936096, -0.02384377084672451, 0.049626465886831284, -0.02810305543243885, -0.05234047770500183, 0.004001964349299669, -0.10687029361724854, -0.0711294487118721, -0.08009450882673264, 0.12081657350063324, 0.045054513961076736, 0.01439168956130743, -0.02492179349064827, 0.11239320039749146, 0.005621978547424078, -0.11508764326572418, 0.027036886662244797, 0.025861483067274094, 0.004830540157854557, -0.04190923646092415, -0.049720220267772675, -0.04711132496595383, 0.013334420509636402, 0.13291248679161072, -0.044823385775089264, 0.035333938896656036, 0.05097811296582222, 0.04450058564543724, -0.091117262840271, 0.1824113428592682, -0.05764651298522949, -0.027077393606305122, 0.000619573169387877, 0.05172759294509888, 0.014620828442275524, -0.0024202996864914894, -0.11949733644723892, 0.009715660475194454, 0.10352765023708344, 0.008732435293495655, -0.06999596208333969, 0.07202479988336563, -0.05941421911120415, -0.028132013976573944, 0.014345812611281872, -0.08557400852441788, 0.02705213986337185, 0.0013859840109944344, -0.0777030661702156, -0.02198226936161518, 0.026393773034214973, 0.01983082853257656, -0.011309427209198475, 0.10028909146785736, -0.09576771408319473, 0.015749700367450714, -0.09275253862142563, -0.10872729867696762, 0.01987026073038578, -0.0997060164809227, 0.02972911112010479, -0.09430713206529617, -0.16465304791927338, -0.0066184718161821365, 0.06545637547969818, -0.021454088389873505, -0.05943804234266281, -0.0456552617251873, -0.06899554282426834, 0.00531307328492403, -0.011819109320640564, 0.12852510809898376, -0.06482800841331482, 0.09113333374261856, 0.02068488486111164, 0.06170446425676346, -0.044247571378946304, 0.05700473114848137, -0.1002402976155281, 0.01578603684902191, -0.14183582365512848, 0.01933932676911354, -0.058111920952796936, 0.05459638684988022, -0.09470342099666595, -0.10357604175806046, 0.0180387981235981, -0.0070784506388008595, 0.0686822384595871, 0.08589933067560196, -0.17190009355545044, -0.07285673171281815, 0.15207892656326294, -0.06989258527755737, -0.12216252833604813, 0.11659850925207138, -0.061540812253952026, 0.04416836053133011, 0.0574338324368, 0.15312549471855164, 0.07762718200683594, -0.08201837539672852, 0.0025980526115745306, 0.011850755661725998, 0.05176456272602081, -0.07189375162124634, 0.07456862181425095, 0.005097848363220692, 0.01813308708369732, 0.029326578602194786, -0.03730258345603943, 0.058305587619543076, -0.09182056784629822, -0.10061073303222656, -0.032046422362327576, -0.09333965182304382, 0.04132094979286194, 0.07383086532354355, 0.06823448091745377, -0.08949977904558182, -0.08154026418924332, 0.059639379382133484, 0.09323980659246445, -0.05539923906326294, 0.022184792906045914, -0.0654938817024231, 0.07319385558366776, -0.048037976026535034, -0.028885824605822563, -0.17170684039592743, -0.03550689294934273, 0.010363485664129257, -0.005698459222912788, 0.007978023029863834, 0.0419367291033268, 0.06356967240571976, 0.06307624280452728, -0.04619128257036209, -0.020592838525772095, -0.03257044032216072, 0.003909502178430557, -0.1308802217245102, -0.20537114143371582, -0.0437607578933239, -0.019096076488494873, 0.14261186122894287, -0.20658805966377258, 0.036347873508930206, -0.014267523773014545, 0.0808197408914566, 0.014669153839349747, -0.006509921047836542, -0.04075078293681145, 0.0748903825879097, -0.046737801283597946, -0.049635130912065506, 0.07326773554086685, 0.0034824691247195005, -0.08464500308036804, -0.051442861557006836, -0.08885911852121353, 0.17276199162006378, 0.1286809891462326, -0.10641954094171524, -0.07458057254552841, -0.019270090386271477, -0.06501860916614532, -0.03959280252456665, -0.04009370133280754, 0.030275188386440277, 0.17660082876682281, -0.007429101970046759, 0.14235615730285645, -0.0685112401843071, -0.04221781715750694, 0.023431137204170227, -0.03239874914288521, 0.01408835593611002, 0.12372821569442749, 0.14432679116725922, -0.08080087602138519, 0.15618951618671417, 0.14546947181224823, -0.08951109647750854, 0.1254820078611374, -0.04212890937924385, -0.07276850938796997, -0.021425342187285423, -0.030836565420031548, -0.007592375855892897, 0.11712001264095306, -0.15428291261196136, -0.00423008855432272, 0.03334968537092209, 0.020756877958774567, 0.020467225462198257, -0.22722162306308746, -0.04016052559018135, 0.0361030250787735, -0.04041792452335358, -0.0029038607608526945, -0.01406033057719469, 0.0014550635823979974, 0.10257510840892792, 0.00004982904647476971, -0.10807113349437714, 0.04004950448870659, 0.003162970533594489, -0.07934761047363281, 0.21105873584747314, -0.08195175975561142, -0.14421994984149933, -0.12410376220941544, -0.08330855518579483, -0.04924323409795761, 0.0020626247860491276, 0.05790961533784866, -0.08233749121427536, -0.03102177195250988, -0.07023419439792633, 0.006768215913325548, 0.005081826355308294, 0.03178548440337181, 0.004248214885592461, -0.003142031142488122, 0.06755750626325607, -0.11269905418157578, -0.010785999707877636, -0.06117203086614609, -0.05839593708515167, 0.0383724607527256, 0.03438854590058327, 0.11423667520284653, 0.15530991554260254, -0.012438434176146984, 0.010183842852711678, -0.026534661650657654, 0.22993440926074982, -0.05604952946305275, -0.023947222158312798, 0.1327197551727295, -0.014717011712491512, 0.04718660190701485, 0.1146547868847847, 0.07481953501701355, -0.08011692762374878, -0.0022365842014551163, 0.0405840203166008, -0.03180375695228577, -0.2252926528453827, -0.044505100697278976, -0.050189532339572906, -0.005877647548913956, 0.0946928933262825, 0.02563065104186535, 0.03712499514222145, 0.07627096027135849, 0.04248274862766266, 0.08003371208906174, -0.050784721970558167, 0.0534493550658226, 0.11656016856431961, 0.03647409379482269, 0.12217642366886139, -0.0394224189221859, -0.057882342487573624, 0.042382679879665375, 0.007236721459776163, 0.22604255378246307, 0.010324254631996155, 0.13233377039432526, 0.07119962573051453, 0.18803825974464417, -0.010555770248174667, 0.0770735964179039, -0.016418414190411568, -0.03603683412075043, -0.018565330654382706, -0.03795492276549339, -0.03915299475193024, 0.026838485151529312, -0.057380352169275284, 0.0693938136100769, -0.1152411550283432, 0.012818515300750732, 0.048618387430906296, 0.26370498538017273, 0.0378287211060524, -0.3293401002883911, -0.0948655754327774, -0.004423939622938633, -0.036594681441783905, -0.017035868018865585, 0.031502194702625275, 0.09494968503713608, -0.09151501953601837, 0.014458815567195415, -0.06943138688802719, 0.0880339965224266, -0.056055400520563126, 0.041392359882593155, 0.0913524404168129, 0.09109028428792953, 0.013207006268203259, 0.08891794085502625, -0.2767941653728485, 0.28171712160110474, -0.0003302557743154466, 0.05706098675727844, -0.07686538249254227, 0.00802754145115614, 0.03539071977138519, 0.06384152173995972, 0.07220026850700378, -0.010547850281000137, -0.017158932983875275, -0.19474747776985168, -0.06615003943443298, 0.03013208508491516, 0.058142490684986115, -0.04148917645215988, 0.08791504800319672, -0.03259216248989105, 0.004544517491012812, 0.07662494480609894, 0.015194493345916271, -0.04282085597515106, -0.09813029319047928, -0.005489773582667112, 0.028669195249676704, -0.05398347228765488, -0.06729821860790253, -0.118915855884552, -0.12922832369804382, 0.15101999044418335, -0.030786095187067986, -0.032090071588754654, -0.10279916226863861, 0.08175195753574371, 0.07480268180370331, -0.08833976089954376, 0.04754483327269554, 0.0038506477139890194, 0.0677163377404213, 0.03597554191946983, -0.06387605518102646, 0.10786700993776321, -0.07636013627052307, -0.16371212899684906, -0.07156892865896225, 0.09996990859508514, 0.03906526416540146, 0.06409886479377747, -0.007093713153153658, 0.00844359491020441, -0.03998633846640587, -0.08369043469429016, 0.023215098306536674, 0.006013697944581509, 0.08836453408002853, 0.0040573072619736195, -0.06686697900295258, 0.017252907156944275, -0.05843450129032135, -0.03305281326174736, 0.19354066252708435, 0.22534266114234924, -0.1006816029548645, 0.01912996731698513, 0.04437734931707382, -0.07093784958124161, -0.18757683038711548, 0.03355225920677185, 0.053458381444215775, 0.0037573541048914194, 0.03949031978845596, -0.18323898315429688, 0.13949596881866455, 0.1158108040690422, -0.014781365171074867, 0.10206872224807739, -0.32641953229904175, -0.11550803482532501, 0.14347624778747559, 0.14691412448883057, 0.09755928069353104, -0.13539323210716248, -0.019939765334129333, -0.009012483060359955, -0.14127957820892334, 0.11391156166791916, -0.07830836623907089, 0.11488717794418335, -0.03278020769357681, 0.08372743427753448, 0.002491330960765481, -0.06233123317360878, 0.11650881171226501, 0.02319377288222313, 0.09790835529565811, -0.053713005036115646, -0.04474485293030739, 0.0322415791451931, -0.03864048793911934, 0.023878300562500954, -0.07901585102081299, 0.03142489492893219, -0.09861916303634644, -0.023711100220680237, -0.07237778604030609, 0.04100198298692703, -0.03856939822435379, -0.07293682545423508, -0.03898164629936218, 0.03127877041697502, 0.05260429531335831, -0.012888211756944656, 0.13168494403362274, 0.03883565962314606, 0.14021098613739014, 0.09855381399393082, 0.06878593564033508, -0.07315035909414291, -0.08856244385242462, -0.030779171735048294, -0.015954777598381042, 0.06403955072164536, -0.12418590486049652, 0.02255711890757084, 0.1448213905096054, 0.020959828048944473, 0.14191775023937225, 0.08032190054655075, -0.028779631480574608, 0.0007462025969289243, 0.055655062198638916, -0.1615155041217804, -0.0720653086900711, -0.0023991859052330256, -0.04987620934844017, -0.11637001484632492, 0.05983209237456322, 0.09337449818849564, -0.07405837625265121, -0.009627113118767738, -0.003131087403744459, 0.012198276817798615, -0.05327559635043144, 0.19238801300525665, 0.06314712017774582, 0.047574542462825775, -0.09776027500629425, 0.07158654928207397, 0.0483444407582283, -0.06971530616283417, 0.0010317033156752586, 0.04760708659887314, -0.08618787676095963, -0.04897281527519226, 0.05808137729763985, 0.17526297271251678, -0.0540875643491745, -0.05159357190132141, -0.1367105096578598, -0.11269891262054443, 0.07689550518989563, 0.14571158587932587, 0.11669349670410156, 0.016178684309124947, -0.06229240819811821, 0.005924403201788664, -0.11049982905387878, 0.09536439925432205, 0.03543989732861519, 0.0679175853729248, -0.15270884335041046, 0.14183805882930756, 0.013160254806280136, 0.039910152554512024, -0.016278037801384926, 0.028599178418517113, -0.10369930416345596, 0.007954966276884079, -0.11612364649772644, -0.026025181636214256, -0.03528023138642311, 0.010059275664389133, 0.0011471844045445323, -0.059306785464286804, -0.061372045427560806, 0.016899151727557182, -0.11253875494003296, -0.017007356509566307, 0.04048798233270645, 0.0697140246629715, -0.11508741229772568, -0.03390509635210037, 0.028061002492904663, -0.05908668413758278, 0.07176516205072403, 0.04314565286040306, 0.026339514181017876, 0.04992508888244629, -0.12845487892627716, 0.017647841945290565, 0.07000238448381424, 0.027308980002999306, 0.0748385339975357, -0.10340788960456848, -0.007719729095697403, -0.0033635280560702085, 0.03773968294262886, 0.014791525900363922, 0.07650606334209442, -0.138172909617424, -0.01106279157102108, -0.019647879526019096, -0.07669321447610855, -0.06348075717687607, 0.021045951172709465, 0.10026916116476059, 0.011957299895584583, 0.2044110894203186, -0.0673333927989006, 0.04147513583302498, -0.211604043841362, 0.005715911276638508, -0.011702721938490868, -0.10424303263425827, -0.11583338677883148, -0.05898692086338997, 0.051905322819948196, -0.06318709254264832, 0.15212970972061157, 0.02940960042178631, 0.017088336870074272, 0.021638134494423866, -0.02164112776517868, 0.022257620468735695, 0.01731210947036743, 0.19802862405776978, 0.03581344708800316, -0.03000180795788765, 0.05675666406750679, 0.04638662561774254, 0.09956304728984833, 0.10928119719028473, 0.18701471388339996, 0.14631158113479614, -0.006462522782385349, 0.09129258990287781, 0.04398084804415703, -0.06853420287370682, -0.1606759876012802, 0.03992724046111107, -0.043195921927690506, 0.1079442948102951, -0.017093220725655556, 0.23306845128536224, 0.0653676763176918, -0.16740486025810242, 0.038290031254291534, -0.05356709659099579, -0.08045876026153564, -0.10948701947927475, -0.05737118050456047, -0.07799782603979111, -0.12965507805347443, -0.0020153315272182226, -0.11372067034244537, -0.0010245360899716616, 0.13361915946006775, 0.010151488706469536, -0.023559337481856346, 0.1504921317100525, 0.014137991704046726, 0.032543789595365524, 0.04005391150712967, 0.01756606437265873, -0.04085351526737213, -0.12860828638076782, -0.06432311236858368, -0.01705271378159523, -0.013268639333546162, 0.03198952600359917, -0.07181167602539062, -0.04131164774298668, 0.03422418609261513, -0.011277218349277973, -0.0927838608622551, 0.006133797112852335, -0.00003377004759386182, 0.05376178026199341, 0.03637528046965599, 0.010147860273718834, 0.02969863824546337, -0.006638644728809595, 0.1963392198085785, -0.07455683499574661, -0.05623834207653999, -0.11009179800748825, 0.24299025535583496, 0.030063027516007423, -0.013708963058888912, 0.040418531745672226, -0.06391185522079468, 0.004957623314112425, 0.24791058897972107, 0.21168950200080872, -0.08397267758846283, -0.011812274344265461, 0.020674483850598335, -0.012975463643670082, -0.0370255745947361, 0.09942377358675003, 0.13944822549819946, 0.04939046502113342, -0.09116866439580917, -0.04577267915010452, -0.061295367777347565, -0.009391785599291325, -0.02970074489712715, 0.06570304185152054, 0.0516682006418705, 0.008400795049965382, -0.042431943118572235, 0.0451652854681015, -0.05519978702068329, -0.1087324321269989, 0.06559963524341583, -0.2031203657388687, -0.16926433145999908, -0.012517301365733147, 0.10494889318943024, 0.002346363151445985, 0.05948646739125252, -0.030714116990566254, 0.0010001829359680414, 0.09050954878330231, -0.014642005786299706, -0.10043344646692276, -0.08653035014867783, 0.103233203291893, -0.08629322797060013, 0.23261870443820953, -0.046659402549266815, 0.06518238037824631, 0.12650945782661438, 0.0640711709856987, -0.07552318274974823, 0.054950349032878876, 0.051911499351263046, -0.06818891316652298, 0.016116956248879433, 0.058742914348840714, -0.028383202850818634, 0.08238182961940765, 0.041805967688560486, -0.12826018035411835, 0.016925251111388206, -0.06600135564804077, -0.06154686212539673, -0.04159378632903099, -0.028420230373740196, -0.05703960731625557, 0.13549529016017914, 0.21287673711776733, -0.03071114420890808, -0.011741322465240955, -0.07470434159040451, 0.020976915955543518, 0.05613837018609047, 0.01152550708502531, -0.05816882103681564, -0.21442344784736633, 0.021222906187176704, 0.032427966594696045, -0.018105754628777504, -0.22518673539161682, -0.0975896492600441, 0.012530527077615261, -0.07710176706314087, -0.0942244604229927, 0.06438511610031128, 0.0836399495601654, 0.05926011502742767, -0.06047607585787773, -0.035878583788871765, -0.08018461614847183, 0.13807518780231476, -0.14637711644172668, -0.09329812973737717 ]